WO2021246266A1 - Base material with anti-glare film, and method for manufacturing base material with anti-glare film - Google Patents

Base material with anti-glare film, and method for manufacturing base material with anti-glare film Download PDF

Info

Publication number
WO2021246266A1
WO2021246266A1 PCT/JP2021/020099 JP2021020099W WO2021246266A1 WO 2021246266 A1 WO2021246266 A1 WO 2021246266A1 JP 2021020099 W JP2021020099 W JP 2021020099W WO 2021246266 A1 WO2021246266 A1 WO 2021246266A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
antiglare
film
antiglare film
glare
Prior art date
Application number
PCT/JP2021/020099
Other languages
French (fr)
Japanese (ja)
Inventor
敏 本谷
聖人 米田
知紗 飯野
勝道 白倉
浩二 中村
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2022528774A priority Critical patent/JPWO2021246266A1/ja
Priority to CN202180028814.4A priority patent/CN115398282A/en
Publication of WO2021246266A1 publication Critical patent/WO2021246266A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/32Processes for applying liquids or other fluent materials using means for protecting parts of a surface not to be coated, e.g. using stencils, resists
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Definitions

  • the present invention relates to a base material with an antiglare film and a method for manufacturing a base material with an antiglare film.
  • image display devices for example, liquid crystal displays, organic EL displays, plasma displays, etc.
  • various devices such as televisions, personal computers, smartphones, and mobile phones, indoor lighting such as fluorescent lamps, sunlight, etc.
  • indoor lighting such as fluorescent lamps, sunlight, etc.
  • the reflected image reduces visibility.
  • a method for forming an antiglare film a method is known in which a coating liquid containing a silica precursor such as a hydrolyzed condensate of alkoxysilane is applied onto a substrate and then fired.
  • a spray method of spraying and applying the coating liquid using a two-fluid spray nozzle or the like for example, Patent Document 1
  • an electrostatic coating gun provided with an electrostatic coating gun.
  • An electrostatic coating method (for example, Patent Document 2) is known in which a charged coating liquid is attracted to a grounded glass substrate by electrostatic attraction and applied by using a coating device.
  • a region where the antiglare film is not formed may be partially provided depending on the functions mounted on these devices.
  • the number of in-vehicle displays equipped with a personal computer equipped with a webcam, a smartphone, and a camera for observing the driver's condition for taking measures against falling asleep is increasing.
  • a method of providing a region that does not partially form an antiglare film there is a method of applying a coating liquid after masking the portion where the region is provided with a masking material such as a protective film.
  • a masking material such as a protective film.
  • the coating liquid is difficult to adhere uniformly in the vicinity of the masking material, so that the formed antiglare film is not uniform and the antiglare performance varies. There may be problems with the appearance.
  • the coating liquid tends to be excessively deposited in the vicinity of the masking material. Therefore, the antiglare film may become excessively thick near the boundary between the region where the antiglare film is formed (antiglare portion) and the region where the antiglare film is not formed (non-glare portion).
  • the coating liquid does not easily adhere to the vicinity of the masking material, and uncoated parts or parts with a small coating amount are likely to occur.
  • a large amount of coating liquid tends to adhere to the periphery of the masking material. Therefore, the non-glare portion becomes larger than the range of the masking material and the boundary between the antiglare portion and the non-glare portion becomes unclear, or the thickness of the antiglare film becomes uneven near the boundary with the non-glare portion. May be.
  • the antiglare film is formed substantially uniformly on the substrate in the vicinity of the boundary between the antiglare portion and the non-glare portion, and the boundary between the antiglare portion and the non-glare portion is formed. It is an object of the present invention to provide a substrate with a clear antiglare film.
  • the present invention has the following aspects.
  • a base material with an antiglare film comprising a base material and an antiglare film formed on a part of at least one main surface of the base material.
  • the average value of the value P obtained by using the following (Equation 1) from the measurement result of the unevenness height of the antiglare film by the following measurement method in the region where the antiglare portion and the non-glare portion are adjacent to each other is -20 ⁇ m or more.
  • a base material with an antiglare film is -20 ⁇ m or more.
  • Concavo-convex height measurement method The measurement start position is on the non-glare part.
  • the measurement direction is perpendicular to the boundary line between the antiglare portion and the non-glare portion, and is the direction from the non-glare portion to the antiglare portion.
  • the uneven height of the antiglare film is measured every 0.333 ⁇ m from the measurement start position on the non-glare portion to the antiglare portion.
  • An xy coordinate plane is created by setting the measurement distance from the measurement start position to the measurement direction as x ( ⁇ m) and the integrated value of the uneven height of the antiglare film as y ( ⁇ m).
  • a method for producing a base material with an antiglare film which comprises a base material and an antiglare film formed on a part of at least one main surface of the base material.
  • the liquid medium (B1) containing at least one of the silica precursor (A) and the particles (C) and the liquid medium (B) and having the liquid medium (B) having a boiling point of 150 ° C. or lower is used as the liquid medium (B1).
  • the coating composition is charged and sprayed to be applied onto the substrate to form a coating film. Removing the masking material from the substrate and To form an antiglare film by firing the coating film, A method for manufacturing a base material with an antiglare film.
  • the antiglare film is formed substantially uniformly on the base material in the vicinity of the boundary between the antiglare portion and the non-glare portion, and the antiglare portion is formed. It is possible to provide a base material with an antiglare film in which the boundary between the non-glare portion and the non-glare portion is clear.
  • the antiglare film when the antiglare film is formed on the base material, the antiglare film is substantially uniformly formed up to the vicinity of the region masked by the masking material. Can be formed. As a result, an antiglare film is formed substantially uniformly on the base material near the boundary between the antiglare portion and the non-glare portion, and the boundary between the antiglare portion and the non-glare portion is clearly provided with an antiglare film.
  • a base material can be manufactured.
  • FIG. 1 is a perspective view schematically showing an example of a base material with an antiglare film according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA'in
  • FIG. 3 is a schematic view showing a method of measuring the uneven height of the antiglare film 5.
  • FIG. 4 is an example of a graph used in the process of calculating the value P.
  • FIG. 5 is an example of a graph used in the process of calculating the value P.
  • 6 (a) to 6 (d) are flow charts illustrating a method for manufacturing a base material with an antiglare film according to an embodiment of the present invention.
  • FIG. 1 is a perspective view schematically showing an example of a base material with an antiglare film according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA'in
  • FIG. 3 is a schematic view showing a method of measuring the uneven height of the antiglare film 5.
  • FIG. 4 is
  • FIG. 7 is a graph in which the relationship between the measurement distance x and the uneven height z is plotted in an xy orthogonal coordinate system with respect to the uneven height of the antiglare film of the base material with the antiglare film of Example 3.
  • FIG. 8 is a graph in which the relationship between the measurement distance x and the unevenness height integrated value y is plotted in an xy orthogonal coordinate system with respect to the uneven height of the antiglare film of the base material with the antiglare film of Example 3.
  • FIG. 9 is a graph in which the relationship between the measurement distance x and the uneven height z is plotted in an xy orthogonal coordinate system with respect to the uneven height of the antiglare film of the base material with the antiglare film of Example 5.
  • FIG. 8 is a graph in which the relationship between the measurement distance x and the unevenness height integrated value y is plotted in an xy orthogonal coordinate system with respect to the uneven height of the antiglare film of the base material with the antiglare film of
  • FIG. 10 is a graph in which the relationship between the measurement distance x and the unevenness height integrated value y is plotted in an xy orthogonal coordinate system with respect to the uneven height of the antiglare film of the base material with the antiglare film of Example 5.
  • FIG. 11 is a photograph of the base material with an antiglare film of Example 3 observed from above.
  • FIG. 12 is a photograph of the base material with an antiglare film of Example 4 observed from above.
  • FIG. 13 is a photograph of the base material with an antiglare film of Example 5 observed from above.
  • FIG. 14 is a photograph of the base material with an antiglare film of Example 6 observed from above.
  • Translucency means that visible light can be transmitted.
  • the main component is silica
  • SiO 2 is contained in an amount of 90% by mass or more.
  • Silicon precursor means a substance that can form a matrix containing silica as a main component by firing.
  • the "hydrolyzable group bonded to a silicon atom” means a group that can be converted into an OH group bonded to a silicon atom by hydrolysis.
  • Scale particles means particles having a flat shape.
  • the shape of the particles can be confirmed using a transmission electron microscope (hereinafter, also referred to as TEM).
  • the "average particle size” means the particle size at a point that becomes 50% in the cumulative volume distribution curve with the total volume of the particle size distribution obtained on a volume basis as 100%, that is, the volume-based cumulative 50% diameter (D50).
  • the particle size distribution is determined by the frequency distribution and the cumulative volume distribution curve measured by the laser diffraction / scattering type particle size distribution measuring device.
  • Aspect ratio means the ratio of the longest length to the thickness of the particles (maximum length / thickness), and “average aspect ratio” is the average of the aspect ratios of 50 randomly selected particles. The value.
  • the thickness of the particles is measured by an atomic force microscope (hereinafter, also referred to as AFM), and the longest length is measured by TEM.
  • FIG. 1 is a perspective view schematically showing an example of a base material with an antiglare film according to an embodiment of the present invention. Further, FIG. 2 is a cross-sectional view taken along the line AA'in FIG.
  • the base material 1 with an antiglare film according to the present embodiment includes a base material 3 and an antiglare film 5 formed on a part of the first main surface 3A of the base material 3, and is protected against the main surface 3A. It has an antiglare portion 50 in which the glare film 5 is formed, and a non-glare portion 30 in which the antiglare film 5 is not formed.
  • the antiglare portion 50 is on the base material 3 in the top view of the base material 1 with the antiglare film. This is the region where the antiglare film 5 is formed.
  • the non-glare portion 30 is a region in which the antiglare film 5 is not formed on the base material 3 in the top view of the base material 1 with the antiglare film.
  • the non-glare portion 30 can be formed, for example, by covering a part of the base material 3 with a masking material when forming the antiglare film 5.
  • the antiglare film 5 includes a connection region 40 at the end on the non-glare portion 30 side.
  • the surface of the antiglare portion 50 and the surface of the non-glare portion 30 are connected via a connection region 40 located at the end of the antiglare portion 50.
  • the region where the antiglare portion 50 and the non-glare portion 30 are adjacent to each other means the vicinity of the boundary between the antiglare portion 50 and the non-glare portion 30 including the connection region 40.
  • the base material with an antiglare film according to the embodiment of the present invention has the following (Equation 1) based on the results of measuring the unevenness height of the antiglare film 5 by the following measurement method in the region where the antiglare portion and the non-glare portion are adjacent to each other. ),
  • the average value of the value P is ⁇ 20 ⁇ m or more.
  • the antiglare film 5 has an uneven shape on the surface, and includes a portion where the uneven height is locally large and a portion where the uneven height is locally small. Therefore, when the antiglare film is grasped microscopically, the height of the unevenness is not constant. Therefore, it is difficult to make a macroscopic judgment on the shape of the antiglare film near the connection region and the height of the unevenness based only on the measured value of the height of the unevenness. Therefore, in the present invention, the uneven height of the antiglare film is measured so as to pass through the connection region from the non-glare portion to the antiglare portion, and the relationship between the measured distance x and the integrated value y of the uneven height is used. By calculating the value P, it was decided to analyze the shape and uneven height near the connection region.
  • FIG. 3 is a schematic diagram showing a method of measuring the uneven height (film thickness) of the antiglare film 5.
  • the uneven height of the antiglare film 5 is measured from the measurement start position on the non-glare portion 30 to the antiglare portion 50 in the region where the antiglare portion 50 and the non-glare portion 30 are adjacent to each other.
  • Measurement from the measurement start position on the non-glare portion 30 to the anti-glare portion 50 means that the height of the unevenness passes through the connection region 40 from the measurement start position on the non-glare portion 30 to the top of the anti-glare portion 50.
  • the height of the unevenness is measured every 0.333 ⁇ m from the measurement start position on the non-glare portion to the anti-glare portion.
  • the measurement direction X is perpendicular to the boundary line between the antiglare portion 50 and the non-glare portion 30, and is a direction from the non-glare portion 30 toward the antiglare portion 50.
  • the measurement direction X may be perpendicular to the tangent line of the boundary line.
  • the measurement direction X is perpendicular to the tangent line T of the boundary line.
  • the unevenness height can be measured by using a stylus type profiling system (Dectak (registered trademark) XT manufactured by BRUKER), for example, under the conditions described in Examples.
  • a stylus type profiling system (Dectak (registered trademark) XT manufactured by BRUKER), for example, under the conditions described in Examples.
  • two points are selected and flattened in a flat area with no unevenness in the non-glare part.
  • the distance between the two points used in the flattening treatment is preferably 100 ⁇ m or more, and preferably as wide as possible.
  • the method for calculating the value P from the measurement result of the unevenness height of the antiglare film by the above measurement method is as follows.
  • Measurement distance x Measurement distance ( ⁇ m) from the measurement start position to the measurement direction
  • Integrated value y Integrated value ( ⁇ m) of the uneven height of the antiglare film
  • Integrated value y> a 5 measured distance x is the minimum point of the anti-glare film end X1 (x 1, y 1) .
  • x 1- x 2 P ... (Equation 1)
  • the value P ( ⁇ m) is obtained as.
  • the “point where the integrated value y> 5 and the measurement distance x is the smallest” means the integrated value when the measurement distance x increases. Paraphrased as the point where y is initially greater than 5.
  • regression line between AB is a regression line obtained by using the least squares method for the plot of the measurement results existing between AB.
  • the value P is 0 ⁇ m or more assuming that the end face of the antiglare film is steep and the uneven height is constant thereafter, and the steeper the value P becomes, and conversely, the antiglare film has a value P.
  • the gentler the end face the smaller the value P.
  • the average value of the value P is ⁇ 20 ⁇ m or more, preferably 0 ⁇ m or more, more preferably 10 ⁇ m or more, and further preferably 20 ⁇ m or more.
  • FIG. 4 shows the case where the average value of the values P is -20 ⁇ m or more
  • FIG. 5 shows the case where the average value is less than -20 ⁇ m.
  • the average value of the value P is the average value of all the values P calculated each time by measuring the unevenness height at the end face portion of the antiglare film multiple times for one substrate with the antiglare film. Say. For one substrate with an antiglare film, it is preferable to measure the unevenness height of the antiglare film and calculate the value P three times or more from the viewpoint of variation in the value.
  • the antiglare film 5 is formed substantially uniformly on the main surface of the base material 3 in the vicinity of the boundary between the antiglare portion 50 and the non-glare portion 30, and the antiglare portion is formed.
  • a base material 1 with an antiglare film having a clear boundary between the 50 and the non-glare portion 30 can be obtained.
  • the antiglare film 5 is formed substantially uniformly on the base material 3 means that the connection region 40 has a steep slope formed with respect to the surface of the base material 3 of the non-glare portion 30, and is anti-glare. It means that the unevenness height in the vicinity of the connection region 40 of the glare film 5 is about the same as the unevenness height of other parts of the antiglare film 5.
  • the boundary between the antiglare portion 50 and the non-glare portion 30 looks good and is clear.
  • the maximum value of the value P is preferably 0 ⁇ m or more, and the minimum value is preferably ⁇ 70 ⁇ m or more.
  • the uneven height in the vicinity of the connection region of the antiglare film tends to be excessively large.
  • a portion having an excessively large uneven height may appear white and cloudy, which may impair the appearance of the connection area.
  • connection region 40 is formed on the surface of the base material 3 of the non-glare portion 30.
  • the slope tends to be gentle.
  • the inclination of the connection region 40 is gentle, the height of the unevenness of the antiglare film 5 becomes smaller as it approaches the end on the non-glare portion side, so that the boundary between the antiglare portion 50 and the non-glare portion 30 is unclear. It is easy to become.
  • the gently inclined portion forms a region at the end portion of the antiglare film 5 where the unevenness height is smaller than the other portions, the portion around the gently inclined portion having a relatively large unevenness height is due to the unevenness difference. It may appear cloudy white. Therefore, the appearance of the boundary portion between the antiglare portion 50 and the non-glare portion 30 may be impaired.
  • the quality of the base material 1 with the antiglare film may vary.
  • the base material may be any as long as it can transmit visible light, and a transparent material is preferable.
  • Transparency in a substrate means that light in the wavelength region of 400 to 1100 nm is transmitted by 80% or more on average, that is, light having an average transmittance of 80% or more in the wavelength region of 400 to 1100 nm is transmitted. ..
  • the average transmittance of light in the wavelength region of 400 to 1100 nm is a value measured using an integrating sphere.
  • Examples of the material of the base material include glass and resin.
  • glass examples include soda lime glass, borosilicate glass, aluminosilicate glass, non-alkali glass and the like.
  • resin examples include polyethylene terephthalate, polycarbonate, triacetyl cellulose, polymethyl methacrylate and the like.
  • Examples of the form of the base material include a plate and a film.
  • the first main surface 3A on which the antiglare film is formed may be smooth or may have irregularities. Smoothness is preferable in terms of the usefulness of providing the antiglare film.
  • the arithmetic average roughness Ra of the first main surface 3A is preferably 10 nm or less, more preferably 5 nm or less, further preferably 2 nm or less, and particularly preferably 1 nm or less. Ra referred to here is a value measured in the atomic force microscope (AFM) mode.
  • the shape of the base material 3 may be not only a flat shape as shown in FIG. 1 or the like but also a shape having a curved surface. Recently, in various devices (televisions, personal computers, smartphones, car navigation systems, etc.) equipped with an image display device, those having a curved display surface of the image display device have appeared.
  • the base material 1 with an antiglare film, in which the base material 3 has a curved surface, is useful for such an image display device.
  • the surface of the base material 3 may be entirely composed of a curved surface, or may be composed of a curved surface portion and a flat portion.
  • the base material 3 is bent so as to have a constant radius of curvature with one straight line as an axis, or the base material 3 has a constant radius of curvature with a plurality of straight lines as axes.
  • the case where the base material 3 is bent as described above, and the case where the base material 3 has a complicated bending shape such that the radius of curvature changes regardless of the number of straight lines as axes are also included.
  • the curved surface here is a macroscopic curved surface that can be ignored in the observation area observed with a laser microscope.
  • the radius of curvature of the curved surface (hereinafter, also referred to as “R”) can be appropriately set according to the application of the base material 1 with an antiglare film, the type of the base material 3, and the like, and in particular. Although not limited, it is preferably 25,000 mm or less, more preferably 10 to 5000 mm, and particularly preferably 50 to 3000 mm. When R is not more than the above upper limit value, it is superior in designability as compared with a flat plate. When R is equal to or higher than the above lower limit value, an antiglare film can be uniformly formed even on a curved surface.
  • a glass plate is preferable.
  • the glass plate may be a smooth glass plate formed by a float method, a fusion method, a down draw method, or the like, or may be a template glass having an uneven surface formed by a rollout method or the like. Further, not only a glass plate having a flat shape but also a glass plate having a curved surface may be used. When the glass plate has a curved surface, the preferred radius of curvature of the curved surface is the same as described above.
  • the thickness of the glass plate is not particularly limited.
  • a glass plate having a thickness of 10 mm or less can be used.
  • the thinner the thickness the lower the absorption of light, which is preferable for applications aimed at improving the transmittance. Further, the thinner the thickness, the more the weight of the base material 1 with the antiglare film is reduced.
  • the glass plate is preferably a tempered glass plate.
  • the tempered glass plate is a glass plate that has been subjected to a tempering treatment.
  • the strengthening treatment improves the strength of the glass, and makes it possible to reduce the plate thickness while maintaining the strength, for example.
  • a glass plate other than the tempered glass plate can be used, and can be appropriately set according to the application of the base material 1 with the antiglare film.
  • a treatment for forming a compressive stress layer on the surface of a glass plate is generally known.
  • the compressive stress layer on the surface of the glass plate improves the strength of the glass plate against scratches and impacts.
  • a wind cooling strengthening method physical strengthening method
  • a chemical strengthening method are typical.
  • the surface of the glass plate heated to near the softening point temperature of the glass (for example, 600 to 700 ° C.) is rapidly cooled by air cooling or the like. As a result, a temperature difference is generated between the surface and the inside of the glass plate, and compressive stress is generated on the surface layer of the glass plate.
  • a glass plate is immersed in a molten salt at a temperature below the strain point temperature of the glass, and ions on the surface layer of the glass plate (for example, sodium ions) are exchanged for ions having a larger ionic radius (for example, potassium ions). do. As a result, compressive stress is generated on the surface layer of the glass plate.
  • ions on the surface layer of the glass plate for example, sodium ions
  • ions having a larger ionic radius for example, potassium ions
  • the air-cooled strengthening method does not easily cause a temperature difference between the inside of the glass plate and the surface layer, so that the glass plate cannot be sufficiently strengthened and is chemically strengthened.
  • the method is preferably used.
  • the glass plate to be chemically strengthened is not particularly limited as long as it has a composition that can be chemically strengthened, and various compositions can be used. Examples thereof include soda lime glass, aluminosilicate glass, borate glass, lithium aluminosilicate glass, borosilicate glass, and various other glasses.
  • the glass composition is expressed as an oxide-based molar percentage, SiO 2 is 56 to 75%, Al 2 O 3 is 1 to 20%, Na 2 O is 8 to 22%, and K 2 O.
  • 0-10% of MgO 0 ⁇ 14% of ZrO 2 0 ⁇ 5% is preferably a CaO containing 0-10%. Of these, aluminosilicate glass is preferred.
  • the thickness of the glass plate to which the chemical strengthening treatment is applied is preferably 0.4 to 3 mm, particularly preferably 0.5 to 2.5 mm. If the thickness of the chemically strengthened glass plate is not less than the upper limit of the above range, the base material 1 with the antiglare film is lightweight, and if it is more than the lower limit of the above range, the base material 1 with the antiglare film is excellent in strength. ..
  • the plate thickness of the glass plate subjected to the chemical strengthening treatment is the plate thickness of the chemically strengthened glass plate (that is, the glass plate after the chemical strengthening treatment).
  • the above physical strengthening treatment and chemical strengthening treatment of the glass may be performed before the antiglare film is formed on the surface of the glass plate, or may be performed after the antiglare film is formed.
  • the base material 3 may have a functional layer on the surface of the base material body.
  • the base material body is the same as that mentioned above as the base material 3.
  • the functional layer examples include an undercoat layer, an adhesion improving layer, a protective layer and the like.
  • the undercoat layer has a function as an alkaline barrier layer or a wide band low refractive index layer.
  • a layer formed by applying an undercoat coating composition containing a hydrolyzate of alkoxysilane (sol-gel silica) to the main body of the substrate is preferable.
  • the antiglare film is a film for suppressing surface reflection.
  • various image display devices such as liquid crystal displays (LCDs) and plasma displays (PDPs)
  • LCDs liquid crystal displays
  • PDPs plasma displays
  • visibility is achieved by the reflected image. Decreases.
  • anti-glare treatment in which an anti-glare layer (hereinafter, also referred to as an AG layer) is formed on the display surface to diffusely reflect external light.
  • the antiglare film may have irregularities on the surface to the extent that an antiglare effect can be obtained, and the shape of the irregularities is not particularly limited.
  • the arithmetic average roughness Ra of the surface of the antiglare film is preferably 0.05 ⁇ m or more, more preferably 0.10 to 0.70 ⁇ m, and even more preferably 0.15 to 0.50 ⁇ m.
  • the arithmetic average roughness Ra of the surface of the antiglare film is 0.05 ⁇ m or more, the antiglare effect is sufficiently exhibited.
  • the arithmetic average roughness Ra of the surface of the antiglare film is 0.70 ⁇ m or less, which is the upper limit of the above range, the decrease in contrast of the image is sufficiently suppressed.
  • the uneven shape parameter was measured with a surface roughness measuring device (Surfcom 1500-DX).
  • the maximum height roughness Rz of the surface of the antiglare film is preferably 0.1 to 5.0 ⁇ m, more preferably 0.2 to 4.5 ⁇ m, and even more preferably 0.3 to 4.0 ⁇ m.
  • the maximum height roughness Rz of the surface of the antiglare film is equal to or more than the lower limit of the above range, the antiglare effect is sufficiently exhibited.
  • the maximum height roughness Rz of the surface of the antiglare film is equal to or less than the upper limit of the above range, the decrease in contrast of the image is sufficiently suppressed.
  • the refractive index of the antiglare film 5 is preferably 1.36 to 1.51, more preferably 1.40 to 1.49, and particularly preferably 1.43 to 1.46.
  • the refractive index of the antiglare film 5 is not more than the upper limit of the above range, the reflectance of external light on the surface of the antiglare film 5 is low, and the antiglare effect is more excellent.
  • the refractive index of the antiglare film 5 is at least the lower limit of the above range, the antiglare film 5 has sufficiently high density and excellent adhesion to the base material 3 such as a glass plate.
  • the refractive index of the antiglare film 5 can be adjusted by the material of the matrix of the antiglare film 5, the void ratio of the antiglare film 5, the addition of a substance having an arbitrary refractive index to the matrix, and the like. For example, the refractive index can be lowered by increasing the porosity of the antiglare film 5. Further, by adding a substance having a low refractive index (solid silica particles, hollow silica particles, etc.) to the matrix, the refractive index of the antiglare film 5 can be lowered.
  • the material of the antiglare film 5 can be appropriately set in consideration of the refractive index and the like.
  • Examples of the material of the antiglare film 5 when the refractive index of the antiglare film 5 is 1.36 to 1.51 include silica and the like.
  • the antiglare film 5 contains silica, and it is preferable that silica is the main component. If silica is the main component, the refractive index (reflectance) of the antiglare film 5 tends to be low. In addition, the chemical stability of the antiglare film 5 is also good. Further, when the material of the base material 3 is glass, the adhesion to the base material 3 is good.
  • the antiglare film 5 may be composed of only silica or may contain a small amount of components other than silica.
  • the components include Li, B, C, N, F, Na, Mg, Al, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Sr. , Y, Zr, Nb, Ru, Pd, Ag, In, Sn, Hf, Ta, W, Pt, Au, Bi and compounds such as one or more ions and / or oxides selected from lanthanoid elements. Be done.
  • Examples of the antiglare film 5 include those formed from a coating composition containing at least one of a silica precursor (A) and particles (C) and a liquid medium (B).
  • the coating composition may contain other binders (D) other than the silica precursor (A), other additives (E), and the like, if necessary.
  • the matrix of the antiglare film 5 is derived from the silica precursor (A) and contains silica as a main component.
  • the antiglare film 5 may be composed of particles (C).
  • the particles (C) are preferably silica particles.
  • the antiglare film 5 may be one in which particles (C) are dispersed in the matrix. A method for forming the antiglare film 5 using the coating composition will be described in detail later.
  • Examples of the antiglare film containing silica as a main component include those formed from a coating composition containing the silica precursor (A), those formed from a coating composition containing silica particles as the particles (C), and the like.
  • Examples of the silica precursor (A) and the particles (C) include those formed from a coating composition containing silica particles.
  • the 60 ° mirror gloss on the surface of the antiglare film 5 is preferably 130% or less, more preferably 120% or less, still more preferably 110% or less.
  • the 60 ° mirror gloss on the surface of the antiglare film 5 is an index of the antiglare effect. When the 60 ° mirror surface gloss is not more than the above upper limit value, the antiglare effect is sufficiently exhibited.
  • 60 ° mirror gloss is measured by the method described in JIS Z8741: 1997 (ISO 2813: 1994) without erasing the reflection on the back surface (that is, the surface opposite to the side on which the antiglare film is formed). Will be done.
  • the haze of the antiglare portion 50 is preferably 30% or less, more preferably 20% or less, and particularly preferably 10% or less.
  • the haze is equal to or less than the upper limit of the above range, the light transmission from the opposite surface to the antiglare portion 50 is more excellent.
  • an eye scale ISC-A manufactured by Eye System Co., Ltd. is used on a surface having an uneven structure (surface on the antiglare film 5 side) on an iPhone (registered trademark) 4 manufactured by Apple Incorporated.
  • the Sparkle index value S measured by placing the substrate 1 with an antiglare film on top is preferably less than 100, more preferably less than 80, and particularly preferably less than 60. The smaller the glare index value S, the more the glare is suppressed.
  • the method for producing a base material with an antiglare film is as follows.
  • a method for producing a base material with an antiglare film which comprises a base material and an antiglare film formed on a part of at least one main surface of the base material.
  • the liquid medium (B1) containing at least one of the silica precursor (A) and the particles (C) and the liquid medium (B) and having the liquid medium (B) having a boiling point of 150 ° C. or lower is used as the liquid medium (B1).
  • a step of preparing a paint composition containing 86% by mass or more based on the total amount of B) hereinafter, also referred to as a paint composition preparation step).
  • a step of forming a conductive film on the surface of the masking material (hereinafter, also referred to as a conductive film forming step) and A step of covering a part of at least one main surface of the base material with a masking material on which the conductive film is formed (hereinafter, also referred to as a masking step).
  • a step of forming a coating film by applying the coating composition onto a substrate by charging and spraying the coating composition using an electrostatic coating device hereinafter, also referred to as a coating step).
  • a step of removing the masking material from the substrate (hereinafter, also referred to as a masking removing step).
  • a step of forming an antiglare film by firing the coating film (hereinafter, also referred to as a firing step). It is a manufacturing method having.
  • the above-mentioned manufacturing method may include a step of forming a functional layer on the surface of the base material body to prepare the base material before forming the anti-glare film, and the anti-glare film may be formed. After forming, it may have a step of performing a known post-processing.
  • the coating composition comprises at least one of the silica precursor (A) and the particles (C) and a liquid medium (B).
  • the average particle size of the particles (C) is preferably 30 nm or less.
  • the coating composition may contain other binders (D) other than the silica precursor (A), other additives (E), and the like, as long as the effects of the present invention are not impaired. good.
  • silica precursor (A) examples include a silane compound (A1) having a hydrocarbon group bonded to a silicon atom and a hydrolyzable group, a hydrolyzable condensate thereof, an alkoxysilane (excluding the silane compound (A1)) and Examples thereof include the hydrolyzed condensate (solgel silica) and silazane.
  • the hydrocarbon group bonded to the silicon atom may be a monovalent hydrocarbon group bonded to one silicon atom, or a divalent hydrocarbon group bonded to two silicon atoms. There may be.
  • the monovalent hydrocarbon group include an alkyl group, an alkenyl group, an aryl group and the like.
  • Examples of the divalent hydrocarbon group include an alkylene group, an alkenylene group, an arylene group and the like.
  • the hydrocarbon group is one or two selected from -O-, -S-, -CO- and -NR'-(where R'is a hydrogen atom or a monovalent hydrocarbon group) between carbon atoms. It may have a group in which one or more are combined.
  • Examples of the hydrolyzable group bonded to the silicon atom include an alkoxy group, an asyloxy group, a ketooxime group, an alkenyloxy group, an amino group, an aminoxy group, an amide group, an isocyanate group, and a halogen atom.
  • an alkoxy group, an isocyanate group and a halogen atom are preferable from the viewpoint of the balance between the stability of the silane compound (A1) and the ease of hydrolysis.
  • alkoxy group an alkoxy group having 1 to 3 carbon atoms is preferable, and a methoxy group or an ethoxy group is more preferable.
  • the hydrolyzable groups may be the same group or different groups, and it is easily available that they are the same group. Preferred in terms of points.
  • silane compound (A1) examples include a compound represented by the formula (I) described later, an alkoxysilane having an alkyl group (methyltrimethoxysilane, ethyltriethoxysilane, etc.), and an alkoxysilane having a vinyl group (vinyltrimethoxy).
  • alkoxysilane having an epoxy group (2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, etc.
  • alkoxysilane having an acryloyloxy group (3-acryloyloxypropyltrimeth
  • the silane compound (A1) the compound represented by the following formula (I) is preferable because cracks and film peeling of the antiglare film 5 are unlikely to occur even if the uneven height is thick.
  • Q is a divalent hydrocarbon group (-O-, -S-, -CO- and -NR'-(where R'is a hydrogen atom or a monovalent hydrocarbon between carbon atoms). It may have one or a combination of two or more groups selected from ()). Examples of the divalent hydrocarbon group include those described above.
  • an alkylene group having 2 to 8 carbon atoms is preferable and an alkylene group having 2 to 6 carbon atoms is preferable because it is easily available and cracks and peeling of the antiglare film 5 are unlikely to occur even if the uneven height is thick.
  • An alkylene group is more preferred.
  • L is a hydrolyzable group.
  • the hydrolyzable group include those described above, and the same applies to preferred embodiments.
  • R is a hydrogen atom or a monovalent hydrocarbon group. Examples of the monovalent hydrocarbon include those described above.
  • p is an integer of 1 to 3. p is preferably 2 or 3, and particularly preferably 3 from the viewpoint that the reaction rate does not become too slow.
  • alkoxysilane examples include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, etc.), and alkoxysilane having a perfluoropolyether group.
  • tetraalkoxysilane tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, etc.
  • alkoxysilane having a perfluoropolyether group alkoxysilane having a perfluoroalkyl group (perfluoroethyltriethoxysilane and the like) and the like can be mentioned.
  • Hydrolysis and condensation of the silane compound (A1) and the alkoxysilane (excluding the silane compound (A1)) can be carried out by a known method.
  • tetraalkoxysilane use water in an amount of 4 times or more that of tetraalkoxysilane, and use an acid or an alkali as a catalyst.
  • Examples of the acid include inorganic acids (HNO 3 , H 2 SO 4 , and HCl) and organic acids (formic acid, oxalic acid, monochloroacetic acid, dichloracetic acid, trichloracetic acid, etc.).
  • Examples of the alkali include ammonia, sodium hydroxide, potassium hydroxide and the like.
  • an acid is preferable in terms of long-term storage stability of the hydrolyzed condensate of the silane compound (A1).
  • silica precursor (A) one type may be used alone, or two or more types may be used in combination.
  • the silica precursor (A) preferably contains one or both of the silane compound (A1) and its hydrolyzed condensate from the viewpoint of preventing cracks and film peeling of the antiglare film 5.
  • the silica precursor (A) preferably contains one or both of tetraalkoxysilane and its hydrolyzed condensate from the viewpoint of wear resistance of the antiglare film 5.
  • the silica precursor (A) contains one or both of the silane compound (A1) and its hydrolyzed condensate and one or both of the tetraalkoxysilane and its hydrolyzed condensate. ..
  • liquid medium (B) dissolves or disperses the silica precursor (A) when the coating composition contains the silica precursor (A), and dissolves or disperses the silica precursor (A) when the coating composition contains the particles (C). It disperses particles (C).
  • the liquid medium (B) functions as a solvent or dispersion medium for dissolving or dispersing the silica precursor (A) and the particles (B). It may have both functions as a dispersion medium for dispersing C).
  • the liquid medium (B) contains at least a liquid medium (B1) having a boiling point of 150 ° C. or lower.
  • the boiling point of the liquid medium (B1) is preferably 50 to 145 ° C, more preferably 55 to 140 ° C.
  • the coating composition is applied onto the substrate 3 using an electrostatic coating apparatus equipped with an electrostatic coating gun equipped with a rotary atomizing head, and fired.
  • the obtained film has more preferable antiglare performance.
  • the boiling point of the liquid medium (B1) is at least the lower limit of the above range, after the droplets of the coating composition adhere to the substrate 3, the uneven structure can be formed while sufficiently maintaining the droplet shape.
  • liquid medium (B1) examples include water, alcohols (methanol, ethanol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, 1-pentanol, etc.), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.). ), Ethers (ketone, 1,4-dioxane, etc.), cellosolves (methyl cellosolve, ethyl cellosolve, etc.), esters (methyl acetate, ethyl acetate, etc.), and glycol ethers (ethylene glycol monomethyl ether, etc.) And ethylene glycol monoethyl ether etc.) and the like.
  • the liquid medium (B1) one type may be used alone, or two or more types may be used in combination.
  • the liquid medium (B) may further contain a liquid medium other than the liquid medium (B1), that is, a liquid medium having a boiling point of more than 150 ° C., if necessary.
  • liquid media examples include alcohols, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, sulfur-containing compounds and the like.
  • alcohols examples include diacetone alcohol, 1-hexanol, ethylene glycol and the like.
  • nitrogen-containing compound examples include N, N-dimethylacetamide, N, N-dimethylformamide, N-methylpyrrolidone and the like.
  • glycol ethers examples include ethylene glycol monobutyl ether.
  • Examples of the sulfur-containing compound include dimethyl sulfoxide and the like.
  • one type may be used alone, or two or more types may be used in combination.
