WO2021246465A1 - 繊維強化プラスチック及びその製造方法 - Google Patents

繊維強化プラスチック及びその製造方法 Download PDF

Info

Publication number
WO2021246465A1
WO2021246465A1 PCT/JP2021/021103 JP2021021103W WO2021246465A1 WO 2021246465 A1 WO2021246465 A1 WO 2021246465A1 JP 2021021103 W JP2021021103 W JP 2021021103W WO 2021246465 A1 WO2021246465 A1 WO 2021246465A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
thermoplastic resin
reinforced plastic
thermosetting resin
fiber
Prior art date
Application number
PCT/JP2021/021103
Other languages
English (en)
French (fr)
Inventor
貴文 鈴木
雅登 本間
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202180039975.3A priority Critical patent/CN115697691A/zh
Priority to JP2021532348A priority patent/JPWO2021246465A1/ja
Priority to KR1020227042248A priority patent/KR20230019428A/ko
Priority to EP21816830.0A priority patent/EP4163074A1/en
Publication of WO2021246465A1 publication Critical patent/WO2021246465A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/003Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties
    • B29C70/0035Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties comprising two or more matrix materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/086Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of pure plastics material, e.g. foam layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/003Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/502Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] by first forming a mat composed of short fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/504Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2021/00Use of unspecified rubbers as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/10Thermosetting resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0872Prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a fiber reinforced plastic and a method for producing the same.
  • Fiber reinforced plastic which uses thermosetting resin as a matrix resin and is combined with reinforced fibers such as carbon fiber and glass fiber, is lightweight but has excellent mechanical properties such as strength and rigidity, heat resistance, and corrosion resistance. It is used in many fields such as aviation / space, automobiles, railroad vehicles, ships, civil engineering and construction, and sporting goods.
  • these fiber reinforced plastics are not suitable for manufacturing parts and molded bodies having complicated shapes in a single molding process, and in the above-mentioned applications, a member made of fiber reinforced plastic is manufactured, and then a member made of the fiber reinforced plastic is manufactured. It is necessary to integrate it with another member by joining or fastening.
  • a mechanical joining method such as bolts, rivets, and screws, or a joining method in which an adhesive is interposed is used.
  • the mechanical joining method since the fiber reinforced plastic and another member are drilled, there is a problem that the strength of the hole is lowered.
  • an adhesive is interposed, there is a problem that poor bonding / adhesion occurs due to peeling or the like at the boundary surface between the fiber reinforced plastic molded body and another member.
  • these joining requires a step of pre-processing the joining portion such as a drilling step and an adhesive application step, and there is a problem that the processability is deteriorated.
  • a fiber reinforced plastic having a thermoplastic resin on its surface has been proposed as a method of joining to another member without making a hole in the fiber reinforced plastic or interposing an adhesive.
  • Patent Document 1 discloses a laminate in which a thermoplastic resin layer arranged on the surface and a thermosetting resin layer which is a matrix resin of fiber reinforced plastic are integrated with an uneven shape, and a method for manufacturing the same. Has been done.
  • the thermoplastic resin layer and the thermosetting resin layer have a concavo-convex shape and are integrated so that they are firmly bonded. Further, it is said that by arranging the thermoplastic resin layer on the surface, the thermoplastic resin layer is melted and another adherend can be bonded to the fiber reinforced plastic.
  • Patent Document 2 describes a laminate having an adhesive resin layer containing a thermosetting resin and a thermoplastic resin existing as a continuous phase between an adherend layer and a thermosetting resin layer which is a matrix resin of fiber reinforced plastic. And its manufacturing method are disclosed.
  • the thermoplastic resin existing as a continuous phase in the adhesive resin layer acts as an anchor, and the thermoplastic resin and the thermosetting resin in the adhesive resin layer are firmly bonded to each other. Further, it is said that the bonding strength between the adherend and the fiber reinforced plastic can be improved by melting the thermoplastic resin contained in the adhesive resin layer.
  • Patent Document 1 and Patent Document 2 do not require drilling or adhesives, can effectively utilize characteristics such as strength and rigidity of fiber reinforced plastic, and have high processability because the joining process is simple. Have. However, in order to expand the range of application as a product, it is necessary not only to further improve the bonding strength with the adherend, but also to improve the reliability of the bonding structure.
  • Patent Document 1 while the composite structure of the reinforcing fiber and the thermoplastic resin exhibits high toughness, there is a concern that cracks may occur due to stress concentration on the thermosetting resin having inferior toughness.
  • thermoplastic resin exists as a continuous phase in the thermosetting resin having inferior toughness, there is a concern that the resin may be peeled off due to stress concentration at the interface between the two resins.
  • An object of the present invention is to provide a fiber reinforced plastic that can not only be bonded to another adherend with excellent bonding strength but also can appeal the high reliability of the bonded structure.
  • thermosetting resin layer is a fiber reinforced plastic having a sea-island structure in which an island phase containing a second thermoplastic resin or a rubbery polymer as a main component is dispersed in a sea phase containing a thermosetting resin as a main component. ..
  • the island phase precursor and the thermoplastic resin layer precursor are softened or melted and arranged on at least one surface of the island phase and the reinforcing fiber sheet on which the thermosetting resin layer is formed, and the islands are arranged.
  • a method for producing a fiber reinforced plastic comprising a step of forming a phase and the thermoplastic resin layer to form an intermediate, and a step of molding the obtained intermediate. [14] The method for producing a fiber reinforced plastic according to any one of [1] to [12].
  • thermoplastic resin layer softened or melted and arranged on at least one surface of the island phase and the reinforcing fiber sheet on which the thermosetting resin layer is formed to form the thermoplastic resin layer.
  • a method for producing a fiber reinforced plastic which comprises a step of forming an intermediate and a step of molding the obtained intermediate. [15] The method for producing a fiber reinforced plastic according to any one of [1] to [12]. A step of impregnating both sides of the reinforcing fiber sheet constituting the reinforcing fiber group with a precursor of the thermosetting resin layer to form the thermosetting resin layer.
  • the island phase precursor and the thermoplastic resin layer precursor are softened or melted and arranged on at least one surface of the reinforcing fiber sheet on which the thermosetting resin layer is formed, and the island phase and the heat are arranged.
  • a method for producing a fiber reinforced plastic which comprises a step of forming a plastic resin layer to form an intermediate and a step of molding the obtained intermediate. [16] The method for producing a fiber reinforced plastic according to any one of [1] to [12].
  • One side of the reinforcing fiber sheet constituting the reinforcing fiber group is impregnated with the precursor of the thermoplastic resin layer, and after the thermoplastic resin layer is formed, vibration is performed to obtain the precursor of the thermoplastic resin layer.
  • the process of dispersing in the reinforcing fiber sheet and A method for producing a fiber reinforced plastic comprising a step of impregnating the other surface of the reinforcing fiber sheet with a precursor of the thermosetting resin layer to form an intermediate, and a step of molding the obtained intermediate.
  • the present invention not only is it bonded to another adherend with excellent bonding strength. It is possible to obtain a fiber reinforced plastic that can appeal the high reliability of the bonded structure.
  • FIG. 1 is a schematic view showing an embodiment of a fiber reinforced plastic of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the fiber-reinforced plastic perpendicular to the plane in the present invention, and helps to explain the measurement of the volume ratio of the island phase in the fiber-reinforced plastic.
  • the fiber reinforced plastic according to the embodiment of the present invention is a fiber reinforced plastic containing a reinforcing fiber group, a thermosetting resin layer, and a thermoplastic resin layer containing the first thermoplastic resin. Having the thermoplastic resin layer as the surface layer of the fiber reinforced plastic, The interface between the thermoplastic resin layer and the thermosetting resin layer is located inside the reinforcing fiber group.
  • the thermosetting resin layer has a sea-island structure in which an island phase containing a second thermoplastic resin or a rubbery polymer as a main component is dispersed in a sea phase containing a thermosetting resin as a main component.
  • the fiber reinforced plastic when joining the fiber reinforced plastic and a member of the same type or different types, the fiber reinforced plastic is not pierced and fastened, or without the intervention of an adhesive. It is possible to form an integrally molded product having excellent bonding strength by heat welding having high processability.
  • the fiber-reinforced plastic 5 includes, for example, a reinforcing fiber group including the reinforcing fiber 1, a thermosetting resin layer 3, and a thermoplastic resin layer 4, and is fiber-reinforced.
  • the surface layer of the plastic is the thermoplastic resin layer 4, the interface 6 between the thermoplastic resin layer 4 and the thermosetting resin layer 3 is located inside the reinforcing fiber group, and the thermosetting resin layer 3 is the thermoplastic resin or It has a sea-island structure in which the island phase 7 containing a rubbery polymer as a main component is dispersed in the sea phase 8 containing a thermosetting resin as a main component.
  • the thermosetting resin layer 3 has a sea-island structure in which the island phase 7 containing a thermoplastic resin or a rubbery polymer as a main component is dispersed in the sea phase 8 containing a thermosetting resin as a main component, so that the thermosetting resin layer 3 has a thermosetting property. Since the toughness of the resin layer 3 is increased, not only the bonding strength is improved, but also the reliability of the bonding structure can be promoted from the viewpoint of suppressing the generation and propagation of cracks.
  • the interface between the thermoplastic resin layer 4 and the thermosetting resin layer 3 needs to be located inside the reinforcing fiber group.
  • the thermosetting resin layer 3 and the thermoplastic resin layer 4 can be firmly bonded to each other, and the reliability of the bonded structure can be promoted from the viewpoint of suppressing the peeling of both layers.
  • a part of the reinforcing fiber group is chemically and / or physically with both the thermosetting resin layer 3 and the thermoplastic resin layer 4. It is preferable to bond to the thermosetting resin layer 3 from the viewpoint of more firmly bonding the thermosetting resin layer 3 and the thermoplastic resin layer 4.
  • the distance between the interface 6 and the island phase 7 is preferably 100 ⁇ m or less, more preferably 70 ⁇ m or less, and further preferably 50 ⁇ m or less.
  • the distance between the interface 6 between the thermosetting resin layer 3 and the thermoplastic resin layer 4 and the island phase 7 is randomly defined as the interface 6 between the thermosetting resin layer 3 and the thermoplastic resin layer 4.
  • the shortest distance from the outer circumference of the cross section of the selected island phase 7 is the average value measured at 10 points.
  • the shortest distance can be measured, for example, by using a known method of observing a cross section orthogonal to the fiber direction of the fiber reinforced plastic. For example, a method of measuring from a cross-sectional image acquired by using X-ray CT, a method of measuring from an element analysis mapping image by an energy dispersive X-ray spectroscope (EDS), or an optical microscope, a scanning electron microscope (SEM), or a transmission type.
  • EDS energy dispersive X-ray spectroscope
  • SEM scanning electron microscope
  • a method of measuring from a cross-sectional observation image by an electron microscope (TEM) can be mentioned.
  • the island phase containing the second thermoplastic resin or rubber polymer as a main component may be present in both the thermosetting resin layer and the thermoplastic resin layer, or is present only in the thermosetting resin layer. You may. From the viewpoint of improving the bonding strength of the fiber-reinforced plastic, the island phase containing the second thermoplastic resin or the rubbery polymer as a main component is thermoset near the interface between the thermosetting resin layer and the thermoplastic resin layer. It is preferably present in both the sex resin layer and the thermoplastic resin layer, and is preferably present only in the thermosetting resin layer from the viewpoint of processability.
  • the second thermoplastic resin is preferably a resin of the same type as the first thermoplastic resin, and more preferably the same thermoplastic resin, from the viewpoint of being able to be processed at the same process temperature.
  • the same kind means that the main components are the same except for additives and the like.
  • the main components are the same means that the main skeletons are the same, and includes those having different number of repeating units and terminal treatment.
  • a method for analyzing an island phase containing a thermoplastic resin as a main component or an island phase containing a rubbery polymer as a main component and a thermoplastic resin layer a method of analyzing from a glass transition temperature by a differential scanning calorimeter (DSC) and energy. Examples include a method of analyzing from an element analysis mapping image by a distributed X-ray spectroscope (EDS) and a method of analyzing from an elastic coefficient by a nanoindentation method.
  • EDSC differential scanning calorimeter
  • the second thermoplastic resin or rubbery polymer preferably has a higher melting point than the first thermoplastic resin from the viewpoint of suppressing structural changes at the process temperature.
  • the melting point of the second thermoplastic resin and the rubbery polymer is preferably higher than the melting point of the first thermoplastic resin.
  • the average particle size of the island phase is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, more preferably 0.3 ⁇ m or more and 5 ⁇ m or less, from the viewpoint of suppressing the misalignment of the reinforcing fibers. It is more preferably 5 ⁇ m or more and 3 ⁇ m or less. In particular, when high quality is required, it is desirable to align the reinforcing fibers.
  • the length of the long axis of the island phase containing the second thermoplastic resin or rubber polymer as a main component is preferably 3 ⁇ m or more and 30 ⁇ m or less, preferably 5 ⁇ m or more and 25 ⁇ m, from the viewpoint of increasing the toughness of the thermosetting resin. It is more preferably 5 ⁇ m or more and 20 ⁇ m or less. Since the long axis of the island phase exists along the reinforcing fibers, it may be possible to suppress the disorder of the alignment of the reinforcing fibers, which is preferable. The average particle size and the length of the major axis of the island phase can be confirmed, for example, by observing a cross section of the fiber reinforced plastic orthogonal to the fiber direction with an optical microscope.
  • the average particle size can be calculated from the diameter of a circle that approximately represents the outer shape of at least 20 randomly selected island phases, observed in orthogonal cross sections of the reinforcing fibers. Further, it can be measured by setting the maximum length of the island phase of the observed cross section as the length of the long axis of the island phase.
  • the long axis of the island phase is calculated from the straight line passing through the two farthest points on the outer circumference of the island phase among the straight lines passing through the inside of the island phase confirmed in the cross-sectional observation image.
  • the volume ratio of the island phase is 0.1 volume with respect to 100% by volume in the range. % Or more, and from the viewpoint of further enhancing the toughness of the thermosetting resin, it is preferably 1% by volume or more, and more preferably 10% by volume or more.
  • the upper limit value may be a range as long as it does not significantly impair the mechanical properties of the thermosetting resin, and is preferably 95% by volume or less, more preferably 80% by volume or less.
  • FIG. 2 shows a schematic cross section of the fiber reinforced plastic perpendicular to the plane.
  • the fiber closest to the surface 9 of the fiber reinforced plastic is defined as the outermost fiber 10, and the reference line 11 that passes through the center of the outermost fiber 10 and is horizontal to the surface of the fiber reinforced plastic. From, the volume% of the island phase 7 is calculated in the measurement range 12 of 100 ⁇ m in the thickness direction toward the thermosetting resin layer 3.
  • thermosetting resin layer In fiber reinforced plastics, the interface between the thermosetting resin layer and the thermoplastic resin layer is located inside the reinforcing fiber group.
  • the shape of the interface is preferably an uneven shape from the viewpoint of further enhancing the mechanical bonding force.
  • the integrally molded product in which the fiber reinforced plastic and other structural members according to the embodiment of the present invention are bonded via the thermoplastic resin layer has excellent bonding strength.
  • the means for confirming the uneven shape of the interface is not particularly limited, but can be confirmed by observing a cross section orthogonal to the fiber direction of the fiber reinforced plastic.
  • a known method can be used as a method for confirming the uneven shape of the interface.
  • thermosetting resin layer and / or the thermoplastic resin layer may be dyed to adjust the contrast.
  • the impregnation rate of the thermosetting resin and the thermoplastic resin (hereinafter, the thermosetting resin and the thermoplastic resin may be simply generically referred to as resins) in the reinforcing fiber group is , 80% or more is preferable.
  • the impregnation rate is more preferably 85% or more, still more preferably 90% or more.
  • the impregnation rate here is the ratio of how much the resin impregnates the reinforcing fiber group constituting the fiber reinforced plastic.
  • the impregnation rate can be determined by measuring the ratio of the portion not impregnated with the resin by a specific method.
  • the method for measuring the impregnation rate is as follows when the total cross-sectional area of the fiber-reinforced plastic including the voids in the fiber-reinforced plastic is A0 and the cross-sectional area of the voids is A1 in the cross-sectional observation orthogonal to the fiber direction of the fiber-reinforced plastic. The method of obtaining by the formula (1) of is mentioned.
  • Impregnation rate (%) (A0-A1) x 100 / A0 ... (1)
  • thermosetting resin layer has a sea-island structure in which an island phase containing a second thermoplastic resin or a rubbery polymer as a main component is dispersed in a sea phase containing a thermosetting resin as a main component. Further, the interface between the thermoplastic resin layer and the thermosetting resin layer is located inside the reinforcing fiber group.
  • the thermosetting resin layer can be formed by the reinforcing fiber group and the thermosetting resin. The details of the reinforcing fiber group and the thermosetting resin composition will be described.
  • the reinforcing fiber group is an aggregate (fiber bundle) of reinforcing fibers, and may be either continuous fibers or discontinuous fibers, and is in a unidirectionally arranged form and a laminated form thereof, a woven fabric form, or the like. Can be selected as appropriate. From the viewpoint of obtaining a fiber-reinforced plastic that is lightweight and has a higher level of durability, it is preferable that the fiber is a continuous fiber or a woven fabric in which the reinforcing fibers are arranged in one direction.
  • the fiber bundle may be composed of the same reinforcing fiber or may be composed of different reinforcing fibers.
  • the number of fibers constituting the reinforcing fiber bundle is not particularly limited, and 300 to 60,000 fibers can be exemplified, preferably 300 to 48,000 fibers, and more preferably 1,000 to 24 fibers from the viewpoint of productivity. It is 000.
  • the type of reinforcing fiber constituting the reinforcing fiber group is not particularly limited, and for example, carbon fiber, glass fiber, aramid fiber, alumina fiber, silicon carbide fiber, boron fiber, metal fiber, natural fiber, mineral fiber and the like are used. These can be used alone or in combination of two or more. Among them, carbon fibers such as PAN (Polyacrylonitrile) type, pitch type and rayon type are preferably used from the viewpoint of high specific strength and specific rigidity and weight reduction effect. Further, from the viewpoint of enhancing the economic efficiency of the obtained fiber reinforced plastic, glass fiber can be preferably used, and in particular, carbon fiber and glass fiber are preferably used in combination from the viewpoint of the balance between mechanical properties and economic efficiency.
  • aramid fibers can be preferably used from the viewpoint of enhancing the impact absorption and shapeability of the obtained fiber reinforced plastic, and it is particularly preferable to use carbon fibers and aramid fibers in combination from the viewpoint of the balance between mechanical properties and impact absorption. .. Further, from the viewpoint of enhancing the conductivity of the obtained fiber reinforced plastic, reinforced fibers coated with a metal such as nickel, copper or ytterbium, or pitch-based carbon fibers can also be used.
  • the reinforcing fibers constituting the reinforcing fiber group are surface-treated with a sizing agent from the viewpoint of improving mechanical properties.
  • a sizing agent include polyfunctional epoxy resin, urethane resin, acrylic acid polymer, polyhydric alcohol, polyethyleneimine, ethylene oxide adduct of aliphatic alcohol, and specific examples thereof include glycerol triglycidyl ether and diglycerol polyglycidyl.
  • polyglycidyl ether polyacrylic acid, acrylic acid of aliphatic polyhydric alcohols such as ether, polyglycerol polyglycidyl ether, sorbitol polyglycidyl ether, arabitol polyglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol polyglycidyl ether Copolymers with methacrylic acid, copolymers of acrylic acid and maleic acid, or mixtures of two or more of these, polyvinyl alcohol, glycerol, diglycerol, polyglycerol, sorbitol, arabitol, trimethylolpropane, pentaerythritol, Examples thereof include polyethyleneimine and polyoxyethylene oleyl ether containing more amino groups in one molecule.
  • glycerol triglycidyl ether diglycerol polyglycidyl ether, and polyglycerol polyglycidyl ether are preferably used.
  • the reinforcing fiber it is preferable to use a fiber having a surface free energy of 10 to 50 mJ / m 2 measured by the Wilhelmy method.
  • the surface free energy By controlling the surface free energy within this range, the affinity with the thermosetting resin layer and the thermoplastic resin layer is enhanced, the aggregation of the reinforcing fibers is suppressed, and the dispersed state in each layer is improved. As a result, the resin flow in the layer is promoted, and the formation of the dispersed phase of the thermoplastic resin in the thermosetting resin is promoted.
  • the reinforcing fiber exhibits high affinity with the thermosetting resin layer and the thermoplastic resin layer, and exhibits high bonding strength at the interface between the thermosetting resin and the thermoplastic resin in which the reinforcing fiber is present.
  • the surface free energy of the reinforcing fiber is preferably 15 to 40 mJ / m 2 , more preferably 18 to 35 mJ / m 2 .
  • the surface is oxidized and the amount of oxygen-containing functional groups such as carboxyl groups and hydroxyl groups is adjusted and controlled, or a simple substance or a plurality of compounds are attached to the surface. There is a way to control it.
  • a plurality of compounds are attached to the surface, those having high surface free energy and those having low surface free energy may be mixed and attached.
  • the method of calculating the surface free energy of the reinforcing fiber will be described.
  • the surface free energy is calculated by measuring the contact angles of the reinforcing fiber and three types of solvents (purified water, ethylene glycol, and tricresyl phosphate), and then calculating the surface free energy using the Owens approximation formula. can.
  • the procedure is shown below, but the measuring equipment and detailed methods are not necessarily limited to the following.
  • DCAT11 manufactured by DataPhysics
  • one single fiber is taken out from the reinforcing fiber bundle, cut into eight pieces to a length of 12 ⁇ 2 mm, and then placed in a special holder FH12 (a flat plate whose surface is coated with an adhesive substance). Paste in parallel with a gap of 2 to 3 mm between the single fibers. After that, the tips of the single fibers are trimmed and set in the DCAT 11 of the holder.
  • the cell containing each solvent is brought close to the lower end of eight single fibers at a speed of 0.2 mm / s, and the cells are immersed up to 5 mm from the tip of the single fibers.
