WO2021246588A1 - Method for removing chlorine from waste oil fractions containing high content of chlorine using solid acid material - Google Patents

Method for removing chlorine from waste oil fractions containing high content of chlorine using solid acid material Download PDF

Info

Publication number
WO2021246588A1
WO2021246588A1 PCT/KR2020/015786 KR2020015786W WO2021246588A1 WO 2021246588 A1 WO2021246588 A1 WO 2021246588A1 KR 2020015786 W KR2020015786 W KR 2020015786W WO 2021246588 A1 WO2021246588 A1 WO 2021246588A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorine
oil
waste oil
weight
solid acid
Prior art date
Application number
PCT/KR2020/015786
Other languages
French (fr)
Korean (ko)
Inventor
김도경
전희중
최재석
김가영
이호원
김태진
추대현
Original Assignee
에스케이이노베이션 주식회사
에스케이종합화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200124533A external-priority patent/KR20210150249A/en
Application filed by 에스케이이노베이션 주식회사, 에스케이종합화학 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to CN202080073772.1A priority Critical patent/CN114616309A/en
Priority to US17/912,705 priority patent/US20230174872A1/en
Priority to EP20939068.1A priority patent/EP4105299A4/en
Publication of WO2021246588A1 publication Critical patent/WO2021246588A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G17/00Refining of hydrocarbon oils in the absence of hydrogen, with acids, acid-forming compounds or acid-containing liquids, e.g. acid sludge
    • C10G17/095Refining of hydrocarbon oils in the absence of hydrogen, with acids, acid-forming compounds or acid-containing liquids, e.g. acid sludge with "solid acids", e.g. phosphoric acid deposited on a carrier
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1003Waste materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure

Definitions

  • the present invention relates to a method for removing chlorine from waste oil containing high chlorine content using a solid acid material.
  • waste oil generated through the cracking and pyrolysis reaction of waste materials such as waste plastic pyrolysis oil contains a large amount of impurities from waste materials.
  • the Cl component is converted into HCl that may cause corrosion of the device during high-temperature treatment and is discharged.
  • Prior art 1 Japanese Laid-Open Patent Publication No. 1999-504672 A
  • a method for producing gasoline, diesel engine oil and carbon black from waste rubber and/or waste plastic materials relates to a method for producing gasoline, diesel engine oil and carbon black from waste rubber and/or waste plastic materials.
  • Cl, N, and S are removed by using basic substances such as KOH and NaOH
  • Catalytic Cracking It includes removing Cl, N, and S at the same time as cracking of the pyrolysis oil, and then separating the cracked oil to prepare a final product.
  • Cl is reduced by neutralization (using a base material such as KOH or NaOH).
  • This neutralization debonding reaction does not have a high Cl removal efficiency per unit weight of the base material, so the content is low enough to be introduced into the refinery process. It is difficult to prepare a Cl fraction (Cl number ppm). In addition, since the use cycle of the catalyst is short and the process of regenerating the used (neutralization catalyst) material is complicated, it is not preferable in terms of process simplification.
  • Prior Art 2 Japanese Patent No. 4218857 B2
  • a chlorine compound remover Specifically, Cl is adsorbed and removed from a fluid containing chlorine compounds by using a clay chlorine remover such as zinc oxide or talc. characterized in that
  • a clay chlorine remover such as zinc oxide or talc.
  • a low Cl-containing oil having a chlorine compound content of less than 10 ppm is used as a raw material. It is suitable for adsorbing Cl for a long time. Therefore, it is not effective to apply the adsorption technique to the waste stream containing a high Cl content.
  • Prior Art 3 Japanese Patent Application Laid-Open No. 2019-532118 A
  • a plastic or plastic pyrolysis fraction is converted into a mild fraction of bp ⁇ 370° C. and Cl is removed.
  • Cl is removed at the same time as the pyrolysis reaction, it is mainly converted to organic Cl in which olefin and Cl are combined and then combined with a solid acid point or removed through gas release. , there is a product loss problem.
  • An object of the present invention is to provide a Cl reduction technology of high Cl-containing waste oil using a solid acid material for high addition (fuel, chemical conversion) by applying a refinery process to high Cl-containing waste oil.
  • One embodiment of the present invention comprises the steps of: a) preparing a mixture of a chlorine-containing waste oil and a solid acid material; b) removing chlorine by reacting the mixture at a pressure of 1 bar or more and 100 bar or less in an inert gas atmosphere; And c) recovering the chlorine-removed fraction by separating the mixture of the chlorine-removed fraction and the solid acid material; It contains 50 wt% or less, and provides a method for removing chlorine from waste oil, characterized in that it satisfies the following relation (1).
  • A is the weight% of the component at a boiling point of 150°C or higher with respect to the total weight of the waste oil component
  • B is the weight% of the component at a bp level of 150°C or higher with respect to the total weight of the oil from which the chlorine has been removed.
  • the waste oil may include waste plastic pyrolysis oil, biomass pyrolysis oil, regenerated lubricating oil, high chlorine content crude oil, or a mixture thereof.
  • the chlorine content of the waste oil may be 10 ppm or more.
  • the solid acid material may be zeolite, clay, SAPO (silica-alumina-phosphate), ALPO (aluminum phosphate), MOF (Metal Organic Framework), silica alumina, or a mixture thereof.
  • the solid acid material may be included in an amount of 5 to 10% by weight based on the total weight of the mixture.
  • the reaction of step b) may be a catalytic conversion reaction in which chlorine contained in the waste oil is removed from direct bonding to and/or converted to hydrochloric acid (HCl) at the active point of the solid acid material.
  • HCl hydrochloric acid
  • step b) may be carried out at a temperature of more than 280 °C and less than 380 °C.
  • the chlorine removal method of the waste oil may further include d) repeating steps a), b), and c) at least once or more.
  • the chlorine content of the chlorine-removed oil may be less than 10 ppm.
  • a weight ratio of chlorine in the chlorine-removed fraction to chlorine in the waste fraction may be 0.01 to 0.1.
  • the high Cl-containing fraction 90 wt% or more of Cl can be removed to convert the fraction to a Cl fraction that can be introduced into the refinery process.
  • waste solid acid material (waste zeolite, waste clay, etc.) that is discarded after use in the petrochemical process can be used as it is or simply treated as a solid acid material for Cl removal.
  • 1-2 is a schematic diagram of a chlorine removal method according to an embodiment
  • 3 to 4 are graphs showing the residual N content and the residual S content by reaction temperature
  • 6 to 7 are graphs showing the residual Cl content and Cl reduction rate by reaction time
  • 11 to 12 are graphs showing the residual Cl content and Cl reduction rate by catalyst amount
  • 13 to 14 are graphs showing the residual N content and the residual S content by catalyst amount
  • 15 is a graph showing changes in oil composition by catalyst amount.
  • a to B means “A or more and B or less” unless otherwise defined.
  • a and/or B means at least one selected from the group consisting of A and B, unless otherwise defined.
  • the bp (boiling point) of the waste oil and the chlorine-removed oil means measured at atmospheric pressure (1 atm).
  • a method for removing chlorine from waste oil comprises the steps of: a) preparing a mixture of a chlorine-containing waste oil and a solid acid material; b) removing chlorine by reacting the mixture at a pressure of 1 bar or more and 100 bar or less in an inert gas atmosphere; and c) recovering the chlorine-removed fraction by separating the mixture of the chlorine-removed fraction and the solid acid material; It contains 5 to 50% by weight, and it is characterized in that the following relation 1 is satisfied.
  • A is the weight% of the component at a boiling point of 150°C or higher with respect to the total weight of the waste oil component
  • B is the weight% of the component at a bp level of 150°C or higher with respect to the total weight of the oil from which the chlorine has been removed.
  • the waste oil may include waste plastic pyrolysis oil, biomass pyrolysis oil, regenerated lubricating oil, high chlorine content crude oil, or a mixture thereof.
  • waste oil generated through cracking and pyrolysis of waste materials such as waste plastic pyrolysis oil contains a large amount of impurities derived from waste materials, so there is a risk of air pollutant emission when using it. Since there is a problem of being converted to HCl and discharged during the process, it is necessary to pre-treat waste oil to remove impurities.
  • the chlorine in the waste oil may be organic Cl, organic Cl, or a combination thereof, and the chlorine content in the waste oil may be 10 ppm or more and 20 ppm or more.
  • the upper limit of the content of chlorine in the waste oil is not particularly limited, but may be, for example, 600 ppm or less, preferably 500 ppm or less.
  • impurities in the waste oil include N, S and O, which may emit exhaust pollutants such as SOx and NOx, and metal components that adversely affect the catalyst activity of the refinery process when using fuel, such as Fe, Na, Ca and Al. can do.
  • N, S and O may be 100 ppm or more, or 500 to 8,000 ppm, S content of 10 ppm or more, or 20 to 1,000 ppm, and O content of 2,000 ppm or more, or 3,000 ppm to 3 wt%, based on the total weight of the waste oil, , Fe, Na, Ca and Al are Fe content of 1 ppm or more, or 1 to 10 ppm, Na content 1 ppm or more, or 1 to 10 ppm, Ca content 0.1 ppm or more, or 0.1 to 5 ppm and Al content with respect to the total weight of the waste oil 0.1 ppm or more, or 0.1 to 5 ppm.
  • the waste oil contains 5 to 50% by weight of components below 150° C. bp based on the total weight, for example, 5 to 45% by weight, 5 to 40% by weight, 5 to 35% by weight, 5 to 30% by weight, 5 to 25% by weight, 5 to 20% by weight or 5 to 15% by weight may be included. In addition, 10 to 50% by weight, 15 to 50% by weight, 20 to 50% by weight, 25 to 50% by weight, 30 to 50% by weight, 35 to 50% by weight or 40 to 50% by weight may be included.
  • the waste oil of the present invention can prevent deterioration of product properties due to oligomerization and product loss due to excessive cracking by removing chlorine without substantially changing oil properties even when the content of light oil is high.
  • the waste oil contains 10 to 35% by weight, for example, 10 to 30% by weight, 10 to 29% by weight, 11 to 28% by weight, 12 to 27% by weight of the bp 150°C to 265°C component based on the total weight. , 13 to 26% by weight, 14 to 26% by weight or 15 to 25% by weight may be included.
  • the waste oil contains 10 to 35% by weight, for example, 10 to 30% by weight, 10 to 29% by weight, 11 to 28% by weight, 12 to 27% by weight of the bp component at 265°C to 340°C with respect to the total weight. , 13 to 26% by weight, 14 to 26% by weight or 15 to 25% by weight may be included.
  • the waste oil contains 20 to 65% by weight, for example, 25 to 60% by weight, 25 to 55% by weight, 25 to 50% by weight, 30 to 50% by weight, 32 To 48% by weight, 35 to 45% by weight may be included.
  • the waste oil may include 30 to 70% by weight of an olefin, preferably 40 to 60% by weight, based on the total weight.
  • an olefin preferably 40 to 60% by weight, based on the total weight.
  • the solid acid material includes a Bronsted acid, a Lewis acid, or a mixture thereof, and specifically, a Bronsted acid or a Lewis acid site is a solid material in which the solid acid is present.
  • the material may be zeolite, clay, silica-alumina-phosphate (SAPO), aluminum phosphate (ALPO), Metal Organic Framework (MOF), silica alumina, or a mixture thereof.
  • the solid acid material is a solid material having a site that can give H + (Bronsted acid) or receive a lone pair of electrons (Lewis acid), and it is possible to induce various reactions such as cracking, alkylation and neutralization depending on the energy at the acid site .
  • a catalytic conversion reaction for converting Cl to HCl may be performed by activating the solid acid material under specific process conditions.
  • waste zeolite, waste clay, etc. which are being discarded after use in a petrochemical process can be utilized as it is or through simple treatment for further improvement of activity.
  • a fluidized bed catalyst is used in the RFCC process of converting resid to light/middle distillate.
  • E-Cat Equilibrium Cat.
  • RFCC E-Cat can be used as the solid acid material of the present invention, and the RFCC E-Cat is zeolite 30-50 wt%, clay 40-60 wt% and other materials (Alumina Gel, Silica Gel, Functional material, etc.) 0 It may consist of ⁇ 30 wt%.
  • a simple treatment may be required to use the waste zeolite, waste clay, etc. as a solid acid material in the process of the present invention. If a material such as coke or oil physically blocks the active point of the solid acid material, it may be removed and used. have. To remove coke, air burning can be carried out, or solvent can be used to remove oil. If necessary, if the metal component affects the active point of the solid acid material and is deactivated, the DeMet Process can be applied to remove the metal component by medium temperature treatment with a weak acid or diluted hydrogen peroxide.
  • the solid acid material may further include a carrier or binder comprising carbon, alkaline earth metal oxide, alkali metal oxide, alumina, silica, silica-alumina, zirconia, titania, silicon carbide, niobia, aluminum phosphate or a mixture thereof.
  • a carrier or binder comprising carbon, alkaline earth metal oxide, alkali metal oxide, alumina, silica, silica-alumina, zirconia, titania, silicon carbide, niobia, aluminum phosphate or a mixture thereof.
  • the solid acid material may be included in an amount of 5 to 10 wt%, preferably 7 to 10 wt%, more preferably 8 to 10 wt%, based on the total weight of the mixture.
  • the amount of the solid acid material introduced increases within the above range, the Cl removal effect is improved, and when it is 10 wt% or less, it is preferable to suppress the cracking reaction in the oil.
  • the mixture is reacted at a pressure of 1 bar or more and 100 bar or less in an inert gas atmosphere to remove chlorine.
  • the chlorine removal reaction in the fraction containing high chlorine content is expected in two directions.
  • One is that chlorine in the hydrocarbon structure is converted to HCl by a reaction by the active site of a solid acid catalyst, and then HCl or some organic Cl It is expected to be converted to and discharged, and the other reaction is expected to be removed by bonding directly to the active point of the solid acid material.
  • the waste oil is cracked and easily removed in the form of organic-Cl.
  • the product loss is large and the content of the olefin component contained in the waste oil may increase due to the increase in gas generation.
  • Cracking reaction can also be induced in the Cl removal reaction of the present invention.
  • the reaction proceeds at a low temperature of greater than 280°C and less than 380°C compared to general cracking conditions of 530°C or higher, and dealuminated zeolite is a main component, and E-cat., a weak acid material, is applied.
  • E-cat. a weak acid material
  • the reaction conditions may be a pressure of 1 bar or more and 100 bar or less in an inert gas atmosphere, and a temperature condition of 280° C. or more and 380° C. or less.
  • the process conditions may be performed under a pressure of N 2 1 to 100 bar, N 2 1 to 60 bar, or N 2 1 to 40 bar.
  • a catalytic pyrolysis reaction occurs, reducing the viscosity and molecular weight of the pyrolysis oil, and changing the composition of the oily product.
  • product loss occurs as Cl combines with olefin to form organic Cl that is removed.
  • the pressure exceeds 100 bar, it is not preferable because the operation of the reactor is difficult and the process cost is increased.
  • the process conditions may specifically be a temperature of more than 280 °C and less than 380 °C, a temperature of 290 ⁇ 360 °C, preferably a temperature of 290 ⁇ 340 °C, most preferably, it may be carried out at a temperature condition of 295 ⁇ 335 °C.
  • the temperature increases in the above temperature range, the Cl reduction effect increases, but in order to minimize the problem of liquid yield reduction due to the gas conversion of waste oil due to the increase of cracking reaction, it is necessary to adjust the catalyst content and reaction temperature/time do.
  • it is an appropriate treatment method for rapidly treating waste oil containing a high Cl content.
  • the removal rate of N, S and metal impurities also increases, so that a sweetening effect for introducing the refinery process can be expected.
  • step b) may be carried out in a fixed bed catalytic reactor or a batch reactor, but the present invention is not limited thereto.
  • a fluidized bed reactor can be used to produce a regenerated fraction, but in order to remove Cl from the waste fraction, the contact time between the catalyst and the fraction must be long. There is a disadvantage in that the efficiency of reducing impurities such as Cl is low compared to an infinite batch reactor.
  • Fixed bed reactors and continuous reactors are also advantageous in terms of catalyst contact time compared to fluidized bed reactors and have advantages in terms of ease of operation and securing safety compared to batch reactors.
  • a stirring operation when carrying out the Cl reduction reaction in a batch reactor (batch) 30-2000 rpm, preferably 200-1000 rpm, more preferably 300-7000 rpm and/or reaction time 0.1-48 h or 0.5-24 h, preferably is 1 to 12 h or 2 to 12 h, more preferably 3 to 5 h may be a stirring operation.
  • LHSV 0.1 to 10 hr -1 preferably 0.3 to 5 hr -1 , more preferably 1-3 hr -1 and/or GOR (Gas over Oil ratio) 50 to 2000, good may be driving at 200 to 1000, better still at 350 to 700.
  • the chlorine-free fraction is recovered by separating a mixture of the chlorine-removed fraction and the solid acid material.
  • the step of regenerating the separated waste solid acid material may be further performed, for example, the used solid acid material is put in a kiln, and the air atmosphere is 400 to 700 ° C., preferably 500 to 600 ° C. for 2 to 4 hours. It may be heat-treated during, but the present invention is not limited thereto.
  • step of repeating steps a), b), and c) at least once or more may be further performed.
  • repeated treatment it is possible to limit the strict Cl content (1wppm level) allowed in the subsequent refinery process. It can prevent deterioration and product loss.
  • the chlorine-removed oil according to an embodiment of the present invention is characterized in that the following relational expression 1 is satisfied.
  • A is the weight % of the component at a boiling point of 150° C. or higher with respect to the total weight of the waste oil component
  • B is the weight percent of the component at bp 150° C. or higher with respect to the total weight of the oil from which the chlorine is removed.
  • the B/A may be, for example, 0.9 to 1.1 or 0.95 to 1.05. Also, for example, it may be 0.85 to 1.15, 0.85 to 1.1, or 0.85 to 1.0.5. Also, for example, it may be 0.90 to 1.15 or 0.95 to 1.15.
  • the chlorine content of the chlorine-removed oil may be less than 10 ppm, specifically 8 ppm or less, 6 ppm or less, preferably 1 to 5 ppm or 1 to 4 ppm.
  • organic Cl generated through the combination of Cl generated by the breakdown of the olefin and C-Cl bond with the generated olefin by suppressing the cracking reaction and inducing a mild cracking reaction rather than an excessive cracking reaction is a solid acid. It can be debonded to the acid sites of the material, or it can be released as a gas. In addition, it may be externally discharged in the form of HCl through HCl conversion.
  • the chlorine-removed oil contains 5 to 60% by weight of components less than 150° C. bp based on the total weight, for example, 5 to 55% by weight, 5 to 50% by weight, 5 to 45% by weight, 5 to 40 Weight %, 5 to 35% by weight, 5 to 30% by weight, 5 to 25% by weight, 5 to 20% by weight or 5 to 15% by weight may be included. Also for example 10 to 60% by weight, 15 to 60% by weight, 20 to 60% by weight, 25 to 60% by weight, 30 to 60% by weight, 35 to 60% by weight, 40 to 60% by weight, 45 to 60% by weight % or 50 to 60% by weight.
  • the chlorine-removed oil may include a bp 150°C to 265°C component in an amount of 10 to 45% by weight, for example, 10 to 40% by weight or 10 to 35% by weight, based on the total weight.
  • the chlorine-removed oil contains 10 to 35% by weight, for example, 10 to 30% by weight, 10 to 29% by weight, 11 to 28% by weight, 12 to bp 265°C to 340°C component based on the total weight. 27% by weight, 13 to 26% by weight, 14 to 26% by weight or 15 to 25% by weight may be included.
  • the dechlorinated oil contains 20 to 60% by weight, for example, 20 to 55% by weight, 20 to 50% by weight, 20 to 45% by weight, or 25 to 40% by weight of components having a bp higher than 340°C with respect to the total weight. % can be included.
  • the weight ratio of chlorine of the chlorine-removed fraction to the chlorine of the waste fraction is 0.01 to 0.5, for example, 0.01 to 0.4, 0.01 to 0.3, or 0.01 to 0.2. preferably 0.01 to 0.1, more preferably 0.01 to 0.09, 0.01 to 0.08, 0.01 to 0.07, 0.01 to 0.06 or 0.01 to 0.05.
  • the Fe content may be less than 10 ppm, preferably 7 ppm or less, or 5 ppm or less, more preferably 3 ppm or less, and the Na content less than 10 ppm, preferably 7 ppm or less, based on the total weight of the oil from which the chlorine has been removed, or 5 ppm or less, more preferably 3 ppm or less, Ca content less than 5 ppm, preferably 3 ppm or less or 1 ppm or less, more preferably 0.5 ppm or less or 0.3 ppm or less, Al content less than 3 ppm, preferably 1 ppm or less or 0.5 ppm or less, more preferably 0.3 ppm or less or 0.1 ppm or less.
  • the weight ratio of Fe of the chlorine-removed fraction to Fe of the waste oil may be 0.1 to 0.7, for example, 0.1 to 0.6, preferably 0.5 or less, and the chlorine to Na of the waste oil is removed.
  • the weight ratio of Na in the oil may be 0.1 to 0.7, for example, 0.1 to 0.5, preferably 0.45 or less
  • the weight ratio of Ca of the dechlorinated oil to Ca of the waste oil is 0.1 to 0.8, for example 0.2 to 0.7, preferably 0.6 or less
  • a weight ratio of Al of the chlorine-removed fraction to Al of the waste fraction may be 0.1 to 0.7, for example 0.1 to 0.5, preferably 0.4 or less.
  • the N content may be less than 300 ppm, preferably 250 ppm or less, or 200 ppm or less, more preferably 170 ppm or less, S content less than 20 ppm, preferably 19 ppm or less, or It may be 18 ppm or less, more preferably 17 ppm or less, and the O content may be less than 0.2 wt%, preferably 0.15 wt% or less or 0.1 wt% or less, even more preferably less than 0.1 wt%.
  • the weight ratio of N of the chlorine-removed oil to N of the waste oil may be 0.1 to 0.7, for example, 0.1 to 0.6, preferably 0.5 or less, and the chlorine-removed S to S of the waste oil.
  • the weight ratio of S of the oil component may be less than 1, for example, 0.1 to 0.9, preferably 0.8 or less, and the weight ratio of O of the dechlorinated oil to O of the waste oil is less than 1, for example, 0.1 to 0.9. , preferably 0.8 or less, 0.7 or less, 0.6 or less, or 0.5 or less.
  • Waste oil (plastic pyrolysis oil) converted through pyrolysis of plastic waste was recovered and used as a raw material for Cl removal reaction.
  • GC-Simdis analysis HT 750
  • Impurities were analyzed for Cl, S, N, O, Fe, Ca, Na, Al, Si, P, etc., and for this purpose, ICP, TNS, EA-O, and XRF analysis were performed.
  • GC-MSD analysis was performed to analyze the olefin content.
  • Example 1 Since the pyrolysis-induced solid phase of Example 1 was maintained in an oven at 70° C. for 3 hours or more, it was converted into a liquid phase and used.
  • RFCC E-cat. was used for the solid acid material used to reduce impurities including Cl.
  • the physical properties of the RFCC E-cat. used were confirmed as shown in Tables 3 and 4 below.
  • Type TSA (m 2 /g) ZSA (m 2 /g) MSA (m 2 /g) Z/M Ratio PV (cc/g) APD ( ⁇ ) RFCC E-cat. 122 36 86 0.42 0.20 67
  • TSA is the total specific surface area
  • ZSA is the zeolite specific surface area
  • MSA is the mesoporous specific surface area
  • Z/M is the ratio of the zeolite specific surface area (ZSA) to the mesoporous specific surface area (MSA)
  • PV is the pore Volume
  • APD is the mean pore size.
  • RFCC E-cat. a catalyst having a total specific surface area of 112 m 2 /g, a pore volume of 0.20 cc/g, and an average particle size of 79 ⁇ m was used.
  • Example 3-1 In order to confirm the Cl reduction characteristics of the solid acid catalyst, the Cl reduction tendency with time was confirmed under the operating conditions of 330°C, where the composition difference derived in Example 3-1 was small and the Cl reduction efficiency was high.
  • Other reaction parameters such as catalyst amount and stirring speed, and the analysis method were carried out under the same conditions as in Example 2-1. And the analysis results are shown in Tables 8 to 10 and FIGS. 6 to 10 below.
  • Example 2-1 In order to check whether it is possible to remove metal impurities such as Fe, Na, Ca in addition to impurities such as Cl, N, S, O, etc., the sample recovered under the operating conditions of 330 ° C. of Example 2-1 with no composition change and high Cl reduction efficiency Metal impurity analysis was carried out for It was confirmed that more than 60% of Fe, Na, Ca, and Al were simultaneously removed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