  • the liquid medium (B) contains at least water as the liquid medium (B1) unless the liquid medium is replaced after the hydrolysis.
  • the liquid medium (B) may be only water or a mixture of water and another liquid.
  • the other liquid may be a liquid medium (B1) other than water, or may be another liquid medium, for example, alcohols, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, and Examples include sulfur-containing compounds.
  • alcohols are preferable as the solvent for the silica precursor (A), and methanol, ethanol, isopropyl alcohol, and butanol are particularly preferable.
  • particles (C) form an antiglare film alone or with a matrix derived from the silica precursor (A).
  • the average particle size of the particles (C) is preferably 30 nm or less.
  • Examples of the particles (C) include scaly particles (C1), particles other than scaly particles (C1) (C2), and the like.
  • Scale particles (C1) The average aspect ratio of the scaly particles (C1) is preferably 50 to 650, more preferably 100 to 350, and even more preferably 170 to 240. When the average aspect ratio of the scaly particles (C1) is 50 or more, cracks and peeling of the antiglare film can be sufficiently suppressed even if the uneven height is thick. When the average aspect ratio of the scaly particles (C1) is 650 or less, the dispersion stability in the coating composition is good.
  • the average particle size of the scaly particles (C1) is preferably 0.08 to 0.42 ⁇ m, more preferably 0.17 to 0.21 ⁇ m.
  • the average particle size of the scaly particles (C1) is 0.08 ⁇ m or more, cracks and peeling of the antiglare film can be sufficiently suppressed even if the uneven height is thick.
  • the average particle size of the scaly particles (C1) is 0.42 ⁇ m or less, the dispersion stability in the coating composition is good.
  • scaly particles (C1) examples include scaly silica particles, scaly alumina particles, scaly titania, and scaly zirconia. Of these, scaly silica particles are preferable because they can suppress an increase in the refractive index of the film and reduce the reflectance.
  • the flaky silica particles are flaky silica primary particles or silica secondary particles formed by overlapping a plurality of flaky silica primary particles with their planes oriented in parallel with each other.
  • Silica secondary particles usually have a particle morphology with a laminated structure.
  • the scaly silica particles may be only one of the silica primary particles and the silica secondary particles, or may be both.
  • the thickness of the silica primary particles is preferably 0.001 to 0.1 ⁇ m. As long as the thickness of the primary silica particles is within the above range, it is possible to form scaly secondary silica particles in which one or more of the primary silica particles are oriented in parallel with each other and overlapped with each other.
  • the ratio of the minimum length (minimum length / thickness) to the thickness of the silica primary particles is preferably 2 or more, more preferably 5 or more, still more preferably 10 or more.
  • the thickness of the silica secondary particles is preferably 0.001 to 3 ⁇ m, more preferably 0.005 to 2 ⁇ m.
  • the ratio of the minimum length (minimum length / thickness) to the thickness of the silica secondary particles is preferably 2 or more, more preferably 5 or more, still more preferably 10 or more.
  • silica secondary particles exist independently of each other without being fused.
  • the SiO 2 purity of the scaly silica particles is preferably 95% by mass or more, more preferably 99% by mass or more.
  • a powder which is an aggregate of a plurality of scaly silica particles or a dispersion in which the powder is dispersed in a liquid medium is used.
  • the silica concentration in the dispersion is preferably 1 to 80% by mass.
  • the powder or dispersion may contain not only scaly silica particles but also amorphous silica particles generated during the production of scaly silica particles.
  • the scaly silica particles are, for example, crushed and dispersed agglomerate-shaped silica tertiary particles (hereinafter, also referred to as silica agglomerates) having gaps formed by aggregating and irregularly overlapping the scaly silica particles. Obtained by converting.
  • the amorphous silica particles are in a state where silica aggregates are atomized to some extent, but are not atomized to individual scale-like silica particles, and a shape in which a plurality of scale-like silica particles form a mass. Is. If the amorphous silica particles are contained, the denseness of the antiglare film formed may be lowered and cracks or film peeling may easily occur. Therefore, the smaller the content of the amorphous silica particles in the powder or dispersion, the more preferable.
  • amorphous silica particles and silica aggregates are observed to be black in TEM observation.
  • flaky silica primary particles or silica secondary particles are observed to be transparent or translucent in TEM observation.
  • scaly silica particles commercially available ones may be used, or manufactured ones may be used.
  • the production method includes a step of acid-treating a silica powder containing silica aggregates in which scaly silica particles are aggregated at pH 2 or less, and an alkali treatment of the acid-treated silica powder at pH 8 or more to deflocculate the silica aggregates.
  • the manufacturing method the generation of amorphous silica particles in the manufacturing process is suppressed as compared with the known manufacturing method (for example, the method described in Japanese Patent No. 4063464), and the amorphous silica particles are contained. A small amount of powder or dispersion can be obtained.
  • Particle (C2) examples of the particles (C2) other than the scaly particles (C1) include metal oxide particles, metal particles, pigment-based particles, resin particles and the like.
  • the metal oxide particles Al 2 O 3, SiO 2 , SnO 2, TiO 2, ZrO 2, ZnO, CeO 2, Sb -containing SnO X (ATO), Sn-containing In 2 O 3 (ITO), and RuO 2 and the like can be mentioned.
  • the material of the metal oxide particles since the matrix preferably used in the antiglare film of the present invention is silica, in this case, SiO 2 having the same refractive index as the matrix is preferable.
  • Examples of the material of the metal particles include metals (Ag, Ru, etc.), alloys (AgPd, RuAu, etc.) and the like.
  • pigment-based particles examples include inorganic pigments (titanium black, carbon black, etc.) and organic pigments.
  • Examples of the material of the resin particles include acrylic resin, polystyrene, and melanin resin.
  • the shape of the particles (C2) is spherical, elliptical, needle-shaped, plate-shaped, rod-shaped, conical, columnar, cubic, rectangular parallelepiped, diamond-shaped, star-shaped, amorphous, or these shapes. Combinations and the like can be mentioned.
  • each particle may exist in an independent state, each particle may be connected in a chain shape, or each particle may be agglomerated.
  • the particles (C2) may be solid particles, hollow particles, or perforated particles such as porous particles.
  • silica particles such as spherical silica particles, rod-shaped silica particles, and needle-shaped silica particles (however, excluding scaly silica particles) are preferable.
  • the haze of the base material 1 with the antiglare film is sufficiently high, and the 60 ° mirror gloss on the surface of the antiglare film 5 is sufficiently low, and as a result, the antiglare effect is sufficiently exhibited.
  • Spherical silica particles are preferable, and porous spherical silica particles are more preferable.
  • the average particle size of the particles (C2) is preferably 0.3 to 2 ⁇ m, more preferably 0.5 to 1.5 ⁇ m. When the average particle size of the particles (C2) is 0.3 ⁇ m or more, the antiglare effect is sufficiently exhibited. When the average particle size of the particles (C2) is 2 ⁇ m or less, the dispersion stability in the coating composition is good.
  • the BET specific surface area of the porous spherical silica particles is preferably 200 to 300 m 2 / g.
  • the pore volume of the porous spherical silica particles is preferably 0.5 to 1.5 cm 3 / g.
  • porous spherical silica particles examples include the Light Star (registered trademark) series manufactured by Nissan Chemical Industries, Ltd.
  • the particle (C) may be used alone or in combination of two or more.
  • the particles (C) preferably contain scaly particles (C1), and may further contain particles (C2).
  • the scaly particles (C1) By including the scaly particles (C1), the haze of the antiglare film 5 is enhanced, and more excellent antiglare performance can be obtained. Further, when the scaly particles (C1) are contained as compared with the particles (C2), cracks and film peeling are less likely to occur when the uneven height of the antiglare film 5 is increased.
  • Binder (D) examples of the binder (D) (excluding the silica precursor (A)) include inorganic substances and resins that are dissolved or dispersed in the liquid medium (B).
  • Examples of the inorganic substance include metal oxide precursors (metals: titanium, zirconium, etc.) other than silica.
  • the resin examples include a thermoplastic resin, a thermosetting resin, and an ultraviolet curable resin.
  • additive (E) examples include an organic compound (E1) having a polar group, an ultraviolet absorber, an infrared reflector, an infrared absorber, an antireflection agent, a surfactant for improving leveling property, and durability improvement.
  • organic compound (E1) having a polar group examples include an ultraviolet absorber, an infrared reflector, an infrared absorber, an antireflection agent, a surfactant for improving leveling property, and durability improvement.
  • the coating composition contains particles (C)
  • the aggregation of the particles (C) due to electrostatic force in the coating composition can be suppressed by including the organic compound (E1) having a polar group in the coating composition.
  • the organic compound (E1) having a polar group preferably has a hydroxyl group and / or a carbonyl group in the molecule from the viewpoint of the effect of suppressing aggregation of the particles (C), and has a hydroxyl group and an aldehyde group (-CHO) in the molecule.
  • Ketone (-C ( O)-)
  • ester bond (-C ( O) O-)
  • carboxy group (-COOH) more preferably one having one or more selected from the group. It is more preferable to have at least one selected from the group consisting of a carboxy group, a hydroxyl group, an aldehyde group and a ketone.
  • Examples of the organic compound (E1) having a polar group include unsaturated carboxylic acid polymers, cellulose derivatives, organic acids (excluding unsaturated carboxylic acid polymers), and terpene compounds.
  • the organic compound (E1) may be used alone or in combination of two or more.
  • Examples of the unsaturated carboxylic acid polymer include polyacrylic acid.
  • Examples of the cellulose derivative include polyhydroxyalkyl cellulose.
  • organic acids examples include formic acid, oxalic acid, monochloroacetic acid, dichloroacetic acid, trichloracetic acid, citric acid, tartaric acid, and maleic acid.
  • organic acid When an organic acid is used as a catalyst for hydrolysis of alkoxysilane or the like, the organic acid is also included in the organic acid as the organic compound (E1).
  • the terpene means a hydrocarbon having a composition of (C 5 H 8 ) n (where n is an integer of 1 or more) having isoprene (C 5 H 8 ) as a constituent unit.
  • the terpene compound means terpenes having a functional group derived from terpenes. Terpene compounds also include those with different degrees of unsaturation.
  • terpene compounds are also intended to function as a liquid medium, those which are "isoprene as a constituent unit hydrocarbons (C 5 H 8) n composition" is applicable to the terpene derivative, a liquid medium Is not applicable.
  • terpene derivative examples include terpene alcohols ( ⁇ -terpeneol, terpinen 4-ol, L-menthol, ( ⁇ ) citronellol, miltenol, borneol, nerol, farnesol, and phytol, etc.), terpene aldehydes (citral, ⁇ -cyclocitral, etc.). And perillaaldehyde, etc.), terpene ketone (( ⁇ ) ginger, ⁇ -yonone, etc.), terpene carboxylic acid (citral acid, avietic acid, etc.), and terpene ester (terpinyl acetate, menthyl acetate, etc.), etc. Can be mentioned.
  • terpene alcohols ⁇ -terpeneol, terpinen 4-ol, L-menthol, ( ⁇ ) citronellol, miltenol, borneol, nerol, farnesol, and phytol, etc.
  • surfactant for improving the leveling property examples include silicone oil type and acrylic type.
  • a zirconium chelate compound As the metal compound for improving durability, a zirconium chelate compound, a titanium chelate compound, an aluminum chelate compound and the like are preferable.
  • the zirconium chelate compound include zirconium tetraacetylacetonate and zirconium tributoxystearate.
  • composition of paint composition When the coating composition contains the silica precursor (A) and the particles (C), the total content of the silica precursor (A) and the particles (C) in the coating composition is a solid in the coating composition. Of the amount (100% by mass) (however, the silica precursor (A) is converted to SiO 2 ), 30 to 100% by mass is preferable, and 40 to 100% by mass is more preferable.
  • the adhesion to the base material 3 of the antiglare film is excellent.
  • the total content of the silica precursor (A) and the particles (C) is not more than the upper limit of the above range, cracks and peeling of the antiglare film 5 are suppressed.
  • the content of the silica precursor (A) (SiO 2 equivalent) in the coating composition is the solid content (100% by mass) in the coating composition (however, however.
  • the silica precursor (A) is preferably converted to SiO 2 ), preferably 35 to 95% by mass, and more preferably 50 to 95% by mass.
  • the content of the silica precursor (A) is at least the lower limit of the above range, sufficient adhesion strength with the base material 3 of the antiglare film can be obtained.
  • the content of the silica precursor (A) is not more than the upper limit of the above range, cracks and peeling of the antiglare film 5 can be sufficiently suppressed even if the uneven height is thick.
  • the coating composition contains the silica precursor (A) and the silica precursor (A) contains one or both of the silane compound (A1) and its hydrolyzed condensate, it is in the silica precursor (A).
  • the ratio of the silane compound (A1) and its hydrolyzed condensate is preferably 5 to 100% by mass with respect to the SiO 2 equivalent solid content (100% by mass) of the silica precursor (A).
  • the ratio of the silane compound (A1) and its hydrolyzed condensate is not less than the lower limit of the above range, cracks and peeling of the antiglare film 5 can be sufficiently suppressed even if the uneven height is thick.
  • the coating composition contains the silica precursor (A) and the silica precursor (A) contains one or both of the tetraalkoxysilane and its hydrolyzed condensate, the tetraalkoxy in the silica precursor (A).
  • the ratio of either one or both of silane and its hydrolyzed condensate is preferably 60 to 100% by mass with respect to the SiO 2 equivalent solid content (100% by mass) of the silica precursor (A).
  • the ratio of either one or both of the tetraalkoxysilane and the hydrolyzed condensate thereof is at least the lower limit of the above range, the abrasion resistance of the antiglare film 5 is more excellent.
  • the silica precursor (A) contains one or both of the silane compound (A1) and its hydrolyzed condensate, and one or both of the tetraalkoxysilane and its hydrolyzed condensate, the silica precursor.
  • the ratio of either one or both of the silane compound (A1) and its hydrolyzed condensate to the SiO 2 equivalent solid content (100% by mass) of (A) is more than 0% by mass and 50% by mass or less (more preferably 0).
  • the proportion of either or both of tetraalkoxysilane and its hydrolyzed condensate is 50% by mass or more and less than 100% by mass (more preferably 70% by mass or more and less than 100% by mass). preferable.
  • the content of the liquid medium (B) in the coating composition is an amount corresponding to the solid content concentration of the coating composition.
  • the solid content concentration of the coating composition is preferably 1 to 8% by mass, more preferably 2 to 6% by mass, based on the total amount (100% by mass) of the coating composition.
  • the amount of liquid in the coating composition can be reduced.
  • the solid content concentration is not more than the upper limit of the above range, the uniformity of the uneven height of the antiglare film is improved.
  • the solid content concentration of the coating composition is the total content of all the components other than the liquid medium (B) in the coating composition.
  • the content of the silica precursor (A) is in terms of SiO 2.
  • the content of the liquid medium (B1) having a boiling point of 150 ° C. or lower in the coating composition is 86% by mass or more with respect to the total amount of the liquid medium (B).
  • the coating composition was applied onto the substrate and fired using an electrostatic coating apparatus equipped with an electrostatic coating gun equipped with a rotary atomizing head. Occasionally, an antiglare film with more favorable performance is formed. If the proportion of the liquid medium (B1) is less than 86% by mass, the uneven structure cannot be formed because the liquid medium (B1) is smoothed before the solvent is volatilized and dried, and the film after firing may not be an antiglare film.
  • the content of the liquid medium (B1) is preferably 90% by mass or more with respect to the total amount of the liquid medium (B).
  • the content of the liquid medium (B1) may be 100% by mass with respect to the total amount of the liquid medium (B).
  • the content of the particles (C) is the solid content (100% by mass) in the coating composition (however, the silica precursor (A) is converted to SiO 2). Of these, 3 to 40% by mass is preferable, and 5 to 30% by mass is more preferable.
  • the content of the particles (C) is at least the lower limit of the above range, the haze of the substrate with the antiglare film is sufficiently high, and the 60 ° mirror gloss on the surface of the antiglare film is sufficiently low. Therefore, the anti-glare effect is fully exhibited.
  • the content of the particles (C) is not more than the upper limit of the above range, sufficient wear resistance can be obtained.
  • the content of the scaly particles (C1) is the total amount (100% by mass) of the particles (C). Of these, 20% by mass or more is preferable, and 30% by mass or more is more preferable.
  • the upper limit is not particularly limited and may be 100% by mass.
  • the ratio of scaly particles (C1) is equal to or higher than the above lower limit, the antiglare effect is more excellent. Further, even if the uneven height is thick, cracks and peeling of the antiglare film can be sufficiently suppressed.
  • the viscosity of the coating composition at the coating temperature (hereinafter, also referred to as “liquid viscosity”) is preferably 0.003 Pa ⁇ s or less (3 mPa ⁇ s or less), and particularly preferably 0.001 to 0.003 Pa ⁇ s.
  • liquid viscosity is not more than the above upper limit value, the droplets formed when the coating composition is sprayed become finer, and an antiglare film having a desired surface shape is likely to be formed.
  • the liquid viscosity is at least the above lower limit value, the surface uneven shape of the antiglare film becomes uniform.
  • the viscosity of the paint composition is a value measured by a B-type viscometer.
  • a solution in which the silica precursor (A) is dissolved in the liquid medium (B) is prepared, and if necessary, an additional liquid medium (B), a dispersion liquid of the particles (C), and the like are mixed.
  • an additional liquid medium (B), a dispersion liquid of the particles (C), and the like are mixed.
  • the particles (C) contain scaly particles (C1) and the silica precursor (A) contains a hydrolyzed condensate of tetraalkoxysilane
  • an antiglare film having desired performance can be produced at a high level and with good reproducibility. From the possible point, after mixing a solution of tetraalkoxysilane or a solution of a mixture of tetraalkoxysilane and its hydrolyzed condensate with a dispersion of scaly particles (C1), in the presence of scaly particles (C1). It is preferable to hydrolyze and condense the tetraalkoxysilane.
  • a conductive film is formed on the surface of the masking material.
  • the antiglare film coating liquid adheres uniformly to the vicinity of the masking material. It is considered that this is because the electrostatic repulsion of the masking end face due to the application of voltage is alleviated by the conductive film, and the antiglare film is uniformly formed.
  • the conductive film is preferably a film made of a conductive material, and more preferably a metal film. If an insulating layer is formed on the surface of the conductive film, it is easily charged. Therefore, a conductive film in which oxides and the like are not formed on the surface is preferable. Since the tendency of oxidation is represented by the standard electrode potential, the metal preferably has a positive standard electrode potential, more preferably 0.78 eV or higher, and particularly preferably 0.79 eV or higher. Specifically, the conductive film is preferably a noble metal film, and the noble metal is particularly preferably Pt, Au, and Ag.
  • the standard electrode potential of the conductive film is the same as the standard electrode potential of the material constituting the conductive film. That is, the standard electrode potential of the conductive film is preferably positive, more preferably 0.78 eV or higher, and particularly preferably 0.79 eV or higher.
  • 10 6 ⁇ / ⁇ or less is preferable, and 10 3 ⁇ / ⁇ or less is more preferable.
  • the conductive film can be formed by a dry coating method such as sputtering and thin film deposition.
  • the sputtering method is preferable from the viewpoint that it can be formed in a wide area.
  • the sputtering time is preferably 1 to 10 minutes, and can be appropriately adjusted depending on the material, the target film thickness, and the surface resistance value.
  • the masking material a polyethylene-based film, an acrylic-based film, or the like can be used. Further, an acrylic pressure-sensitive adhesive may be applied if necessary.
  • the shape of the non-glare portion in the top view is not particularly limited, and a circle, an ellipse, a triangle, a rectangle, a square, a trapezoid, or the like can be appropriately selected. Further, the size of the non-glare portion can be appropriately designed according to the use of the base material with the antiglare film. In order to make the non-glare portion into a desired shape and size, the shape and size of the masking material to be attached to the non-glare portion may be adjusted as appropriate.
  • the thickness of the masking material is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and particularly preferably 100 ⁇ m or less. When the thickness of the masking material is within the above range, it is not easily affected by electrostatic repulsion due to the application of voltage on the side surface of the masking material.
  • an electrostatic coating device is used to charge and spray the coating composition onto the substrate to form a coating film.
  • the coating composition is applied onto the substrate by charging and spraying the coating composition using an electrostatic coating device. As a result, a coating film of the coating composition is formed on the base material.
  • electrostatic coating device As the electrostatic coating device, for example, an electrostatic coating device having an electrostatic coating gun equipped with a rotary atomizing head can be used.
  • the coating composition is atomized at the rotary atomizing head, becomes droplets, and scatters radially.
  • the droplets are negatively charged and are attracted by electrostatic attraction towards the grounded substrate. Therefore, it efficiently adheres to the surface of the base material.
  • the surface temperature of the base material is preferably 60 ° C. or lower, preferably 15 to 50 ° C., and more preferably 20 to 40 ° C.
  • the liquid medium (B) of the coating composition evaporates quickly, so that sufficient unevenness is likely to be formed.
  • the surface temperature of the base material is not more than the upper limit of the above range, the adhesion between the base material and the antiglare film is good.
  • the temperature (coating temperature) of the coating composition sprayed from the electrostatic coating gun and the preferable range of the temperature in the coating booth are also the same as described above.
  • the transport speed of the base material is preferably 0.6 to 20.0 m / min, more preferably 1.5 to 15.0 m / min. If the transport speed of the base material is 0.6 m / min or more, the productivity is improved. When the transport speed of the base material is 20.0 m / min or less, it is easy to control the film thickness of the coating composition applied on the base material.
  • the number of times the base material 3 is conveyed that is, the number of times the paint composition is applied to the base material by passing under the electrostatic coating gun can be appropriately set according to the desired haze, glossiness, and the like. From the viewpoint of anti-glare property, once or more is preferable, and twice or more is more preferable. From the viewpoint of productivity, 10 times or less is preferable, and 8 times or less is more preferable.
  • the diameter (maximum diameter of the diffusion surface, hereinafter also referred to as “cup diameter”) Dc of the outer peripheral edge of the rotary atomizing head of the electrostatic coating gun is preferably 50 mm or more, preferably 55 to 90 mm, and particularly preferably 60 to 80 mm. ..
  • the cup diameter is equal to or larger than the above lower limit, the centrifugal force during rotation of the rotary atomizing head is large, the droplets of the coating composition scattered from the rotary atomizing head become finer, and the desired surface shape is prevented. Dazzling film is likely to be formed. If the cup diameter is not more than the upper limit of the above range, the cup can be rotated stably.
  • the distance from the nozzle tip of the electrostatic coating gun (that is, the front end of the rotary atomizing head in the spraying direction of the coating composition) to the base material (hereinafter, also referred to as nozzle height) is the base material 3 width and the base material 3 It is appropriately adjusted according to the film thickness of the coating composition applied to the coating composition. Usually, it is 150 to 450 mm.
  • the coating efficiency will increase, but if the distance is too close, the possibility of electric discharge will increase and safety problems will occur.
  • the coating area expands as the distance between the base materials increases, but if the distance is too large, the coating efficiency decreases.
  • the voltage applied to the electrostatic coating gun is appropriately adjusted according to the amount of the coating composition applied on the substrate and the like, and is usually in the range of -30 kV to -90 kV.
  • the larger the absolute value of the voltage the higher the coating efficiency tends to be. Although it depends on the liquid characteristics, the coating environment and the coating conditions, the coating efficiency reaches saturation when the applied voltage reaches a certain level.
  • the supply amount of the coating composition to the electrostatic coating gun (hereinafter, also referred to as the coating liquid amount) is appropriately adjusted according to the coating amount of the coating composition applied on the substrate and the like. It is preferably less than 70 mL / min, more preferably 10-50 mL / min.
  • the amount of the coating liquid is not more than the above upper limit value, the droplets of the coating composition scattered from the rotary atomizing head become finer, and an antiglare film having a desired surface shape is likely to be formed.
  • the amount of the coating liquid is equal to or more than the above lower limit value, the distribution of the in-plane haze rate becomes small.
  • the pressure of the air supplied to the electrostatic coating gun is appropriately adjusted according to the amount of the coating composition applied on the substrate and the like, and is usually 0.01 MPa to 0.5 MPa.
  • the coating pattern of the coating composition can be controlled by the air pressure supplied to the electrostatic coating gun.
  • the coating pattern of the coating composition indicates a pattern formed on the substrate by the droplets of the coating composition sprayed from the electrostatic coating gun.
  • the air pressure of the air supplied to the air turbine motor is set according to the rotation speed of the rotary atomizing head (hereinafter, also referred to as the cup rotation speed).
  • the cup rotation speed The higher the air pressure, the higher the cup rotation speed.
  • the cup rotation speed is preferably 30,000 rpm or more, more preferably 30,000 to 80,000 rpm, and particularly preferably 32,000 to 80,000 rpm.
  • the cup rotation speed is equal to or higher than the lower limit of the above range, the droplets of the coating composition scattered from the rotary atomizing head become finer, and an antiglare film having a desired surface shape is likely to be formed.
  • the cup rotation speed is not more than the upper limit of the above range, the coating efficiency is excellent.
  • the cup rotation speed can be measured by the measuring instrument (not shown) attached to the electrostatic coating device.
  • the air pressure of the air supplied to the air supply path is preferably a pressure in which the air pressure of the shaving air (hereinafter, also referred to as shaving pressure) is in the range of 0.01 to 0.3 MPa.
  • the shave pressure is more preferably 0.01 to 0.25 MPa, and particularly preferably 0.01 to 0.2 MPa.
  • the coating efficiency is improved by improving the effect of preventing the scattering of droplets.
  • the shave pressure is not more than the upper limit of the above range, the coating width can be secured.
  • the masking removing step the masking material is removed from the substrate. As shown in FIGS. 6 (c) and 6 (d), since the coating film 51 is removed together by removing the masking material 7, the antiglare film 5 is applied to the portion of the base material 3 that is not covered with the masking material. The antiglare portion 50 is formed, and the antiglare film 5 is not formed on the portion of the base material 3 covered with the masking material, and the non-glare portion 30 is formed.
  • a part of the end face may be peeled off with a jig, or a jig with an adhesive may be pressed against the peripheral part of the masking to be peeled off. Further, it may be burnt off during the firing step described later.
  • the masking removal may be performed after the firing step described later.
  • the coating film of the coating composition formed on the substrate in the coating step is fired to obtain an antiglare film.
  • the firing may be performed at the same time as the coating by heating the substrate when the coating composition is applied to the substrate, or may be performed by heating the coating film after the coating composition is applied to the substrate. good.
  • the firing temperature is preferably 30 ° C. or higher, more preferably 100 to 750 ° C., and even more preferably 150 to 550 ° C., for example, when the base material is glass.
  • the antiglare film when the antiglare film is formed on the base material, the antiglare film can be formed substantially uniformly up to the vicinity of the region masked by the masking material.
  • the antiglare portion has an antiglare portion and a non-glare portion, and the antiglare film is formed substantially uniformly on the base material in the vicinity of the boundary between the antiglare portion and the non-glare portion, and the antiglare portion and the non-glare portion are formed. It is possible to produce a base material with an antiglare film in which the boundary of the non-glare portion is clear.
  • Examples 1 to 8 described later examples 1 to 3 and Examples 6 to 8 are examples, and Examples 4 and 5 are comparative examples.
  • the silica sol was continuously released into the air from the discharge port.
  • the silica sol became spherical droplets in the air and gelled in the air while staying in the air for about 1 second in a parabolic shape.
  • the gelled product was dropped into a water-filled aging tank for aging. After aging, the pH was adjusted to 6 and further washed thoroughly with water to obtain a silica hydrogel.
  • the obtained silica hydrogel was spherical particles and had an average particle diameter of 6 mm.
  • the mass ratio of water to SiO 2 in the silica hydrogel was 4.55 times.
  • Silica hydrogel was coarsely pulverized using a double roll crusher to an average particle size of 2.5 mm.
  • Silica hydrogel (SiO 2 concentration: 18% by mass) (7249 kg) so that the total SiO 2 / Na 2 O in the system is 12.0 (molar ratio) in an autoclave with a capacity of 17 m 3 (with an anchor type stirring blade).
  • silica dispersion Water (1560 kg) was added thereto, high-pressure steam (4682 kg) having a saturation pressure of 1.67 MPa was added while stirring at 10 rpm, the temperature was raised to 185 ° C., and water heat treatment was performed for 5 hours to obtain a silica dispersion.
  • the total SiO 2 concentration in the system was 12.5% by mass.
  • the obtained silica dispersion was filtered and washed to remove silica powder, which was observed using TEM. It was confirmed that the silica powder contained silica aggregates.
  • the average particle size of the silica powder by the laser diffraction / scattering type particle size distribution measuring device manufactured by HORIBA, Ltd., LA-950, the same applies hereinafter) was 8.33 ⁇ m.
  • Aqueous sulfuric acid solution (sulfuric acid concentration: 20% by mass) while stirring a silica dispersion containing silica powder (solid content concentration measured by an infrared moisture meter: 13.3% by mass, pH: 11.4) (10100 g) with a stirrer. %) (1083 g) was added. The pH after the addition was 1.5. Stirring was continued for 18 hours at room temperature as it was, and the treatment was carried out.
  • the acid-treated silica dispersion was filtered and washed with 50 mL of water per gram of SiO 2. The washed silica cake was collected and water was added to prepare a slurry-like silica dispersion.
  • the solid content concentration of the silica dispersion measured by the infrared moisture meter was 14.7% by mass, and the pH was 4.8.
  • the silica dispersion after alkali treatment is subjected to an ultra-high pressure wet atomizer (Nanomizer (registered trademark) NM2-2000AR, pore size 120 ⁇ m collision type generator) manufactured by Yoshida Kikai Kogyo Co., Ltd. at a discharge pressure of 130 to 140 MPa and 30 passes.
  • the treatment was performed to crush and disperse the silica powder.
  • the pH of the silica dispersion after crushing was 9.3, and the average particle size by the laser diffraction / scattering type particle size distribution measuring device was 0.182 ⁇ m.
  • the silica dispersion after cation exchange was treated with an ultrafiltration membrane (MOLSEP (registered trademark) manufactured by Daisen Membrane System, molecular weight cut-off: 150,000) to adjust the concentration.
  • MOLSEP ultrafiltration membrane manufactured by Daisen Membrane System, molecular weight cut-off: 150,000
  • the average particle size of the scaly silica particles contained in the scaly silica particle dispersion liquid (a) was the same as that after wet crushing, and was 0.182 ⁇ m.
  • the average aspect ratio was 188.
  • the solid content concentration of the scaly silica particle dispersion liquid (a) measured by an infrared moisture meter was 5.0% by mass.
  • the scaly silica particle dispersion (a) (2.09 g) was added, and the mixture was stirred for 30 minutes.
  • a mixture of ion-exchanged water (3.71 g) and an aqueous nitric acid solution (nitric acid concentration: 61% by mass) (0.06 g) was added thereto, and the mixture was stirred for 60 minutes to obtain a solid content concentration (SiO 2 conversion) of 4.0.
  • a mass% base solution (b) was prepared.
  • the SiO 2 equivalent solid content concentration is the solid content concentration when all Si of the silicate 40 is converted to SiO 2.
  • silane compound solution (c) While stirring the denatured ethanol (3.85 g), a mixture of ion-exchanged water (0.37 g) and an aqueous nitric acid solution (nitric acid concentration: 61% by mass) (0.01 g) was added, and the mixture was stirred for 5 minutes. Next, 1,6-bis (trimethoxysilyl) hexane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-3066, solid content concentration (SiO 2 conversion): 37% by mass) (0.54 g) was added, and 60 in a water bath. The mixture was stirred at ° C. for 15 minutes to prepare a silane compound solution (c) having a solid content concentration (SiO 2 equivalent) of 4.3% by mass.
  • Example 1 ⁇ Cleaning of base material> As a base material, soda lime glass (manufactured by AGC Inc., FL1.1, size: 100 mm ⁇ 100 mm, thickness: 1.1 mm glass substrate) was prepared. The surface of the glass was washed with sodium hydrogen carbonate water, rinsed with ion-exchanged water, and dried.
  • soda lime glass manufactured by AGC Inc., FL1.1, size: 100 mm ⁇ 100 mm, thickness: 1.1 mm glass substrate
  • the surface of the glass was washed with sodium hydrogen carbonate water, rinsed with ion-exchanged water, and dried.
  • Masking film A (single-sided adsorption type film KTF-50SU manufactured by Tokyo Film Service Co., Ltd.) was used as the masking material.
  • the masking material was cut into a circle of 12 mm ⁇ and used.
  • a metal layer (platinum layer) was provided as a conductive film on the cut masking material.
  • SC-701 manufactured by Sanyu Electronics Co., Ltd.
  • Pt target manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., 99.99% purity
  • a liquid electrostatic coater manufactured by Asahi Sanac Co., Ltd.
  • a rotary atomization type automatic electrostatic gun manufactured by Asahi Sanac Co., Ltd., Sunbell, ESA120, 70 ⁇ cup
  • a metal mesh tray was prepared as a conductive substrate in order to make it easier to ground the base material.
  • the coating liquid (d) is applied by an electrostatic coating method under the conditions of a distance to a glass plate of 250 mm, a shave pressure of 0.04 MPa, a cup rotation speed of 30 kHz, a substrate transfer speed of 2 m / min, and a substrate transfer frequency of 2 times, with a masking material.
  • a coating film was formed on the substrate.
  • the masking material was removed from the base material with the masking material by pressing a rod-shaped jig around which an adhesive sheet was wrapped around the tip and peeling it off. Then, an antiglare film was formed by firing in the air at 300 ° C. for 30 minutes to obtain a base material with an antiglare film having an antiglare portion and a non-glare portion.
  • the following evaluation was performed on the base material before removing the masking material and the obtained base material with an antiglare film. The results are shown in Table 1.
  • Measurement distance x Measurement distance ( ⁇ m) from the measurement start position to the measurement direction
  • Integrated value y Integrated value ( ⁇ m) of the uneven height of the antiglare film (every 0.333 ⁇ m)
  • the surface resistance value of the masking material with a conductive film is the same as that of the masking material described above, and a strip-shaped film with a size of 5 mm x 50 mm is used. It was measured with a 4-probe probe at T600).
  • Haismra on the end face of the antiglare film by visual inspection> It was determined whether or not Haismra could be visually recognized on the end face (edge) of the antiglare film. ⁇ : Not visible at all ⁇ : Almost invisible ⁇ : Haismra can be seen
  • Example 2 A substrate with an antiglare film was prepared in the same manner as in Example 1 except that the sputtering treatment time was changed to 2 minutes in the preparation of the masking material, and the above evaluation was performed. The results are shown in Table 1.
  • Example 3 A substrate with an antiglare film was prepared in the same manner as in Example 1 except that the sputtering treatment time was changed to 3 minutes in the preparation of the masking material, and the above evaluation was performed. The results are shown in Table 1.
  • Example 4 A substrate with an antiglare film was prepared in the same manner as in Example 1 except that the masking material was not subjected to the sputtering treatment and the conductive film was not provided, and the above evaluation was performed. The results are shown in Table 1.
  • Example 5 A substrate with an antiglare film was prepared in the same manner as in Example 4 except that the masking material B (single-sided adsorption type film HG1 manufactured by Fujicopian Co., Ltd.) was used as the masking material, and the above evaluation was performed. The results are shown in Table 1.
  • the masking material B single-sided adsorption type film HG1 manufactured by Fujicopian Co., Ltd.
  • Example 6 The target used for the sputtering process was changed to Au target (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., 99.99% purity), and the same as in Example 3 except that a gold (Au) layer was formed as a conductive film on the masking material. A substrate with an antiglare film was prepared. The above-mentioned evaluation was performed on the base material with an antiglare film before removing the masking material or the obtained base material with an antiglare film. The results are shown in Table 1.
  • Example 7 The target used for the sputtering treatment was changed to an Ag target (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., 99.99% purity), and the same as in Example 3 except that a silver (Ag) layer was formed as a conductive film on the masking material. A substrate with an antiglare film was prepared. The above-mentioned evaluation was performed on the base material with an antiglare film before removing the masking material or the obtained base material with an antiglare film. The results are shown in Table 1.
  • Example 8 A substrate with an antiglare film was produced in the same manner as in Example 3 except that the number of times the substrate was conveyed in electrostatic coating was one. The above-mentioned evaluation was performed on the base material with an antiglare film before removing the masking material or the obtained base material with an antiglare film. The results are shown in Table 1.
  • the measurement distance is shown in FIG. 7 as a graph in which the relationship between the measurement distance x and the unevenness height z is plotted in an xy Cartesian coordinate system.
  • FIG. 8 shows a graph in which the relationship between x and the integrated value y of the unevenness height is plotted in the xy orthogonal coordinate system.
  • the broken line is a regression line.
  • FIG. 10 shows a graph in which the relationship between the unevenness height integrated value y and the unevenness height integrated value y is plotted in the xy orthogonal coordinate system.
  • the broken line is a regression line.
  • the antiglare film is uniformly formed on the base material with an antiglare film having an average value P of -20 ⁇ m or more, and the boundary between the antiglare portion and the non-glare portion is clear. Is.
  • the antiglare film is formed substantially uniformly on the base material in the vicinity of the boundary between the antiglare portion and the non-glare portion, and the antiglare portion and the non-glare portion are not formed. It is a base material with an anti-glare film with a clear boundary of the anti-glare portion.
  • it is useful in various devices such as smartphones equipped with a camera, which are required not to form an antiglare film on the portion of the cover substrate that corresponds to the field of view of the camera.
  • Base material with anti-glare film 3 Base material 3A First main surface 5 Anti-glare film 30 Non-glare part 50 Anti-glare part 51 Coating film 40 Connection area 7 Masking material 7A Main surface 9 Conductive film

