WO2021244636A1 - 电力参数测量方法、***、装置、计算机设备和存储介质 - Google Patents

电力参数测量方法、***、装置、计算机设备和存储介质 Download PDF

Info

Publication number
WO2021244636A1
WO2021244636A1 PCT/CN2021/098321 CN2021098321W WO2021244636A1 WO 2021244636 A1 WO2021244636 A1 WO 2021244636A1 CN 2021098321 W CN2021098321 W CN 2021098321W WO 2021244636 A1 WO2021244636 A1 WO 2021244636A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
wire
measured
field sensor
uniaxial
Prior art date
Application number
PCT/CN2021/098321
Other languages
English (en)
French (fr)
Inventor
孙宏棣
李鹏
郭敏
李立浧
王志明
刘仲
尹旭
田兵
赵继光
Original Assignee
南方电网数字电网研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方电网数字电网研究院有限公司 filed Critical 南方电网数字电网研究院有限公司
Publication of WO2021244636A1 publication Critical patent/WO2021244636A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/12Measuring electrostatic fields or voltage-potential
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux

Definitions

  • This application relates to the field of power system detection technology, and in particular to a power parameter measurement method, system, device, computer equipment, and storage medium.
  • a power parameter measurement method is applied to a power parameter measurement system, the system includes a plurality of sensors, the plurality of sensors include a first uniaxial electric field sensor, a second uniaxial electric field sensor, and a third uniaxial electric field A sensor and a single-axis magnetic field sensor, the first single-axis electric field sensor, the second single-axis electric field sensor, the third single-axis electric field sensor, and the single-axis magnetic field sensor are arranged collinearly along the same straight line, and the The straight line is not coplanar with the wire to be tested, and the method includes:
  • the electric field intensity generated at the position of the axial electric field sensor, the second electric field intensity is the electric field intensity generated by the wire to be measured at the position of the second uniaxial electric field sensor, and the third electric field intensity is the wire to be measured
  • the electric field intensity generated at the position of the third uniaxial electric field sensor, the magnetic induction intensity is the magnetic field intensity generated by the wire to be measured at the position of the uniaxial magnetic field sensor, and the reference distance is the wire to be measured The distance from the preset power reference point;
  • the current value of the wire to be measured is obtained.
  • the first electric field strength, the second electric field strength, and the third electric field strength are determined according to the relative distance of the plurality of sensors, the position variable of the wire to be measured, and the An electric field strength, the corresponding relationship between the second electric field strength and the third electric field strength and the voltage of the wire to be measured, and the voltage value and the position variable value of the wire to be measured are obtained according to the corresponding relationship, including:
  • the spatial distance relationship includes at least the first single-axis electric field sensor The first spatial distance relationship with the wire to be measured, the second spatial distance relationship between the second uniaxial electric field sensor and the wire to be measured, and the first spatial distance relationship between the third uniaxial electric field sensor and the wire to be measured Three-space distance relationship;
  • the variable value of the position of the wire to be measured is determined.
  • determining the spatial distance relationship between the plurality of sensors and the wire to be measured according to the relative distances of the plurality of sensors and the position variable of the wire to be measured includes:
  • the position coordinate values of the plurality of sensors are determined according to the relative distances between the plurality of sensors, and the position coordinate values of the plurality of sensors include the first uniaxial electric field A first position coordinate value of the sensor, a second position coordinate value of the second single-axis electric field sensor, and a third position coordinate value of the third single-axis electric field sensor;
  • a third spatial distance relationship between the wire to be measured and the third single-axis electric field sensor is determined.
  • the obtaining the current value of the wire to be measured according to the variable value of the position of the wire to be measured, the magnetic induction intensity, and the relative distance between the plurality of sensors includes:
  • the current value of the wire to be measured is obtained according to the magnetic induction intensity, the spatial distance, and a preset Biosaffar algorithm, and the Biosaffar algorithm represents the functional relationship between the magnetic induction intensity and the current.