The present invention relates to a technology for removing 90% or more of chlorine by subjecting oil fractions high in Cl to a high-temperature heat treatment using a solid acid catalyst. The oil fractions from which Cl has been removed can be introduced into the refinery process and converted into fuel or chemical products. In the present invention, chlorine can be removed through heat treatment at high temperature after mixing the solid acid catalyst and the oil fractions high in Cl content. In the process of removing Cl, simultaneously removed are major impurities, such as S, N, and O, as well as Na, Ca, Fe, and the like, which can act as catalyst poisons in catalytic reactions of a refinery process. In the process of removing Cl from oil fractions high in Cl by using the solid acid material, the effect of removing Cl, N, S, O, and metal impurities can be enhanced through a high-temperature treatment. The present invention enables, through a simple treatment, solid acid wastes (spent zeolite, clay waste, etc.) discarded after being used in petrochemical processes to be usable as a solid acid catalyst material for Cl removal, and thus is environmentally advantageous.

Description

고체산 물질을 이용한 고함량 염소 함유 폐유분의 염소 제거방법Chlorine removal method for waste oil containing high chlorine content using solid acid
본 발명은 고체산 물질을 이용한 고함량 염소 함유 폐유분의 염소 제거방법에 관한 것이다.The present invention relates to a method for removing chlorine from waste oil containing high chlorine content using a solid acid material.
폐플라스틱 열분해유 등 폐물질의 Cracking, Pyrolysis 반응을 통해 생성된 유분(폐유분) 내에는 폐물질에서 기인한 다량의 불순물을 포함하므로, 이를 연료로 활용 시 SOx, NOx 등의 대기 오염 물질 배출 우려가 있으며, 특히 Cl 성분은 고온 처리 과정에서 장치 부식 유발 우려가 있는 HCl로 전환되어 배출되는 문제가 있다.The oil (waste oil) generated through the cracking and pyrolysis reaction of waste materials such as waste plastic pyrolysis oil contains a large amount of impurities from waste materials. In particular, there is a problem in that the Cl component is converted into HCl that may cause corrosion of the device during high-temperature treatment and is discharged.
종래에는 Refinery 기술을 활용한 Hydrotreating(HDT) 공정을 통해 Cl을 HCl로 전환하여 제거하였으나, 폐플라스틱 열분해유 등의 폐유분은 고함량의 Cl을 포함하기 때문에 HDT 공정에서 형성되는 과량의 HCl 발생으로 장비 부식 및 반응 이상, 제품 성상 악화의 문제가 보고되고 있으며, 전처리하지 않은 폐유분을 HDT 공정에 도입하는 것은 어렵다. 기존 Refinery 공정 활용하여 Cl 유분을 제거하기 위해서는, Refinery 공정 도입 가능한 수준으로 Cl 함량(Cl 수 ppm)을 저감하는 폐유분의 Cl 저감 처리 기술이 필요하다.In the past, Cl was converted to HCl and removed through the hydrotreating (HDT) process using refinery technology, but waste oil such as waste plastic pyrolysis oil contains a high content of Cl. Problems of equipment corrosion and reaction abnormalities and deterioration of product properties have been reported, and it is difficult to introduce waste oil that has not been pretreated into the HDT process. In order to remove the Cl content by utilizing the existing refinery process, a Cl reduction treatment technology of the waste oil that reduces the Cl content (number of Cl ppm) to a level that can be introduced into the refinery process is required.
선행기술 1(일본공개특허 1999-504672 A)은 폐고무 및/또는 폐플라스틱 재료로부터 가솔린, 디젤 엔진유 및 카본블랙의 제조방법에 관한 것이다. 구체적으로 폐고무 및 폐플라스틱을 열분해한 열분해유의 1차 불순물 제거 공정으로 KOH, NaOH 등의 염기 물질을 활용하여 Cl, N, 및 S 등을 결합제거하고, 2차 촉매 크래킹 공정(Catalytic Cracking)에서 열분해유의 크래킹과 동시에 Cl, N, 및 S 제거하는 것을 포함하고, 이후 Cracked 유분을 분리하여 최종 제품을 제조하는 것을 특징으로 한다. 그러나, 1차 불순물 제거 공정에서 중화에 의해 Cl 저감을 하는데 (KOH, NaOH 등의 염기물질 사용) 이러한 중화 결합제거 반응은 염기물질의 단위 중량 당 Cl 제거 효율이 높지 않아서 Refinery 공정 도입 가능한 수준으로 저함량 Cl 유분(Cl 수 ppm)을 제조하기 어렵다. 또한, 촉매의 사용주기가 짧고 사용된 (중화 촉매) 물질을 재생하는 공정이 복잡하므로 공정 간소화 측면에서 바람직하지 않다.Prior art 1 (Japanese Laid-Open Patent Publication No. 1999-504672 A) relates to a method for producing gasoline, diesel engine oil and carbon black from waste rubber and/or waste plastic materials. Specifically, in the primary impurity removal process of pyrolysis oil obtained by thermal decomposition of waste rubber and waste plastic, Cl, N, and S are removed by using basic substances such as KOH and NaOH, and in the secondary catalytic cracking process (Catalytic Cracking) It includes removing Cl, N, and S at the same time as cracking of the pyrolysis oil, and then separating the cracked oil to prepare a final product. However, in the primary impurity removal process, Cl is reduced by neutralization (using a base material such as KOH or NaOH). This neutralization debonding reaction does not have a high Cl removal efficiency per unit weight of the base material, so the content is low enough to be introduced into the refinery process. It is difficult to prepare a Cl fraction (Cl number ppm). In addition, since the use cycle of the catalyst is short and the process of regenerating the used (neutralization catalyst) material is complicated, it is not preferable in terms of process simplification.
선행기술 2(일본등록특허 4218857 B2)는 염소 화합물 제거제에 관한 것이다. 구체적으로 염소화합물이 포함된 유체를 산화 아연, 탈크 등의 클레이류 염소 제거제를 이용하여 Cl을 흡착 제거하는 것으로, 상기 흡착 제거는 결합에 의한 Cl 제거이고, Cl 제거제에 결합된 Cl이 탈리되지 않는 것을 특징으로 한다. 그러나, 선행기술 2는 액상 탄화수소 중의 염소 화합물 제거 성능 평가 시험에 기재된 바와 같이 염소 화합물의 함량이 10 ppm 미만인 저함량 Cl 함유 유분을 원료물질로 사용하며 이와 같이 일반적으로 흡착제를 이용한 Cl 제거 기술은 미량의 Cl을 장시간 흡착하기에 적절하다. 따라서, 고함량 Cl을 함유하는 폐유분에 흡착 기술을 적용하는 것은 효과적이지 않다.Prior Art 2 (Japanese Patent No. 4218857 B2) relates to a chlorine compound remover. Specifically, Cl is adsorbed and removed from a fluid containing chlorine compounds by using a clay chlorine remover such as zinc oxide or talc. characterized in that However, in Prior Art 2, as described in the evaluation test of the chlorine compound removal performance in liquid hydrocarbons, a low Cl-containing oil having a chlorine compound content of less than 10 ppm is used as a raw material. It is suitable for adsorbing Cl for a long time. Therefore, it is not effective to apply the adsorption technique to the waste stream containing a high Cl content.
선행기술 3(일본공개특허 2019-532118 A)은 탈휘 압출 및 염화물 소거제를 이용한 혼합 플라스틱 열분해유 탈염소 방법에 관한 것이다. 구체적으로 유동층 촉매를 활용한 Pyrolysis 반응을 통해, 플라스틱 또는 플라스틱 열분해 유분을 bp < 370℃의 Mild 유분으로 전환하며 Cl을 제거하는 것을 특징으로 한다. 그러나, Pyrolysis 반응과 동시에 Cl을 제거하는 경우 주로 올레핀과 Cl이 결합한 organic Cl 형태로 전환 후 고체산점에 결합 또는 Gas 배출을 통해 제거되는 것으로서, 동시에 수분이 발생되어 장비 부식 및 반응 이상, 제품 성상 악화, 제품 loss 문제가 있다.Prior Art 3 (Japanese Patent Application Laid-Open No. 2019-532118 A) relates to a method of dechlorination of mixed plastic pyrolysis oil using devolatilization extrusion and a chloride scavenger. Specifically, it is characterized in that, through a pyrolysis reaction using a fluidized bed catalyst, a plastic or plastic pyrolysis fraction is converted into a mild fraction of bp < 370° C. and Cl is removed. However, when Cl is removed at the same time as the pyrolysis reaction, it is mainly converted to organic Cl in which olefin and Cl are combined and then combined with a solid acid point or removed through gas release. , there is a product loss problem.
따라서, 고함량으로 Cl을 함유하는 폐유분을, Refinery 공정 도입 가능한 수준의 Cl 함량(Cl 수 ppm)으로 저감하는 폐유분의 Cl 저감 처리 기술이 요구되며, 이때, 해당 기술을 적용하는 공정에서는 장비 부식 및 반응 이상, 제품 성상 악화의 문제가 최소화되어야 한다.Therefore, there is a need for a Cl reduction treatment technology of waste oil that reduces the waste oil containing Cl at a high content to a level that can be introduced into the refinery process (the number of Cl ppm). Corrosion, reaction abnormalities, and deterioration of product properties should be minimized.
본 발명은 고함량 Cl 함유 폐유분에 대하여 Refinery 공정 적용에 의한 고부가화(연료, Chemical 전환)를 위해서, 고체산 물질을 활용한 고함량 Cl 함유 폐유분의 Cl 저감 기술을 제공하고자 한다.An object of the present invention is to provide a Cl reduction technology of high Cl-containing waste oil using a solid acid material for high addition (fuel, chemical conversion) by applying a refinery process to high Cl-containing waste oil.
구체적으로, 폐플라스틱 열분해를 통해 회수된 고함량 Cl 함유 열분해유에 대해서, 고체산 물질을 활용한 Cl 촉매전환반응을 통해 90 wt% 이상의 Cl을 제거하여 Refinery 공정 도입 가능 수준의 Cl 유분으로 전환하는 기술을 제공하고자 한다.Specifically, technology for converting pyrolysis oil containing high Cl content recovered through pyrolysis of waste plastics to a level of Cl content that can be introduced into the refinery process by removing 90 wt% or more of Cl through Cl catalytic conversion reaction using solid acid materials would like to provide
본 발명의 일 구현예는 a) 염소 함유 폐유분과 고체산 물질의 혼합물을 제조하는 단계; b) 상기 혼합물을 비활성 기체 분위기의 1bar 이상 100bar 이하의 압력에서 반응시켜 염소를 제거하는 단계; 및 c) 상기 염소가 제거된 유분과 고체산 물질의 혼합물을 분리하여 염소가 제거된 유분을 회수하는 단계;를 포함하고, 상기 폐유분은 총 중량에 대하여 bp(boiling point) 150℃ 이상 성분을 50 중량% 이하로 포함하고, 하기 관계식 1을 만족하는 것을 특징으로 하는, 폐유분의 염소 제거방법을 제공한다.One embodiment of the present invention comprises the steps of: a) preparing a mixture of a chlorine-containing waste oil and a solid acid material; b) removing chlorine by reacting the mixture at a pressure of 1 bar or more and 100 bar or less in an inert gas atmosphere; And c) recovering the chlorine-removed fraction by separating the mixture of the chlorine-removed fraction and the solid acid material; It contains 50 wt% or less, and provides a method for removing chlorine from waste oil, characterized in that it satisfies the following relation (1).
[관계식 1][Relational Expression 1]
0.85 < B/A < 1.150.85 < B/A < 1.15
관계식 1에서, A는 상기 폐유분의 총 중량에 대한 bp(boiling point) 150℃ 이상 성분의 중량%이고, B는 상기 염소가 제거된 유분의 총 중량에 대한 bp 150℃ 이상 성분의 중량%이다.In Relation 1, A is the weight% of the component at a boiling point of 150°C or higher with respect to the total weight of the waste oil component, and B is the weight% of the component at a bp level of 150°C or higher with respect to the total weight of the oil from which the chlorine has been removed. .
상기 폐유분은 폐플라스틱 열분해유, 바이오매스(biomass) 열분해유, 재생 윤활유, 고함량 염소 함유 원유(crude oil) 또는 이들의 혼합물을 포함할 수 있다.The waste oil may include waste plastic pyrolysis oil, biomass pyrolysis oil, regenerated lubricating oil, high chlorine content crude oil, or a mixture thereof.
상기 폐유분의 염소 함량은 10 ppm 이상일 수 있다.The chlorine content of the waste oil may be 10 ppm or more.
상기 고체산 물질은 제올라이트(zeolite), 클레이(clay), SAPO(silica-alumina-phosphate), ALPO(aluminum phosphate), MOF(Metal Organic Framework), 실리카알루미나 또는 이들의 혼합물일 수 있다.The solid acid material may be zeolite, clay, SAPO (silica-alumina-phosphate), ALPO (aluminum phosphate), MOF (Metal Organic Framework), silica alumina, or a mixture thereof.
상기 a) 단계에서 고체산 물질은 상기 혼합물 총 중량에 대하여 5 내지 10 중량%로 포함될 수 있다.In step a), the solid acid material may be included in an amount of 5 to 10% by weight based on the total weight of the mixture.
상기 b) 단계의 반응은, 상기 폐유분에 함유된 염소가 상기 고체산 물질의 활성점에 직접 결합 제거 및/또는 활성점에서 염산(HCl)으로 전환 제거되는 촉매전환반응일 수 있다.The reaction of step b) may be a catalytic conversion reaction in which chlorine contained in the waste oil is removed from direct bonding to and/or converted to hydrochloric acid (HCl) at the active point of the solid acid material.
상기 b) 단계의 반응은 280℃ 초과 380℃ 미만의 온도에서 진행되는 것일 수 있다.The reaction of step b) may be carried out at a temperature of more than 280 °C and less than 380 °C.
상기 폐유분의 염소 제거방법은 d) 상기 a), b), 및 c) 단계를 적어도 1회 이상 반복하는 단계를 더 포함할 수 있다.The chlorine removal method of the waste oil may further include d) repeating steps a), b), and c) at least once or more.
상기 염소가 제거된 유분의 염소 함량은 10 ppm 미만일 수 있다.The chlorine content of the chlorine-removed oil may be less than 10 ppm.
상기 폐유분의 염소에 대한 상기 염소가 제거된 유분의 염소의 중량비가 0.01 내지 0.1일 수 있다.A weight ratio of chlorine in the chlorine-removed fraction to chlorine in the waste fraction may be 0.01 to 0.1.
고함량 Cl 함유 유분에 대해, 90 wt% 이상의 Cl을 제거하여 Refinery 공정 도입 가능 수준의 Cl 유분으로 전환할 수 있다.For the high Cl-containing fraction, 90 wt% or more of Cl can be removed to convert the fraction to a Cl fraction that can be introduced into the refinery process.
유분 내 Cl 제거뿐만 아니라 N, S 등의 대기오염 물질을 유발하는 불순물 및 As, Na, Ca 등의 Refinery 공정 촉매 활성에 악영향을 미치는 금속 성분을 동시에 제거할 수 있다.In addition to removing Cl in oil, impurities that cause air pollutants such as N and S and metal components that adversely affect the catalyst activity of the refinery process such as As, Na and Ca can be simultaneously removed.
석유화학공정에서 사용 후 폐기되는 폐 고체산 물질(폐 Zeolite, 폐 Clay 등)을 그대로 혹은 간단히 처리하여 Cl 제거용 고체산 물질로 사용할 수 있으므로 환경 측면에서 바람직하다.It is preferable from an environmental point of view because the waste solid acid material (waste zeolite, waste clay, etc.) that is discarded after use in the petrochemical process can be used as it is or simply treated as a solid acid material for Cl removal.
유분 성상의 실질적인 변화 없이 염소를 제거함에 따라 Oligomerization에 의한 제품 성상 악화 및 Cracking에 의한 제품 손실(loss)을 방지할 수 있다.As chlorine is removed without substantial change in oil properties, deterioration of product properties due to oligomerization and product loss due to cracking can be prevented.
도 1~2는 일 구현예에 따른 염소 제거 방법의 모식도,1-2 is a schematic diagram of a chlorine removal method according to an embodiment;