Abstract

This base material (1) with an anti-glare film comprises a base material (3), and an anti-glare film (5) formed on a portion of at least one primary surface of the base material (3), wherein said at least one primary surface of the base material has an anti-glare part (50) where the anti-glare film is formed, said at least one primary surface of the base material has a non-anti-glare part (30) where the anti-glare film is not formed, and the average value of values P obtained by using specific (expression 1) is at least -20 μm based on an unevenness height measurement result of the anti-glare film obtained by a specific measurement method on a region where the anti-glare part and the non-anti-glare part are adjacent.

Description

防眩膜付き基材および防眩膜付き基材の製造方法Method for manufacturing a base material with an antiglare film and a base material with an antiglare film
 本発明は、防眩膜付き基材および防眩膜付き基材の製造方法に関する。 The present invention relates to a base material with an antiglare film and a method for manufacturing a base material with an antiglare film.
 テレビ、パーソナルコンピュータ、スマートフォン、及び携帯電話等の各種機器に備え付けられた画像表示装置(たとえば、液晶ディスプレイ、有機ELディスプレイ、及びプラズマディスプレイ等)においては、蛍光灯等の室内照明、太陽光等の外光が表示面に映り込むと、反射像によって視認性が低下する。 In image display devices (for example, liquid crystal displays, organic EL displays, plasma displays, etc.) installed in various devices such as televisions, personal computers, smartphones, and mobile phones, indoor lighting such as fluorescent lamps, sunlight, etc. When external light is reflected on the display surface, the reflected image reduces visibility.
 外光の映り込みを抑制する方法として、凹凸を表面に有する防眩膜を、画像表示装置の表示面に配置し、外光を拡散反射させることで、反射像を不鮮明にする方法がある。 As a method of suppressing the reflection of external light, there is a method of arranging an antiglare film having irregularities on the surface on the display surface of the image display device and diffuse-reflecting the external light to make the reflected image unclear.
 防眩膜の形成方法としては、アルコキシシランの加水分解縮合物等のシリカ前駆体を含む塗布液を基材上に塗布し、焼成する方法が知られている。塗布液を基材に塗布する方法としては、例えば、二流体スプレーノズル等を用いて、塗布液を噴霧して塗布するスプレー法(例えば、特許文献1)や、静電塗装ガンを備える静電塗装装置を用いて、帯電させた塗布液を接地されたガラス基材に静電引力により引き寄せて塗布する静電塗装法(例えば、特許文献2)が知られている。 As a method for forming an antiglare film, a method is known in which a coating liquid containing a silica precursor such as a hydrolyzed condensate of alkoxysilane is applied onto a substrate and then fired. As a method of applying the coating liquid to the substrate, for example, a spray method of spraying and applying the coating liquid using a two-fluid spray nozzle or the like (for example, Patent Document 1), or an electrostatic coating gun provided with an electrostatic coating gun. An electrostatic coating method (for example, Patent Document 2) is known in which a charged coating liquid is attracted to a grounded glass substrate by electrostatic attraction and applied by using a coating device.
 防眩膜を各種機器の装置表面等に形成する際、これらの機器が搭載する機能等によっては、部分的に防眩膜を形成しない領域を設ける場合がある。例えば、近年、ウェブカメラを搭載したパーソナルコンピュータやスマートフォン、居眠り対策等のため運転者の状態を観察するカメラが搭載された車載用ディスプレイが増加している。このような機器においては、カメラの解像度低下を防ぐ等の目的で、カバーとなるガラス基板のうちカメラ視野に当たる部分には防眩膜を形成しないことが求められる。 When forming an antiglare film on the surface of various devices, a region where the antiglare film is not formed may be partially provided depending on the functions mounted on these devices. For example, in recent years, the number of in-vehicle displays equipped with a personal computer equipped with a webcam, a smartphone, and a camera for observing the driver's condition for taking measures against falling asleep is increasing. In such a device, for the purpose of preventing a decrease in the resolution of the camera, it is required not to form an antiglare film on the portion of the glass substrate to be the cover that corresponds to the field of view of the camera.
日本国特開2009-058640号公報Japanese Patent Application Laid-Open No. 2009-058640 国際公開第2015/186669号International Publication No. 2015/186669
 部分的に防眩膜を形成しない領域を設ける方法として、当該領域を設ける部分を保護フィルム等のマスキング材でマスクした上で塗布液を塗布する方法がある。しかしながら、このような方法で防眩膜を形成した場合、マスキング材近傍において塗布液が均一に付着しにくいために、形成された防眩膜が均一でなく、防眩性能にばらつきが生じたり、見栄え等に問題が生じる場合がある。 As a method of providing a region that does not partially form an antiglare film, there is a method of applying a coating liquid after masking the portion where the region is provided with a masking material such as a protective film. However, when the antiglare film is formed by such a method, the coating liquid is difficult to adhere uniformly in the vicinity of the masking material, so that the formed antiglare film is not uniform and the antiglare performance varies. There may be problems with the appearance.
 具体的には、スプレー法の場合、マスキング材近傍に塗布液が過剰に堆積しやすい。そのため、防眩膜が形成された領域(防眩部)の、防眩膜が形成されていない領域(非防眩部)との境界付近で防眩膜が過剰に厚くなる場合がある。 Specifically, in the case of the spray method, the coating liquid tends to be excessively deposited in the vicinity of the masking material. Therefore, the antiglare film may become excessively thick near the boundary between the region where the antiglare film is formed (antiglare portion) and the region where the antiglare film is not formed (non-glare portion).
 また、静電塗装法による場合は、マスキング材近傍に塗布液が付着しにくく、未塗布部分や塗布量の少ない部分が生じやすい。そして、マスキング材近傍の周囲にはかえって塗布液が多く付着しやすい。そのため、非防眩部がマスキング材の範囲より大きくなり防眩部と非防眩部との境界が不鮮明になる、または、非防眩部との境界付近で防眩膜の厚みが不均一になる場合がある。 In addition, when the electrostatic coating method is used, the coating liquid does not easily adhere to the vicinity of the masking material, and uncoated parts or parts with a small coating amount are likely to occur. In addition, a large amount of coating liquid tends to adhere to the periphery of the masking material. Therefore, the non-glare portion becomes larger than the range of the masking material and the boundary between the antiglare portion and the non-glare portion becomes unclear, or the thickness of the antiglare film becomes uneven near the boundary with the non-glare portion. May be.
 上記の事情を鑑み、本発明は、防眩部の非防眩部との境界付近において、防眩膜が基材上に略均一に形成され、かつ、防眩部と非防眩部の境界が鮮明な防眩膜付き基材を提供することを課題とする。 In view of the above circumstances, in the present invention, the antiglare film is formed substantially uniformly on the substrate in the vicinity of the boundary between the antiglare portion and the non-glare portion, and the boundary between the antiglare portion and the non-glare portion is formed. It is an object of the present invention to provide a substrate with a clear antiglare film.
 かかる課題を解決するため、本発明は、以下の態様を有する。 In order to solve such a problem, the present invention has the following aspects.
 基材と、前記基材の少なくとも一方の主面の一部に形成された防眩膜とを備える防眩膜付き基材であって、
 前記基材の前記少なくとも一方の主面に前記防眩膜が形成された防眩部と、
 前記基材の前記少なくとも一方の主面に前記防眩膜が形成されていない非防眩部とを有し、
 前記防眩部と前記非防眩部とが隣接する領域における下記測定方法による防眩膜の凹凸高さ測定結果から、下記(式1)を用いて求められる値Pの平均値が-20μm以上である、防眩膜付き基材。
 凹凸高さ測定方法:
 測定開始位置を、非防眩部上とする。
 測定方向を、防眩部と非防眩部との境界線に対し垂直であって、非防眩部から防眩部に向かう方向とする。
 防眩膜の凹凸高さを、非防眩部上の測定開始位置から防眩部にかけて0.333μm毎に測定する。
 値Pの算出方法:
 前記測定開始位置から測定方向への測定距離をx(μm)とし、防眩膜の凹凸高さの積算値をy(μm)として、x-y座標平面を作成し、
 積算値y>5であって測定距離xが最小の点を防眩膜端部X1(x,y)とし、
 測定距離x=(x+100)における積算値yを示す点をA(x,y)とし、
 測定距離x=(x+200)における積算値yを示す点をB(x,y)として、
 A-B間の回帰直線を引き、
 前記回帰直線のx切片をX2(x,0)とし、下記(式1)により値P(μm)を求める。
 x-x=P  ・・・(式1)
A base material with an antiglare film comprising a base material and an antiglare film formed on a part of at least one main surface of the base material.
An antiglare portion having the antiglare film formed on at least one main surface of the base material, and an antiglare portion.
It has a non-glare portion on which the antiglare film is not formed on at least one main surface of the base material.
The average value of the value P obtained by using the following (Equation 1) from the measurement result of the unevenness height of the antiglare film by the following measurement method in the region where the antiglare portion and the non-glare portion are adjacent to each other is -20 μm or more. A base material with an antiglare film.
Concavo-convex height measurement method:
The measurement start position is on the non-glare part.
The measurement direction is perpendicular to the boundary line between the antiglare portion and the non-glare portion, and is the direction from the non-glare portion to the antiglare portion.
The uneven height of the antiglare film is measured every 0.333 μm from the measurement start position on the non-glare portion to the antiglare portion.
How to calculate the value P:
An xy coordinate plane is created by setting the measurement distance from the measurement start position to the measurement direction as x (μm) and the integrated value of the uneven height of the antiglare film as y (μm).
The integrated value y> 5 a was in the measured distance x is the minimum point and the anti-glare film end X1 (x 1, y 1) ,
Measured distance x a = a point indicating the integrated value y a in (x 1 +100) A (x a, y a) and,
Let B (x b , y b ) be a point indicating the integrated value y b at the measurement distance x b = (x a +200).
Draw a regression line between AB and
The x-intercept of the regression line and X2 (x 2, 0), obtaining the following equation (1) the value P ([mu] m).
x 1- x 2 = P ... (Equation 1)
 基材と、前記基材の少なくとも一方の主面の一部に形成された防眩膜とを備える防眩膜付き基材の製造方法であって、
 シリカ前駆体(A)および粒子(C)の少なくとも一方と、液状媒体(B)とを含み、かつ前記液状媒体(B)が、沸点150℃以下の液状媒体(B1)を、前記液状媒体(B)の全量に対して86質量%以上含む塗料組成物を準備することと、
 マスキング材の表面に導電性膜を形成することと、
 前記基材の少なくとも一方の主面の一部を前記導電性膜が形成されたマスキング材で覆うことと、
 静電塗装装置を用いて、前記塗料組成物を帯電させ噴霧することにより前記基材上に塗布して塗膜を形成することと、
 前記マスキング材を前記基材から除去することと、
 前記塗膜を焼成することにより防眩膜を形成することと、
を有する、防眩膜付き基材の製造方法。
A method for producing a base material with an antiglare film, which comprises a base material and an antiglare film formed on a part of at least one main surface of the base material.
The liquid medium (B1) containing at least one of the silica precursor (A) and the particles (C) and the liquid medium (B) and having the liquid medium (B) having a boiling point of 150 ° C. or lower is used as the liquid medium (B1). To prepare a coating composition containing 86% by mass or more based on the total amount of B).
Forming a conductive film on the surface of the masking material and
Covering a part of at least one main surface of the base material with a masking material on which the conductive film is formed,
Using an electrostatic coating device, the coating composition is charged and sprayed to be applied onto the substrate to form a coating film.
Removing the masking material from the substrate and
To form an antiglare film by firing the coating film,
A method for manufacturing a base material with an antiglare film.
 本発明の一実施形態の防眩膜付き基材によれば、防眩部の非防眩部との境界付近において、防眩膜が基材上に略均一に形成され、かつ、防眩部と非防眩部の境界が鮮明な防眩膜付き基材を提供できる。 According to the base material with an antiglare film according to the embodiment of the present invention, the antiglare film is formed substantially uniformly on the base material in the vicinity of the boundary between the antiglare portion and the non-glare portion, and the antiglare portion is formed. It is possible to provide a base material with an antiglare film in which the boundary between the non-glare portion and the non-glare portion is clear.
 また、本発明の一実施形態の防眩膜付き基材の製造方法によれば、基材上に防眩膜を形成する際、マスキング材でマスクされた領域の近傍まで略均一に防眩膜を形成できる。これにより、防眩部の非防眩部との境界付近において、防眩膜が基材上に略均一に形成され、かつ、防眩部と非防眩部の境界が鮮明な防眩膜付き基材を製造できる。 Further, according to the method for producing a base material with an antiglare film according to an embodiment of the present invention, when the antiglare film is formed on the base material, the antiglare film is substantially uniformly formed up to the vicinity of the region masked by the masking material. Can be formed. As a result, an antiglare film is formed substantially uniformly on the base material near the boundary between the antiglare portion and the non-glare portion, and the boundary between the antiglare portion and the non-glare portion is clearly provided with an antiglare film. A base material can be manufactured.
図1は、本発明の一実施形態に係る防眩膜付き基材の一例を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an example of a base material with an antiglare film according to an embodiment of the present invention. 図2は、図1におけるA-A’線に沿って切断した断面図である。FIG. 2 is a cross-sectional view taken along the line AA'in FIG. 図3は、防眩膜5の凹凸高さの測定方法について示す模式図である。FIG. 3 is a schematic view showing a method of measuring the uneven height of the antiglare film 5. 図4は、値Pの算出過程で用いるグラフの例である。FIG. 4 is an example of a graph used in the process of calculating the value P. 図5は、値Pの算出過程で用いるグラフの例である。FIG. 5 is an example of a graph used in the process of calculating the value P. 図6の(a)~(d)は、本発明の一実施形態に係る防眩膜付き基材の製造方法を説明するフロー図である。6 (a) to 6 (d) are flow charts illustrating a method for manufacturing a base material with an antiglare film according to an embodiment of the present invention. 図7は、例3の防眩膜付き基材の防眩膜の凹凸高さについて、測定距離xと凹凸高さzの関係をx-y直交座標系にプロットしたグラフである。FIG. 7 is a graph in which the relationship between the measurement distance x and the uneven height z is plotted in an xy orthogonal coordinate system with respect to the uneven height of the antiglare film of the base material with the antiglare film of Example 3. 図8は、例3の防眩膜付き基材の防眩膜の凹凸高さについて、測定距離xと凹凸高さ積算値yの関係をx-y直交座標系にプロットしたグラフである。FIG. 8 is a graph in which the relationship between the measurement distance x and the unevenness height integrated value y is plotted in an xy orthogonal coordinate system with respect to the uneven height of the antiglare film of the base material with the antiglare film of Example 3. 図9は、例5の防眩膜付き基材の防眩膜の凹凸高さについて、測定距離xと凹凸高さzの関係をx-y直交座標系にプロットしたグラフである。FIG. 9 is a graph in which the relationship between the measurement distance x and the uneven height z is plotted in an xy orthogonal coordinate system with respect to the uneven height of the antiglare film of the base material with the antiglare film of Example 5. 図10は、例5の防眩膜付き基材の防眩膜の凹凸高さについて、測定距離xと凹凸高さ積算値yの関係をx-y直交座標系にプロットしたグラフである。FIG. 10 is a graph in which the relationship between the measurement distance x and the unevenness height integrated value y is plotted in an xy orthogonal coordinate system with respect to the uneven height of the antiglare film of the base material with the antiglare film of Example 5. 図11は、例3の防眩膜付き基材を上面方向から観察した写真である。FIG. 11 is a photograph of the base material with an antiglare film of Example 3 observed from above. 図12は、例4の防眩膜付き基材を上面方向から観察した写真である。FIG. 12 is a photograph of the base material with an antiglare film of Example 4 observed from above. 図13は、例5の防眩膜付き基材を上面方向から観察した写真である。FIG. 13 is a photograph of the base material with an antiglare film of Example 5 observed from above. 図14は、例6の防眩膜付き基材を上面方向から観察した写真である。FIG. 14 is a photograph of the base material with an antiglare film of Example 6 observed from above.
 以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。 The definitions of the following terms apply throughout the specification and claims.
 「透光性」とは、可視光を透過可能であることを意味する。 "Translucency" means that visible light can be transmitted.
 「シリカを主成分とする」とは、SiOを90質量%以上含むことを意味する。 "The main component is silica" means that the SiO 2 is contained in an amount of 90% by mass or more.
 「シリカ前駆体」とは、焼成することによってシリカを主成分とするマトリックスを形成し得る物質を意味する。 "Silica precursor" means a substance that can form a matrix containing silica as a main component by firing.
 「ケイ素原子に結合した加水分解性基」とは、加水分解によって、ケイ素原子に結合したOH基に変換し得る基を意味する。 The "hydrolyzable group bonded to a silicon atom" means a group that can be converted into an OH group bonded to a silicon atom by hydrolysis.
 「鱗片状粒子」とは、扁平な形状を有する粒子を意味する。粒子の形状は、透過型電子顕微鏡(以下、TEMとも記す。)を用いて確認できる。 "Scale particles" means particles having a flat shape. The shape of the particles can be confirmed using a transmission electron microscope (hereinafter, also referred to as TEM).
 「平均粒子径」は、体積基準で求めた粒度分布の全体積を100%とした累積体積分布曲線において50%となる点の粒子径、すなわち体積基準累積50%径(D50)を意味する。粒度分布は、レーザ回折/散乱式粒子径分布測定装置で測定した頻度分布および累積体積分布曲線で求められる。 The "average particle size" means the particle size at a point that becomes 50% in the cumulative volume distribution curve with the total volume of the particle size distribution obtained on a volume basis as 100%, that is, the volume-based cumulative 50% diameter (D50). The particle size distribution is determined by the frequency distribution and the cumulative volume distribution curve measured by the laser diffraction / scattering type particle size distribution measuring device.
 「アスペクト比」は、粒子の厚さに対する最長長さの比(最長長さ/厚さ)を意味し、「平均アスペクト比」は、無作為に選択された50個の粒子のアスペクト比の平均値である。粒子の厚さは、原子間力顕微鏡(以下、AFMとも記す。)によって測定され、最長長さは、TEMによって測定される。 "Aspect ratio" means the ratio of the longest length to the thickness of the particles (maximum length / thickness), and "average aspect ratio" is the average of the aspect ratios of 50 randomly selected particles. The value. The thickness of the particles is measured by an atomic force microscope (hereinafter, also referred to as AFM), and the longest length is measured by TEM.
 本明細書において数値範囲を示す「~」とは、その前後に記載された数値を下限値および上限値として含む意味で使用され、特段の定めがない限り、以下本明細書において「~」は、同様の意味をもって使用される。 In the present specification, "-" indicating a numerical range is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value, and unless otherwise specified, "-" in the present specification is hereinafter referred to as "-". , Used with the same meaning.
<防眩膜付き基材>
 図1は、本発明の一実施形態に係る防眩膜付き基材の一例を模式的に示す斜視図である。また、図2は、図1におけるA-A’線に沿って切断した断面図である。本実施形態に係る防眩膜付き基材1は、基材3と、基材3の第一の主面3Aの一部に形成された防眩膜5とを備え、当該主面3Aに防眩膜5が形成された防眩部50と、防眩膜5が形成されていない非防眩部30とを有する。
<Base material with anti-glare film>
FIG. 1 is a perspective view schematically showing an example of a base material with an antiglare film according to an embodiment of the present invention. Further, FIG. 2 is a cross-sectional view taken along the line AA'in FIG. The base material 1 with an antiglare film according to the present embodiment includes a base material 3 and an antiglare film 5 formed on a part of the first main surface 3A of the base material 3, and is protected against the main surface 3A. It has an antiglare portion 50 in which the glare film 5 is formed, and a non-glare portion 30 in which the antiglare film 5 is not formed.
 防眩膜付き基材1が防眩膜5を有する面を防眩膜付き基材1の上面とすると、防眩部50は、防眩膜付き基材1の上面視において基材3上に防眩膜5が形成されている領域である。また、非防眩部30は、防眩膜付き基材1の上面視において基材3上に防眩膜5が形成されていない領域である。非防眩部30は、例えば、防眩膜5を形成する際に基材3上の一部をマスキング材で覆うことで形成することができる。 Assuming that the surface of the base material 1 with an antiglare film having the antiglare film 5 is the upper surface of the base material 1 with the antiglare film, the antiglare portion 50 is on the base material 3 in the top view of the base material 1 with the antiglare film. This is the region where the antiglare film 5 is formed. Further, the non-glare portion 30 is a region in which the antiglare film 5 is not formed on the base material 3 in the top view of the base material 1 with the antiglare film. The non-glare portion 30 can be formed, for example, by covering a part of the base material 3 with a masking material when forming the antiglare film 5.
 防眩膜5は、非防眩部30側の端部に接続領域40を備える。防眩部50の表面と、非防眩部30の表面とは、防眩部50の端部に位置する接続領域40を介して接続されている。防眩部50と非防眩部30とが隣接する領域とは、接続領域40を含む、防眩部50と非防眩部30の境界近傍のことをいう。 The antiglare film 5 includes a connection region 40 at the end on the non-glare portion 30 side. The surface of the antiglare portion 50 and the surface of the non-glare portion 30 are connected via a connection region 40 located at the end of the antiglare portion 50. The region where the antiglare portion 50 and the non-glare portion 30 are adjacent to each other means the vicinity of the boundary between the antiglare portion 50 and the non-glare portion 30 including the connection region 40.
 本発明の一実施形態の防眩膜付き基材は、防眩部と非防眩部とが隣接する領域において、下記測定方法による防眩膜5の凹凸高さ測定結果から、下記(式1)を用いて求められる値Pの平均値が-20μm以上である。かかる特性は、防眩部の非防眩部との境界付近において、防眩膜が基材上に略均一に形成され、かつ、防眩部と非防眩部の境界が鮮明であることを意味する。 The base material with an antiglare film according to the embodiment of the present invention has the following (Equation 1) based on the results of measuring the unevenness height of the antiglare film 5 by the following measurement method in the region where the antiglare portion and the non-glare portion are adjacent to each other. ), The average value of the value P is −20 μm or more. Such a characteristic is that the antiglare film is formed substantially uniformly on the base material in the vicinity of the boundary between the antiglare portion and the non-glare portion, and the boundary between the antiglare portion and the non-glare portion is clear. means.
 なお、防眩膜5は表面に凹凸形状を有し、局所的に凹凸高さが大きい部分と小さい部分とを含む。そのため、防眩膜をミクロ的に捉えると、その凹凸高さは一定ではない。したがって、凹凸高さの測定値のみをもって、接続領域近傍の防眩膜の形状や凹凸高さについて、マクロ的に判断することは難しい。そこで本発明では、非防眩部から防眩部にかけての接続領域を通過するように防眩膜の凹凸高さを測定し、その測定距離xと凹凸高さの積算値yとの関係から、値Pを算出することによって、接続領域近傍の形状や凹凸高さについて解析を行うこととした。 The antiglare film 5 has an uneven shape on the surface, and includes a portion where the uneven height is locally large and a portion where the uneven height is locally small. Therefore, when the antiglare film is grasped microscopically, the height of the unevenness is not constant. Therefore, it is difficult to make a macroscopic judgment on the shape of the antiglare film near the connection region and the height of the unevenness based only on the measured value of the height of the unevenness. Therefore, in the present invention, the uneven height of the antiglare film is measured so as to pass through the connection region from the non-glare portion to the antiglare portion, and the relationship between the measured distance x and the integrated value y of the uneven height is used. By calculating the value P, it was decided to analyze the shape and uneven height near the connection region.
 図3は、防眩膜5の凹凸高さ(膜厚)測定の方法について示す模式図である。防眩膜5の凹凸高さは、防眩部50と非防眩部30とが隣接する領域において、非防眩部30上の測定開始位置から防眩部50にかけて測定される。「非防眩部30上の測定開始位置から防眩部50にかけて測定」とは、非防眩部30上の測定開始位置から防眩部50上まで、接続領域40を通過して凹凸高さ測定を行うことを意味する。また、凹凸高さは非防眩部上の測定開始位置から防眩部にかけて0.333μm毎に測定する。 FIG. 3 is a schematic diagram showing a method of measuring the uneven height (film thickness) of the antiglare film 5. The uneven height of the antiglare film 5 is measured from the measurement start position on the non-glare portion 30 to the antiglare portion 50 in the region where the antiglare portion 50 and the non-glare portion 30 are adjacent to each other. "Measurement from the measurement start position on the non-glare portion 30 to the anti-glare portion 50" means that the height of the unevenness passes through the connection region 40 from the measurement start position on the non-glare portion 30 to the top of the anti-glare portion 50. Means to make a measurement. The height of the unevenness is measured every 0.333 μm from the measurement start position on the non-glare portion to the anti-glare portion.
 ここで、測定方向Xは、防眩部50と非防眩部30との境界線に対し垂直であって、非防眩部30から防眩部50に向かう方向である。なお、境界線が曲線部分を有する場合には、測定方向Xは、境界線の接線に対し垂直であればよい。例えば、図3では非防眩部が円形であるため、測定方向Xは境界線の接線Tに対し垂直方向である。 Here, the measurement direction X is perpendicular to the boundary line between the antiglare portion 50 and the non-glare portion 30, and is a direction from the non-glare portion 30 toward the antiglare portion 50. When the boundary line has a curved portion, the measurement direction X may be perpendicular to the tangent line of the boundary line. For example, in FIG. 3, since the non-glare portion is circular, the measurement direction X is perpendicular to the tangent line T of the boundary line.
 凹凸高さ測定は、触針式プロファイリングシステム(BRUKER社製、Dektak(登録商標)XT)を用いて、例えば実施例に記載の条件で行うことができる。 The unevenness height can be measured by using a stylus type profiling system (Dectak (registered trademark) XT manufactured by BRUKER), for example, under the conditions described in Examples.
 測定の際、非防眩部の凹凸のない平坦な領域において2点を選んで平坦化処理をする。平坦化処理に用いる2点間の距離は100μm以上が好ましく、できるだけ広いほうが好ましい。 At the time of measurement, two points are selected and flattened in a flat area with no unevenness in the non-glare part. The distance between the two points used in the flattening treatment is preferably 100 μm or more, and preferably as wide as possible.
 上記測定方法による防眩膜の凹凸高さ測定結果から値Pを算出する方法は次の通りである。 The method for calculating the value P from the measurement result of the unevenness height of the antiglare film by the above measurement method is as follows.
 測定距離x:測定開始位置から測定方向への測定距離(μm)
 積算値y:防眩膜の凹凸高さの積算値(μm)
 として、図4に示すように、x-y座標平面に上記測定結果をプロットしたグラフを作成する。積算値y>5であって測定距離xが最小の点を防眩膜端部X1(x,y)とする。そして、測定距離x=(x+100)における積算値yを示す点をA(x,y)、測定距離x=(x+200)における積算値yを示す点をB(x,y)として、A-B間の回帰直線を引く。前記回帰直線のx切片をX2(x,0)とする。
 x-x=P  ・・・(式1)
 として値P(μm)を求める。
Measurement distance x: Measurement distance (μm) from the measurement start position to the measurement direction
Integrated value y: Integrated value (μm) of the uneven height of the antiglare film
As shown in FIG. 4, a graph in which the above measurement results are plotted on the xy coordinate plane is created. Integrated value y> a 5 measured distance x is the minimum point of the anti-glare film end X1 (x 1, y 1) . The measured distance x a = a point indicating the integrated value y a in (x 1 +100) A (x a, y a), the measured distance x b = (x a +200) B a point indicating the integrated value y b in As (x b , y b ), draw a regression line between AB. The x-intercept of the regression line and X2 (x 2, 0).
x 1- x 2 = P ... (Equation 1)
The value P (μm) is obtained as.
 ここで、Xの測定間隔が0.333μmなので、x=(x+100)、x=(x+200)の値は必ずしも測定点の値と一致しない。そこで、x+100に最も近い測定点をxとし、x+200に最も近い測定点をxとして測定するものとする。 Here, since the measurement interval of X is 0.333 μm, the values of x a = (x 1 +100) and x b = (x a +200) do not always match the values of the measurement points. Therefore, it is assumed that the measurement point closest to x 1 + 100 is x a and the measurement point closest to x a + 200 is x b .
 ここで、積算値yは測定距離xの増加に伴って単調増加するから、「積算値y>5であって測定距離xが最小の点」とは、測定距離xが増加するとき、積算値yが最初に5より大きくなる点として言い換えられる。本実施形態においては、測定距離xの増加に伴って積算値yが最初に5より大きくなる位置(測定距離x=x)を防眩膜5の端部、または接続領域40近傍とみなし、グラフ上においては、測定距離x=xにおける積算値yを示す点を防眩膜端部X1(x,y)と称する。 Here, since the integrated value y increases monotonically as the measurement distance x increases, the “point where the integrated value y> 5 and the measurement distance x is the smallest” means the integrated value when the measurement distance x increases. Paraphrased as the point where y is initially greater than 5. In the present embodiment, the position where the integrated value y first becomes larger than 5 as the measurement distance x increases (measurement distance x = x 1 ) is regarded as the end of the antiglare film 5 or the vicinity of the connection region 40. On the graph, the point showing the integrated value y 1 at the measurement distance x = x 1 is referred to as the antiglare film end portion X1 (x 1 , y 1 ).
 また、「A-B間の回帰直線」とは、A-B間に存在する測定結果のプロットについて、最小二乗法を用いて求められる回帰直線のことである。 The "regression line between AB" is a regression line obtained by using the least squares method for the plot of the measurement results existing between AB.
 値Pは、理想的に防眩膜の端面が急峻であり、凹凸高さがその後一定と仮定した場合には0μm以上となり、急峻であるほど値Pは大きくなり、逆に、防眩膜の端面がなだらかであるほど値Pは小さくなる。値Pの平均値は-20μm以上であり、好ましくは0μm以上であり、より好ましくは10μm以上であり、さらに好ましくは20μm以上である。図4は、値Pの平均値が-20μm以上である場合、図5は、-20μm未満である場合を示す。 Ideally, the value P is 0 μm or more assuming that the end face of the antiglare film is steep and the uneven height is constant thereafter, and the steeper the value P becomes, and conversely, the antiglare film has a value P. The gentler the end face, the smaller the value P. The average value of the value P is −20 μm or more, preferably 0 μm or more, more preferably 10 μm or more, and further preferably 20 μm or more. FIG. 4 shows the case where the average value of the values P is -20 μm or more, and FIG. 5 shows the case where the average value is less than -20 μm.
 ここで、値Pの平均値とは、1つの防眩膜付き基材について防眩膜端面部分での凹凸高さ測定を複数回行い、各回について算出した全ての値Pの平均値のことをいう。1つの防眩膜付き基材について、防眩膜の凹凸高さ測定および値Pの算出は、値のばらつきの観点から、3回以上行うことが好ましい。 Here, the average value of the value P is the average value of all the values P calculated each time by measuring the unevenness height at the end face portion of the antiglare film multiple times for one substrate with the antiglare film. Say. For one substrate with an antiglare film, it is preferable to measure the unevenness height of the antiglare film and calculate the value P three times or more from the viewpoint of variation in the value.
 値Pが上記範囲内であることで、防眩部50の非防眩部30との境界付近において、防眩膜5が基材3の主面に略均一に形成され、かつ、防眩部50と非防眩部30の境界が鮮明な防眩膜付き基材1が得られる。「防眩膜5が基材3上に略均一に形成され」ているとは、接続領域40が非防眩部30の基材3表面に対して形成する傾斜が急峻であり、かつ、防眩膜5の接続領域40近傍の凹凸高さが防眩膜5の他の部分の凹凸高さと同程度であることをいう。このような防眩部50と非防眩部30との境界は、見栄えがよく鮮明なものとなる。
 なお、値Pの最大値は0μm以上、最小値は-70μm以上であることが好ましい。