  • the first uniaxial electric field sensor, the second uniaxial electric field sensor, the third uniaxial electric field sensor, and the uniaxial magnetic field sensor are arranged collinearly along the same straight line, and the straight line Intersect with the wire to be tested on different sides and the included angle is not a right angle;
  • the determining the first electric field intensity, the first electric field intensity and the third electric field intensity according to the relative distance of the plurality of sensors, the position variable of the wire to be measured, and the first electric field intensity, the second electric field intensity and the third electric field intensity includes:
  • the position variable of the wire to be measured the first electric field intensity, the second electric field intensity, the third electric field intensity, and the cosine value of the included angle, the first Electric field intensity, the corresponding relationship between the second electric field intensity and the third electric field intensity and the voltage of the wire to be measured;
  • the obtaining the current value of the wire to be measured according to the magnetic induction intensity, the spatial distance and the preset Biosafal algorithm includes:
  • the current value of the wire to be measured is obtained.
  • An electric power parameter measurement system includes a plurality of sensors, the plurality of sensors at least include a first single-axis electric field sensor, a second single-axis electric field sensor, a third single-axis electric field sensor, and a single-axis magnetic field sensor.
  • the first single-axis electric field sensor, the second single-axis electric field sensor, the third single-axis electric field sensor, and the single-axis magnetic field sensor are arranged collinearly along the same straight line, and the straight line is not coplanar with the wire to be measured;
  • the first single-axis electric field sensor is used to obtain the first electric field intensity generated by the wire to be measured at the position of the first single-axis electric field sensor;
  • the second uniaxial electric field sensor is used to obtain the second electric field intensity generated by the wire to be measured at the position of the second uniaxial electric field sensor;
  • the third uniaxial electric field sensor is used to obtain the third electric field intensity generated by the wire to be measured at the position of the third uniaxial electric field sensor;
  • the single-axis magnetic field sensor is used to obtain the magnetic induction intensity generated by the wire to be measured at the position of the single-axis magnetic field sensor;
  • the first electric field intensity, the second electric field intensity, the third electric field intensity, and the magnetic induction intensity are used to measure the current value and the voltage value of the wire to be tested.
  • a power parameter measurement device the device is applied to a power parameter measurement system, the system includes a plurality of sensors, the plurality of sensors includes a first uniaxial electric field sensor, a second uniaxial electric field sensor, and a third uniaxial electric field A sensor and a single-axis magnetic field sensor, the first single-axis electric field sensor, the second single-axis electric field sensor, the third single-axis electric field sensor, and the single-axis magnetic field sensor are arranged collinearly along the same straight line, and the The straight line is not coplanar with the wire to be tested, and the device includes:
  • the acquiring module is used to acquire the first electric field intensity, the second electric field intensity, the third electric field intensity, the magnetic induction intensity, the reference distance and the relative distance between the plurality of sensors.
  • the electric field intensity generated at the position of the first uniaxial electric field sensor, the second electric field intensity is the electric field intensity generated by the wire to be measured at the position of the second uniaxial electric field sensor, and the third electric field intensity is The electric field intensity generated by the wire to be measured at the position of the third uniaxial electric field sensor, the magnetic induction intensity is the magnetic field intensity generated by the wire to be measured at the position of the uniaxial magnetic field sensor, and the reference distance is The distance between the wire to be tested and the preset power reference point;
  • the first processing module is configured to, in a preset reference coordinate system, according to the relative distances of the plurality of sensors, the position variables of the wires to be measured, and the first electric field strength, the second electric field strength, and the third electric field Strength, determine the corresponding relationship between the first electric field strength, the second electric field strength, and the third electric field strength and the voltage of the wire to be measured, and obtain the voltage value and position of the wire to be measured according to the corresponding relationship variable;
  • the second processing module is used to obtain the current value of the wire to be measured according to the variable value of the position of the wire to be measured, the magnetic induction intensity, and the relative distance between the plurality of sensors.
  • the first processing module is specifically configured to determine the spatial distance relationship between the plurality of sensors and the wire to be measured according to the relative distance of the plurality of sensors and the position variable of the wire to be measured,
  • the spatial distance relationship includes at least a first spatial distance relationship between the first uniaxial electric field sensor and the wire to be measured, a second spatial distance relationship between the second uniaxial electric field sensor and the wire to be measured, and The third spatial distance relationship between the third uniaxial electric field sensor and the wire to be measured;
  • the variable value of the position of the wire to be measured is determined.
  • a computer device includes a memory and a processor, the memory stores a computer program, and the processor implements the following steps when the computer program is executed:
  • the electric field intensity generated at the position of the axial electric field sensor, the second electric field intensity is the electric field intensity generated by the wire to be measured at the position of the second uniaxial electric field sensor, and the third electric field intensity is the wire to be measured
  • the electric field intensity generated at the position of the third uniaxial electric field sensor, the magnetic induction intensity is the magnetic field intensity generated by the wire to be measured at the position of the uniaxial magnetic field sensor, and the reference distance is the wire to be measured The distance from the preset power reference point;
  • the current value of the wire to be measured is obtained.