도 3~4는 반응 온도별 잔여 N 함량 및 잔여 S 함량을 나타낸 그래프,3 to 4 are graphs showing the residual N content and the residual S content by reaction temperature;
도 5는 반응 온도별 유분 조성 변화를 나타낸 그래프,5 is a graph showing changes in oil composition according to reaction temperature;
도 6~7은 반응 시간별 잔여 Cl 함량 및 Cl 저감율을 나타낸 그래프,6 to 7 are graphs showing the residual Cl content and Cl reduction rate by reaction time;
도 8~9는 반응 시간별 잔여 N 함량 및 잔여 S 함량을 나타낸 그래프,8 to 9 are graphs showing the residual N content and the residual S content by reaction time;
도 10은 반응 시간별 유분 조성 변화를 나타낸 그래프,10 is a graph showing changes in oil composition according to reaction time;
도 11~12는 촉매량별 잔여 Cl 함량 및 Cl 저감율을 나타낸 그래프,11 to 12 are graphs showing the residual Cl content and Cl reduction rate by catalyst amount;
도 13~14는 촉매량별 잔여 N 함량 및 잔여 S 함량을 나타낸 그래프,13 to 14 are graphs showing the residual N content and the residual S content by catalyst amount;
도 15는 촉매량별 유분 조성 변화를 나타낸 그래프이다.15 is a graph showing changes in oil composition by catalyst amount.
다른 정의가 없다면 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다.Unless otherwise defined, all terms (including technical and scientific terms) used in this specification may be used with meanings commonly understood by those of ordinary skill in the art to which the present invention belongs. In the entire specification, when a part "includes" a certain component, this means that other components may be further included, rather than excluding other components, unless otherwise stated. The singular also includes the plural, unless the phrase specifically states otherwise.
본 명세서에서 "A 내지 B"란 특별히 다른 정의가 없는 한 "A 이상 B 이하"를 의미한다.In the present specification, "A to B" means "A or more and B or less" unless otherwise defined.
또한 "A 및/또는 B"란 특별히 다른 정의가 없는 한, A 및 B로 이루어진 군에서 선택되는 적어도 하나를 의미한다.In addition, "A and/or B" means at least one selected from the group consisting of A and B, unless otherwise defined.
본 명세서에서 다른 정의가 없다면 폐유분 및 염소가 제거된 유분의 bp(boiling point)는 상압(1atm)에서 측정된 것을 의미한다.Unless otherwise defined herein, the bp (boiling point) of the waste oil and the chlorine-removed oil means measured at atmospheric pressure (1 atm).
본 발명의 일 구현예에 따르면 폐유분의 염소 제거방법을 제공한다. 상기 방법은 a) 염소 함유 폐유분과 고체산 물질의 혼합물을 제조하는 단계; b) 상기 혼합물을 비활성 기체 분위기의 1bar 이상 100bar 이하의 압력에서 반응시켜 염소를 제거하는 단계; 및 c) 상기 염소가 제거된 유분과 고체산 물질의 혼합물을 분리하여 염소가 제거된 유분을 회수하는 단계;를 포함하고, 상기 폐유분은 총 중량에 대하여 bp(boiling point) 150℃ 미만 성분을 5 내지 50 중량%로 포함하고, 하기 관계식 1을 만족하는 것을 특징으로 한다.According to one embodiment of the present invention, there is provided a method for removing chlorine from waste oil. The method comprises the steps of: a) preparing a mixture of a chlorine-containing waste oil and a solid acid material; b) removing chlorine by reacting the mixture at a pressure of 1 bar or more and 100 bar or less in an inert gas atmosphere; and c) recovering the chlorine-removed fraction by separating the mixture of the chlorine-removed fraction and the solid acid material; It contains 5 to 50% by weight, and it is characterized in that the following relation 1 is satisfied.
[관계식 1][Relational Expression 1]
0.85 < B/A < 1.150.85 < B/A < 1.15
관계식 1에서, A는 상기 폐유분의 총 중량에 대한 bp(boiling point) 150℃ 이상 성분의 중량%이고, B는 상기 염소가 제거된 유분의 총 중량에 대한 bp 150℃ 이상 성분의 중량%이다.In Relation 1, A is the weight% of the component at a boiling point of 150°C or higher with respect to the total weight of the waste oil component, and B is the weight% of the component at a bp level of 150°C or higher with respect to the total weight of the oil from which the chlorine has been removed. .
본 발명에서는 고함량 Cl 함유 폐유분에 대하여 Refinery 공정 적용에 의한 고부가화(연료, Chemical 전환)를 위해서, 고체산 물질을 활용한 고함량 Cl 함유 폐유분의 Cl 저감 기술을 제공할 수 있다.In the present invention, it is possible to provide a Cl reduction technology for high Cl-containing waste oil using a solid acid material for high addition (fuel, chemical conversion) by applying a refinery process to high Cl-containing waste oil.
상기 폐유분의 염소 제거방법은 먼저, a) 염소 함유 폐유분과 고체산 물질의 혼합물을 제조한다.In the method for removing chlorine from waste oil, a) a mixture of chlorine-containing waste oil and solid acid is prepared.
상기 폐유분은 폐플라스틱 열분해유, 바이오매스(biomass) 열분해유, 재생 윤활유, 고함량 염소 함유 원유(crude oil) 또는 이들의 혼합물을 포함할 수 있다. 폐플라스틱 열분해유 등 폐물질의 Cracking, Pyrolysis 반응을 통해 생성된 폐유분 내에는 폐물질에서 기인한 다량의 불순물을 포함하므로, 이를 활용시 대기오염물질 배출의 우려가 있고, 특히 Cl 성분은 고온 산화 과정에서 HCl로 전환되어 배출되는 문제가 있으므로, 폐유분을 전처리하여 불순물을 제거할 필요가 있다.The waste oil may include waste plastic pyrolysis oil, biomass pyrolysis oil, regenerated lubricating oil, high chlorine content crude oil, or a mixture thereof. The waste oil generated through cracking and pyrolysis of waste materials such as waste plastic pyrolysis oil contains a large amount of impurities derived from waste materials, so there is a risk of air pollutant emission when using it. Since there is a problem of being converted to HCl and discharged during the process, it is necessary to pre-treat waste oil to remove impurities.
상기 폐유분 내 염소는 Inorganic Cl, organic Cl 또는 이들의 조합일 수 있으며, 폐유분 내 염소의 함량은 10 ppm 이상, 20 ppm 이상일 수 있다. 한편, 폐유분 내 염소의 함량의 상한은 특별히 제한되는 것은 아니나, 예를 들어 600 ppm 이하, 좋게는 500 ppm 이하일 수 있다. 상기 고함량 Cl 함유 폐유분을 처리함으로써 Refinery 공정 도입 가능한 수준으로 Cl 함량(Cl 수 ppm)을 저감하는 폐유분의 Cl 저감 처리 기술이 요구된다.The chlorine in the waste oil may be organic Cl, organic Cl, or a combination thereof, and the chlorine content in the waste oil may be 10 ppm or more and 20 ppm or more. On the other hand, the upper limit of the content of chlorine in the waste oil is not particularly limited, but may be, for example, 600 ppm or less, preferably 500 ppm or less. There is a need for a Cl reduction treatment technology of waste oil that reduces the Cl content (number of Cl ppm) to a level that can be introduced into the refinery process by treating the high Cl-containing waste oil.
한편, 상기 폐유분 내 불순물은 연료 활용시 SOx, NOx 등의 배기오염물질 배출 우려가 있는 N, S 및 O와 Refinery 공정 촉매 활성에 악영향을 미치는 금속 성분으로 Fe, Na, Ca 및 Al 등을 포함할 수 있다. 구체적으로 N, S 및 O는 폐유분 총중량에 대하여 N 함량 100ppm 이상, 또는 500 내지 8,000 ppm, S 함량 10ppm 이상 또는 20 내지 1,000ppm, 및 O 함량 2,000ppm 이상 또는 3,000ppm 내지 3 wt%일 수 있고, Fe, Na, Ca 및 Al는 폐유분 총중량에 대하여 Fe 함량 1ppm 이상, 또는 1 내지 10 ppm, Na 함량 1ppm 이상, 또는 1 내지 10 ppm, Ca 함량 0.1 ppm 이상, 또는 0.1 내지 5 ppm 및 Al 함량 0.1ppm 이상, 또는 0.1 내지 5 ppm일 수 있다.On the other hand, impurities in the waste oil include N, S and O, which may emit exhaust pollutants such as SOx and NOx, and metal components that adversely affect the catalyst activity of the refinery process when using fuel, such as Fe, Na, Ca and Al. can do. Specifically, N, S and O may be 100 ppm or more, or 500 to 8,000 ppm, S content of 10 ppm or more, or 20 to 1,000 ppm, and O content of 2,000 ppm or more, or 3,000 ppm to 3 wt%, based on the total weight of the waste oil, , Fe, Na, Ca and Al are Fe content of 1 ppm or more, or 1 to 10 ppm, Na content 1 ppm or more, or 1 to 10 ppm, Ca content 0.1 ppm or more, or 0.1 to 5 ppm and Al content with respect to the total weight of the waste oil 0.1 ppm or more, or 0.1 to 5 ppm.
상기 폐유분은 총 중량에 대하여 bp 150℃ 미만 성분을 5 내지 50 중량%로 포함하고, 예를 들어 5 내지 45 중량%, 5 내지 40 중량%, 5 내지 35 중량%, 5 내지 30 중량%, 5 내지 25 중량%, 5 내지 20 중량% 또는 5 내지 15 중량%로 포함할 수 있다. 또한, 10 내지 50 중량%, 15 내지 50 중량%, 20 내지 50 중량%, 25 내지 50 중량%, 30 내지 50 중량%, 35 내지 50 중량% 또는 40 내지 50 중량%로 포함할 수 있다. 본 발명의 폐유분은 경질 유분의 함량이 높더라도 실질적으로 유분 성상 변화 없이 염소를 제거함에 따라 Oligomerization에 의한 제품 성상 악화 및 과도한 Cracking에 의한 제품 손실(loss)을 방지할 수 있다.The waste oil contains 5 to 50% by weight of components below 150° C. bp based on the total weight, for example, 5 to 45% by weight, 5 to 40% by weight, 5 to 35% by weight, 5 to 30% by weight, 5 to 25% by weight, 5 to 20% by weight or 5 to 15% by weight may be included. In addition, 10 to 50% by weight, 15 to 50% by weight, 20 to 50% by weight, 25 to 50% by weight, 30 to 50% by weight, 35 to 50% by weight or 40 to 50% by weight may be included. The waste oil of the present invention can prevent deterioration of product properties due to oligomerization and product loss due to excessive cracking by removing chlorine without substantially changing oil properties even when the content of light oil is high.
또한, 상기 폐유분은 총 중량에 대하여 bp 150℃ 내지 265℃ 성분을 10 내지 35 중량%, 예를 들어 10 내지 30 중량%, 10 내지 29 중량%, 11 내지 28 중량%, 12 내지 27 중량%, 13 내지 26 중량%, 14 내지 26 중량% 또는 15 내지 25 중량%로 포함할 수 있다. In addition, the waste oil contains 10 to 35% by weight, for example, 10 to 30% by weight, 10 to 29% by weight, 11 to 28% by weight, 12 to 27% by weight of the bp 150°C to 265°C component based on the total weight. , 13 to 26% by weight, 14 to 26% by weight or 15 to 25% by weight may be included.
또한, 상기 폐유분은 총 중량에 대하여 bp 265℃ 내지 340℃ 성분을 10 내지 35 중량%, 예를 들어 10 내지 30 중량%, 10 내지 29 중량%, 11 내지 28 중량%, 12 내지 27 중량%, 13 내지 26 중량%, 14 내지 26 중량% 또는 15 내지 25 중량%로 포함할 수 있다. In addition, the waste oil contains 10 to 35% by weight, for example, 10 to 30% by weight, 10 to 29% by weight, 11 to 28% by weight, 12 to 27% by weight of the bp component at 265°C to 340°C with respect to the total weight. , 13 to 26% by weight, 14 to 26% by weight or 15 to 25% by weight may be included.
또한, 상기 폐유분은 총 중량에 대하여 bp 340℃ 초과 성분을 20 내지 65 중량%, 예를 들어 25 내지 60 중량%, 25 내지 55 중량%, 25 내지 50 중량%, 30 내지 50 중량%, 32 내지 48 중량%, 35 내지 45 중량%로 포함할 수 있다. In addition, the waste oil contains 20 to 65% by weight, for example, 25 to 60% by weight, 25 to 55% by weight, 25 to 50% by weight, 30 to 50% by weight, 32 To 48% by weight, 35 to 45% by weight may be included.
또한, 상기 폐유분은 총 중량에 대하여, 올레핀 30~70 중량%, 좋게는 40~60 중량% 포함할 수 있다. 하기 서술한 바와 같이 본 발명의 고체산 물질을 이용하여 고온 운전 공정조건에서 열분해유 내 Cl을 제거함으로써, Cracking 반응 발생으로 평균 분자량이 소폭 낮아지는 현상이 분석된다. Cracking 과정에서 발생하는 olefin, 특히 반응성 높은 Light olefin의 생성으로 Cl과 결합하여 Organic Cl로 전환되어 고체산에 결합 또는 Gas로 외부 배출되거나, Cracking 과정에서 C- Cl 결합 붕괴로 Cl 제거 효과가 높아질 수 있으나, 제품 loss 및 제품 성상 악화의 문제가 있으므로 과도한 Cracking 반응은 바람직하지 않다.In addition, the waste oil may include 30 to 70% by weight of an olefin, preferably 40 to 60% by weight, based on the total weight. As described below, a phenomenon in which the average molecular weight is slightly lowered due to cracking reaction is analyzed by removing Cl in pyrolysis oil under high-temperature operation process conditions using the solid acid material of the present invention. Olefins generated in the cracking process, especially light olefins with high reactivity, are combined with Cl and converted to organic Cl, which can be combined with solid acids or discharged to the outside as gas. However, excessive cracking reaction is not desirable because there are problems of product loss and deterioration of product properties.
상기 고체산 물질은 브뢴스테드 산, 루이스 산 또는 이들의 혼합물을 포함하는 것으로서, 구체적으로 브뤤스테드 산(Bronsted acid) 또는 루이스 산 사이트(Lewis acid site)가 존재하는 고체 물질이며, 상기 고체산 물질은 제올라이트(zeolite), 클레이(clay), SAPO(silica-alumina-phosphate), ALPO(aluminum phosphate), MOF(Metal Organic Framework), 실리카알루미나 또는 이들의 혼합물일 수 있다.The solid acid material includes a Bronsted acid, a Lewis acid, or a mixture thereof, and specifically, a Bronsted acid or a Lewis acid site is a solid material in which the solid acid is present. The material may be zeolite, clay, silica-alumina-phosphate (SAPO), aluminum phosphate (ALPO), Metal Organic Framework (MOF), silica alumina, or a mixture thereof.
상기 고체산 물질은 H +을 주거나(Bronsted acid), 비공유 전자쌍을 받을 수 있는(Lewis acid) site를 가진 고체물질이며, Acid site에서 에너지에 따라 cracking, alkylation 및 neutralization 등의 다양한 반응유도가 가능하다. 본 발명에서는 특정 공정조건에서 상기 고체산 물질을 활성화함으로써 Cl을 HCl로 전환하는 촉매전환반응을 실시할 수 있다. The solid acid material is a solid material having a site that can give H + (Bronsted acid) or receive a lone pair of electrons (Lewis acid), and it is possible to induce various reactions such as cracking, alkylation and neutralization depending on the energy at the acid site . In the present invention, a catalytic conversion reaction for converting Cl to HCl may be performed by activating the solid acid material under specific process conditions.
상기 고체산 물질로는 석유화학공정에서 사용 후 폐기 중인 폐 제올라이트, 폐 클레이 등을 그대로 혹은 활성 추가 개선을 위한 간단한 처리를 거쳐서 활용이 가능하다.As the solid acid material, waste zeolite, waste clay, etc. which are being discarded after use in a petrochemical process can be utilized as it is or through simple treatment for further improvement of activity.