When the value P is within the above range, the antiglare film 5 is formed substantially uniformly on the main surface of the base material 3 in the vicinity of the boundary between the antiglare portion 50 and the non-glare portion 30, and the antiglare portion is formed. A base material 1 with an antiglare film having a clear boundary between the 50 and the non-glare portion 30 can be obtained. "The antiglare film 5 is formed substantially uniformly on the base material 3" means that the connection region 40 has a steep slope formed with respect to the surface of the base material 3 of the non-glare portion 30, and is anti-glare. It means that the unevenness height in the vicinity of the connection region 40 of the glare film 5 is about the same as the unevenness height of other parts of the antiglare film 5. The boundary between the antiglare portion 50 and the non-glare portion 30 looks good and is clear.
The maximum value of the value P is preferably 0 μm or more, and the minimum value is preferably −70 μm or more.
 例えば、防眩膜の形成時、マスキング材近傍に塗布液が過剰に堆積した場合、防眩膜の接続領域近傍における凹凸高さは過剰に大きくなりやすい。また、凹凸高さが過剰に大きい部分は白く曇ったように見えることがあり、接続領域の見栄えを損なう場合がある。 For example, when the coating liquid is excessively deposited in the vicinity of the masking material when the antiglare film is formed, the uneven height in the vicinity of the connection region of the antiglare film tends to be excessively large. In addition, a portion having an excessively large uneven height may appear white and cloudy, which may impair the appearance of the connection area.
 また、防眩膜5の形成時、マスキング材近傍に塗布液の未塗布部分や塗布量が少ない部分が生じた場合、接続領域40が非防眩部30の基材3表面に対して形成する傾斜が緩やかになりやすい。接続領域40の傾斜が緩やかであると、防眩膜5は非防眩部側の端部に近づくにつれて凹凸高さが小さくなるため、防眩部50と非防眩部30との境界が不鮮明になりやすい。また、緩やかな傾斜部分が、防眩膜5の端部において他の部分よりも凹凸高さが小さい領域を形成するため、その周囲の、相対的に凹凸高さが大きい部分が、凹凸差により白く曇ったように見える場合がある。このため、防眩部50と非防眩部30の境界部分の見栄えを損なう場合がある。 Further, when the antiglare film 5 is formed, if an unapplied portion of the coating liquid or a portion having a small coating amount is generated in the vicinity of the masking material, the connection region 40 is formed on the surface of the base material 3 of the non-glare portion 30. The slope tends to be gentle. When the inclination of the connection region 40 is gentle, the height of the unevenness of the antiglare film 5 becomes smaller as it approaches the end on the non-glare portion side, so that the boundary between the antiglare portion 50 and the non-glare portion 30 is unclear. It is easy to become. Further, since the gently inclined portion forms a region at the end portion of the antiglare film 5 where the unevenness height is smaller than the other portions, the portion around the gently inclined portion having a relatively large unevenness height is due to the unevenness difference. It may appear cloudy white. Therefore, the appearance of the boundary portion between the antiglare portion 50 and the non-glare portion 30 may be impaired.
 また、防眩膜5の厚さが不均一であると、防眩膜付き基材1の、防眩性能等の品質にばらつきが生じることがある。 Further, if the thickness of the antiglare film 5 is not uniform, the quality of the base material 1 with the antiglare film, such as antiglare performance, may vary.
(基材)
 基材としては、可視光を透過可能なものであればよく、透明であるものが好ましい。基材における透明とは、400~1100nmの波長領域の光を平均して80%以上透過すること、すなわち、400~1100nmの波長領域の光の平均透過率が80%以上であることを意味する。400~1100nmの波長領域の光の平均透過率は、積分球を用いて測定される値である。
(Base material)
The base material may be any as long as it can transmit visible light, and a transparent material is preferable. Transparency in a substrate means that light in the wavelength region of 400 to 1100 nm is transmitted by 80% or more on average, that is, light having an average transmittance of 80% or more in the wavelength region of 400 to 1100 nm is transmitted. .. The average transmittance of light in the wavelength region of 400 to 1100 nm is a value measured using an integrating sphere.
 基材の材料としては、たとえばガラス、及び樹脂等が挙げられる。 Examples of the material of the base material include glass and resin.
 ガラスとしては、たとえばソーダライムガラス、ホウケイ酸ガラス、アルミノシリケートガラス、及び無アルカリガラス等が挙げられる。
 樹脂としては、たとえばポリエチレンテレフタレート、ポリカーボネート、トリアセチルセルロース、及びポリメタクリル酸メチル等が挙げられる。
Examples of the glass include soda lime glass, borosilicate glass, aluminosilicate glass, non-alkali glass and the like.
Examples of the resin include polyethylene terephthalate, polycarbonate, triacetyl cellulose, polymethyl methacrylate and the like.
 基材の形態としては、たとえば板、及びフィルム等が挙げられる。 Examples of the form of the base material include a plate and a film.
 基材において、防眩膜が形成される第一の主面3Aは、平滑であってもよく、凹凸を有してもよい。防眩膜を設けることの有用性の点では、平滑であることが好ましい。第一の主面3Aの算術平均粗さRaは、10nm以下が好ましく、5nm以下がより好ましく、2nm以下がさらに好ましく、1nm以下が特に好ましい。ここで言うRaは、原子間力顕微鏡(AFM)モードで測定した値である。 In the base material, the first main surface 3A on which the antiglare film is formed may be smooth or may have irregularities. Smoothness is preferable in terms of the usefulness of providing the antiglare film. The arithmetic average roughness Ra of the first main surface 3A is preferably 10 nm or less, more preferably 5 nm or less, further preferably 2 nm or less, and particularly preferably 1 nm or less. Ra referred to here is a value measured in the atomic force microscope (AFM) mode.
 基材3の形状は、図1等で図示するような平坦な形状のみでなく、曲面を有する形状であってもよい。最近では、画像表示装置を備える各種機器(テレビ、パーソナルコンピュータ、スマートフォン、及びカーナビゲーション等)において、画像表示装置の表示面が曲面とされたものが登場している。基材3が曲面を有する形状である防眩膜付き基材1は、このような画像表示装置用として有用である。 The shape of the base material 3 may be not only a flat shape as shown in FIG. 1 or the like but also a shape having a curved surface. Recently, in various devices (televisions, personal computers, smartphones, car navigation systems, etc.) equipped with an image display device, those having a curved display surface of the image display device have appeared. The base material 1 with an antiglare film, in which the base material 3 has a curved surface, is useful for such an image display device.
 基材3が曲面を有する場合、基材3の表面は、全体が曲面で構成されてもよく、曲面である部分と平坦である部分とから構成されてもよい。表面全体が曲面で構成される場合の例として、たとえば、1つの直線を軸にして一定の曲率半径を有するように基材3を曲げる場合や複数の直線を軸にして一定の曲率半径を有するように基材3を曲げる場合、また軸となる直線の数に関係なく、曲率半径が変化するといった複雑な曲げ形状を有する場合も含まれる。 When the base material 3 has a curved surface, the surface of the base material 3 may be entirely composed of a curved surface, or may be composed of a curved surface portion and a flat portion. As an example of the case where the entire surface is composed of a curved surface, for example, the base material 3 is bent so as to have a constant radius of curvature with one straight line as an axis, or the base material 3 has a constant radius of curvature with a plurality of straight lines as axes. The case where the base material 3 is bent as described above, and the case where the base material 3 has a complicated bending shape such that the radius of curvature changes regardless of the number of straight lines as axes are also included.
 なお、ここでの曲面は、レーザ顕微鏡で観察される観察領域では無視できる程度のマクロ的な曲面である。 The curved surface here is a macroscopic curved surface that can be ignored in the observation area observed with a laser microscope.
 基材3が曲面を有する場合、該曲面の曲率半径(以下、「R」ともいう。)は、防眩膜付き基材1の用途、基材3の種類等に応じて適宜設定でき、特に限定されないが、25000mm以下が好ましく、10~5000mmがより好ましく、50~3000mmが特に好ましい。Rが前記の上限値以下であれば、平板に比較し、意匠性に優れる。Rが前記の下限値以上であれば、曲面表面へも均一に防眩膜を形成できる。 When the base material 3 has a curved surface, the radius of curvature of the curved surface (hereinafter, also referred to as “R”) can be appropriately set according to the application of the base material 1 with an antiglare film, the type of the base material 3, and the like, and in particular. Although not limited, it is preferably 25,000 mm or less, more preferably 10 to 5000 mm, and particularly preferably 50 to 3000 mm. When R is not more than the above upper limit value, it is superior in designability as compared with a flat plate. When R is equal to or higher than the above lower limit value, an antiglare film can be uniformly formed even on a curved surface.
 基材3としては、ガラス板が好ましい。 As the base material 3, a glass plate is preferable.
 ガラス板は、フロート法、フュージョン法、及びダウンドロー法等により成形された平滑なガラス板であってもよく、ロールアウト法等で形成された表面に凹凸を有する型板ガラスであってもよい。また、平坦な形状のガラス板のみでなく、曲面を有する形状のガラス板でもよい。ガラス板が曲面を有する場合、該曲面の好ましい曲率半径は、前記と同様である。 The glass plate may be a smooth glass plate formed by a float method, a fusion method, a down draw method, or the like, or may be a template glass having an uneven surface formed by a rollout method or the like. Further, not only a glass plate having a flat shape but also a glass plate having a curved surface may be used. When the glass plate has a curved surface, the preferred radius of curvature of the curved surface is the same as described above.
 ガラス板の厚みは特に限定されない。たとえば、厚み10mm以下のガラス板を使用することができる。厚みが薄いほど光の吸収を低く抑えられるため、透過率向上を目的とする用途にとって好ましい。また、厚みが薄いほど防眩膜付き基材1の軽量化に寄与する。 The thickness of the glass plate is not particularly limited. For example, a glass plate having a thickness of 10 mm or less can be used. The thinner the thickness, the lower the absorption of light, which is preferable for applications aimed at improving the transmittance. Further, the thinner the thickness, the more the weight of the base material 1 with the antiglare film is reduced.
 ガラス板は、強化ガラス板であることが好ましい。強化ガラス板は、強化処理が施されたガラス板である。強化処理により、ガラスの強度が向上し、たとえば強度を維持しながら板厚みを削減することが可能となる。 The glass plate is preferably a tempered glass plate. The tempered glass plate is a glass plate that has been subjected to a tempering treatment. The strengthening treatment improves the strength of the glass, and makes it possible to reduce the plate thickness while maintaining the strength, for example.
 ただし、本発明においては、強化ガラス板以外のガラス板も使用でき、防眩膜付き基材1の用途等に応じて適宜設定できる。 However, in the present invention, a glass plate other than the tempered glass plate can be used, and can be appropriately set according to the application of the base material 1 with the antiglare film.
 強化処理としては、ガラス板表面に圧縮応力層を形成させる処理が一般的に知られている。ガラス板表面の圧縮応力層が、傷や衝撃に対するガラス板の強度を向上させる。ガラス板表面に圧縮応力層を形成させる手法としては、風冷強化法(物理強化法)と、化学強化法とが代表的である。 As a strengthening treatment, a treatment for forming a compressive stress layer on the surface of a glass plate is generally known. The compressive stress layer on the surface of the glass plate improves the strength of the glass plate against scratches and impacts. As a method for forming a compressive stress layer on the surface of a glass plate, a wind cooling strengthening method (physical strengthening method) and a chemical strengthening method are typical.
 風冷強化法では、ガラスの軟化点温度付近(例えば600~700℃)まで加熱したガラス板表面を風冷等により急冷する。これにより、ガラス板の表面と内部との間に温度差が生じ、ガラス板表層に圧縮応力が生じる。 In the air cooling strengthening method, the surface of the glass plate heated to near the softening point temperature of the glass (for example, 600 to 700 ° C.) is rapidly cooled by air cooling or the like. As a result, a temperature difference is generated between the surface and the inside of the glass plate, and compressive stress is generated on the surface layer of the glass plate.
 化学強化法では、ガラスの歪点温度以下の温度でガラス板を溶融塩に浸漬して、ガラス板表層のイオン(例えばナトリウムイオン)を、より大きなイオン半径のイオン(例えばカリウムイオン)へと交換する。これにより、ガラス板表層に圧縮応力が生じる。 In the chemical strengthening method, a glass plate is immersed in a molten salt at a temperature below the strain point temperature of the glass, and ions on the surface layer of the glass plate (for example, sodium ions) are exchanged for ions having a larger ionic radius (for example, potassium ions). do. As a result, compressive stress is generated on the surface layer of the glass plate.
 ガラス板の厚みが薄く(たとえば2mm未満)なると、風冷強化法では、ガラス板内部と表層との間に温度差が生じにくいことから、ガラス板を充分に強化することができないため、化学強化法が好ましく用いられる。 When the thickness of the glass plate becomes thin (for example, less than 2 mm), the air-cooled strengthening method does not easily cause a temperature difference between the inside of the glass plate and the surface layer, so that the glass plate cannot be sufficiently strengthened and is chemically strengthened. The method is preferably used.
 化学強化処理が施されるガラス板は、化学強化可能な組成を有するものである限り特に限定されず、種々の組成のものを使用することができる。例えばソーダライムガラス、アルミノシリケートガラス、ボレートガラス、リチウムアルミノシリケートガラス、ホウ珪酸ガラス、その他の各種ガラスが挙げられる。化学強化しやすい点では、ガラス組成として、酸化物基準のモル百分率表示で、SiOを56~75%、Alを1~20%、NaOを8~22%、KOを0~10%、MgOを0~14%、ZrOを0~5%、CaOを0~10%含有することが好ましい。これらの中では、アルミノシリケートガラスが好ましい。 The glass plate to be chemically strengthened is not particularly limited as long as it has a composition that can be chemically strengthened, and various compositions can be used. Examples thereof include soda lime glass, aluminosilicate glass, borate glass, lithium aluminosilicate glass, borosilicate glass, and various other glasses. In terms of easy chemical strengthening, the glass composition is expressed as an oxide-based molar percentage, SiO 2 is 56 to 75%, Al 2 O 3 is 1 to 20%, Na 2 O is 8 to 22%, and K 2 O. 0-10% of MgO 0 ~ 14% of ZrO 2 0 ~ 5% is preferably a CaO containing 0-10%. Of these, aluminosilicate glass is preferred.
 化学強化処理が施されるガラス板の板厚みは、0.4~3mmが好ましく、0.5~2.5mmが特に好ましい。化学強化ガラス板の板厚みが前記範囲の上限値以下であれば、防眩膜付き基材1が軽量で、前記範囲の下限値以上であれば、防眩膜付き基材1が強度に優れる。 The thickness of the glass plate to which the chemical strengthening treatment is applied is preferably 0.4 to 3 mm, particularly preferably 0.5 to 2.5 mm. If the thickness of the chemically strengthened glass plate is not less than the upper limit of the above range, the base material 1 with the antiglare film is lightweight, and if it is more than the lower limit of the above range, the base material 1 with the antiglare film is excellent in strength. ..
 尚、化学強化される前後で板厚みに変化は無い。すなわち、化学強化処理が施されるガラス板の板厚みは、化学強化ガラス板(すなわち、化学強化処理が施された後のガラス板)の板厚みである。 There is no change in the plate thickness before and after the chemical strengthening. That is, the plate thickness of the glass plate subjected to the chemical strengthening treatment is the plate thickness of the chemically strengthened glass plate (that is, the glass plate after the chemical strengthening treatment).
 以上のガラスの物理強化処理及び化学強化処理は、ガラス板表面に防眩膜を形成する前に行ってもよく、形成した後に行ってもよい。 The above physical strengthening treatment and chemical strengthening treatment of the glass may be performed before the antiglare film is formed on the surface of the glass plate, or may be performed after the antiglare film is formed.
 基材3は、基材本体の表面に機能層を有するものであってもよい。
 基材本体は、前記で基材3として挙げたものと同様である。
The base material 3 may have a functional layer on the surface of the base material body.
The base material body is the same as that mentioned above as the base material 3.
 機能層としては、アンダーコート層、密着改善層、及び保護層等が挙げられる。
 アンダーコート層は、アルカリバリア層やワイドバンドの低屈折率層としての機能を有する。アンダーコート層としては、アルコキシシランの加水分解物(ゾルゲルシリカ)を含むアンダーコート用塗料組成物を基材本体に塗布することによって形成される層が好ましい。
Examples of the functional layer include an undercoat layer, an adhesion improving layer, a protective layer and the like.
The undercoat layer has a function as an alkaline barrier layer or a wide band low refractive index layer. As the undercoat layer, a layer formed by applying an undercoat coating composition containing a hydrolyzate of alkoxysilane (sol-gel silica) to the main body of the substrate is preferable.
(防眩膜)
 防眩膜とは表面反射を抑制するための膜である。例えば、液晶ディスプレイ(LCD)、及びプラズマディスプレイ(PDP)等の各種画像表示装置においては、室内照明(蛍光灯等)、太陽光等の外光が表示面に映り込むと、反射像によって視認性が低下する。反射像による視認性の低下を抑制する方法としては、表示面上にアンチグレア層(以下、AG層とも記す。)を形成して外光を乱反射させる、いわゆるアンチグレア処理がある。
(Anti-glare film)
The antiglare film is a film for suppressing surface reflection. For example, in various image display devices such as liquid crystal displays (LCDs) and plasma displays (PDPs), when external light such as indoor lighting (fluorescent lamps) and sunlight is reflected on the display surface, visibility is achieved by the reflected image. Decreases. As a method of suppressing the deterioration of visibility due to the reflected image, there is a so-called anti-glare treatment in which an anti-glare layer (hereinafter, also referred to as an AG layer) is formed on the display surface to diffusely reflect external light.
 防眩膜は、防眩効果が得られる程度の凹凸を表面に有していればよく、凹凸の形状は特に限定されない。例えば、防眩膜の表面の算術平均粗さRaは、0.05μm以上が好ましく、0.10~0.70μmがより好ましく、0.15~0.50μmがさらに好ましい。 The antiglare film may have irregularities on the surface to the extent that an antiglare effect can be obtained, and the shape of the irregularities is not particularly limited. For example, the arithmetic average roughness Ra of the surface of the antiglare film is preferably 0.05 μm or more, more preferably 0.10 to 0.70 μm, and even more preferably 0.15 to 0.50 μm.
防眩膜の表面の算術平均粗さRaが0.05μm以上であれば、防眩効果が充分に発揮される。防眩膜の表面の算術平均粗さRaが前記範囲の上限値0.70μm以下であれば、画像のコントラストの低下が充分に抑えられる。なお凹凸形状パラメータは表面粗さ測定装置(サーフコム1500-DX)にて測定した。 When the arithmetic average roughness Ra of the surface of the antiglare film is 0.05 μm or more, the antiglare effect is sufficiently exhibited. When the arithmetic average roughness Ra of the surface of the antiglare film is 0.70 μm or less, which is the upper limit of the above range, the decrease in contrast of the image is sufficiently suppressed. The uneven shape parameter was measured with a surface roughness measuring device (Surfcom 1500-DX).
 防眩膜の表面の最大高さ粗さRzは、0.1~5.0μmが好ましく、0.2~4.5μmがより好ましく、0.3~4.0μmがさらに好ましい。防眩膜の表面の最大高さ粗さRzが前記範囲の下限値以上であれば、防眩効果が充分に発揮される。防眩膜の表面の最大高さ粗さRzが前記範囲の上限値以下であれば、画像のコントラストの低下が充分に抑えられる。 The maximum height roughness Rz of the surface of the antiglare film is preferably 0.1 to 5.0 μm, more preferably 0.2 to 4.5 μm, and even more preferably 0.3 to 4.0 μm. When the maximum height roughness Rz of the surface of the antiglare film is equal to or more than the lower limit of the above range, the antiglare effect is sufficiently exhibited. When the maximum height roughness Rz of the surface of the antiglare film is equal to or less than the upper limit of the above range, the decrease in contrast of the image is sufficiently suppressed.
 防眩膜5の屈折率は、1.36~1.51が好ましく、1.40~1.49がより好ましく、1.43~1.46が特に好ましい。防眩膜5の屈折率が前記範囲の上限値以下であれば、防眩膜5の表面での外光の反射率が低くなり、防眩効果がより優れる。防眩膜5の屈折率が前記範囲の下限値以上であれば、防眩膜5の緻密性が充分に高く、ガラス板等の基材3との密着性に優れる。 The refractive index of the antiglare film 5 is preferably 1.36 to 1.51, more preferably 1.40 to 1.49, and particularly preferably 1.43 to 1.46. When the refractive index of the antiglare film 5 is not more than the upper limit of the above range, the reflectance of external light on the surface of the antiglare film 5 is low, and the antiglare effect is more excellent. When the refractive index of the antiglare film 5 is at least the lower limit of the above range, the antiglare film 5 has sufficiently high density and excellent adhesion to the base material 3 such as a glass plate.
 防眩膜5の屈折率は、防眩膜5のマトリックスの材質、防眩膜5の空隙率、マトリックス中への任意の屈折率を有する物質の添加等によって調整できる。たとえば、防眩膜5の空隙率を高くすることにより屈折率を低くすることができる。また、マトリックス中に屈折率の低い物質(中実シリカ粒子、及び中空シリカ粒子等)を添加することで、防眩膜5の屈折率を低くすることができる。 The refractive index of the antiglare film 5 can be adjusted by the material of the matrix of the antiglare film 5, the void ratio of the antiglare film 5, the addition of a substance having an arbitrary refractive index to the matrix, and the like. For example, the refractive index can be lowered by increasing the porosity of the antiglare film 5. Further, by adding a substance having a low refractive index (solid silica particles, hollow silica particles, etc.) to the matrix, the refractive index of the antiglare film 5 can be lowered.
 防眩膜5の材質は、屈折率等を考慮して適宜設定できる。防眩膜5の屈折率が1.36~1.51である場合の防眩膜5の材質としては、シリカ等が挙げられる。 The material of the antiglare film 5 can be appropriately set in consideration of the refractive index and the like. Examples of the material of the antiglare film 5 when the refractive index of the antiglare film 5 is 1.36 to 1.51 include silica and the like.
 防眩膜5は、シリカを含み、シリカを主成分とすることが好ましい。シリカを主成分とすれば、防眩膜5の屈折率(反射率)が低くなりやすい。また、防眩膜5の化学的安定性等も良好である。また、基材3の材質がガラスの場合、基材3との密着性が良好である。 The antiglare film 5 contains silica, and it is preferable that silica is the main component. If silica is the main component, the refractive index (reflectance) of the antiglare film 5 tends to be low. In addition, the chemical stability of the antiglare film 5 is also good. Further, when the material of the base material 3 is glass, the adhesion to the base material 3 is good.
 シリカを主成分とする場合、防眩膜5は、シリカのみから構成されてもよく、シリカ以外の成分を少量含んでもよい。該成分としては、Li,B,C,N,F,Na,Mg,Al,P,S,K,Ca,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Ga,Sr,Y,Zr,Nb,Ru,Pd,Ag,In,Sn,Hf,Ta,W,Pt,Au,Biおよびランタノイド元素より選ばれる1つもしくは複数のイオンおよび/または酸化物等の化合物が挙げられる。 When silica is the main component, the antiglare film 5 may be composed of only silica or may contain a small amount of components other than silica. The components include Li, B, C, N, F, Na, Mg, Al, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Sr. , Y, Zr, Nb, Ru, Pd, Ag, In, Sn, Hf, Ta, W, Pt, Au, Bi and compounds such as one or more ions and / or oxides selected from lanthanoid elements. Be done.
 防眩膜5としては、たとえば、シリカ前駆体(A)および粒子(C)の少なくとも一方と、液状媒体(B)とを含む塗料組成物から形成されたものが挙げられる。該塗料組成物は、必要に応じて、シリカ前駆体(A)以外の他のバインダ(D)、及び、その他の添加剤(E)等を含んでいてもよい。 Examples of the antiglare film 5 include those formed from a coating composition containing at least one of a silica precursor (A) and particles (C) and a liquid medium (B). The coating composition may contain other binders (D) other than the silica precursor (A), other additives (E), and the like, if necessary.
 塗料組成物がシリカ前駆体(A)を含む場合、防眩膜5のマトリックスは、シリカ前駆体(A)に由来する、シリカを主成分とするものである。防眩膜5は、粒子(C)から構成されてもよい。この場合、粒子(C)は、シリカ粒子が好ましい。防眩膜5は、前記マトリックス中に粒子(C)が分散したものであってもよい。
 該塗料組成物を用いた防眩膜5の形成方法については後で詳しく説明する。
When the coating composition contains the silica precursor (A), the matrix of the antiglare film 5 is derived from the silica precursor (A) and contains silica as a main component. The antiglare film 5 may be composed of particles (C). In this case, the particles (C) are preferably silica particles. The antiglare film 5 may be one in which particles (C) are dispersed in the matrix.
A method for forming the antiglare film 5 using the coating composition will be described in detail later.
 シリカを主成分とする防眩膜としては、前記シリカ前駆体(A)を含む塗布組成物から形成されるもの、前記粒子(C)としてシリカ粒子を含む塗布組成物から形成されるもの、前記シリカ前駆体(A)および前記粒子(C)としてシリカ粒子を含む塗布組成物から形成されるもの等が挙げられる。 Examples of the antiglare film containing silica as a main component include those formed from a coating composition containing the silica precursor (A), those formed from a coating composition containing silica particles as the particles (C), and the like. Examples of the silica precursor (A) and the particles (C) include those formed from a coating composition containing silica particles.
 防眩膜5の表面における60゜鏡面光沢度は、130%以下が好ましく、120%以下がより好ましく、110%以下がさらに好ましい。防眩膜5の表面における60゜鏡面光沢度は、防眩効果の指標である。60゜鏡面光沢度が前記の上限値以下であれば、防眩効果が充分に発揮される。 The 60 ° mirror gloss on the surface of the antiglare film 5 is preferably 130% or less, more preferably 120% or less, still more preferably 110% or less. The 60 ° mirror gloss on the surface of the antiglare film 5 is an index of the antiglare effect. When the 60 ° mirror surface gloss is not more than the above upper limit value, the antiglare effect is sufficiently exhibited.
 「60゜鏡面光沢度」は、JIS Z8741:1997(ISO2813:1994)に記載された方法によって、裏面(すなわち、防眩膜が形成された側とは反対側の面)反射を消さずに測定される。 "60 ° mirror gloss" is measured by the method described in JIS Z8741: 1997 (ISO 2813: 1994) without erasing the reflection on the back surface (that is, the surface opposite to the side on which the antiglare film is formed). Will be done.
 また、本発明の一実施形態の防眩膜付き基材1において、防眩部50のヘイズは、30%以下が好ましく、20%以下がより好ましく、10%以下が特に好ましい。ヘイズが前記範囲の上限値以下であれば、防眩部50と反対面からの光の透過性がより優れる。 Further, in the base material 1 with an antiglare film according to the embodiment of the present invention, the haze of the antiglare portion 50 is preferably 30% or less, more preferably 20% or less, and particularly preferably 10% or less. When the haze is equal to or less than the upper limit of the above range, the light transmission from the opposite surface to the antiglare portion 50 is more excellent.
 「ヘイズ」は、JIS K7136:2000(ISO14782:1999)に記載された方法によって測定される。 "Haze" is measured by the method described in JIS K7136: 2000 (ISO14782: 1999).
 防眩部50においては、株式会社アイ・システム製アイスケールISC-Aを用いて、アップルインコーポレイテッド社製iPhone(登録商標)4の上に、凹凸構造を有する表面(防眩膜5側の表面)が上になるように防眩膜付き基材1を置いて測定されるぎらつき(Sparkle)指標値Sが、100未満が好ましく、80未満がより好ましく、60未満が特に好ましい。ぎらつき指標値Sが小さいほど、ぎらつきが抑制されていることを示す。 In the antiglare section 50, an eye scale ISC-A manufactured by Eye System Co., Ltd. is used on a surface having an uneven structure (surface on the antiglare film 5 side) on an iPhone (registered trademark) 4 manufactured by Apple Incorporated. The Sparkle index value S measured by placing the substrate 1 with an antiglare film on top is preferably less than 100, more preferably less than 80, and particularly preferably less than 60. The smaller the glare index value S, the more the glare is suppressed.
<防眩膜付き基材の製造方法>
 本発明の一実施形態に係る防眩膜付き基材の製造方法は、
 基材と、前記基材の少なくとも一方の主面の一部に形成された防眩膜とを備える防眩膜付き基材の製造方法であって、
 シリカ前駆体(A)および粒子(C)の少なくとも一方と、液状媒体(B)とを含み、かつ前記液状媒体(B)が、沸点150℃以下の液状媒体(B1)を、前記液状媒体(B)の全量に対して86質量%以上含む塗料組成物を準備する工程(以下、塗料組成物調製工程ともいう。)と、
 マスキング材の表面に導電性膜を形成する工程(以下、導電性膜形成工程ともいう。)と、
 前記基材の少なくとも一方の主面の一部を前記導電性膜が形成されたマスキング材で覆う工程(以下、マスキング工程ともいう。)と、
 静電塗装装置を用いて、前記塗料組成物を帯電させ噴霧することにより基材上に塗布して塗膜を形成する工程(以下、塗布工程ともいう。)と、
 前記マスキング材を前記基材上から除去する工程(以下、マスキング除去工程ともいう。)と、
 前記塗膜を焼成することにより防眩膜を形成する工程(以下、焼成工程ともいう。)と、
を有する製造方法である。
<Manufacturing method of base material with antiglare film>
The method for producing a base material with an antiglare film according to an embodiment of the present invention is as follows.
A method for producing a base material with an antiglare film, which comprises a base material and an antiglare film formed on a part of at least one main surface of the base material.
The liquid medium (B1) containing at least one of the silica precursor (A) and the particles (C) and the liquid medium (B) and having the liquid medium (B) having a boiling point of 150 ° C. or lower is used as the liquid medium (B1). A step of preparing a paint composition containing 86% by mass or more based on the total amount of B) (hereinafter, also referred to as a paint composition preparation step).
A step of forming a conductive film on the surface of the masking material (hereinafter, also referred to as a conductive film forming step) and
A step of covering a part of at least one main surface of the base material with a masking material on which the conductive film is formed (hereinafter, also referred to as a masking step).
A step of forming a coating film by applying the coating composition onto a substrate by charging and spraying the coating composition using an electrostatic coating device (hereinafter, also referred to as a coating step).
A step of removing the masking material from the substrate (hereinafter, also referred to as a masking removing step).
A step of forming an antiglare film by firing the coating film (hereinafter, also referred to as a firing step).
It is a manufacturing method having.
 上記の製造方法は、必要に応じて、防眩膜を形成する前に、基材本体の表面に機能層を形成して基材を作製する工程を有していてもよく、防眩膜を形成した後に、公知の後加工を施す工程を有していてもよい。 If necessary, the above-mentioned manufacturing method may include a step of forming a functional layer on the surface of the base material body to prepare the base material before forming the anti-glare film, and the anti-glare film may be formed. After forming, it may have a step of performing a known post-processing.
〔塗料組成物調製工程〕
 塗料組成物は、シリカ前駆体(A)および粒子(C)の少なくとも一方と、液状媒体(B)とを含む。
[Paint composition preparation process]
The coating composition comprises at least one of the silica precursor (A) and the particles (C) and a liquid medium (B).
 塗料組成物が、シリカ前駆体(A)を含まず、粒子(C)を含む場合、粒子(C)の平均粒子径は、30nm以下が好ましい。 When the coating composition does not contain the silica precursor (A) but contains the particles (C), the average particle size of the particles (C) is preferably 30 nm or less.
 塗料組成物は、必要に応じて、本発明の効果を損なわない範囲で、シリカ前駆体(A)以外の他のバインダ(D)、及び、その他の添加剤(E)等を含んでいてもよい。 If necessary, the coating composition may contain other binders (D) other than the silica precursor (A), other additives (E), and the like, as long as the effects of the present invention are not impaired. good.
(シリカ前駆体(A))
 シリカ前駆体(A)としては、ケイ素原子に結合した炭化水素基および加水分解性基を有するシラン化合物(A1)およびその加水分解縮合物、アルコキシシラン(ただしシラン化合物(A1)を除く。)およびその加水分解縮合物(ゾルゲルシリカ)、シラザン等が挙げられる。
(Silica precursor (A))
Examples of the silica precursor (A) include a silane compound (A1) having a hydrocarbon group bonded to a silicon atom and a hydrolyzable group, a hydrolyzable condensate thereof, an alkoxysilane (excluding the silane compound (A1)) and Examples thereof include the hydrolyzed condensate (solgel silica) and silazane.
 シラン化合物(A1)において、ケイ素原子に結合した炭化水素基は、1つのケイ素原子に結合した1価の炭化水素基であってもよく、2つのケイ素原子に結合した2価の炭化水素基であってもよい。1価の炭化水素基としては、アルキル基、アルケニル基、及びアリール基等が挙げられる。2価の炭化水素基としては、アルキレン基、アルケニレン基、及びアリーレン基等が挙げられる。 In the silane compound (A1), the hydrocarbon group bonded to the silicon atom may be a monovalent hydrocarbon group bonded to one silicon atom, or a divalent hydrocarbon group bonded to two silicon atoms. There may be. Examples of the monovalent hydrocarbon group include an alkyl group, an alkenyl group, an aryl group and the like. Examples of the divalent hydrocarbon group include an alkylene group, an alkenylene group, an arylene group and the like.
