WO2021248447A1 - Wireless sensing indication through slot format indication - Google Patents

Wireless sensing indication through slot format indication Download PDF

Info

Publication number
WO2021248447A1
WO2021248447A1 PCT/CN2020/095797 CN2020095797W WO2021248447A1 WO 2021248447 A1 WO2021248447 A1 WO 2021248447A1 CN 2020095797 W CN2020095797 W CN 2020095797W WO 2021248447 A1 WO2021248447 A1 WO 2021248447A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
symbols
format indication
time interval
transmission time
Prior art date
Application number
PCT/CN2020/095797
Other languages
French (fr)
Inventor
Jing Dai
Yuwei REN
Hao Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/095797 priority Critical patent/WO2021248447A1/en
Publication of WO2021248447A1 publication Critical patent/WO2021248447A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the following relates generally to wireless communications and more specifically to wireless sensing indication through a slot format indication.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a UE may communicate with a base station as a part of a wireless communications system.
  • the UE may communicate with the base station according to a transmission time interval (TTI) format indication, such as a slot format indication (SFI) , which may define communication directions for symbols of a slot.
  • TTI transmission time interval
  • SFI slot format indication
  • the communication directions may include uplink symbols, downlink symbol, and flexible symbols.
  • the UE may also perform wireless sensing or detection.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support wireless sensing indication through a slot format indication.
  • the described techniques provide for a base station or a user equipment (UE) performing wireless sensing based on a transmission time interval (TTI) format indication (such as a slot format indication (SFI) ) received from a base station.
  • TTI transmission time interval
  • SFI slot format indication
  • the UE may identify a frequency bandwidth configured for both wireless detection sensing and data communication.
  • the UE may receive, from a base station, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
  • the UE may then perform wireless detection sensing during the indicated one or more sensing symbols based on the TTI format indication.
  • a method of wireless communications may include identifying a frequency bandwidth configured for both wireless detection sensing and data communication, receiving, from a base station, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE, and reserving the indicated one or more sensing symbols for wireless detection sensing based on the TTI format indication.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to identify a frequency bandwidth configured for both wireless detection sensing and data communication, receive, from a base station, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE, and reserv the indicated one or more sensing symbols for wireless detection sensing based on the TTI format indication.
  • the apparatus may include means for identifying a frequency bandwidth configured for both wireless detection sensing and data communication, receiving, from a base station, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE, and reserving the indicated one or more sensing symbols for wireless detection sensing based on the TTI format indication.
  • a non-transitory computer-readable medium storing code for wireless communications is described.
  • the code may include instructions executable by a processor to identify a frequency bandwidth configured for both wireless detection sensing and data communication, receive, from a base station, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE, and reserv the indicated one or more sensing symbols for wireless detection sensing based on the TTI format indication.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing wireless detection sensing during the indicated one or more sensing symbols based on the TTI format indication.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying that the TTI format indication includes one or more uplink-reserved symbols, downlink-reserved symbols, flexible symbols, or combinations thereof, in addition to the one or more sensing symbols.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for refraining from transmitting or receiving data during the one or more symbols reserved for wireless detection sensing.
  • the TTI format indication may be a SFI.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying that an uplink transmission may be scheduled to occur during one or more uplink symbols of a slot, and determining that the TTI format indication updates at least a portion of the one or more uplink symbols of the slot to at least a portion of the one or more sensing symbols, where the at least a portion of the one or more sensing symbols may be at least a threshold duration of time after receipt of the TTI format indication.
  • receiving the TTI format indication further may include operations, features, means, or instructions for receiving, in the TTI format indication, an indication that the one or more sensing symbols may be of at least two different priorities, including a first priority level and a second priority level whose priority may be less than that of the first priority level.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for sensing symbols of the first priority level may be not dynamically updateable.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for sensing symbols of the second priority level may be dynamically updateable.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying one or more flexible symbols of a slot, determining that the TTI format indication updates at least a portion of the one or more flexible symbols of the slot to at least a portion of the one or more sensing symbols, and overriding the one or more flexible symbols of the slot to be sensing symbols based on the TTI format indication.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying that a repetition of an uplink transmission may be scheduled to occur during at least a portion of the one or more sensing symbols, and refraining from transmitting the repetition based on the repetition at least partially overlapping with the one or more sensing symbols.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying that a repetition of a downlink transmission may be scheduled to occur during at least a portion of one or more sensing symbols, and refraining from monitoring for the repetition based on the repetition at least partially overlapping with the one or more sensing symbols.
  • receiving the TTI format indication further may include operations, features, means, or instructions for receiving downlink control information (DCI) that includes the TTI format indication.
  • DCI downlink control information
  • a method of wireless communications may include identifying a frequency bandwidth configured for wireless detection sensing and data communication and transmitting, to a UE, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to identify a frequency bandwidth configured for wireless detection sensing and data communication and transmit, to a UE, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
  • the apparatus may include means for identifying a frequency bandwidth configured for wireless detection sensing and data communication and transmitting, to a UE, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
  • a non-transitory computer-readable medium storing code for wireless communications is described.
  • the code may include instructions executable by a processor to identify a frequency bandwidth configured for wireless detection sensing and data communication and transmit, to a UE, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing wireless detection sensing during the indicated one or more sensing symbols based on the TTI format indication.
  • the TTI format indication includes one or more uplink-reserved symbols, downlink-reserved symbols, flexible symbols, or combinations thereof, in addition to the one or more sensing symbols.
  • transmitting the TTI format indication may include operations, features, means, or instructions for transmitting, in the TTI format indication, an indication that the one or more sensing symbols may be of at least two different priorities, including a first priority level and a second priority level whose priority may be less than that of the first priority level.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for sensing symbols of the first priority level may be not dynamically updateable.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for sensing symbols of the second priority level may be dynamically updateable.
  • the TTI format indication may be a SFI.
  • transmitting the transmission timer interval format indication may include operations, features, means, or instructions for transmitting DCI to the UE including the TTI format indication.
  • FIG. 1 illustrates an example of a wireless communications system that supports wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a wireless communications system that supports wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a process flow that supports wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure.
  • FIGs. 4 and 5 show block diagrams of devices that support wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure.
  • FIG. 6 shows a block diagram of a communications manager that supports wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure.
  • FIG. 7 shows a diagram of a system including a device that supports wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure.
  • FIGs. 8 and 9 show block diagrams of devices that support wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure.
  • FIG. 10 shows a block diagram of a communications manager that supports wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure.
  • FIG. 11 shows a diagram of a system including a device that supports wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure.
  • FIGs. 12 through 15 show flowcharts illustrating methods that support wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure.
  • a user equipment may communicate with a base station over symbols in a transmission time interval (TTI) .
  • TTI may be an example of a slot or a set of symbols in time.
  • Each symbol of a TTI may be allocated for a different type of communication.
  • Some symbols may be allocated for uplink communication between the base station and the UE, some symbols may be allocated for downlink communication between the base station and the UE, and some symbols may be flexible symbols.
  • the flexible symbols may be used for uplink or downlink communications.
  • Wireless devices such as UEs, may also perform wireless detection sensing.
  • mmW millimeter wave
  • FR2 millimeter wave
  • a UE may also perform wireless detection sensing in other configurations of frequency bandwidths, such as the sub-6 (FR1) frequency band.
  • Wireless detection sensing may be particularly effective for NR frequency bandwidths, as wireless devices, including base stations, may be configured with radio-frequency (RF) chains for particular frequency bands (e.g., FR1 and FR2) .
  • RF radio-frequency
  • wireless devices may use the same RF modules with a cellular system transceiver. Therefore, in order to perform wireless detection sensing, the wireless device may not need additional modules.
  • wireless detection sensing may be performed using the same frequency as cellular bands, as the SCI framework of cellular data frequencies may be used as a coarse input for a higher resolution of the wireless detection sensing.
  • Data communication may also be improved by using the same frequency as wireless detection sensing (e.g., environment sensing) as the efficiency of the data communication may be improved based on information identified via wireless detection sensing.
  • beam adaptation and protocol adaptation of data communication may be improved based on the detection of environmental factors or detected devices (e.g., detected via wireless detection sensing in the same frequency) .
  • Wireless devices such as UEs, may detect other UEs, or other base stations, or networks, using wireless detection sensing.
  • wireless detection sensing by a UE or a base station and data communication between a UE and a base station may occur in the same frequency bandwidth.
  • the resource occupation between the two actions may be specified in cases of dynamic resource sharing in order to avoid resource collision between wireless detection sensing and data communication.
  • a UE may perform wireless detection sensing of other wireless devices, including base stations, it may be efficient to indicate any transmission interruption caused by base station radar sensing through a group-common TTI format indication, such as a slot format indication (SFI) conveyed via a group-common DCI.
  • a group-common TTI format indication such as a slot format indication (SFI) conveyed via a group-common DCI.
  • UEs may be preconfigured with a set of slot format combinations (e.g., slotFormatCombinations) .
  • the slot format combinations may be pre-configured based on radio resource control (RRC) signaling) .
  • RRC radio resource control
  • Each slot format combination may consist of a number of different slot formats.
  • the TTI format indication (for example, an SFI) may indicate to a UE a slot format (e.g., a downlink, uplink, flexible) for a number of slots from the slot in which the UE received the TTI format indication (e.g., via a SFI DCI from a base station) .
  • the TTI format indication may indication a format number of a set of format number (e.g., format number 30 of 56 possible format numbers) , and the format number may correspond to 14 symbols in a slot, each with a corresponding symbol type (e.g., uplink, downlink, flexible) .
  • the number of slots may be not smaller than the periodicity of the physical downlink control channel (PDCCH) search space corresponding to the detection of the SFI DCI including the TTI format indication.
  • the SFI may be transmitted via a group-common DCI, and a UE may be configured with a corresponding subfield location in the DCI or the SFI.
  • the size of the sub-field may be a logarithm base 2 of the number of slot format combination bits.
  • a base station may transmit the TTI format indication including and indication of uplink, downlink, and flexible symbols.
  • the group common TTI format indication may be transmitted to one or more UEs by a base station.
  • the TTI format indication may also indicate specific TTIs, symbols, or slots that may be used for wireless detection sensing.
  • a base station may transmit a TTI format indication to a UE to indicate the wireless detection sensing symbols ( “R” symbols) .
  • the TTI format indication may include an indication of uplink symbols ( “U” ) , downlink symbols ( “D” ) , flexible symbols ( “F” ) , and wireless detection sensing ( “R” ) symbols.
  • the UE may use the R symbols to perform wireless detection sensing.
  • the TTI format indication may be semi-statically transmitted to a UE from a base station. In other cases, symbols may be dynamically updated through a TTI format indication transmitted in a SFI DCI.
  • the base station may perform wireless detection sensing during the R symbols. In some cases, the UE may also perform wireless detection sensing during the R symbols.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are then described with respect to a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to wireless sensing indication through a slot format indication.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the base stations 105, the UEs 115, or both
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a TTI.
  • the TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may support synchronous or asynchronous operation.
  • the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time.
  • the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) .
  • half-duplex communications may be performed at a reduced peak rate.
  • Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • SHF super high frequency
  • EHF extremely high frequency
  • the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions.
  • the techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • receive configurations e.g., directional listening
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • receive beamforming weight sets e.g., different directional listening weight sets
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the RRC protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • transport channels may be mapped to physical channels.
  • the UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • a UE 115 may communicate with a base station 105 based on a TTI format indication.
  • the TTI format indication may indicate a communication type, including wireless detection sensing for each symbol of a slot.
  • the TTI format indication may be transmitted by a base station 105 to a UE 115, and may in some cases be indicated in a SFI.
  • a UE 115 may perform wireless detection sensing based on the TTI format indication received from the base station 105.
  • the UE 115 may identify a frequency bandwidth configured for both wireless detection sensing and data communication.
  • the UE 115 may receive, from a base station, the TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE 115.
  • the UE 115 or the base station 105 may then perform wireless detection sensing during the indicated one or more sensing symbols based on the TTI format indication.