  • the single fiber is pulled up at a speed of 0.2 mm / s. This operation is repeated 4 times or more.
  • the force F received by the single fiber when immersed in the liquid is measured with an electronic balance.
  • the contact angle ⁇ is calculated by the following equation.
  • COS ⁇ (force F (mN) received by eight single fibers) / ((8 (number of single fibers) x circumference (m) of single fibers x surface tension of solvent (mJ / m 2 )))
  • the measurement is performed on single fibers extracted from different locations of the three reinforcing fiber bundles. That is, the average value of the contact angles of a total of 24 single fibers for one reinforcing fiber bundle is obtained.
  • the surface free energy ⁇ f of the reinforcing fiber is calculated as the sum of the polar component ⁇ p f of the surface free energy and the non-polar component ⁇ d f of the surface free energy.
  • the polar component ⁇ p f of the surface free energy is the surface tension of each liquid according to the approximate formula of Owens (a formula composed of the polar component and the non-polar component of the surface tension peculiar to each solvent and the contact angle ⁇ ) expressed by the following equation. After substituting the components and contact angles of, and plotting them on X and Y, it is obtained by the self-polarization of the inclination a when linearly approximated by the minimum self-polarization method.
  • the non-polar component ⁇ d f of the surface free energy is obtained by the square of the intercept b.
  • the surface free energy ⁇ f of the reinforcing fiber is the sum of the square of the slope a and the square of the intercept b.
  • Y (1 + COS ⁇ ) ⁇ (Polar component of surface tension of solvent (mJ / m 2 )) / 2 ⁇ (Non-polar component of surface tension of solvent (mJ / m 2 ))
  • the polar and non-polar components of the surface tension of each solvent are as follows. Purified water surface tension 72.8mJ / m 2, the polar component 51.0mJ / m 2, the non-polar component 21.8 (mJ / m 2) Ethylene glycol surface tension 48.0mJ / m 2, the polar component 19.0mJ / m 2, the non-polar component 29.0 (mJ / m 2) - phosphate tricresol surface tension 40.9mJ / m 2, the polar component 1.7 mJ / m 2, the non-polar component 39.2 (mJ / m 2).
  • the reinforcing fiber bundle is a reinforced plastic having excellent bonding strength in addition to the tensile strength. It is preferable because it can be obtained, and it is more preferable that it is 4.0 GPa or more.
  • the joint strength referred to here refers to the tensile shear adhesive strength obtained in accordance with ISO4587 (1995).
  • the mass content of the reinforcing fibers constituting the reinforcing fiber group in the fiber reinforced plastic is preferably 30 to 90% by mass, more preferably 35 to 85% by mass, and further preferably 40 to 80% by mass.
  • a fiber-reinforced plastic having a higher specific strength and specific elastic modulus can be obtained.
  • the volume of the reinforcing fiber contained in the thermosetting resin layer is the total volume of the reinforcing fiber contained in the entire fiber reinforced plastic from the viewpoint of the balance between the mechanical properties of the fiber reinforced plastic and the weldability with the second member. It is preferably 50 to 99%, more preferably 75 to 95%.
  • thermosetting resin layer As a method for measuring the amount of reinforcing fibers in the thermosetting resin layer, for example, segmentation analysis is performed using an X-ray CT image of a small piece of fiber reinforced plastic, and the volume of the reinforcing fibers present in the thermosetting resin layer. Is divided by the total volume of the reinforcing fibers contained in the small pieces to determine the ratio [%], or the small pieces are obtained by an optical microscope, a scanning electron microscope (SEM), or a transmission electron microscope (TEM). From the cross-sectional observation photograph obtained, a method of dividing the area of the reinforcing fibers existing in the thermosetting resin layer by the area of the reinforcing fibers contained in the entire small piece to obtain the ratio [%] is exemplified. In observation, the thermosetting resin layer and / or the thermoplastic resin layer may be dyed to adjust the contrast.
  • thermosetting resin composition contains a thermosetting resin, and may further contain an additive or the like depending on the use of the fiber reinforced plastic.
  • thermosetting resin contained in the thermosetting resin composition is not particularly limited, and is, for example, unsaturated polyester resin, vinyl ester resin, epoxy resin, phenol resin, urea resin, melamine resin, polyimide resin, cyanate.
  • ester resins vinylimide resins, benzoxazine resins, or copolymers and modified forms thereof, and resins blended with at least two of these.
  • An elastomer or a rubber component may be added to the thermosetting resin in order to improve the impact resistance.
  • epoxy resin is preferable because it has excellent mechanical properties, heat resistance, and adhesiveness to reinforcing fibers.
  • Examples of the main agent of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol type epoxy resin such as bisphenol S type epoxy resin, and brominated epoxy such as tetrabromobisphenol A diglycidyl ether.
  • Novolak type epoxy resin such as resin, epoxy resin having biphenyl skeleton, epoxy resin having naphthalene skeleton, epoxy resin having dicyclopentadiene skeleton, phenol novolac type epoxy resin, cresol novolac type epoxy resin, N, N, O-tri Glycidyl-m-aminophenol, N, N, O-triglycidyl-p-aminophenol, N, N, O-triglycidyl-4-amino-3-methylphenol, N, N, N', N'-tetra Glycidyl-4,4'-methylenedianiline, N, N, N', N'-tetraglycidyl-2,2'-diethyl-4,4'-methylenedianiline, N, N, N', N'- Examples thereof include glycidylamine type epoxy resins such as tetraglycidyl-m-xylylene diamine, N, N-diglycidylaniline, N, N-
  • the thermosetting resin composition may contain a curing agent.
  • the curing agent include dicyandiamide, aromatic amine compound, phenol novolac resin, cresol novolak resin, polyphenol compound, imidazole derivative, tetramethylguanidine, thiourea-added amine, carboxylic acid hydrazide, carboxylic acid amide, and polymercaptan. Be done. Further, these curing agents are preferably 0.8 to 1.2 equivalents of the number of reaction functional groups of the thermosetting resin.
  • the heat curable resin compositions include mica, talc, kaolin, hydrotalcite, sericite, bentonite, zonotrite, sepiolite, smectite, montmorillonite, wallastenite, silica, calcium carbonate, depending on the application of the fiber reinforced plastic.
  • Antimon flame retardants such as, phosphorus flame retardants such as ammonium polyphosphate, aromatic phosphate and red phosphorus, organic acid metal salt flame retardants such as borate metal salts, carboxylate metal salts and aromatic sulfonimide metal salts. , Inorganic flame retardants such as zinc borate, zinc, zinc oxide and zirconium compounds, nitrogen flame retardants such as cyanuric acid, isocyanuric acid, melamine, melamine cyanurate, melamine phosphate and guanidine nitrogenated, fluoroflame retardants such as PTFE.
  • phosphorus flame retardants such as ammonium polyphosphate, aromatic phosphate and red phosphorus
  • organic acid metal salt flame retardants such as borate metal salts, carboxylate metal salts and aromatic sulfonimide metal salts.
  • Inorganic flame retardants such as zinc borate, zinc, zinc oxide and zirconium compounds
  • nitrogen flame retardants such as cyanuric acid, isocyanuri
  • Silicone flame retardants such as polyorganosiloxane, metal hydroxide flame retardants such as aluminum hydroxide and magnesium hydroxide, and other flame retardants, cadmium oxide, zinc oxide, cuprous oxide, cupric oxide, Flame retardants such as ferrous oxide, ferrous oxide, cobalt oxide, manganese oxide, molybdenum oxide, tin oxide and titanium oxide, pigments, dyes, lubricants, mold retardants, compatibilizers, dispersants, mica, Crystal nucleating agents such as talc and kaolin, plasticizing agents such as phosphoric acid esters, heat stabilizers, antioxidants, color inhibitors, UV absorbers, fluidity modifiers, foaming agents, antibacterial agents, anti-vibration agents, deodorants Agents, slidable modifiers, antistatic agents such as polyether ester amides and the like may be added.
  • flame retardants such as polyorganosiloxane, metal hydroxide flame retardants such as aluminum hydroxide and magnesium hydroxide, and other flame
  • flame retardancy when the application is electrical / electronic equipment, automobiles, aircraft, etc., flame retardancy may be required, and phosphorus-based flame retardants, nitrogen-based flame retardants, and inorganic flame retardants are preferably added.
  • the above flame retardant has 1 to 20 parts by mass of the flame retardant with respect to 100 parts by mass of the resin in order to maintain a good balance between the mechanical properties of the resin used and the fluidity of the resin during molding as well as the manifestation of the flame retardant effect. It is preferably 1 to 15 parts by mass, more preferably 1 to 15 parts by mass.
  • the second thermoplastic resin is not particularly limited except that the thermoplastic resin is the main component, and a resin having high toughness can be preferably used in order to improve the toughness of the thermosetting resin layer. Further, the island phase can be formed by using a thermoplastic resin composition containing a thermoplastic resin as a main component.
  • the thermoplastic resin composition may contain additives and the like depending on the use of the fiber reinforced plastic.
  • the type of the second thermoplastic resin that can be contained as the main component in the island phase is not particularly limited, and is, for example, "polyetherketone terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene.
  • Polyester such as naphthalate (PEN) and liquid crystal polyester, polyolefin such as polyethylene (PE), polypropylene (PP) and polybutylene, and polyarylene such as polyoxymethylene (POM), polyamide (PA) and polyphenylene sulfide (PPS).
  • thermoplastic elastomers such as polyurethane-based, polyester-based, polyamide-based, polybutadiene-based, polyisoprene-based, fluororesin, and acrylonitrile-based, and thermoplastic resins selected from these copolymers and modified products.
  • polyolefin is preferable from the viewpoint of the light weight of the obtained fiber reinforced plastic.
  • polyarylene sulfide such as polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyaryl ether ketone (PAEK), and polyetherketone ketone (PEKK) are preferable.
  • the second thermoplastic resin is mainly one or more resins selected from the group consisting of polyamide, polyarylate, polyamideimide, polyimide, polyetherimide, polysulfone, and polyethersulfone. It is preferable to use it as an ingredient. Among them, polyamide and polyimide are more preferable, and polyamide, which can greatly improve impact resistance due to its excellent toughness, is most preferable.
  • the island phase preferably contains a thermosetting resin, and more preferably contains a component of the thermosetting resin of the sea phase.
  • the second thermoplastic resin preferably contains a thermosetting resin, and more preferably contains a component of the thermosetting resin of the sea phase.
  • the "component of the thermosetting resin in the sea phase” means a resin component of the same type as the thermosetting resin contained in the sea phase.
  • the second thermoplastic resin forms a semi-IPN structure (polymer interpenetrating network structure) in combination with a thermosetting resin, it is more preferable in that the separation between the island phase and the sea phase can be suppressed.
  • thermosetting resin examples include a polyamide selected from a polyamide 12, polyamide 6, polyamide 11, and a polyamide 6/12 copolymer and an epoxy compound.
  • the ratio (% by mass) of the components of the second thermoplastic resin and the thermosetting resin can be used in the range of 95: 5 to 70:30, and more preferably in the range of 90:10 to 80:20.
  • the thermosetting resin is not limited to the epoxy compound, and may be selected from unsaturated polyester, vinyl ester resin, benzoxazine resin, phenol resin, urea resin, melamine resin, and polyimide resin.
  • the thermosetting resin is more preferably a component of the same thermosetting resin as the sea phase.
  • the second thermoplastic resin includes mica, talc, kaolin, hydrotalcite, sericite, bentonite, zonotrite, sepiolite, smectite, montmorillonite, wallastenite, silica, calcium carbonate, glass beads, depending on the application.
  • Phosphorus Flame Retardants such as Ammonium Polyphosphate, Aromatic Phosphate and Red Phosphorus, Organic Acid Metal Salt Flame Retardants such as Borate Metal Salts, Carvate Metal Salts and Aromatic Symphonimide Metal Salts, Zinc Borate , Inorganic flame retardants such as zinc, zinc oxide and zirconium compounds, flame retardants such as cyanuric acid, isocyanuric acid, melamine, melamine cyanurate, melamine phosphate and nitrogenized guanidine, fluoroflame retardants such as PTFE, polyorgano Silicone flame retardants such as siloxane, metal hydroxide flame retardants such as aluminum hydroxide and magnesium hydroxide, and other flame retardants, cadmium oxide, zinc oxide, cuprous oxide, cupric oxide, first oxide Flame retardants such as iron, ferric oxide, cobalt oxide, manganese oxide, molybdenum oxide, tin oxide and titanium oxide, pigments, dyes, dyes, dye
  • the flame retardant is a flame retardant with respect to 100 parts by mass of the second thermoplastic resin in order to maintain a good balance between the mechanical properties of the resin used and the fluidity of the resin during molding as well as the manifestation of the flame retardant effect.
  • the amount is preferably 1 to 20 parts by mass, more preferably 1 to 15 parts by mass.
  • the shape of the island phase containing the second thermoplastic resin as a main component is not particularly limited, and any sea island structure may be used as long as it is dispersed in the sea phase containing a thermosetting resin as a main component.
  • the shape of the island phase may be, for example, a fiber shape or a particle shape, and is preferably a spherical shape from the viewpoint of suppressing the misalignment of the reinforcing fibers.
  • the cross-sectional shape of the island phase containing the second thermoplastic resin as a main component, which is observed in the cross section perpendicular to the fiber-reinforced plastic plane is circular, elliptical, or substantially circular including unevenness.
  • a circle having a small starting point of stress concentration is more preferable.
  • the elastic modulus of the island phase containing the second thermoplastic resin as a main component is preferably lower than the elastic modulus of the sea phase containing the thermosetting resin as a main component from the viewpoint of improving the toughness of the thermosetting resin. It is more preferably 70% or less, and further preferably 50% or less, the elastic modulus of the sea phase containing the thermosetting resin as a main component.
  • the second thermoplastic resin in the cross section obtained by cutting out the fiber reinforced plastic is used. A method of evaluating each of the island phase containing the main component and the sea phase containing the thermosetting resin as the main component by the nanoindentation method can be mentioned.
  • the glass transition temperature of the island phase containing the second thermoplastic resin as a main component is preferably lower than the glass transition temperature of the sea phase containing a thermosetting resin as a main component.
  • the glass transition temperature of the island phase containing the second thermoplastic resin as the main component is lower than the glass transition temperature of the sea phase containing the thermosetting resin as the main component, further improving the toughness of the thermosetting resin layer.
  • the second thermoplastic is obtained from the cross section obtained by cutting out the fiber-reinforced plastic.
  • a method of extracting each of an island phase containing a resin as a main component and a sea phase containing a thermosetting resin as a main component and evaluating them with a differential scanning calorimeter (DSC) can be mentioned.
  • the rubbery polymer preferably contains a rubber polymer as a main component, and other than that, there is no particular limitation, and an additive or the like may be contained depending on the intended use.
  • the rubber polymer is a polymer that contains a polymer having a glass transition temperature lower than room temperature and is partially constrained to each other by covalent bonds, ionic bonds, van der Waals forces, entanglement, and the like.
  • Examples of the rubbery polymer include olefin resins, acrylic rubbers, silicone rubbers, fluororubbers, nitrile rubbers, vinyl rubbers, urethane rubbers, polyamide elastomers, polyester elastomers, ionomers and the like.
  • Examples of the additive that can be contained in the rubber polymer include the additive that can be contained in the above-mentioned second thermoplastic resin, and the same applies to preferable examples.
  • the shape of the island phase containing the rubbery polymer as a main component may be the same as the shape of the island phase containing the second thermoplastic resin as a main component, and the same applies to the preferred examples.
  • the elastic modulus of the island phase containing a rubbery polymer as a main component is also the elastic modulus of the sea phase containing a thermosetting resin as a main component, similar to the elastic modulus of the island phase containing a second thermoplastic resin as a main component. It is preferably lower than the rate, and the preferred range is the same.
  • the island phase containing a rubbery polymer as a main component also forms a semi-IPN structure like the island phase containing a thermoplastic resin as a main component, and the preferable range is also the same as that of the thermoplastic resin.
  • thermoplastic resin layer is not particularly limited except that it contains the first thermoplastic resin, and preferably contains the first thermoplastic resin as a main component, and further depending on the use of the fiber reinforced plastic. It may contain additives and the like.
  • thermoplastic resin layer examples include the resins exemplified in the above-mentioned second thermoplastic resin, and the same applies to preferred examples.
  • additives that can be contained in the first thermoplastic resin layer include the additive that can be contained in the second thermoplastic resin described above, and the same applies to preferred examples.
  • the texture of the thermoplastic resin layer in the fiber reinforced plastic is preferably 10 g / m 2 or more and 500 g / m 2 or less from the viewpoint of ensuring the amount of resin suitable for welding with the second member and improving the quality of quality. , More preferably 20 g / m 2 or more and 200 g / m 2 or less.
  • the basis weight means the mass (g) of the thermoplastic resin layer contained in 1 m 2 of the fiber reinforced plastic.
  • the thermoplastic resin layer may be present as a part of the surface layer of the fiber reinforced plastic.
  • the thermoplastic resin layer existing on the surface layer of the fiber reinforced plastic can realize integration by welding with another member, and in a preferable form, the portion of the thermoplastic resin layer can be minimized, and the mechanical properties can be achieved. It is possible to increase the efficiency of fiber reinforced plastics that are excellent in quality.
  • the method for producing the fiber-reinforced plastic according to the embodiment of the present invention is not particularly limited, and examples thereof include the methods (I) to (IV) below.
  • both sides of the reinforcing fiber sheet constituting the reinforcing fiber group are impregnated with the precursor of the island phase and the precursor of the thermosetting resin layer.
  • the process of forming the island phase and the thermosetting resin layer, A precursor of the island phase and a precursor of the thermoplastic resin layer are softened or melted and arranged on at least one surface of the reinforcing fiber sheet on which the island phase and the thermosetting resin layer are formed, and the island phase and the thermoplastic resin layer are arranged.
  • It is a method for producing a fiber reinforced plastic including a step of forming an intermediate to form an intermediate and a step of molding the obtained intermediate.
  • the production method (II) is a step of impregnating both sides of a reinforcing fiber sheet constituting the reinforcing fiber group with a precursor of an island phase and a precursor of a thermosetting resin layer to form an island phase and a thermosetting resin layer.
  • It is a method for producing a fiber reinforced plastic including a step of molding the obtained intermediate.
  • the manufacturing method (III) includes a step of impregnating both sides of a reinforcing fiber sheet constituting the reinforcing fiber group with a precursor of a thermosetting resin layer to form a thermosetting resin layer.
  • the island phase precursor and the thermoplastic resin layer precursor are softened or melted and arranged on at least one surface of the reinforcing fiber sheet on which the thermosetting resin layer is formed to form the island phase and the thermoplastic resin layer. It is a method for producing a fiber reinforced plastic including a step of forming an intermediate and a step of molding the obtained intermediate.
  • Manufacturing method (IV) In the production method (IV), one side of the reinforcing fiber sheet constituting the reinforcing fiber group is impregnated with the precursor of the thermoplastic resin layer, the thermoplastic resin layer is formed, and then vibration is performed to obtain the precursor of the thermoplastic resin layer.
  • the process of dispersing in the reinforcing fiber sheet and It is a method for producing a fiber reinforced plastic including a step of impregnating the other surface of a reinforcing fiber sheet with a precursor of a thermosetting resin layer to form an intermediate, and a step of molding the obtained intermediate.
  • a sea-island structure in which a thermosetting resin layer is dispersed in a sea phase containing a second thermoplastic resin or a rubbery polymer as a main component and a thermosetting resin as a main component.
  • the method for forming the layer having the above is not particularly limited, and for example, in the method for producing the fiber-reinforced plastic, any of the following methods (i) to (vii) may be used. Further, a plurality of these methods may be combined.
  • Ii A step of incorporating the precursor of the island phase into the precursor of the thermosetting resin layer.
  • (Iii) A step of including the precursor of the island phase in both the precursor of the thermosetting resin layer and the precursor of the thermoplastic resin layer.
  • (Iv) A step of applying the precursor of the island phase to at least one surface of the intermediate in which the precursor of the thermosetting resin layer is impregnated into the reinforcing fiber group, and further impregnating the precursor of the thermoplastic resin layer.
  • (V) A step of applying the precursor of the island phase to the intermediate in which the precursor of the thermoplastic resin layer is impregnated into the reinforcing fiber group.
  • (Vi) A step of applying an island phase precursor to the surface of one side of the precursor of the thermoplastic resin layer and further impregnating the precursor of the thermoplastic resin layer.
  • thermoplastic resin A step of vibrating an intermediate in which a precursor of a thermoplastic resin is impregnated in a reinforcing fiber group with a vibration bar or the like to disperse the precursor of the thermoplastic resin in the reinforcing fiber group.
  • the precursor of the thermosetting resin layer is a composition that is impregnated with the reinforcing fiber group to form a thermosetting resin layer.
  • the method of impregnating the reinforcing fiber group with the precursor of the thermosetting resin layer is not particularly limited, and examples thereof include a method of impregnating by heating and pressurizing with a heat roller to soften or melt.
  • the precursor of the thermosetting resin layer is not limited in its form as long as it is impregnated with the reinforcing fiber group to form the thermosetting resin layer, but for example, it is in the form of a liquid, a sheet, a non-woven fabric, or particles. And so on. However, the precursor of the thermosetting resin layer is preferably in the form of a sheet from the viewpoint of being able to uniformly impregnate the reinforcing fiber group.
  • the precursor of the thermoplastic resin layer is a composition that is impregnated with the reinforcing fiber group to form the thermoplastic resin layer.
  • the method of impregnating the reinforcing fiber group with the precursor of the thermoplastic resin layer is not particularly limited, and examples thereof include a method of heating and pressurizing with a heat roller to melt and impregnate the reinforcing fibers.
  • the precursor of the thermoplastic resin layer is not limited in its form as long as it is impregnated with the reinforcing fiber group to form the thermoplastic resin layer, and for example, it may be in the form of a liquid, a sheet, a non-woven fabric, a particle, or the like. Can be mentioned.
  • the precursor of the thermoplastic resin layer is preferably in the form of a sheet from the viewpoint of being able to uniformly impregnate the reinforcing fiber group.
  • the shape of the island phase precursor and / or the precursor of the thermoplastic resin layer is preferably powdery.
  • the temperature at which the precursor of the thermoplastic resin layer is melted is amorphous at a temperature of the melting point + 30 ° C. or higher when the first thermoplastic resin, which is the main component of the precursor of the thermoplastic resin layer, is crystalline. In the case of sex, it is preferable to heat and pressure mold at the glass transition temperature + 30 ° C. or higher.
  • thermoplastic resin layer may be arranged at least on the portion to be the joint surface with another member, but a certain margin of the joint surface may be expected in order to ensure stable heat welding. From that point of view, it is preferably present in 50% or more, more preferably 80% or more of the area of the surface layer of the fiber reinforced plastic.
  • the precursor of the island phase is not particularly limited as long as it is an island phase existing in the thermosetting resin layer in the fiber reinforced plastic.