 炭化水素基は、炭素原子間に-O-、-S-、-CO-および-NR’-(ただしR’は水素原子または1価の炭化水素基である。)から選ばれる1つまたは2つ以上を組み合わせた基を有していてもよい。 The hydrocarbon group is one or two selected from -O-, -S-, -CO- and -NR'-(where R'is a hydrogen atom or a monovalent hydrocarbon group) between carbon atoms. It may have a group in which one or more are combined.
 ケイ素原子に結合した加水分解性基としては、アルコキシ基、アシロキシ基、ケトオキシム基、アルケニルオキシ基、アミノ基、アミノキシ基、アミド基、イソシアネート基、及びハロゲン原子等が挙げられる。これらの中では、シラン化合物(A1)の安定性と加水分解のしやすさとのバランスの点から、アルコキシ基、イソシアネート基およびハロゲン原子(特に塩素原子)が好ましい。 Examples of the hydrolyzable group bonded to the silicon atom include an alkoxy group, an asyloxy group, a ketooxime group, an alkenyloxy group, an amino group, an aminoxy group, an amide group, an isocyanate group, and a halogen atom. Among these, an alkoxy group, an isocyanate group and a halogen atom (particularly a chlorine atom) are preferable from the viewpoint of the balance between the stability of the silane compound (A1) and the ease of hydrolysis.
 アルコキシ基としては、炭素数1~3のアルコキシ基が好ましく、メトキシ基またはエトキシ基がより好ましい。 As the alkoxy group, an alkoxy group having 1 to 3 carbon atoms is preferable, and a methoxy group or an ethoxy group is more preferable.
 シラン化合物(A1)中に加水分解性基が複数存在する場合には、加水分解性基は、同じ基であっても異なる基であってもよく、同じ基であることが入手しやすさの点で好ましい。 When a plurality of hydrolyzable groups are present in the silane compound (A1), the hydrolyzable groups may be the same group or different groups, and it is easily available that they are the same group. Preferred in terms of points.
 シラン化合物(A1)としては、後述する式(I)で表される化合物、アルキル基を有するアルコキシシラン(メチルトリメトキシシラン、及びエチルトリエトキシシラン等)、ビニル基を有するアルコキシシラン(ビニルトリメトキシシラン、及びビニルトリエトキシシラン等)、エポキシ基を有するアルコキシシラン(2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、及び3-グリシドキシプロピルトリエトキシシラン等)、及びアクリロイルオキシ基を有するアルコキシシラン(3-アクリロイルオキシプロピルトリメトキシシラン等)等が挙げられる。 Examples of the silane compound (A1) include a compound represented by the formula (I) described later, an alkoxysilane having an alkyl group (methyltrimethoxysilane, ethyltriethoxysilane, etc.), and an alkoxysilane having a vinyl group (vinyltrimethoxy). Silane, vinyl triethoxysilane, etc.), alkoxysilane having an epoxy group (2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldi Ethoxysilane, 3-glycidoxypropyltriethoxysilane, etc.), alkoxysilane having an acryloyloxy group (3-acryloyloxypropyltrimethoxysilane, etc.) and the like can be mentioned.
 シラン化合物(A1)としては、凹凸高さが厚くても防眩膜5のクラックや膜剥がれが生じにくい点から、下式(I)で表される化合物が好ましい。
  R3-pSi-Q-SiL3-p ・・・(I)
As the silane compound (A1), the compound represented by the following formula (I) is preferable because cracks and film peeling of the antiglare film 5 are unlikely to occur even if the uneven height is thick.
R 3-p L p Si-Q-SiL p R 3-p ... (I)
 式(I)中、Qは、2価の炭化水素基(炭素原子間に-O-、-S-、-CO-および-NR’-(ただし、R’は水素原子または1価の炭化水素基である。)から選ばれる1つまたは2つ以上を組み合わせた基を有していてもよい。)である。2価の炭化水素基としては、上述したものが挙げられる。 In formula (I), Q is a divalent hydrocarbon group (-O-, -S-, -CO- and -NR'-(where R'is a hydrogen atom or a monovalent hydrocarbon between carbon atoms). It may have one or a combination of two or more groups selected from ()). Examples of the divalent hydrocarbon group include those described above.
 Qとしては、入手が容易であり、かつ凹凸高さが厚くても防眩膜5のクラックや膜剥がれが生じにくい点から、炭素数2~8のアルキレン基が好ましく、炭素数2~6のアルキレン基がさらに好ましい。 As Q, an alkylene group having 2 to 8 carbon atoms is preferable and an alkylene group having 2 to 6 carbon atoms is preferable because it is easily available and cracks and peeling of the antiglare film 5 are unlikely to occur even if the uneven height is thick. An alkylene group is more preferred.
 式(I)中、Lは、加水分解性基である。加水分解性基としては、上述したものが挙げられ、好ましい態様も同様である。
 Rは、水素原子または1価の炭化水素基である。1価の炭化水素としては、上述したものが挙げられる。
 pは、1~3の整数である。pは、反応速度が遅くなりすぎない点から、2または3が好ましく、3が特に好ましい。
In formula (I), L is a hydrolyzable group. Examples of the hydrolyzable group include those described above, and the same applies to preferred embodiments.
R is a hydrogen atom or a monovalent hydrocarbon group. Examples of the monovalent hydrocarbon include those described above.
p is an integer of 1 to 3. p is preferably 2 or 3, and particularly preferably 3 from the viewpoint that the reaction rate does not become too slow.
 アルコキシシラン(ただし、前記シラン化合物(A1)を除く。)としては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、及びテトラブトキシシラン等)、パーフルオロポリエーテル基を有するアルコキシシラン(パーフルオロポリエーテルトリエトキシシラン等)、及びパーフルオロアルキル基を有するアルコキシシラン(パーフルオロエチルトリエトキシシラン等)等が挙げられる。 Examples of the alkoxysilane (excluding the silane compound (A1)) include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, etc.), and alkoxysilane having a perfluoropolyether group. (Perfluoropolyether triethoxysilane and the like), alkoxysilane having a perfluoroalkyl group (perfluoroethyltriethoxysilane and the like) and the like can be mentioned.
 シラン化合物(A1)およびアルコキシシラン(ただしシラン化合物(A1)を除く。)の加水分解および縮合は、公知の方法により行うことができる。 Hydrolysis and condensation of the silane compound (A1) and the alkoxysilane (excluding the silane compound (A1)) can be carried out by a known method.
 たとえばテトラアルコキシシランの場合、テトラアルコキシシランの4倍モル以上の水、および触媒として酸またはアルカリを用いて行う。 For example, in the case of tetraalkoxysilane, use water in an amount of 4 times or more that of tetraalkoxysilane, and use an acid or an alkali as a catalyst.
 酸としては、無機酸(HNO、HSO、及びHCl等)、有機酸(ギ酸、シュウ酸、モノクロル酢酸、ジクロル酢酸、及びトリクロル酢酸等)が挙げられる。アルカリとしては、アンモニア、水酸化ナトリウム、及び水酸化カリウム等が挙げられる。触媒としては、シラン化合物(A1)の加水分解縮合物の長期保存性の点では、酸が好ましい。 Examples of the acid include inorganic acids (HNO 3 , H 2 SO 4 , and HCl) and organic acids (formic acid, oxalic acid, monochloroacetic acid, dichloracetic acid, trichloracetic acid, etc.). Examples of the alkali include ammonia, sodium hydroxide, potassium hydroxide and the like. As the catalyst, an acid is preferable in terms of long-term storage stability of the hydrolyzed condensate of the silane compound (A1).
 シリカ前駆体(A)としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the silica precursor (A), one type may be used alone, or two or more types may be used in combination.
 シリカ前駆体(A)は、防眩膜5のクラックや膜剥がれを防止する観点から、シラン化合物(A1)およびその加水分解縮合物のいずれか一方または両方を含むことが好ましい。 The silica precursor (A) preferably contains one or both of the silane compound (A1) and its hydrolyzed condensate from the viewpoint of preventing cracks and film peeling of the antiglare film 5.
 シリカ前駆体(A)は、防眩膜5の耐摩耗強度の観点から、テトラアルコキシシランおよびその加水分解縮合物のいずれか一方または両方を含むことが好ましい。 The silica precursor (A) preferably contains one or both of tetraalkoxysilane and its hydrolyzed condensate from the viewpoint of wear resistance of the antiglare film 5.
 シリカ前駆体(A)は、シラン化合物(A1)およびその加水分解縮合物のいずれか一方または両方と、テトラアルコキシシランおよびその加水分解縮合物のいずれか一方または両方と、を含むことが特に好ましい。 It is particularly preferred that the silica precursor (A) contains one or both of the silane compound (A1) and its hydrolyzed condensate and one or both of the tetraalkoxysilane and its hydrolyzed condensate. ..
(液状媒体(B))
 液状媒体(B)は、塗料組成物がシリカ前駆体(A)を含む場合は、シリカ前駆体(A)を溶解または分散するものであり、塗料組成物が粒子(C)を含む場合は、粒子(C)を分散するものである。塗料組成物がシリカ前駆体(A)および粒子(C)の両方を含む場合、液状媒体(B)は、シリカ前駆体(A)を溶解または分散する溶媒または分散媒としての機能と、粒子(C)を分散する分散媒としての機能の両方を有するものであってもよい。
(Liquid medium (B))
The liquid medium (B) dissolves or disperses the silica precursor (A) when the coating composition contains the silica precursor (A), and dissolves or disperses the silica precursor (A) when the coating composition contains the particles (C). It disperses particles (C). When the coating composition comprises both the silica precursor (A) and the particles (C), the liquid medium (B) functions as a solvent or dispersion medium for dissolving or dispersing the silica precursor (A) and the particles (B). It may have both functions as a dispersion medium for dispersing C).
 液状媒体(B)は、少なくとも、沸点150℃以下の液状媒体(B1)を含む。液状媒体(B1)の沸点は、50~145℃が好ましく、55~140℃がより好ましい。 The liquid medium (B) contains at least a liquid medium (B1) having a boiling point of 150 ° C. or lower. The boiling point of the liquid medium (B1) is preferably 50 to 145 ° C, more preferably 55 to 140 ° C.
 液状媒体(B1)の沸点が150℃以下であれば、塗料組成物を、回転霧化頭を備える静電塗装ガンを備える静電塗装装置を用いて基材3上に塗布し、焼成して得られる膜がより好ましい防眩性能を有する。液状媒体(B1)の沸点が前記範囲の下限値以上であれば、塗料組成物の液滴が基材3上に付着した後、液滴形状を十分に保ったまま凹凸構造を形成できる。 If the boiling point of the liquid medium (B1) is 150 ° C. or lower, the coating composition is applied onto the substrate 3 using an electrostatic coating apparatus equipped with an electrostatic coating gun equipped with a rotary atomizing head, and fired. The obtained film has more preferable antiglare performance. When the boiling point of the liquid medium (B1) is at least the lower limit of the above range, after the droplets of the coating composition adhere to the substrate 3, the uneven structure can be formed while sufficiently maintaining the droplet shape.
 液状媒体(B1)としては、たとえば、水、アルコール類(メタノール、エタノール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、及び1-ペンタノール等)、ケトン類(アセトン、メチルエチルケトン、及びメチルイソブチルケトン等)、エーテル類(テトラヒドロフラン、及び1,4-ジオキサン等)、セロソルブ類(メチルセロソルブ、及びエチルセロソルブ等)、エステル類(酢酸メチル、及び酢酸エチル等)、及びグリコールエーテル類(エチレングリコールモノメチルエーテル、及びエチレングリコールモノエチルエーテル等)等が挙げられる。
 液状媒体(B1)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of the liquid medium (B1) include water, alcohols (methanol, ethanol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, 1-pentanol, etc.), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.). ), Ethers (ketone, 1,4-dioxane, etc.), cellosolves (methyl cellosolve, ethyl cellosolve, etc.), esters (methyl acetate, ethyl acetate, etc.), and glycol ethers (ethylene glycol monomethyl ether, etc.) And ethylene glycol monoethyl ether etc.) and the like.
As the liquid medium (B1), one type may be used alone, or two or more types may be used in combination.
 液状媒体(B)は、必要に応じて、液状媒体(B1)以外の他の液状媒体、すなわち沸点が150℃超の液状媒体をさらに含んでいてもよい。 The liquid medium (B) may further contain a liquid medium other than the liquid medium (B1), that is, a liquid medium having a boiling point of more than 150 ° C., if necessary.
 他の液状媒体としては、たとえば、アルコール類、ケトン類、エーテル類、セロソルブ類、エステル類、グリコールエーテル類、含窒素化合物、及び含硫黄化合物等が挙げられる。 Examples of other liquid media include alcohols, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, sulfur-containing compounds and the like.
 アルコール類としては、ジアセトンアルコール、1-ヘキサノール、及びエチレングリコール等が挙げられる。 Examples of alcohols include diacetone alcohol, 1-hexanol, ethylene glycol and the like.
 含窒素化合物としては、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、及びN-メチルピロリドン等が挙げられる。 Examples of the nitrogen-containing compound include N, N-dimethylacetamide, N, N-dimethylformamide, N-methylpyrrolidone and the like.
 グリコールエーテル類としては、エチレングリコールモノブチルエーテル等が挙げられる。 Examples of glycol ethers include ethylene glycol monobutyl ether.
 含硫黄化合物としては、ジメチルスルホキシド等が挙げられる。 Examples of the sulfur-containing compound include dimethyl sulfoxide and the like.
 他の液状媒体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the other liquid medium, one type may be used alone, or two or more types may be used in combination.
 シリカ前駆体(A)におけるアルコキシシラン等の加水分解に水が必要となるため、加水分解後に液状媒体の置換を行わない限り、液状媒体(B)は液状媒体(B1)として少なくとも水を含む。 Since water is required for hydrolysis of alkoxysilane and the like in the silica precursor (A), the liquid medium (B) contains at least water as the liquid medium (B1) unless the liquid medium is replaced after the hydrolysis.
 この場合、液状媒体(B)は、水のみであってもよく、水と他の液体との混合液であってもよい。他の液体としては、水以外の液状媒体(B1)でもよく、他の液状媒体でもよく、たとえば、アルコール類、ケトン類、エーテル類、セロソルブ類、エステル類、グリコールエーテル類、含窒素化合物、及び含硫黄化合物等が挙げられる。これらのうち、シリカ前駆体(A)の溶媒としては、アルコール類が好ましく、メタノール、エタノール、イソプロピルアルコール、及びブタノールが特に好ましい。 In this case, the liquid medium (B) may be only water or a mixture of water and another liquid. The other liquid may be a liquid medium (B1) other than water, or may be another liquid medium, for example, alcohols, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, and Examples include sulfur-containing compounds. Of these, alcohols are preferable as the solvent for the silica precursor (A), and methanol, ethanol, isopropyl alcohol, and butanol are particularly preferable.
(粒子(C))
 粒子(C)は、単独で、またはシリカ前駆体(A)に由来するマトリックスとともに、防眩膜を構成する。
(Particle (C))
The particles (C) form an antiglare film alone or with a matrix derived from the silica precursor (A).
 塗料組成物が、シリカ前駆体(A)を含まず、粒子(C)を含む場合、粒子(C)の平均粒子径は30nm以下が好ましい。 When the coating composition does not contain the silica precursor (A) but contains the particles (C), the average particle size of the particles (C) is preferably 30 nm or less.
 粒子(C)としては、鱗片状粒子(C1)、鱗片状粒子(C1)以外の他の粒子(C2)等が挙げられる。 Examples of the particles (C) include scaly particles (C1), particles other than scaly particles (C1) (C2), and the like.
鱗片状粒子(C1):
 鱗片状粒子(C1)の平均アスペクト比は、50~650が好ましく、100~350がより好ましく、170~240がさらに好ましい。鱗片状粒子(C1)の平均アスペクト比が50以上であれば、凹凸高さが厚くても防眩膜のクラックや膜剥がれが充分に抑えられる。鱗片状粒子(C1)の平均アスペクト比が650以下であれば、塗料組成物中における分散安定性が良好となる。
Scale particles (C1):
The average aspect ratio of the scaly particles (C1) is preferably 50 to 650, more preferably 100 to 350, and even more preferably 170 to 240. When the average aspect ratio of the scaly particles (C1) is 50 or more, cracks and peeling of the antiglare film can be sufficiently suppressed even if the uneven height is thick. When the average aspect ratio of the scaly particles (C1) is 650 or less, the dispersion stability in the coating composition is good.
 鱗片状粒子(C1)の平均粒子径は、0.08~0.42μmが好ましく、0.17~0.21μmがより好ましい。鱗片状粒子(C1)の平均粒子径が0.08μm以上であれば、凹凸高さが厚くても防眩膜のクラックや膜剥がれが充分に抑えられる。鱗片状粒子(C1)の平均粒子径が0.42μm以下であれば、塗料組成物中における分散安定性が良好となる。 The average particle size of the scaly particles (C1) is preferably 0.08 to 0.42 μm, more preferably 0.17 to 0.21 μm. When the average particle size of the scaly particles (C1) is 0.08 μm or more, cracks and peeling of the antiglare film can be sufficiently suppressed even if the uneven height is thick. When the average particle size of the scaly particles (C1) is 0.42 μm or less, the dispersion stability in the coating composition is good.
 鱗片状粒子(C1)としては、鱗片状シリカ粒子、鱗片状アルミナ粒子、鱗片状チタニア、及び鱗片状ジルコニア等が挙げられる。なかでも、膜の屈折率上昇を抑え、反射率を下げることができる点から、鱗片状シリカ粒子が好ましい。 Examples of the scaly particles (C1) include scaly silica particles, scaly alumina particles, scaly titania, and scaly zirconia. Of these, scaly silica particles are preferable because they can suppress an increase in the refractive index of the film and reduce the reflectance.
 鱗片状シリカ粒子は、薄片状のシリカ1次粒子、または複数枚の薄片状のシリカ1次粒子が、互いに面間が平行的に配向し重なって形成されるシリカ2次粒子である。シリカ2次粒子は、通常、積層構造の粒子形態を有する。 The flaky silica particles are flaky silica primary particles or silica secondary particles formed by overlapping a plurality of flaky silica primary particles with their planes oriented in parallel with each other. Silica secondary particles usually have a particle morphology with a laminated structure.
 鱗片状シリカ粒子は、シリカ1次粒子およびシリカ2次粒子のいずれか一方のみであってもよく、両方であってもよい。 The scaly silica particles may be only one of the silica primary particles and the silica secondary particles, or may be both.
 シリカ1次粒子の厚さは、0.001~0.1μmが好ましい。シリカ1次粒子の厚さが前記範囲内であれば、互いに面間が平行的に配向して1枚または複数枚重なった鱗片状のシリカ2次粒子を形成できる。 The thickness of the silica primary particles is preferably 0.001 to 0.1 μm. As long as the thickness of the primary silica particles is within the above range, it is possible to form scaly secondary silica particles in which one or more of the primary silica particles are oriented in parallel with each other and overlapped with each other.
 シリカ1次粒子の厚さに対する最小長さの比(最小長さ/厚さ)は、2以上が好ましく、5以上がより好ましく、10以上がさらに好ましい。 The ratio of the minimum length (minimum length / thickness) to the thickness of the silica primary particles is preferably 2 or more, more preferably 5 or more, still more preferably 10 or more.
 シリカ2次粒子の厚さは、0.001~3μmが好ましく、0.005~2μmがより好ましい。 The thickness of the silica secondary particles is preferably 0.001 to 3 μm, more preferably 0.005 to 2 μm.
 シリカ2次粒子の厚さに対する最小長さの比(最小長さ/厚さ)は、2以上が好ましく、5以上がより好ましく、10以上がさらに好ましい。 The ratio of the minimum length (minimum length / thickness) to the thickness of the silica secondary particles is preferably 2 or more, more preferably 5 or more, still more preferably 10 or more.
 シリカ2次粒子は、融着することなく互いに独立に存在していることが好ましい。 It is preferable that the silica secondary particles exist independently of each other without being fused.
 鱗片状シリカ粒子のSiO純度は、95質量%以上が好ましく、99質量%以上がより好ましい。 The SiO 2 purity of the scaly silica particles is preferably 95% by mass or more, more preferably 99% by mass or more.
 塗料組成物の調製には、複数の鱗片状シリカ粒子の集合体である粉体、または該粉体を液状媒体に分散させた分散体が用いられる。分散体中のシリカ濃度は、1~80質量%が好ましい。 For the preparation of the coating composition, a powder which is an aggregate of a plurality of scaly silica particles or a dispersion in which the powder is dispersed in a liquid medium is used. The silica concentration in the dispersion is preferably 1 to 80% by mass.
 粉体または分散体には、鱗片状シリカ粒子だけでなく、鱗片状シリカ粒子の製造時に発生する不定形シリカ粒子が含まれることがある。 The powder or dispersion may contain not only scaly silica particles but also amorphous silica particles generated during the production of scaly silica particles.
 鱗片状シリカ粒子は、たとえば、鱗片状シリカ粒子が凝集して不規則に重なり合って形成される間隙を有する凝集体形状のシリカ3次粒子(以下、シリカ凝集体とも記す。)を解砕、分散化することによって得られる。 The scaly silica particles are, for example, crushed and dispersed agglomerate-shaped silica tertiary particles (hereinafter, also referred to as silica agglomerates) having gaps formed by aggregating and irregularly overlapping the scaly silica particles. Obtained by converting.
 不定形シリカ粒子は、シリカ凝集体がある程度微粒化された状態であるが、個々の鱗片状シリカ粒子まで微粒化されていない状態のものであり、複数の鱗片状シリカ粒子が塊を形成する形状である。不定形シリカ粒子を含むと、形成される防眩膜の緻密性が低下してクラックや膜剥がれが発生しやすくなるおそれがある。そのため、粉体または分散体における不定形シリカ粒子の含有量は、少ないほど好ましい。 The amorphous silica particles are in a state where silica aggregates are atomized to some extent, but are not atomized to individual scale-like silica particles, and a shape in which a plurality of scale-like silica particles form a mass. Is. If the amorphous silica particles are contained, the denseness of the antiglare film formed may be lowered and cracks or film peeling may easily occur. Therefore, the smaller the content of the amorphous silica particles in the powder or dispersion, the more preferable.
 不定形シリカ粒子およびシリカ凝集体は、いずれも、TEM観察において黒色状に観察される。一方、薄片状のシリカ1次粒子またはシリカ2次粒子は、TEM観察において透明または半透明状に観察される。 Both amorphous silica particles and silica aggregates are observed to be black in TEM observation. On the other hand, flaky silica primary particles or silica secondary particles are observed to be transparent or translucent in TEM observation.
 鱗片状シリカ粒子は、市販のものを用いてもよく、製造したものを用いてもよい。 As the scaly silica particles, commercially available ones may be used, or manufactured ones may be used.
 鱗片状シリカ粒子としては、日本国特開2014-94845号公報に記載の製造方法によって製造されたものが好ましい。該製造方法は、鱗片状シリカ粒子が凝集したシリカ凝集体を含むシリカ粉体をpH2以下で酸処理する工程と、酸処理したシリカ粉体をpH8以上でアルカリ処理し、シリカ凝集体を解膠する工程と、アルカリ処理したシリカ粉体を湿式解砕し、鱗片状シリカ粒子を得る工程とを有する。該製造方法によれば、公知の製造方法(たとえば、日本国特許第4063464号公報に記載の方法)に比べて、製造工程での不定形シリカ粒子の発生が抑えられ、不定形シリカ粒子の含有量の少ない粉体または分散体を得ることができる。 As the scaly silica particles, those produced by the production method described in Japanese Patent Application Laid-Open No. 2014-94445 are preferable. The production method includes a step of acid-treating a silica powder containing silica aggregates in which scaly silica particles are aggregated at pH 2 or less, and an alkali treatment of the acid-treated silica powder at pH 8 or more to deflocculate the silica aggregates. A step of wet-crushing the alkali-treated silica powder to obtain scaly silica particles. According to the manufacturing method, the generation of amorphous silica particles in the manufacturing process is suppressed as compared with the known manufacturing method (for example, the method described in Japanese Patent No. 4063464), and the amorphous silica particles are contained. A small amount of powder or dispersion can be obtained.
粒子(C2):
 鱗片状粒子(C1)以外の他の粒子(C2)としては、金属酸化物粒子、金属粒子、顔料系粒子、及び樹脂粒子等が挙げられる。
Particle (C2):
Examples of the particles (C2) other than the scaly particles (C1) include metal oxide particles, metal particles, pigment-based particles, resin particles and the like.
 金属酸化物粒子の材料としては、Al、SiO、SnO、TiO、ZrO、ZnO、CeO、Sb含有SnO(ATO)、Sn含有In(ITO)、及びRuO等が挙げられる。金属酸化物粒子の材料としては、本発明における防眩膜において好ましく使用されるマトリックスがシリカであるため、この場合、屈折率がマトリックスと同じSiOが好ましい。 As a material of the metal oxide particles, Al 2 O 3, SiO 2 , SnO 2, TiO 2, ZrO 2, ZnO, CeO 2, Sb -containing SnO X (ATO), Sn-containing In 2 O 3 (ITO), and RuO 2 and the like can be mentioned. As the material of the metal oxide particles, since the matrix preferably used in the antiglare film of the present invention is silica, in this case, SiO 2 having the same refractive index as the matrix is preferable.
 金属粒子の材料としては、金属(Ag、及びRu等)、合金(AgPd、及びRuAu等)等が挙げられる。 Examples of the material of the metal particles include metals (Ag, Ru, etc.), alloys (AgPd, RuAu, etc.) and the like.
 顔料系粒子としては、無機顔料(チタンブラック、及びカーボンブラック等)、有機顔料が挙げられる。 Examples of pigment-based particles include inorganic pigments (titanium black, carbon black, etc.) and organic pigments.
 樹脂粒子の材料としては、アクリル樹脂、ポリスチレン、及びメラニン樹脂等が挙げられる。 Examples of the material of the resin particles include acrylic resin, polystyrene, and melanin resin.
 粒子(C2)の形状としては、球状、楕円状、針状、板状、棒状、円すい状、円柱状、立方体状、長方体状、ダイヤモンド状、星状、不定形状、あるいはこれらの形状の組み合わせ等が挙げられる。他の粒子は、各粒子が独立した状態で存在していてもよく、各粒子が鎖状に連結していてもよく、各粒子が凝集していてもよい。 The shape of the particles (C2) is spherical, elliptical, needle-shaped, plate-shaped, rod-shaped, conical, columnar, cubic, rectangular parallelepiped, diamond-shaped, star-shaped, amorphous, or these shapes. Combinations and the like can be mentioned. In the other particles, each particle may exist in an independent state, each particle may be connected in a chain shape, or each particle may be agglomerated.
 粒子(C2)は、中実粒子でもよく、中空粒子でもよく、多孔質粒子等の穴あき粒子でもよい。 The particles (C2) may be solid particles, hollow particles, or perforated particles such as porous particles.
 粒子(C2)としては、球状シリカ粒子、棒状シリカ粒子、及び針状シリカ粒子等のシリカ粒子(ただし鱗片状シリカ粒子を除く。)が好ましい。中でも、防眩膜付き基材1のヘイズが充分に高くなり、かつ防眩膜5の表面における60゜鏡面光沢度が充分に低くなり、その結果、防眩効果が充分に発揮される点から、球状シリカ粒子が好ましく、多孔質球状シリカ粒子がより好ましい。 As the particles (C2), silica particles such as spherical silica particles, rod-shaped silica particles, and needle-shaped silica particles (however, excluding scaly silica particles) are preferable. Above all, the haze of the base material 1 with the antiglare film is sufficiently high, and the 60 ° mirror gloss on the surface of the antiglare film 5 is sufficiently low, and as a result, the antiglare effect is sufficiently exhibited. , Spherical silica particles are preferable, and porous spherical silica particles are more preferable.
 粒子(C2)の平均粒子径は、0.3~2μmが好ましく、0.5~1.5μmがより好ましい。粒子(C2)の平均粒子径が0.3μm以上であれば、防眩効果が充分に発揮される。粒子(C2)の平均粒子径が2μm以下であれば、塗料組成物中における分散安定性が良好となる。 The average particle size of the particles (C2) is preferably 0.3 to 2 μm, more preferably 0.5 to 1.5 μm. When the average particle size of the particles (C2) is 0.3 μm or more, the antiglare effect is sufficiently exhibited. When the average particle size of the particles (C2) is 2 μm or less, the dispersion stability in the coating composition is good.
 多孔質球状シリカ粒子のBET比表面積は、200~300m/gが好ましい。 The BET specific surface area of the porous spherical silica particles is preferably 200 to 300 m 2 / g.
 多孔質球状シリカ粒子の細孔容積は、0.5~1.5cm/gが好ましい。 The pore volume of the porous spherical silica particles is preferably 0.5 to 1.5 cm 3 / g.
 多孔質球状シリカ粒子の市販品としては、日産化学株式会社製のライトスター(登録商標)シリーズが挙げられる。 Examples of commercially available porous spherical silica particles include the Light Star (registered trademark) series manufactured by Nissan Chemical Industries, Ltd.
 粒子(C)は、1種を単独で用いてもよく、2種以上を併用してもよい。 The particle (C) may be used alone or in combination of two or more.
 粒子(C)は、鱗片状粒子(C1)を含むことが好ましく、さらに粒子(C2)を含んでもよい。鱗片状粒子(C1)を含むことで、防眩膜5のヘイズが高まり、より優れた防眩性能が得られる。また、粒子(C2)に比べて、鱗片状粒子(C1)を含ませた場合、防眩膜5の凹凸高さを厚くしたときにクラックや膜剥がれが生じにくい。 The particles (C) preferably contain scaly particles (C1), and may further contain particles (C2). By including the scaly particles (C1), the haze of the antiglare film 5 is enhanced, and more excellent antiglare performance can be obtained. Further, when the scaly particles (C1) are contained as compared with the particles (C2), cracks and film peeling are less likely to occur when the uneven height of the antiglare film 5 is increased.
(バインダ(D))
 バインダ(D)(ただしシリカ前駆体(A)を除く。)としては、液状媒体(B)に溶解または分散する無機物や樹脂等が挙げられる。
(Binder (D))
Examples of the binder (D) (excluding the silica precursor (A)) include inorganic substances and resins that are dissolved or dispersed in the liquid medium (B).
 無機物としては、たとえばシリカ以外の金属酸化物前駆体(金属:チタン、及びジルコニウム等)が挙げられる。 Examples of the inorganic substance include metal oxide precursors (metals: titanium, zirconium, etc.) other than silica.
 樹脂としては、熱可塑性樹脂、熱硬化性樹脂、及び紫外線硬化性樹脂等が挙げられる。 Examples of the resin include a thermoplastic resin, a thermosetting resin, and an ultraviolet curable resin.
(添加剤(E))
 添加剤(E)としては、たとえば、極性基を有する有機化合物(E1)、紫外線吸収剤、赤外線反射剤、赤外線吸収剤、反射防止剤、レベリング性向上のための界面活性剤、及び耐久性向上のための金属化合物等が挙げられる。
(Additive (E))
Examples of the additive (E) include an organic compound (E1) having a polar group, an ultraviolet absorber, an infrared reflector, an infrared absorber, an antireflection agent, a surfactant for improving leveling property, and durability improvement. Examples include metal compounds for.
 塗料組成物が粒子(C)を含有する場合、塗料組成物に極性基を有する有機化合物(E1)を含ませることによって、塗料組成物中における静電気力による粒子(C)の凝集を抑制できる。 When the coating composition contains particles (C), the aggregation of the particles (C) due to electrostatic force in the coating composition can be suppressed by including the organic compound (E1) having a polar group in the coating composition.
 極性基を有する有機化合物(E1)としては、粒子(C)の凝集抑制効果の点から、分子中に水酸基および/またはカルボニル基を有するものが好ましく、分子中に水酸基、アルデヒド基(-CHO)、ケトン(-C(=O)-)、エステル結合(-C(=O)O-)、及びカルボキシ基(-COOH)からなる群から選ばれる1種以上を有するものがより好ましく、分子中にカルボキシ基、水酸基、アルデヒド基およびケトンからなる群から選ばれる1種以上を有するものがさらに好ましい。 The organic compound (E1) having a polar group preferably has a hydroxyl group and / or a carbonyl group in the molecule from the viewpoint of the effect of suppressing aggregation of the particles (C), and has a hydroxyl group and an aldehyde group (-CHO) in the molecule. , Ketone (-C (= O)-), ester bond (-C (= O) O-), and carboxy group (-COOH), more preferably one having one or more selected from the group. It is more preferable to have at least one selected from the group consisting of a carboxy group, a hydroxyl group, an aldehyde group and a ketone.
 極性基を有する有機化合物(E1)としては、不飽和カルボン酸重合体、セルロース誘導体、有機酸(ただし、不飽和カルボン酸重合体を除く。)、及びテルペン化合物等が挙げられる。有機化合物(E1)は、1種を単独で用いてもよく、2種以上を併用してもよい。 Examples of the organic compound (E1) having a polar group include unsaturated carboxylic acid polymers, cellulose derivatives, organic acids (excluding unsaturated carboxylic acid polymers), and terpene compounds. The organic compound (E1) may be used alone or in combination of two or more.
 不飽和カルボン酸重合体としては、ポリアクリル酸が挙げられる。 Examples of the unsaturated carboxylic acid polymer include polyacrylic acid.
 セルロース誘導体としては、ポリヒドロキシアルキルセルロースが挙げられる。 Examples of the cellulose derivative include polyhydroxyalkyl cellulose.
 有機酸(ただし、不飽和カルボン酸重合体を除く。)としては、ギ酸、しゅう酸、モノクロル酢酸、ジクロル酢酸、トリクロル酢酸、クエン酸、酒石酸、及びマレイン酸等が挙げられる。 Examples of organic acids (excluding unsaturated carboxylic acid polymers) include formic acid, oxalic acid, monochloroacetic acid, dichloroacetic acid, trichloracetic acid, citric acid, tartaric acid, and maleic acid.
 なお、アルコキシシラン等の加水分解に触媒として有機酸を用いた場合、該有機酸も有機化合物(E1)としての有機酸に含まれる。 When an organic acid is used as a catalyst for hydrolysis of alkoxysilane or the like, the organic acid is also included in the organic acid as the organic compound (E1).
 テルペンとは、イソプレン(C)を構成単位とする(C(ただし、nは1以上の整数である。)の組成の炭化水素を意味する。テルペン化合物とは、テルペンから誘導される官能基を有するテルペン類を意味する。テルペン化合物は、不飽和度を異にするものも包含する。 The terpene means a hydrocarbon having a composition of (C 5 H 8 ) n (where n is an integer of 1 or more) having isoprene (C 5 H 8 ) as a constituent unit. The terpene compound means terpenes having a functional group derived from terpenes. Terpene compounds also include those with different degrees of unsaturation.
 なお、テルペン化合物には液状媒体として機能するものもあるが、「イソプレンを構成単位とする(Cの組成の炭化水素」であるものは、テルペン誘導体に該当し、液状媒体には該当しないものとする。 Although the terpene compounds are also intended to function as a liquid medium, those which are "isoprene as a constituent unit hydrocarbons (C 5 H 8) n composition" is applicable to the terpene derivative, a liquid medium Is not applicable.
 テルペン誘導体としては、テルペンアルコール(α-テルピネオール、テルピネン4-オール、L-メントール、(±)シトロネロール、ミルテノール、ボルネオール、ネロール、ファルネソール、及びフィトール等)、テルペンアルデヒド(シトラール、β-シクロシトラール、及びペリラアルデヒド等)、テルペンケトン((±)しょうのう、及びβ-ヨノン等)、テルペンカルボン酸(シトロネル酸、及びアビエチン酸等)、及びテルペンエステル(酢酸テルピニル、及び酢酸メンチル等)等が挙げられる。 Examples of the terpene derivative include terpene alcohols (α-terpeneol, terpinen 4-ol, L-menthol, (±) citronellol, miltenol, borneol, nerol, farnesol, and phytol, etc.), terpene aldehydes (citral, β-cyclocitral, etc.). And perillaaldehyde, etc.), terpene ketone ((±) ginger, β-yonone, etc.), terpene carboxylic acid (citral acid, avietic acid, etc.), and terpene ester (terpinyl acetate, menthyl acetate, etc.), etc. Can be mentioned.