  • the UE 115 may also determine whether to monitor for downlink transmissions based on the R symbols in the TTI format indication.
  • FIG. 2 illustrates an example of a wireless communication system 200 that supports wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure.
  • wireless communication system 200 may implement aspects of wireless communication system 100.
  • Wireless communications system 200 includes UE 115-a and base station 105-a, which may be examples of a UE 115 and a base station 105, as described with respect to FIG. 1, respectively.
  • UE 115-a and base station 105-a may communicate over communication link 205.
  • UE 115-a and base station 105-a may communicate in a frequency band, such as sub-6 or mmW, and communications over communication link 205 may occur within that frequency band.
  • UE 115-a and base station 105-a may use the frequency band for both wireless detection sensing, and for control and data communications.
  • Base station 105-a may transmit TTI format indication 210 to UE 115-a.
  • TTI format indication 210 may indicate symbols or slots that are for wireless detection sensing, along with allocating uplink symbols ( “U” ) , downlink symbols ( “D” ) , and flexible symbols ( “F” ) .
  • TTI format indication 210 may be transmitted through a semi-static slot format configuration message.
  • TTI format indication 210 may be transmitted in a SFI DCI.
  • the TTIs allocated for wireless detection sensing may be indicated as “R” symbols. During “R” symbols, UE 115-a may not receive or transmit communication signals or channels, as base station 105-a may be performing wireless detection sensing.
  • TTI format indication 210 may include a different TTI format than a previous TTI format received by UE 115-a. Therefore, in some cases, TTI format indication 210 may override a previous TTI format indication.
  • Prior “F” symbols may be overridden to be “R” symbols by TTI format indication 210 in a SFI DCI.
  • “F” symbols may also be overridden to be “R” symbols by a TTI format indication 210 in a DCI different than a SFI DCI, such as in the case of aperiodic triggering of wireless detection sensing by a DCI.
  • a prior “R” symbols may not be overridden to be “D” , “U” , or “F” by TTI format indication 210 in a SFI DCI.
  • UE 115-a may identify a multi-slot physical downlink shared channel (PDSCH) repetition or a multi-clot physical uplink shared channel (PUSCH) repetition scheduled in a set of repeating symbols. If a repeating transmission of the PDSCH or PUSCH occurs in a symbols allocated as “R” by TTI format indication 210, UE 115-a may determine not to receive (in the case of a PDSCH repetition) or transmit (in the case of a PUSCH transmission) during that particular symbol or slot. Base station 105-a may perform wireless detection sensing during the R symbols, and thus transmissions by UE 115-a may not be received at base station 105-a. Further, UE 115-a may not monitor for downlink transmission during the R symbols, thereby saving power at UE 115-a.
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • UE 115-a may also perform wireless detection sensing during the R symbols.
  • UE 115-a may perform wireless detection sensing with high power (e.g., vehicle sensing) .
  • the sensing behavior of UE 115-a in cases of high power sensing may be known by base station 105-a, and base station 105-a may inform other UEs 115 of the wireless detection sensing behavior of UE 115-a, as the high power sensing may cause interference.
  • UE 115-a may perform low power sensing (e.g., smart watch sensing) . In these cases, base station 105-a may not inform other UEs 115 of the low power sensing, as the low power sensing may not cause interference.
  • UE 115-a may have been previously configured to transmit an uplink signal or channel, such as a sounding reference signal (SRS) , a physical uplink control channel (PUCCH) , PUSCH, or physical random access channel (PRACH) in a set of symbols, a slot, or set of TTIs.
  • UE 115-a may receive TTI format indication 210 (e.g., either in a SFI DCI or in a aperiodic wireless detection sensing DCI) indicating a set of “R” symbols.
  • TTI format indication 210 e.g., either in a SFI DCI or in a aperiodic wireless detection sensing DCI
  • the set of “R” symbols may override the scheduled uplink signal transmission.
  • UE 115-a may determine not to transmit the scheduled uplink signal transmission, if the TTI format indication 210 is received at a threshold time before the scheduled uplink signal transmission. If UE 115-a receives TTI format indication 210 after the threshold time or at a time not satisfying the threshold time, UE 115-a may transmit the scheduled uplink transmission, even if the uplink signal is indicated to be overridden to a “R” symbol by the received TTI format indication 210.
  • the threshold time may be based on a PUSCH preparing threshold time, or a length of time used by UE 115-a to prepare and transmit the PUSCH or other uplink signal.
  • TTI format indication 210 there may be two or more types of wireless detection sensing symbols indicated in TTI format indication 210.
  • two types of wireless detection sensing symbols may be defined as “R1” and “R2” .
  • R1 and R2 may both be wireless detection sensing symbols, but may have differing priorities.
  • R1 may correspond to a higher priority of wireless detection sensing
  • R2 may correspond to a lower priority of wireless detection sensing.
  • the higher priority wireless detection sensing symbol e.g., R1 may not be overridden to be a downlink symbol by a subsequent TTI format indication 210 indicated in a SFI DCI.
  • the lower priority wireless detection sensing symbol ( “R2” ) may be overridden to be a downlink symbol or an uplink symbol by a SFI DCI.
  • UE 115-a may also not receive or transmit communication signals or channels if a time unit (e.g., a symbol or slot) is configured as R1. However UE 115-a may receive or transmit an aperiodically triggered downlink or uplink signal or channel in a symbol or slot configured as R1 by TTI format indication 210.
  • R symbols of different wireless detection sensing types may correspond to different wireless sensing waveforms, such as a pulse waveform or a frequency modulated continuous wave (FMCW) waveform.
  • FMCW frequency modulated continuous wave
  • FIG. 3 illustrates an example of a process flow 300 that supports wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure.
  • process flow 300 may implement aspects of wireless communication systems 100 and 200.
  • Process flow 300 includes UE 115-b which may be an example of a UE 115 as described in respect to FIGs. 1 and 2.
  • Process flow 300 also includes base station 105-b which may be an example of a base station 105 as described with respect to FIGs. 1 and 2.
  • UE 115-b may identify a frequency bandwidth configured for both wireless detection sensing and data communication.
  • Base station 105-b may also identify the frequency bandwidth configured for wireless detection sensing and data communication.
  • UE 115-b may receive, from base station 105-b, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by UE 115-b.
  • UE 115-b may receive DCI including the TTI format indication.
  • the TTI format indication may be a SFI.
  • UE 115-b may identify that the TTI format indication includes one or more uplink reserved symbols, downlink reserved symbols, flexible symbols, or a combination of these, in addition to the one or more sensing symbols.
  • UE 115-b may receive in the TTI format indication, an indication that the one or more sensing symbols are of at least two different priorities, including a first priority level and a second priority level whose priority is less than that of the first priority level.
  • the sensing symbols of the first priority level are not dynamically updateable.
  • the sensing symbols of the second priority level are dynamically updateable.
  • UE 115-b may reserve the indicated one or more sensing symbols for wireless detection sensing based on the TTI format indication.
  • Base station 105-b may perform wireless detection sensing during the indicated one or more sensing symbols.
  • UE 115-b may also perform wireless detection sensing during the indicated one or more sensing symbols based on the TTI format indication.
  • UE 115-b may refrain from transmitting or receiving data during the one or more symbols reserved for wireless detection sensing.
  • UE 115-b may identify that an uplink transmission is scheduled to occur during one or more uplink symbols of a slot. UE 115-b may determine that the TTI format indication updates at least a portion of the one or more uplink symbols of the slot to at least a portion of the one or more sensing symbols. The determined updating may be based on at least a portion of the one or more sensing symbols being at least a threshold duration of time after receipt of the TTI format indication.
  • UE 115-b may identify one or more flexible symbols of a slot.
  • the flexible symbols may have been indicated in a previous TTI format indication received from base station 105-b.
  • UE 115-b may determine that the TTI format indication updates at least a portion of the one or more flexible symbols of the slot to at least a portion of the one or more sensing symbols.
  • UE 115-b may override the one or more flexible symbols of the slot to be sensing symbols based on the TTI format indication.
  • UE 115-b may also identify that a repetition of an uplink transmission is scheduled to occur during at least a portion of the one or more sensing symbols. UE 115-b may then refrain from transmitting the repetition based on the repetition at least partially overlapping with the one or more sensing symbols. UE 115-b may also identify that a repetition of a downlink transmission is scheduled to occur during at least a portion of one or more sensing symbols. UE 115-b may refrain from monitoring for the repetition based on the repetition at least partially overlapping with the one or more sensing symbols.
  • FIG. 4 shows a block diagram 400 of a device 405 that supports wireless sensing indication through SFI in accordance with aspects of the present disclosure.
  • the device 405 may be an example of aspects of a UE 115 as described herein.
  • the device 405 may include a receiver 410, a communications manager 415, and a transmitter 420.
  • the device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 410 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to wireless sensing indication through SFI, etc. ) . Information may be passed on to other components of the device 405.
  • the receiver 410 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the receiver 410 may utilize a single antenna or a set of antennas.
  • the communications manager 415 may identify a frequency bandwidth configured for both wireless detection sensing and data communication, receive, from a base station, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE, and reserve the indicated one or more sensing symbols for wireless detection sensing based on the TTI format indication.
  • the communications manager 415 may be an example of aspects of the communications manager 710 described herein.
  • the communications manager 415 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 415, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 415 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 415, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 415, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 420 may transmit signals generated by other components of the device 405.
  • the transmitter 420 may be collocated with a receiver 410 in a transceiver module.
  • the transmitter 420 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the transmitter 420 may utilize a single antenna or a set of antennas.
  • the communications manager 415 described herein may be implemented as a chipset of a wireless modem, and the receiver 410 and the transmitter 420 may be implemented as sets of analog components (e.g., amplifiers, filters, phase shifters, antennas, etc. )
  • the wireless modem may obtain and decode signals from the receiver 410 over a receive interface, and may output signals for transmission to the transmitter 520 over a transmit interface.
  • the actions performed by the communications manager 415 as described herein may be implemented to realize one or more potential advantages.
  • One implementation may allow a UE 115 to save power and increase battery life by avoiding transmitting data at a time when a base station 105 may not receive data due to environment sensing by the base station 105.
  • the UE may also save power by avoiding monitoring for downlink transmissions from the base station 105 at a time when the base station 105 may perform wireless detection sensing and may not be transmitting data to the UE 115.
  • FIG. 5 shows a block diagram 500 of a device 505 that supports wireless sensing indication through SFI in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a device 405, or a UE 115 as described herein.
  • the device 505 may include a receiver 510, a communications manager 515, and a transmitter 535.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to wireless sensing indication through SFI, etc. ) . Information may be passed on to other components of the device 505.
  • the receiver 510 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the receiver 510 may utilize a single antenna or a set of antennas.
  • the communications manager 515 may be an example of aspects of the communications manager 415 as described herein.
  • the communications manager 515 may include a frequency bandwidth component 520, a TTI format indication component 525, and a wireless detection sensing component 530.
  • the communications manager 515 may be an example of aspects of the communications manager 710 described herein.
  • the frequency bandwidth component 520 may identify a frequency bandwidth configured for both wireless detection sensing and data communication.
  • the TTI format indication component 525 may receive, from a base station, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
  • the wireless detection sensing component 530 may reserve the indicated one or more sensing symbols for wireless detection sensing based on the TTI format indication.
  • the transmitter 535 may transmit signals generated by other components of the device 505.
  • the transmitter 535 may be collocated with a receiver 510 in a transceiver module.
  • the transmitter 535 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the transmitter 535 may utilize a single antenna or a set of antennas.
  • a processor of a UE 115 may efficiently operate the components described herein to realize one or more potential advantages.
  • the processor of the UE 115 may control the receiver 510 to receive the TTI format indication from a base station 115, as well as operating the receiver 510 to determine when to receive data from the base station 105.
  • the processor of the UE 115 may also operate transmitter 535 to transmit data according to the received TTI format indication in order to save power and increase battery life of the UE 115.
  • FIG. 6 shows a block diagram 600 of a communications manager 605 that supports wireless sensing indication through SFI in accordance with aspects of the present disclosure.
  • the communications manager 605 may be an example of aspects of a communications manager 415, a communications manager 515, or a communications manager 710 described herein.
  • the communications manager 605 may include a frequency bandwidth component 610, a TTI format indication component 615, a wireless detection sensing component 620, a data component 625, an uplink component 630, a threshold component 635, a priority component 640, a slot identification component 645, and a downlink component 650.
  • Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the frequency bandwidth component 610 may identify a frequency bandwidth configured for both wireless detection sensing and data communication.
  • the TTI format indication component 615 may receive, from a base station, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
  • the TTI format indication component 615 may identify that the TTI format indication includes one or more uplink-reserved symbols, downlink-reserved symbols, flexible symbols, or combinations thereof, in addition to the one or more sensing symbols.
  • the TTI format indication component 615 may determine that the TTI format indication updates at least a portion of the one or more flexible symbols of the slot to at least a portion of the one or more sensing symbols. In some examples, the TTI format indication component 615 may override the one or more flexible symbols of the slot to be sensing symbols based on the TTI format indication. In some examples, the TTI format indication component 615 may receive DCI that includes the TTI format indication. In some cases, the TTI format indication is a SFI.
  • the wireless detection sensing component 620 may reserve the indicated one or more sensing symbols for wireless detection sensing based on the TTI format indication. In some examples, the wireless detection sensing component 620 may perform wireless detection sensing during the indicated one or more sensing symbols based on the TTI format indication.
  • the data component 625 may refrain from transmitting or receiving data during the one or more symbols reserved for wireless detection sensing.