  • Examples of the shape of the precursor of the island phase include liquid, sheet, non-woven fabric, and particulate.
  • the precursor of the island phase is preferably in the form of particles, more preferably in the form of powder, from the viewpoint that it can be uniformly present at the interface between the thermosetting resin layer and the thermoplastic resin layer.
  • the precursor of the island phase is included in the precursor of the thermosetting resin layer in advance
  • the precursor of the island phase is preferably in the range of 10 to 40 parts by mass with respect to 100 parts by mass of the precursor of the thermosetting resin layer. , More preferably in the range of 15 to 40 parts by mass, and even more preferably in the range of 25 to 40 parts by mass.
  • the precursor of the island phase when the precursor of the island phase is included in the precursor of the thermoplastic resin layer in advance, the precursor of the island phase is in the range of 10 to 40 parts by mass with respect to 100 parts by mass of the precursor of the thermoplastic resin layer. It is preferably in the range of 15 to 40 parts by mass, more preferably in the range of 25 to 40 parts by mass.
  • a preferred embodiment of the fiber reinforced plastic according to the embodiment of the present invention can be exemplified by a method of molding using an intermediate such as a prepreg having a high impregnation rate or a semipreg having a low impregnation rate based on the above definition.
  • the fiber-reinforced plastic is shaped into a desired structure, and the thermosetting resin promotes the curing reaction.
  • the glass transition temperature of the thermosetting resin is preferably 120 ° C. or higher, more preferably 150 ° C. or higher, still more preferably 180 ° C. or higher, from the viewpoint of use as a structure.
  • the glass transition temperature of the thermosetting resin can be controlled higher than the glass transition temperature of the thermoplastic resin or the rubbery polymer of the island phase.
  • the intermediate may be molded by itself, a plurality of sheets may be laminated and molded, or a plurality of sheets may be laminated and molded. ..
  • the composition of the laminate is not particularly limited except that the intermediate is placed on one of the outermost laminate units corresponding to the surface of the molded product, and the prepreg, film, sheet, non-woven fabric, porous body, etc. Metals and the like can be laminated.
  • the fiber reinforced plastic according to the embodiment of the present invention is not limited to the example of molding an intermediate, and is not limited to the example of molding an intermediate, such as autoclave molding, press molding, pultrusion molding, resin transfer (RTM) molding, and resin infusion of prepreg. RI) Any one that takes the embodiment of the present invention through the molding process can be preferably selected.
  • the structure of the fiber reinforced plastic of the present invention is not particularly limited, and various structures such as flat plates, curved plates, uneven structures, hollow structures, sandwich structures, etc. can be selected according to the application.
  • the fiber reinforced plastic of the present invention can be an integrally molded product welded to another member via a thermoplastic resin layer arranged on the surface layer.
  • the joining method at this time is not limited, and examples thereof include welding methods such as hot plate welding, vibration welding, ultrasonic welding, laser welding, resistance welding, induction welding, insert injection molding, and outsert injection molding. can.
  • the fiber-reinforced plastic of the present invention is preferably used for computer applications such as aircraft structural members, windmill blades, automobile outer panels, IC trays and laptop housings, and for sports applications such as golf shafts and tennis rackets.
  • ⁇ Reinforcing fiber bundle> ⁇ A-1 A polymer containing polyacrylonitrile as a main component is spun, fired, and surface-oxidized to obtain a reinforcing fiber bundle A-1 composed of continuous carbon fibers having a total number of single yarns of 24,000, which is used to form a reinforcing fiber group. Using. The characteristics of this carbon fiber bundle A-1 were as follows. Single fiber diameter: 7 ⁇ m Density: 1.8 g / cm 3 Tensile strength: 4.2 GPa Tension modulus: 230 GPa Surface free energy: 15mJ / m 2
  • various sizing agent compounds were mixed with acetone to obtain a solution of about 1% by mass in which the compounds were uniformly dissolved.
  • heat treatment is performed at 210 ° C. for 90 seconds, and the amount of each compound attached is 0.5 parts by mass with respect to 100 parts by mass of the carbon fiber to which each compound is attached. It was adjusted to be.
  • the sizing agent compound used for each carbon fiber and the surface free energy after the sizing agent is applied are as follows.
  • Grillamide registered trademark
  • epoxy resin jER (registered trademark) 828, manufactured by Mitsubishi Chemical Corporation
  • curing agent Tomide (registered trademark) # 296, manufactured by T & K Toka Co., Ltd.
  • the precipitated solid was separated by filtration, washed well with n-hexane, and then vacuum dried at a temperature of 100 ° C. for 24 hours with the precursor D-1 of the island phase containing a second thermoplastic resin as a main component.
  • Epoxy-modified polyamide particles having a spherical semi-IPN structure were obtained.
  • the average particle size of the obtained precursor D-1 of the island phase containing the second thermoplastic resin as a main component was 13 ⁇ m, and the melting point was 250 ° C.
  • the average particle size of the island phase precursor D-3 containing a thermoplastic resin as a main component was 25 ⁇ m.
  • thermosetting resin layer ⁇ B-1 Epoxy resin main agent (jER (registered trademark) 828 (manufactured by Mitsubishi Chemical Corporation)), (jER (registered trademark) 1001 (manufactured by Mitsubishi Chemical Corporation)), (jER (registered trademark) 154 (Mitsubishi Chemical Corporation)) 30 parts by mass, 40 parts by mass, and 30 parts by mass of)) were added, and the mixture was heated and kneaded at 150 ° C. until the components were compatible with each other.
  • jER registered trademark 828 (manufactured by Mitsubishi Chemical Corporation)
  • jER (registered trademark) 1001 manufactured by Mitsubishi Chemical Corporation
  • jER (registered trademark) 154 Mitsubishi Chemical Corporation
  • thermosetting resin layer was obtained by kneading at 80 ° C. for 30 minutes.
  • ⁇ B-4 Epoxy resin main agent (Araldite (registered trademark) MY721 (manufactured by Huntsman Advanced Materials)), (jER (registered trademark) 825 (manufactured by Mitsubishi Chemical Co., Ltd.)), (Sumika Excel (registered trademark) PES5003P (Manufactured by Sumitomo Chemical Co., Ltd.) was added in an amount of 50 parts by mass, 50 parts by mass and 7 parts by mass, respectively, and heat-kneaded at 150 ° C. until the components were compatible.
  • thermoplastic resin layer ⁇ C-1
  • a low melting point polyamide (Amylan (registered trademark) CM4000 (manufactured by Toray Industries, Inc.), ternary copolymerized polyamide resin, melting point 155 ° C.) was sheeted to obtain a precursor C-1 of a thermoplastic resin layer.
  • a low melting point polyamide (Amylan (registered trademark) CM4000 (manufactured by Toray Industries, Inc.), a ternary copolymerized polyamide resin, melting point 155 ° C.) was made into a powder and used as a precursor C-3 of a thermoplastic resin layer.
  • the average particle size of the precursor C-3 of the thermoplastic resin layer was 25 ⁇ m.
  • the precursor of the thermoplastic resin layer was placed on one surface of the intermediate of the prepreg, and at 0.5 MPa using a heat roll maintained at the melting point of the precursor of the thermoplastic resin layer + 30 ° C. or higher.
  • a prepreg in which the interface between the thermosetting resin layer and the thermoplastic resin layer is located inside the reinforcing fiber group was obtained.
  • the precursor of the thermoplastic resin layer was arranged on one surface of the prepreg intermediate so that the basis weight was 50 g / m 2.
  • the basis weight of the reinforcing fiber sheet was 200 g / m 2 .
  • the precursor of the thermosetting resin layer is coated on the release paper using a knife coater to prepare a precursor film of the thermosetting resin layer, and then laminated on both sides of the reinforcing fiber sheet to perform a heat roll.
  • the prepreg intermediate was obtained by impregnating the reinforcing fiber sheet with the precursor of the thermosetting resin layer while heating and pressurizing at 80 ° C. and 0.5 MPa.
  • the basis weight of the prepared precursor film of the thermosetting resin layer was 50 g / m 2 .
  • the precursor of the island phase containing the second thermoplastic resin as a main component was sprayed on one surface of the prepreg intermediate by a feeder.
  • the spraying amount was 11.5 g / m 2 .
  • the precursor of the thermoplastic resin layer was placed on the surface of the prepreg intermediate on which the precursor of the island phase containing the second thermoplastic resin as a main component was sprayed.
  • the precursor of the thermoplastic resin layer is placed on one surface of the prepreg intermediate so that the texture is 38.5 g / m 2, and the heat roll is kept at the melting point of the precursor of the thermoplastic resin layer + 30 ° C. or higher.
  • the interface between the thermosetting resin layer and the thermoplastic resin layer is located inside the reinforcing fiber group, and the island phase containing the second thermoplastic resin as the main component.
  • thermosetting resin layer was impregnated in the reinforcing fiber sheet.
  • Reinforcing fiber bundles were arranged and opened in one direction to form a reinforcing fiber sheet in a continuous state.
  • the basis weight of the reinforcing fiber sheet was 200 g / m 2 .
  • the precursor of the thermoplastic resin layer is placed on one surface of the fiber reinforced sheet and pressed at 0.5 MPa using a heat roll maintained at the melting point of the precursor of the thermoplastic resin layer + 30 ° C. or higher.
  • a prepreg intermediate was obtained by impregnating a reinforcing fiber sheet with a precursor of a thermoplastic resin layer.
  • the precursor of the thermoplastic resin layer was arranged on one surface of the prepreg intermediate so that the basis weight was 50 g / m 2.
  • the precursor of the thermoplastic resin phase was dispersed in the reinforcing fiber sheet by vibrating it by passing it through an ultrasonic generator that vibrates periodically immediately after heating and pressurizing using the heat roll.
  • the frequency of the ultrasonic generator was 20 kHz
  • the amplitude was 100%
  • the pressure was 1.0 MPa.
  • the distance between the horn of the ultrasonic generator and the prepreg intermediate was about 25 mm
  • the time during which the ultrasonic vibration was applied was about 1.0 second.
  • the precursor of the thermosetting resin layer is coated on the release paper using a knife coater to prepare a precursor film of the thermosetting resin layer, and then the precursor of the thermoplastic resin layer of the reinforcing fiber sheet.
  • a prepreg intermediate was obtained by impregnating a reinforcing fiber sheet with a precursor of a thermosetting resin layer while heating and pressurizing at 80 ° C. and 0.5 MPa using a heat roll.
  • the basis weight of the prepared precursor film of the thermosetting resin layer was 50 g / m 2 .
  • ⁇ Evaluation method> Measurement of volume ratio of island phase in fiber reinforced plastic
  • the fiber closest to the surface of the fiber reinforced plastic in the cross section orthogonal to the fiber direction of the outermost layer of the fiber reinforced plastic is defined as the outermost fiber, and the center of the outermost fiber is set as the outermost fiber.
  • the volume ratio (% by volume) of the island phase was determined in the measurement range of 100 ⁇ m in the thickness direction toward the thermosetting resin layer side from the reference line horizontal to the surface of the fiber reinforced plastic passing through.
  • the prepared prepreg is cut to a predetermined size, and one of the prepregs prepared by the method of P-1, P-2 or P-5 is used. Two prepregs prepared by the method of P-3 or P-4 were prepared.
  • the fiber direction of the reinforcing fibers is defined as 0 °
  • the direction orthogonal to the fiber direction is defined as 90 °
  • the prepreg laminate is laminated with [0 ° / 90 °] 2s (the symbol s indicates mirror plane symmetry).
  • the two outermost layers on both sides are laminated so as to be a prepreg prepared by the method of P-1, P-2 or P-5, and the surface layer of the laminated body is a thermoplastic resin layer.
  • This laminate is set in a press molding die, and if necessary, using a jig or spacer, while maintaining this shape, apply a pressure of 0.6 MPa with a press machine and apply at 180 ° C for 2 hours. By warming, a fiber reinforced plastic was obtained.
  • Two pieces of the obtained fiber-reinforced plastic were cut into a shape having a width of 250 mm and a length of 100 mm with the direction at an angle of 0 ° with respect to the fiber direction of the contained reinforcing fiber as the length direction of the test piece, and the two pieces were cut. It was a panel. After the panels were dried in a vacuum oven for 24 hours, they were laminated so that the overlay length was 12.5 mm, and a pressure of 3 MPa was applied at a temperature 20 ° C. higher than the melting point of the thermoplastic resin layer. By holding for 1 minute, the overlapped surfaces were welded to obtain a bonded body.
  • a tab was adhered to the obtained bonded body in accordance with ISO4587: 1995 (JIS K6850 (1994)) and cut to a width of 25 mm to obtain a test piece.
  • the obtained test piece was dried in a vacuum oven for 24 hours, and the bonding strength (MPa) was evaluated at an environmental temperature of 23 ° C. based on ISO4587: 1995 (JIS K6850 (1994)).
  • A-1 is used as the reinforcing fiber bundle
  • B-2 is used as the precursor of the thermosetting resin layer
  • C-1 is used as the precursor of the thermoplastic resin layer
  • D-1 is used as the precursor of the island phase.
  • a prepreg was prepared by the method. Using the prepared prepreg, test pieces suitable for various evaluations were prepared and evaluated. The interface between the thermosetting resin layer of the obtained prepreg and the thermoplastic resin layer is located inside the reinforcing fiber group formed by the carbon fiber bundle A-1, and the thermosetting resin layer has a second heat.
  • the island phase containing a plastic resin as a main component had a sea-island structure dispersed in a sea phase containing a thermosetting resin as a main component.
  • an island phase containing a thermoplastic resin as a main component was contained in the vicinity of the interface between the thermoplastic resin layer and the thermosetting resin layer.
  • island phases mainly composed of the thermoplastic resin contained in the precursor B-2 of the thermosetting resin layer were unevenly distributed on the surface of the reinforcing fiber sheet. , The bonding strength was excellent.
  • A-1 is used as the reinforcing fiber bundle
  • B-2 is used as the precursor of the thermosetting resin layer
  • C-2 is used as the precursor of the thermoplastic resin layer
  • D-1 is used as the precursor of the island phase.
  • a prepreg was prepared by the method. Using the prepared prepreg, test pieces suitable for various evaluations were prepared and evaluated. The interface between the thermosetting resin layer of the obtained prepreg and the thermoplastic resin layer is located inside the reinforcing fiber group formed by the carbon fiber bundle A-1, and the thermosetting resin layer has a second heat.
  • the island phase containing a plastic resin as a main component had a sea-island structure dispersed in a sea phase containing a thermosetting resin as a main component.
  • an island phase containing a thermoplastic resin as a main component was contained in the vicinity of the interface between the thermosetting resin layer and the thermoplastic resin layer.
  • island phases containing the second thermoplastic resin contained in the precursor of the thermosetting resin layer as the main component are unevenly distributed on the surface of the reinforcing fiber sheet.
  • the thermoplastic resin layer also has an island phase containing a second thermoplastic resin as a main component, the bonding strength is excellent.
  • A-1 is used as the reinforcing fiber bundle
  • B-3 is used as the precursor of the thermosetting resin layer
  • C-1 is used as the precursor of the thermoplastic resin layer
  • D-2 is used as the precursor of the island phase.
  • a prepreg was prepared by the method. Using the prepared prepreg, test pieces suitable for various evaluations were prepared and evaluated. The interface between the thermosetting resin layer of the obtained prepreg and the thermoplastic resin layer is located inside the reinforcing fiber group formed by the carbon fiber bundle A-1, and the thermosetting resin layer is a rubbery polymer. It had a sea-island structure in which the island phase containing the main component was dispersed in the sea phase containing the thermosetting resin as the main component.
  • an island phase containing a rubbery polymer as a main component was contained in the vicinity of the interface between the thermoplastic resin layer and the thermoplastic resin layer.
  • island phases mainly composed of the rubbery polymer contained in the precursor B-3 of the thermosetting resin layer are unevenly distributed on the surface of the reinforcing fiber sheet. Therefore, the bonding strength was excellent.
  • Example 4 A-1 as a reinforcing fiber bundle, B-1 as a precursor of a thermosetting resin layer, C-3 as a precursor of a thermoplastic resin layer, and D-3 as a precursor of an island phase containing a thermoplastic resin as a main component.
  • B-1 a precursor of a thermosetting resin layer
  • C-3 a precursor of a thermoplastic resin layer
  • D-3 a precursor of an island phase containing a thermoplastic resin as a main component.
  • the island phase containing a plastic resin as a main component had a sea-island structure dispersed in a sea phase containing a thermosetting resin as a main component. Further, an island phase containing a thermoplastic resin as a main component was contained in the vicinity of the interface between the thermosetting resin layer and the thermoplastic resin layer.
  • the reinforcing fiber sheet is impregnated with the precursor of the thermoplastic resin layer, since the precursor of the thermoplastic resin layer is in the form of powder, a part of the precursor penetrates into the thermoplastic resin layer, and the thermoplastic resin layer and the thermoplastic Since the island phase was mainly composed of a thermoplastic resin unevenly distributed near the interface with the resin layer, the bonding strength was excellent.
  • thermosetting resin layer A-1 as a reinforcing fiber bundle
  • B-1 a precursor of a thermosetting resin layer
  • C-1 a precursor of a thermoplastic resin layer
  • D-1 a precursor of an island phase containing a thermoplastic resin as a main component.
  • the island phase containing a plastic resin as a main component had a sea-island structure dispersed in a sea phase containing a thermosetting resin as a main component. Further, an island phase containing a thermoplastic resin as a main component was contained in the vicinity of the interface between the thermosetting resin layer and the thermoplastic resin layer.
  • island phases containing the second thermoplastic resin contained in the precursor of the thermosetting resin layer as the main component are unevenly distributed on the surface of the reinforcing fiber sheet. Further, since the thermoplastic resin layer also has an island phase containing a second thermoplastic resin as a main component, the bonding strength is excellent.
  • Example 6 A-1 as a reinforcing fiber bundle, B-1 as a precursor of a thermosetting resin layer, C-1 as a precursor of a thermoplastic resin layer, and D- as a precursor of an island phase containing a rubbery polymer as a main component. 2 was used to prepare a precursor by the method of P-2 above. Using the prepared prepreg, test pieces suitable for various evaluations were prepared and evaluated. The interface between the thermosetting resin layer of the obtained prepreg and the thermoplastic resin layer is located inside the reinforcing fiber group formed by the carbon fiber bundle A-1, and the thermosetting resin layer is a rubbery polymer.
  • Example 7 Various prepregs were prepared by the same method as in Example 4 except that A-3 was used as the reinforcing fiber, C-1 was used as the precursor of the thermoplastic resin layer, and D-1 was used as the precursor of the island phase. It was used for evaluation.
  • the interface between the thermosetting resin layer of the obtained prepreg and the thermoplastic resin layer is located inside the reinforcing fiber group formed by the carbon fiber bundle A-3, and the island phase is mainly composed of the thermosetting resin. It had a sea-island structure dispersed in the sea phase.
  • an island phase containing a thermoplastic resin as a main component was contained in the vicinity of the interface between the thermosetting resin layer and the thermoplastic resin layer.
  • the precursor of the thermoplastic resin layer is in the form of powder, a part of the precursor penetrates into the thermoplastic resin layer, and the thermoplastic resin layer and the thermoplastic Since the island phase was mainly composed of a thermoplastic resin unevenly distributed near the interface with the resin layer, the bonding strength was excellent.
  • Example 8 A prepreg was prepared in the same manner as in Example 4 except that A-2 was used as the reinforcing fiber, C-4 was used as the precursor of the thermoplastic resin phase, and D-4 was used as the precursor of the island phase. It was used for various evaluations.
  • the interface between the thermosetting resin layer and the thermoplastic resin layer of the obtained prepreg is located inside the reinforcing fiber group formed by the carbon fiber bundle A-2, and the island phase is mainly composed of the thermosetting resin. It had a sea-island structure dispersed in the sea phase.
  • an island phase containing a thermoplastic resin as a main component was contained in the vicinity of the interface between the thermosetting resin layer and the thermoplastic resin layer.
  • carbon fiber A-2 which has a high affinity with thermosetting resins and thermoplastic resins, ensured the dispersibility of the carbon fibers, improved the resin fluidity, and promoted the formation of island phases. Be done.
  • the reinforcing fiber sheet is impregnated with the precursor of the thermoplastic resin layer, since the precursor of the thermoplastic resin layer is in the form of powder, a part of the precursor penetrates into the thermoplastic resin layer, and the thermoplastic resin layer and the thermoplastic Since the island phase was mainly composed of a thermoplastic resin unevenly distributed near the interface with the resin layer, the bonding strength was excellent.
  • thermosetting resin layer As the reinforcing fiber bundle, B-3 as the precursor of the thermosetting resin layer, and C-5 as the precursor of the thermoplastic resin layer, a prepreg was prepared by the method of P-5 above. Using the prepared prepreg, test pieces suitable for various evaluations were prepared and evaluated.
  • the interface between the thermosetting resin layer and the thermoplastic resin layer of the obtained prepreg is located inside the reinforcing fiber group formed by the carbon fiber bundle A-3, and the island phase is mainly composed of the thermosetting resin. It had a sea-island structure dispersed in the sea phase.
  • an island phase containing a thermoplastic resin as a main component was contained in the vicinity of the interface between the thermosetting resin layer and the thermoplastic resin layer.
  • the reinforcing fiber sheet When the reinforcing fiber sheet is impregnated with the precursor of the thermoplastic resin layer, a part thereof is dispersed in the reinforcing fiber sheet by vibration and is unevenly distributed near the interface between the thermosetting resin layer and the thermoplastic resin layer. Since the island phase was mainly composed of a thermoplastic resin, the bonding strength was excellent.
  • Example 10 A prepreg was prepared in the same manner as in Example 9 except that C-6 was used as a precursor of the thermoplastic resin phase, and was subjected to various evaluations.
  • the interface between the thermosetting resin layer and the thermoplastic resin layer of the obtained prepreg is located inside the reinforcing fiber group formed by the carbon fiber bundle A-4, and the island phase is mainly composed of the thermosetting resin. It had a sea-island structure dispersed in the sea phase.
  • an island phase containing a thermoplastic resin as a main component was contained in the vicinity of the interface between the thermosetting resin layer and the thermoplastic resin layer.
  • the reinforcing fiber sheet When the reinforcing fiber sheet is impregnated with the precursor of the thermoplastic resin layer, a part thereof is dispersed in the reinforcing fiber sheet by vibration and is unevenly distributed near the interface between the thermosetting resin layer and the thermoplastic resin layer. Since the island phase was mainly composed of a thermoplastic resin, the bonding strength was excellent.
  • A-1 was used as the reinforcing fiber bundle
  • B-1 was used as the precursor of the thermosetting resin layer
  • C-1 was used as the precursor of the thermoplastic resin layer
  • a prepreg was prepared by the method of P-1 described above. Using the prepared prepreg, test pieces suitable for various evaluations were prepared and evaluated. The obtained prepreg and test piece did not contain the island phase, so the bonding strength was low.
  • thermosetting resin layer of the obtained prepreg was prepared and various evaluations were performed using them.
  • the interface between the thermosetting resin layer of the obtained prepreg and the thermoplastic resin layer is located inside the reinforcing fiber group formed by the carbon fiber bundles, and is an island in addition to the thermoplastic resin layer and the thermosetting resin layer. Did not include phase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、強化繊維群と、熱硬化性樹脂層と、第一の熱可塑性樹脂を含有する熱可塑性樹脂層とを含む繊維強化プラスチックであって、前記繊維強化プラスチックの表層として前記熱可塑性樹脂層を有し、前記熱可塑性樹脂層と前記熱硬化性樹脂層との界面が前記強化繊維群の内部に位置し、前記熱硬化性樹脂層は、第二の熱可塑性樹脂またはゴム質重合体を主成分とする島相が、熱硬化性樹脂を主成分とする海相に分散した海島構造を有する、繊維強化プラスチックに関する。