예를 들어 잔사유의 Light/Middle distillate로 전환하는 RFCC 공정에는 유동층 촉매가 사용되는데, RFCC 공정 전체 활성을 일정하게 유지하기 위해서 운전 중인 촉매 일정량을 매일 Fresh 촉매로 교체하며, 이때 교체된 촉매를 RFCC E-Cat(Equilibrium Cat.)으로 명명하고, 전량 폐기물 처리하고 있다. RFCC E-Cat을 본 발명의 고체산 물질로 활용할 수 있으며, 상기 RFCC E-Cat은 제올라이트 30~50 wt%, 클레이 40~60 wt% 및 기타 물질(Alumina Gel, Silica Gel, Functional material 등) 0~30 wt%로 구성될 수 있다. 이러한 RFCC E-Cat을 고함량 Cl 폐유분의 Cl 저감을 위한 고체산 물질로 사용함으로써 Fresh Cat 대비 Cracking 활성 차이가 적고, 환경보호 및 재사용을 통한 비용절감 측면에서 장점이 있다.For example, a fluidized bed catalyst is used in the RFCC process of converting resid to light/middle distillate. In order to keep the overall activity of the RFCC process constant, a certain amount of the catalyst in operation is replaced with a fresh catalyst every day. It is named E-Cat (Equilibrium Cat.), and all waste is being treated. RFCC E-Cat can be used as the solid acid material of the present invention, and the RFCC E-Cat is zeolite 30-50 wt%, clay 40-60 wt% and other materials (Alumina Gel, Silica Gel, Functional material, etc.) 0 It may consist of ~30 wt%. By using this RFCC E-Cat as a solid acid material for reducing Cl in waste oil with a high Cl content, there is little difference in cracking activity compared to Fresh Cat, and it has advantages in terms of environmental protection and cost reduction through reuse.
상기 폐 제올라이트, 폐 클레이 등을 본 발명의 공정의 고체산 물질로 사용하기 위해서 간단한 처리가 필요할 수 있는데, 고체산 물질의 활성점을 coke, oil 등과 같은 물질이 물리적으로 막고 있다면 이를 제거하여 사용할 수도 있다. Coke를 제거하기 위해서, Air burning을 진행하거나, oil 제거를 위해서 solvent로 처리할 수 있다. 필요에 따라 금속 성분이 고체산 물질의 활성점에 영향을 주어 비활성화시킨 경우, 약산 또는 묽은 과산화수소를 중온 처리하여 금속 성분을 제거하는 DeMet Process를 적용할 수 있다.A simple treatment may be required to use the waste zeolite, waste clay, etc. as a solid acid material in the process of the present invention. If a material such as coke or oil physically blocks the active point of the solid acid material, it may be removed and used. have. To remove coke, air burning can be carried out, or solvent can be used to remove oil. If necessary, if the metal component affects the active point of the solid acid material and is deactivated, the DeMet Process can be applied to remove the metal component by medium temperature treatment with a weak acid or diluted hydrogen peroxide.
상기 고체산 물질은, 카본, 알카리토금속산화물, 알칼리금속산화물, 알루미나, 실리카, 실리카-알루미나, 지르코니아, 티타니아, 실리콘 카바이드, 니오비아, 알루미늄 포스페이트 또는 이들의 혼합물을 포함하는 담체 또는 바인더를 더 포함할 수 있다.The solid acid material may further include a carrier or binder comprising carbon, alkaline earth metal oxide, alkali metal oxide, alumina, silica, silica-alumina, zirconia, titania, silicon carbide, niobia, aluminum phosphate or a mixture thereof. can
상기 a) 단계에서 고체산 물질은 상기 혼합물 총 중량에 대하여 5 내지 10 중량%로 포함될 수 있고, 좋게는 7 내지 10 중량%, 더 좋게는 8 내지 10 중량%로 포함될 수 있다. 상기 범위 내에서 고체산 물질 도입량이 증가할수록 Cl 제거 효과가 향상되고, 10 중량% 이하인 경우 유분 내 Cracking 반응을 억제할 수 있어 바람직하다.In step a), the solid acid material may be included in an amount of 5 to 10 wt%, preferably 7 to 10 wt%, more preferably 8 to 10 wt%, based on the total weight of the mixture. As the amount of the solid acid material introduced increases within the above range, the Cl removal effect is improved, and when it is 10 wt% or less, it is preferable to suppress the cracking reaction in the oil.
b) 상기 폐유분과 고체산 물질의 혼합물을 제조한 이후, 상기 혼합물을 비활성 기체 분위기의 1bar 이상 100bar 이하의 압력에서 반응시켜 염소를 제거한다.b) After preparing the mixture of the waste oil and the solid acid material, the mixture is reacted at a pressure of 1 bar or more and 100 bar or less in an inert gas atmosphere to remove chlorine.
고함량 염소가 포함된 유분 내에서 염소를 제거 반응은 크게 두 가지 방향으로 예상되는데, 하나는 탄화수소 구조 내의 염소가 고체산 촉매의 활성점에 의한 반응으로 HCl로 전환된 후, HCl 또는 일부 organic Cl로 전환 배출되거나, 다른 하나는 고체산 물질의 활성점에 직접 결합 제거되는 반응으로 예상된다. HDT(Hydrotreating) 공정에서 H 2 feeding에 의해 Cl을 제거하는 종래기술의 경우 폐유분이 Cracking되어 organic-Cl 형태로 제거되기 쉽다. 특히, 가스 발생이 많아지므로 제품 loss가 크고 폐유분에 포함된 olefin 성분의 함량이 증가할 수 있다는 점에서 좋지 않다. 본 발명의 Cl 제거 반응에서도 Cracking 반응이 유도될 수 있다. 그러나, 본 발명에서는 530℃ 이상의 일반 cracking 조건 대비 280℃ 초과 380℃ 미만의 낮은 온도에서 반응을 진행시키며, Dealuminated zeolite가 주요 성분으로 약산점 물질인 E-cat.을 적용하는 것을 특징으로 한다. 그 결과로서 Cracking 반응 자체를 억제할 수 있을 뿐만 아니라, gas와 같은 소단위 분자로 전환되기 보다는 Mild cracking으로 인한 Naphtha/Kero 수준의 중단위 Cracking을 선택적으로 생성시킴으로써 상술된 문제를 방지할 수 있다.The chlorine removal reaction in the fraction containing high chlorine content is expected in two directions. One is that chlorine in the hydrocarbon structure is converted to HCl by a reaction by the active site of a solid acid catalyst, and then HCl or some organic Cl It is expected to be converted to and discharged, and the other reaction is expected to be removed by bonding directly to the active point of the solid acid material. In the case of the prior art of removing Cl by H 2 feeding in the HDT (hydrotreating) process, the waste oil is cracked and easily removed in the form of organic-Cl. In particular, it is not good in that the product loss is large and the content of the olefin component contained in the waste oil may increase due to the increase in gas generation. Cracking reaction can also be induced in the Cl removal reaction of the present invention. However, in the present invention, the reaction proceeds at a low temperature of greater than 280°C and less than 380°C compared to general cracking conditions of 530°C or higher, and dealuminated zeolite is a main component, and E-cat., a weak acid material, is applied. As a result, not only can the cracking reaction itself be suppressed, but also the above-mentioned problems can be prevented by selectively generating mid-level cracking at the Naphtha/Kero level due to mild cracking rather than being converted into subunit molecules such as gas.
상기 반응조건은 비활성 기체 분위기의 1bar 이상 100bar 이하 압력, 및 280℃ 초과 380℃ 이하 온도 조건일 수 있다. 구체적으로 상기 공정조건은 N 2 1~100bar, N 2 1~60bar 또는 N 2 1~40bar의 압력조건에서 수행될 수 있다. 1bar 미만의 저진공 또는 고진공 조건에서 반응이 진행되는 경우 촉매 열분해 반응이 발생되어 열분해유의 점도 및 분자량이 감소되고 유분제품의 조성이 달라지게 된다. 특히, Cl이 olefin과 결합하여 제거되는 organic Cl을 형성함으로써 제품 loss가 발생된다. 반면에 압력이 100bar 초과인 경우 반응기 조작이 어렵고 공정 비용이 증가되므로 바람직하지 않다. The reaction conditions may be a pressure of 1 bar or more and 100 bar or less in an inert gas atmosphere, and a temperature condition of 280° C. or more and 380° C. or less. Specifically, the process conditions may be performed under a pressure of N 2 1 to 100 bar, N 2 1 to 60 bar, or N 2 1 to 40 bar. When the reaction is carried out under low or high vacuum conditions of less than 1 bar, a catalytic pyrolysis reaction occurs, reducing the viscosity and molecular weight of the pyrolysis oil, and changing the composition of the oily product. In particular, product loss occurs as Cl combines with olefin to form organic Cl that is removed. On the other hand, if the pressure exceeds 100 bar, it is not preferable because the operation of the reactor is difficult and the process cost is increased.
공정 조건이 반드시 N 2 등의 Inert condition에서 진행될 필요는 없으나, 운전 안정성 및 경제성 측면에서 Inert condition에서의 Cl 저감 운전이 유리하다. Air 조건에서도 유사한 Cl 저감 성능을 보이지만, 280℃ 초과 고온 운전 조건에서 leak가 발생할 경우, 화재 발생 우려가 높으며, H 2 조건에서는 Cl 저감 효율이 높아지지만, N 2 운전 대비 H 2 사용에 따른 경제성이 낮아지는 문제가 있다.Although the process conditions do not necessarily have to be performed in inert conditions such as N 2 , Cl reduction operation in inert conditions is advantageous in terms of operational stability and economic feasibility. If Air in but a similar Cl reduced performance condition, cause leak from 280 ℃ than the high temperature operating conditions, high in the fire concerned, the H 2 condition is economical according to, N 2 operating against H 2 used, but increases the Cl reduced efficiency There is a problem with lowering.
상기 공정조건은 구체적으로 280℃ 초과 380℃ 미만의 온도, 290~360℃의 온도일 수 있고, 좋게는 290~340℃의 온도, 가장 좋게는 295~335℃의 온도 조건에서 수행될 수 있다. 상술된 온도범위에서 온도가 증가할수록 Cl 저감 효과가 증대되나, Cracking 반응의 증가로 폐유분의 Gas류 전환에 따른 liquid 수율 감소 문제를 최소화하기 위해서, 촉매 함량과 반응온도/시간 등의 조율이 필요하다. 그러나 고함량 Cl을 함유하는 폐유분을 빠르게 처리하기에는 적절한 처리 방법이다. 그리고, 상기 수치범위에서 반응 온도 상승에 따라 N, S 및 금속 불순물의 제거율도 높아져서, Refinery 공정 도입을 위한 Sweetening 효과를 기대할 수 있다.The process conditions may specifically be a temperature of more than 280 ℃ and less than 380 ℃, a temperature of 290 ~ 360 ℃, preferably a temperature of 290 ~ 340 ℃, most preferably, it may be carried out at a temperature condition of 295 ~ 335 ℃. As the temperature increases in the above temperature range, the Cl reduction effect increases, but in order to minimize the problem of liquid yield reduction due to the gas conversion of waste oil due to the increase of cracking reaction, it is necessary to adjust the catalyst content and reaction temperature/time do. However, it is an appropriate treatment method for rapidly treating waste oil containing a high Cl content. And, as the reaction temperature rises in the above numerical range, the removal rate of N, S and metal impurities also increases, so that a sweetening effect for introducing the refinery process can be expected.
한편, 상기 b) 단계의 반응은 고정층 촉매 반응기(fixed bed) 또는 배치 반응기(batch)에서 실시될 수 있으나 본 발명이 이에 한정되는 것은 아니다. Meanwhile, the reaction of step b) may be carried out in a fixed bed catalytic reactor or a batch reactor, but the present invention is not limited thereto.
유동층 반응기를 사용하여 재생유분을 제조할 수 있으나, 폐유분 내 Cl 제거를 위해서는 촉매와 유분의 접촉 시간이 길어야 하는데, 접촉 시간이 수 초 이하로 매우 짧은 유동층 반응기는 촉매와 유분 사이의 접촉 시간이 무한대인 배치 반응기에 비해 Cl 등의 불순물 저감 효율이 낮은 단점이 있다. A fluidized bed reactor can be used to produce a regenerated fraction, but in order to remove Cl from the waste fraction, the contact time between the catalyst and the fraction must be long. There is a disadvantage in that the efficiency of reducing impurities such as Cl is low compared to an infinite batch reactor.
고정층 반응기 및 연속식 반응기 역시 유동층 반응기 대비 촉매 접촉 시간 측면에서 유리하고, 회분식 반응기 대비 운전 용이성 및 안전성 확보 측면에서 유리한 점이 있으나, Cl 제거 반응에 대한 낮은 장기 안정성 및 Cl 저감 효율이 낮은 단점이 있다. Fixed bed reactors and continuous reactors are also advantageous in terms of catalyst contact time compared to fluidized bed reactors and have advantages in terms of ease of operation and securing safety compared to batch reactors.
예를 들어, 회분식 반응기(batch)에서 Cl 저감 반응을 실시하는 경우 30~2000 rpm, 좋게는 200~1000 rpm, 더 좋게는 300~7000 rpm 및/또는 반응시간 0.1~48h 또는 0.5~24h, 좋게는 1~12h 또는 2~12h, 더 좋게는 3~5h으로 교반 운전하는 것일 수 있다.For example, when carrying out the Cl reduction reaction in a batch reactor (batch) 30-2000 rpm, preferably 200-1000 rpm, more preferably 300-7000 rpm and/or reaction time 0.1-48 h or 0.5-24 h, preferably is 1 to 12 h or 2 to 12 h, more preferably 3 to 5 h may be a stirring operation.
또한, 고정층 촉매 반응기에서 실시하는 경우 LHSV 0.1~10 hr -1, 좋게는 0.3~5 hr -1, 더 좋게는 1~3 hr -1 및/또는 GOR(Gas over Oil ratio) 50~2000, 좋게는 200~1000, 더 좋게는 350~700으로 운전하는 것일 수 있다. In addition, when carried out in a fixed bed catalytic reactor, LHSV 0.1 to 10 hr -1 , preferably 0.3 to 5 hr -1 , more preferably 1-3 hr -1 and/or GOR (Gas over Oil ratio) 50 to 2000, good may be driving at 200 to 1000, better still at 350 to 700.
c) 이어서, 상기 염소가 제거된 유분과 고체산 물질의 혼합물을 분리하여 염소가 제거된 유분을 회수한다.c) Then, the chlorine-free fraction is recovered by separating a mixture of the chlorine-removed fraction and the solid acid material.
상기 혼합물의 분리는 공지된 필터링, 여과 방법을 적용해도 무방하며, 본 발명이 이에 한정되는 것은 아니다. For separation of the mixture, well-known filtering and filtration methods may be applied, and the present invention is not limited thereto.
상기 분리된 폐 고체산 물질을 재생하는 단계를 더 진행할 수 있고, 예를 들어 사용된 고체산 물질을 소성로에 넣고, 공기분위기의 400~700℃, 좋게는 500~600℃의 온도에서 2~4hr 동안 열처리하는 것일 수 있으나, 본 발명이 이에 한정되는 것은 아니다.The step of regenerating the separated waste solid acid material may be further performed, for example, the used solid acid material is put in a kiln, and the air atmosphere is 400 to 700 ° C., preferably 500 to 600 ° C. for 2 to 4 hours. It may be heat-treated during, but the present invention is not limited thereto.
d) 이어서, 상기 a), b), 및 c) 단계를 적어도 1회 이상 반복하는 단계를 더 진행할 수 있다. 반복 처리를 통해 후속 Refinery 공정에서 허용되는 엄격한 기준의 Cl 함량(1wppm 수준)을 제한할 수 있으며, 과도한 Cracking 반응 자체를 억제하여 폐유분 조성의 평균 분자량 및/또는 점도를 유지시킴으로써 반응 이상, 제품 성상 악화 및 제품 loss를 방지할 수 있다.d) Subsequently, the step of repeating steps a), b), and c) at least once or more may be further performed. Through repeated treatment, it is possible to limit the strict Cl content (1wppm level) allowed in the subsequent refinery process. It can prevent deterioration and product loss.
본 발명의 일 구현예에 따른 상기 염소가 제거된 유분은, 하기 관계식 1을 만족하는 것을 특징으로 한다. The chlorine-removed oil according to an embodiment of the present invention is characterized in that the following relational expression 1 is satisfied.
[관계식 1][Relational Expression 1]
0.85 < B/A < 1.150.85 < B/A < 1.15
관계식 1에서, A는 상기 폐유분의 총 중량에 대한 bp(boiling point) 150℃ 이상 성분의 중량%이고, B는 상기 염소가 제거된 유분의 총 중량에 대한 bp 150℃ 이상 성분의 중량%인 것을 특징으로 한다.In Relation 1, A is the weight % of the component at a boiling point of 150° C. or higher with respect to the total weight of the waste oil component, and B is the weight percent of the component at bp 150° C. or higher with respect to the total weight of the oil from which the chlorine is removed. characterized in that
