WO2021248395A1 - 具有散热结构的电子装置、散热模块及散热外壳 - Google Patents

具有散热结构的电子装置、散热模块及散热外壳 Download PDF

Info

Publication number
WO2021248395A1
WO2021248395A1 PCT/CN2020/095500 CN2020095500W WO2021248395A1 WO 2021248395 A1 WO2021248395 A1 WO 2021248395A1 CN 2020095500 W CN2020095500 W CN 2020095500W WO 2021248395 A1 WO2021248395 A1 WO 2021248395A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat dissipation
electronic device
housing body
thermally conductive
Prior art date
Application number
PCT/CN2020/095500
Other languages
English (en)
French (fr)
Inventor
高启豪
郭宗兴
Original Assignee
威刚科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 威刚科技股份有限公司 filed Critical 威刚科技股份有限公司
Priority to PCT/CN2020/095500 priority Critical patent/WO2021248395A1/zh
Publication of WO2021248395A1 publication Critical patent/WO2021248395A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the invention relates to an electronic device with a heat dissipation structure, in particular to an electronic device with a heat dissipation structure, a heat dissipation module and a heat dissipation shell.
  • the technical problem to be solved by the present invention is to provide an electronic device with a heat dissipation structure in view of the deficiencies of the prior art, in particular to an electronic device with a heat dissipation structure, a heat dissipation module and a heat dissipation shell.
  • an electronic device with a heat dissipation structure which includes: an electronic component; a thermally conductive sheet body, which is arranged on one side of the electronic component On the surface; wherein, the thermally conductive sheet has a thermal conductivity of not less than 0.5W/(m ⁇ K);
  • the heat-conducting sheet body, and the heat-dissipating housing includes: a housing body whose side surface facing the accommodating space is defined as an inner surface, and the side surface of the housing body away from the accommodating space is defined as An outer surface; and a heat radiation coating formed on at least one of the inner surface and the outer surface of the housing body in a coating manner; wherein the heat radiation coating has an infrared ray A thermal radiation emissivity ranging from 0.93 to 0.99; wherein, when the electronic component is operating, the electronic component will generate a heat source, and the heat conduction sheet can heat the heat source away The direction of the electronic component is transferred
  • the heat radiation coating is formed by coating a slurry containing a heat radiation material on at least one of the inner surface and the outer surface of the housing body , And then curing the slurry to form the thermal radiation coating; wherein the thermal radiation material is at least one of graphene, carbon nanotubes and artificial graphite.
  • the thermal radiation emissivity of the thermal radiation coating is at least 6 times greater than the thermal radiation emissivity of the thermally conductive sheet.
  • the thermal radiation coating has a thermal conductivity between 4,500 W/(m ⁇ K) and 5,500 W/(m ⁇ K).
  • the thermal radiation coating is formed on the inner surface of the housing body, and the thermal conductivity of the thermally conductive sheet body is not less than 20W/(m ⁇ K).
  • the thermally conductive sheet body is a metal substrate with a thermal conductivity coefficient between 200W/(m ⁇ K) and 500W/(m ⁇ K); or, the thermally conductive sheet body has a thermal conductivity coefficient between 400W/ Graphite substrate between (m ⁇ K) and 1,600W/(m ⁇ K); or, the thermally conductive sheet has a thermal conductivity between 20W/(m ⁇ K) and 180W/(m ⁇ K) Ceramic substrate.
  • the material of the housing body is infrared-permeable plastic; and, the heat source derived through the heat radiation coating can penetrate all the heat sources in the form of infrared heat radiation.
  • the housing body and escape to the outside of the electronic device.
  • the thermal radiation coating is formed on the outer surface of the housing body, and the thermal conductive sheet has a thermal conductivity of 0.5W/(m ⁇ K) to 20W/(m ⁇ K) ), and the shell body is a metal shell with a thermal conductivity between 200W/(m ⁇ K) and 500W/(m ⁇ K).
  • a heat dissipation module which is suitable for dissipating heat of an electronic component, and is characterized in that the heat dissipation module includes: a heat conductive sheet body having A thermal conductivity coefficient of not less than 0.5W/(m ⁇ K); and a heat-dissipating shell, an accommodating space is formed on the inner side for accommodating the heat-conducting sheet, and the heat-dissipating shell includes: a shell body, which The surface on the side facing the accommodating space is defined as an inner surface, and the surface on the side of the housing body away from the accommodating space is defined as an outer surface; and a thermal radiation coating, which is coated It is formed on at least one of the inner surface and the outer surface of the housing body; wherein the thermal radiation coating has a thermal radiation emissivity in the infrared range of 0.93 to 0.99.
  • a heat-dissipating housing the inner side of which is formed with an accommodating space
  • the heat-dissipating housing includes: a housing body facing the housing One side surface of the space is defined as an inner surface, and the side surface of the housing body away from the accommodating space is defined as an outer surface; and a heat radiation coating formed on the housing body by coating On at least one of the inner surface and the outer surface; wherein the thermal radiation coating has a thermal radiation emissivity in the infrared range of 0.93 to 0.99.
  • the electronic device with a heat dissipation structure, a heat dissipation module, and a heat dissipation housing can pass through "a heat conducting sheet, which is disposed on one side surface of the electronic component; wherein , The thermally conductive sheet has a thermal conductivity of not less than 0.5W/(m ⁇ K); and a heat-dissipating shell with an accommodating space formed on the inner side for accommodating the electronic component and the thermally conductive sheet,
  • the heat dissipation housing includes: a housing body, the side surface of which faces the accommodating space is defined as an inner surface, and the side surface of the housing body away from the accommodating space is defined as an outer surface; And a heat radiation coating formed on at least one of the inner surface and the outer surface of the housing body in a coating manner; wherein, the heat radiation coating has an infrared range of 0.93 A thermal radiation emissivity between to 0.99; wherein, when the electronic component is operating,