 レベリング性向上のための界面活性剤としては、シリコーンオイル系、及びアクリル系等が挙げられる。 Examples of the surfactant for improving the leveling property include silicone oil type and acrylic type.
 耐久性向上のための金属化合物としては、ジルコニウムキレート化合物、チタンキレート化合物、及びアルミニウムキレート化合物等が好ましい。ジルコニウムキレート化合物としては、ジルコニウムテトラアセチルアセトナート、及びジルコニウムトリブトキシステアレート等が挙げられる。 As the metal compound for improving durability, a zirconium chelate compound, a titanium chelate compound, an aluminum chelate compound and the like are preferable. Examples of the zirconium chelate compound include zirconium tetraacetylacetonate and zirconium tributoxystearate.
(塗料組成物の組成)
 塗料組成物として、シリカ前駆体(A)および粒子(C)を含む場合、塗料組成物中のシリカ前駆体(A)と粒子(C)との合計の含有量は、塗料組成物中の固形分(100質量%)(ただし、シリカ前駆体(A)はSiO換算とする。)のうち、30~100質量%が好ましく、40~100質量%がより好ましい。
(Composition of paint composition)
When the coating composition contains the silica precursor (A) and the particles (C), the total content of the silica precursor (A) and the particles (C) in the coating composition is a solid in the coating composition. Of the amount (100% by mass) (however, the silica precursor (A) is converted to SiO 2 ), 30 to 100% by mass is preferable, and 40 to 100% by mass is more preferable.
 シリカ前駆体(A)と粒子(C)との合計の含有量が前記範囲の下限値以上であれば、防眩膜の基材3との密着性に優れる。シリカ前駆体(A)と粒子(C)との合計の含有量が前記範囲の上限値以下であれば、防眩膜5のクラックや膜はがれが抑えられる。 When the total content of the silica precursor (A) and the particles (C) is at least the lower limit of the above range, the adhesion to the base material 3 of the antiglare film is excellent. When the total content of the silica precursor (A) and the particles (C) is not more than the upper limit of the above range, cracks and peeling of the antiglare film 5 are suppressed.
 塗料組成物がシリカ前駆体(A)を含む場合、塗料組成物中のシリカ前駆体(A)(SiO換算)の含有量は、塗料組成物中の固形分(100質量%)(ただし、シリカ前駆体(A)はSiO換算とする。)のうち、35~95質量%が好ましく、50~95質量%がより好ましい。 When the coating composition contains the silica precursor (A), the content of the silica precursor (A) (SiO 2 equivalent) in the coating composition is the solid content (100% by mass) in the coating composition (however, however. The silica precursor (A) is preferably converted to SiO 2 ), preferably 35 to 95% by mass, and more preferably 50 to 95% by mass.
 シリカ前駆体(A)の含有量が前記範囲の下限値以上であれば、防眩膜の基材3との充分な密着強度が得られる。シリカ前駆体(A)の含有量が前記範囲の上限値以下であれば、凹凸高さが厚くても防眩膜5のクラックや膜剥がれが充分に抑えられる。 When the content of the silica precursor (A) is at least the lower limit of the above range, sufficient adhesion strength with the base material 3 of the antiglare film can be obtained. When the content of the silica precursor (A) is not more than the upper limit of the above range, cracks and peeling of the antiglare film 5 can be sufficiently suppressed even if the uneven height is thick.
 塗料組成物がシリカ前駆体(A)を含み、かつシリカ前駆体(A)がシラン化合物(A1)およびその加水分解縮合物のいずれか一方または両方を含む場合、シリカ前駆体(A)中のシラン化合物(A1)およびその加水分解縮合物の割合は、シリカ前駆体(A)のSiO換算固形分(100質量%)に対し、5~100質量%が好ましい。シラン化合物(A1)およびその加水分解縮合物の割合が前記範囲の下限値以上であれば、凹凸高さが厚くても防眩膜5のクラックや膜剥がれが充分に抑えられる。 When the coating composition contains the silica precursor (A) and the silica precursor (A) contains one or both of the silane compound (A1) and its hydrolyzed condensate, it is in the silica precursor (A). The ratio of the silane compound (A1) and its hydrolyzed condensate is preferably 5 to 100% by mass with respect to the SiO 2 equivalent solid content (100% by mass) of the silica precursor (A). When the ratio of the silane compound (A1) and its hydrolyzed condensate is not less than the lower limit of the above range, cracks and peeling of the antiglare film 5 can be sufficiently suppressed even if the uneven height is thick.
 塗料組成物がシリカ前駆体(A)を含み、かつシリカ前駆体(A)がテトラアルコキシシランおよびその加水分解縮合物のいずれか一方または両方を含む場合、シリカ前駆体(A)中のテトラアルコキシシランおよびその加水分解縮合物のいずれか一方または両方の割合は、シリカ前駆体(A)のSiO換算固形分(100質量%)に対し60~100質量%が好ましい。テトラアルコキシシランおよびその加水分解縮合物のいずれか一方または両方の割合が前記範囲の下限値以上であれば、防眩膜5の耐摩耗強度がより優れる。 When the coating composition contains the silica precursor (A) and the silica precursor (A) contains one or both of the tetraalkoxysilane and its hydrolyzed condensate, the tetraalkoxy in the silica precursor (A). The ratio of either one or both of silane and its hydrolyzed condensate is preferably 60 to 100% by mass with respect to the SiO 2 equivalent solid content (100% by mass) of the silica precursor (A). When the ratio of either one or both of the tetraalkoxysilane and the hydrolyzed condensate thereof is at least the lower limit of the above range, the abrasion resistance of the antiglare film 5 is more excellent.
 シリカ前駆体(A)が、シラン化合物(A1)およびその加水分解縮合物のいずれか一方または両方と、テトラアルコキシシランおよびその加水分解縮合物のいずれか一方または両方とを含む場合、シリカ前駆体(A)のSiO換算固形分(100質量%)に対し、シラン化合物(A1)およびその加水分解縮合物のいずれか一方または両方の割合が0質量%超50質量%以下(より好ましくは0質量%超30質量%以下)で、テトラアルコキシシランおよびその加水分解縮合物のいずれか一方または両方の割合が50質量%以上100質量%未満(より好ましくは70質量%以上100質量%未満)が好ましい。 If the silica precursor (A) contains one or both of the silane compound (A1) and its hydrolyzed condensate, and one or both of the tetraalkoxysilane and its hydrolyzed condensate, the silica precursor. The ratio of either one or both of the silane compound (A1) and its hydrolyzed condensate to the SiO 2 equivalent solid content (100% by mass) of (A) is more than 0% by mass and 50% by mass or less (more preferably 0). More than 30% by mass and less than 30% by mass), the proportion of either or both of tetraalkoxysilane and its hydrolyzed condensate is 50% by mass or more and less than 100% by mass (more preferably 70% by mass or more and less than 100% by mass). preferable.
 塗料組成物中の液状媒体(B)の含有量は、塗料組成物の固形分濃度に応じた量とされる。 The content of the liquid medium (B) in the coating composition is an amount corresponding to the solid content concentration of the coating composition.
 塗料組成物の固形分濃度は、塗料組成物の全量(100質量%)のうち、1~8質量%が好ましく、2~6質量%がより好ましい。 The solid content concentration of the coating composition is preferably 1 to 8% by mass, more preferably 2 to 6% by mass, based on the total amount (100% by mass) of the coating composition.
 固形分濃度が前記範囲の下限値以上であれば、塗料組成物の液量を少なくできる。固形分濃度が前記範囲の上限値以下であれば、防眩膜の凹凸高さの均一性が向上する。 If the solid content concentration is at least the lower limit of the above range, the amount of liquid in the coating composition can be reduced. When the solid content concentration is not more than the upper limit of the above range, the uniformity of the uneven height of the antiglare film is improved.
 塗料組成物の固形分濃度は、塗料組成物中の、液状媒体(B)以外の全成分の含有量の合計である。ただし、シリカ前駆体(A)の含有量は、SiO換算である。 The solid content concentration of the coating composition is the total content of all the components other than the liquid medium (B) in the coating composition. However, the content of the silica precursor (A) is in terms of SiO 2.
 塗料組成物中の沸点150℃以下の液状媒体(B1)の含有量は、液状媒体(B)の全量に対して86質量%以上である。液状媒体(B1)を86質量%以上の割合で含むことにより、塗料組成物を、回転霧化頭を備える静電塗装ガンを備える静電塗装装置を用いて基材上に塗布し、焼成したときに、より好ましい性能を有する防眩膜が形成される。液状媒体(B1)の割合が86質量%未満であると、溶媒揮発乾燥前に平滑化するため凹凸構造が形成できず、焼成後の膜が防眩膜とはならないおそれがある。 The content of the liquid medium (B1) having a boiling point of 150 ° C. or lower in the coating composition is 86% by mass or more with respect to the total amount of the liquid medium (B). By containing the liquid medium (B1) in a proportion of 86% by mass or more, the coating composition was applied onto the substrate and fired using an electrostatic coating apparatus equipped with an electrostatic coating gun equipped with a rotary atomizing head. Occasionally, an antiglare film with more favorable performance is formed. If the proportion of the liquid medium (B1) is less than 86% by mass, the uneven structure cannot be formed because the liquid medium (B1) is smoothed before the solvent is volatilized and dried, and the film after firing may not be an antiglare film.
 液状媒体(B1)の含有量は、液状媒体(B)の全量に対して90質量%以上が好ましい。液状媒体(B1)の含有量は、液状媒体(B)の全量に対して100質量%であっても構わない。 The content of the liquid medium (B1) is preferably 90% by mass or more with respect to the total amount of the liquid medium (B). The content of the liquid medium (B1) may be 100% by mass with respect to the total amount of the liquid medium (B).
 塗料組成物が粒子(C)を含む場合、粒子(C)の含有量は、塗料組成物中の固形分(100質量%)(ただし、シリカ前駆体(A)はSiO換算とする。)のうち、3~40質量%が好ましく、5~30質量%がより好ましい。 When the coating composition contains particles (C), the content of the particles (C) is the solid content (100% by mass) in the coating composition (however, the silica precursor (A) is converted to SiO 2). Of these, 3 to 40% by mass is preferable, and 5 to 30% by mass is more preferable.
 粒子(C)の含有量が前記範囲の下限値以上であれば、防眩膜付き基材のヘイズが充分に高くなり、かつ防眩膜の表面における60°鏡面光沢度が充分に低くなることから、防眩効果が充分に発揮される。粒子(C)の含有量が前記範囲の上限値以下であれば、充分な耐摩耗強度が得られる。 When the content of the particles (C) is at least the lower limit of the above range, the haze of the substrate with the antiglare film is sufficiently high, and the 60 ° mirror gloss on the surface of the antiglare film is sufficiently low. Therefore, the anti-glare effect is fully exhibited. When the content of the particles (C) is not more than the upper limit of the above range, sufficient wear resistance can be obtained.
 塗料組成物が粒子(C)を含み、かつ粒子(C)が鱗片状粒子(C1)を含む場合、鱗片状粒子(C1)の含有量は、粒子(C)の全量(100質量%)のうち、20質量%以上が好ましく、30質量%以上がより好ましい。上限は特に限定されず、100質量%であってもよい。 When the coating composition contains the particles (C) and the particles (C) contain the scaly particles (C1), the content of the scaly particles (C1) is the total amount (100% by mass) of the particles (C). Of these, 20% by mass or more is preferable, and 30% by mass or more is more preferable. The upper limit is not particularly limited and may be 100% by mass.
 鱗片状粒子(C1)の割合が前記の下限値以上であれば、防眩効果がより優れたものとなる。また、凹凸高さが厚くても防眩膜のクラックや膜剥がれが充分に抑えられる。 When the ratio of scaly particles (C1) is equal to or higher than the above lower limit, the antiglare effect is more excellent. Further, even if the uneven height is thick, cracks and peeling of the antiglare film can be sufficiently suppressed.
(塗料組成物の粘度)
 塗料組成物の塗布温度における粘度(以下、「液粘度」ともいう。)は、0.003Pa・s以下(3mPa・s以下)が好ましく、0.001~0.003Pa・sが特に好ましい。液粘度が前記の上限値以下であれば、塗料組成物を噴霧したときに形成される液滴がより微細になり、所望の表面形状の防眩膜が形成されやすい。液粘度が前記の下限値以上であれば、防眩膜の表面凹凸形状が均一となる。
(Viscosity of paint composition)
The viscosity of the coating composition at the coating temperature (hereinafter, also referred to as “liquid viscosity”) is preferably 0.003 Pa · s or less (3 mPa · s or less), and particularly preferably 0.001 to 0.003 Pa · s. When the liquid viscosity is not more than the above upper limit value, the droplets formed when the coating composition is sprayed become finer, and an antiglare film having a desired surface shape is likely to be formed. When the liquid viscosity is at least the above lower limit value, the surface uneven shape of the antiglare film becomes uniform.
 塗料組成物の粘度は、B型粘度計により測定される値である。 The viscosity of the paint composition is a value measured by a B-type viscometer.
(塗料組成物の調製方法)
 塗料組成物は、たとえば、シリカ前駆体(A)が液状媒体(B)に溶解した溶液を調製し、必要に応じて追加の液状媒体(B)、粒子(C)の分散液等を混合することによって調製できる。
(Preparation method of paint composition)
As the coating composition, for example, a solution in which the silica precursor (A) is dissolved in the liquid medium (B) is prepared, and if necessary, an additional liquid medium (B), a dispersion liquid of the particles (C), and the like are mixed. Can be prepared by
 粒子(C)が鱗片状粒子(C1)を含み、シリカ前駆体(A)がテトラアルコキシシランの加水分解縮合物を含む場合は、所望の性能を有する防眩膜を高いレベルで再現性よく製造できる点から、テトラアルコキシシランの溶液、またはテトラアルコキシシランおよびその加水分解縮合物の混合物の溶液と、鱗片状粒子(C1)の分散液とを混合した後、鱗片状粒子(C1)の存在下でテトラアルコキシシランを加水分解し、縮合させることが好ましい。 When the particles (C) contain scaly particles (C1) and the silica precursor (A) contains a hydrolyzed condensate of tetraalkoxysilane, an antiglare film having desired performance can be produced at a high level and with good reproducibility. From the possible point, after mixing a solution of tetraalkoxysilane or a solution of a mixture of tetraalkoxysilane and its hydrolyzed condensate with a dispersion of scaly particles (C1), in the presence of scaly particles (C1). It is preferable to hydrolyze and condense the tetraalkoxysilane.
 〔導電性膜形成工程〕
 導電性膜形成工程では、マスキング材の表面に導電性膜を形成する。導電性膜を形成したマスキング材を用いてマスクすることで、マスキング材近傍にも防眩膜塗布液が均一に付着する。これは、電圧印加によるマスキング端面の静電反発が、導電性膜により緩和され、防眩膜が均一に製膜されるためと考えられる。
[Conductive film forming process]
In the conductive film forming step, a conductive film is formed on the surface of the masking material. By masking with a masking material on which a conductive film is formed, the antiglare film coating liquid adheres uniformly to the vicinity of the masking material. It is considered that this is because the electrostatic repulsion of the masking end face due to the application of voltage is alleviated by the conductive film, and the antiglare film is uniformly formed.
(導電性膜)
 導電性膜は、導電性材料から構成される膜が好ましく、金属膜がより好ましい。導電性膜の表面に絶縁層ができると帯電しやすいため、表面に酸化物等が形成されない導電性膜が好ましい。酸化の傾向は標準電極電位で表されるので、金属としては、標準電極電位が正の金属が好ましく、より好ましくは0.78eV以上、特に好ましくは0.79eV以上の金属が好ましい。具体的には、導電性膜は貴金属膜が好ましく、貴金属としてはPt、Au、及びAgが特に好ましい。
(Conductive film)
The conductive film is preferably a film made of a conductive material, and more preferably a metal film. If an insulating layer is formed on the surface of the conductive film, it is easily charged. Therefore, a conductive film in which oxides and the like are not formed on the surface is preferable. Since the tendency of oxidation is represented by the standard electrode potential, the metal preferably has a positive standard electrode potential, more preferably 0.78 eV or higher, and particularly preferably 0.79 eV or higher. Specifically, the conductive film is preferably a noble metal film, and the noble metal is particularly preferably Pt, Au, and Ag.
 標準電極電位が上記範囲であれば、化学的に安定した導電性膜を形成しやすい。なお、導電性膜の標準電極電位は、導電性膜を構成する材料の標準電極電位と同様である。すなわち、導電性膜の標準電極電位は正であることが好ましく、より好ましくは0.78eV以上、特に好ましくは0.79eV以上である。 If the standard electrode potential is within the above range, it is easy to form a chemically stable conductive film. The standard electrode potential of the conductive film is the same as the standard electrode potential of the material constituting the conductive film. That is, the standard electrode potential of the conductive film is preferably positive, more preferably 0.78 eV or higher, and particularly preferably 0.79 eV or higher.
 また、導電性膜の表面抵抗値は、低いほど基材によらずマスキング材界面の防眩膜がより均一になるため好ましい。Pt膜であれば10Ω/□以下が好ましく、10Ω/□以下がより好ましい。 Further, the lower the surface resistance value of the conductive film is, the more uniform the antiglare film at the interface of the masking material is, regardless of the base material, which is preferable. In the case of a Pt film, 10 6 Ω / □ or less is preferable, and 10 3 Ω / □ or less is more preferable.
(導電性膜の形成方法)
 導電性膜は、スパッタリング、及び蒸着等のドライコーティング法により形成できる。広い面積に形成できる観点からスパッタリング法が好ましい。
 スパッタリング時間は、1~10分が好ましく、材料や目的とする膜厚および表面抵抗値により適宜調整できる。
(Method of forming a conductive film)
The conductive film can be formed by a dry coating method such as sputtering and thin film deposition. The sputtering method is preferable from the viewpoint that it can be formed in a wide area.
The sputtering time is preferably 1 to 10 minutes, and can be appropriately adjusted depending on the material, the target film thickness, and the surface resistance value.
 〔マスキング工程〕
 図6の(a)および(b)に示すように、マスキング工程では、基材3の少なくとも一方の主面の一部を、導電性膜9が形成されたマスキング材7で覆う。このとき、マスキング材7の2つの主面のうち、導電性膜が形成されていない主面7A側を、基材側に積層する。
[Masking process]
As shown in FIGS. 6A and 6B, in the masking step, a part of at least one main surface of the base material 3 is covered with the masking material 7 on which the conductive film 9 is formed. At this time, of the two main surfaces of the masking material 7, the main surface 7A side on which the conductive film is not formed is laminated on the base material side.
(マスキング材)
 マスキング材としては、ポリエチレン系フィルム、アクリル系フィルムなどが使用できる。また、必要に応じてアクリル系の粘着剤が塗布されていてもよい。非防眩部の、上面視における形状には特に制限はなく、円形、楕円形、三角形、長方形、正方形、台形など、適宜選択できる。また、非防眩部の大きさは、防眩膜付き基材の用途に応じて適宜設計できる。非防眩部を所望の形状および大きさにするため、非防眩部に貼り付けるマスキング材は、適宜形状および大きさを調整すればよい。
 またマスキング材の厚さは、好ましくは500μm以下、より好ましくは300μm以下、特に好ましくは100μm以下である。マスキング材の厚さが上記範囲であれば、マスキング材側面の電圧印加による静電反発の影響を受けにくい。
(Masking material)
As the masking material, a polyethylene-based film, an acrylic-based film, or the like can be used. Further, an acrylic pressure-sensitive adhesive may be applied if necessary. The shape of the non-glare portion in the top view is not particularly limited, and a circle, an ellipse, a triangle, a rectangle, a square, a trapezoid, or the like can be appropriately selected. Further, the size of the non-glare portion can be appropriately designed according to the use of the base material with the antiglare film. In order to make the non-glare portion into a desired shape and size, the shape and size of the masking material to be attached to the non-glare portion may be adjusted as appropriate.
The thickness of the masking material is preferably 500 μm or less, more preferably 300 μm or less, and particularly preferably 100 μm or less. When the thickness of the masking material is within the above range, it is not easily affected by electrostatic repulsion due to the application of voltage on the side surface of the masking material.
 〔塗布工程〕
 塗布工程では、静電塗装装置を用いて、塗料組成物を帯電させ噴霧することにより基材上に塗布して塗膜を形成する。
[Applying process]
In the coating step, an electrostatic coating device is used to charge and spray the coating composition onto the substrate to form a coating film.
 基材上への前記塗料組成物の塗布は、静電塗装装置を用いて、前記塗料組成物を帯電させ噴霧することにより行われる。これにより、基材上に、前記塗料組成物の塗膜が形成される。 The coating composition is applied onto the substrate by charging and spraying the coating composition using an electrostatic coating device. As a result, a coating film of the coating composition is formed on the base material.
 (静電塗装装置)
 静電塗装装置としては、例えば回転霧化頭を備える静電塗装ガンを有する静電塗装装置を使用できる。塗料組成物は回転霧化頭において微粒化され、液滴となって放射状に飛散する。液滴は、マイナス電荷を帯びており、接地された基材に向かって静電引力によって引き寄せられる。そのため、基材の表面に効率よく付着する。
(Electrostatic coating device)
As the electrostatic coating device, for example, an electrostatic coating device having an electrostatic coating gun equipped with a rotary atomizing head can be used. The coating composition is atomized at the rotary atomizing head, becomes droplets, and scatters radially. The droplets are negatively charged and are attracted by electrostatic attraction towards the grounded substrate. Therefore, it efficiently adheres to the surface of the base material.
 静電塗装の際、基材の表面温度は、60℃以下が好ましく、15~50℃が好ましく、20~40℃がより好ましい。基材の表面温度が前記範囲の下限値以上であれば、塗料組成物の液状媒体(B)がすばやく蒸発するため、充分な凸凹を形成しやすい。基材の表面温度が前記範囲の上限値以下であれば、基材と防眩膜との密着性が良好となる。静電塗装ガンから噴霧される塗料組成物の温度(塗布温度)、コーティングブース内の温度の好ましい範囲も上記と同様である。 At the time of electrostatic coating, the surface temperature of the base material is preferably 60 ° C. or lower, preferably 15 to 50 ° C., and more preferably 20 to 40 ° C. When the surface temperature of the base material is equal to or higher than the lower limit of the above range, the liquid medium (B) of the coating composition evaporates quickly, so that sufficient unevenness is likely to be formed. When the surface temperature of the base material is not more than the upper limit of the above range, the adhesion between the base material and the antiglare film is good. The temperature (coating temperature) of the coating composition sprayed from the electrostatic coating gun and the preferable range of the temperature in the coating booth are also the same as described above.
 基材の搬送速度は、0.6~20.0m/分が好ましく、1.5~15.0m/分がより好ましい。基材の搬送速度が0.6m/分以上であれば、生産性が向上する。基材の搬送速度が20.0m/分以下であれば、基材上に塗布される塗料組成物の膜厚を制御しやすい。 The transport speed of the base material is preferably 0.6 to 20.0 m / min, more preferably 1.5 to 15.0 m / min. If the transport speed of the base material is 0.6 m / min or more, the productivity is improved. When the transport speed of the base material is 20.0 m / min or less, it is easy to control the film thickness of the coating composition applied on the base material.
 基材3搬送回数、すなわち基材に静電塗装ガンの下を通過させて塗料組成物を塗布する回数は、所望のヘイズ、及び光沢度等に応じて適宜設定できる。防眩性の点では、1回以上が好ましく、2回以上がより好ましい。生産性の点では、10回以下が好ましく、8回以下がより好ましい。 The number of times the base material 3 is conveyed, that is, the number of times the paint composition is applied to the base material by passing under the electrostatic coating gun can be appropriately set according to the desired haze, glossiness, and the like. From the viewpoint of anti-glare property, once or more is preferable, and twice or more is more preferable. From the viewpoint of productivity, 10 times or less is preferable, and 8 times or less is more preferable.
 静電塗装ガンの回転霧化頭の外周縁の直径(拡散面の最大径、以下「カップ径」ともいう。)Dcは、50mm以上が好ましく、55~90mmが好ましく、60~80mmが特に好ましい。カップ径が前記の下限値以上であれば、回転霧化頭の回転時の遠心力が大きく、回転霧化頭から飛散する塗料組成物の液滴がより微細になり、所望の表面形状の防眩膜が形成されやすい。カップ径が前記範囲の上限値以下であれば、安定的にカップを回転させることができる。 The diameter (maximum diameter of the diffusion surface, hereinafter also referred to as “cup diameter”) Dc of the outer peripheral edge of the rotary atomizing head of the electrostatic coating gun is preferably 50 mm or more, preferably 55 to 90 mm, and particularly preferably 60 to 80 mm. .. When the cup diameter is equal to or larger than the above lower limit, the centrifugal force during rotation of the rotary atomizing head is large, the droplets of the coating composition scattered from the rotary atomizing head become finer, and the desired surface shape is prevented. Dazzling film is likely to be formed. If the cup diameter is not more than the upper limit of the above range, the cup can be rotated stably.
 静電塗装ガンのノズル先端(すなわち、塗料組成物の噴霧方向における回転霧化頭の前端)から基材までの距離(以下、ノズル高さともいう。)は、基材3幅、基材3に塗布される塗料組成物の膜厚等に応じて適宜調整される。通常は、150~450mmである。 The distance from the nozzle tip of the electrostatic coating gun (that is, the front end of the rotary atomizing head in the spraying direction of the coating composition) to the base material (hereinafter, also referred to as nozzle height) is the base material 3 width and the base material 3 It is appropriately adjusted according to the film thickness of the coating composition applied to the coating composition. Usually, it is 150 to 450 mm.
 基材3での距離を近づけると塗布効率は高まるが、近づけ過ぎると放電を起こす可能性が高くなり安全上の問題が発生する。一方、基材での距離が離れるにしたがって塗布領域は拡大するが、離れ過ぎると塗布効率の低下が問題となる。 If the distance between the base materials 3 is too close, the coating efficiency will increase, but if the distance is too close, the possibility of electric discharge will increase and safety problems will occur. On the other hand, the coating area expands as the distance between the base materials increases, but if the distance is too large, the coating efficiency decreases.
 静電塗装ガンに印加される電圧は、基材上に塗布される塗料組成物の塗布量等に応じて適宜調整され、通常は、-30kV~-90kVの範囲である。電圧の絶対値が大きい方が塗着効率が高まる傾向にある。なお、液特性、塗布環境および塗布条件にもよるが、印加電圧がある程度の高さになると、塗布効率は飽和に達する。 The voltage applied to the electrostatic coating gun is appropriately adjusted according to the amount of the coating composition applied on the substrate and the like, and is usually in the range of -30 kV to -90 kV. The larger the absolute value of the voltage, the higher the coating efficiency tends to be. Although it depends on the liquid characteristics, the coating environment and the coating conditions, the coating efficiency reaches saturation when the applied voltage reaches a certain level.
 静電塗装ガンへの塗料組成物の供給量(以下、コート液量ともいう。)は、基材上に塗布される塗料組成物の塗布量等に応じて適宜調整される。好ましくは、70mL/分未満であり、より好ましくは10~50mL/分である。 The supply amount of the coating composition to the electrostatic coating gun (hereinafter, also referred to as the coating liquid amount) is appropriately adjusted according to the coating amount of the coating composition applied on the substrate and the like. It is preferably less than 70 mL / min, more preferably 10-50 mL / min.
 コート液量が前記の上限値以下であれば、回転霧化頭から飛散する塗料組成物の液滴がより微細になり、所望の表面形状の防眩膜が形成されやすい。コート液量が前記の下限値以上であれば、面内ヘイズ率の分布が小さくなる。 When the amount of the coating liquid is not more than the above upper limit value, the droplets of the coating composition scattered from the rotary atomizing head become finer, and an antiglare film having a desired surface shape is likely to be formed. When the amount of the coating liquid is equal to or more than the above lower limit value, the distribution of the in-plane haze rate becomes small.
 静電塗装ガンに供給されるエアの圧力は、基材上に塗布される塗料組成物の塗布量等に応じて適宜調整され、通常は、0.01MPa~0.5MPaである。静電塗装ガンに供給するエア圧によって、塗料組成物の塗布パターンを制御することができる。 The pressure of the air supplied to the electrostatic coating gun is appropriately adjusted according to the amount of the coating composition applied on the substrate and the like, and is usually 0.01 MPa to 0.5 MPa. The coating pattern of the coating composition can be controlled by the air pressure supplied to the electrostatic coating gun.
 塗料組成物の塗布パターンとは、静電塗装ガンから噴霧された塗料組成物の液滴によって基材上に形成されるパターンを示す。 The coating pattern of the coating composition indicates a pattern formed on the substrate by the droplets of the coating composition sprayed from the electrostatic coating gun.
 静電塗装ガン内のエアタービンモータに供給されるエアのエア圧を高くすると、回転軸の回転速度が上昇し、回転霧化頭の回転速度が上昇することにより、回転霧化頭から飛散する液滴の大きさが小さくなり、塗布パターンが大きくなる傾向を示す。 When the air pressure of the air supplied to the air turbine motor in the electrostatic coating gun is increased, the rotation speed of the rotating shaft increases, and the rotation speed of the rotating atomizing head increases, so that the air is scattered from the rotating atomizing head. The size of the droplets tends to be smaller, and the coating pattern tends to be larger.
 静電塗装ガン内のエア供給路に供給されるエアのエア圧を高くし、吹出口から吹き出されるエア(シェービングエア)のエア圧を高くすると、回転霧化頭から飛散する液滴の広がりが抑制され、塗布パターンが小さくなる傾向を示す。 When the air pressure of the air supplied to the air supply path in the electrostatic coating gun is increased and the air pressure of the air (shaving air) blown out from the outlet is increased, the droplets scattered from the rotary atomizing head spread. Is suppressed, and the coating pattern tends to become smaller.
 エアタービンモータに供給するエアのエア圧は、回転霧化頭の回転速度(以下、カップ回転数ともいう。)に応じて設定される。該エア圧が高いほど、カップ回転数が多くなる。 The air pressure of the air supplied to the air turbine motor is set according to the rotation speed of the rotary atomizing head (hereinafter, also referred to as the cup rotation speed). The higher the air pressure, the higher the cup rotation speed.
 カップ回転数は、30,000rpm以上が好ましく、30,000~80,000rpmがより好ましく、32,000~80,000rpmが特に好ましい。 The cup rotation speed is preferably 30,000 rpm or more, more preferably 30,000 to 80,000 rpm, and particularly preferably 32,000 to 80,000 rpm.
 カップ回転数が前記範囲の下限値以上であれば、回転霧化頭から飛散する塗料組成物の液滴がより微細になり、所望の表面形状の防眩膜が形成されやすい。カップ回転数が前記範囲の上限値以下であれば、塗着効率に優れる。 When the cup rotation speed is equal to or higher than the lower limit of the above range, the droplets of the coating composition scattered from the rotary atomizing head become finer, and an antiglare film having a desired surface shape is likely to be formed. When the cup rotation speed is not more than the upper limit of the above range, the coating efficiency is excellent.
 カップ回転数は、静電塗装装置に付属の計測器(図示略)により測定できる。 The cup rotation speed can be measured by the measuring instrument (not shown) attached to the electrostatic coating device.
 エア供給路に供給するエアのエア圧は、シェービングエアのエア圧(以下、シェーブ圧ともいう。)が0.01~0.3MPaの範囲内となる圧力とすることが好ましい。シェーブ圧は、0.01~0.25MPaがより好ましく、0.01~0.2MPaが特に好ましい。シェーブ圧が前記範囲の下限値以上であれば、液滴の飛散防止効果向上による塗着効率向上に優れる。シェーブ圧が前記範囲の上限値以下であれば、塗布幅を確保できる。 The air pressure of the air supplied to the air supply path is preferably a pressure in which the air pressure of the shaving air (hereinafter, also referred to as shaving pressure) is in the range of 0.01 to 0.3 MPa. The shave pressure is more preferably 0.01 to 0.25 MPa, and particularly preferably 0.01 to 0.2 MPa. When the shave pressure is at least the lower limit of the above range, the coating efficiency is improved by improving the effect of preventing the scattering of droplets. When the shave pressure is not more than the upper limit of the above range, the coating width can be secured.
 〔マスキング除去工程〕
 マスキング除去工程では、マスキング材を基材上から除去する。図6の(c)および(d)に示すように、マスキング材7を除去することで塗膜51が共に除去されるため、基材3のマスキング材で覆わなかった部分は防眩膜5が形成され防眩部50となり、基材3のマスキング材で覆われた部分は防眩膜5が形成されず非防眩部30となる。
[Masking removal process]
In the masking removing step, the masking material is removed from the substrate. As shown in FIGS. 6 (c) and 6 (d), since the coating film 51 is removed together by removing the masking material 7, the antiglare film 5 is applied to the portion of the base material 3 that is not covered with the masking material. The antiglare portion 50 is formed, and the antiglare film 5 is not formed on the portion of the base material 3 covered with the masking material, and the non-glare portion 30 is formed.