구체적으로 상기 B/A는 예를 들어, 0.9~1.1 또는 0.95~1.05일 수 있다. 또한 예를 들어, 0.85~1.15, 0.85~1.1 또는 0.85~1.0.5일 수 있다. 또한 예를 들어, 0.90~1.15 또는 0.95~1.15일 수 있다.Specifically, the B/A may be, for example, 0.9 to 1.1 or 0.95 to 1.05. Also, for example, it may be 0.85 to 1.15, 0.85 to 1.1, or 0.85 to 1.0.5. Also, for example, it may be 0.90 to 1.15 or 0.95 to 1.15.
상기 염소가 제거된 유분의 염소 함량은 10 ppm 미만일 수 있고, 구체적으로 8 ppm 이하, 6 ppm 이하, 좋게는 1 내지 5 ppm 또는 1 내지 4 ppm 일 수 있다. 상기 폐유분 내 Cl 제거시, Cracking 반응을 억제하고, 과도한 cracking 반응이 아닌 mild cracking 반응을 유도하여, 생성된 olefin과 C-Cl 결합의 붕괴로 발생한 Cl과의 결합을 통해 발생한 organic Cl은 고체산 물질의 산점에 결합 제거되거나, gas로 배출될 수 있다. 또한, HCl 전환을 통해 HCl 형태로 외부 배출될 수도 있다. The chlorine content of the chlorine-removed oil may be less than 10 ppm, specifically 8 ppm or less, 6 ppm or less, preferably 1 to 5 ppm or 1 to 4 ppm. When Cl is removed from the waste oil, organic Cl generated through the combination of Cl generated by the breakdown of the olefin and C-Cl bond with the generated olefin by suppressing the cracking reaction and inducing a mild cracking reaction rather than an excessive cracking reaction is a solid acid. It can be debonded to the acid sites of the material, or it can be released as a gas. In addition, it may be externally discharged in the form of HCl through HCl conversion.
상기 염소가 제거된 유분은 총 중량에 대하여 bp 150℃ 미만 성분을 5 내지 60 중량%로 포함하고, 예를 들어 5 내지 55 중량%, 5 내지 50 중량%, 5 내지 45 중량%, 5 내지 40 중량%, 5 내지 35 중량%, 5 내지 30 중량%, 5 내지 25 중량%, 5 내지 20 중량% 또는 5 내지 15 중량%로 포함할 수 있다. 또한 예를 들어 10 내지 60 중량%, 15 내지 60 중량%, 20 내지 60 중량%, 25 내지 60 중량%, 30 내지 60 중량%, 35 내지 60 중량%, 40 내지 60 중량%, 45 내지 60 중량% 또는 50 내지 60 중량%로 포함할 수 있다. 본 발명에서는 상기 폐유분의 경질 유분 함량이 높더라도 실질적으로 유분 성상의 변화 없이 염소를 제거함에 따라, 염소가 제거된 유분은 Oligomerization에 의한 제품 성상 악화 및 과도한 Cracking에 의한 제품 손실(loss)을 방지할 수 있다.The chlorine-removed oil contains 5 to 60% by weight of components less than 150° C. bp based on the total weight, for example, 5 to 55% by weight, 5 to 50% by weight, 5 to 45% by weight, 5 to 40 Weight %, 5 to 35% by weight, 5 to 30% by weight, 5 to 25% by weight, 5 to 20% by weight or 5 to 15% by weight may be included. Also for example 10 to 60% by weight, 15 to 60% by weight, 20 to 60% by weight, 25 to 60% by weight, 30 to 60% by weight, 35 to 60% by weight, 40 to 60% by weight, 45 to 60% by weight % or 50 to 60% by weight. In the present invention, even if the light oil content of the waste oil is high, chlorine is removed without substantially changing oil properties, and the chlorine-removed oil prevents deterioration of product properties due to oligomerization and product loss due to excessive cracking. can do.
또한, 상기 염소가 제거된 유분은 총 중량에 대하여 bp 150℃ 내지 265℃ 성분을 10 내지 45 중량%, 예를 들어 10 내지 40 중량% 또는 10 내지 35 중량%로 포함할 수 있다.In addition, the chlorine-removed oil may include a bp 150°C to 265°C component in an amount of 10 to 45% by weight, for example, 10 to 40% by weight or 10 to 35% by weight, based on the total weight.
또한, 상기 염소가 제거된 유분은 총 중량에 대하여 bp 265℃ 내지 340℃ 성분을 10 내지 35 중량%, 예를 들어 10 내지 30 중량%, 10 내지 29 중량%, 11 내지 28 중량%, 12 내지 27 중량%, 13 내지 26 중량%, 14 내지 26 중량% 또는 15 내지 25 중량%로 포함할 수 있다. In addition, the chlorine-removed oil contains 10 to 35% by weight, for example, 10 to 30% by weight, 10 to 29% by weight, 11 to 28% by weight, 12 to bp 265°C to 340°C component based on the total weight. 27% by weight, 13 to 26% by weight, 14 to 26% by weight or 15 to 25% by weight may be included.
또한, 상기 염소가 제거된 유분은 총 중량에 대하여 bp 340℃ 초과 성분을 20 내지 60 중량%, 예를 들어 20 내지 55 중량%, 20 내지 50 중량%, 20 내지 45 중량% 또는 25 내지 40 중량%로 포함할 수 있다. In addition, the dechlorinated oil contains 20 to 60% by weight, for example, 20 to 55% by weight, 20 to 50% by weight, 20 to 45% by weight, or 25 to 40% by weight of components having a bp higher than 340°C with respect to the total weight. % can be included.
본 발명의 일 구현예는 상기 폐유분의 염소에 대한 상기 염소가 제거된 유분의 염소의 중량비가 0.01 내지 0.5, 예를 들어 0.01 내지 0.4, 0.01 내지 0.3 또는 0.01 내지 0.2. 좋게는 0.01 내지 0.1, 더 좋게는 0.01 내지 0.09, 0.01 내지 0.08, 0.01 내지 0.07, 0.01 내지 0.06 또는 0.01 내지 0.05일 수 있다.In one embodiment of the present invention, the weight ratio of chlorine of the chlorine-removed fraction to the chlorine of the waste fraction is 0.01 to 0.5, for example, 0.01 to 0.4, 0.01 to 0.3, or 0.01 to 0.2. preferably 0.01 to 0.1, more preferably 0.01 to 0.09, 0.01 to 0.08, 0.01 to 0.07, 0.01 to 0.06 or 0.01 to 0.05.
한편, 일 구현예에 따른 폐유분의 염소 제거방법은 상기 폐유분에 함유된 염소 이외에 Fe, Na, Ca 및 Al 등의 불순물이 제거되는 종래에 예측되지 않는 효과가 발현된다. 예를 들어, 상기 염소가 제거된 유분 총중량에 대하여 Fe 함량 10 ppm 미만, 좋게는 7 ppm 이하 또는 5 ppm 이하, 더 좋게는 3 ppm 이하일 수 있고, Na 함량 10 ppm 미만, 좋게는 7 ppm 이하 또는 5 ppm 이하, 더 좋게는 3 ppm 이하일 수 있고, Ca 함량 5 ppm 미만, 좋게는 3 ppm 이하 또는 1 ppm 이하, 더 좋게는 0.5 ppm 이하 또는 0.3 ppm 이하일 수 있고, Al 함량 3 ppm 미만, 좋게는 1 ppm 이하 또는 0.5 ppm 이하, 더 좋게는 0.3 ppm 이하 또는 0.1 ppm 이하일 수 있다.On the other hand, in the method for removing chlorine from waste oil according to an embodiment, an effect not predicted in the prior art is expressed in that impurities such as Fe, Na, Ca and Al are removed in addition to chlorine contained in the waste oil. For example, the Fe content may be less than 10 ppm, preferably 7 ppm or less, or 5 ppm or less, more preferably 3 ppm or less, and the Na content less than 10 ppm, preferably 7 ppm or less, based on the total weight of the oil from which the chlorine has been removed, or 5 ppm or less, more preferably 3 ppm or less, Ca content less than 5 ppm, preferably 3 ppm or less or 1 ppm or less, more preferably 0.5 ppm or less or 0.3 ppm or less, Al content less than 3 ppm, preferably 1 ppm or less or 0.5 ppm or less, more preferably 0.3 ppm or less or 0.1 ppm or less.
또한, 상기 폐유분의 Fe에 대한 상기 염소가 제거된 유분의 Fe의 중량비가 0.1 내지 0.7, 예를 들어 0.1 내지 0.6, 좋게는 0.5 이하일 수 있고, 상기 폐유분의 Na에 대한 상기 염소가 제거된 유분의 Na의 중량비가 0.1 내지 0.7, 예를 들어 0.1 내지 0.5, 좋게는 0.45 이하일 수 있고, 상기 폐유분의 Ca에 대한 상기 염소가 제거된 유분의 Ca의 중량비가 0.1 내지 0.8, 예를 들어 0.2 내지 0.7, 좋게는 0.6 이하일 수 있고, 상기 폐유분의 Al에 대한 상기 염소가 제거된 유분의 Al의 중량비가 0.1 내지 0.7, 예를 들어 0.1 내지 0.5, 좋게는 0.4 이하일 수 있다.In addition, the weight ratio of Fe of the chlorine-removed fraction to Fe of the waste oil may be 0.1 to 0.7, for example, 0.1 to 0.6, preferably 0.5 or less, and the chlorine to Na of the waste oil is removed. The weight ratio of Na in the oil may be 0.1 to 0.7, for example, 0.1 to 0.5, preferably 0.45 or less, and the weight ratio of Ca of the dechlorinated oil to Ca of the waste oil is 0.1 to 0.8, for example 0.2 to 0.7, preferably 0.6 or less, and a weight ratio of Al of the chlorine-removed fraction to Al of the waste fraction may be 0.1 to 0.7, for example 0.1 to 0.5, preferably 0.4 or less.
한편, 일 구현예에 따른 폐유분의 염소 제거방법은 상기 폐유분에 함유된 염소 이외에 N, S 및 O 등의 불순물이 제거되는 종래에 예측되지 않는 효과가 발현된다. 예를 들어, 상기 염소가 제거된 유분 총중량에 대하여 N 함량 300 ppm 미만, 좋게는 250 ppm 이하 또는 200 ppm 이하, 더 좋게는 170 ppm 이하일 수 있고, S 함량 20 ppm 미만, 좋게는 19 ppm 이하 또는 18 ppm 이하, 더 좋게는 17 ppm 이하일 수 있고, O 함량 0.2 wt% 미만, 좋게는 0.15 wt% 이하 또는 0.1 wt% 이하, 더 좋게는 0.1 wt% 미만일 수 있다.On the other hand, in the method for removing chlorine from waste oil according to an embodiment, an effect not predicted in the prior art is expressed in that impurities such as N, S and O are removed in addition to chlorine contained in the waste oil. For example, the N content may be less than 300 ppm, preferably 250 ppm or less, or 200 ppm or less, more preferably 170 ppm or less, S content less than 20 ppm, preferably 19 ppm or less, or It may be 18 ppm or less, more preferably 17 ppm or less, and the O content may be less than 0.2 wt%, preferably 0.15 wt% or less or 0.1 wt% or less, even more preferably less than 0.1 wt%.
또한, 상기 폐유분의 N에 대한 상기 염소가 제거된 유분의 N의 중량비가 0.1 내지 0.7, 예를 들어 0.1 내지 0.6, 좋게는 0.5 이하일 수 있고, 상기 폐유분의 S에 대한 상기 염소가 제거된 유분의 S의 중량비가 1 미만, 예를 들어 0.1 내지 0.9, 좋게는 0.8 이하일 수 있고, 상기 폐유분의 O에 대한 상기 염소가 제거된 유분의 O의 중량비가 1 미만, 예를 들어 0.1 내지 0.9, 좋게는 0.8 이하, 0.7 이하, 0.6 이하 또는 0.5 이하일 수 있다.In addition, the weight ratio of N of the chlorine-removed oil to N of the waste oil may be 0.1 to 0.7, for example, 0.1 to 0.6, preferably 0.5 or less, and the chlorine-removed S to S of the waste oil. The weight ratio of S of the oil component may be less than 1, for example, 0.1 to 0.9, preferably 0.8 or less, and the weight ratio of O of the dechlorinated oil to O of the waste oil is less than 1, for example, 0.1 to 0.9. , preferably 0.8 or less, 0.7 or less, 0.6 or less, or 0.5 or less.
이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기 실시예는 본 발명의 바람직한 일 실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples and comparative examples of the present invention will be described. However, the following examples are only preferred examples of the present invention, and the present invention is not limited thereto.
실시예 1. Cl 함유 폐유분(플라스틱 열분해유) 조성 분석Example 1. Cl-containing waste oil (plastic pyrolysis oil) composition analysis
플라스틱 폐기물의 열분해를 통해 전환된 폐유분(플라스틱 열분해유)을 회수하여 Cl 제거 반응의 원료로 사용하였다. 반응을 통한 불순물 제거 효과 및 분자량 변화 여부 확인을 위해서, 아래의 분석을 진행하였다. 플라스틱 열분해유 내 분자량 분포 확인을 위해서, GC-Simdis 분석(HT 750)을 진행하였다. 불순물은 Cl, S, N, O, Fe, Ca, Na, Al, Si, P 등에 대한 분석이 진행되었고, 이를 위해서 ICP, TNS, EA-O, XRF 분석이 진행되었다. 또한 Olefin 함량 분석을 위해서 GC-MSD 분석이 진행되었다. 분석 결과를 통해 원료로 사용한 열분해유의 조성 및 불순물 특성을 하기 표 1, 및 표 2에 나타내었다. Waste oil (plastic pyrolysis oil) converted through pyrolysis of plastic waste was recovered and used as a raw material for Cl removal reaction. In order to check the effect of removing impurities and change in molecular weight through the reaction, the following analysis was performed. In order to confirm the molecular weight distribution in plastic pyrolysis oil, GC-Simdis analysis (HT 750) was performed. Impurities were analyzed for Cl, S, N, O, Fe, Ca, Na, Al, Si, P, etc., and for this purpose, ICP, TNS, EA-O, and XRF analysis were performed. In addition, GC-MSD analysis was performed to analyze the olefin content. Through the analysis results, the composition and impurity characteristics of the pyrolysis oil used as a raw material are shown in Tables 1 and 2 below.
Cut NameCut Name 예상 Carbon rangeExpected Carbon Range 끓는점 (℃)Boiling Point (℃) 수율 (wt%)Yield (wt%)
H-Naph.H-Naph. ~C8~C8 <150<150 8.18.1
KEROKERO C9~C17C9~C17 150~265150-265 24.424.4
LGOLGO C18~C26C18~C26 265~340265-340 22.722.7
LGO-2/UCO-1LGO-2/UCO-1 C20~C20~ 340<340< 44.844.8
SUMSUM -- -- 100100
mg/Kgmg/kg ClCl NN SS OO
열분해유 Bpyrolysis oil B 6767 348348 2020 0.20.2
실시예 2. RFCC E-cat. 활용 Cl 저감 반응 특성 검토Example 2. RFCC E-cat. Review of utilization Cl reduction reaction characteristics
실시예 2-1. 온도 영향성 검토Example 2-1. Temperature Effect Review
고체산 촉매의 Cl 저감 특성 확인에 따라, 이를 통해 최적 Cl 저감 운전 조건 도출을 위해 반응 변수별 Cl 저감 경향성을 확인하였다. According to the confirmation of the Cl reduction characteristics of the solid acid catalyst, the Cl reduction tendency for each reaction variable was confirmed in order to derive the optimal Cl reduction operating conditions.
상기 실시예 1의 열분해유도 고상이므로, 70℃ Oven에서 3시간 이상 유지한 이후, 액상으로 전환하여 사용하였다.Since the pyrolysis-induced solid phase of Example 1 was maintained in an oven at 70° C. for 3 hours or more, it was converted into a liquid phase and used.
Cl을 포함한 불순물 저감에 사용한 고체산 물질은 RFCC E-cat.을 사용하였다. 사용한 RFCC E-cat.의 물리적 특성은 하기 표 3 및 표 4와 같이 확인되었다.For the solid acid material used to reduce impurities including Cl, RFCC E-cat. was used. The physical properties of the RFCC E-cat. used were confirmed as shown in Tables 3 and 4 below.
TypeType TSA (m 2/g)TSA (m 2 /g) ZSA (m 2/g)ZSA (m 2 /g) MSA (m 2/g)MSA (m 2 /g) Z/M RatioZ/M Ratio PV (cc/g)PV (cc/g) APD (Å)APD (Å)
RFCC E-cat.RFCC E-cat. 122122 3636 8686 0.420.42 0.200.20 6767
(상기 표 3에서, TSA는 총 비표면적, ZSA는 제올라이트 비표면적, MSA는 메조다공성 비표면적, Z/M은 메조다공성 비표면적(MSA)에 대한 제올라이트 비표면적(ZSA)의 비, PV는 기공 부피, APD는 평균 기공 크기이다.)(In Table 3, TSA is the total specific surface area, ZSA is the zeolite specific surface area, MSA is the mesoporous specific surface area, Z/M is the ratio of the zeolite specific surface area (ZSA) to the mesoporous specific surface area (MSA), and PV is the pore Volume, APD is the mean pore size.)
wt%wt% NaNa NiNi VV FeFe MgMg PP La 2O 3 La 2 O 3 CeO 2 CeO 2 TiO 2 TiO 2 SiO 2 SiO 2 Al 2O 3 Al 2 O 3
RFCC
E-cat.
RFCC
E-cat.
0.130.13 0.530.53 1.211.21 0.650.65 0.070.07 0.560.56 0.690.69 0.100.10 0.780.78 4040 5353
사용한 RFCC E-cat.로는 총비표면적 112 m 2/g, 기공 부피 0.20 cc/g, 평균 입자 크기 79 μm의 촉매를 사용하였다. As RFCC E-cat., a catalyst having a total specific surface area of 112 m 2 /g, a pore volume of 0.20 cc/g, and an average particle size of 79 μm was used.
상기 액상의 열분해유 120g과 RFCC E-cat. 12g을 반응기 내부 부피가 300cc인 Autoclave에 순차적으로 도입하였다. 반응기를 체결하고, N 2 purge를 진행하였다. 이후 N 2 1bar 조건에서 500rpm으로 교반하며 반응기 온도를 1℃/min 속도로 승온하여 목표 온도까지 승온시켰다. 3시간 동안 반응을 유지한 후 종료하였다. 120g of the liquid pyrolysis oil and RFCC E-cat. 12 g were sequentially introduced into an autoclave having a reactor internal volume of 300 cc. The reactor was connected, and N 2 purge was performed. Thereafter, the temperature of the reactor was raised to the target temperature by stirring at 500 rpm under N 2 1 bar conditions and at a rate of 1° C./min. After maintaining the reaction for 3 hours, it was terminated.