  • the heat source generated by the electronic component is not easy to accumulate in the electronic device, and the electronic device can be designed to have a light, thin and short appearance without the problem of poor heat dissipation.
  • FIG. 1 is an exploded perspective view of an electronic device with a heat dissipation structure according to a first embodiment of the present invention.
  • FIG. 2 is a three-dimensional schematic diagram of an electronic device with a heat dissipation structure according to the first embodiment of the present invention.
  • FIG 3 is a schematic cross-sectional view of an electronic device with a heat dissipation structure according to the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a partial structure of the electronic device according to the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the heat dissipation state of the electronic device according to the first embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a partial structure of an electronic device according to a second embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the heat dissipation state of the electronic device according to the second embodiment of the present invention.
  • the first embodiment of the present invention provides an electronic device 100 with a heat dissipation structure.
  • 1 is an exploded perspective view of an electronic device with a heat dissipation structure according to a first embodiment of the present invention.
  • 2 is a three-dimensional schematic diagram of an electronic device with a heat dissipation structure according to the first embodiment of the present invention.
  • 3 is a schematic cross-sectional view of an electronic device with a heat dissipation structure according to the first embodiment of the present invention.
  • the electronic device 100 with a heat dissipation structure includes: an electronic component 1, two thermally conductive sheets 2, and two heat dissipation shells 3.
  • the two thermally conductive sheets 2 are respectively arranged on opposite sides of the electronic component 1.
  • the two heat dissipation shells 3 can be combined with each other to form an accommodating space R.
  • the electronic component 1 and the two thermally conductive sheets 2 are all disposed in the accommodating space R formed by the two heat-dissipating shells 3.
  • the thermally conductive sheet 2 can dissipate the heat source generated by the electronic component 1, and the heat dissipation housing 3 can be used to protect the electronic component 1 and the thermally conductive sheet 2 and provide a heat source to pass through.
  • the present embodiment is described by taking the electronic device 100 including two heat conducting fins 2 and two heat dissipation shells 3 as an example, the present invention is not limited to this.
  • the present invention does not limit the number of the electronic component 1, the thermally conductive sheet 2 and the heat dissipation shell 3.
  • the number of the heat conducting sheet 2 and the heat dissipation shell 3 can also be one or more than one.
  • FIG. 4 is a schematic diagram of a partial structure of the electronic device according to the first embodiment of the present invention
  • FIG. 5 is a schematic diagram of the heat dissipation state of the electronic device according to the first embodiment of the present invention.
  • FIGS. 4 and 5 only show a partial structure of the upper half of the electronic device of FIG. 3. More clearly, the electronic device 100 in FIGS. 4 and 5 only shows the upper half of the electronic component 1 and a thermally conductive sheet 2 and a heat dissipation shell 3 on the upper side of the electronic component 1.
  • the electronic component 1 includes: a circuit board 11 and an electronic component 12, and the electronic component 12 is disposed on one side surface of the circuit board 11.
  • the circuit board 11 may be, for example, a printed circuit board (PCB), and the electronic component 12 may be, for example, electronic components such as resistors, capacitors, power supplies, and switches. Furthermore, the electronic component 12 may be disposed on the circuit board 11 by welding or bonding, but the present invention is not limited to this.
  • PCB printed circuit board
  • the electronic component 12 may be disposed on the circuit board 11 by welding or bonding, but the present invention is not limited to this.
  • circuit board 11 and the electronic component 12 of the electronic component 1 generate heat sources during operation. If excessive heat sources accumulate on the electronic component 1, the reliability and operating performance of the electronic component 1 will be affected.
  • one of the improved objectives of the present invention is to provide a heat dissipation structure with a special structure and material to solve the heat dissipation problem of the electronic component 1. Furthermore, another objective of the present invention is to, while solving the heat dissipation problem of the electronic component 1, the electronic device 100 can still maintain a light, thin, short and small appearance.
  • the thermally conductive sheet 2 is disposed on a surface of the electronic component 12 away from the circuit board 11 (the upper surface of the electronic component 12 in FIG. 4).
  • the thermally conductive sheet 2 may be arranged on and closely attached to the surface of the electronic component 12 by means of an adhesive material (such as glue) or a fixing component (such as a buckle), so as to connect the electronic component by heat conduction.
  • the heat source generated by 1 is transferred away from the electronic component 1, thereby reducing the heat source accumulated on the electronic component 1.
  • the heat conducting sheet body 2 In order for the heat conducting sheet body 2 to have a good heat conduction effect, in this embodiment, the heat conducting sheet body 2 must have a high thermal conductivity coefficient.
  • the thermal conductivity of the thermally conductive sheet 2 is preferably not less than 20 W/(m ⁇ K), so as to generate sufficient thermal conductivity for the heat source generated by the electronic component 1.
  • the material of the thermally conductive sheet 2 may be, for example, a metal substrate with a thermal conductivity between 200 W/(m ⁇ K) and 500 W/(m ⁇ K).