  • the uplink component 630 may identify that an uplink transmission is scheduled to occur during one or more uplink symbols of a slot. In some examples, the uplink component 630 may identify that a repetition of an uplink transmission is scheduled to occur during at least a portion of the one or more sensing symbols. In some examples, the uplink component 630 may refrain from transmitting the repetition based on the repetition at least partially overlapping with the one or more sensing symbols.
  • the threshold component 635 may determine that the TTI format indication updates at least a portion of the one or more uplink symbols of the slot to at least a portion of the one or more sensing symbols, where the at least a portion of the one or more sensing symbols is at least a threshold duration of time after receipt of the TTI format indication.
  • the priority component 640 may receive, in the TTI format indication, an indication that the one or more sensing symbols are of at least two different priorities, including a first priority level and a second priority level whose priority is less than that of the first priority level. In some examples, the priority component 640 may sense symbols of the first priority level are not dynamically updateable. In some examples, the priority component 640 may sense symbols of the second priority level are dynamically updateable.
  • the slot identification component 645 may identify one or more flexible symbols of a slot.
  • the downlink component 650 may identify that a repetition of a downlink transmission is scheduled to occur during at least a portion of one or more sensing symbols. In some examples, the downlink component 650 may refrain from monitoring for the repetition based on the repetition at least partially overlapping with the one or more sensing symbols.
  • FIG. 7 shows a diagram of a system 700 including a device 705 that supports wireless sensing indication through SFI in accordance with aspects of the present disclosure.
  • the device 705 may be an example of or include the components of device 405, device 505, or a UE 115 as described herein.
  • the device 705 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 710, an I/O controller 715, a transceiver 720, an antenna 725, memory 730, and a processor 740. These components may be in electronic communication via one or more buses (e.g., bus 745) .
  • buses e.g., bus 745
  • the communications manager 710 may identify a frequency bandwidth configured for both wireless detection sensing and data communication, receive, from a base station, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE, and reserve the indicated one or more sensing symbols for wireless detection sensing based on the TTI format indication.
  • the I/O controller 715 may manage input and output signals for the device 705.
  • the I/O controller 715 may also manage peripherals not integrated into the device 705.
  • the I/O controller 715 may represent a physical connection or port to an external peripheral.
  • the I/O controller 715 may utilize an operating system such as or another known operating system.
  • the I/O controller 715 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 715 may be implemented as part of a processor.
  • a user may interact with the device 705 via the I/O controller 715 or via hardware components controlled by the I/O controller 715.
  • the transceiver 720 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 720 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 720 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 725. However, in some cases the device may have more than one antenna 725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 730 may include RAM and ROM.
  • the memory 730 may store computer-readable, computer-executable code 735 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 730 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 740 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 740 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 740.
  • the processor 740 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 730) to cause the device 705 to perform various functions (e.g., functions or tasks supporting wireless sensing indication through SFI) .
  • the code 735 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 735 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 735 may not be directly executable by the processor 740 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 8 shows a block diagram 800 of a device 805 that supports wireless sensing indication through SFI in accordance with aspects of the present disclosure.
  • the device 805 may be an example of aspects of a base station 105 as described herein.
  • the device 805 may include a receiver 810, a communications manager 815, and a transmitter 820.
  • the device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to wireless sensing indication through SFI, etc. ) . Information may be passed on to other components of the device 805.
  • the receiver 810 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the receiver 810 may utilize a single antenna or a set of antennas.
  • the communications manager 815 may identify a frequency bandwidth configured for wireless detection sensing and data communication and transmit, to a UE, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
  • the communications manager 815 may be an example of aspects of the communications manager 1110 described herein.
  • the communications manager 815 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 815, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 815 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 815, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 815, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 820 may transmit signals generated by other components of the device 805.
  • the transmitter 820 may be collocated with a receiver 810 in a transceiver module.
  • the transmitter 820 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the transmitter 820 may utilize a single antenna or a set of antennas.
  • FIG. 9 shows a block diagram 900 of a device 905 that supports wireless sensing indication through SFI in accordance with aspects of the present disclosure.
  • the device 905 may be an example of aspects of a device 805, or a base station 105 as described herein.
  • the device 905 may include a receiver 910, a communications manager 915, and a transmitter 930.
  • the device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to wireless sensing indication through SFI, etc. ) . Information may be passed on to other components of the device 905.
  • the receiver 910 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the receiver 910 may utilize a single antenna or a set of antennas.
  • the communications manager 915 may be an example of aspects of the communications manager 815 as described herein.
  • the communications manager 915 may include a bandwidth component 920 and a TTI format indication transmission component 925.
  • the communications manager 915 may be an example of aspects of the communications manager 1110 described herein.
  • the bandwidth component 920 may identify a frequency bandwidth configured for wireless detection sensing and data communication.
  • the TTI format indication transmission component 925 may transmit, to a UE, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
  • the transmitter 930 may transmit signals generated by other components of the device 905.
  • the transmitter 930 may be collocated with a receiver 910 in a transceiver module.
  • the transmitter 930 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the transmitter 930 may utilize a single antenna or a set of antennas.
  • FIG. 10 shows a block diagram 1000 of a communications manager 1005 that supports wireless sensing indication through SFI in accordance with aspects of the present disclosure.
  • the communications manager 1005 may be an example of aspects of a communications manager 815, a communications manager 915, or a communications manager 1110 described herein.
  • the communications manager 1005 may include a bandwidth component 1010, a TTI format indication transmission component 1015, a wireless detection component 1020, a priority indication component 1025, and a DCI transmission component 1030. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the bandwidth component 1010 may identify a frequency bandwidth configured for wireless detection sensing and data communication.
  • the TTI format indication transmission component 1015 may transmit, to a UE, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
  • the TTI format indication includes one or more uplink-reserved symbols, downlink-reserved symbols, flexible symbols, or combinations thereof, in addition to the one or more sensing symbols.
  • the TTI format indication is a SFI.
  • the wireless detection component 1020 may perform wireless detection sensing during the indicated one or more sensing symbols based on the TTI format indication.
  • the priority indication component 1025 may transmit, in the TTI format indication, an indication that the one or more sensing symbols are of at least two different priorities, including a first priority level and a second priority level whose priority is less than that of the first priority level. In some examples, the priority indication component 1025 may sense symbols of the first priority level are not dynamically updateable. In some examples, the priority indication component 1025 may sense symbols of the second priority level are dynamically updateable.
  • the DCI transmission component 1030 may transmit DCI to the UE including the TTI format indication.
  • FIG. 11 shows a diagram of a system 1100 including a device 1105 that supports wireless sensing indication through SFI in accordance with aspects of the present disclosure.
  • the device 1105 may be an example of or include the components of device 805, device 905, or a base station 105 as described herein.
  • the device 1105 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1110, a network communications manager 1115, a transceiver 1120, an antenna 1125, memory 1130, a processor 1140, and an inter-station communications manager 1145. These components may be in electronic communication via one or more buses (e.g., bus 1150) .
  • buses e.g., bus 1150
  • the communications manager 1110 may identify a frequency bandwidth configured for wireless detection sensing and data communication and transmit, to a UE, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
  • the network communications manager 1115 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1115 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1120 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1120 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1120 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1125. However, in some cases the device may have more than one antenna 1125, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1130 may include RAM, ROM, or a combination thereof.
  • the memory 1130 may store computer-readable code 1135 including instructions that, when executed by a processor (e.g., the processor 1140) cause the device to perform various functions described herein.
  • the memory 1130 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1140 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1140 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1140.
  • the processor 1140 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1130) to cause the device 1105 to perform various functions (e.g., functions or tasks supporting wireless sensing indication through SFI) .
  • the inter-station communications manager 1145 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1145 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1145 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the code 1135 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1135 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1135 may not be directly executable by the processor 1140 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 12 shows a flowchart illustrating a method 1200 that supports wireless sensing indication through SFI in accordance with aspects of the present disclosure.
  • the operations of method 1200 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1200 may be performed by a communications manager as described with reference to FIGs. 4 through 7.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may identify a frequency bandwidth configured for both wireless detection sensing and data communication.
  • the operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of 1205 may be performed by a frequency bandwidth component as described with reference to FIGs. 4 through 7.
  • the UE may receive, from a base station, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
  • the operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of 1210 may be performed by a TTI format indication component as described with reference to FIGs. 4 through 7.
  • the UE may reserve the indicated one or more sensing symbols for wireless detection sensing based on the TTI format indication.
  • the operations of 1215 may be performed according to the methods described herein. In some examples, aspects of the operations of 1215 may be performed by a wireless detection sensing component as described with reference to FIGs. 4 through 7.
  • FIG. 13 shows a flowchart illustrating a method 1300 that supports wireless sensing indication through SFI in accordance with aspects of the present disclosure.
  • the operations of method 1300 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 4 through 7.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may identify a frequency bandwidth configured for both wireless detection sensing and data communication.
  • the operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a frequency bandwidth component as described with reference to FIGs. 4 through 7.
  • the UE may receive, from a base station, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
  • the operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a TTI format indication component as described with reference to FIGs. 4 through 7.
  • the UE may reserve the indicated one or more sensing symbols for wireless detection sensing based on the TTI format indication.
  • the operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a wireless detection sensing component as described with reference to FIGs. 4 through 7.
  • the UE may perform wireless detection sensing during the indicated one or more sensing symbols based on the TTI format indication.
  • the operations of 1320 may be performed according to the methods described herein. In some examples, aspects of the operations of 1320 may be performed by a wireless detection sensing component as described with reference to FIGs. 4 through 7.
  • FIG. 14 shows a flowchart illustrating a method 1400 that supports wireless sensing indication through SFI in accordance with aspects of the present disclosure.
  • the operations of method 1400 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 8 through 11.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may identify a frequency bandwidth configured for wireless detection sensing and data communication.
  • the operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a bandwidth component as described with reference to FIGs. 8 through 11.
  • the base station may transmit, to a UE, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
  • the operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a TTI format indication transmission component as described with reference to FIGs. 8 through 11.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports wireless sensing indication through SFI in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 8 through 11.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may identify a frequency bandwidth configured for wireless detection sensing and data communication.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a bandwidth component as described with reference to FIGs. 8 through 11.
  • the base station may transmit, to a UE, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a TTI format indication transmission component as described with reference to FIGs. 8 through 11.
  • the base station may perform wireless detection sensing during the indicated one or more sensing symbols based on the TTI format indication.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a wireless detection component as described with reference to FIGs. 8 through 11.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • CD compact disk
  • magnetic disk storage or other magnetic storage devices or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer,
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope and spirit of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • the term “and/or, ” when used in a list of two or more items means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed.
  • the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
  • “or” as used in a list of items indicates a disjunctive list such that, for example, a list of “at least one of A, B, or C” means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. The method may include a user equipment (UE) performing wireless sensing based on a transmission time interval (TTI) format indication received from a base station. The UE may identify a frequency bandwidth configured for both wireless detection sensing and data communication. The UE may receive, from a base station, the TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE. The UE may then perform wireless detection sensing during the indicated one or more sensing symbols based on the TTI format indication.