 除去方法としては、端面の一部を治具でめくって剥がしてもよいし、粘着剤の付着した治具をマスキングの周辺部に押し当てて剥がしてもよい。また、後述する焼成工程時に焼き飛ばしてもよい。 As a removal method, a part of the end face may be peeled off with a jig, or a jig with an adhesive may be pressed against the peripheral part of the masking to be peeled off. Further, it may be burnt off during the firing step described later.
 なお、マスキング除去は、後述する焼成工程後に行ってもよい。 The masking removal may be performed after the firing step described later.
 〔焼成工程〕
 焼成工程では、塗布工程で基材上に形成された塗料組成物の塗膜を焼成して防眩膜とする。
[Baking process]
In the firing step, the coating film of the coating composition formed on the substrate in the coating step is fired to obtain an antiglare film.
 焼成は、塗料組成物を基材に塗布する際に基材を加熱することによって塗布と同時に行ってもよく、塗料組成物を基材に塗布した後、塗膜を加熱することによって行ってもよい。 The firing may be performed at the same time as the coating by heating the substrate when the coating composition is applied to the substrate, or may be performed by heating the coating film after the coating composition is applied to the substrate. good.
 焼成温度は、30℃以上が好ましく、たとえば基材がガラスである場合は100~750℃がより好ましく、150~550℃がさらに好ましい。 The firing temperature is preferably 30 ° C. or higher, more preferably 100 to 750 ° C., and even more preferably 150 to 550 ° C., for example, when the base material is glass.
 以上説明した製造方法にあっては、基材上に防眩膜を形成する際、マスキング材でマスクされた領域の近傍まで略均一に防眩膜を形成できる。これにより、防眩部と非防眩部とを有し、防眩部の非防眩部との境界付近において、防眩膜が基材上に略均一に形成され、かつ、防眩部と非防眩部の境界が鮮明な防眩膜付き基材を製造することができる。 In the manufacturing method described above, when the antiglare film is formed on the base material, the antiglare film can be formed substantially uniformly up to the vicinity of the region masked by the masking material. As a result, the antiglare portion has an antiglare portion and a non-glare portion, and the antiglare film is formed substantially uniformly on the base material in the vicinity of the boundary between the antiglare portion and the non-glare portion, and the antiglare portion and the non-glare portion are formed. It is possible to produce a base material with an antiglare film in which the boundary of the non-glare portion is clear.
 以下、実施例を示して本発明を詳細に説明する。ただし、本発明は、以下の記載によって限定されない。
 後述する例1~例8のうち、例1~例3、例6~例8は実施例であり、例4、例5は比較例である。
Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited by the following description.
Of Examples 1 to 8 described later, Examples 1 to 3 and Examples 6 to 8 are examples, and Examples 4 and 5 are comparative examples.
<塗料調製>
 (鱗片状シリカ粒子分散液(a)の製造)
 [シリカ粉体の形成]
 ケイ酸ナトリウム水溶液(SiO/NaO=3.0(モル比)、SiO濃度:21.0質量%)の2000mL/分と、硫酸水溶液(硫酸濃度:20.0質量%)とを、放出口を備えた容器内に別個の導入口から導入して瞬間的に均一混合し、シリカゾルを生成させた。2液の流量比は、放出口から空中に放出されるシリカゾルのpHが7.5~8.0になるように調整した。シリカゾルを、放出口から連続的に空気中に放出した。シリカゾルは、空気中で球形液滴となり、放物線を描いて約1秒間滞空する間に空中でゲル化した。ゲル化したものを、水を張った熟成槽に落下させて熟成させた。熟成後、pHを6に調整し、さらに充分に水洗して、シリカヒドロゲルを得た。得られたシリカヒドロゲルは、球状粒子であり、平均粒子径は6mmであった。シリカヒドロゲル中のSiOに対する水の質量比は、4.55倍であった。
<Paint preparation>
(Manufacturing of scaly silica particle dispersion liquid (a))
[Formation of silica powder]
2000 mL / min of sodium silicate aqueous solution (SiO 2 / Na 2 O = 3.0 (molar ratio), SiO 2 concentration: 21.0% by mass) and sulfuric acid aqueous solution (sulfuric acid concentration: 20.0% by mass). , Introduced from a separate inlet into a container with a discharge port and instantaneously uniformly mixed to produce a silica sol. The flow rate ratio of the two liquids was adjusted so that the pH of the silica sol released into the air from the discharge port was 7.5 to 8.0. The silica sol was continuously released into the air from the discharge port. The silica sol became spherical droplets in the air and gelled in the air while staying in the air for about 1 second in a parabolic shape. The gelled product was dropped into a water-filled aging tank for aging. After aging, the pH was adjusted to 6 and further washed thoroughly with water to obtain a silica hydrogel. The obtained silica hydrogel was spherical particles and had an average particle diameter of 6 mm. The mass ratio of water to SiO 2 in the silica hydrogel was 4.55 times.
 シリカヒドロゲルを、ダブルロールクラッシャを用いて平均粒子径2.5mmに粗粉砕した。容量17mのオートクレーブ(アンカー型撹拌羽根付き)に、系内の総SiO/NaOが12.0(モル比)になるように、シリカヒドロゲル(SiO濃度:18質量%)(7249kg)およびケイ酸ナトリウム水溶液(SiO濃度:29.00質量%、NaO濃度:9.42質量%、SiO/NaO=3.18(モル比))(1500kg)を仕込んだ。これに水(1560kg)を加え、10rpmで撹拌しながら飽和圧力1.67MPaの高圧水蒸気(4682kg)を加え、185℃まで昇温し、5時間水熱処理を行い、シリカ分散体を得た。系内の総SiO濃度は、12.5質量%であった。
 得られたシリカ分散体を濾過、洗浄してシリカ粉体を取り出し、TEMを用いて観察した。シリカ粉体にシリカ凝集体が含まれることが確認された。レーザ回折/散乱式粒子径分布測定装置(株式会社堀場製作所製、LA-950、以下同じ。)によるシリカ粉体の平均粒子径は、8.33μmであった。
Silica hydrogel was coarsely pulverized using a double roll crusher to an average particle size of 2.5 mm. Silica hydrogel (SiO 2 concentration: 18% by mass) (7249 kg) so that the total SiO 2 / Na 2 O in the system is 12.0 (molar ratio) in an autoclave with a capacity of 17 m 3 (with an anchor type stirring blade). ) And an aqueous sodium silicate solution (SiO 2 concentration: 29.00% by mass, Na 2 O concentration: 9.42% by mass, SiO 2 / Na 2 O = 3.18 (molar ratio)) (1500 kg) were charged. Water (1560 kg) was added thereto, high-pressure steam (4682 kg) having a saturation pressure of 1.67 MPa was added while stirring at 10 rpm, the temperature was raised to 185 ° C., and water heat treatment was performed for 5 hours to obtain a silica dispersion. The total SiO 2 concentration in the system was 12.5% by mass.
The obtained silica dispersion was filtered and washed to remove silica powder, which was observed using TEM. It was confirmed that the silica powder contained silica aggregates. The average particle size of the silica powder by the laser diffraction / scattering type particle size distribution measuring device (manufactured by HORIBA, Ltd., LA-950, the same applies hereinafter) was 8.33 μm.
 [酸処理]
 シリカ粉体を含むシリカ分散体(赤外線水分計によって計測された固形分濃度:13.3質量%、pH:11.4)(10100g)をスターラで撹拌しながら、硫酸水溶液(硫酸濃度:20質量%)(1083g)を加えた。添加後のpHは1.5であった。そのまま室温下で18時間撹拌を継続し、処理を行った。
 酸処理後のシリカ分散体を濾過し、SiOの1g当たり50mLの水で洗浄した。洗浄後のシリカケーキを回収し、水を加えスラリー状のシリカ分散体を調製した。赤外線水分計で計測したシリカ分散体の固形分濃度は、14.7質量%であり、pHは4.8であった。
[Acid treatment]
Aqueous sulfuric acid solution (sulfuric acid concentration: 20% by mass) while stirring a silica dispersion containing silica powder (solid content concentration measured by an infrared moisture meter: 13.3% by mass, pH: 11.4) (10100 g) with a stirrer. %) (1083 g) was added. The pH after the addition was 1.5. Stirring was continued for 18 hours at room temperature as it was, and the treatment was carried out.
The acid-treated silica dispersion was filtered and washed with 50 mL of water per gram of SiO 2. The washed silica cake was collected and water was added to prepare a slurry-like silica dispersion. The solid content concentration of the silica dispersion measured by the infrared moisture meter was 14.7% by mass, and the pH was 4.8.
 [アルミン酸処理]
 酸処理後のシリカ分散体(7000g)を10Lのフラスコへ入れ、オーバーヘッドスターラで撹拌しながら、アルミン酸ナトリウム水溶液(濃度:2.02質量%)(197g)(Al/SiO=0.00087(モル比))を少量ずつ加えた。添加後のpHは、7.2であった。添加後、室温下で1時間撹拌を継続した。その後、昇温し加熱還流条件で4時間処理を行った。
[Aluminate treatment]
The acid-treated silica dispersion (7000 g) is placed in a 10 L flask, and while stirring with an overhead stirrer, an aqueous solution of sodium aluminate (concentration: 2.02% by mass) (197 g) (Al 2 O 3 / SiO 2 = 0). .00087 (molar ratio)) was added little by little. The pH after the addition was 7.2. After the addition, stirring was continued for 1 hour at room temperature. Then, the temperature was raised and the treatment was carried out under heating and reflux conditions for 4 hours.
 [アルカリ処理]
 アルミン酸処理後のシリカ分散体(775g)をスターラで撹拌しながら、水酸化カリウム(43.5g)(1ミリモル/g-シリカ)および水(1381g)を加えた。添加後のpHは9.9であった。そのまま室温下で24時間撹拌を継続し、処理を行った。アルカリ処理後のシリカ粉体の平均粒子径は、7.98μmであった。
[Alkaline treatment]
Potassium hydroxide (43.5 g) (1 mmol / g-silica) and water (1381 g) were added while stirring the silica dispersion (775 g) treated with aluminic acid with a stirrer. The pH after the addition was 9.9. Stirring was continued for 24 hours at room temperature as it was, and the treatment was carried out. The average particle size of the silica powder after the alkali treatment was 7.98 μm.
 [湿式解砕]
 アルカリ処理後のシリカ分散体を、超高圧湿式微粒化装置(吉田機械興業株式会社製、ナノマイザー(登録商標)NM2-2000AR、孔径120μm衝突型ジェネレータ)を用い、吐出圧力130~140MPa、30パスで処理を行い、シリカ粉体を解砕、分散化した。解砕後のシリカ分散体のpHは、9.3であり、レーザ回折/散乱式粒子径分布測定装置による平均粒子径は、0.182μmであった。
[Wet crushing]
The silica dispersion after alkali treatment is subjected to an ultra-high pressure wet atomizer (Nanomizer (registered trademark) NM2-2000AR, pore size 120 μm collision type generator) manufactured by Yoshida Kikai Kogyo Co., Ltd. at a discharge pressure of 130 to 140 MPa and 30 passes. The treatment was performed to crush and disperse the silica powder. The pH of the silica dispersion after crushing was 9.3, and the average particle size by the laser diffraction / scattering type particle size distribution measuring device was 0.182 μm.
 [カチオン交換]
 解砕後のシリカ分散体(1550g)にカチオン交換樹脂(161mL)を添加し、オーバーヘッドスターラで撹拌しながら、室温下で17時間処理した。その後、カチオン交換樹脂を分離した。カチオン交換後のシリカ分散体のpHは、3.7であった。
[Cation exchange]
A cation exchange resin (161 mL) was added to the crushed silica dispersion (1550 g), and the mixture was treated at room temperature for 17 hours while stirring with an overhead stirrer. Then, the cation exchange resin was separated. The pH of the silica dispersion after cation exchange was 3.7.
 [濃度調整]
 カチオン交換後のシリカ分散体を限外濾過膜(ダイセンメンブレンシステム製、MOLSEP(登録商標)、分画分子量:150000)にて処理し、濃度調整した。
 得られたシリカ分散体(鱗片状シリカ粒子分散液(a))からシリカ粒子を取り出し、TEMにて観察したところ、不定形シリカ粒子を実質的に含まない鱗片状シリカ粒子のみであることが確認された。
 鱗片状シリカ粒子分散液(a)に含まれる鱗片状シリカ粒子の平均粒子径は、湿式解砕後と同じであり、0.182μmであった。平均アスペクト比は、188であった。
 赤外線水分計で計測した鱗片状シリカ粒子分散液(a)の固形分濃度は、5.0質量%であった。
[Concentration adjustment]
The silica dispersion after cation exchange was treated with an ultrafiltration membrane (MOLSEP (registered trademark) manufactured by Daisen Membrane System, molecular weight cut-off: 150,000) to adjust the concentration.
When the silica particles were taken out from the obtained silica dispersion (scaly silica particle dispersion liquid (a)) and observed by TEM, it was confirmed that only the scaly silica particles were substantially free of amorphous silica particles. Was done.
The average particle size of the scaly silica particles contained in the scaly silica particle dispersion liquid (a) was the same as that after wet crushing, and was 0.182 μm. The average aspect ratio was 188.
The solid content concentration of the scaly silica particle dispersion liquid (a) measured by an infrared moisture meter was 5.0% by mass.
 (ベース液(b)の調製)
 変性エタノール(日本アルコール販売株式会社製、ソルミックス(登録商標)AP-11、エタノールを主剤とした混合溶媒、沸点78℃。以下同じ。)(35.90g)を撹拌しながら、シリケート40(多摩化学工業株式会社製、テトラエトキシシランおよびその加水分解縮合物の混合物、固形分濃度(SiO換算):40質量%、溶媒:エタノール(10%以下)。以下同じ。)(4.39g)および鱗片状シリカ粒子分散液(a)(2.09g)を加え、30分間撹拌した。これに、イオン交換水(3.71g)および硝酸水溶液(硝酸濃度:61質量%)(0.06g)の混合液を加え、60分間撹拌し、固形分濃度(SiO換算)が4.0質量%のベース液(b)を調製した。なお、SiO換算固形分濃度は、シリケート40のすべてのSiがSiOに転化したときの固形分濃度である。
(Preparation of base liquid (b))
Denatured ethanol (manufactured by Japan Alcohol Trading Co., Ltd., Solmix (registered trademark) AP-11, mixed solvent containing ethanol as the main component, boiling point 78 ° C. The same applies hereinafter) (35.90 g) is stirred while silicate 40 (Tama). Manufactured by Kagaku Kogyo Co., Ltd., a mixture of tetraethoxysilane and its hydrolyzed condensate, solid content concentration (SiO 2 equivalent): 40% by mass, solvent: ethanol (10% or less). The same shall apply hereinafter) (4.39 g) and. The scaly silica particle dispersion (a) (2.09 g) was added, and the mixture was stirred for 30 minutes. A mixture of ion-exchanged water (3.71 g) and an aqueous nitric acid solution (nitric acid concentration: 61% by mass) (0.06 g) was added thereto, and the mixture was stirred for 60 minutes to obtain a solid content concentration (SiO 2 conversion) of 4.0. A mass% base solution (b) was prepared. The SiO 2 equivalent solid content concentration is the solid content concentration when all Si of the silicate 40 is converted to SiO 2.
 (シラン化合物溶液(c)の調製)
 変性エタノール(3.85g)を撹拌しながら、イオン交換水(0.37g)および硝酸水溶液(硝酸濃度:61質量%)(0.01g)の混合液を加え、5分間撹拌した。次いで、1,6-ビス(トリメトキシシリル)ヘキサン(信越化学工業株式会社製、KBM-3066、固形分濃度(SiO換算):37質量%)(0.54g)を加え、ウォーターバス中60℃で15分間撹拌し、固形分濃度(SiO換算)が4.3質量%のシラン化合物溶液(c)を調製した。
(Preparation of silane compound solution (c))
While stirring the denatured ethanol (3.85 g), a mixture of ion-exchanged water (0.37 g) and an aqueous nitric acid solution (nitric acid concentration: 61% by mass) (0.01 g) was added, and the mixture was stirred for 5 minutes. Next, 1,6-bis (trimethoxysilyl) hexane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-3066, solid content concentration (SiO 2 conversion): 37% by mass) (0.54 g) was added, and 60 in a water bath. The mixture was stirred at ° C. for 15 minutes to prepare a silane compound solution (c) having a solid content concentration (SiO 2 equivalent) of 4.3% by mass.
 (塗布液(d)の調製)
 ベース液(b)(46.15g)を撹拌しながら、シラン化合物溶液(c)(4.77g)を加え、60分間撹拌した。これに、変性エタノール(154.19g)を加え、室温で30分間撹拌し、固形分濃度(SiO換算)が1.0質量%の塗布液(d)を得た。
(Preparation of coating liquid (d))
While stirring the base solution (b) (46.15 g), the silane compound solution (c) (4.77 g) was added, and the mixture was stirred for 60 minutes. Modified ethanol (154.19 g) was added thereto, and the mixture was stirred at room temperature for 30 minutes to obtain a coating liquid (d) having a solid content concentration (SiO 2 equivalent) of 1.0% by mass.
〔例1〕
<基材の洗浄>
 基材として、ソーダライムガラス(AGC株式会社製、FL1.1、サイズ:100mm×100mm、厚さ:1.1mmのガラス基板)を用意した。該ガラスの表面を炭酸水素ナトリウム水で洗浄後、イオン交換水でリンスし、乾燥させた。
[Example 1]
<Cleaning of base material>
As a base material, soda lime glass (manufactured by AGC Inc., FL1.1, size: 100 mm × 100 mm, thickness: 1.1 mm glass substrate) was prepared. The surface of the glass was washed with sodium hydrogen carbonate water, rinsed with ion-exchanged water, and dried.
<導電性膜付きマスキング材の作製>
 マスキング材としてマスキングフィルムA(東京フィルムサービス株式会社製の片面吸着タイプフィルムKTF-50SU)を使用した。マスキング材は12mmΦの円形にカットし使用した。カットしたマスキング材に、導電性膜として金属層(白金層)を設けた。具体的には、Ptターゲット(田中貴金属工業株式会社製、99.99%純度)をセットした実験用スパッタ装置(サンユー電子株式会社製SC-701)を用いて、設定電流5mAにて1分間スパッタリング処理して白金層を設け、マスキング材を作製した。
<Manufacturing of masking material with conductive film>
Masking film A (single-sided adsorption type film KTF-50SU manufactured by Tokyo Film Service Co., Ltd.) was used as the masking material. The masking material was cut into a circle of 12 mmΦ and used. A metal layer (platinum layer) was provided as a conductive film on the cut masking material. Specifically, using an experimental sputtering device (SC-701 manufactured by Sanyu Electronics Co., Ltd.) set with a Pt target (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., 99.99% purity), sputtering is performed for 1 minute at a set current of 5 mA. The treatment was performed to provide a platinum layer, and a masking material was prepared.
<マスキング材付き基材の作製>
 作製した導電性膜付きマスキング材をピンセットで挟み込み、基材の上にできるだけ泡が出ないよう貼りつけ、マスキング材付き基材を作成した。
<Making a base material with masking material>
The prepared masking material with a conductive film was sandwiched between tweezers and attached onto the base material so as not to generate bubbles as much as possible to prepare a base material with a masking material.
<静電塗装装置>
 静電塗装装置として、液体静電コーター(旭サナック株式会社製)を用意した。静電塗装ガンとしては、回転霧化式自動静電ガン(旭サナック株式会社製、サンベル、ESA120、70φカップ)を用意した。
 基材の接地をより取りやすくするために、導電性基板として金属メッシュトレイを用意した。
<Electrostatic coating device>
A liquid electrostatic coater (manufactured by Asahi Sanac Co., Ltd.) was prepared as an electrostatic coating device. As the electrostatic coating gun, a rotary atomization type automatic electrostatic gun (manufactured by Asahi Sanac Co., Ltd., Sunbell, ESA120, 70φ cup) was prepared.
A metal mesh tray was prepared as a conductive substrate in order to make it easier to ground the base material.
<静電塗装による防眩膜作製>
 静電塗装装置のコーティングブース内の温度を25±1℃、湿度を50%±10%に調節した。
 静電塗装装置のチェーンコンベア上に、あらかじめ30℃±3℃に加熱しておいた洗浄済みのマスキング材付き基材を、導電性基板を介して置いた。チェーンコンベアで等速搬送しながら、マスキング材付き基材のトップ面(フロート法による製造時に溶融スズに接した面の反対側の面)に、印加電圧-60kV、コート液量30mL、ノズル先端からガラス板までの距離250mm、シェーブ圧0.04MPa、カップ回転数30krpm、基板搬送速度2m/min、基板搬送回数2回の条件による静電塗装法によって塗布液(d)を塗布し、マスキング材付き基材上に塗膜を形成した。
 マスキング材付き基材から、先端に粘着シートを巻き付けた棒状治具を押し当てて引き剥がすことにより、マスキング材を除去した。その後、大気中、300℃で30分間焼成することで防眩膜を形成し、防眩部と非防眩部とを有する防眩膜付き基材を得た。
 マスキング材を除去する前の基材と、得られた防眩膜付き基材について、下記の評価を行った。結果を表1に示す。
<Making an anti-glare film by electrostatic coating>
The temperature inside the coating booth of the electrostatic coating device was adjusted to 25 ± 1 ° C., and the humidity was adjusted to 50% ± 10%.
A washed substrate with a masking material, which had been preheated to 30 ° C. ± 3 ° C., was placed on the chain conveyor of the electrostatic coating device via the conductive substrate. Applying voltage -60 kV, coating liquid volume 30 mL, from the tip of the nozzle to the top surface of the substrate with masking material (the surface opposite to the surface in contact with molten tin during manufacturing by the float method) while transporting at a constant speed with a chain conveyor. The coating liquid (d) is applied by an electrostatic coating method under the conditions of a distance to a glass plate of 250 mm, a shave pressure of 0.04 MPa, a cup rotation speed of 30 kHz, a substrate transfer speed of 2 m / min, and a substrate transfer frequency of 2 times, with a masking material. A coating film was formed on the substrate.
The masking material was removed from the base material with the masking material by pressing a rod-shaped jig around which an adhesive sheet was wrapped around the tip and peeling it off. Then, an antiglare film was formed by firing in the air at 300 ° C. for 30 minutes to obtain a base material with an antiglare film having an antiglare portion and a non-glare portion.
The following evaluation was performed on the base material before removing the masking material and the obtained base material with an antiglare film. The results are shown in Table 1.
<防眩膜の凹凸高さ測定>
 防眩膜の端部における凹凸高さを、触針式プロファイリングシステム(BRUKER社製、Dektak(登録商標)XT)を使用し、測定長さ1000μm、荷重は10mg、測定時間は10sec、探針先端径は12.5μmの条件にて測定した。得られた粗さデータはベースを平坦補正し、
 測定距離x:測定開始位置から測定方向への測定距離(μm)
 積算値y:防眩膜の凹凸高さ(0.333μm毎)の積算値(μm)
 として、x-y直交座標系に上記測定結果をプロットしたグラフを作成した。
 積算値y>5であって測定距離xが最小の点を防眩膜端部X1(x,y)とし、
 測定距離x=(x+100)における積算値yを示す点をA(x,y)とし、
 測定距離x=(x+200)における積算値yを示す点をB(x,y)として、
 A-B間の回帰直線を引いた。
 前記回帰直線のx切片をX2(x,0)として、
 x-x=P  ・・・(式1)
 として値P(μm)を求めた。
 1サンプルあたり、凹凸高さ測定および値Pの算出を3回行って、値Pの最大値、最小値および平均値を得た。
<Measurement of uneven height of antiglare film>
Using a stylus profiling system (BRUKER, Dektak (registered trademark) XT), the height of unevenness at the end of the antiglare film is measured with a measurement length of 1000 μm, a load of 10 mg, a measurement time of 10 sec, and a probe tip. The diameter was measured under the condition of 12.5 μm. The obtained roughness data flattenes the base and flattens it.
Measurement distance x: Measurement distance (μm) from the measurement start position to the measurement direction
Integrated value y: Integrated value (μm) of the uneven height of the antiglare film (every 0.333 μm)
As a result, a graph was created by plotting the above measurement results in an xy orthogonal coordinate system.
The integrated value y> 5 a was in the measured distance x is the minimum point and the anti-glare film end X1 (x 1, y 1) ,
Measured distance x a = a point indicating the integrated value y a in (x 1 +100) A (x a, y a) and,
Let B (x b , y b ) be a point indicating the integrated value y b at the measurement distance x b = (x a +200).
A regression line between AB was drawn.
The x-intercept of the regression line as X2 (x 2, 0),
x 1- x 2 = P ... (Equation 1)
The value P (μm) was obtained.
The unevenness height measurement and the calculation of the value P were performed three times per sample to obtain the maximum value, the minimum value and the average value of the value P.
(マスキング材除去前の端面性状観察)
 マスキング材付き基材に塗膜を静電塗装した後の、マスキング材近傍の表面形状は、株式会社キーエンス製レーザ顕微鏡VK-X100を用いて測定した。なお対物レンズは「×10」を使用し、倍率100倍で測定した。
(Observation of end face properties before removing masking material)
The surface shape in the vicinity of the masking material after the coating film was electrostatically coated on the base material with the masking material was measured using a laser microscope VK-X100 manufactured by KEYENCE CORPORATION. The objective lens used was "× 10", and the measurement was performed at a magnification of 100 times.
(表面抵抗測定)
 導電性膜付きマスキング材の表面抵抗値を、前述マスキング材と同様の処方でサイズのみ5mm×50mmの短冊状とした導電性膜付きフィルムを使用し、表面抵抗計(三菱ケミカル株式会社製、ロレスタT600)にて4探針プローブを用いて測定した。
(Measurement of surface resistance)
The surface resistance value of the masking material with a conductive film is the same as that of the masking material described above, and a strip-shaped film with a size of 5 mm x 50 mm is used. It was measured with a 4-probe probe at T600).
(標準電極電位測定)
 導電性膜付きマスキング材における導電性膜の標準電極電位を、第6版 電気化学便覧 (発行元丸善出版)から引用した。
(Standard electrode potential measurement)
The standard electrode potential of the conductive film in the masking material with the conductive film is quoted from the 6th edition Electrochemical Handbook (publisher Maruzen Publishing).
<目視による防眩膜端面のヘイズムラ>
 防眩膜端面(エッジ)にヘイズムラが視認できるかどうか判定した。
◎:全く視認できない
〇:ほとんど視認できない
×:ヘイズムラが視認できる
<Hazemura on the end face of the antiglare film by visual inspection>
It was determined whether or not Haismra could be visually recognized on the end face (edge) of the antiglare film.
◎: Not visible at all 〇: Almost invisible ×: Haismra can be seen
〔例2〕
 マスキング材の作製においてスパッタリング処理時間を2分間に変更した以外は、例1と同様にして防眩膜付き基材を作製し、上記の評価を行った。結果を表1に示す。
[Example 2]
A substrate with an antiglare film was prepared in the same manner as in Example 1 except that the sputtering treatment time was changed to 2 minutes in the preparation of the masking material, and the above evaluation was performed. The results are shown in Table 1.
〔例3〕
 マスキング材の作製においてスパッタリング処理時間を3分間に変更した以外は、例1と同様にして防眩膜付き基材を作製し、上記の評価を行った。結果を表1に示す。
[Example 3]
A substrate with an antiglare film was prepared in the same manner as in Example 1 except that the sputtering treatment time was changed to 3 minutes in the preparation of the masking material, and the above evaluation was performed. The results are shown in Table 1.
〔例4〕
 マスキング材の作製においてスパッタリング処理を行わず、導電性膜を設けなかった以外は、例1と同様にして防眩膜付き基材を作製し、上記の評価を行った。結果を表1に示す。
[Example 4]
A substrate with an antiglare film was prepared in the same manner as in Example 1 except that the masking material was not subjected to the sputtering treatment and the conductive film was not provided, and the above evaluation was performed. The results are shown in Table 1.
〔例5〕
 マスキング材としてマスキング材B(フジコピアン株式会社製の片面吸着タイプフィルムHG1)を使用した以外は、例4と同様にして防眩膜付き基材を作製し、上記の評価を行った。結果を表1に示す。
[Example 5]
A substrate with an antiglare film was prepared in the same manner as in Example 4 except that the masking material B (single-sided adsorption type film HG1 manufactured by Fujicopian Co., Ltd.) was used as the masking material, and the above evaluation was performed. The results are shown in Table 1.
〔例6〕
 スパッタリング処理に用いるターゲットをAuターゲット(田中貴金属工業株式会社製、99.99%純度)に変更し、マスキング材上に導電性膜として金(Au)層を形成した以外は、例3と同様にして防眩膜付き基材を作製した。マスキング材を除去する前の防眩膜付き基材、または、得られた防眩膜付き基材について、上記の評価を行った。結果を表1に示す。
[Example 6]
The target used for the sputtering process was changed to Au target (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., 99.99% purity), and the same as in Example 3 except that a gold (Au) layer was formed as a conductive film on the masking material. A substrate with an antiglare film was prepared. The above-mentioned evaluation was performed on the base material with an antiglare film before removing the masking material or the obtained base material with an antiglare film. The results are shown in Table 1.
〔例7〕
 スパッタリング処理に用いるターゲットをAgターゲット(田中貴金属工業株式会社製、99.99%純度)に変更し、マスキング材上に導電性膜として銀(Ag)層を形成した以外は、例3と同様にして防眩膜付き基材を作製した。マスキング材を除去する前の防眩膜付き基材、または、得られた防眩膜付き基材について、上記の評価を行った。結果を表1に示す。
[Example 7]
The target used for the sputtering treatment was changed to an Ag target (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., 99.99% purity), and the same as in Example 3 except that a silver (Ag) layer was formed as a conductive film on the masking material. A substrate with an antiglare film was prepared. The above-mentioned evaluation was performed on the base material with an antiglare film before removing the masking material or the obtained base material with an antiglare film. The results are shown in Table 1.
〔例8〕
 静電塗装における基板搬送回数を1回とした以外は、例3と同様にして防眩膜付き基材を作製した。マスキング材を除去する前の防眩膜付き基材、または、得られた防眩膜付き基材について、上記の評価を行った。結果を表1に示す。
[Example 8]
A substrate with an antiglare film was produced in the same manner as in Example 3 except that the number of times the substrate was conveyed in electrostatic coating was one. The above-mentioned evaluation was performed on the base material with an antiglare film before removing the masking material or the obtained base material with an antiglare film. The results are shown in Table 1.
 また、上記例3の防眩膜付き基材の防眩膜の凹凸高さについて、測定距離xと凹凸高さzの関係をx-y直交座標系にプロットしたグラフを図7に、測定距離xと凹凸高さ積算値yの関係をx-y直交座標系にプロットしたグラフを図8に示す。なお、図8において破線は回帰直線である。
 そして、例5の防眩膜付き基材の防眩膜の凹凸高さについて、測定距離xと凹凸高さzの関係をx-y直交座標系にプロットしたグラフを図9に、測定距離xと凹凸高さ積算値yの関係をx-y直交座標系にプロットしたグラフを図10に示す。なお、図10において破線は回帰直線である。
 さらに、上記各例3~6の基材において、マスキング材付き基材に塗膜を静電塗装した後の、マスキング材近傍の表面形状を上面方向から観察した顕微鏡写真を、それぞれ図11~14に示す。
Further, regarding the uneven height of the antiglare film of the base material with the antiglare film of Example 3, the measurement distance is shown in FIG. 7 as a graph in which the relationship between the measurement distance x and the unevenness height z is plotted in an xy Cartesian coordinate system. FIG. 8 shows a graph in which the relationship between x and the integrated value y of the unevenness height is plotted in the xy orthogonal coordinate system. In FIG. 8, the broken line is a regression line.
Then, regarding the uneven height of the antiglare film of the base material with the antiglare film of Example 5, a graph in which the relationship between the measurement distance x and the unevenness height z is plotted in an xy Cartesian coordinate system is shown in FIG. FIG. 10 shows a graph in which the relationship between the unevenness height integrated value y and the unevenness height integrated value y is plotted in the xy orthogonal coordinate system. In FIG. 10, the broken line is a regression line.
Further, in the base materials of Examples 3 to 6 above, micrographs of the surface shape in the vicinity of the masking material observed from the upper surface after electrostatically coating the base material with the masking material are taken in FIGS. 11 to 14, respectively. Shown in.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記結果から、値Pの平均値が-20μm以上である防眩膜付き基材は防眩膜が均一に形成され、かつ、防眩部と非防眩部の境界が鮮明であることが明らかである。 From the above results, it is clear that the antiglare film is uniformly formed on the base material with an antiglare film having an average value P of -20 μm or more, and the boundary between the antiglare portion and the non-glare portion is clear. Is.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the drawings, it goes without saying that the present invention is not limited to such examples. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the claims, which naturally belong to the technical scope of the present invention. Understood. Further, each component in the above-described embodiment may be arbitrarily combined as long as the gist of the invention is not deviated.
 なお、本出願は、2020年6月3日出願の日本特許出願(特願2020-097127)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on the Japanese patent application (Japanese Patent Application No. 2020-09712) filed on June 3, 2020, and the content thereof is incorporated as a reference in this application.
 本発明の一実施形態の防眩膜付き基材は、防眩部の非防眩部との境界付近において、防眩膜が基材上に略均一に形成され、かつ、防眩部と非防眩部の境界が鮮明な防眩膜付き基材である。カメラの解像度低下を防ぐ等の目的で、カバーとなる基板のうちカメラ視野に当たる部分には防眩膜を形成しないことが求められる、カメラを搭載したスマートフォン等の各種機器において有用である。 In the base material with an antiglare film according to the embodiment of the present invention, the antiglare film is formed substantially uniformly on the base material in the vicinity of the boundary between the antiglare portion and the non-glare portion, and the antiglare portion and the non-glare portion are not formed. It is a base material with an anti-glare film with a clear boundary of the anti-glare portion. For the purpose of preventing the resolution of the camera from deteriorating, it is useful in various devices such as smartphones equipped with a camera, which are required not to form an antiglare film on the portion of the cover substrate that corresponds to the field of view of the camera.
1 防眩膜付き基材
3 基材
3A 第一の主面
5 防眩膜
30 非防眩部
50 防眩部
51 塗膜
40 接続領域
7 マスキング材
7A 主面
9 導電性膜
1 Base material with anti-glare film 3 Base material 3A First main surface 5 Anti-glare film 30 Non-glare part 50 Anti-glare part 51 Coating film 40 Connection area 7 Masking material 7A Main surface 9 Conductive film