  • the metal substrate may be, for example, an aluminum substrate, a gold substrate, a copper substrate, or a silver substrate, and the metal substrate is preferably an aluminum substrate or a copper substrate.
  • the material of the thermally conductive sheet 2 may be, for example, a graphite substrate with a thermal conductivity between 400 W/(m ⁇ K) and 1,600 W/(m ⁇ K).
  • the material of the thermally conductive sheet 2 may be, for example, a ceramic substrate with a thermal conductivity between 20W/(m ⁇ K) and 180W/(m ⁇ K).
  • the thermal conductivity of the metal substrate, graphite substrate, and ceramic substrate is not less than 20 W/(m ⁇ K), so as to generate sufficient heat conduction effect for the heat source generated by the electronic component 1.
  • the two heat dissipation shells 3 can be combined with each other to form an accommodating space R. Furthermore, the electronic component 1 and the two thermally conductive sheets 2 are all disposed in the accommodating space R formed by the two heat-dissipating shells 3.
  • the two heat-dissipating shells 3 may be combined with each other in a snap-fit manner, for example, to form the accommodating space R, but the present invention is not limited to this.
  • the two heat dissipation shells 3 can also be combined with each other, for example, by locking or bonding.
  • the heat dissipation housing 3 may also be an integrally formed structure, and has the accommodation space R to provide the electronic component 1 and the heat conductive sheet 2 to be arranged in Within.
  • the heat dissipation shell 3 includes a shell body 31 and a heat radiation coating 32 formed on the shell body 31.
  • the heat radiation coating layer 32 is formed by coating on the inner surface of the housing body 31 (that is, the side surface of the housing body 31 facing the accommodating space R, or the housing body 31 The side surface facing the electronic component 1 during assembly).
  • the heat radiation coating 32 of the heat dissipation housing 3 abuts (or connects) on the surface of the heat conductive sheet 2 away from the electronic component 1 (such as The upper surface of the thermally conductive sheet 2 in FIG. 4). In other words, the heat radiation coating 32 is located between the shell body 31 and the heat conductive sheet 2.
  • the thermal radiation coating 32 is formed by coating a slurry containing thermal radiation materials (such as graphene, carbon nanotubes, artificial graphite, etc.) on the inner surface of the housing body 31, and then the The slurry is cured (eg, heated and cured) to form the thermal radiation coating 32.
  • the thermal radiation coating 32 can quickly transfer the heat source accumulated in the thermally conductive sheet 2 away from the electronic component 1 by means of thermal radiation, thereby achieving a good heat dissipation effect.
  • the thermal radiation emissivity (or thermal radiation rate) of the thermal radiation coating 32 in the infrared range is usually 0.93 to 0.99, preferably 0.96 to 0.99, and particularly preferably 0.98 to 0.99, so as to produce sufficient heat radiation transfer effect for the heat source generated by the electronic component 1.
  • the thermal radiation emissivity of the metal substrate is not greater than 0.1 in the infrared range.
  • the thermal radiation emissivity of the copper substrate is about 0.09
  • the thermal radiation emissivity of the aluminum substrate is about 0.02.
  • the thermal radiation emissivity of the thermal radiation coating 32 is at least 6 times or more, and preferably at least 9 times or more than the thermal radiation emissivity of the thermally conductive sheet 2, but the present invention does not Limited by this.
  • the material of the thermal radiation coating 32 may include at least one of graphene, carbon nanotubes, and artificial graphite, for example.
  • the thermal radiation coating 32 also has a very high thermal conductivity coefficient.
  • the thermal conductivity of the thermal radiation coating 32 is between 4,500 W/(m ⁇ K) and 5,500 W/(m ⁇ K).
  • the heat radiation coating 32 has both the characteristics of heat conduction and heat radiation.
  • the heat dissipation shell 3 can produce a good protection effect on the electronic component 1 and the thermal conductive sheet 2. Furthermore, the heat source dissipated through the thermal radiation coating 32 can be transferred toward the outside of the electronic device 100 in the form of infrared heat radiation.
  • the housing body 31 is the main body of the heat dissipation housing 3 and is used to form the accommodating space R.
  • the material of the housing body 31 is preferably infrared-permeable plastic (or called infrared-permeable polymer material).
  • the material of the housing body 31 may be, for example, near-infrared transparent plastic (wavelength range between 780nm to 2,500nm), mid-infrared transparent plastic (wavelength range between 3,000nm and 5,000nm), Or far-infrared can penetrate plastic (wavelength range is between 8,000nm and 14,000nm).
  • the thermal radiation derived through the thermal radiation coating 32 can easily penetrate the housing body 31 in the form of infrared thermal radiation and escape to the external environment, thereby achieving a good heat dissipation effect. Therefore, the heat source generated by the electronic component 1 is not easy to accumulate in the electronic device 100, and the electronic device 100 can be designed to have a light, thin and short appearance without the problem of poor heat dissipation.
  • the heat conductive sheet 2 allows the heat source to be transferred in the form of heat conduction H1, so that the electronic component 1 operates to generate a heat source It is quickly transferred to the heat conducting sheet 2.
  • the heat radiation coating 32 of the heat dissipation housing 3 can transfer the heat source on the heat conduction sheet 2 in the form of infrared heat radiation H2, and penetrate the housing body 31 to escape to the external environment, thereby achieving good heat dissipation. Effect.
  • thermal conductive sheet 2 and the heat dissipation housing 3 of this embodiment are combined with the electronic component 1 to form an electronic device 100 as an example, the practical application of the thermal conductive sheet 2 and the heat dissipation housing 3 Not limited to this.
  • the heat dissipation housing 3 can also be an independently sold product, and can be applied to other heat-generating components.
  • the heat conducting sheet 2 and the heat dissipation shell 3 can also be a complete set of products to form a heat dissipation module, and can be applied to other heat generating components.