Description

WIRELESS SENSING INDICATION THROUGH SLOT FORMAT INDICATION
FIELD OF TECHNOLOGY
The following relates generally to wireless communications and more specifically to wireless sensing indication through a slot format indication.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
A UE may communicate with a base station as a part of a wireless communications system. The UE may communicate with the base station according to a transmission time interval (TTI) format indication, such as a slot format indication (SFI) , which may define communication directions for symbols of a slot. The communication directions may include uplink symbols, downlink symbol, and flexible symbols. The UE may also perform wireless sensing or detection.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support wireless sensing indication through a slot format indication. Generally, the described techniques provide for a base station or a user equipment (UE)  performing wireless sensing based on a transmission time interval (TTI) format indication (such as a slot format indication (SFI) ) received from a base station. The UE may identify a frequency bandwidth configured for both wireless detection sensing and data communication. The UE may receive, from a base station, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE. The UE may then perform wireless detection sensing during the indicated one or more sensing symbols based on the TTI format indication.
A method of wireless communications is described. The method may include identifying a frequency bandwidth configured for both wireless detection sensing and data communication, receiving, from a base station, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE, and reserving the indicated one or more sensing symbols for wireless detection sensing based on the TTI format indication.
An apparatus for wireless communications is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to identify a frequency bandwidth configured for both wireless detection sensing and data communication, receive, from a base station, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE, and reserv the indicated one or more sensing symbols for wireless detection sensing based on the TTI format indication.
Another apparatus for wireless communications is described. The apparatus may include means for identifying a frequency bandwidth configured for both wireless detection sensing and data communication, receiving, from a base station, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE, and reserving the indicated one or more sensing symbols for wireless detection sensing based on the TTI format indication.
A non-transitory computer-readable medium storing code for wireless communications is described. The code may include instructions executable by a processor to identify a frequency bandwidth configured for both wireless detection sensing and data  communication, receive, from a base station, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE, and reserv the indicated one or more sensing symbols for wireless detection sensing based on the TTI format indication.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing wireless detection sensing during the indicated one or more sensing symbols based on the TTI format indication.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying that the TTI format indication includes one or more uplink-reserved symbols, downlink-reserved symbols, flexible symbols, or combinations thereof, in addition to the one or more sensing symbols.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for refraining from transmitting or receiving data during the one or more symbols reserved for wireless detection sensing.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the TTI format indication may be a SFI.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying that an uplink transmission may be scheduled to occur during one or more uplink symbols of a slot, and determining that the TTI format indication updates at least a portion of the one or more uplink symbols of the slot to at least a portion of the one or more sensing symbols, where the at least a portion of the one or more sensing symbols may be at least a threshold duration of time after receipt of the TTI format indication.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the TTI format indication further may include operations, features, means, or instructions for receiving, in the TTI format indication, an indication that the one or more sensing symbols may be of at least two different priorities,  including a first priority level and a second priority level whose priority may be less than that of the first priority level.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for sensing symbols of the first priority level may be not dynamically updateable.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for sensing symbols of the second priority level may be dynamically updateable.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying one or more flexible symbols of a slot, determining that the TTI format indication updates at least a portion of the one or more flexible symbols of the slot to at least a portion of the one or more sensing symbols, and overriding the one or more flexible symbols of the slot to be sensing symbols based on the TTI format indication.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying that a repetition of an uplink transmission may be scheduled to occur during at least a portion of the one or more sensing symbols, and refraining from transmitting the repetition based on the repetition at least partially overlapping with the one or more sensing symbols.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying that a repetition of a downlink transmission may be scheduled to occur during at least a portion of one or more sensing symbols, and refraining from monitoring for the repetition based on the repetition at least partially overlapping with the one or more sensing symbols.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the TTI format indication further may include operations, features, means, or instructions for receiving downlink control information (DCI) that includes the TTI format indication.
A method of wireless communications is described. The method may include identifying a frequency bandwidth configured for wireless detection sensing and data communication and transmitting, to a UE, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
An apparatus for wireless communications is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to identify a frequency bandwidth configured for wireless detection sensing and data communication and transmit, to a UE, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
Another apparatus for wireless communications is described. The apparatus may include means for identifying a frequency bandwidth configured for wireless detection sensing and data communication and transmitting, to a UE, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
A non-transitory computer-readable medium storing code for wireless communications is described. The code may include instructions executable by a processor to identify a frequency bandwidth configured for wireless detection sensing and data communication and transmit, to a UE, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing wireless detection sensing during the indicated one or more sensing symbols based on the TTI format indication.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the TTI format indication includes one or more uplink-reserved symbols, downlink-reserved symbols, flexible symbols, or combinations thereof, in addition to the one or more sensing symbols.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the TTI format indication may include operations, features, means, or instructions for transmitting, in the TTI format indication, an indication that the one or more sensing symbols may be of at least two different priorities, including a first priority level and a second priority level whose priority may be less than that of the first priority level.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for sensing symbols of the first priority level may be not dynamically updateable.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for sensing symbols of the second priority level may be dynamically updateable.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the TTI format indication may be a SFI.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the transmission timer interval format indication may include operations, features, means, or instructions for transmitting DCI to the UE including the TTI format indication.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a wireless communications system that supports wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a process flow that supports wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure.
FIGs. 4 and 5 show block diagrams of devices that support wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure.
FIG. 6 shows a block diagram of a communications manager that supports wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure.
FIG. 7 shows a diagram of a system including a device that supports wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure.
FIGs. 8 and 9 show block diagrams of devices that support wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure.
FIG. 10 shows a block diagram of a communications manager that supports wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure.
FIG. 11 shows a diagram of a system including a device that supports wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure.
FIGs. 12 through 15 show flowcharts illustrating methods that support wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
A user equipment (UE) may communicate with a base station over symbols in a transmission time interval (TTI) . The TTI may be an example of a slot or a set of symbols in time. Each symbol of a TTI may be allocated for a different type of communication. Some symbols may be allocated for uplink communication between the base station and the UE, some symbols may be allocated for downlink communication between the base station and the UE, and some symbols may be flexible symbols. The flexible symbols may be used for uplink or downlink communications.
Wireless devices, such as UEs, may also perform wireless detection sensing. For example, in New Radio (NR) applications, millimeter wave (mmW) (FR2) may provide a high frequency bandwidth and a large aperture that the UE may use to determine range, velocity, angle, and other location and movement information for the environment imaging. A UE may also perform wireless detection sensing in other configurations of frequency bandwidths, such as the sub-6 (FR1) frequency band.
Wireless detection sensing may be particularly effective for NR frequency bandwidths, as wireless devices, including base stations, may be configured with radio-frequency (RF) chains for particular frequency bands (e.g., FR1 and FR2) . Thus, wireless devices may use the same RF modules with a cellular system transceiver. Therefore, in order to perform wireless detection sensing, the wireless device may not need additional modules. Further, wireless detection sensing may be performed using the same frequency as cellular bands, as the SCI framework of cellular data frequencies may be used as a coarse input for a higher resolution of the wireless detection sensing. Data communication may also be improved by using the same frequency as wireless detection sensing (e.g., environment sensing) as the efficiency of the data communication may be improved based on information identified via wireless detection sensing. For example, beam adaptation and protocol adaptation of data communication may be improved based on the detection of environmental factors or detected devices (e.g., detected via wireless detection sensing in the same frequency) . Wireless devices, such as UEs, may detect other UEs, or other base stations, or networks, using wireless detection sensing.
Therefore, wireless detection sensing by a UE or a base station and data communication between a UE and a base station may occur in the same frequency bandwidth. As the sensing and communication occur in the same bandwidth, the resource occupation between the two actions may be specified in cases of dynamic resource sharing in order to avoid resource collision between wireless detection sensing and data communication.
However, it may be inefficient to allocate different sub-bands of the frequency bandwidth for wireless detection sensing and data communication. For a UE to perform wireless detection sensing of other wireless devices, including base stations, it may be efficient to indicate any transmission interruption caused by base station radar sensing  through a group-common TTI format indication, such as a slot format indication (SFI) conveyed via a group-common DCI.
UEs may be preconfigured with a set of slot format combinations (e.g., slotFormatCombinations) . The slot format combinations may be pre-configured based on radio resource control (RRC) signaling) . Each slot format combination may consist of a number of different slot formats. The TTI format indication (for example, an SFI) may indicate to a UE a slot format (e.g., a downlink, uplink, flexible) for a number of slots from the slot in which the UE received the TTI format indication (e.g., via a SFI DCI from a base station) . For example, the TTI format indication may indication a format number of a set of format number (e.g., format number 30 of 56 possible format numbers) , and the format number may correspond to 14 symbols in a slot, each with a corresponding symbol type (e.g., uplink, downlink, flexible) . The number of slots may be not smaller than the periodicity of the physical downlink control channel (PDCCH) search space corresponding to the detection of the SFI DCI including the TTI format indication. The SFI may be transmitted via a group-common DCI, and a UE may be configured with a corresponding subfield location in the DCI or the SFI. The size of the sub-field may be a logarithm base 2 of the number of slot format combination bits. A base station may transmit the TTI format indication including and indication of uplink, downlink, and flexible symbols.
The group common TTI format indication may be transmitted to one or more UEs by a base station. In order to accommodate wireless detection sensing in the same frequency band as data communication (e.g., uplink symbols, downlink symbols, and flexible symbols) , the TTI format indication may also indicate specific TTIs, symbols, or slots that may be used for wireless detection sensing. A base station may transmit a TTI format indication to a UE to indicate the wireless detection sensing symbols ( “R” symbols) .
The TTI format indication may include an indication of uplink symbols ( “U” ) , downlink symbols ( “D” ) , flexible symbols ( “F” ) , and wireless detection sensing ( “R” ) symbols. The UE may use the R symbols to perform wireless detection sensing. The TTI format indication may be semi-statically transmitted to a UE from a base station. In other cases, symbols may be dynamically updated through a TTI format indication transmitted in a SFI DCI. The base station may perform wireless detection sensing during the R symbols. In some cases, the UE may also perform wireless detection sensing during the R symbols.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are then described with respect to a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to wireless sensing indication through a slot format indication.
FIG. 1 illustrates an example of a wireless communications system 100 that supports wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a  bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (e.g., the base stations 105, the UEs 115, or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of  carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing (Δf) and a cyclic prefix. A carrier may be divided into one or more BWPs having the same or different numerologies. In some examples, a UE 115 may be configured with multiple BWPs. In some examples, a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a TTI. In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with  different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time. For asynchronous operation, the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples, half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over  a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques. For example, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
In some systems, the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) . In some examples, vehicles may communicate using vehicle-to-everything (V2X)  communications, vehicle-to-vehicle (V2V) communications, or some combination of these. A vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system. In some examples, vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .  Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device. The propagation of EHF transmissions, however, may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. The techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
The base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals  propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (e.g., by a base station 105 or a UE 115) may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback  may correspond to a configured number of beams across a system bandwidth or one or more sub-bands. The base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115) may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and  multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the RRC protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
The UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