Description

繊維強化プラスチック及びその製造方法
 本発明は、繊維強化プラスチック及びその製造方法に関する。
 熱硬化性樹脂をマトリックス樹脂として用い、炭素繊維やガラス繊維などの強化繊維と組み合わせた繊維強化プラスチックは、軽量でありながら、強度や剛性などの力学特性や耐熱性、耐食性に優れているため、航空・宇宙、自動車、鉄道車両、船舶、土木建築およびスポーツ用品などの数多くの分野に活用されている。
 しかしながら、これらの繊維強化プラスチックは、複雑な形状を有する部品や成形体を単一の成形工程で製造するには不向きであり、上記用途においては、繊維強化プラスチックからなる部材を作製し、次いで、別の部材と接合、締結などにより一体化させる必要がある。
 例えば、繊維強化プラスチックと同種あるいは異種の部材とを一体化させる手法として、ボルト、リベット、ビスなどの機械的接合方法や、接着剤を介在させる接合方法が用いられている。機械的接合方法では、繊維強化プラスチックおよび別の部材に穴開けを行うため、穴部の強度が低下する課題がある。接着剤を介在させる場合は、繊維強化プラスチック成形体と別の部材との境界面で剥離などによる接合・接着不良が発生する課題がある。また、それらの接合には、穴開け工程や接着剤の塗布工程など接合部分を予め加工する工程が必要となり、プロセス性が低下する課題がある。
 そこで、繊維強化プラスチックに穴を開ける、あるいは、接着剤を介在させることなく、別の部材と接合する手法として、熱可塑性樹脂を表面に備えた繊維強化プラスチックが提案されている。
 特許文献1には、表面に配置した熱可塑性樹脂層と、繊維強化プラスチックのマトリックス樹脂である熱硬化性樹脂層とが、凹凸形状を有して一体化した積層体と、その製造方法が開示されている。熱可塑性樹脂層と熱硬化性樹脂層とが凹凸形状を有して一体化することで、それらが強固に接合される。さらに、表面に熱可塑性樹脂層を配置することで、該熱可塑性樹脂層を溶融し、別の被着体と繊維強化プラスチックとの接合が可能となるとされている。
 特許文献2には、被着体層と繊維強化プラスチックのマトリックス樹脂である熱硬化性樹脂層の間に、熱硬化性樹脂と連続相として存在する熱可塑性樹脂を含む接着樹脂層を有する積層体とその製造方法が開示されている。接着樹脂層中に連続相として存在する熱可塑性樹脂がアンカーとして作用し、接着樹脂層中の熱可塑性樹脂と熱硬化性樹脂とが強固に接合される。さらに、接着樹脂層に含まれる熱可塑性樹脂を溶融させることで、被着体と繊維強化プラスチックとの接合強度の向上が可能になるとされている。
国際公開第2004/060658号 日本国特開2006-198784号公報
 特許文献1および特許文献2における積層体は、穴開けや接着剤の必要がなく、繊維強化プラスチックの強度や剛性などの特性を有効に活用でき、接合工程が簡略であることから高いプロセス性を有する。しかし、製品としての適応範囲の拡大のためには、被着体とのさらなる接合強度の向上を目指すだけでなく、接合構造の信頼性を高めることが必要である。特許文献1では、強化繊維と熱可塑性樹脂との複合構造が高い靱性を示す反面、靱性の劣る熱硬化性樹脂への応力集中によるクラック発生が懸念される場合がある。特許文献2では、靱性の劣る熱硬化性樹脂に熱可塑性樹脂が連続相として存在している一方、両樹脂の界面への応力集中による剥離が懸念される場合がある。
 本発明の課題は、他の被着体と優れた接合強度で接合するだけでなく、接合構造の高い信頼性を訴求することが可能な繊維強化プラスチックを提供することにある。
 本発明者らは鋭意検討を重ねた結果、上記課題を解決できることを見出し、本発明を完成するに至った。すなわち、本発明は以下の通りである。
〔1〕
 強化繊維群と、熱硬化性樹脂層と、第一の熱可塑性樹脂を含有する熱可塑性樹脂層とを含む繊維強化プラスチックであって、
 前記繊維強化プラスチックの表層として前記熱可塑性樹脂層を有し、
 前記熱可塑性樹脂層と前記熱硬化性樹脂層との界面が前記強化繊維群の内部に位置し、
 前記熱硬化性樹脂層は、第二の熱可塑性樹脂またはゴム質重合体を主成分とする島相が、熱硬化性樹脂を主成分とする海相に分散した海島構造を有する、繊維強化プラスチック。
〔2〕
 前記第二の熱可塑性樹脂は、前記第一の熱可塑性樹脂と同種の樹脂である、〔1〕に記載の繊維強化プラスチック。
〔3〕
 前記第二の熱可塑性樹脂は、前記第一の熱可塑性樹脂と同一の樹脂である、〔2〕に記載の繊維強化プラスチック。
〔4〕
 前記第二の熱可塑性樹脂及び前記ゴム質重合体の融点は、前記第一の熱可塑性樹脂の融点よりも高い、〔1〕または〔2〕に記載の繊維強化プラスチック。
〔5〕
 前記島相は、前記海相の熱硬化性樹脂の成分を含む、〔1〕~〔4〕のいずれか一項に記載の繊維強化プラスチック。
〔6〕
 前記島相は、前記熱硬化性樹脂層と前記熱可塑性樹脂層との界面の近傍に偏在している、〔1〕~〔5〕のいずれか一項に記載の繊維強化プラスチック。
〔7〕
 厚さ方向断面における最外繊維から前記熱硬化性樹脂層側に向けて厚さ方向に100μmの範囲において、前記島相の体積割合は、前記範囲100体積%に対して、1体積%以上である、〔1〕~〔6〕のいずれか一項に記載の繊維強化プラスチック。
〔8〕
 厚さ方向断面における前記島相の平均粒径が0.1μm以上10μm以下である、〔1〕~〔7〕のいずれか一項に記載の繊維強化プラスチック。
〔9〕
 前記島相の長軸の長さが、3μm以上30μm以下である、〔1〕~〔8〕のいずれか一項に記載の繊維強化プラスチック。
〔10〕
 前記島相の弾性率は、前記海相の弾性率よりも低い、〔1〕~〔9〕のいずれか一項に記載の繊維強化プラスチック。
〔11〕
 前記島相のガラス転移温度は、前記海相のガラス転移温度よりも低い、〔1〕~〔10〕のいずれか一項に記載の繊維強化プラスチック。
〔12〕
 前記強化繊維として、ウィルヘルミー法によって測定される表面自由エネルギーが10~50mJ/mである強化繊維を用いる、〔1〕~〔11〕のいずれか一項に記載の繊維強化プラスチック。
〔13〕
 〔1〕~〔12〕のいずれか一項に記載の繊維強化プラスチックの製造方法であって、
 前記強化繊維群を構成する強化繊維シートの両面に、前記島相の前駆体及び前記熱硬化性樹脂層の前駆体を含浸させ、前記島相及び前記熱硬化性樹脂層を形成する工程と、
 前記島相及び前記熱硬化性樹脂層を形成した前記強化繊維シートの少なくとも一方の面に、前記島相の前駆体及び前記熱可塑性樹脂層の前駆体を軟化または溶融させて配し、前記島相及び前記熱可塑性樹脂層を形成して中間体とする工程と、得られた中間体を成形する工程とを含む繊維強化プラスチックの製造方法。
〔14〕
 〔1〕~〔12〕のいずれか一項に記載の繊維強化プラスチックの製造方法であって、
 前記強化繊維群を構成する強化繊維シートの両面に、前記島相の前駆体及び前記熱硬化性樹脂層の前駆体を含浸させ、前記島相及び前記熱硬化性樹脂層を形成する工程と、
 前記島相及び前記熱硬化性樹脂層を形成した前記強化繊維シートの少なくとも一方の面に、前記熱可塑性樹脂層の前駆体を軟化又は溶融させて配し、前記熱可塑性樹脂層を形成して中間体とする工程と、得られた中間体を成形する工程とを含む繊維強化プラスチックの製造方法。
〔15〕
 〔1〕~〔12〕のいずれか一項に記載の繊維強化プラスチックの製造方法であって、
 前記強化繊維群を構成する強化繊維シートの両面に、前記熱硬化性樹脂層の前駆体を含浸させ、前記熱硬化性樹脂層を形成する工程と、
 前記熱硬化性樹脂層を形成した前記強化繊維シートの少なくとも一方の面に、前記島相の前駆体及び前記熱可塑性樹脂層の前駆体を軟化または溶融させて配し、前記島相及び前記熱可塑性樹脂層を形成して中間体とする工程と、得られた中間体を成形する工程とを含む繊維強化プラスチックの製造方法。
〔16〕
 〔1〕~〔12〕のいずれか一項に記載の繊維強化プラスチックの製造方法であって、
 前記強化繊維群を構成する強化繊維シートの片面に、前記熱可塑性樹脂層の前駆体を含浸させ、前記熱可塑性樹脂層を形成した後に加振を行い、前記熱可塑性樹脂層の前駆体を前記強化繊維シート中に分散させる工程と、
 前記強化繊維シートのもう一方の面に前記熱硬化性樹脂層の前駆体を含浸させ中間体とする工程と、得られた中間体を成形する工程とを含む繊維強化プラスチックの製造方法。
 本発明によれば、別の被着体と優れた接合強度で接合するだけでなく。接合構造の高い信頼性を訴求することが可能な繊維強化プラスチックを得ることができる。
図1は、本発明の繊維強化プラスチックの一実施形態を示す模式図である。 図2は、本発明における、繊維強化プラスチックの平面に垂直な断面の模式図であり、繊維強化プラスチック中の島相の体積割合の測定の説明を助けるものである。
 以下に、本発明を、適宜図面を参照しながら説明するが、図面は本発明の理解を容易にするために用いるものであって、何ら本発明を限定するものではない。
<繊維強化プラスチック>
〔繊維強化プラスチックの構成〕
 本発明の実施形態に係る繊維強化プラスチックは、強化繊維群と、熱硬化性樹脂層と、第一の熱可塑性樹脂を含有する熱可塑性樹脂層とを含む繊維強化プラスチックであって、
 前記繊維強化プラスチックの表層として前記熱可塑性樹脂層を有し、
 前記熱可塑性樹脂層と前記熱硬化性樹脂層との界面が前記強化繊維群の内部に位置し、
 前記熱硬化性樹脂層は、第二の熱可塑性樹脂またはゴム質重合体を主成分とする島相が、熱硬化性樹脂を主成分とする海相に分散した海島構造を有する。
 本発明の実施形態に係る繊維強化プラスチックは、繊維強化プラスチックと同種あるいは異種の部材とを接合する際、繊維強化プラスチックに穴を開けて締結することなく、あるいは、接着剤を介在させることなく、高いプロセス性を有する熱溶着にて優れた接合強度を有する一体成形品を形成することができる。
 本発明の実施形態に係る繊維強化プラスチック5は、例えば、図1に示すように、強化繊維1を含む強化繊維群と、熱硬化性樹脂層3と、熱可塑性樹脂層4を含み、繊維強化プラスチックの表層が熱可塑性樹脂層4であり、熱可塑性樹脂層4と熱硬化性樹脂層3との界面6が強化繊維群の内部に位置し、熱硬化性樹脂層3は、熱可塑性樹脂またはゴム質重合体を主成分とする島相7が熱硬化性樹脂を主成分とする海相8に分散した海島構造を有する。
 熱硬化性樹脂層3が、熱可塑性樹脂またはゴム質重合体を主成分とする島相7が熱硬化性樹脂を主成分とする海相8に分散した海島構造を有することで、熱硬化性樹脂層3の靱性が高まるため、接合強度が向上するだけでなく、クラックの発生および伝播を抑制する観点から接合構造としての信頼性を訴求することができる。
 また、本発明の実施形態において、熱可塑性樹脂層4と熱硬化性樹脂層3との界面が強化繊維群の内部に位置する必要がある。これにより、熱硬化性樹脂層3と熱可塑性樹脂層4とを強固に接合することが可能であり、両層の剥離を抑制する観点から接合構造としての信頼性を訴求することができる。さらに、熱硬化性樹脂層3と熱可塑性樹脂層4との界面6において、強化繊維群の一部が熱硬化性樹脂層3および熱可塑性樹脂層4の両層と化学的および/または物理的に結合することは、熱硬化性樹脂層3と熱可塑性樹脂層4とをより強固に接合する観点から好ましい。
 本発明の実施形態において、島相7は、熱硬化性樹脂層3と熱可塑性樹脂層4との界面6の近傍に偏在すると、熱硬化性樹脂層の特性を大きく損なうことなく、応力が集中する熱可塑性樹脂層近傍の熱硬化性樹脂の靱性を効率良く高める観点から好ましい。
 具体的には、界面6と島相7との距離が、100μm以下であることが好ましく、70μm以下であることがより好ましく、50μm以下であることがさらに好ましい。
 ここで、熱硬化性樹脂層3と熱可塑性樹脂層4との界面6と島相7との距離とは、熱硬化性樹脂層3と熱可塑性樹脂層4との界面6と、無作為に選定した島相7の断面の外周との最短距離について、10点測定したものの平均値である。上記最短距離は、例えば、繊維強化プラスチックの繊維方向と直交する断面を観察する公知の手法を用いることで測定できる。例えば、X線CTを用いて取得した断面画像から測定する方法、エネルギー分散型X線分光器(EDS)による元素分析マッピング画像から測定する方法、あるいは光学顕微鏡あるいは走査電子顕微鏡(SEM)あるいは透過型電子顕微鏡(TEM)による断面観察画像から測定する方法が挙げられる。
 第二の熱可塑性樹脂またはゴム質重合体を主成分とする島相は、熱硬化性樹脂層と熱可塑性樹脂層の両層に存在しても良く、また、熱硬化性樹脂層のみに存在してもよい。繊維強化プラスチックの接合強度を向上させる観点からは、第二の熱可塑性樹脂またはゴム質重合体を主成分とする島相は、熱硬化性樹脂層と熱可塑性樹脂層との界面近傍の熱硬化性樹脂層と熱可塑性樹脂層の両層に存在することが好ましく、プロセス性の観点からは、熱硬化性樹脂層のみに存在することが好ましい。
 ここで、第二の熱可塑性樹脂は、同等のプロセス温度で加工できる観点から、第一の熱可塑性樹脂と同種の樹脂であることが好ましく、同一の熱可塑性樹脂であることがより好ましい。
 本発明において「同種である」とは、添加剤などを除いた主成分が同じであることを意味する。また、「主成分が同じである」とは、主たる骨格が同一であることを意味し、繰り返し単位数や末端処理が異なるものも含む。熱可塑性樹脂を主成分とする島相またはゴム質重合体を主成分とする島相と熱可塑性樹脂層の分析方法としては、示差走査熱量計(DSC)によるガラス転移温度から分析する方法、エネルギー分散型X線分光器(EDS)による元素分析マッピング画像から分析する方法、ナノインデンテーション法による弾性率から分析する方法が例示できる。
 もしくは、第二の熱可塑性樹脂またはゴム質重合体は、プロセス温度での構造変化を抑制する観点から、第一の熱可塑性樹脂よりも高い融点を有することも好ましい。第二の熱可塑性樹脂及びゴム質重合体の融点は、第一の熱可塑性樹脂の融点よりも高いことが好ましい。
 ここで、島相の平均粒径は、強化繊維のアライメントの乱れを抑制する観点から、0.1μm以上10μm以下であることが好ましく、0.3μm以上5μm以下であることがより好ましく、0.5μm以上3μm以下であることがさらに好ましい。特に、高い品位品質を要求される場合、強化繊維のアライメントを揃えることが望ましい。
 第二の熱可塑性樹脂またはゴム質重合体を主成分とする島相の長軸の長さは、熱硬化性樹脂の靱性を高める観点から、3μm以上30μm以下であることが好ましく、5μm以上25μm以下であることがより好ましく、5μm以上20μm以下であることがさらに好ましい。島相の長軸は、強化繊維に沿って存在することで、強化繊維のアライメントの乱れを抑制できる場合があり好ましい。
 島相の平均粒径および長軸の長さは、例えば、繊維強化プラスチックの繊維方向と直交する断面を光学顕微鏡で観察することで確認できる。平均粒径は、強化繊維の直交断面で観察し、無作為に選択した島相の少なくとも20個についておおよそ外形を代表する円の直径から算出することができる。また、観察した断面の島相の最大長さを島相の長軸の長さとすることで測定できる。なお、島相の長軸とは、上記断面観察画像で確認される島相の内部を通る直線のうち、島相の外周における最も離れた2点を通る線分から算出する。
 繊維強化プラスチックの厚さ方向断面における最外繊維から熱硬化性樹脂層側に向けて厚さ方向に100μmの範囲において、島相の体積割合は、該範囲100体積%に対して0.1体積%以上であればよく、熱硬化性樹脂の靱性をさらに高める観点から、1体積%以上であることが好ましく、10体積%以上であることがより好ましい。また、上限値としては、熱硬化性樹脂の力学特性を大きく損なわない範囲であればよく、95体積%以下であることが好ましく、80体積%以下であることがより好ましい。
 ここで、島相の体積割合の測定の説明を助けるため、繊維強化プラスチックの平面に垂直な断面の模式図を図2に示す。繊維強化プラスチックの繊維方向に直交の断面において、最も繊維強化プラスチックの表面9に近い繊維を、最外繊維10とし、最外繊維10の中心を通る、繊維強化プラスチックの表面と水平な基準線11から、熱硬化性樹脂層3側へ厚さ方向に100μmの測定範囲12において、島相7の体積%を算出する。
[熱硬化性樹脂層と熱可塑性樹脂層との界面]
 繊維強化プラスチックにおいて、熱硬化性樹脂層と熱可塑性樹脂層との界面は、強化繊維群の内部に位置する。
 該界面の形状としては、機械的な結合力をより高める観点から、凹凸形状であることが好ましい。それにより、本発明の実施形態に係る繊維強化プラスチックと他の構造部材が熱可塑性樹脂層を介して結合された一体成形品は、優れた接合強度を有する。界面の凹凸形状の確認手段は、特に制限されないが、繊維強化プラスチックの繊維方向と直交する断面を観察することによって、確認することができる。
 ここで、界面の凹凸形状の確認方法としては、公知の手法を用いることが出来る。例えば、X線CTを用いて取得した断面画像から確認する方法、エネルギー分散型X線分光器(EDS)による元素分析マッピング画像から確認する方法、あるいは光学顕微鏡あるいは走査電子顕微鏡(SEM)あるいは透過型電子顕微鏡(TEM)による断面観察画像から確認する方法が挙げられる。観察において、熱硬化性樹脂層および/または熱可塑性樹脂層はコントラストを調整するために、染色されても良い。
 本発明の実施形態に係る繊維強化プラスチックにおいて、強化繊維群への熱硬化性樹脂及び熱可塑性樹脂(以下、熱硬化性樹脂及び熱可塑性樹脂を単に樹脂と総称する場合がある)の含浸率は、80%以上であることが好ましい。かかる含浸率は、より好ましくは85%以上、さらに好ましくは90%以上である。
 ここでの含浸率は、繊維強化プラスチックを構成する強化繊維群に樹脂がどの程度含浸しているかの割合である。含浸率は、樹脂が含浸していない箇所の割合を特定の方法で測定することにより求めることができる。含浸率が大きいほど、繊維強化プラスチック中に含まれる空隙が少ないことを意味し、表面外観や、力学特性をより高める観点から、高い含浸率が好ましい。
 含浸率の測定方法としては、繊維強化プラスチックの繊維方向と直交する断面観察において、繊維強化プラスチック中の空隙部を含む繊維強化プラスチックの総断面積をA0、空隙の断面積A1としたときに以下の式(1)によって求める方法が挙げられる。
含浸率(%)=(A0-A1)×100/A0・・・(1)
 以下、本発明の繊維強化プラスチックを構成する各要素の詳細について説明する。
[熱硬化性樹脂層]
 熱硬化性樹脂層は、第二の熱可塑性樹脂またはゴム質重合体を主成分とする島相が、熱硬化性樹脂を主成分とする海相に分散した海島構造を有する。また、熱可塑性樹脂層と前記熱硬化性樹脂層との界面が前記強化繊維群の内部に位置する。
 熱硬化性樹脂層は、強化繊維群と熱硬化性樹脂により形成することができる。
 強化繊維群と熱硬化性樹脂組成物についてそれぞれ詳細を説明する。
(強化繊維群)
 強化繊維群は、強化繊維の集合体(繊維束)のことであり、連続繊維、不連続繊維のいずれであってもよく、一方向に配列された形態およびその積層形態、または織物の形態等から適宜選択できる。軽量で耐久性がより高い水準にある繊維強化プラスチックを得る観点から、強化繊維が一方向に配列された連続繊維または織物であることが好ましい。