  • the present embodiment is described by taking the electronic component 1 including the circuit board 11 and the electronic component 12 as an example, the present invention is not limited to this.
  • the electronic component 1 may also be, for example, a semiconductor chip or other types of electronic components.
  • the second embodiment of the present invention also provides an electronic device 100' with a heat dissipation structure.
  • 6 is a schematic diagram of a partial structure of the electronic device according to the second embodiment of the present invention
  • FIG. 7 is a schematic diagram of the heat dissipation state of the electronic device according to the second embodiment of the present invention.
  • the electronic device 100' of this embodiment includes an electronic component 1', a thermally conductive sheet 2', and a heat dissipation housing 3'.
  • the electronic component 1' includes a circuit board 11' and an electronic component 12'.
  • the heat dissipation shell 3' includes a shell body 31' and a heat radiation coating 32'.
  • the structure of the electronic device 100' of this embodiment is substantially the same as that of the above-mentioned first embodiment.
  • the difference is that the heat radiation coating 32' of this embodiment is formed on the outer surface of the housing body 31' by coating. (That is, the side surface of the housing body 31' opposite to the accommodating space R, or the side surface of the housing body 31' opposite to the electronic component 1'during assembly).
  • the housing body 31' of the heat dissipation housing 3' abuts (or connects) to the side surface of the thermal conductive sheet 2'away from the electronic component 1' (As shown in Figure 6 on the upper surface of the thermally conductive sheet 2').
  • the shell body 31' is located between the heat radiation coating 32' and the heat conductive sheet 2'.
  • the material type and forming method of the thermal radiation coating 32' are similar to those of the above-mentioned first embodiment, and will not be repeated here.
  • the thermally conductive sheet 2' is preferably thermally conductive silica gel, which has a thermal conductivity between 0.5 W/(m ⁇ K) and 20 W/(m ⁇ K).
  • the shell body 31' is preferably a metal shell, which has a thermal conductivity between 200W/(m ⁇ K) and 500W/(m ⁇ K).
  • the heat conductive sheet 2' when the electronic component 1'is operated to generate a heat source, the heat conductive sheet 2'allows the heat source to be transferred to the housing body 31' in the form of heat conduction H1', and the The shell body 31' allows the heat source to continue to be transferred to the heat radiation coating 32' in the form of heat conduction H1'. Furthermore, the heat radiation coating 32' of the heat dissipation housing 3'can dissipate the heat source in the form of infrared heat radiation H2 to the outside of the electronic device 100', so as to achieve the effect of heat dissipation.
  • the thermally conductive sheet 2' is made of thermally conductive silica gel with a slower thermal conductivity, which has the effect of controlling the thermal dissipation rate.
  • the shell body 31' is a metal shell with a fast heat conduction speed, which can quickly transfer the heat source from the heat conductive sheet 2'to the thermal radiation coating 32', so that the heat source can quickly escape to the external environment. In this way, the problem that the casing of the electronic device 100' is easily overheated during the operation can be effectively solved. From another point of view, in some applications, such as mobile phones, the surface temperature of the mobile phone casing cannot be too high to prevent the user from being burned when touching the casing.
  • the thermal conductivity of silicone must be selected according to the heat generated by the electronic components. . If the thermal conductivity of the thermally conductive silica gel is too high, the temperature of the surface of the shell will be too high, and the user may be burned. If the thermal conductivity of the thermal silica gel is too low, the overall heat dissipation effect of the mobile phone will be poor, which may cause the electronic components to overheat, resulting in functional failure or even burnout.
  • the thermally conductive silica gel is a soft and elastic material
  • the thermally conductive silica gel has a mechanism of buffering effect, and can increase its interaction with the electronic component 1.
  • the contact area between 'and the heat dissipation housing 3' thereby improving the heat dissipation effect of the electronic device 100'.
  • the thermally conductive sheet 2' can be fixed by, for example, an adhesive material (such as glue) or a fixing component (such as a buckle). It is used for the electronic component 1'or the heat dissipation housing 3', but the present invention is not limited to this.
  • the electronic device with a heat dissipation structure, a heat dissipation module, and a heat dissipation housing provided by the present invention can pass through "a heat conducting sheet, which is disposed on one side surface of the electronic component; wherein ,
  • the thermally conductive sheet body has a thermal conductivity of not less than 0.5W/(m ⁇ K);
  • the heat-conducting sheet body, and the heat-dissipating housing includes: a housing body whose side surface facing the accommodating space is defined as an inner surface, and the side surface of the housing body away from the accommodating space is defined as An outer surface; and a heat radiation coating formed on at least one of the inner surface and the outer surface of the housing body in a coating manner; wherein the heat radiation coating has an infrared ray A thermal radiation emissivity ranging from 0.93 to 0.99; wherein, when the electronic component is operating, the electronic component will generate a heat source, and the heat conduction sheet can heat the heat source away
  • the heat source generated by the electronic component is not easy to accumulate in the electronic device, and the electronic device can be designed to have a light, thin and short appearance without the problem of poor heat dissipation.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种具有散热结构的电子装置(100,100')、散热模块及散热外壳(3,3')。散热模块适用于对一电子组件(1,1',12,12')散热、且包含热传导片体(2,2')及散热外壳(3,3')。热传导片体(2,2')具有不小于0.5W/(m×K)的热传导系数。散热外壳(3,3')内侧形成有容置空间,用以容置热传导片体(2,2')。散热外壳(3,3')包含外壳本体(31,31')及形成于外壳本体(31,31')的内表面或外表面上的热辐射涂层(32,32')。热辐射涂层(32,32')具有在红外线范围介于0.93至0.99之间的热辐射发射率。电子装置(100,100')内部的热源能以热传导搭配热辐射的方式,有效地散逸至电子装置(100,100')的外部。