  • the electric field intensity generated at the position of the axial electric field sensor, the second electric field intensity is the electric field intensity generated by the wire to be measured at the position of the second uniaxial electric field sensor, and the third electric field intensity is the wire to be measured
  • the electric field intensity generated at the position of the third uniaxial electric field sensor, the magnetic induction intensity is the magnetic field intensity generated by the wire to be measured at the position of the uniaxial magnetic field sensor, and the reference distance is the wire to be measured The distance from the preset power reference point;
  • the current value of the wire to be measured is obtained.
  • the above-mentioned power parameter measurement method, system, device, computer equipment and storage medium obtain the first electric field intensity, the second electric field intensity, the third electric field intensity, the magnetic induction intensity, the reference distance, and the relative distance between multiple sensors, wherein the first The electric field intensity is the electric field intensity produced by the wire to be measured at the position of the first uniaxial electric field sensor, the second electric field intensity is the electric field intensity produced by the wire to be measured at the position of the second uniaxial electric field sensor, and the third electric field intensity Is the electric field intensity generated by the conductor under test at the position of the third uniaxial electric field sensor, the magnetic induction intensity is the magnetic field intensity generated by the conductor under test at the position of the uniaxial magnetic field sensor, and the reference distance is the Set the distance between the power reference points; in the preset reference coordinate system, according to the relative distance of the plurality of sensors, the position variable of the wire to be measured and the first electric field strength, the second electric field strength and the third electric field strength, determine the According to the corresponding relationship between
  • the voltage value and current value of the wire to be measured can be obtained without pre-fixing the spatial position relationship between the wire to be measured and the sensor device, which reduces the installation difficulty of the sensor device.
  • the current and voltage measurement results of the wire to be measured are not affected by the value of the spatial position relationship between the wire to be measured and the sensor device, which improves the accuracy of the power parameter measurement results.
  • Fig. 1 is an application environment diagram of a power parameter measurement system in an embodiment
  • Fig. 2 is a schematic flow chart of a method for measuring power parameters in an embodiment
  • FIG. 3 is a flowchart of a method for determining the corresponding relationship between the electric field strength and the voltage of the wire to be measured in an embodiment
  • FIG. 4 is a flowchart of a method for determining the spatial distance relationship between each sensor and the wire to be measured in an embodiment
  • FIG. 5 is a schematic flowchart of a method for determining the current value of a wire to be tested in an embodiment
  • Figure 6 is an application environment diagram where the wire to be tested and the straight line along which the sensor is not perpendicular to the different planes in an embodiment
  • Fig. 7 is a structural block diagram of a power parameter measuring device in an embodiment
  • Fig. 8 is an internal structure diagram of a computer device in an embodiment.
  • the power parameter measurement method provided in this application can be applied to the power parameter measurement system 100.
  • the system 100 includes multiple sensors, where the multiple sensors include a first single-axis electric field sensor 110, a second single-axis electric field sensor 120, a third single-axis electric field sensor 130, and a single-axis magnetic field sensor 140.
  • the second single-axis electric field sensor 120, the third single-axis electric field sensor 130, and the single-axis magnetic field sensor 140 are arranged collinearly along the same straight line, and the straight line is not coplanar with the wire under test 200.
  • the voltage value and current value of the wire 200 to be measured can be obtained without pre-fixing the spatial position relationship between the wire 200 to be measured and each sensor, which reduces the difficulty of installing each sensor.
  • the current and voltage measurement results of the wire 200 to be tested obtained by the system 100 are not affected by the value of the spatial position relationship between the wire 200 to be tested and the sensor, which improves the accuracy of the power parameter measurement results.
  • a power parameter measurement method is provided.
  • the method is applied to the power parameter measurement system in FIG. 1 for description, and includes the following steps:
  • Step 201 Obtain the first electric field intensity, the second electric field intensity, the third electric field intensity, the magnetic induction intensity, the reference distance, and the relative distance between multiple sensors.