Claims (8)

  1.  基材と、前記基材の少なくとも一方の主面の一部に形成された防眩膜とを備える防眩膜付き基材であって、
     前記基材の前記少なくとも一方の主面に前記防眩膜が形成された防眩部と、
     前記基材の前記少なくとも一方の主面に前記防眩膜が形成されていない非防眩部とを有し、
     前記防眩部と前記非防眩部とが隣接する領域における下記測定方法による防眩膜の凹凸高さ測定結果から、下記(式1)を用いて求められる値Pの平均値が-20μm以上である、防眩膜付き基材。
     凹凸高さ測定方法:
     測定開始位置を、非防眩部上とする。
     測定方向を、防眩部と非防眩部との境界線に対し垂直であって、非防眩部から防眩部に向かう方向とする。
     防眩膜の凹凸高さを、非防眩部上の測定開始位置から防眩部にかけて0.333μm毎に測定する。
     値Pの算出方法:
     前記測定開始位置から測定方向への測定距離をx(μm)とし、防眩膜の凹凸高さの積算値をy(μm)として、x-y座標平面を作成し、
     積算値y>5であって測定距離xが最小の点を防眩膜端部X1(x,y)とし、
     測定距離x=(x+100)における積算値yを示す点をA(x,y)とし、
     測定距離x=(x+200)における積算値yを示す点をB(x,y)として、
     A-B間の回帰直線を引き、
     前記回帰直線のx切片をX2(x,0)とし、下記(式1)により値P(μm)を求める。
     x-x=P  ・・・(式1)
    A base material with an antiglare film comprising a base material and an antiglare film formed on a part of at least one main surface of the base material.
    An antiglare portion having the antiglare film formed on at least one main surface of the base material, and an antiglare portion.
    It has a non-glare portion on which the antiglare film is not formed on at least one main surface of the base material.
    The average value of the value P obtained by using the following (Equation 1) from the measurement result of the unevenness height of the antiglare film by the following measurement method in the region where the antiglare portion and the non-glare portion are adjacent to each other is -20 μm or more. A base material with an antiglare film.
    Concavo-convex height measurement method:
    The measurement start position is on the non-glare part.
    The measurement direction is perpendicular to the boundary line between the antiglare portion and the non-glare portion, and is the direction from the non-glare portion to the antiglare portion.
    The uneven height of the antiglare film is measured every 0.333 μm from the measurement start position on the non-glare portion to the antiglare portion.
    How to calculate the value P:
    An xy coordinate plane is created by setting the measurement distance from the measurement start position to the measurement direction as x (μm) and the integrated value of the uneven height of the antiglare film as y (μm).
    The integrated value y> 5 a was in the measured distance x is the minimum point and the anti-glare film end X1 (x 1, y 1) ,
    Measured distance x a = a point indicating the integrated value y a in (x 1 +100) A (x a, y a) and,
    Let B (x b , y b ) be a point indicating the integrated value y b at the measurement distance x b = (x a +200).
    Draw a regression line between AB and
    The x-intercept of the regression line and X2 (x 2, 0), obtaining the following equation (1) the value P ([mu] m).
    x 1- x 2 = P ... (Equation 1)
  2.  前記防眩膜がシリカを含む請求項1に記載の防眩膜付き基材。 The base material with an antiglare film according to claim 1, wherein the antiglare film contains silica.
  3.  前記基材がガラス板である請求項1または2に記載の防眩膜付き基材。 The base material with an antiglare film according to claim 1 or 2, wherein the base material is a glass plate.
  4.  前記基材が曲面を有する請求項1~3のいずれか1項に記載の防眩膜付き基材。 The base material with an antiglare film according to any one of claims 1 to 3, wherein the base material has a curved surface.
  5.  基材と、前記基材の少なくとも一方の主面の一部に形成された防眩膜とを備える防眩膜付き基材の製造方法であって、
     シリカ前駆体(A)および粒子(C)の少なくとも一方と、液状媒体(B)とを含み、かつ前記液状媒体(B)が、沸点150℃以下の液状媒体(B1)を、前記液状媒体(B)の全量に対して86質量%以上含む塗料組成物を準備することと、
     マスキング材の表面に導電性膜を形成することと、
     前記基材の少なくとも一方の主面の一部を前記導電性膜が形成されたマスキング材で覆うことと、
     静電塗装装置を用いて、前記塗料組成物を帯電させ噴霧することにより前記基材上に塗布して塗膜を形成することと、
     前記マスキング材を前記基材から除去することと、
     前記塗膜を焼成することにより防眩膜を形成することと、
    を有する、防眩膜付き基材の製造方法。
    A method for producing a base material with an antiglare film, which comprises a base material and an antiglare film formed on a part of at least one main surface of the base material.
    The liquid medium (B1) containing at least one of the silica precursor (A) and the particles (C) and the liquid medium (B) and having the liquid medium (B) having a boiling point of 150 ° C. or lower is used as the liquid medium (B1). To prepare a coating composition containing 86% by mass or more based on the total amount of B).
    Forming a conductive film on the surface of the masking material and
    Covering a part of at least one main surface of the base material with a masking material on which the conductive film is formed,
    Using an electrostatic coating device, the coating composition is charged and sprayed to be applied onto the substrate to form a coating film.
    Removing the masking material from the substrate and
    To form an antiglare film by firing the coating film,
    A method for manufacturing a base material with an antiglare film.
  6.  前記導電性膜の標準電極電位が0.78eV以上である、請求項5に記載の製造方法。 The manufacturing method according to claim 5, wherein the standard electrode potential of the conductive film is 0.78 eV or more.
  7.  前記導電性膜が金属膜である請求項5または6に記載の製造方法。 The manufacturing method according to claim 5 or 6, wherein the conductive film is a metal film.
  8.  前記導電性膜が貴金属膜である請求項5~7のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 5 to 7, wherein the conductive film is a noble metal film.
PCT/JP2021/020099 2020-06-03 2021-05-26 Base material with anti-glare film, and method for manufacturing base material with anti-glare film WO2021246266A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022528774A JPWO2021246266A1 (en) 2020-06-03 2021-05-26
CN202180028814.4A CN115398282A (en) 2020-06-03 2021-05-26 Substrate with anti-glare film and method for producing substrate with anti-glare film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-097127 2020-06-03
JP2020097127 2020-06-03

Publications (1)

Publication Number Publication Date
WO2021246266A1 true WO2021246266A1 (en) 2021-12-09

Family

ID=78831078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020099 WO2021246266A1 (en) 2020-06-03 2021-05-26 Base material with anti-glare film, and method for manufacturing base material with anti-glare film

Country Status (3)

Country Link
JP (1) JPWO2021246266A1 (en)
CN (1) CN115398282A (en)
WO (1) WO2021246266A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05308148A (en) * 1992-03-05 1993-11-19 Tdk Corp Solar cell
JP2001085721A (en) * 1999-09-17 2001-03-30 Kanegafuchi Chem Ind Co Ltd Solar battery module
JP2001094126A (en) * 1999-09-20 2001-04-06 Kanegafuchi Chem Ind Co Ltd Solar cell module
JP2001111072A (en) * 1999-10-07 2001-04-20 Kanegafuchi Chem Ind Co Ltd Solar battery module and its manufacturing method
JP2001212479A (en) * 2000-02-04 2001-08-07 Tokai Rika Co Ltd Electrostatic coating device and electrostatic coating method
WO2012008780A2 (en) * 2010-07-14 2012-01-19 주식회사 엘지화학 Antireflective and antiglare coating composition, antireflective and antiglare film, and method for producing same
WO2015186669A1 (en) * 2014-06-02 2015-12-10 旭硝子株式会社 Substrate having anti-glare film, method for manufacturing same, and product
JP2016018068A (en) * 2014-07-08 2016-02-01 旭硝子株式会社 Substrate with anti-glare film, and articles having the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05308148A (en) * 1992-03-05 1993-11-19 Tdk Corp Solar cell
JP2001085721A (en) * 1999-09-17 2001-03-30 Kanegafuchi Chem Ind Co Ltd Solar battery module
JP2001094126A (en) * 1999-09-20 2001-04-06 Kanegafuchi Chem Ind Co Ltd Solar cell module
JP2001111072A (en) * 1999-10-07 2001-04-20 Kanegafuchi Chem Ind Co Ltd Solar battery module and its manufacturing method
JP2001212479A (en) * 2000-02-04 2001-08-07 Tokai Rika Co Ltd Electrostatic coating device and electrostatic coating method
WO2012008780A2 (en) * 2010-07-14 2012-01-19 주식회사 엘지화학 Antireflective and antiglare coating composition, antireflective and antiglare film, and method for producing same
WO2015186669A1 (en) * 2014-06-02 2015-12-10 旭硝子株式会社 Substrate having anti-glare film, method for manufacturing same, and product
JP2016018068A (en) * 2014-07-08 2016-02-01 旭硝子株式会社 Substrate with anti-glare film, and articles having the same

Also Published As

Publication number Publication date
CN115398282A (en) 2022-11-25
JPWO2021246266A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
JP6458804B2 (en) Translucent structure
WO2017038868A1 (en) Translucent structure, method for manufacturing same, and article
JP7168383B2 (en) Vehicle transparent parts and display devices
US11173516B2 (en) Antiglare film-coated substrate, method for its production, and article
JP7326702B2 (en) Transparent substrate with antifouling film and capacitive in-cell touch panel liquid crystal display device
US20180001339A1 (en) Method for producing article with low reflection film
WO2010018852A1 (en) Coating compositions and articles with formed coating films
KR20140088862A (en) Method of manufacturing object with low reflection film
JP2017072624A (en) Anti-glare filmed article, manufacturing method therefor, and image display device
WO2017126230A1 (en) Transparent substrate with non-transparent film
WO2021246266A1 (en) Base material with anti-glare film, and method for manufacturing base material with anti-glare film
JP2017077982A (en) Glass substrate with antiglare film, method for producing glass substrate with antiglare film and article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817115

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022528774

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21817115

Country of ref document: EP

Kind code of ref document: A1