Description

具有散热结构的电子装置、散热模块及散热外壳 技术领域
本发明涉及一种具有散热结构的电子装置,尤其涉及一种具有散热结构的电子装置、散热模块及散热外壳。
背景技术
电子产品的外型设计朝向轻、薄、短、小的趋势发展,以让电子产品具有方便携带的优势。然而,在电子产品的体积变小及厚度变薄的情况下,电子产品内部的电子组件于运作时所产生的热能容易累积,从而造成电子产品内部的温度容易飙升的问题。因此,电子组件时常因过热,而导致其功能失效、甚至烧毁。
于是,本发明人有感上述缺陷可改善,乃特潜心研究并配合科学原理的运用,终于提出一种设计合理且有效改善上述缺陷的本发明。
发明内容
本发明所要解决的技术问题在于,针对现有技术的不足提供一种具有散热结构的电子装置,特别是涉及一种具有散热结构的电子装置、散热模块及散热外壳。
为了解决上述的技术问题,本发明所采用的其中一技术方案是,提供一种具有散热结构的电子装置,其包括:一电子组件;一热传导片体,其设置于所述电子组件的一侧表面上;其中,所述热传导片体具有不小于0.5W/(m×K)的一热传导系数;以及一散热外壳,其内侧形成有一容置空间,用以容置所述电子组件及所述热传导片体,并且所述散热外壳包含:一外壳本体,其面对所述容置空间的一侧表面定义为一内表面,并且所述外壳本体远离所述容置空间的一侧表面定义为一外表面;及一热辐射涂层,其以涂布方式形成于所述外壳本体的所述内表面及所述外表面的至少其中一个表面上;其中,所述热辐射涂层具有在红外线范围介于0.93至0.99之间的一热辐射发射率;其中,当所述电子组件运作时,所述电子组件将产生一热源,并且所述热传导片体能将所述热源以热传导的方式往远离所述电子组件的方向传递,而所述热辐射涂层能将所述热源以热辐射的方式往所述电子装置的外部散逸。
优选地,在所述散热外壳中,所述热辐射涂层是通过将包含有热辐射材质的浆料涂布于所述外壳本体的所述内表面及所述外表面的至少其中一个表面上,而后将所述浆料进行固化,以形成所述热辐射涂层;其中,所述热辐射材质为石墨烯、纳米碳管及人造石墨的至少其中之一。
优选地,所述热辐射涂层的热辐射发射率为所述热传导片体的热辐射发射率的至少6倍以上。
优选地,所述热辐射涂层具有介于4,500W/(m×K)至5,500W/(m×K)之间的一热传导系数。
优选地,所述热辐射涂层是形成于所述外壳本体的所述内表面上,并且所述热传导片体的所述热传导系数不小于20W/(m×K)。
优选地,所述热传导片体为具有热传导系数介于200W/(m×K)至500W/(m×K)之间的金属基板;或者,所述热传导片体为具有热传导系数介于400W/(m×K)至1,600W/(m×K)之间的石墨基板;或者,所述热传导片体为具有热传导系数介于20W/(m×K)至180W/(m×K)之间的陶瓷基板。
优选地,在所述散热外壳中,所述外壳本体的材质为红外线可穿透塑料;并且,经由所述热辐射涂层所导出的所述热源,能以红外线热辐射的形式,穿透所述外壳本体,而往所述电子装置的外部散逸。
优选地,所述热辐射涂层是形成于所述外壳本体的所述外表面上,并且所述热传导片体为具有热传导系数介于0.5W/(m×K)至20W/(m×K)之间的导热硅胶,而所述外壳本体为具有热传导系数介于200W/(m×K)至500W/(m×K)之间的金属外壳。
为了解决上述的技术问题,本发明所采用的另外一技术方案是,提供一种散热模块,其适用于对一电子组件散热,其特征在于,所述散热模块包括:一热传导片体,其具有不小于0.5W/(m×K)的一热传导系数;以及一散热外壳,其内侧形成有一容置空间,用以容置所述热传导片体,并且所述散热外壳包含:一外壳本体,其面对所述容置空间的一侧表面定义为一内表面,并且所述外壳本体远离所述容置空间的一侧表面定义为一外表面;及一热辐射涂层,其以涂布方式形成于所述外壳本体的所述内表面及所述外表面的至少其中一个表面上;其中,所述热辐射涂层具有在红外线范围介于0.93至0.99之间的一热辐射发射率。
为了解决上述的技术问题,本发明所采用的另外一技术方案是,提供一种散热外壳, 其内侧形成有一容置空间,并且所述散热外壳包含:一外壳本体,其面对所述容置空间的一侧表面定义为一内表面,并且所述外壳本体远离所述容置空间的一侧表面定义为一外表面;及一热辐射涂层,其以涂布方式形成于所述外壳本体的所述内表面及所述外表面的至少其中一个表面上;其中,所述热辐射涂层具有在红外线范围介于0.93至0.99之间的一热辐射发射率。
本发明的其中一有益效果在于,本发明所提供的具有散热结构的电子装置、散热模块及散热外壳,其能通过“一热传导片体,其设置于所述电子组件的一侧表面上;其中,所述热传导片体具有不小于0.5W/(m×K)的一热传导系数;以及一散热外壳,其内侧形成有一容置空间,用以容置所述电子组件及所述热传导片体,并且所述散热外壳包含:一外壳本体,其面对所述容置空间的一侧表面定义为一内表面,并且所述外壳本体远离所述容置空间的一侧表面定义为一外表面;及一热辐射涂层,其以涂布方式形成于所述外壳本体的所述内表面及所述外表面的至少其中一个表面上;其中,所述热辐射涂层具有在红外线范围介于0.93至0.99之间的一热辐射发射率;其中,当所述电子组件运作时,所述电子组件将产生一热源,并且所述热传导片体能将所述热源以热传导的方式往远离所述电子组件的方向传递,而所述热辐射涂层能将所述热源以热辐射的方式往所述电子装置的外部散逸”的技术方案,以使得所述电子装置内部的热源能以热传导搭配热辐射的方式,有效地散逸至电子装置的外部。
借此,由所述电子组件所产生的热源不容易聚积在电子装置中,并且所述电子装置可以设计成具有轻薄短小的外型,也不会有散热不佳的问题。
为使能更进一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明与附图,然而所提供的附图仅用于提供参考与说明,并非用来对本发明加以限制。
附图说明
图1为本发明第一实施例的具有散热结构的电子装置的立体分解图。
图2为本发明第一实施例的具有散热结构的电子装置的立体示意图。
图3为本发明第一实施例的具有散热结构的电子装置的剖视示意图。
图4为本发明第一实施例的电子装置的局部构造示意图。
图5为本发明第一实施例的电子装置的散热状态示意图。
图6为本发明第二实施例的电子装置的局部构造示意图。
图7为本发明第二实施例的电子装置的散热状态示意图。
具体实施方式
以下是通过特定的具体实施例来说明本发明所公开的实施方式,本领域技术人员可由本说明书所公开的内容了解本发明的优点与效果。本发明可通过其他不同的具体实施例加以施行或应用,本说明书中的各项细节也可基于不同观点与应用,在不悖离本发明的构思下进行各种修改与变更。另外,本发明的附图仅为简单示意说明,并非依实际尺寸的描绘,事先声明。以下的实施方式将进一步详细说明本发明的相关技术内容,但所公开的内容并非用以限制本发明的保护范围。