  • the first electric field intensity is the position of the wire to be measured at the position of the first uniaxial electric field sensor
  • the intensity of the electric field generated, the second electric field intensity is the electric field intensity of the wire to be measured at the position of the second uniaxial electric field sensor
  • the third electric field intensity is the electric field intensity of the wire to be measured at the position of the third uniaxial electric field sensor
  • magnetic induction The intensity is the magnetic field intensity generated by the wire to be measured at the position of the single-axis magnetic field sensor
  • the reference distance is the distance between the wire to be measured and the preset power reference point.
  • the wire to be tested will generate electric field intensity at the location of the first uniaxial electric field sensor, the second uniaxial electric field sensor and the third uniaxial electric field sensor, which are the first electric field intensity, the second electric field intensity and the third electric field intensity respectively.
  • the wire to be measured will generate magnetic induction intensity at the location of the single-axis magnetic field sensor.
  • the computer device obtains the first electric field intensity, the second electric field intensity, the third electric field intensity, and the magnetic induction intensity, and simultaneously obtains the relative distance between the multiple sensors and the known reference distance between the wire to be measured and the power reference point.
  • the relative distance between the multiple sensors may be the relative distance between any two sensors in the multiple sensors.
  • d equidistant distance
  • Step 202 In the preset reference coordinate system, determine the first electric field intensity and the second electric field intensity according to the relative distance of the plurality of sensors, the position variable of the wire to be measured, the first electric field intensity, the second electric field intensity, and the third electric field intensity. And the corresponding relationship between the third electric field strength and the voltage of the wire to be measured, and according to the corresponding relationship, the voltage value and the position variable value of the wire to be measured are obtained.
  • the computer device is based on the relative distance of multiple sensors, the wire position variable to be measured (which can be the position coordinate variable, such as (l, p)), and the first electric field intensity, the first The second electric field strength and the third electric field strength respectively determine the corresponding relationship between the first electric field strength, the second electric field strength and the third electric field strength and the voltage parameter of the wire to be measured, and according to the corresponding relationship, the voltage value of the wire to be measured and Position variable value (ie coordinate value).
  • the wire position variable to be measured which can be the position coordinate variable, such as (l, p)
  • the first electric field intensity the first electric field intensity
  • the second electric field strength and the third electric field strength respectively determine the corresponding relationship between the first electric field strength, the second electric field strength and the third electric field strength and the voltage parameter of the wire to be measured, and according to the corresponding relationship, the voltage value of the wire to be measured and Position variable value (ie coordinate value).
  • Step 203 Obtain the current value of the wire to be measured according to the variable value of the position of the wire to be measured, the magnetic induction intensity, and the relative distance between the multiple sensors.
  • the computer equipment can obtain the current value of the wire to be measured according to the variable value of the position of the wire to be measured, the magnetic induction intensity, and the relative distance between multiple sensors.
  • the computer device obtains the first electric field intensity, the second electric field intensity, the third electric field intensity, the magnetic induction intensity, the reference distance, and the relative distance between multiple sensors; then, in the preset reference coordinate system, the computer The device determines the first electric field strength, the second electric field strength and the third electric field strength and the voltage of the wire to be measured according to the relative distance of multiple sensors, the position variable of the wire to be measured, the first electric field strength, the second electric field strength, and the third electric field strength.
  • the voltage value and position variable value of the wire to be measured are obtained; finally, the computer equipment obtains the wire to be measured according to the position variable value of the wire to be measured, the magnetic induction intensity, and the relative distance between multiple sensors. Current value.
  • the voltage value and current value of the wire to be measured can be obtained without pre-fixing the spatial position relationship between the wire to be measured and the sensor device, which reduces the installation difficulty of the sensor device.
  • the current and voltage of the wire to be measured are measured The result is not affected by the value of the spatial position relationship between the wire to be measured and the sensor device, and the accuracy of the power parameter measurement result is improved.
  • step 202 the specific processing procedure included in step 202 is as follows:
  • Step 2021 Determine the spatial distance relationship between the multiple sensors and the wire to be measured based on the relative distances of the multiple sensors and the wire to be measured.
  • the spatial distance relationship includes at least the first spatial distance between the first single-axis electric field sensor and the wire to be measured. Relationship, the second spatial distance relationship between the second uniaxial electric field sensor and the wire to be measured, and the third spatial distance relationship between the third uniaxial electric field sensor and the wire to be measured.
  • the computer device can determine the spatial distance relationship between the multiple sensors and the wire to be measured based on the relative distance of the multiple sensors and the position variables of the wire to be measured.