UE 115 may communicate with a base station 105 based on a TTI format indication. The TTI format indication may indicate a communication type, including wireless detection sensing for each symbol of a slot. The TTI format indication may be transmitted by a base station 105 to a UE 115, and may in some cases be indicated in a SFI. A UE 115 may perform wireless detection sensing based on the TTI format indication received from the base station 105. The UE 115 may identify a frequency bandwidth configured for both wireless detection sensing and data communication. The UE 115 may receive, from a base station, the TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE 115. The UE 115 or the base station 105 may then perform wireless detection sensing during the indicated one or more sensing symbols based on the TTI format indication. The UE 115 may also determine whether to monitor for downlink transmissions based on the R symbols in the TTI format indication.
FIG. 2 illustrates an example of a wireless communication system 200 that supports wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure. In some examples, wireless communication system 200 may implement aspects of wireless communication system 100. Wireless communications system 200 includes UE 115-a and base station 105-a, which may be examples of a UE 115 and a base station 105, as described with respect to FIG. 1, respectively.
UE 115-a and base station 105-a may communicate over communication link 205. UE 115-a and base station 105-a may communicate in a frequency band, such as sub-6 or mmW, and communications over communication link 205 may occur within that frequency band. UE 115-a and base station 105-a may use the frequency band for both wireless detection sensing, and for control and data communications.
Base station 105-a may transmit TTI format indication 210 to UE 115-a. TTI format indication 210 may indicate symbols or slots that are for wireless detection sensing, along with allocating uplink symbols ( “U” ) , downlink symbols ( “D” ) , and flexible symbols ( “F” ) . In some cases, TTI format indication 210 may be transmitted through a semi-static slot format configuration message. In other cases, TTI format indication 210 may be transmitted in a SFI DCI. The TTIs allocated for wireless detection sensing may be indicated as “R” symbols. During “R” symbols, UE 115-a may not receive or transmit communication signals or channels, as base station 105-a may be performing wireless detection sensing.
TTI format indication 210 may include a different TTI format than a previous TTI format received by UE 115-a. Therefore, in some cases, TTI format indication 210 may override a previous TTI format indication. Prior “F” symbols may be overridden to be “R” symbols by TTI format indication 210 in a SFI DCI. “F” symbols may also be overridden to be “R” symbols by a TTI format indication 210 in a DCI different than a SFI DCI, such as in the case of aperiodic triggering of wireless detection sensing by a DCI. Further, a prior “R” symbols may not be overridden to be “D” , “U” , or “F” by TTI format indication 210 in a SFI DCI.
In some cases, UE 115-a may identify a multi-slot physical downlink shared channel (PDSCH) repetition or a multi-clot physical uplink shared channel (PUSCH) repetition scheduled in a set of repeating symbols. If a repeating transmission of the PDSCH or PUSCH occurs in a symbols allocated as “R” by TTI format indication 210, UE 115-a may  determine not to receive (in the case of a PDSCH repetition) or transmit (in the case of a PUSCH transmission) during that particular symbol or slot. Base station 105-a may perform wireless detection sensing during the R symbols, and thus transmissions by UE 115-a may not be received at base station 105-a. Further, UE 115-a may not monitor for downlink transmission during the R symbols, thereby saving power at UE 115-a.
Alternatively, UE 115-a may also perform wireless detection sensing during the R symbols. UE 115-a may perform wireless detection sensing with high power (e.g., vehicle sensing) . The sensing behavior of UE 115-a in cases of high power sensing may be known by base station 105-a, and base station 105-a may inform other UEs 115 of the wireless detection sensing behavior of UE 115-a, as the high power sensing may cause interference. In other cases, UE 115-a may perform low power sensing (e.g., smart watch sensing) . In these cases, base station 105-a may not inform other UEs 115 of the low power sensing, as the low power sensing may not cause interference.
In some cases, UE 115-a may have been previously configured to transmit an uplink signal or channel, such as a sounding reference signal (SRS) , a physical uplink control channel (PUCCH) , PUSCH, or physical random access channel (PRACH) in a set of symbols, a slot, or set of TTIs. UE 115-a may receive TTI format indication 210 (e.g., either in a SFI DCI or in a aperiodic wireless detection sensing DCI) indicating a set of “R” symbols. The set of “R” symbols may override the scheduled uplink signal transmission. UE 115-a may determine not to transmit the scheduled uplink signal transmission, if the TTI format indication 210 is received at a threshold time before the scheduled uplink signal transmission. If UE 115-a receives TTI format indication 210 after the threshold time or at a time not satisfying the threshold time, UE 115-a may transmit the scheduled uplink transmission, even if the uplink signal is indicated to be overridden to a “R” symbol by the received TTI format indication 210. The threshold time may be based on a PUSCH preparing threshold time, or a length of time used by UE 115-a to prepare and transmit the PUSCH or other uplink signal.
In some cases, there may be two or more types of wireless detection sensing symbols indicated in TTI format indication 210. For example, two types of wireless detection sensing symbols may be defined as “R1” and “R2” . R1 and R2 may both be wireless detection sensing symbols, but may have differing priorities. For example, R1 may  correspond to a higher priority of wireless detection sensing, and R2 may correspond to a lower priority of wireless detection sensing. When configured by a semi-static TTI format indication 210, the higher priority wireless detection sensing symbol (e.g., R1) may not be overridden to be a downlink symbol by a subsequent TTI format indication 210 indicated in a SFI DCI. However, the lower priority wireless detection sensing symbol ( “R2” ) may be overridden to be a downlink symbol or an uplink symbol by a SFI DCI. UE 115-a may also not receive or transmit communication signals or channels if a time unit (e.g., a symbol or slot) is configured as R1. However UE 115-a may receive or transmit an aperiodically triggered downlink or uplink signal or channel in a symbol or slot configured as R1 by TTI format indication 210.
Alternatively, R symbols of different wireless detection sensing types (e.g., R1 and R2) may correspond to different wireless sensing waveforms, such as a pulse waveform or a frequency modulated continuous wave (FMCW) waveform.
FIG. 3 illustrates an example of a process flow 300 that supports wireless sensing indication through a slot format indication in accordance with aspects of the present disclosure. In some examples, process flow 300 may implement aspects of  wireless communication systems  100 and 200. Process flow 300 includes UE 115-b which may be an example of a UE 115 as described in respect to FIGs. 1 and 2. Process flow 300 also includes base station 105-b which may be an example of a base station 105 as described with respect to FIGs. 1 and 2.
At 305, UE 115-b may identify a frequency bandwidth configured for both wireless detection sensing and data communication. Base station 105-b may also identify the frequency bandwidth configured for wireless detection sensing and data communication. At 310, UE 115-b may receive, from base station 105-b, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by UE 115-b. UE 115-b may receive DCI including the TTI format indication. The TTI format indication may be a SFI. UE 115-b may identify that the TTI format indication includes one or more uplink reserved symbols, downlink reserved symbols, flexible symbols, or a combination of these, in addition to the one or more sensing symbols.
In some cases, UE 115-b may receive in the TTI format indication, an indication that the one or more sensing symbols are of at least two different priorities, including a first priority level and a second priority level whose priority is less than that of the first priority level. In these cases, the sensing symbols of the first priority level are not dynamically updateable. The sensing symbols of the second priority level are dynamically updateable.
At 315, UE 115-b may reserve the indicated one or more sensing symbols for wireless detection sensing based on the TTI format indication. Base station 105-b may perform wireless detection sensing during the indicated one or more sensing symbols. UE 115-b may also perform wireless detection sensing during the indicated one or more sensing symbols based on the TTI format indication. UE 115-b may refrain from transmitting or receiving data during the one or more symbols reserved for wireless detection sensing.
UE 115-b may identify that an uplink transmission is scheduled to occur during one or more uplink symbols of a slot. UE 115-b may determine that the TTI format indication updates at least a portion of the one or more uplink symbols of the slot to at least a portion of the one or more sensing symbols. The determined updating may be based on at least a portion of the one or more sensing symbols being at least a threshold duration of time after receipt of the TTI format indication.
UE 115-b may identify one or more flexible symbols of a slot. The flexible symbols may have been indicated in a previous TTI format indication received from base station 105-b. UE 115-b may determine that the TTI format indication updates at least a portion of the one or more flexible symbols of the slot to at least a portion of the one or more sensing symbols. UE 115-b may override the one or more flexible symbols of the slot to be sensing symbols based on the TTI format indication.
UE 115-b may also identify that a repetition of an uplink transmission is scheduled to occur during at least a portion of the one or more sensing symbols. UE 115-b may then refrain from transmitting the repetition based on the repetition at least partially overlapping with the one or more sensing symbols. UE 115-b may also identify that a repetition of a downlink transmission is scheduled to occur during at least a portion of one or more sensing symbols. UE 115-b may refrain from monitoring for the repetition based on the repetition at least partially overlapping with the one or more sensing symbols.
FIG. 4 shows a block diagram 400 of a device 405 that supports wireless sensing indication through SFI in accordance with aspects of the present disclosure. The device 405 may be an example of aspects of a UE 115 as described herein. The device 405 may include a receiver 410, a communications manager 415, and a transmitter 420. The device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 410 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to wireless sensing indication through SFI, etc. ) . Information may be passed on to other components of the device 405. The receiver 410 may be an example of aspects of the transceiver 720 described with reference to FIG. 7. The receiver 410 may utilize a single antenna or a set of antennas.
The communications manager 415 may identify a frequency bandwidth configured for both wireless detection sensing and data communication, receive, from a base station, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE, and reserve the indicated one or more sensing symbols for wireless detection sensing based on the TTI format indication. The communications manager 415 may be an example of aspects of the communications manager 710 described herein.
The communications manager 415, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 415, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 415, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 415, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some  examples, the communications manager 415, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 420 may transmit signals generated by other components of the device 405. In some examples, the transmitter 420 may be collocated with a receiver 410 in a transceiver module. For example, the transmitter 420 may be an example of aspects of the transceiver 720 described with reference to FIG. 7. The transmitter 420 may utilize a single antenna or a set of antennas.
In some examples, the communications manager 415 described herein may be implemented as a chipset of a wireless modem, and the receiver 410 and the transmitter 420 may be implemented as sets of analog components (e.g., amplifiers, filters, phase shifters, antennas, etc. ) The wireless modem may obtain and decode signals from the receiver 410 over a receive interface, and may output signals for transmission to the transmitter 520 over a transmit interface.
The actions performed by the communications manager 415 as described herein may be implemented to realize one or more potential advantages. One implementation may allow a UE 115 to save power and increase battery life by avoiding transmitting data at a time when a base station 105 may not receive data due to environment sensing by the base station 105. The UE may also save power by avoiding monitoring for downlink transmissions from the base station 105 at a time when the base station 105 may perform wireless detection sensing and may not be transmitting data to the UE 115.
FIG. 5 shows a block diagram 500 of a device 505 that supports wireless sensing indication through SFI in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a device 405, or a UE 115 as described herein. The device 505 may include a receiver 510, a communications manager 515, and a transmitter 535. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data  channels, and information related to wireless sensing indication through SFI, etc. ) . Information may be passed on to other components of the device 505. The receiver 510 may be an example of aspects of the transceiver 720 described with reference to FIG. 7. The receiver 510 may utilize a single antenna or a set of antennas.
The communications manager 515 may be an example of aspects of the communications manager 415 as described herein. The communications manager 515 may include a frequency bandwidth component 520, a TTI format indication component 525, and a wireless detection sensing component 530. The communications manager 515 may be an example of aspects of the communications manager 710 described herein.
The frequency bandwidth component 520 may identify a frequency bandwidth configured for both wireless detection sensing and data communication.
The TTI format indication component 525 may receive, from a base station, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
The wireless detection sensing component 530 may reserve the indicated one or more sensing symbols for wireless detection sensing based on the TTI format indication.
The transmitter 535 may transmit signals generated by other components of the device 505. In some examples, the transmitter 535 may be collocated with a receiver 510 in a transceiver module. For example, the transmitter 535 may be an example of aspects of the transceiver 720 described with reference to FIG. 7. The transmitter 535 may utilize a single antenna or a set of antennas.
A processor of a UE 115 (e.g., controlling the receiver 510, the transmitter 535, or the transceiver 720, as described with respect to FIG. 7) may efficiently operate the components described herein to realize one or more potential advantages. The processor of the UE 115 may control the receiver 510 to receive the TTI format indication from a base station 115, as well as operating the receiver 510 to determine when to receive data from the base station 105. The processor of the UE 115 may also operate transmitter 535 to transmit data according to the received TTI format indication in order to save power and increase battery life of the UE 115.
FIG. 6 shows a block diagram 600 of a communications manager 605 that supports wireless sensing indication through SFI in accordance with aspects of the present disclosure. The communications manager 605 may be an example of aspects of a communications manager 415, a communications manager 515, or a communications manager 710 described herein. The communications manager 605 may include a frequency bandwidth component 610, a TTI format indication component 615, a wireless detection sensing component 620, a data component 625, an uplink component 630, a threshold component 635, a priority component 640, a slot identification component 645, and a downlink component 650. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The frequency bandwidth component 610 may identify a frequency bandwidth configured for both wireless detection sensing and data communication.
The TTI format indication component 615 may receive, from a base station, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
In some examples, the TTI format indication component 615 may identify that the TTI format indication includes one or more uplink-reserved symbols, downlink-reserved symbols, flexible symbols, or combinations thereof, in addition to the one or more sensing symbols.
In some examples, the TTI format indication component 615 may determine that the TTI format indication updates at least a portion of the one or more flexible symbols of the slot to at least a portion of the one or more sensing symbols. In some examples, the TTI format indication component 615 may override the one or more flexible symbols of the slot to be sensing symbols based on the TTI format indication. In some examples, the TTI format indication component 615 may receive DCI that includes the TTI format indication. In some cases, the TTI format indication is a SFI.