应当可以理解的是,虽然本文中可能会使用到“第一”、“第二”、“第三”等术语来描述各种组件或者信号,但这些组件或者信号不应受这些术语的限制。这些术语主要是用以区分一组件与另一组件,或者一信号与另一信号。另外,本文中所使用的术语“或”,应视实际情况可能包括相关联的列出项目中的任一个或者多个的组合。
[第一实施例]
参阅图1至图3所示,本发明第一实施例提供一种具有散热结构的电子装置100。其中,图1为本发明第一实施例的具有散热结构的电子装置的立体分解图。图2为本发明第一实施例的具有散热结构的电子装置的立体示意图。图3为本发明第一实施例的具有散热结构的电子装置的剖视示意图。
在本实施例中,所述具有散热结构的电子装置100包含有:一电子组件1、两个热传导片体2及两个散热外壳3。其中,所述两个热传导片体2分别设置于电子组件1的相对两侧表面。所述两个散热外壳3可以彼此结合,以形成一容置空间R。再者,所述电子组件1及两个热传导片体2皆设置于两个散热外壳3所形成的容置空间R中。其中,所述热传导片体2能对电子组件1所产生的热源进行散热,所述散热外壳3能用来保护所述电子组件1及热传导片体2,并且提供热源穿过。
需说明的是,本实施例虽然是以电子装置100包含有两个热传导片体2及两个散热外壳3为例作说明,但本发明不受限于此。本发明对于电子组件1、热传导片体2及散热外壳3的数量并不予以限制。举例来说,所述热传导片体2及散热外壳3的数量也可以例如是皆为一个或一个以上。
为了更进一步清楚了解本发明,以下将分别说明本实施例电子装置100的各个构件的 具体构造,而后再适时说明电子装置100的各个构件间的连结关系。
请继续参阅图4及图5,图4为本发明第一实施例的电子装置的局部构造示意图,并且图5为本发明第一实施例的电子装置的散热状态示意图。为了方便说明,图4及图5仅显示图3的电子装置的上半部的局部构造。更清楚地说,图4及图5的电子装置100仅显示了电子组件1的上半部构造及位于电子组件1上侧的一个热传导片体2及一个散热外壳3。
在本实施例中,所述电子组件1包含有:一电路板11及一电子组件12,并且所述电子组件12是设置于电路板11的一侧表面上。
在本实施例中,所述电路板11可以例如是印刷电路板(PCB),并且所述电子组件12可以例如是电阻、电容、电源、开关等电子组件。再者,所述电子组件12可以例如是通过焊接或黏接的方式设置于电路板11上,但本发明不受限于此。
进一步地说,所述电子组件1的电路板11及电子组件12于运作时会产生热源。若过多的热源累积在电子组件1上,电子组件1的可靠性及运作效能将会受到影响。
据此,本发明的改良目的之一在于,提供一种具有特殊结构及材质的散热结构,以解决所述电子组件1的散热问题。再者,本发明的另一目的在于,在能解决电子组件1的散热问题的基础下,所述电子装置100仍然能维持轻薄短小的外型。
请继续参阅图4,为了实现上述目的,所述热传导片体2是设置于电子组件12的远离电路板11的一侧表面上(如图4的电子组件12的上表面)。所述热传导片体2可以例如是通过黏着材料(如:黏胶)或固定组件(如:卡扣),而设置于且紧贴于电子组件12的表面上,以通过热传导的方式将电子组件1所产生的热源往远离电子组件1的方向传递,从而减少累积在电子组件1上的热源。
为了让所述热传导片体2具有良好的热传导效果,在本实施例中,所述热传导片体2必须具有高的热传导系数。更详细地说,所述热传导片体2的热传导系数(thermal conductivity)优选是不小于20W/(m×K),以对电子组件1所产生的热源产生足够的热传导效果。
在本发明的一具体实施例中,所述热传导片体2的材质可以例如是具有热传导系数介于200W/(m×K)至500W/(m×K)之间的金属基板。
举例而言,所述金属基板可以例如为铝基板、金基板、铜基板、或银基板,并且所述金属基板优选为铝基板或铜基板。
在本发明的一具体实施例中,所述热传导片体2的材质可以例如是具有热传导系数介于400W/(m×K)至1,600W/(m×K)之间的石墨基板。
再者,在本发明的一具体实施例中,所述热传导片体2的材质可以例如是具有热传导系数介于20W/(m×K)至180W/(m×K)之间的陶瓷基板。
整体而言,上述金属基板、石墨基板及陶瓷基板的热传导系数皆不小于20W/(m×K),以对电子组件1所产生的热源产生足够的热传导效果。
请继续参阅图3至图5,所述两个散热外壳3可以彼此结合,以形成一容置空间R。再者,所述电子组件1及两个热传导片体2皆设置于两个散热外壳3所形成的容置空间R中。
在本实施例中,所述两个散热外壳3可以例如是通过卡合的方式彼此结合,以形成所述容置空间R,但本发明不受限于此。所述两个散热外壳3也可以例如是通过锁合或黏合的方式彼此结合。
再者,在本发明未示出的实施例中,所述散热外壳3也可以为一体成型的构造,并且具有所述容置空间R,以提供所述电子组件1及热传导片体2设置于其内。
如图4所述,所述散热外壳3包含有一外壳本体31及形成于所述外壳本体31上的一热辐射涂层32。
更具体地说,所述热辐射涂层32是以涂布方式形成于所述外壳本体31的内表面上(也就是,外壳本体31的面向容置空间R的一侧表面,或外壳本体31于组装时面向电子组件1的一侧表面)。
在本实施例中,于电子装置100组装后,所述散热外壳3的热辐射涂层32是抵接(或连接)于所述热传导片体2的远离电子组件1的一侧表面上(如图4的热传导片体2的上表面)。也就是说,所述热辐射涂层32是位于外壳本体31及热传导片体2之间。
再者,所述热辐射涂层32是通过将包含有热辐射材质(如:石墨烯、纳米碳管、人造石墨…等)的浆料涂布于外壳本体31的内表面上,而后将该浆料进行固化(如:加热固化),以形成所述热辐射涂层32。所述热辐射涂层32能通过热辐射的方式迅速地将累积在热传导片体2中的热源往远离电子组件1的方向传递,从而实现良好的散热效果。
为了让所述热辐射涂层32具有良好的热辐射效果,在本实施例中,所述热辐射涂层32的热辐射发射率(或称热辐射速率)在红外线范围通常是介于0.93至0.99之间、优选是介于0.96至0.99之间、且特优选是介于0.98至0.99之间,以对电子组件1所产生的热 源产生足够的热辐射传递效果。值得一提的是,在本实施例中,上述金属基板的热辐射发射率在红外线范围皆不大于0.1。举例来说,铜基板的热辐射发射率约为0.09,而铝基板的热辐射发射率约为0.02。也就是说,在本实施例中,所述热辐射涂层32的热辐射发射率为热传导片体2的热辐射发射率的至少6倍以上、且优选为至少9倍以上,但本发明不受限于此。
在本发明的一具体实施例中,所述热辐射涂层32的材质可以例如是包含有石墨烯、纳米碳管及人造石墨的至少其中之一。