 かかる繊維束は、同一の強化繊維から構成されていても、あるいは、異なる強化繊維から構成されていても良い。強化繊維束を構成する繊維数には特に限定はなく、300~60,000本が例示でき、生産性の観点から、好ましくは300~48,000本であり、より好ましくは1,000~24,000本である。
 強化繊維群を構成する強化繊維の種類には、特に制限はなく、例えば、炭素繊維、ガラス繊維、アラミド繊維、アルミナ繊維、炭化珪素繊維、ボロン繊維、金属繊維、天然繊維、鉱物繊維などが使用でき、これらは1種または2種以上を併用してもよい。中でも、比強度、比剛性が高く軽量化効果の観点から、PAN(Polyacrylonitrile)系、ピッチ系、レーヨン系などの炭素繊維が好ましく用いられる。また、得られる繊維強化プラスチックの経済性を高める観点から、ガラス繊維が好ましく用いることができ、とりわけ力学特性と経済性のバランスから炭素繊維とガラス繊維を併用することが好ましい。さらに、得られる繊維強化プラスチックの衝撃吸収性や賦形性を高める観点から、アラミド繊維が好ましく用いることができ、とりわけ力学特性と衝撃吸収性のバランスから炭素繊維とアラミド繊維を併用することが好ましい。また、得られる繊維強化プラスチックの導電性を高める観点から、ニッケルや銅やイッテルビウムなどの金属を被覆した強化繊維やピッチ系の炭素繊維を用いることもできる。
 強化繊維群を構成する強化繊維は、サイジング剤で表面処理されていることが、力学特性向上の観点から好ましい。サイジング剤としては多官能エポキシ樹脂、ウレタン系樹脂、アクリル酸系ポリマー、多価アルコール、ポリエチレンイミン、脂肪族アルコールのエチレンオキシド付加体などが挙げられ、具体的にはグリセロールトリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、アラビトールポリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテルなどの脂肪族多価アルコールのポリグリシジルエーテル、ポリアクリル酸、アクリル酸とメタクリル酸との共重合体、アクリル酸とマレイン酸との共重合体、あるいはこれらの2種以上の混合物、ポリビニルアルコール、グリセロール、ジグリセロール、ポリグリセロール、ソルビトール、アラビトール、トリメチロールプロパン、ペンタエリスリトール、アミノ基を1分子中により多く含むポリエチレンイミン、ポリオキシエチレンオレイルエーテル等が挙げられ、これらの中でも、反応性の高いエポキシ基を1分子中に多く含み、かつ水溶性が高く、塗布が容易なことから、グリセロールトリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテルが好ましく用いられる。
 また、強化繊維としては、ウィルヘルミー法によって測定される表面自由エネルギーが10~50mJ/mであるものを用いることが好ましい。表面自由エネルギーをこの範囲に制御することで、熱硬化性樹脂層及び熱可塑性樹脂層との親和性が高まり、強化繊維同士の凝集を抑制して各層内での分散状態が良好となる。その結果、層内の樹脂流動を促進して、熱硬化性樹脂中に熱可塑性樹脂の分散相の形成を促進する。加えて、強化繊維は熱硬化性樹脂層及び熱可塑性樹脂層と高い親和性を発現し、強化繊維がまたがって存在する熱硬化性樹脂と熱可塑性樹脂の境界面において、高い接合強度を発現する。強化繊維の表面自由エネルギーは、好ましくは、15~40mJ/m、より好ましくは、18~35mJ/mである。
 強化繊維の表面自由エネルギーを制御する方法としては、表面を酸化処理し、カルボキシル基や水酸基といった酸素含有官能基の量を調整して制御する方法や、単体または複数の化合物を表面に付着させて制御する方法がある。複数の化合物を表面に付着させる場合、表面自由エネルギーの高いものと低いものを混合して付着させてもよい。以下、強化繊維の表面自由エネルギーの算出方法について説明する。表面自由エネルギーは、強化繊維と3種類の溶媒(精製水、エチレングリコール、リン酸トリクレジル)に対する接触角をそれぞれ測定した後、オーエンスの近似式を用いて表面自由エネルギーを算出する手法をとって計算できる。以下に手順を示すが、測定機器や詳細な手法は必ずしも以下に限定されるものではない。
 DataPhysics社製DCAT11を用いて、まず、強化繊維束から1本の単繊維を取り出し、長さ12±2mmに8本にカットした後、専用ホルダーFH12(表面が粘着物質でコーティングされた平板)に単繊維間を2~3mmとして平行に貼り付ける。その後、単繊維の先端を切り揃えてホルダーのDCAT11にセットする。測定は、各溶媒の入ったセルを8本の単繊維の下端に0.2mm/sの速度で近づけ、単繊維の先端から5mmまで浸漬させる。その後、0.2mm/sの速度で単繊維を引き上げる。この操作を4回以上繰り返す。液中に浸漬している時の単繊維の受ける力Fを電子天秤で測定する。この値を用いて次式で接触角θを算出する。
 COSθ=(8本の単繊維が受ける力F(mN))/((8(単繊維の数)×単繊維の円周(m)×溶媒の表面張力(mJ/m))
 なお、測定は、3箇所の強化繊維束の異なる場所から抜き出した単繊維について実施する。すなわち、一つの強化繊維束に対して合計24本の単繊維についての接触角の平均値を求める。
 強化繊維の表面自由エネルギーγは、表面自由エネルギーの極性成分γ 、及び表面自由エネルギーの非極性成分γ の和として算出される。
 表面自由エネルギーの極性成分γ は、次式で示されるオーエンスの近似式(各溶媒固有の表面張力の極性成分と非極性成分、さらに接触角θにより構成させる式)に各液体の表面張力の成分、接触角を代入しX、Yにプロットした後、最小自乗法により直線近似したときの傾きaの自乗により求められる。表面自由エネルギーの非極性成分γ は切片bの自乗により求められる。強化繊維の表面自由エネルギーγは、傾きaの自乗と切片bの自乗の和である。
 Y=a・X+b
 X=√(溶媒の表面張力の極性成分(mJ/m))/√(溶媒の表面張力の非極性成分(mJ/m
 Y=(1+COSθ)・(溶媒の表面張力の極性成分(mJ/m))/2√(溶媒の表面張力の非極性成分(mJ/m
 強化繊維の表面自由エネルギーの極性成分γ =a
 強化繊維の表面自由エネルギーの非極性成分γ =b
 トータルの表面自由エネルギーγ=a+b
 各溶媒の表面張力の極性成分及び非極性成分は、次のとおりである。
・精製水
表面張力72.8mJ/m、極性成分51.0mJ/m、非極性成分21.8(mJ/m
・エチレングリコール
表面張力48.0mJ/m、極性成分19.0mJ/m、非極性成分29.0(mJ/m
・燐酸トリクレゾール
表面張力40.9mJ/m、極性成分1.7mJ/m、非極性成分39.2(mJ/m)。
 また、強化繊維束は、JIS R7608(2007)の樹脂含浸ストランド試験法に準拠して測定したストランド引張強度が3.5GPa以上であると、引張強度に加え、優れた接合強度を有する強化プラスチックが得られるため好ましく、4.0GPa以上であるとさらに好ましい。ここで言う接合強度とは、ISO4587(1995)に準拠して求められる、引張せん断接着強度を指す。
 繊維強化プラスチックにおける強化繊維群を構成する強化繊維の質量含有率は、好ましくは30~90質量%であり、より好ましくは35~85質量%であり、更に好ましくは40~80質量%である。強化繊維の質量含有率が好ましい範囲であると、比強度と比弾性率により優れる繊維強化プラスチックが得られる。
 また、熱硬化性樹脂層に含まれる強化繊維の体積は、繊維強化プラスチックの力学特性と第2の部材との溶着性のバランスの観点から、繊維強化プラスチック全体に含まれる強化繊維の総体積の50~99%であることが好ましく、より好ましくは75~95%である。
 熱硬化性樹脂層中の強化繊維量の測定の方法は、例えば、繊維強化プラスチックの小片のX線CT画像を用いて、セグメンテーション解析を行い、熱硬化性樹脂層中に存在する強化繊維の体積を、上記小片中に含まれる強化繊維の総体積で除して割合[%]を求める方法、あるいは、該小片の光学顕微鏡あるいは走査型電子顕微鏡(SEM)あるいは透過型電子顕微鏡(TEM)により得られた断面観察写真から、熱硬化性樹脂層中に存在する強化繊維の面積を、小片全体に含まれる強化繊維の面積で除して割合[%]を求める方法が例示される。観察において、熱硬化性樹脂層および/または熱可塑性樹脂層はコントラストを調整するために、染色されても良い。
(熱硬化性樹脂組成物)
 熱硬化性樹脂組成物は熱硬化性樹脂を含有し、繊維強化プラスチックの用途に応じて、さらに添加剤などを含んでいてもよい。
 熱硬化性樹脂組成物が含有する熱硬化性樹脂の種類には、特に制限はなく、例えば、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、ポリイミド樹脂、シアネートエステル樹脂、ビスマレイミド樹脂、ベンゾオキサジン樹脂、またはこれらの共重合体、変性体、および、これらの少なくとも2種類をブレンドした樹脂がある。耐衝撃性向上のために、熱硬化性樹脂には、エラストマーもしくはゴム成分が添加されていても良い。中でも、エポキシ樹脂は、力学特性、耐熱性および強化繊維との接着性に優れ、好ましい。
 エポキシ樹脂の主剤としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂などのビスフェノール型エポキシ樹脂、テトラブロモビスフェノールAジグリシジルエーテルなどの臭素化エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂、ジシクロペンタジエン骨格を有するエポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、N,N,O-トリグリシジル-m-アミノフェノール、N,N,O-トリグリシジル-p-アミノフェノール、N,N,O-トリグリシジル-4-アミノ-3-メチルフェノール、N,N,N’,N’-テトラグリシジル-4,4’-メチレンジアニリン、N,N,N’,N’-テトラグリシジル-2,2’-ジエチル-4,4’-メチレンジアニリン、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、N,N-ジグリシジルアニリン、N,N-ジグリシジル-o-トルイジンなどのグリシジルアミン型エポキシ樹脂、レゾルシンジグリシジルエーテル、トリグリシジルイソシアヌレートなどを挙げることができる。
 熱硬化性樹脂組成物は、硬化剤を含んでいてもよい。硬化剤としては、例えば、ジシアンジアミド、芳香族アミン化合物、フェノールノボラック樹脂、クレゾールノボラック樹脂、ポリフェノール化合物、イミダゾール誘導体、テトラメチルグアニジン、チオ尿素付加アミン、カルボン酸ヒドラジド、カルボン酸アミド、ポリメルカプタンなどが挙げられる。
 また、これらの硬化剤は、熱硬化性樹脂の反応官能基数の0.8~1.2当量が好ましい。
 さらに、熱硬化性樹脂組成物には、繊維強化プラスチックの用途に応じてマイカ、タルク、カオリン、ハイドロタルサイト、セリサイト、ベントナイト、ゾノトライト、セピオライト、スメクタイト、モンモリロナイト、ワラステナイト、シリカ、炭酸カルシウム、ガラスビーズ、ガラスフレーク、ガラスマイクロバルーン、クレー、二硫化モリブデン、酸化チタン、酸化亜鉛、酸化アンチモン、ポリリン酸カルシウム、グラファイト、硫酸バリウム、硫酸マグネシウム、ホウ酸亜鉛、ホウ酸亜カルシウム、ホウ酸アルミニウムウィスカ、チタン酸カリウムウィスカおよび高分子化合物などの充填材、金属系、金属酸化物系、カーボンブラックおよびグラファイト粉末などの導電性付与材、臭素化樹脂などのハロゲン系難燃剤、三酸化アンチモンや五酸化アンチモンなどのアンチモン系難燃剤、ポリリン酸アンモニウム、芳香族ホスフェートおよび赤燐などのリン系難燃剤、有ホウ酸金属塩、カルボン酸金属塩および芳香族スルホンイミド金属塩などの有機酸金属塩系難燃剤、硼酸亜鉛、亜鉛、酸化亜鉛およびジルコニウム化合物などの無機系難燃剤、シアヌル酸、イソシアヌル酸、メラミン、メラミンシアヌレート、メラミンホスフェートおよび窒素化グアニジンなどの窒素系難燃剤、PTFEなどのフッ素系難燃剤、ポリオルガノシロキサンなどのシリコーン系難燃剤、水酸化アルミニウムや水酸化マグネシウムなどの金属水酸化物系難燃剤、またその他の難燃剤、酸化カドミウム、酸化亜鉛、酸化第一銅、酸化第二銅、酸化第一鉄、酸化第二鉄、酸化コバルト、酸化マンガン、酸化モリブデン、酸化スズおよび酸化チタンなどの難燃助剤、顔料、染料、滑剤、離型剤、相溶化剤、分散剤、マイカ、タルクおよびカオリンなどの結晶核剤、リン酸エステルなどの可塑剤、熱安定剤、酸化防止剤、着色防止剤、紫外線吸収剤、流動性改質剤、発泡剤、抗菌剤、制振剤、防臭剤、摺動性改質剤、およびポリエーテルエステルアミドなどの帯電防止剤等を添加しても良い。とりわけ、用途が電気・電子機器、自動車、航空機などの場合には、難燃性が要求される場合があり、リン系難燃剤、窒素系難燃剤、無機系難燃剤が好ましく添加される。
 上記難燃剤は、難燃効果の発現とともに、使用する樹脂の力学特性や成形時の樹脂流動性などと良好な特性バランスを保つために、樹脂100質量部に対して難燃剤1~20質量部とすることが好ましく、より好ましくは1~15質量部である。
(第二の熱可塑性樹脂)
 第二の熱可塑性樹脂は、熱可塑性樹脂を主成分とすること以外は、特に制限はなく、熱硬化性樹脂層の靱性を向上させるためには、靱性の高い樹脂を好ましく用いることができる。また、島相は、熱可塑性樹脂を主成分として含有する熱可塑性樹脂組成物を用いて形成することができる。熱可塑性樹脂組成物は、繊維強化プラスチックの用途に応じて、添加剤などを含んでいてもよい。
 島相に主成分として含有し得る第二の熱可塑性樹脂の種類には、特に制限はなく、例えば、「ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、液晶ポリエステル等のポリエステルや、ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレン等のポリオレフィンや、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリフェニレンスルフィド(PPS)などのポリアリーレンスルフィド、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリアリールエーテルケトン(PAEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレンなどのフッ素系樹脂」などの結晶性樹脂、「スチレン系樹脂の他、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフェニレンエーテル(PPE)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリサルホン(PSU)、ポリエーテルサルホン、ポリアリレート(PAR)」などの非晶性樹脂、その他、フェノール系樹脂、フェノキシ樹脂、更にポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系、フッ素系樹脂、およびアクリロニトリル系等の熱可塑エラストマーなどや、これらの共重合体および変性体等から選ばれる熱可塑性樹脂が挙げられる。
 中でも、得られる繊維強化プラスチックの軽量性の観点からはポリオレフィンが好ましい。耐熱性の観点からはポリフェニレンスルフィド(PPS)などのポリアリーレンスルフィド、ポリエーテルエーテルケトン(PEEK)、ポリアリールエーテルケトン(PAEK)、ポリエーテルケトンケトン(PEKK)が好ましい。
 また、接合強度の観点からは、第二の熱可塑性樹脂は、ポリアミド、ポリアリレート、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリスルホン、ポリエーテルスルホンからなる群より選ばれた1種以上の樹脂を主成分とすることが好ましい。その中でも、ポリアミドやポリイミドがより好ましく、さらに、優れた靱性のため耐衝撃性を大きく向上できる、ポリアミドが最も好ましい。
 また、熱硬化性樹脂層との接着の観点からは、島相は、熱硬化性樹脂を含むことが好ましく、海相の熱硬化性樹脂の成分を含むことがより好ましい。また、第二の熱可塑性樹脂は、熱硬化性樹脂を含むことが好ましく、海相の熱硬化性樹脂の成分を含むことがより好ましい。ここで、「海相の熱硬化性樹脂の成分」とは、海相に含有される熱硬化性樹脂と同種の樹脂成分をいう。例えば、第二の熱可塑性樹脂が熱硬化性樹脂との組合せによりセミIPN構造(高分子相互侵入網目構造)を形成すると、島相と海相の剥離を抑制できる点でより好ましい。セミIPN構造をとる組合せとしては、ポリアミド12、ポリアミド6、ポリアミド11、ポリアミド6/12共重合体から選択されるポリアミドとエポキシ化合物が例示できる。
 第二の熱可塑性樹脂と熱硬化性樹脂の成分の比率(質量%)は95:5~70:30の範囲で用いることができ、より好ましくは90:10~80:20の範囲である。ここで、熱硬化性樹脂としては、エポキシ化合物に限定されず、不飽和ポリエステル、ビニルエステル樹脂、ベンゾオキサジン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂およびポリイミド樹脂から選択してもよい。熱硬化性樹脂は、海相と同じ熱硬化性樹脂の成分であることがより好ましい。
 さらに、第二の熱可塑性樹脂には、その用途に応じてマイカ、タルク、カオリン、ハイドロタルサイト、セリサイト、ベントナイト、ゾノトライト、セピオライト、スメクタイト、モンモリロナイト、ワラステナイト、シリカ、炭酸カルシウム、ガラスビーズ、ガラスフレーク、ガラスマイクロバルーン、クレー、二硫化モリブデン、酸化チタン、酸化亜鉛、酸化アンチモン、ポリリン酸カルシウム、グラファイト、硫酸バリウム、硫酸マグネシウム、ホウ酸亜鉛、ホウ酸亜カルシウム、ホウ酸アルミニウムウィスカ、チタン酸カリウムウィスカおよび高分子化合物などの充填材、金属系、金属酸化物系、カーボンブラックおよびグラファイト粉末などの導電性付与材、臭素化樹脂などのハロゲン系難燃剤、三酸化アンチモンや五酸化アンチモンなどのアンチモン系難燃剤、ポリリン酸アンモニウム、芳香族ホスフェートおよび赤燐などのリン系難燃剤、有ホウ酸金属塩、カルボン酸金属塩および芳香族スルホンイミド金属塩などの有機酸金属塩系難燃剤、硼酸亜鉛、亜鉛、酸化亜鉛およびジルコニウム化合物などの無機系難燃剤、シアヌル酸、イソシアヌル酸、メラミン、メラミンシアヌレート、メラミンホスフェートおよび窒素化グアニジンなどの窒素系難燃剤、PTFEなどのフッ素系難燃剤、ポリオルガノシロキサンなどのシリコーン系難燃剤、水酸化アルミニウムや水酸化マグネシウムなどの金属水酸化物系難燃剤、またその他の難燃剤、酸化カドミウム、酸化亜鉛、酸化第一銅、酸化第二銅、酸化第一鉄、酸化第二鉄、酸化コバルト、酸化マンガン、酸化モリブデン、酸化スズおよび酸化チタンなどの難燃助剤、顔料、染料、滑剤、離型剤、相溶化剤、分散剤、マイカ、タルクおよびカオリンなどの結晶核剤、リン酸エステルなどの可塑剤、熱安定剤、酸化防止剤、着色防止剤、紫外線吸収剤、流動性改質剤、発泡剤、抗菌剤、制振剤、防臭剤、摺動性改質剤、およびポリエーテルエステルアミドなどの帯電防止剤等を添加しても良い。とりわけ、用途が電気・電子機器、自動車、航空機などの場合には、難燃性が要求される場合があり、リン系難燃剤、窒素系難燃剤、無機系難燃剤が好ましく添加される。