  • the spatial distance relationship includes at least the first spatial distance relationship between the first single-axis electric field sensor and the wire to be measured, the second spatial distance relationship between the second single-axis electric field sensor and the wire to be measured, and the third single-axis electric field sensor. The third spatial distance relationship between the axial electric field sensor and the wire to be measured.
  • Step 2022 According to the first electric field strength, the first spatial distance relationship, and the reference distance, determine a first corresponding relationship between the first electric field strength and the voltage of the wire to be measured.
  • the computer equipment uses Gauss's theorem and wire voltage algorithm to obtain the corresponding formula of electric field strength and wire voltage.
  • the wire voltage algorithm formula is Among them, U is the wire voltage, R is the wire radius, x 0 is the known reference distance, and the corresponding formula of the electric field strength and the wire voltage that can be obtained by the computer equipment is Then, the computer device can determine the first corresponding relationship between the first electric field strength and the voltage of the wire to be measured according to the corresponding formula, the first electric field strength, the first spatial distance relationship, and the reference distance.
  • the specific calculation formula is as follows:
  • E 1 is the first electric field intensity at the location of the first uniaxial electric field sensor
  • U 0 is the voltage parameter of the wire to be measured
  • R is the wire radius
  • x 0 is the known reference distance
  • the electric field intensities in is orthogonally decomposed, and the horizontal component (that is, the first electric field intensity) is obtained correspondingly.
  • Step 2023 According to the second electric field intensity, the second spatial distance relationship, and the reference distance, a second corresponding relationship between the second electric field strength and the voltage of the wire to be measured is determined.
  • the formula for the correspondence relationship between the electric field strength and the wire voltage is as described in step 2022, and the specific implementation steps of the correspondence relationship formula are not repeated in the embodiment of the present application.
  • the computer device determines the second corresponding relationship between the second electric field strength and the voltage of the wire to be measured according to the corresponding relationship formula, the second electric field strength, the second spatial distance relationship, and the reference distance.
  • the calculation formula is as follows:
  • E 2 is the second electric field intensity
  • U 0 is the voltage parameter of the wire to be measured
  • R is the radius of the wire
  • x 0 is the known reference distance
  • d is the distance between the first uniaxial electric field sensor and the second uniaxial electric field sensor.
  • relative distance Is the second spatial distance relationship between the second single-axis electric field sensor and the wire to be measured
  • Step 2024 According to the third electric field strength, the third spatial distance relationship, and the reference distance, a third corresponding relationship between the third electric field strength and the wire voltage to be measured is determined.
  • the computer device determines the third corresponding relationship between the third electric field strength and the wire voltage to be measured according to the corresponding formula of the electric field strength and the wire voltage, the third electric field strength, the third spatial distance relationship, and the reference distance.
  • the calculation formula is as follows:
  • E 3 is the third electric field intensity
  • U 0 is the voltage parameter of the wire to be measured
  • R is the wire radius
  • x 0 is the known reference distance
  • Step 2025 Obtain the voltage value of the wire to be tested according to the first correspondence, the second correspondence, and the third correspondence.
  • the computer device obtains the voltage value of the wire to be tested according to the obtained first correspondence, second correspondence, and third correspondence.
  • the computer equipment introduces intermediate variables k 1 , k 2 and k 3 , and performs the above-mentioned formulas (1), (2) and (3) (that is, the first correspondence, the second correspondence, and the third correspondence) respectively.
  • the process is as follows:
  • the computer equipment solves the equation (10) according to the preset one-dimensional quadratic equation solving algorithm to obtain the voltage value of the wire to be measured.
  • the specific formula is as follows:
  • the value of U 0 obtained by the computer device according to formula (11) is two, and the computer device judges the two values obtained according to the preset voltage range threshold, and determines that it is within the preset voltage range threshold.
  • the value of U 0 is used as the voltage value of the wire to be tested.
  • Step 2026 Determine the variable value of the position of the wire to be measured according to any two of the first correspondence, the second correspondence, and the third correspondence and the voltage value of the wire to be measured.
  • the computer device determines the position variable value of the wire to be measured (that is, the value of the position variable of the wire to be measured) according to any two of the first correspondence, the second correspondence, and the third correspondence, and the obtained voltage value U 0 of the wire to be measured.
  • the computer device substitutes the obtained wire voltage value to be measured into the first correspondence and the second correspondence respectively, and the first correspondence and the second correspondence are combined, and it can be obtained Obtain the position variable value of the wire to be measured, that is, the position coordinate value (l, p).