值得一提的是,所述热辐射涂层32也具有非常高的热传导系数。在本发明的一具体实施例中,所述热辐射涂层32的热传导系数介于4,500W/(m×K)至5,500W/(m×K)之间。也就是说,所述热辐射涂层32兼具了热传导及热辐射的特性。
借此,所述散热外壳3能对电子组件1及热传导片体2产生良好的保护效果。再者,通过热辐射涂层32所散逸的热源,能以红外线热辐射的形式朝向所述电子装置100的外部传递。
进一步地说,所述外壳本体31是散热外壳3的主体,其用以形成所述容置空间R。在本发明的一具体实施例中,所述外壳本体31的材质优选为红外线可穿透塑料(或称红外线可穿透高分子材料)。举例而言,所述外壳本体31的材质可以例如是近红外线可穿透塑料(波长范围介于780nm至2,500nm)、中红外线可穿透塑料(波长范围介于3,000nm介于5,000nm)、或远红外线可穿透塑料(波长范围介于8,000nm至14,000nm)。
借此,经由所述热辐射涂层32所导出的热辐射,能以红外线热辐射的形式,轻易地穿透所述外壳本体31,散逸至外界环境,从而达到良好的散热效果。因此,由所述电子组件1所产生的热源不容易聚积在电子装置100中,并且所述电子装置100可以设计成具有轻薄短小的外型,也不会有散热不佳的问题。
综上所述,如图5所示,当所述电子组件1运作而产生热源时,所述热传导片体2能让该热源以热传导形式H1传递,以使得所述电子组件1运作而产生热源迅速地传递至热传导片体2中。
再者,所述散热外壳3的热辐射涂层32能将热传导片体2上的热源以红外线热辐射形式H2传递,并且穿透所述外壳本体31,散逸至外界环境,从而达到良好的散热效果。
必须说明的是,本实施例的热传导片体2及散热外壳3虽然是以搭配于电子组件1以形成一电子装置100为例作说明,但所述热传导片体2及散热外壳3的实际应用并不受限 于此。举例来说,所述散热外壳3也可以是独立贩卖的产品,并且可以应用于其它的发热组件上。再者,所述热传导片体2及散热外壳3也可以是成套的产品,以形成为一散热模块,并且可以应用于其它的发热组件上。
另外,必须说明的是,本实施例虽然是以电子组件1包含有电路板11及电子组件12为例作说明,但本发明不受限于此。举例来说,在本发明未绘式的实施例中,所述电子组件1也可以例如是半导体芯片或其它类型的电子组件。
[第二实施例]
参阅图6及图7所示,本发明第二实施例也提供一种具有散热结构的电子装置100’。其中,图6为本发明第二实施例的电子装置的局部构造示意图,并且图7为本发明第二实施例的电子装置的散热状态示意图。
本实施例的电子装置100’包含电子组件1’、热传导片体2’及散热外壳3’。所述电子组件1’包含电路板11’及电子组件12’。所述散热外壳3’包含外壳本体31’及热辐射涂层32’。
本实施例的电子装置100’的构造与上述第一实施例大致相同,不同的之处在于,本实施例的热辐射涂层32’是以涂布方式形成于外壳本体31’的外表面上(也就是,外壳本体31’的相反于容置空间R的一侧表面,或外壳本体31’于组装时相反于电子组件1’的一侧表面)。
在本实施例中,于电子装置100’组装后,所述散热外壳3’的外壳本体31’是抵接(或连接)于所述热传导片体2’的远离电子组件1’的一侧表面上(如图6的热传导片体2’的上表面)。也就是说,所述外壳本体31’是位于热辐射涂层32’及热传导片体2’之间。所述热辐射涂层32’的材料种类及形成方式与上述第一实施例类似,在此不多作赘述。
在本实施例中,所述热传导片体2’优选为导热硅胶,其具有介于0.5W/(m×K)至20W/(m×K)之间的热传导系数。再者,所述外壳本体31’优选为金属外壳,其具有介于200W/(m×K)至500W/(m×K)之间的热传导系数。
综上所述,如图7所示,当所述电子组件1’运作而产生热源时,所述热传导片体2’能让该热源以热传导形式H1’传递至外壳本体31’,并且所述外壳本体31’能让该热源继续以热传导形式H1’传递至热辐射涂层32’。再者,所述散热外壳3’的热辐射涂层32’能将该热源以红外线热辐射形式H2散逸至电子装置100’的外部,借以实现散热的 效果。
值得一提的是,在本实施例中,所述热传导片体2’是选用导热速度较慢的导热硅胶,其具有控制散热速度的效果。所述外壳本体31’是选用导热速度较快的金属外壳,其能将来自于热传导片体2’的热源快速地传递至热辐射涂层32’,从而使该热源快速的散逸至外界环境。借此,电子装置100’在运作的过程中,其外壳容易过烫的问题能够被有效地解决。从另一个角度说,在一些应用中,如:手机,由于手机外壳的表面温度不能太高,以免使用者接触外壳时被烫伤,所以导热硅胶须依电子组件产生的热量而选择适当的热传导系数。若导热硅胶的热传导系数太高,则外壳表面的温度会太高,而可能烫伤使用者。若导热硅胶的热传导系数太低,则手机整体的散热效果不佳,而可能导致电子组件过热以致于功能失效、甚至烧毁。
再者,由于导热硅胶为较软且具有弹性的材质,因此当导热硅胶设置于电子组件1’及散热外壳3’之间时,导热硅胶具有机构缓冲的效果,并且能增加其与电子组件1’及散热外壳3’之间接触面积,从而提升电子装置100’的散热效果。
另外,值得一提的是,在本发明未示出的实施例中,所述热传导片体2’可以例如是通过黏着材料(如:黏胶)或固定组件(如:卡扣),而固定于电子组件1’或散热外壳3’,但本发明不受限于此。
[实施例的有益效果]
本发明的其中一有益效果在于,本发明所提供的具有散热结构的电子装置、散热模块及散热外壳,其能通过“一热传导片体,其设置于所述电子组件的一侧表面上;其中,所述热传导片体具有不小于0.5W/(m×K)的一热传导系数(thermal conductivity);以及一散热外壳,其内侧形成有一容置空间,用以容置所述电子组件及所述热传导片体,并且所述散热外壳包含:一外壳本体,其面对所述容置空间的一侧表面定义为一内表面,并且所述外壳本体远离所述容置空间的一侧表面定义为一外表面;及一热辐射涂层,其以涂布方式形成于所述外壳本体的所述内表面及所述外表面的至少其中一个表面上;其中,所述热辐射涂层具有在红外线范围介于0.93至0.99之间的一热辐射发射率;其中,当所述电子组件运作时,所述电子组件将产生一热源,并且所述热传导片体能将所述热源以热传导的方式往远离所述电子组件的方向传递,而所述热辐射涂层能将所述热源以热辐射的方式穿透所述外壳本体、并往所述电子装置的外部散逸”的技术方案,以使得所述电子装置内部的热源能以热传导搭配热辐射的方式,有效地散逸至电子装置的外部。
借此,由所述电子组件所产生的热源不容易聚积在电子装置中,并且所述电子装置可以设计成具有轻薄短小的外型,也不会有散热不佳的问题。
以上所公开的内容仅为本发明的优选可行实施例,并非因此局限本发明的权利要求,所以凡是运用本发明说明书及附图内容所做的等效技术变化,均包含于本发明的权利要求内。