The wireless detection sensing component 620 may reserve the indicated one or more sensing symbols for wireless detection sensing based on the TTI format indication. In some examples, the wireless detection sensing component 620 may perform wireless detection sensing during the indicated one or more sensing symbols based on the TTI format indication.
The data component 625 may refrain from transmitting or receiving data during the one or more symbols reserved for wireless detection sensing. The uplink component 630 may identify that an uplink transmission is scheduled to occur during one or more uplink symbols of a slot. In some examples, the uplink component 630 may identify that a repetition of an uplink transmission is scheduled to occur during at least a portion of the one or more sensing symbols. In some examples, the uplink component 630 may refrain from transmitting the repetition based on the repetition at least partially overlapping with the one or more sensing symbols.
The threshold component 635 may determine that the TTI format indication updates at least a portion of the one or more uplink symbols of the slot to at least a portion of the one or more sensing symbols, where the at least a portion of the one or more sensing symbols is at least a threshold duration of time after receipt of the TTI format indication.
The priority component 640 may receive, in the TTI format indication, an indication that the one or more sensing symbols are of at least two different priorities, including a first priority level and a second priority level whose priority is less than that of the first priority level. In some examples, the priority component 640 may sense symbols of the first priority level are not dynamically updateable. In some examples, the priority component 640 may sense symbols of the second priority level are dynamically updateable.
The slot identification component 645 may identify one or more flexible symbols of a slot. The downlink component 650 may identify that a repetition of a downlink transmission is scheduled to occur during at least a portion of one or more sensing symbols. In some examples, the downlink component 650 may refrain from monitoring for the repetition based on the repetition at least partially overlapping with the one or more sensing symbols.
FIG. 7 shows a diagram of a system 700 including a device 705 that supports wireless sensing indication through SFI in accordance with aspects of the present disclosure. The device 705 may be an example of or include the components of device 405, device 505, or a UE 115 as described herein. The device 705 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 710, an I/O controller 715, a  transceiver 720, an antenna 725, memory 730, and a processor 740. These components may be in electronic communication via one or more buses (e.g., bus 745) .
The communications manager 710 may identify a frequency bandwidth configured for both wireless detection sensing and data communication, receive, from a base station, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE, and reserve the indicated one or more sensing symbols for wireless detection sensing based on the TTI format indication.
The I/O controller 715 may manage input and output signals for the device 705. The I/O controller 715 may also manage peripherals not integrated into the device 705. In some cases, the I/O controller 715 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 715 may utilize an operating system such as 
Figure PCTCN2020095797-appb-000001
or another known operating system. In other cases, the I/O controller 715 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 715 may be implemented as part of a processor. In some cases, a user may interact with the device 705 via the I/O controller 715 or via hardware components controlled by the I/O controller 715.
The transceiver 720 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 720 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 720 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 725. However, in some cases the device may have more than one antenna 725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 730 may include RAM and ROM. The memory 730 may store computer-readable, computer-executable code 735 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases,  the memory 730 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 740 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 740 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 740. The processor 740 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 730) to cause the device 705 to perform various functions (e.g., functions or tasks supporting wireless sensing indication through SFI) .
The code 735 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 735 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 735 may not be directly executable by the processor 740 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 8 shows a block diagram 800 of a device 805 that supports wireless sensing indication through SFI in accordance with aspects of the present disclosure. The device 805 may be an example of aspects of a base station 105 as described herein. The device 805 may include a receiver 810, a communications manager 815, and a transmitter 820. The device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to wireless sensing indication through SFI, etc. ) . Information may be passed on to other components of the device 805. The receiver 810 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11. The receiver 810 may utilize a single antenna or a set of antennas.
The communications manager 815 may identify a frequency bandwidth configured for wireless detection sensing and data communication and transmit, to a UE, a  TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE. The communications manager 815 may be an example of aspects of the communications manager 1110 described herein.
The communications manager 815, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 815, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 815, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 815, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 815, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 820 may transmit signals generated by other components of the device 805. In some examples, the transmitter 820 may be collocated with a receiver 810 in a transceiver module. For example, the transmitter 820 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11. The transmitter 820 may utilize a single antenna or a set of antennas.
FIG. 9 shows a block diagram 900 of a device 905 that supports wireless sensing indication through SFI in accordance with aspects of the present disclosure. The device 905 may be an example of aspects of a device 805, or a base station 105 as described herein. The device 905 may include a receiver 910, a communications manager 915, and a transmitter  930. The device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to wireless sensing indication through SFI, etc. ) . Information may be passed on to other components of the device 905. The receiver 910 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11. The receiver 910 may utilize a single antenna or a set of antennas.
The communications manager 915 may be an example of aspects of the communications manager 815 as described herein. The communications manager 915 may include a bandwidth component 920 and a TTI format indication transmission component 925. The communications manager 915 may be an example of aspects of the communications manager 1110 described herein.
The bandwidth component 920 may identify a frequency bandwidth configured for wireless detection sensing and data communication.
The TTI format indication transmission component 925 may transmit, to a UE, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
The transmitter 930 may transmit signals generated by other components of the device 905. In some examples, the transmitter 930 may be collocated with a receiver 910 in a transceiver module. For example, the transmitter 930 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11. The transmitter 930 may utilize a single antenna or a set of antennas.
FIG. 10 shows a block diagram 1000 of a communications manager 1005 that supports wireless sensing indication through SFI in accordance with aspects of the present disclosure. The communications manager 1005 may be an example of aspects of a communications manager 815, a communications manager 915, or a communications manager 1110 described herein. The communications manager 1005 may include a bandwidth component 1010, a TTI format indication transmission component 1015, a wireless detection component 1020, a priority indication component 1025, and a DCI  transmission component 1030. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The bandwidth component 1010 may identify a frequency bandwidth configured for wireless detection sensing and data communication. The TTI format indication transmission component 1015 may transmit, to a UE, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE. In some cases, the TTI format indication includes one or more uplink-reserved symbols, downlink-reserved symbols, flexible symbols, or combinations thereof, in addition to the one or more sensing symbols. In some cases, the TTI format indication is a SFI.
The wireless detection component 1020 may perform wireless detection sensing during the indicated one or more sensing symbols based on the TTI format indication.
The priority indication component 1025 may transmit, in the TTI format indication, an indication that the one or more sensing symbols are of at least two different priorities, including a first priority level and a second priority level whose priority is less than that of the first priority level. In some examples, the priority indication component 1025 may sense symbols of the first priority level are not dynamically updateable. In some examples, the priority indication component 1025 may sense symbols of the second priority level are dynamically updateable. The DCI transmission component 1030 may transmit DCI to the UE including the TTI format indication.
FIG. 11 shows a diagram of a system 1100 including a device 1105 that supports wireless sensing indication through SFI in accordance with aspects of the present disclosure. The device 1105 may be an example of or include the components of device 805, device 905, or a base station 105 as described herein. The device 1105 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1110, a network communications manager 1115, a transceiver 1120, an antenna 1125, memory 1130, a processor 1140, and an inter-station communications manager 1145. These components may be in electronic communication via one or more buses (e.g., bus 1150) .
The communications manager 1110 may identify a frequency bandwidth configured for wireless detection sensing and data communication and transmit, to a UE, a  TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
The network communications manager 1115 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1115 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1120 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1120 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1120 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1125. However, in some cases the device may have more than one antenna 1125, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1130 may include RAM, ROM, or a combination thereof. The memory 1130 may store computer-readable code 1135 including instructions that, when executed by a processor (e.g., the processor 1140) cause the device to perform various functions described herein. In some cases, the memory 1130 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1140 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1140 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 1140. The processor 1140 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1130) to cause the device 1105 to perform various functions (e.g., functions or tasks supporting wireless sensing indication through SFI) .
The inter-station communications manager 1145 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1145 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1145 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The code 1135 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1135 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1135 may not be directly executable by the processor 1140 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 12 shows a flowchart illustrating a method 1200 that supports wireless sensing indication through SFI in accordance with aspects of the present disclosure. The operations of method 1200 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1200 may be performed by a communications manager as described with reference to FIGs. 4 through 7. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1205, the UE may identify a frequency bandwidth configured for both wireless detection sensing and data communication. The operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of 1205 may be performed by a frequency bandwidth component as described with reference to FIGs. 4 through 7.
At 1210, the UE may receive, from a base station, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE. The operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of  1210 may be performed by a TTI format indication component as described with reference to FIGs. 4 through 7.
At 1215, the UE may reserve the indicated one or more sensing symbols for wireless detection sensing based on the TTI format indication. The operations of 1215 may be performed according to the methods described herein. In some examples, aspects of the operations of 1215 may be performed by a wireless detection sensing component as described with reference to FIGs. 4 through 7.
FIG. 13 shows a flowchart illustrating a method 1300 that supports wireless sensing indication through SFI in accordance with aspects of the present disclosure. The operations of method 1300 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 4 through 7. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1305, the UE may identify a frequency bandwidth configured for both wireless detection sensing and data communication. The operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a frequency bandwidth component as described with reference to FIGs. 4 through 7.
At 1310, the UE may receive, from a base station, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE. The operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a TTI format indication component as described with reference to FIGs. 4 through 7.
At 1315, the UE may reserve the indicated one or more sensing symbols for wireless detection sensing based on the TTI format indication. The operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a wireless detection sensing component as described with reference to FIGs. 4 through 7.
At 1320, the UE may perform wireless detection sensing during the indicated one or more sensing symbols based on the TTI format indication. The operations of 1320 may be performed according to the methods described herein. In some examples, aspects of the operations of 1320 may be performed by a wireless detection sensing component as described with reference to FIGs. 4 through 7.
FIG. 14 shows a flowchart illustrating a method 1400 that supports wireless sensing indication through SFI in accordance with aspects of the present disclosure. The operations of method 1400 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 8 through 11. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1405, the base station may identify a frequency bandwidth configured for wireless detection sensing and data communication. The operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a bandwidth component as described with reference to FIGs. 8 through 11.
At 1410, the base station may transmit, to a UE, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE. The operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a TTI format indication transmission component as described with reference to FIGs. 8 through 11.
FIG. 15 shows a flowchart illustrating a method 1500 that supports wireless sensing indication through SFI in accordance with aspects of the present disclosure. The operations of method 1500 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 8 through 11. In some examples, a base station may execute a set of instructions to control the functional elements  of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1505, the base station may identify a frequency bandwidth configured for wireless detection sensing and data communication. The operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a bandwidth component as described with reference to FIGs. 8 through 11.
At 1510, the base station may transmit, to a UE, a TTI format indication for the frequency bandwidth, where the TTI format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE. The operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a TTI format indication transmission component as described with reference to FIGs. 8 through 11.
At 1515, the base station may perform wireless detection sensing during the indicated one or more sensing symbols based on the TTI format indication. The operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a wireless detection component as described with reference to FIGs. 8 through 11.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic  disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope and spirit of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations. As used herein, including in the claims, the term “and/or, ” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination. Also, as used herein, including in the claims, “or” as used in a list of items (for example, a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates a disjunctive list such that, for example, a list of “at least one of A, B, or C” means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (27)