반응 종료 후, 반응기 온도를 80℃로 유지한 후 Autoclave 결합을 해제하고 열분해유 처리유와 E-cat. 혼합물이 포함된 반응기의 무게를 측정하여 회수율을 계산하였다.After completion of the reaction, after maintaining the reactor temperature at 80°C, the autoclave bond was released, and pyrolysis oil treated oil and E-cat. The recovery rate was calculated by measuring the weight of the reactor containing the mixture.
반응기 내의 열분해유 처리유와 E-cat. 혼합물을 filter paper를 통해 분리하였다. 회수된 열분해유 처리유는 조성 변화 및 불순물 함량 변화를 분석하였고, 그 결과를 하기 표 5~7 및 도 3~5에 나타내었다. Pyrolysis oil treated oil and E-cat in the reactor. The mixture was separated through filter paper. The recovered pyrolysis oil treated oil was analyzed for composition change and impurity content change, and the results are shown in Tables 5 to 7 and FIGS. 3 to 5 below.
구분division Feed Feed E-cat.E-cat. 회수collect 회수율recovery rate 반응온도reaction temperature ClCl NN SS OO
(g)(g) (g)(g) (g)(g) (%)(%) (℃)(℃) wppmwppm wppmwppm wppmwppm wt%wt%
FeedFeed           6767 348348 2020 0.20.2
실시예
2-1
Example
2-1
119.6119.6 11.811.8 115.5115.5 96.6 96.6 300300 44 148148 13.713.7 <0.1<0.1
120.1120.1 11.811.8 110.5110.5 92.0 92.0 330330 33 122122 1414 <0.1<0.1
120.0120.0 12.012.0 103.7103.7 86.5 86.5 350350 22 8383 1212 <0.1<0.1
반응온도(℃)Reaction temperature (℃) Cl, wppmCl, wppm Cl 저감율(%)Cl reduction rate (%)
300300 44 94.0394.03
330330 33 95.5295.52
350350 22 97.0197.01
반응 온도 상승에 따라 회수율은 96.6%에서 86.5%까지 지속적으로 감소하였다. 반면 Cl 저감율은(단위 E-cat.당 Cl 저감량)은 94.03%에서 97.01%로 증가하여, 반응 온도 상승에 따라 Cl 제거 성능이 개선되는 것을 확인하였다.As the reaction temperature increased, the recovery rate continued to decrease from 96.6% to 86.5%. On the other hand, the Cl reduction rate (Cl reduction per unit E-cat.) increased from 94.03% to 97.01%, confirming that the Cl removal performance was improved as the reaction temperature increased.
Cl 함량뿐 아니라, 반응 온도 상승에 따라 N, S의 제거율도 높아짐을 확인하였다. N의 경우, 반응 온도 상승에 따라 제거율이 급격히 증가하는 것을 확인하였으나, S의 경우, 역시 온도 상승에 따라 저감율은 증가하나 Cl, N과 같이 급격한 저감 효과는 관찰되지 않았다.It was confirmed that not only the Cl content, but also the removal rate of N and S increased as the reaction temperature increased. In the case of N, it was confirmed that the removal rate increased rapidly as the reaction temperature increased, but in the case of S, the reduction rate also increased as the temperature increased, but a sharp reduction effect such as Cl and N was not observed.
구분division 반응온도reaction temperature Naph
(bp <150℃)
Naph
(bp <150°C)
Kero
(bp 150~265℃)
Kero
(bp 150~265℃)
LGO
(bp 265~340℃)
LGO
(bp 265~340℃)
VGO
(bp>340℃)
VGO
(bp>340℃)
관계식 1
(B/A)
Relation 1
(B/A)
(℃)(℃) wt%wt% wt%wt% wt%wt% wt%wt% (wt%/wt%)(wt%/wt%)
FeedFeed   8.18.1 24.424.4 22.722.7 44.844.8 --
실시예
2-1
Example
2-1
300300 10.710.7 26.926.9 2323 39.439.4 0.97 0.97
330330 13.513.5 31.531.5 2424 31.031.0 0.94 0.94
350350 19.919.9 37.737.7 22.122.1 20.320.3 0.87 0.87
표 7 및 도 5을 참고하면, 반응 온도 300℃에서는 feed 대비 조성 변화가 크지 않으나, 온도 상승에 따라, Cracking 반응에 의해서 VGO, LGO 비율이 줄어들고, Naphtha, Kero 비율이 증가하며, 특히 350℃에서는 VGO 함량이 불과 20% 수준으로 매우 낮으며, Kero 이하의 함량이 57.6%로 Light fraction 비율이 크게 증가하는 현상을 확인하여, 운전 안정성 및 이송시 위험 가능성이 있을 수 있음을 확인하였다. Referring to Table 7 and FIG. 5, at a reaction temperature of 300°C, there is no significant change in composition compared to the feed, but as the temperature rises, the ratio of VGO and LGO decreases by the cracking reaction, and the ratio of Naphtha and Kero increases, especially at 350°C The VGO content is very low at only 20%, and the light fraction ratio is significantly increased to 57.6% with a content of Kero or less, confirming that there may be a possibility of danger during operation and transport.
실시예 2-2. 시간 영향성 검토Example 2-2. Time Impact Review
고체산 촉매의 Cl 저감 특성 확인을 위해서, 실시예 3-1에서 도출된 조성 차이가 작으며 Cl 저감 효율이 높았던 330℃ 운전 조건에서 시간에 따른 Cl 저감 경향성을 확인하였다. 촉매량, 교반 속도 등의 기타 반응 변수와, 분석 방법은 실시예 2-1과 동일한 조건에서 진행되었다. 그리고 분석 결과는 아래의 표 8~10 및 도 6~10와 같이 나타내었다.In order to confirm the Cl reduction characteristics of the solid acid catalyst, the Cl reduction tendency with time was confirmed under the operating conditions of 330°C, where the composition difference derived in Example 3-1 was small and the Cl reduction efficiency was high. Other reaction parameters such as catalyst amount and stirring speed, and the analysis method were carried out under the same conditions as in Example 2-1. And the analysis results are shown in Tables 8 to 10 and FIGS. 6 to 10 below.
구분division Feed Feed E-cat.E-cat. 회수collect 회수율recovery rate 시간hour ClCl NN SS OO
(g)(g) (g)(g) (g)(g) (%)(%) (h)(h) wppmwppm wppmwppm wppmwppm wt%wt%
FeedFeed           6767 348348 2020 0.20.2
실시예
2-2
Example
2-2
119.2119.2 12.012.0 115115 96.596.5 0.080.08 1717 149149 1616 0.10.1
119.2119.2 11.911.9 114.8114.8 96.3 96.3 0.50.5 1010 141141 1515 <0.1<0.1
119.3119.3 11.911.9 113.2113.2 94.9 94.9 1One 66 130130 1515 <0.1<0.1
120.1120.1 11.811.8 110.5110.5 92.0 92.0 33 33 122122 1414 <0.1<0.1
119119 12.012.0 106.5106.5 89.589.5 55 1.71.7 109109 1313 <0.1<0.1
시간(h)time (h) Cl, wppmCl, wppm Cl 저감율(%)Cl reduction rate (%)
0.08 0.08 1717 74.6 74.6
0.50.5 1010 85.1 85.1
1One 66 91.0 91.0
33 33 95.5 95.5
55 1.71.7 97.5 97.5
표 8~9 및 도 6~9을 참고하면, Cl을 포함한 S, N, O는 시간에 따라 감소하는 것을 확인하였다. 회수율도 시간이 지남에 따라 Cracking 반응으로 인해 점차 감소하였다. 67 wppm의 Cl 함량을 포함하는 원료에 대해서, 처리 시간을 증가시켜 Cl 저감 효율을 높일 수 있으며, 5시간 처리만으로도 전체 97.5wt%의 Cl을 저감할 수 있음을 확인하였다. Referring to Tables 8 to 9 and FIGS. 6 to 9 , it was confirmed that S, N, O including Cl decreased with time. The recovery rate also gradually decreased due to the cracking reaction over time. It was confirmed that, for a raw material containing a Cl content of 67 wppm, the Cl reduction efficiency can be increased by increasing the treatment time, and the total Cl of 97.5 wt% can be reduced with only 5 hours of treatment.
N은 Cl과 마찬가지로 운전 시간 초기에 50% 이상이 제거되고, 시간이 지남에 따라 저감율은 증가하지만, 점차 N의 저감율의 증가율은 감소함을 확인하였다. 반면 S의 경우, N, Cl에 비해 저감 활성도 매우 낮으나, 시간이 지남에 따라 일정하게 저감되는 현상을 확인하였다. Like Cl, more than 50% of N is removed at the beginning of the operation time, and the reduction rate increases over time, but it is confirmed that the increase rate of the reduction rate of N gradually decreases. On the other hand, in the case of S, the reduction activity was also very low compared to N and Cl, but it was confirmed that the reduction was constant over time.
구분division 시간hour Naph
(bp <150℃)
Naph
(bp <150°C)
Kero
(bp 150~265℃)
Kero
(bp 150~265℃)
LGO
(bp 265~340℃)
LGO
(bp 265~340℃)
VGO
(bp>340℃)
VGO
(bp>340℃)
관계식 1 (B/A)Relation 1 (B/A)
(h)(h) wt%wt% wt%wt% wt%wt% wt%wt% (wt%/wt%)(wt%/wt%)
FeedFeed   8.18.1 24.424.4 22.722.7 44.844.8
실시예
2-2
Example
2-2
0.080.08 9.39.3 25.225.2 24.224.2 41.341.3 0.99 0.99
0.50.5 10.110.1 26.226.2 23.523.5 40.240.2 0.98 0.98
1One 10.710.7 28.328.3 23.723.7 37.337.3 0.97 0.97
33 13.513.5 31.531.5 2424 3131 0.94 0.94
55 15.9 15.9 33.5 33.5 25.1 25.1 25.5 25.5 0.92 0.92
표 10 및 도 10를 참고하면, 반응 시간이 지남에 따라, Naphtha, Kero의 비율이 증가하고 LGO, VGO가 줄어드는 경향을 확인하였다. 이를 통해, Cracking 반응성이 증가할수록 Cl 저감률을 포함한 불순물 저감률이 증가함을 유추할 수 있었다. Referring to Table 10 and FIG. 10, as the reaction time elapsed, it was confirmed that the ratio of Naphtha and Kero increased and the LGO and VGO decreased. Through this, it could be inferred that the impurity reduction rate including the Cl reduction rate increased as the cracking reactivity increased.
실시예 2-3. 촉매 도입량 검토Example 2-3. Catalyst introduction amount review
고체산 촉매의 Cl 저감 특성 확인을 위해서, 실시예 2-1과 2-2에서 도출된 원료 대비 조성 차이가 작으며, Cl 저감 효율이 높았던 330℃, 3hr 운전 조건에서 촉매 도입량에 따른 Cl 저감 경향성을 확인하였다. 교반 속도 등의 기타 반응 변수와, 분석 방법은 실시예 2-1과 동일한 조건에서 진행되었다. 분석 결과는 아래의 표 11~13 및 도 11~15과 같이 나타내었다.In order to confirm the Cl reduction characteristics of the solid acid catalyst, the difference in composition compared to the raw materials derived in Examples 2-1 and 2-2 was small, and Cl reduction tendency according to the amount of catalyst introduced at 330°C and 3hr operation condition, where Cl reduction efficiency was high was confirmed. Other reaction parameters, such as stirring speed, and the analysis method were carried out under the same conditions as in Example 2-1. The analysis results are shown in Tables 11 to 13 and FIGS. 11 to 15 below.
구분division Feed Feed E-cat.E-cat. 회수collect 회수율recovery rate 촉매량catalytic amount ClCl NN SS OO
(g)(g) (g)(g) (g)(g) (%)(%) (%)(%) wppmwppm wppmwppm wppmwppm wt%wt%
FeedFeed           6767 348348 2020 0.20.2
실시예
2-3
Example
2-3
120.5120.5 00 118.1118.1 98.2 98.2 00 4141 319319 1818 0.20.2
119.2119.2 1.21.2 116.8116.8 98.0 98.0 1One 2323 297297 1818 0.20.2
119.3119.3 3.03.0 116.1116.1 97.3 97.3 2.52.5 2121 265265 1717 0.10.1
119.5119.5 6.06.0 113.9113.9 95.3 95.3 55 1515 220220 1616 0.10.1
119.2119.2 8.98.9 112.5112.5 94.4 94.4 7.57.5 88 173173 1515 <0.1<0.1
120.1120.1 11.811.8 110.5110.5 92.0 92.0 1010 33 122122 1414 <0.1<0.1
표 11 및 도 11~14을 참고하면, 촉매 도입량을 10wt%까지 점차 증가시켰을 때, 촉매량 증가에 따라 Cl 저감률이 상승함을 확인하였다. 또한 N, S 및 O의 함량도 같이 제거됨을 확인하였다. N과 S는 촉매 도입량 증가량에 비례하여 제거되는 경향을 보여주었으며, N의 경우, Cl과 같이 전체 65% 수준으로 크게 감소함을 확인하였다. 반면 S는 감소율이 30% 수준으로 Cl, N에 비해 상대적으로 저감율이 낮고 촉매량 증가에 따른 저감율의 증가폭도 작음을 확인하였다. Referring to Table 11 and FIGS. 11 to 14, when the catalyst introduction amount was gradually increased to 10 wt%, it was confirmed that the Cl reduction rate increased as the catalyst amount increased. In addition, it was confirmed that the contents of N, S and O were also removed. N and S showed a tendency to be removed in proportion to the increase in the amount of catalyst introduced, and in the case of N, it was confirmed that, like Cl, it was significantly reduced to a level of 65% of the total. On the other hand, it was confirmed that the reduction rate of S was 30%, which was relatively low compared to Cl and N, and the extent of increase in the reduction rate was small as the amount of catalyst increased.
구분division 촉매량catalytic amount Naph
(bp <150℃)
Naph
(bp <150°C)
Kero
(bp 150~265℃)
Kero
(bp 150~265℃)
LGO
(bp 265~340℃)
LGO
(bp 265~340℃)
VGO
(bp >340℃)
VGO
(bp >340℃)
관계식 1 (B/A)Relation 1 (B/A)
(wt%)(wt%) wt%wt% wt%wt% wt%wt% wt%wt% (wt%/wt%)(wt%/wt%)
FeedFeed   8.18.1 24.424.4 22.722.7 44.844.8 --
실시예
2-3
Example
2-3
00 5.75.7 23.223.2 21.721.7 49.449.4 1.03 1.03
1One 6.16.1 24.124.1 2222 47.847.8 1.02 1.02
2.52.5 7.27.2 24.924.9 22.422.4 45.545.5 1.01 1.01
55 9.79.7 26.826.8 22.822.8 40.740.7 0.98 0.98
7.57.5 12.012.0 28.228.2 26.326.3 33.533.5 0.96 0.96
1010 13.513.5 31.531.5 24.024.0 31.031.0 0.94 0.94
표 12 및 도 15을 참고하면, 촉매 도입량을 10wt%까지 증가함에 따라, Naphtha 비율은 점차 증가하고, VGO 비율은 감소함을 확인하였다. Cracking 반응이 일어나는 운전 조건에서, 촉매 도입량 증가에 따라 Cracking 부반응도 증가하여 조성 변화가 일어난 것으로 판단된다.Referring to Table 12 and FIG. 15 , it was confirmed that as the catalyst introduction amount was increased to 10 wt%, the Naphtha ratio gradually increased and the VGO ratio decreased. Under the operating conditions where the cracking reaction occurs, it is judged that the composition change has occurred because the cracking side reaction also increased as the amount of catalyst introduced increased.
mg/Kgmg/kg FeFe NaNa CaCa AlAl
열분해유 Bpyrolysis oil B 2.92.9 5.75.7 0.50.5 0.30.3
실시예 2-1 (330℃)Example 2-1 (330° C.) 1.21.2 2.52.5 0.30.3 0.10.1
Cl, N, S, O 등의 불순물 외 Fe, Na, Ca 등의 금속 불순물 제거도 가능한지 확인하기 위해, 조성 변화가 없고 Cl 저감 효율이 높았던 실시예 2-1의 330℃ 운전 조건에서 회수된 시료에 대한 금속 불순물 분석을 진행하였다. Fe, Na, Ca, Al 모두 60% 이상 동시에 제거 되었음을 확인하였다. In order to check whether it is possible to remove metal impurities such as Fe, Na, Ca in addition to impurities such as Cl, N, S, O, etc., the sample recovered under the operating conditions of 330 ° C. of Example 2-1 with no composition change and high Cl reduction efficiency Metal impurity analysis was carried out for It was confirmed that more than 60% of Fe, Na, Ca, and Al were simultaneously removed.
상기 실시예들의 결과를 종합하면, 본 발명에 따른 고체산 물질의 처리를 통해 유분의 조성 변화가 거의 없이 불순물을 선택적으로 제거 가능함을 확인하였다. Combining the results of the above examples, it was confirmed that impurities could be selectively removed with little change in the composition of oil through the treatment of the solid acid material according to the present invention.
이상 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, but may be manufactured in a variety of different forms, and those of ordinary skill in the art to which the present invention pertains will appreciate the technical spirit of the present invention. However, it will be understood that the invention may be embodied in other specific forms without changing essential features. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.