Claims (10)

  1. 一种具有散热结构的电子装置,其特征在于,所述具有散热结构的电子装置包括:
    一电子组件;
    一热传导片体,其设置于所述电子组件的一侧表面上;其中,所述热传导片体具有不小于0.5W/(m×K)的一热传导系数;以及
    一散热外壳,其内侧形成有一容置空间,用以容置所述电子组件及所述热传导片体,并且所述散热外壳包含:
    一外壳本体,其面对所述容置空间的一侧表面定义为一内表面,并且所述外壳本体远离所述容置空间的一侧表面定义为一外表面;及
    一热辐射涂层,其以涂布方式形成于所述外壳本体的所述内表面及所述外表面的至少其中一个表面上;其中,所述热辐射涂层具有在红外线范围介于0.93至0.99之间的一热辐射发射率;
    其中,当所述电子组件运作时,所述电子组件将产生一热源,并且所述热传导片体能将所述热源以热传导的方式往远离所述电子组件的方向传递,而所述热辐射涂层能将所述热源以热辐射的方式往所述电子装置的外部散逸。
  2. 根据权利要求1所述的具有散热结构的电子装置,其特征在于,在所述散热外壳中,所述热辐射涂层是通过将包含有热辐射材质的浆料涂布于所述外壳本体的所述内表面及所述外表面的至少其中一个表面上,而后将所述浆料进行固化,以形成所述热辐射涂层;其中,所述热辐射材质为石墨烯、纳米碳管及人造石墨的至少其中之一。
  3. 根据权利要求1所述的具有散热结构的电子装置,其特征在于,所述热辐射涂层的热辐射发射率为所述热传导片体的热辐射发射率的至少6倍以上。
  4. 根据权利要求1所述的具有散热结构的电子装置,其特征在于,所述热辐射涂层具有介于4,500W/(m×K)至5,500W/(m×K)之间的一热传导系数。
  5. 根据权利要求1所述的具有散热结构的电子装置,其特征在于,所述热辐射涂层是形成于所述外壳本体的所述内表面上,并且所述热传导片体的所述热传导系数不小于20W/(m×K)。
  6. 根据权利要求5所述的具有散热结构的电子装置,其特征在于,所述热传导片体为具有热传导系数介于200W/(m×K)至500W/(m×K)之间的金属基板;或者,所述热传导片体为具有热传导系数介于400W/(m×K)至1,600W/(m×K)之间的石墨基板;或者, 所述热传导片体为具有热传导系数介于20W/(m×K)至180W/(m×K)之间的陶瓷基板。
  7. 根据权利要求5所述的具有散热结构的电子装置,其特征在于,在所述散热外壳中,所述外壳本体的材质为红外线可穿透塑料;并且,经由所述热辐射涂层所导出的所述热源,能以红外线热辐射的形式,穿透所述外壳本体,而往所述电子装置的外部散逸。
  8. 根据权利要求1所述的具有散热结构的电子装置,其特征在于,所述热辐射涂层是形成于所述外壳本体的所述外表面上,并且所述热传导片体为具有热传导系数介于0.5W/(m×K)至20W/(m×K)之间的导热硅胶,而所述外壳本体为具有热传导系数介于200W/(m×K)至500W/(m×K)之间的金属外壳。
  9. 一种散热模块,其适用于对一电子组件散热,其特征在于,所述散热模块包括:
    一热传导片体,其具有不小于0.5W/(m×K)的一热传导系数;以及
    一散热外壳,其内侧形成有一容置空间,用以容置所述热传导片体,并且所述散热外壳包含:
    一外壳本体,其面对所述容置空间的一侧表面定义为一内表面,并且所述外壳本体远离所述容置空间的一侧表面定义为一外表面;及
    一热辐射涂层,其以涂布方式形成于所述外壳本体的所述内表面及所述外表面的至少其中一个表面上;其中,所述热辐射涂层具有在红外线范围介于0.93至0.99之间的一热辐射发射率。
  10. 一种散热外壳,其内侧形成有一容置空间,其特征在于,所述散热外壳包含:
    一外壳本体,其面对所述容置空间的一侧表面定义为一内表面,并且所述外壳本体远离所述容置空间的一侧表面定义为一外表面;及
    一热辐射涂层,其以涂布方式形成于所述外壳本体的所述内表面及所述外表面的至少其中一个表面上;其中,所述热辐射涂层具有在红外线范围介于0.93至0.99之间的一热辐射发射率。
PCT/CN2020/095500 2020-06-11 2020-06-11 具有散热结构的电子装置、散热模块及散热外壳 WO2021248395A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095500 WO2021248395A1 (zh) 2020-06-11 2020-06-11 具有散热结构的电子装置、散热模块及散热外壳

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095500 WO2021248395A1 (zh) 2020-06-11 2020-06-11 具有散热结构的电子装置、散热模块及散热外壳

Publications (1)

Publication Number Publication Date
WO2021248395A1 true WO2021248395A1 (zh) 2021-12-16

Family

ID=78846740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095500 WO2021248395A1 (zh) 2020-06-11 2020-06-11 具有散热结构的电子装置、散热模块及散热外壳

Country Status (1)

Country Link
WO (1) WO2021248395A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200997744Y (zh) * 2007-01-09 2007-12-26 天瑞企业股份有限公司 导热均热装置
CN203167497U (zh) * 2013-01-21 2013-08-28 吴哲元 电子器物壳体的导电散热结构
US20170010642A1 (en) * 2015-07-09 2017-01-12 Htc Corporation Electronic assembly and electronic device
CN107006136A (zh) * 2016-09-26 2017-08-01 深圳市大疆创新科技有限公司 散热机构及具有该散热机构的电子调速器、电子装置
CN206614861U (zh) * 2017-02-20 2017-11-07 慧隆科技股份有限公司 石墨材料散热片

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200997744Y (zh) * 2007-01-09 2007-12-26 天瑞企业股份有限公司 导热均热装置
CN203167497U (zh) * 2013-01-21 2013-08-28 吴哲元 电子器物壳体的导电散热结构
US20170010642A1 (en) * 2015-07-09 2017-01-12 Htc Corporation Electronic assembly and electronic device
CN107006136A (zh) * 2016-09-26 2017-08-01 深圳市大疆创新科技有限公司 散热机构及具有该散热机构的电子调速器、电子装置
CN206614861U (zh) * 2017-02-20 2017-11-07 慧隆科技股份有限公司 石墨材料散热片

Similar Documents

Publication Publication Date Title
US6819559B1 (en) Method and apparatus for controlling the temperature of electronic device enclosures
US11277941B1 (en) Thermal-control system of a video-recording doorbell and associated video-recording doorbells
US6011690A (en) PC card with thermal management
JP2008541490A (ja) 熱積層モジュール
US20160150679A1 (en) Electronic device
TW201204227A (en) Heat dissipation apparatus
TW201404287A (zh) 散熱複合材料及其用途
TW200806101A (en) Printed circuit board having metal core
JPH11317480A (ja) 放熱部品とその製造方法
WO2021248395A1 (zh) 具有散热结构的电子装置、散热模块及散热外壳
TWI728836B (zh) 具有散熱結構的電子裝置、散熱模組及散熱外殼
JP6232582B2 (ja) 熱遮断シートおよびこれを用いた熱対策構造
JP3753875B2 (ja) 電子機器
JP2004214429A (ja) 積層プリント基板の放熱構造
TW202011147A (zh) 加熱散熱模組
US20170176113A1 (en) Heat Sink and Case Having the Same
TW201910966A (zh) 電子裝置
JPH06268113A (ja) 電子機器用の放熱部材
TWM461036U (zh) 散熱外殼
CN110913653B (zh) 加热散热模块
CN204681722U (zh) 电子产品降温装置
JP2002344179A (ja) 電子機器
JPH11110084A (ja) 情報処理装置
CN112543577B (zh) 一种生物控温电子产品壳体组件
TWM555625U (zh) 可攜帶電子裝置之殼體轉印熱壓成型散熱塗層結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940195

Country of ref document: EP

Kind code of ref document: A1