 上記難燃剤は、難燃効果の発現とともに、使用する樹脂の力学特性や成形時の樹脂流動性などと良好な特性バランスを保つために、第二の熱可塑性樹脂100質量部に対して難燃剤1~20質量部とすることが好ましく、より好ましくは1~15質量部である。
(第二の熱可塑性樹脂を主成分とする島相の形状)
 第二の熱可塑性樹脂を主成分とする島相の形状には特に制限はなく、熱硬化性樹脂を主成分とする海相に分散した海島構造であれば良い。島相の形状は例えば、繊維形状や粒子形状でもよく、強化繊維のアライメントの乱れを抑制する観点から、球状形状であることが好ましい。例えば、繊維強化プラスチック平面に垂直な断面において観察される第二の熱可塑性樹脂を主成分とする島相の断面形状が円形、楕円形、凹凸を含む略円形であることがより好ましい。中でも、応力集中の起点の少ない円形がさらに好ましい。
 第二の熱可塑性樹脂を主成分とする島相の弾性率は、熱硬化性樹脂の靱性向上の観点から、熱硬化性樹脂を主成分とする海相の弾性率よりも低いことが好ましく、熱硬化性樹脂を主成分とする海相の弾性率の70%以下であることがより好ましく、50%以下であることがさらに好ましい。
 第二の熱可塑性樹脂を主成分とする島相と熱硬化性樹脂を主成分とする海相の弾性率の測定の一例としては、繊維強化プラスチックを切り出した断面における第二の熱可塑性樹脂を主成分とする島相と熱硬化性樹脂を主成分とする海相とのそれぞれを、ナノインデンテーション法により評価する方法を挙げることができる。
 第二の熱可塑性樹脂を主成分とする島相のガラス転移温度は、熱硬化性樹脂を主成分とする海相のガラス転移温度よりも低いことが好ましい。第二の熱可塑性樹脂を主成分とする島相のガラス転移温度が、熱硬化性樹脂を主成分とする海相のガラス転移温度よりも低いことで、熱硬化性樹脂層の靱性をさらに向上させることができる。
 第二の熱可塑性樹脂を主成分とする島相と熱硬化性樹脂を主成分とする海相のガラス転移温度の測定方法の一例としては、繊維強化プラスチックを切り出した断面から第二の熱可塑性樹脂を主成分とする島相と熱硬化性樹脂を主成分とする海相とのそれぞれを抽出し、示差走査熱量計(DSC)により評価する方法を挙げることができる。
(ゴム質重合体)
 ゴム質重合体は、ゴム重合体を主成分とすることが好ましく、それ以外は、特に制限はなく、用途に応じて、添加剤などを含んでいてもよい。ゴム重合体とは、ガラス転移温度が室温より低い重合体を含有し、分子間の一部が共有結合、イオン結合、ファンデルワールス力、絡み合い等により、互いに拘束されている重合体である。
 ゴム質重合体の一例としては、オレフィン系樹脂、アクリル系ゴム、シリコーン系ゴム、フッ素系ゴム、ニトリル系ゴム、ビニル系ゴム、ウレタン系ゴム、ポリアミドエラストマー、ポリエステルエラストマー、アイオノマー等が挙げられる。
 ゴム質重合体に含みうる添加剤は、上記の第二の熱可塑性樹脂に含みうる添加剤が挙げられ、好ましい例も同様である。
(ゴム質重合体島相の形状)
 ゴム質重合体を主成分とする島相の形状は、上記の第二の熱可塑性樹脂を主成分とする島相と同様の形状が挙げられ、好ましい例も同様である。
 また、ゴム質重合体を主成分とする島相の弾性率も、第二の熱可塑性樹脂を主成分とする島相の弾性率と同様、熱硬化性樹脂を主成分とする海相の弾性率よりも低いことが好ましく、好ましい範囲も同様である。
 ゴム質重合体を主成分とする島相も熱可塑性樹脂を主成分とする島相と同様に、セミIPN構造を形成していることが好ましく、好ましい範囲も熱可塑性樹脂と同様である。
[熱可塑性樹脂層]
 熱可塑性樹脂層は、第一の熱可塑性樹脂を含有すること以外は、特に制限はなく、第一の熱可塑性樹脂を主成分として含有することが好ましく、繊維強化プラスチックの用途に応じて、更に添加剤などを含んでいてもよい。
 熱可塑性樹脂層に含有される第一の熱可塑性樹脂としては、上記の第二の熱可塑性樹脂で例示した樹脂が挙げられ、好ましい例も同様である。
 第一の熱可塑性樹脂層に含みうる添加剤は、上記の第二の熱可塑性樹脂に含みうる添加剤が挙げられ、好ましい例も同様である。
 繊維強化プラスチックにおける熱可塑性樹脂層の目付は、第2の部材との溶着に適した樹脂量を確保して品位品質を高める観点で、10g/m以上500g/m以下であることが好ましく、より好ましくは20g/m以上200g/m以下である。
 ここで、目付とは、繊維強化プラスチック1mあたりに含まれる熱可塑性樹脂層の質量(g)をいう。
 本発明の実施形態においては、熱可塑性樹脂層が繊維強化プラスチックの表層の一部として存在していてもよい。繊維強化プラスチックの表層に存在する熱可塑性樹脂層は、別の部材との溶着による一体化を実現させることができ、好ましい形態では熱可塑性樹脂層の部位を最小限にとどめることができ、力学特性に優れる繊維強化プラスチックの効率を高めることができる。
<製造方法>
 本発明の実施形態に係る繊維強化プラスチックを作製する方法としては、特に制限はないが、例えば、以下製造方法(I)~(IV)の方法が挙げられる。
 製造方法(I)
 製造方法(I)は、強化繊維群を構成する強化繊維シートの両面に、島相の前駆体及び熱硬化性樹脂層の前駆体を含浸させ、
島相及び熱硬化性樹脂層を形成する工程と、
 島相及び熱硬化性樹脂層を形成した強化繊維シートの少なくとも一方の面に、島相の前駆体及び熱可塑性樹脂層の前駆体を軟化または溶融させて配し、島相及び熱可塑性樹脂層を形成して中間体とする工程と、得られた中間体を成形する工程とを含む繊維強化プラスチックの製造方法である。
 製造方法(II)
 製造方法(II)は、強化繊維群を構成する強化繊維シートの両面に、島相の前駆体及び熱硬化性樹脂層の前駆体を含浸させ、島相及び熱硬化性樹脂層を形成する工程と、
 島相及び熱硬化性樹脂層を形成した強化繊維シートの少なくとも一方の面に、熱可塑性樹脂層の前駆体を軟化又は溶融させて配し、熱可塑性樹脂層を形成して中間体とする工程と、得られた中間体を成形する工程とを含む繊維強化プラスチックの製造方法である。
 製造方法(III)
 製造方法(III)は、強化繊維群を構成する強化繊維シートの両面に、熱硬化性樹脂層の前駆体を含浸させ、熱硬化性樹脂層を形成する工程と、
 熱硬化性樹脂層を形成した強化繊維シートの少なくとも一方の面に、島相の前駆体及び熱可塑性樹脂層の前駆体を軟化または溶融させて配し、島相および熱可塑性樹脂層を形成して中間体とする工程と、得られた中間体を成形する工程とを含む繊維強化プラスチックの製造方法である。
 製造方法(IV)
 製造方法(IV)は強化繊維群を構成する強化繊維シートの片面に熱可塑性樹脂層の前駆体を含浸させ、熱可塑性樹脂層を形成した後に加振を行い、熱可塑性樹脂層の前駆体を強化繊維シート中に分散させる工程と、
 強化繊維シートのもう一方の面に熱硬化性樹脂層の前駆体を含浸させ中間体とする工程と、得られた中間体を成形する工程とを含む繊維強化プラスチックの製造方法である。
 本発明の実施形態において、熱硬化性樹脂層を、第二の熱可塑性樹脂またはゴム質重合体を主成分とする島相が、熱硬化性樹脂を主成分とする海相に分散した海島構造を有する層とする方法としては、特に制限はないが、例えば、前記繊維強化プラスチックの製造方法において、以下(i)~(vii)のいずれかの方法を用いることが挙げられる。また、これらの方法は、複数を組み合わせてもよい。
(i)熱可塑性樹脂層の前駆体に島相の前駆体を含ませる工程。
(ii)熱硬化性樹脂層の前駆体に島相の前駆体を含ませる工程。
(iii)熱硬化性樹脂層の前駆体および熱可塑性樹脂層の前駆体の双方に島相の前駆体を含ませる工程。
(iv)熱硬化性樹脂層の前駆体を強化繊維群に含浸させた中間体の少なくとも一方の面に、島相の前駆体を塗し、さらに熱可塑性樹脂層の前駆体を含浸させる工程。
(v)熱可塑性樹脂層の前駆体を強化繊維群に含浸させた中間体に、島相の前駆体を塗す工程。
(vi)熱可塑性樹脂層の前駆体の片側の表面に島相の前駆体を塗し、さらに熱可塑性樹脂層の前駆体を含浸させる工程。
(vii)熱可塑性樹脂の前駆体を強化繊維群に含浸させた中間体を、振動バー等により加振させ、熱可塑性樹脂の前駆体を強化繊維群中で分散させる工程。
[熱硬化性樹脂層の前駆体]
 熱硬化性樹脂層の前駆体は、強化繊維群に含浸されて熱硬化性樹脂層となる組成物である。熱硬化性樹脂層の前駆体を強化繊維群に含浸する方法には、特に制限はないが、例えば、ヒートローラーにより、加熱加圧し軟化又は溶融させて、含浸する方法が挙げられる。
 熱硬化性樹脂層の前駆体は、強化繊維群に含浸されて熱硬化性樹脂層となるものであれば、その形態に制限はないが、例えば、液体状、シート状、不織布状、粒子状などが挙げられる。しかしながら、強化繊維群に均一に含浸できる観点から、熱硬化性樹脂層の前駆体は、シート状であることが好ましい。
[熱可塑性樹脂層の前駆体]
 熱可塑性樹脂層の前駆体は、強化繊維群に含浸されて熱可塑性樹脂層となる組成物である。熱可塑性樹脂層の前駆体を強化繊維群に含浸する方法には、特に制限はないが、例えば、ヒートローラーにより、加熱加圧し、溶融させて含浸する方法が挙げられる。
 熱可塑性樹脂層の前駆体は、強化繊維群に含浸されて熱可塑性樹脂層となるものであれば、その形態に制限はないが、例えば、液体状、シート状、不織布状、粒子状などが挙げられる。しかしながら、強化繊維群に均一に含浸できる観点から、熱可塑性樹脂層の前駆体は、シート状であることが好ましい。
 また、熱可塑性樹脂層と島相を、同一の前駆体により、同時に形成するためには、島相の前駆体及び/又は熱可塑性樹脂層の前駆体の形状はパウダー状であることが好ましい。前駆体の形状をパウダー状とすることにより、その一部は熱硬化性樹脂層へ含浸し、残りの部分は、繊維強化プラスチックの表面で溶融し、熱可塑性樹脂層を形成することができる。
 熱可塑性樹脂層の前駆体を溶融させる温度としては、熱可塑性樹脂層の前駆体の主成分である第一の熱可塑性樹脂が結晶性の場合にはその融点+30℃以上の温度で、非晶性の場合には、そのガラス転移温度+30℃以上の温度で加熱・加圧成形することが好ましい。
 また、熱可塑性樹脂層は、少なくとも別の部材との接合面となる部分に配置していればよいが、安定的な熱溶着性を確保するため一定の接合面のマージンを見込む場合があり、その観点からは、繊維強化プラスチックの表層の面積の50%以上に存在することが好ましく、より好ましくは80%以上である。
[島相の前駆体]
 島相の前駆体は、繊維強化プラスチック中の熱硬化性樹脂層に存在する島相となるものであれば、特に制限はない。島相の前駆体の形状としては、例えば、液体状、シート状、不織布状、粒子状などが挙げられる。しかしながら、均一に熱硬化性樹脂層と熱可塑性樹脂層の界面に存在できる観点から、島相の前駆体は、粒子状であることが好ましく、パウダー状であることがより好ましい。
 島相の前駆体を予め熱硬化性樹脂層の前駆体に含ませる場合、熱硬化性樹脂層の前駆体100質量部に対して、島相の前駆体は10~40質量部の範囲が好ましく、より好ましくは15~40質量部の範囲であり、さらに好ましくは25~40質量部の範囲である。島相の配合量をかかる範囲とすることで、繊維強化プラスチックの中間体同士の接着性と繊維強化プラスチック接合強度のバランスをとることができる。
 同様に、島相の前駆体を予め熱可塑性樹脂層の前駆体に含ませる場合、熱可塑性樹脂層の前駆体100質量部に対して、島相の前駆体は10~40質量部の範囲が好ましく、より好ましくは15~40質量部の範囲であり、さらに好ましくは25~40質量部の範囲である。島相の配合量をかかる範囲とすることで、繊維強化プラスチックの中間体同士の接着性と繊維強化プラスチックと接合強度のバランスをとることができる。
 本発明の実施形態に係る繊維強化プラスチックを製造する好ましい態様は、前記の定義に基づく含浸率の高いプリプレグや、含浸率の低いセミプレグといった中間体を用いて成形する方法を例示できる。この成形する工程において、繊維強化プラスチックは所望の構造体への賦形が行われるとともに、熱硬化性樹脂は硬化反応が促進される。
 ここで、熱硬化性樹脂のガラス転移温度は、構造体として使用する観点から、120℃以上であることが好ましく、150℃以上であることがより好ましく、180℃以上であることがさらに好ましい。この成形工程を経て、熱硬化性樹脂のガラス転移温度は、島相の熱可塑性樹脂またはゴム質重合体のガラス転移温度よりも高く制御できるようになる。
 本発明の実施形態に係る繊維強化プラスチックは、前記中間体を単体で成形しても良く、また複数枚を積層して成形しても良く、また他の材料と積層して成形しても良い。積層の構成については、成形体の表面にあたる最外の積層単位のいずれか一方に、中間体を配置する以外は特に制限はなく、用途に応じてプリプレグ、フィルム、シート、不織布、多孔質体、金属などを積層することができる。
 本発明の実施形態に係る繊維強化プラスチックとしては、中間体を成形する例に限定されるものではなく、プリプレグのオートクレーブ成形、プレス成形、引抜成形や、レジントランスファー(RTM)成形、レジンインフュージョン(RI)成形の過程を通して本発明の実施形態をとるものであれば好ましく選択できる。
 本発明の繊維強化プラスチックの構造には特に制限はなく、平板や曲面板、凹凸構造、中空構造、サンドイッチ構造など、用途に応じて多様な構造を選択できる。
 本発明の繊維強化プラスチックは、表層に配置された熱可塑性樹脂層を介して別の部材と溶着した一体成形品とすることができる。このときの接合方法には制限はないが、例えば、熱板溶着、振動溶着、超音波溶着、レーザー溶着、抵抗溶着、誘導溶着、インサート射出成形、アウトサート射出成形などの溶着法を挙げることができる。
 本発明の繊維強化プラスチックは、航空機構造部材、風車羽根、自動車外板及びICトレイやノートパソコンの筐体等のコンピューター用途さらにはゴルフシャフトやテニスラケット等スポーツ用途に好ましく用いられる。
 以下、実施例により本発明をさらに詳細に説明する。ただし、本発明の範囲はこれらの実施例に制限されるものではない。
<強化繊維束>
・A-1
 ポリアクリロニトリルを主成分とする重合体から紡糸、焼成処理、及び表面酸化処理を行い、総単糸数24,000本の連続炭素繊維からなる強化繊維束A-1を得、強化繊維群の形成に用いた。この炭素繊維束A-1の特性は次の通りであった。
 単繊維径:7μm
 密度:1.8g/cm
 引張強度:4.2GPa
 引張弾性率:230GPa
 表面自由エネルギー:15mJ/m
 A-1をベースに、各種サイジング剤用化合物をアセトンと混合し、化合物が均一に溶解した約1質量%の溶液を得た。浸漬法により各化合物を上記炭素繊維束に塗布した後、210℃で90秒間熱処理をし、各化合物の付着量が、各化合物が付着した炭素繊維100質量部に対して、0.5質量部となるように調整した。各炭素繊維に用いたサイジング剤用化合物および、サイジング剤塗布後の表面自由エネルギーは以下の通りである。
・A-2
 ソルビトールポリグリシジルエーテル(“デナコール”(登録商標)EX-614B、ナガセケムテックス(株)社製) 
 表面自由エネルギー:32mJ/m
・A-3
 ビスフェノールA型ジグリシジルエーテル(“jER”(登録商標)828、三菱ケミカル(株)社製)
 表面自由エネルギー:9mJ/m
・A-4
 ポリエチレングリコールジグリシジルエーテル(“デナコール”(登録商標)EX-841、ナガセケムテックス(株)社製) 
 表面自由エネルギー:20mJ/m
<島相の前駆体>
・D-1
 透明ポリアミド(グリルアミド(登録商標)TR55、エムスケミー・ジャパン(株)製)90質量部、エポキシ樹脂(jER(登録商標)828、(三菱ケミカル(株)製))7.5質量部および硬化剤(トーマイド(登録商標)#296、(株)ティーアンドケイ東華製)2.5質量部を、クロロホルム300質量部とメタノール100質量部の混合溶媒中に添加して均一溶液を得た。次に、得られた均一溶液を塗装用のスプレーガンを用い、撹拌している3000質量部のn-ヘキサンの液面に向かって霧状に吹き付けて溶質を析出させた。析出した固体を濾別し、n-ヘキサンで良く洗浄した後に、100℃の温度で24時間の真空乾燥を行い、第二の熱可塑性樹脂を主成分とする島相の前駆体D-1である、球状のセミIPN構造を有するエポキシ改質ポリアミド粒子を得た。得られた第二の熱可塑性樹脂を主成分とする島相の前駆体D-1の平均粒径は、13μmであり、融点は250℃であった。
・D-2
 ポリウレタン微粒子(ダイミックビーズ(登録商標)UCN-5150D、大日精化工業(株)製)をゴム質重合体を主成分とする島相の前駆体D-2として用いた。ゴム質重合体を主成分とする島相の前駆体D-2の平均粒子径は15μmであり、ガラス転移温度は-27℃であった。
・D-3
 低融点ポリアミド(アミラン(登録商標)CM4000(東レ(株)製)、3元共重合ポリアミド樹脂、融点155℃)をパウダー状とし、熱可塑性樹脂を主成分とする島相の前駆体D-3とした。熱可塑性樹脂を主成分とする島相の前駆体D-3の平均粒径は25μmであった。
・D-4
 ポリアミド12微粒子(SP-500(東レ(株)社製)、平均粒径5μm、真球状)を前駆体D-4として用いた。
<熱硬化性樹脂層の前駆体>
・B-1
 混練装置にエポキシ樹脂主剤(jER(登録商標)828(三菱ケミカル(株)製))、(jER(登録商標)1001(三菱ケミカル(株)製))、(jER(登録商標)154(三菱ケミカル(株)製))をそれぞれ30質量部、40質量部、30質量部投入し、150℃で加熱混練を行い、各成分が相溶するまで混練した。次いで、混練を続けたまま、80℃まで降温させた後、硬化剤(3,3’DAS(3,3’―ジアミノジフェニルスルホン、三菱化学ファイン(株)製))を26質量部投入し、80℃で30分混練することにより、熱硬化性樹脂層の前駆体B-1を得た。
・B-2
 混練装置にエポキシ樹脂主剤(jER(登録商標)828(三菱ケミカル(株)製))、(jER(登録商標)1001(三菱ケミカル(株)製))、(jER(登録商標)154(三菱ケミカル(株)製))をそれぞれ30質量部、40質量部、30質量部投入し、150℃で加熱混練を行い、各成分が相溶するまで混練した。その後、熱可塑性樹脂を主成分とする島相の前駆体D-1を30質量部加え、D-1が分散するまで混練した。次いで、混練を続けたまま、80℃まで降温させた後、硬化剤(3,3’DAS(3,3’―ジアミノジフェニルスルホン、三菱化学ファイン(株)製))を26質量部投入し、80℃で30分混練することにより、D-1を含んだ熱硬化性樹脂層の前駆体B-2を得た。
・B-3
 混練装置にエポキシ樹脂主剤(jER(登録商標)828(三菱ケミカル(株)製))、(jER(登録商標)1001(三菱ケミカル(株)製))、(jER(登録商標)154(三菱ケミカル(株)製))をそれぞれ30質量部、40質量部、30質量部投入し、150℃で加熱混練を行い、各成分が相溶するまで混練した。その後、80℃まで降温させた後、熱可塑性樹脂を主成分とする島相の前駆体D-2を30質量部加え、D-2が分散するまで混練した。次いで、混練を続けたまま、硬化剤(3,3’DAS(3,3’―ジアミノジフェニルスルホン、三菱化学ファイン(株)製))を26質量部投入し、80℃で30分混練することにより、D-2を含んだ熱硬化性樹脂層の前駆体B-3を得た。