  1. A method for wireless communications, comprising:
    identifying a frequency bandwidth configured for both wireless detection sensing and data communication;
    receiving, from a base station, a transmission time interval format indication for the frequency bandwidth, wherein the transmission time interval format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE; and
    reserving the indicated one or more sensing symbols for wireless detection sensing based at least in part on the transmission time interval format indication.
  2. The method of claim 1, further comprising:
    performing wireless detection sensing during the indicated one or more sensing symbols based at least in part on the transmission time interval format indication.
  3. The method of claim 1, further comprising:
    identifying that the transmission time interval format indication includes one or more uplink-reserved symbols, downlink-reserved symbols, flexible symbols, or combinations thereof, in addition to the one or more sensing symbols.
  4. The method of claim 1, further comprising:
    refraining from transmitting or receiving data during the one or more symbols reserved for wireless detection sensing.
  5. The method of claim 1, wherein the transmission time interval format indication is a slot format indication.
  6. The method of claim 1, further comprising:
    identifying that an uplink transmission is scheduled to occur during one or more uplink symbols of a slot; and
    determining that the transmission time interval format indication updates at least a portion of the one or more uplink symbols of the slot to at least a portion of the one or more sensing symbols, wherein the at least a portion of the one or more sensing symbols is at  least a threshold duration of time after receipt of the transmission time interval format indication.
  7. The method of claim 1, wherein receiving the transmission time interval format indication further comprises:
    receiving, in the transmission time interval format indication, an indication that the one or more sensing symbols are of at least two different priorities, including a first priority level and a second priority level whose priority is less than that of the first priority level.
  8. The method of claim 7, wherein:
    sensing symbols of the first priority level are not dynamically updateable.
  9. The method of claim 7, wherein:
    sensing symbols of the second priority level are dynamically updateable.
  10. The method of claim 1, further comprising:
    identifying one or more flexible symbols of a slot;
    determining that the transmission time interval format indication updates at least a portion of the one or more flexible symbols of the slot to at least a portion of the one or more sensing symbols; and
    overriding the one or more flexible symbols of the slot to be sensing symbols based at least in part on the transmission time interval format indication.
  11. The method of claim 1, further comprising:
    identifying that a repetition of an uplink transmission is scheduled to occur during at least a portion of the one or more sensing symbols; and
    refraining from transmitting the repetition based at least in part on the repetition at least partially overlapping with the one or more sensing symbols.
  12. The method of claim 1, further comprising:
    identifying that a repetition of a downlink transmission is scheduled to occur during at least a portion of one or more sensing symbols; and
    refraining from monitoring for the repetition based at least in part on the repetition at least partially overlapping with the one or more sensing symbols.
  13. The method of claim 1, wherein receiving the transmission time interval format indication further comprises:
    receiving downlink control information that includes the transmission time interval format indication.
  14. A method for wireless communications, comprising:
    identifying a frequency bandwidth configured for wireless detection sensing and data communication; and
    transmitting, to a user equipment (UE) , a transmission time interval format indication for the frequency bandwidth, wherein the transmission time interval format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
  15. The method of claim 14, further comprising:
    performing wireless detection sensing during the indicated one or more sensing symbols based at least in part on the transmission time interval format indication.
  16. The method of claim 14, wherein the transmission time interval format indication includes one or more uplink-reserved symbols, downlink-reserved symbols, flexible symbols, or combinations thereof, in addition to the one or more sensing symbols.
  17. The method of claim 14, wherein transmitting the transmission time interval format indication comprises:
    transmitting, in the transmission time interval format indication, an indication that the one or more sensing symbols are of at least two different priorities, including a first priority level and a second priority level whose priority is less than that of the first priority level.
  18. The method of claim 17, wherein:
    sensing symbols of the first priority level are not dynamically updateable.
  19. The method of claim 17, wherein:
    sensing symbols of the second priority level are dynamically updateable.
  20. The method of claim 14, wherein the transmission time interval format indication is a slot format indication.
  21. The method of claim 14, wherein transmitting the transmission timer interval format indication comprises:
    transmitting downlink control information to the UE comprising the transmission time interval format indication.
  22. An apparatus for wireless communications, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    identify a frequency bandwidth configured for both wireless detection sensing and data communication;
    receive, from a base station, a transmission time interval format indication for the frequency bandwidth, wherein the transmission time interval format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE; and
    reserve the indicated one or more sensing symbols for wireless detection sensing based at least in part on the transmission time interval format indication.
  23. An apparatus for wireless communications, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    identify a frequency bandwidth configured for wireless detection sensing and data communication; and
    transmit, to a user equipment (UE) , a transmission time interval format indication for the frequency bandwidth, wherein the transmission time interval format  indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
  24. An apparatus for wireless communications, comprising:
    means for identifying a frequency bandwidth configured for both wireless detection sensing and data communication;
    means for receiving, from a base station, a transmission time interval format indication for the frequency bandwidth, wherein the transmission time interval format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE; and
    means for reserving the indicated one or more sensing symbols for wireless detection sensing based at least in part on the transmission time interval format indication.
  25. An apparatus for wireless communications, comprising:
    means for identifying a frequency bandwidth configured for wireless detection sensing and data communication; and
    means for transmitting, to a user equipment (UE) , a transmission time interval format indication for the frequency bandwidth, wherein the transmission time interval format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
  26. A non-transitory computer-readable medium storing code for wireless communications, the code comprising instructions executable by a processor to:
    identify a frequency bandwidth configured for both wireless detection sensing and data communication;
    receive, from a base station, a transmission time interval format indication for the frequency bandwidth, wherein the transmission time interval format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE; and
    reserve the indicated one or more sensing symbols for wireless detection sensing based at least in part on the transmission time interval format indication.
  27. A non-transitory computer-readable medium storing code for wireless communications, the code comprising instructions executable by a processor to:
    identify a frequency bandwidth configured for wireless detection sensing and data communication; and
    transmit, to a user equipment (UE) , a transmission time interval format indication for the frequency bandwidth, wherein the transmission time interval format indication includes one or more sensing symbols reserved for wireless detection sensing by the UE.
PCT/CN2020/095797 2020-06-12 2020-06-12 Wireless sensing indication through slot format indication WO2021248447A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095797 WO2021248447A1 (en) 2020-06-12 2020-06-12 Wireless sensing indication through slot format indication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095797 WO2021248447A1 (en) 2020-06-12 2020-06-12 Wireless sensing indication through slot format indication