  • the computer device determines the spatial distance relationship between the multiple sensors and the wire to be measured according to the relative distances of the multiple sensors and the positional variables of the wire to be measured; according to the first electric field strength, the first spatial distance relationship, and the reference distance , Determine the first corresponding relationship between the first electric field strength and the voltage of the wire to be measured; determine the second corresponding relationship between the second electric field strength and the voltage of the wire to be measured according to the second electric field strength, the second spatial distance relationship, and the reference distance; Three electric field strength, third spatial distance relationship, reference distance, determine the third corresponding relationship between the third electric field strength and the wire voltage to be measured; then, the computer device obtains according to the first, second, and third correspondences The voltage value of the wire to be measured; finally, the computer equipment determines the position variable value of the wire to be measured according to any two of the first correspondence, the second correspondence, the third correspondence, and the voltage value of the wire to be measured, through this method , Without pre-fixing the positional relationship between the electric field sensor and
  • step 2021 the specific processing procedure included in step 2021 is as follows:
  • Step 20211 In the preset reference coordinate system, determine the position coordinate values of the multiple sensors according to the relative distances between the multiple sensors, where the position coordinate values of the multiple sensors include the first position coordinate values of the first single-axis electric field sensor , The second position coordinate value of the second uniaxial electric field sensor, and the third position coordinate value of the third uniaxial electric field sensor.
  • the computer device determines the position coordinate values of the multiple sensors in the reference system according to the acquired relative distances between the multiple sensors.
  • the preset reference coordinate system takes the position of the first single-axis electric field sensor as the coordinate origin, the horizontal direction as the x-axis direction, and the vertical upward direction as the y-axis direction, and the position coordinate values of the multiple sensors are respectively : The position coordinate of the first single-axis electric field sensor (0,0), the position coordinate of the second single-axis electric field sensor (0,d), and the position coordinate of the third single-axis electric field sensor (0,2d).
  • Step 20112 Determine the first spatial distance relationship between the wire to be measured and the first single-axis electric field sensor according to the first position coordinate value and the position variable of the wire to be measured.
  • the computer device determines the first spatial distance relationship between the wire to be measured and the first single-axis electric field sensor according to the first position coordinate value and the position variable of the wire to be measured.
  • the wire to be measured is set at the preset reference coordinates.
  • the position coordinates in the system are (l, p), and the computer equipment can obtain the first spatial distance relationship between the first single-axis electric field sensor and the wire to be measured according to the distance formula between two points
  • Step 20113 Determine the second spatial distance relationship between the wire to be measured and the second single-axis electric field sensor according to the second position coordinate value and the position variable of the wire to be measured.
  • the computer device determines the second spatial distance relationship between the wire to be measured and the second single-axis electric field sensor according to the second position coordinate value and the position variable of the wire to be measured.
  • the specific corresponding formula for the second spatial distance relationship is The calculation process of the second spatial distance relationship is similar to the first spatial distance relationship in step 20112, and will not be repeated in this embodiment of the present application.
  • Step 20214 Determine the third spatial distance relationship between the wire to be measured and the third uniaxial electric field sensor according to the third position coordinate value and the position variable of the wire to be measured.
  • the computer device determines the third spatial distance relationship between the wire to be measured and the third single-axis electric field sensor according to the third position coordinates and the position variable of the wire to be measured.
  • the corresponding formula for the specific third spatial distance relationship is The specific calculation process will not be repeated in the embodiment of this application.
  • the position coordinates of the multiple sensors are determined according to the relative distance between the multiple sensors, and the position coordinates of each sensor and the wire to be measured are determined respectively according to the position coordinates between the multiple sensors.
  • the spatial distance relationship so that the corresponding relationship between the electric field intensity of the multiple sensors and the voltage of the wire to be measured can be obtained according to the space distance relationship, and the voltage value of the wire to be measured can be further obtained.
  • the space distance relationship between multiple sensors and the wire to be measured can be obtained without fixing the position of the sensor.
  • the voltage value of the wire to be measured is obtained, so that the wire to be measured
  • the voltage value is not affected by the specific spatial distance value (spatial position relationship) between the multiple sensors and the wire to be measured, and the measurement accuracy of the voltage value of the wire to be measured is improved.