・B-4
 混練装置にエポキシ樹脂主剤(アラルダイト(登録商標)MY721(ハンツマン・アドバンスト・マテリアルズ社製))、(jER(登録商標)825(三菱ケミカル(株)製))、(スミカエクセル(登録商標)PES5003P(住友化学(株)製))をそれぞれ50質量部、50質量部、7質量部入し、150℃で加熱混練を行い、各成分が相溶するまで混練した。次いで、混練を続けたまま、80℃まで降温させた後、硬化剤(セイカキュアS、(和歌山精化工業(株)製))を45.1質量部投入し、80℃で30分混練することにより、熱硬化性樹脂の前駆体B-4を得た。
<熱可塑性樹脂層の前駆体>
・C-1
 低融点ポリアミド(アミラン(登録商標)CM4000(東レ(株)製)、3元共重合ポリアミド樹脂、融点155℃)をシート化し、熱可塑性樹脂層の前駆体C-1を得た。
・C-2
 二軸押出機中に、低融点ポリアミド(アミラン(登録商標)CM4000(東レ(株)製)、3元共重合ポリアミド樹脂、融点155℃)を100質量部、熱可塑性樹脂ドメインの前駆体D-1を30質量部投入し、180℃で加熱混練を行った。得られた混練物をシート化し、熱可塑性樹脂層の前駆体C-2を得た。
・C-3
 低融点ポリアミド(アミラン(登録商標)CM4000(東レ(株)製)、3元共重合ポリアミド樹脂、融点155℃)をパウダー状とし、熱可塑性樹脂層の前駆体C-3とした。熱可塑性樹脂層の前駆体C-3の平均粒径は25μmであった。
・C-4
 ポリアミド12(リルサミド(登録商標)AMNO TLD(アルケマ(株)製)、融点175℃)をシート化し、熱可塑性樹脂層の前駆体C-4を得た。
・C-5
 ポリフェニレンスルフィド(トレリナ(登録商標)A670T05(東レ(株)製)、融点278℃)をシート化し、熱可塑性樹脂層の前駆体C-5を得た。
・C-6
 ポリエーテルケトンケトン(Kepstan(登録商標)7002(アルケマ(株)製)、融点332℃)をシート化し、熱可塑性樹脂層の前駆体C-6を得た。
<プリプレグの作製方法>
・P-1
 強化繊維束を一方向に整列、開繊させ、連続した状態の強化繊維群を形成する強化繊維シートとした。強化繊維シートの目付は、200g/mとした。熱硬化性樹脂層の前駆体を、ナイフコーターを用いて離型紙上にコーティングし、熱硬化性樹脂層の前駆体フィルムを作製した後、該強化繊維シートの両面に重ね合わせて、ヒートロールを用い、80℃、0.5MPaで加熱加圧しながら、熱硬化性樹脂層の前駆体を強化繊維シートに含浸させたプリプレグ中間体を得た。作製した熱硬化性樹脂層の前駆体フィルムの目付は、50g/mとした。
 次いで、熱可塑性樹脂層の前駆体を、上記プリプレグの中間体の片表面上に配置して、熱可塑性樹脂層の前駆体の融点+30℃以上に保たれたヒートロールを用いて0.5MPaで加圧することで、熱硬化性樹脂層と熱可塑性樹脂層との界面が強化繊維群の内部に位置しているプリプレグを得た。熱可塑性樹脂層の前駆体は、目付が50g/mとなるようにプリプレグ中間体の片表面上に配置した。
・P-2
 強化繊維束を一方向に整列、開繊させ、連続した状態の強化繊維群を形成する強化繊維シートとした。強化繊維シートの目付は、200g/mとした。熱硬化性樹脂層の前駆体を、ナイフコーターを用いて離型紙上にコーティングし、熱硬化性樹脂層の前駆体フィルムを作製した後、該強化繊維シートの両面に重ね合わせて、ヒートロールを用い、80℃、0.5MPaで加熱加圧しながら、熱硬化性樹脂層の前駆体を強化繊維シートに含浸させたプリプレグ中間体を得た。作製した熱硬化性樹脂層の前駆体フィルムの目付は、50g/mとした。
 次いで、フィーダーにより第二の熱可塑性樹脂を主成分とする島相の前駆体を、上記プリプレグ中間体の片表面上に散布した。散布量は、11.5g/mとなるように散布した。
 その後、上記プリプレグ中間体の、第二の熱可塑性樹脂を主成分とする島相の前駆体が散布された表面上に、熱可塑性樹脂層の前駆体を配置した。熱可塑性樹脂層の前駆体を、目付が38.5g/mとなるようにプリプレグ中間体の片表面上に配置し、熱可塑性樹脂層の前駆体の融点+30℃以上に保たれたヒートロールを用いて0.5MPaで加圧することで、熱硬化性樹脂層と熱可塑性樹脂層との界面が強化繊維群の内部に位置し、かつ、第二の熱可塑性樹脂を主成分とする島相が、熱硬化性樹脂を主成分とする海相に分散し、界面近傍に存在しているプリプレグを得た。
・P-3
 強化繊維束を一方向に整列、開繊させ、連続した状態の強化繊維群を形成する強化繊維シートとした。強化繊維シートの目付は、200g/mとした。熱硬化性樹脂層の前駆体を、ナイフコーターを用いて離型紙上にコーティングし、熱硬化性樹脂層の前駆体フィルムを作製した後、該強化繊維シートの両面に重ね合わせて、ヒートロールを用い、80℃、0.5MPaで加熱加圧しながら、熱硬化性樹脂層の前駆体のみが強化繊維シートに含浸されたプリプレグを得た。熱硬化性樹脂層の前駆体は、B-1を使用した。
・P-4
 熱硬化性樹脂層の前駆体としてB-3を用いた以外は、P-3と同様の方法で、熱硬化性樹脂層の前駆体のみが強化繊維シートに含浸されたプリプレグを得た。
・P-5
 強化繊維束を一方向に整列、開繊させ、連続した状態の強化繊維群を形成する強化繊維シートとした。強化繊維シートの目付は、200g/mとした。熱可塑性樹脂層の前駆体を、上記繊維強化シートの片表面上に配置して、熱可塑性樹脂層の前駆体の融点+30℃以上に保たれたヒートロールを用いて0.5MPaで加圧することで、熱可塑性樹脂層の前駆体を強化繊維シートに含浸させたプリプレグ中間体を得た。熱可塑性樹脂層の前駆体は、目付が50g/mとなるようにプリプレグ中間体の片表面上に配置した。
 上記ヒートロールを用いた加熱加圧後ただちに周期的な振動を行う超音波発生装置を通過させることにより、加振することで、熱可塑性樹脂相の前駆体を強化繊維シート中に分散させた。このとき、超音波発生装置の周波数は20kHz、振幅は100%、圧力は1.0MPaとした。また超音波発生装置のホーンとプリプレグ中間体が接触している距離は約25mmであり、超音波振動が付与された時間は約1.0秒であった。
 次いで、熱硬化性樹脂層の前駆体を、ナイフコーターを用いて離型紙上にコーティングし、熱硬化性樹脂層の前駆体フィルムを作製した後、該強化繊維シートの熱可塑性樹脂層の前駆体を配置した反対側に重ね合わせて、ヒートロールを用い、80℃、0.5MPaで加熱加圧しながら、熱硬化性樹脂層の前駆体を強化繊維シートに含浸させたプリプレグ中間体を得た。作製した熱硬化性樹脂層の前駆体フィルムの目付は、50g/mとした。
<評価方法>
(1)繊維強化プラスチック中の島相の体積割合の測定
 繊維強化プラスチックの最表層の繊維方向に直交する断面において、繊維強化プラスチックの表面に最も近い繊維を、最外繊維とし、最外繊維の中心を通る、繊維強化プラスチックの表面と水平な基準線から、熱硬化性樹脂層側へ厚さ方向に100μmの測定範囲において、島相の体積割合(体積%)を求めた。
(2)繊維強化プラスチックの接合強度の測定方法
 作製したプリプレグを所定の大きさにカットし、前記P-1、P-2またはP-5の方法で作製したプリプレグのうち、いずれか1種を2枚、前記P-3またはP-4の方法で作製したプリプレグを6枚用意した。
 強化繊維の繊維方向を0°とし、繊維方向に直交する方向を90°と定義して、[0°/90°]2s(記号sは、鏡面対称を示す)で積層し、プリプレグ積層体を作製した。このとき両面それぞれの最外層の2枚は前記P-1、P-2またはP-5の方法で作製したプリプレグとなるように積層し、積層体の表層が、熱可塑性樹脂層となるように配置した。この積層体をプレス成形金型にセットし、必要に応じ、治具やスペーサーを使用して、この形状を維持させたまま、プレス機で0.6MPaの圧力をかけ、180℃で2時間加温することで、繊維強化プラスチックを得た。
 得られた前記繊維強化プラスチックを、含まれる強化繊維の繊維方向に対して角度0°の方向を試験片の長さ方向として、幅250mm、長さ100mmの形状に2枚カットし、2枚のパネルとした。該パネルを真空オーブン中で24時間乾燥させた後、重ね合わせ長さが12.5mmとなるように重ね合わせ、熱可塑性樹脂層の融点よりも20℃高い温度にて、3MPaの圧力をかけて、1分間保持することで、重ね合わせた面を溶着し、接合体を得た。得られた接合体に、ISO4587:1995(JIS K6850(1994))に準拠してタブを接着し、幅25mmでカットすることで、試験片を得た。
 得られた試験片を、真空オーブン中で24時間乾燥させ、ISO4587:1995(JIS K6850(1994))に基づき、環境温度23℃で接合強度(MPa)を評価した。
(実施例1)
 強化繊維束としてA-1、熱硬化性樹脂層の前駆体としてB-2、熱可塑性樹脂層の前駆体としてC-1、島相の前駆体としてD-1を用い、上記P-2の方法により、プリプレグを作製した。作製したプリプレグを用い、各種評価に即した試験片を作製し、評価を行った。
 得られたプリプレグの熱硬化性樹脂層と前記熱可塑性樹脂層との界面は、炭素繊維束A-1により形成された強化繊維群の内部に位置し、熱硬化性樹脂層は第二の熱可塑性樹脂を主成分とする島相が熱硬化性樹脂を主成分とする海相に分散した海島構造を有していた。また、熱可塑性樹脂層と熱硬化性樹脂層との界面の近傍に、熱可塑性樹脂を主成分とする島相を含んでいた。
 強化繊維シートに熱硬化性樹脂層の前駆体を含浸させる際、強化繊維シート表面に、熱硬化性樹脂層の前駆体B-2に含まれる熱可塑性樹脂を主成分とする島相が偏在したため、接合強度が優れていた。
(実施例2)
 強化繊維束としてA-1、熱硬化性樹脂層の前駆体としてB-2、熱可塑性樹脂層の前駆体としてC-2、島相の前駆体としてD-1を用い、上記P-2の方法により、プリプレグを作製した。作製したプリプレグを用い、各種評価に即した試験片を作製し、評価を行った。
 得られたプリプレグの熱硬化性樹脂層と前記熱可塑性樹脂層との界面は、炭素繊維束A-1により形成された強化繊維群の内部に位置し、熱硬化性樹脂層は第二の熱可塑性樹脂を主成分とする島相が熱硬化性樹脂を主成分とする海相に分散した海島構造を有していた。また熱硬化性樹脂層および熱可塑性樹脂層との界面の近傍に、熱可塑性樹脂を主成分とする島相を含んでいた。
 強化繊維シートに熱硬化性樹脂層の前駆体を含浸させる際、強化繊維シート表面に、熱硬化性樹脂層の前駆体に含まれた第二の熱可塑性樹脂を主成分とする島相が偏在し、さらに、熱可塑性樹脂層にも第二の熱可塑性樹脂を主成分とする島相も存在するため、接合強度が優れていた。
(実施例3)
 強化繊維束としてA-1、熱硬化性樹脂層の前駆体としてB-3、熱可塑性樹脂層の前駆体としてC-1、島相の前駆体としてD-2を用い、上記P-2の方法により、プリプレグを作製した。作製したプリプレグを用い、各種評価に即した試験片を作製し、評価を行った。
 得られたプリプレグの熱硬化性樹脂層と前記熱可塑性樹脂層との界面は、炭素繊維束A-1により形成された強化繊維群の内部に位置し、熱硬化性樹脂層はゴム質重合体を主成分とする島相が熱硬化性樹脂を主成分とする海相に分散した海島構造を有していた。また、熱可塑性樹脂層および熱可塑性樹脂層との界面の近傍に、ゴム質重合体を主成分とする島相を含んでいた。
 強化繊維シートに熱硬化性樹脂層の前駆体を含浸させる際、強化繊維シート表面に、熱硬化性樹脂層の前駆体B-3に含まれるゴム質重合体を主成分とする島相が偏在したため、接合強度が優れていた。
(実施例4)
 強化繊維束としてA-1、熱硬化性樹脂層の前駆体としてB-1、熱可塑性樹脂層の前駆体としてC-3、熱可塑性樹脂を主成分とする島相の前駆体としてD-3を用い、上記P-2の方法により、プリプレグを作製した。作製したプリプレグを用い、各種評価に即した試験片を作製し、評価を行った。
 得られたプリプレグの熱硬化性樹脂層と前記熱可塑性樹脂層との界面は、炭素繊維束A-1により形成された強化繊維群の内部に位置し、熱硬化性樹脂層は第二の熱可塑性樹脂を主成分とする島相が熱硬化性樹脂を主成分とする海相に分散した海島構造を有していた。また熱硬化性樹脂層および熱可塑性樹脂層との界面の近傍に、熱可塑性樹脂を主成分とする島相を含んでいた。
 強化繊維シートに熱可塑性樹脂層の前駆体を含浸させる際、熱可塑性樹脂層の前駆体がパウダー状のため、その一部が熱硬化性樹脂層へ侵入し、熱硬化性樹脂層および熱可塑性樹脂層との、界面近傍に偏在する熱可塑性樹脂を主成分とする島相となったため、接合強度が優れていた。
(実施例5)
 強化繊維束としてA-1、熱硬化性樹脂層の前駆体としてB-1、熱可塑性樹脂層の前駆体としてC-1、熱可塑性樹脂を主成分とする島相の前駆体としてD-1を用い、上記P-2の方法により、プリプレグを作製した。作製したプリプレグを用い、各種評価に即した試験片を作製し、評価を行った。
 得られたプリプレグの熱硬化性樹脂層と前記熱可塑性樹脂層との界面は、炭素繊維束A-1により形成された強化繊維群の内部に位置し、熱硬化性樹脂層は第二の熱可塑性樹脂を主成分とする島相が熱硬化性樹脂を主成分とする海相に分散した海島構造を有していた。また熱硬化性樹脂層および熱可塑性樹脂層との界面の近傍に、熱可塑性樹脂を主成分とする島相を含んでいた。
 強化繊維シートに熱硬化性樹脂層の前駆体を含浸させる際、強化繊維シート表面に、熱硬化性樹脂層の前駆体に含まれた第二の熱可塑性樹脂を主成分とする島相が偏在し、さらに、熱可塑性樹脂層にも第二の熱可塑性樹脂を主成分とする島相も存在するため、接合強度が優れていた。
(実施例6)
 強化繊維束としてA-1、熱硬化性樹脂層の前駆体としてB-1、熱可塑性樹脂層の前駆体としてC-1、ゴム質重合体を主成分とする島相の前駆体としてD-2を用い、上記P-2の方法により、プリプレグを作製した。作製したプリプレグを用い、各種評価に即した試験片を作製し、評価を行った。
 得られたプリプレグの熱硬化性樹脂層と前記熱可塑性樹脂層との界面は炭素繊維束A-1により形成された強化繊維群の内部に位置し、熱硬化性樹脂層はゴム質重合体を主成分とする島相が熱硬化性樹脂を主成分とする海相に分散した海島構造を有していた。また、熱硬化性樹脂層および熱可塑性樹脂層の両層中の、界面の近傍に、ゴム質重合体を主成分とする島相を含んでいた。熱硬化性樹脂層と熱可塑性樹脂層との界面の近傍にゴム質重合体を主成分とする島相が偏在し、さらに、熱硬化性樹脂層および熱可塑性樹脂層の両層に島相が存在するため、接合強度が優れていた。
(実施例7)
 強化繊維としてA-3を、熱可塑性樹脂層の前駆体としてC-1を、島相の前駆体としてD-1を用いた以外は、実施例4と同様の方法で、プリプレグを作製し各種評価に供した。
 得られたプリプレグの熱硬化性樹脂層と前記熱可塑性樹脂層との界面は、炭素繊維束A-3により形成された強化繊維群の内部に位置し、島相が熱硬化性樹脂を主成分とする海相に分散した海島構造を有していた。また、熱硬化性樹脂層および熱可塑性樹脂層との界面の近傍に、熱可塑性樹脂を主成分とする島相を含んでいた。
 強化繊維シートに熱可塑性樹脂層の前駆体を含浸させる際、熱可塑性樹脂層の前駆体がパウダー状のため、その一部が熱硬化性樹脂層へ侵入し、熱硬化性樹脂層および熱可塑性樹脂層との、界面近傍に偏在する熱可塑性樹脂を主成分とする島相となったため、接合強度が優れていた。
(実施例8)
 強化繊維としてA-2を、熱可塑性樹脂相の前駆体としてC-4を、島相の前駆体としてD-4を用いた以外は、実施例4と同様の方法で、プリプレグを作製し、各種評価に供した。
 得られたプリプレグの熱硬化性樹脂層と熱可塑性樹脂層との界面は炭素繊維束A-2により形成された強化繊維群の内部に位置し、島相が熱硬化性樹脂を主成分とする海相に分散した海島構造を有していた。また、熱硬化性樹脂層および熱可塑性樹脂層との界面の近傍に、熱可塑性樹脂を主成分とする島相を含んでいた。熱硬化性樹脂及び熱可塑性樹脂との親和性の高い炭素繊維A-2を使用したことによって、炭素繊維の分散性が確保されて樹脂流動性が良好となり、島相の形成も促進されたと考えられる。
 強化繊維シートに熱可塑性樹脂層の前駆体を含浸させる際、熱可塑性樹脂層の前駆体がパウダー状のため、その一部が熱硬化性樹脂層へ侵入し、熱硬化性樹脂層および熱可塑性樹脂層との、界面近傍に偏在する熱可塑性樹脂を主成分とする島相となったため、接合強度が優れていた。
(実施例9)
 強化繊維束としてA-4、熱硬化性樹脂層の前駆体としてB-3、熱可塑性樹脂層の前駆体としてC-5を用い、上記P-5の方法により、プリプレグを作製した。作製したプリプレグを用い、各種評価に即した試験片を作製し、評価を行った。
 得られたプリプレグの熱硬化性樹脂層と熱可塑性樹脂層との界面は炭素繊維束A-3により形成された強化繊維群の内部に位置し、島相が熱硬化性樹脂を主成分とする海相に分散した海島構造を有していた。また、熱硬化性樹脂層および熱可塑性樹脂層との界面の近傍に、熱可塑性樹脂を主成分とする島相を含んでいた。
 強化繊維シートに熱可塑性樹脂層の前駆体を含浸させる際、加振により、その一部が強化繊維シート中に分散し、熱硬化性樹脂層および熱可塑性樹脂層との、界面近傍に偏在する熱可塑性樹脂を主成分とする島相となったため、接合強度が優れていた。
(実施例10)
 熱可塑性樹脂相の前駆体としてC-6を用いた以外は、実施例9と同様の方法で、プリプレグを作製し、各種評価に供した。
 得られたプリプレグの熱硬化性樹脂層と熱可塑性樹脂層との界面は炭素繊維束A-4により形成された強化繊維群の内部に位置し、島相が熱硬化性樹脂を主成分とする海相に分散した海島構造を有していた。また、熱硬化性樹脂層および熱可塑性樹脂層との界面の近傍に、熱可塑性樹脂を主成分とする島相を含んでいた。
 強化繊維シートに熱可塑性樹脂層の前駆体を含浸させる際、加振により、その一部が強化繊維シート中に分散し、熱硬化性樹脂層および熱可塑性樹脂層との、界面近傍に偏在する熱可塑性樹脂を主成分とする島相となったため、接合強度が優れていた。
(比較例1)
 強化繊維束としてA-1、熱硬化性樹脂層の前駆体としてB-1、熱可塑性樹脂層の前駆体としてC-1を用い、上記P-1の方法により、プリプレグを作製した。作製したプリプレグを用い、各種評価に即した試験片を作製し、評価を行った。
 得られたプリプレグおよび試験片は、島相を含まないため、接合強度が低かった。
(比較例2~4)
 表1に示す通りプリプレグを作成し、これらを用いて各種評価を行った。得られたプリプレグの熱硬化性樹脂層と前記熱可塑性樹脂層との界面は炭素繊維束により形成された強化繊維群の内部に位置し、熱可塑性樹脂層と熱硬化性樹脂層の他に島相を含まなかった。
Figure JPOXMLDOC01-appb-T000001
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2020年6月3日出願の日本特許出願(特願2020-096946)に基づくものであり、その内容はここに参照として取り込まれる。
1.強化繊維
3.熱硬化性樹脂層
4.熱可塑性樹脂層
5.繊維強化プラスチック
6.界面
7.島相
8.熱硬化性樹脂を主成分とする海相
9.繊維強化プラスチックの表面
10.最外繊維
11.基準線
12.測定範囲