Claims (12)

  1. a) 염소 함유 폐유분과 고체산 물질의 혼합물을 제조하는 단계;a) preparing a mixture of chlorine-containing waste oil and solid acid material;
    b) 상기 혼합물을 비활성 기체 분위기의 1bar 이상 100bar 이하의 압력에서 반응시켜 염소를 제거하는 단계; 및b) removing chlorine by reacting the mixture at a pressure of 1 bar or more and 100 bar or less in an inert gas atmosphere; and
    c) 상기 염소가 제거된 유분과 고체산 물질의 혼합물을 분리하여 염소가 제거된 유분을 회수하는 단계;를 포함하고,c) recovering the chlorine-removed fraction by separating the mixture of the chlorine-removed fraction and the solid acid material;
    상기 폐유분은 총 중량에 대하여 bp(boiling point) 150℃ 미만 성분을 5 내지 50 중량%로 포함하고,The waste oil contains 5 to 50% by weight of components less than bp (boiling point) 150° C. with respect to the total weight,
    하기 관계식 1을 만족하는 것을 특징으로 하는, 폐유분의 염소 제거방법:A method for removing chlorine from waste oil, characterized in that it satisfies the following relation:
    [관계식 1][Relational Expression 1]
    0.85 < B/A < 1.150.85 < B/A < 1.15
    관계식 1에서, A는 상기 폐유분의 총 중량에 대한 bp 150℃ 이상 성분의 중량%이고, B는 상기 염소가 제거된 유분의 총 중량에 대한 bp 150℃ 이상 성분의 중량%이다.In Relation 1, A is the weight % of the component at 150°C or higher bp based on the total weight of the waste oil, and B is the weight% of the component at bp 150°C or higher with respect to the total weight of the oil from which the chlorine has been removed.
  2. 제1항에서, 상기 폐유분은 폐플라스틱 열분해유, 바이오매스(biomass) 열분해유, 재생 윤활유, 고함량 염소 함유 원유(crude oil) 또는 이들의 혼합물을 포함하는 폐유분의 염소 제거방법.The method of claim 1 , wherein the waste oil includes waste plastic pyrolysis oil, biomass pyrolysis oil, regenerated lubricant oil, crude oil containing high chlorine content, or a mixture thereof.
  3. 제1항에서, 상기 폐유분의 염소 함량은 10 ppm 이상인, 폐유분의 염소 제거방법.The method of claim 1, wherein the chlorine content of the waste oil is 10 ppm or more.
  4. 제1항에서, 상기 고체산 물질은 제올라이트(zeolite), 클레이(clay), SAPO(silica-alumina-phosphate), ALPO(aluminum phosphate), MOF(Metal Organic Framework), 실리카알루미나 또는 이들의 혼합물인, 폐유분의 염소 제거방법.According to claim 1, wherein the solid acid material is zeolite (zeolite), clay (clay), SAPO (silica-alumina-phosphate), ALPO (aluminum phosphate), MOF (Metal Organic Framework), silica alumina or a mixture thereof, How to remove chlorine from waste oil.
  5. 제1항에서, 상기 a) 단계에서 고체산 물질은 상기 혼합물 총 중량에 대하여 5 내지 10 중량%로 포함되는, 폐유분의 염소 제거방법.The method of claim 1, wherein the solid acid material in step a) is included in an amount of 5 to 10% by weight based on the total weight of the mixture.
  6. 제1항에서, 상기 b) 단계의 반응은, 상기 폐유분에 함유된 염소가 상기 고체산 물질의 활성점에 직접 결합 제거 및/또는 활성점에서 염산(HCl)으로 전환 제거되는 촉매전환반응인 것을 특징으로 하는, 폐유분의 염소 제거방법.The catalytic conversion reaction of claim 1, wherein the reaction of step b) is a catalytic conversion reaction in which chlorine contained in the waste oil is removed from a direct bond to the active point of the solid acid material and/or converted to hydrochloric acid (HCl) at the active point A method for removing chlorine from waste oil, characterized in that.
  7. 제1항에서, 상기 b) 단계의 반응은 280℃ 초과 380℃ 미만의 온도에서 진행되는, 폐유분의 염소 제거방법.The method of claim 1, wherein the reaction of step b) proceeds at a temperature greater than 280°C and less than 380°C.
  8. 제1항에서, d) 상기 a), b), 및 c) 단계를 적어도 1회 이상 반복하는 단계를 더 포함하는, 폐유분의 염소 제거방법.The method of claim 1, further comprising d) repeating steps a), b), and c) at least once or more.
  9. 제1항에서, 상기 염소가 제거된 유분의 염소 함량은 10 ppm 미만인 것을 특징으로 하는 폐유분의 염소 제거방법.The method of claim 1, wherein the chlorine content of the chlorine-removed oil is less than 10 ppm.
  10. 제1항에서, 상기 폐유분의 염소에 대한 상기 염소가 제거된 유분의 염소의 중량비가 0.01 내지 0.1인 것을 특징으로 하는, 폐유분의 염소 제거방법.[Claim 3] The method of claim 1, wherein the weight ratio of chlorine in the dechlorinated fraction to chlorine in the waste oil is 0.01 to 0.1.
  11. 제1항에서, 상기 폐유분의 염소 제거방법은, 폐유분에 함유된 Fe, Na, Ca 및 Al를 더 제거하는 것을 특징으로 하는, 폐유분의 염소 제거방법.The method of claim 1, wherein the chlorine removal method of the waste oil component further removes Fe, Na, Ca and Al contained in the waste oil component.
  12. 제1항에서, 상기 폐유분의 염소 제거방법은, 폐유분에 함유된 N, S 및 O를 더 제거하는 것을 특징으로 하는, 폐유분의 염소 제거방법.[Claim 3] The method of claim 1, wherein the chlorine removal method of the waste oil component further removes N, S and O contained in the waste oil component.
PCT/KR2020/015786 2020-06-03 2020-11-11 Method for removing chlorine from waste oil fractions containing high content of chlorine using solid acid material WO2021246588A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080073772.1A CN114616309A (en) 2020-06-03 2020-11-11 Method for removing chlorine from waste oil fraction containing high content of chlorine by using solid acid substance
US17/912,705 US20230174872A1 (en) 2020-06-03 2020-11-11 Method for Removing Chlorine from Waste Oil Fractions Containing High Content of Chlorine Using Solid Acid Material
EP20939068.1A EP4105299A4 (en) 2020-06-03 2020-11-11 Method for removing chlorine from waste oil fractions containing high content of chlorine using solid acid material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0067096 2020-06-03
KR20200067096 2020-06-03
KR1020200124533A KR20210150249A (en) 2020-06-03 2020-09-25 Method for removing chlorine from waste oil containing high content chlorine using solid acid material
KR10-2020-0124533 2020-09-25