Publications (1)

Publication Number Publication Date
WO2021248447A1 true WO2021248447A1 (en) 2021-12-16

Family

ID=78846773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095797 WO2021248447A1 (en) 2020-06-12 2020-06-12 Wireless sensing indication through slot format indication

Country Status (1)

Country Link
WO (1) WO2021248447A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023115493A1 (en) * 2021-12-23 2023-06-29 Huawei Technologies Co.,Ltd. Triggering sensing in a wireless communication system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011097876A1 (en) * 2010-02-11 2011-08-18 中兴通讯股份有限公司 Method and system for transmitting downlink control information

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011097876A1 (en) * 2010-02-11 2011-08-18 中兴通讯股份有限公司 Method and system for transmitting downlink control information

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Evaluation results on sTTI for PC5", 3GPP DRAFT; R1-1712659 ERICSSON - EVALUATION STTI, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, Czech Republic; 20170821 - 20170825, 20 August 2017 (2017-08-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051315472 *
ERICSSON: "Short TTI for increasing the reliability for PC5-based V2X", 3GPP DRAFT; R1-1709000 STTI SOLUTIONS - ERICSSON, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Hangzhou, China; 20170515 - 20170519, 14 May 2017 (2017-05-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051274163 *
MOTOROLA MOBILITY, LENOVO: "UL DMRS for sTTI", 3GPP DRAFT; R1-1708295_UL DMRS FOR STTI, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Hangzhou; 20170515 - 20170519, 14 May 2017 (2017-05-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051273488 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023115493A1 (en) * 2021-12-23 2023-06-29 Huawei Technologies Co.,Ltd. Triggering sensing in a wireless communication system

Similar Documents

Publication Publication Date Title
US20210194556A1 (en) Aperiodic channel state information physical uplink shared channel repetition with demodulation reference signal bundling
US20210176626A1 (en) Dual-mode half duplex time division duplex and full duplex frequency division duplex capable user equipment
US11785594B2 (en) Multi-downlink control information message related to physical uplink shared channels
US11937277B2 (en) Concurrent sidelink and uplink transmission
WO2021155505A1 (en) Repetition and time domain cover code based sounding reference signal resources for antenna switching
WO2022032567A1 (en) Methods for measuring and reporting doppler shift
WO2021226956A1 (en) Monitoring for downlink repetitions
US11778641B2 (en) Configurations for sidelink beam management
US20220104211A1 (en) Incentive-based relaying with prioritization
US11723036B2 (en) Dynamic search spaces
WO2022047757A1 (en) Resource allocation for over-the-air model aggregation in federated learning
WO2021174437A1 (en) Multiplexing for physical uplink channels with different directional beams
US11706770B2 (en) Physical (PHY) layer and media access control (MAC) layer operations following uplink cancellation indication (ULCI)
US20230299905A1 (en) Phase-tracking reference signal alignment for physical shared channel
US20230164819A1 (en) Uplink control information multiplexing rule for simultaneous uplink control channel and uplink shared channel transmission
WO2023070239A1 (en) Sidelink synchronization signal transmission prioritization
US11671940B2 (en) Sidelink communication during a downlink slot
WO2021248447A1 (en) Wireless sensing indication through slot format indication
WO2022213298A1 (en) Signaling of sounding reference signal grouping
WO2021258385A1 (en) Dynamic uplink control multiplexing between physical uplink channels
US11937213B2 (en) Optimizations for sidelink user equipment for integrated access and backhaul network
US11272496B2 (en) Narrowband retuning in wireless communications
WO2023130421A1 (en) Uplink switching for concurrent transmissions
WO2023193131A1 (en) Enhancement for aperiodic sounding reference signal scheduling
WO2023039742A1 (en) Random access channel resource configuration for different capability user equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939980

Country of ref document: EP

Kind code of ref document: A1