Claims (16)

  1.  強化繊維群と、熱硬化性樹脂層と、第一の熱可塑性樹脂を含有する熱可塑性樹脂層とを含む繊維強化プラスチックであって、
     前記繊維強化プラスチックの表層として前記熱可塑性樹脂層を有し、
     前記熱可塑性樹脂層と前記熱硬化性樹脂層との界面が前記強化繊維群の内部に位置し、
     前記熱硬化性樹脂層は、第二の熱可塑性樹脂またはゴム質重合体を主成分とする島相が、熱硬化性樹脂を主成分とする海相に分散した海島構造を有する、繊維強化プラスチック。
  2.  前記第二の熱可塑性樹脂は、前記第一の熱可塑性樹脂と同種の樹脂である、請求項1に記載の繊維強化プラスチック。
  3.  前記第二の熱可塑性樹脂は、前記第一の熱可塑性樹脂と同一の樹脂である、請求項2に記載の繊維強化プラスチック。
  4.  前記第二の熱可塑性樹脂及び前記ゴム質重合体の融点は、前記第一の熱可塑性樹脂の融点よりも高い、請求項1または2に記載の繊維強化プラスチック。
  5.  前記島相は、前記海相の熱硬化性樹脂の成分を含む、請求項1~4のいずれか一項に記載の繊維強化プラスチック。
  6.  前記島相は、前記熱硬化性樹脂層と前記熱可塑性樹脂層との界面の近傍に偏在している、請求項1~5のいずれか一項に記載の繊維強化プラスチック。
  7.  厚さ方向断面における最外繊維から前記熱硬化性樹脂層側に向けて厚さ方向に100μmの範囲において、前記島相の体積割合は、前記範囲100体積%に対して、1体積%以上である、請求項1~6のいずれか一項に記載の繊維強化プラスチック。
  8.  厚さ方向断面における前記島相の平均粒径が0.1μm以上10μm以下である、請求項1~7のいずれか一項に記載の繊維強化プラスチック。
  9.  前記島相の長軸の長さが、3μm以上30μm以下である、請求項1~8のいずれか一項に記載の繊維強化プラスチック。
  10.  前記島相の弾性率は、前記海相の弾性率よりも低い、請求項1~9のいずれか一項に記載の繊維強化プラスチック。
  11.  前記島相のガラス転移温度は、前記海相のガラス転移温度よりも低い、請求項1~10のいずれか一項に記載の繊維強化プラスチック。
  12.  前記強化繊維として、ウィルヘルミー法によって測定される表面自由エネルギーが10~50mJ/mである強化繊維を用いる、請求項1~11のいずれか一項に記載の繊維強化プラスチック。
  13.  請求項1~12のいずれか一項に記載の繊維強化プラスチックの製造方法であって、
     前記強化繊維群を構成する強化繊維シートの両面に、前記島相の前駆体及び前記熱硬化性樹脂層の前駆体を含浸させ、前記島相及び前記熱硬化性樹脂層を形成する工程と、
     前記島相及び前記熱硬化性樹脂層を形成した前記強化繊維シートの少なくとも一方の面に、前記島相の前駆体及び前記熱可塑性樹脂層の前駆体を軟化または溶融させて配し、前記島相及び前記熱可塑性樹脂層を形成して中間体とする工程と、
     得られた中間体を成形する工程とを含む繊維強化プラスチックの製造方法。
  14.  請求項1~12のいずれか一項に記載の繊維強化プラスチックの製造方法であって、
     前記強化繊維群を構成する強化繊維シートの両面に、前記島相の前駆体及び前記熱硬化性樹脂層の前駆体を含浸させ、前記島相及び前記熱硬化性樹脂層を形成する工程と、
     前記島相及び前記熱硬化性樹脂層を形成した前記強化繊維シートの少なくとも一方の面に、前記熱可塑性樹脂層の前駆体を軟化又は溶融させて配し、前記熱可塑性樹脂層を形成して中間体とする工程と、
     得られた中間体を成形する工程とを含む繊維強化プラスチックの製造方法。
  15.  請求項1~12のいずれか一項に記載の繊維強化プラスチックの製造方法であって、
     前記強化繊維群を構成する強化繊維シートの両面に、前記熱硬化性樹脂層の前駆体を含浸させ、前記熱硬化性樹脂層を形成する工程と、
     前記熱硬化性樹脂層を形成した前記強化繊維シートの少なくとも一方の面に、前記島相の前駆体及び前記熱可塑性樹脂層の前駆体を軟化または溶融させて配し、前記島相及び前記熱可塑性樹脂層を形成して中間体とする工程と、
     得られた中間体を成形する工程とを含む繊維強化プラスチックの製造方法。
  16.  請求項1~12のいずれか一項に記載の繊維強化プラスチックの製造方法であって、
     前記強化繊維群を構成する強化繊維シートの片面に、前記熱可塑性樹脂層の前駆体を含浸させ、前記熱可塑性樹脂層を形成した後に加振を行い、前記熱可塑性樹脂層の前駆体を前記強化繊維シート中に分散させる工程と、
     前記強化繊維シートのもう一方の面に前記熱硬化性樹脂層の前駆体を含浸させ中間体とする工程と、
     得られた中間体を成形する工程とを含む繊維強化プラスチックの製造方法。
PCT/JP2021/021103 2020-06-03 2021-06-02 繊維強化プラスチック及びその製造方法 WO2021246465A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180039975.3A CN115697691A (zh) 2020-06-03 2021-06-02 纤维增强塑料及其制造方法
JP2021532348A JPWO2021246465A1 (ja) 2020-06-03 2021-06-02
KR1020227042248A KR20230019428A (ko) 2020-06-03 2021-06-02 섬유 강화 플라스틱 및 그 제조 방법
EP21816830.0A EP4163074A1 (en) 2020-06-03 2021-06-02 Fiber-reinforced plastic and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-096946 2020-06-03
JP2020096946 2020-06-03

Publications (1)

Publication Number Publication Date
WO2021246465A1 true WO2021246465A1 (ja) 2021-12-09

Family

ID=78831229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021103 WO2021246465A1 (ja) 2020-06-03 2021-06-02 繊維強化プラスチック及びその製造方法

Country Status (6)

Country Link
EP (1) EP4163074A1 (ja)
JP (1) JPWO2021246465A1 (ja)
KR (1) KR20230019428A (ja)
CN (1) CN115697691A (ja)
TW (1) TW202216422A (ja)
WO (1) WO2021246465A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217231A (ja) * 1989-02-17 1990-08-30 Sekisui Chem Co Ltd 繊維強化合成樹脂成形体及びその製造方法
JPH02305860A (ja) * 1989-02-10 1990-12-19 Toray Ind Inc プリプレグ
JPH05138785A (ja) * 1991-01-25 1993-06-08 British Petroleum Co Plc:The 強化樹脂および複合材料
JP2002088259A (ja) * 2000-09-18 2002-03-27 Toray Ind Inc 成形材料その製造方法およびその成形品
WO2004060658A1 (ja) 2002-12-27 2004-07-22 Toray Industries, Inc. 積層体、電磁波シールド成形品、および、それらの製造方法
JP2006198784A (ja) 2005-01-18 2006-08-03 Toray Ind Inc 繊維強化複合材料及びその製造方法
JP2008050598A (ja) * 2006-07-28 2008-03-06 Toray Ind Inc 繊維強化複合材料および一体化成形品
JP2014043536A (ja) * 2012-08-29 2014-03-13 Across Corp カーボン/カーボンコンポジット用の中間材料
JP2020096946A (ja) 2014-12-19 2020-06-25 アムジエン・インコーポレーテツド ライブボタンまたはユーザインタフェースフィールドを含む薬物送達装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02305860A (ja) * 1989-02-10 1990-12-19 Toray Ind Inc プリプレグ
JPH02217231A (ja) * 1989-02-17 1990-08-30 Sekisui Chem Co Ltd 繊維強化合成樹脂成形体及びその製造方法
JPH05138785A (ja) * 1991-01-25 1993-06-08 British Petroleum Co Plc:The 強化樹脂および複合材料
JP2002088259A (ja) * 2000-09-18 2002-03-27 Toray Ind Inc 成形材料その製造方法およびその成形品
WO2004060658A1 (ja) 2002-12-27 2004-07-22 Toray Industries, Inc. 積層体、電磁波シールド成形品、および、それらの製造方法
JP2006198784A (ja) 2005-01-18 2006-08-03 Toray Ind Inc 繊維強化複合材料及びその製造方法
JP2008050598A (ja) * 2006-07-28 2008-03-06 Toray Ind Inc 繊維強化複合材料および一体化成形品
JP2014043536A (ja) * 2012-08-29 2014-03-13 Across Corp カーボン/カーボンコンポジット用の中間材料
JP2020096946A (ja) 2014-12-19 2020-06-25 アムジエン・インコーポレーテツド ライブボタンまたはユーザインタフェースフィールドを含む薬物送達装置

Also Published As

Publication number Publication date
CN115697691A (zh) 2023-02-03
JPWO2021246465A1 (ja) 2021-12-09
EP4163074A1 (en) 2023-04-12
KR20230019428A (ko) 2023-02-08
TW202216422A (zh) 2022-05-01

Similar Documents

Publication Publication Date Title
AU2020233766B2 (en) Surfacing materials for composite structures
JP5023498B2 (ja) プリプレグシート用樹脂組成物およびプリプレグシート
JP7047923B2 (ja) プリプレグ、積層体および成形品
US11878478B2 (en) Prepreg, laminate, and molding
WO2021246466A1 (ja) 繊維強化プラスチック、一体成形品、及びプリプレグ
JP6854591B2 (ja) プリプレグ、強化繊維、繊維強化複合材料、およびプリプレグの製造方法
WO2021131382A1 (ja) 複合プリプレグおよび繊維強化樹脂成形体
US11840612B2 (en) Prepreg, laminate, and molding
WO2021246465A1 (ja) 繊維強化プラスチック及びその製造方法
KR101951632B1 (ko) 계면접착성 및 내마모성이 우수한 하이브리드 프리프레그 및 이의 제조방법
TWI843916B (zh) 預浸漬物、積層體及一體成形品
JP7088320B2 (ja) プリプレグ、積層体および一体化成形品
WO2021117461A1 (ja) プリプレグ、積層体および一体化成形品
CN114746237B (zh) 复合预浸料坯及纤维增强树脂成型体
JP7467906B2 (ja) 繊維強化樹脂成形体および複合成形体
CN114761468A (zh) 预浸料坯、层叠体及一体化成型品
TW202222886A (zh) 環氧樹脂組成物、預浸漬物、纖維強化樹脂成形體及一體成形品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021532348

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21816830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021816830

Country of ref document: EP

Effective date: 20230103