Publications (1)

Publication Number Publication Date
WO2021246588A1 true WO2021246588A1 (en) 2021-12-09

Family

ID=78831518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015786 WO2021246588A1 (en) 2020-06-03 2020-11-11 Method for removing chlorine from waste oil fractions containing high content of chlorine using solid acid material

Country Status (4)

Country Link
US (1) US20230174872A1 (en)
EP (1) EP4105299A4 (en)
CN (1) CN114616309A (en)
WO (1) WO2021246588A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023195710A1 (en) * 2022-04-04 2023-10-12 Sk Innovation Co., Ltd. Method and device for producing waste plastic pyrolysis oil with reduced chlorine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11504672A (en) 1995-08-08 1999-04-27 シン,リ Process for producing gasoline, diesel oil and carbon black from waste rubber and / or waste plastic material
KR20080068711A (en) * 2005-11-17 2008-07-23 엑손모빌 케미칼 패턴츠 인코포레이티드 Process for reducing bromine index of hydrocarbon feedstocks
JP4218857B2 (en) 1999-06-09 2009-02-04 太陽テクノサービス株式会社 Chlorine compound remover
KR20140041809A (en) * 2011-06-28 2014-04-04 셰브런 유.에스.에이.인크. Catalytic dechlorination processes to upgrade feedstock containing chloride as fuels
CN105368486A (en) * 2014-08-19 2016-03-02 中国石油化工股份有限公司 Catalytic conversion method for directly processing high chlorine raw material
JP2019527758A (en) * 2016-08-01 2019-10-03 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Catalytic process simultaneously with pyrolysis of mixed plastics and dechlorination of pyrolysis oil
JP2019532118A (en) 2016-08-01 2019-11-07 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Dechlorination of mixed plastic pyrolysis oil using devolatilization extrusion and chloride scavenger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016142809A1 (en) * 2015-03-10 2016-09-15 Sabic Global Technologies, B.V. A robust integrated process for conversion of waste plastics to final petrochemical products

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11504672A (en) 1995-08-08 1999-04-27 シン,リ Process for producing gasoline, diesel oil and carbon black from waste rubber and / or waste plastic material
JP4218857B2 (en) 1999-06-09 2009-02-04 太陽テクノサービス株式会社 Chlorine compound remover
KR20080068711A (en) * 2005-11-17 2008-07-23 엑손모빌 케미칼 패턴츠 인코포레이티드 Process for reducing bromine index of hydrocarbon feedstocks
KR20140041809A (en) * 2011-06-28 2014-04-04 셰브런 유.에스.에이.인크. Catalytic dechlorination processes to upgrade feedstock containing chloride as fuels
CN105368486A (en) * 2014-08-19 2016-03-02 中国石油化工股份有限公司 Catalytic conversion method for directly processing high chlorine raw material
JP2019527758A (en) * 2016-08-01 2019-10-03 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Catalytic process simultaneously with pyrolysis of mixed plastics and dechlorination of pyrolysis oil
JP2019532118A (en) 2016-08-01 2019-11-07 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Dechlorination of mixed plastic pyrolysis oil using devolatilization extrusion and chloride scavenger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4105299A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023195710A1 (en) * 2022-04-04 2023-10-12 Sk Innovation Co., Ltd. Method and device for producing waste plastic pyrolysis oil with reduced chlorine

Also Published As

Publication number Publication date
EP4105299A1 (en) 2022-12-21
US20230174872A1 (en) 2023-06-08
EP4105299A4 (en) 2023-11-22
CN114616309A (en) 2022-06-10

Similar Documents

Publication Publication Date Title
WO2021246588A1 (en) Method for removing chlorine from waste oil fractions containing high content of chlorine using solid acid material
US3894933A (en) Method for producing light fuel oil
EP0142275B1 (en) Fluidized catalytic cracking process with long residence time stripper
WO2010044562A2 (en) Method for producing high value aromatics and olefin from light cycle oil produced by a fluidized catalytic cracking process
EP3919587A1 (en) Method of producing selective naphtha oil through secondary pyrolysis of waste oil
WO2021246589A1 (en) Method for removing chlorine from high chlorine content waste oil using solid acid substances
KR20210150249A (en) Method for removing chlorine from waste oil containing high content chlorine using solid acid material
KR20220151284A (en) Solvent composition prepared from waste oil and method of preparing the same
WO2022164007A1 (en) Method for producing synthesis gas
WO2023172039A1 (en) Method for removing chlorine from waste plastic pyrolysis oil
WO2023177147A1 (en) Method and manufacturing apparatus for manufacturing aviation fuel from waste plastic pyrolysis oil
CN110938462B (en) Method for removing solid particles of oil slurry by using heat treatment centrifugal sedimentation-electrostatic method
WO2023075438A1 (en) Waste plastic pyrolysis oil refining equipment and method of refining waste plastic pyrolysis oil
GB2341192A (en) Method for producing fuel distillates
WO2024034928A1 (en) Method for producing petroleum-based high softening point pitch
WO2020111865A1 (en) Nickel-based oligomerization catalyst and method for oligomerizing light olefin using same
CN1258580C (en) Upgrading method and system of heavily reducing olefinic hydrocarbon and increasing octane rating for catalytically cracked gasoline
WO2023195710A1 (en) Method and device for producing waste plastic pyrolysis oil with reduced chlorine
WO2023172040A1 (en) Refining method and device of waste plastic pyrolysis oil
WO2023068842A1 (en) Pyrolysis method for waste plastic
WO2022270702A1 (en) Method for producing synthesis gas
WO2023090854A1 (en) Refining method of waste plastic pyrolysis oil using sulfur source and molybdenum-based hydrogenation catalyst, and continuous operation method thereof
WO2024034929A1 (en) Method for producing petroleum-based high-softening point pitch
WO2022164009A1 (en) Method for preparing synthesis gas
WO2022270699A1 (en) Method for producing synthesis gas and aromatic hydrocarbon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939068

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020939068

Country of ref document: EP

Effective date: 20220913

NENP Non-entry into the national phase

Ref country code: DE