  • step 203 the specific processing procedure included in step 203 is as follows:
  • Step 2031 Determine the spatial distance between the single-axis magnetic field sensor and the wire to be measured according to the relative distances of the multiple sensors and the position variable value of the wire to be measured.
  • the computer device determines the spatial distance between the single-axis magnetic field sensor and the wire to be measured based on the relative distance of the multiple sensors and the variable value of the wire to be measured. Specifically, in the preset reference coordinate system, the computer device determines the position coordinate value of the single-axis magnetic field sensor as (0, 3d) according to the relative distance between the multiple sensors, and the position of the wire to be measured is obtained in step 202 The variable value is (l, p), and the computer equipment obtains the spatial distance between the single-axis magnetic field sensor and the wire to be measured according to the position coordinate value of the single-axis magnetic field sensor, the variable value of the position of the wire to be measured, and the distance between the two points.
  • Step 2032 Obtain the current value of the wire to be measured according to the magnetic induction intensity, the spatial distance and the preset Biosaffar algorithm, and the Biosaffar algorithm represents the functional relationship between the magnetic induction intensity and the current.
  • the computer equipment determines the magnetic induction intensity of the single-axis magnetic field sensor according to Biosafar's algorithm. The specific formula is as follows:
  • B 1 is the magnetic induction intensity at the position of the uniaxial magnetic field sensor, Is the spatial distance between the single-axis magnetic field sensor and the wire to be measured, It is the cosine value of the angle between the straight line between the single-axis magnetic field sensor and the wire to be measured and the straight line in the horizontal direction. Since the uniaxial magnetic field sensor can only measure the magnetic induction intensity in the horizontal direction, the magnetic induction intensity is only the horizontal component of the magnetic induction intensity between the wire to be measured and the uniaxial magnetic field sensor. Therefore, the computer equipment needs to correct the magnetic induction intensity in the corresponding formula Cross decomposition, corresponding to get its horizontal component. Specific operation: Multiply the magnetic induction intensity formula by the cosine value of the angle between the straight line where the space distance is located and the straight line where the horizontal direction is located That is equal to the magnetic induction intensity in the horizontal direction.
  • the computer equipment transforms the magnetic induction intensity formula (12) and substitutes the formula (4) into it to obtain the current value of the wire to be measured.
  • the specific formula is as follows:
  • the computer device determines the spatial distance between the single-axis magnetic field sensor and the wire to be measured based on the relative distances of multiple sensors and the variable value of the wire to be measured;
  • the Osafaer algorithm obtains the current value of the wire to be measured.
  • the current value of the wire to be measured is further obtained, without the need to fix the position of the wire to be measured in advance, and
  • the current value of the wire to be measured can be obtained without pre-measurement of the spatial distance value between the sensor and the wire to be measured, which reduces the installation difficulty of the sensor and improves the measurement accuracy of the current value of the wire to be measured.
  • the relative distances between multiple sensors are set to be equal to d.
  • the relative distances between multiple sensors are not equidistant, that is, m ⁇ n ⁇ h
  • the formula of the above step process is equidistant d can be replaced with the corresponding relative distance value.
  • the second corresponding relationship formula between the replaced second electric field strength and the voltage of the wire to be measured The third corresponding relationship formula between the replaced third electric field intensity and the wire voltage to be measured:
  • the magnetic induction intensity formula of the replaced single-axis magnetic field sensor Therefore, the situation where the relative distances between the multiple sensors are arranged at unequal distances is similar to the situation where the multiple sensors are arranged at equal distances in the foregoing embodiment, and the details are not repeated in this embodiment of the present application.
  • the first single-axis electric field sensor, the second single-axis electric field sensor, the third single-axis electric field sensor, and the single-axis magnetic field sensor are arranged collinearly along the same straight line, and the straight line is aligned with the wire to be measured.
  • the different faces intersect and the included angle is not a right angle.
  • the straight line along which the first single-axis electric field sensor, the second single-axis electric field sensor, the third single-axis electric field sensor, and the single-axis magnetic field sensor of the multiple sensors are located may not be perpendicular to the line where the wire to be measured is located. As shown in FIG. 6, the straight line along which the multiple sensors are located intersects the straight line where the wire to be measured is located on different planes. For example, the straight line along which the multiple sensors are located intersects the straight line where the wire to be measured is located on a different plane, and the included angle is ⁇ .
  • step 202 includes: determining the first electric field intensity and the second electric field intensity according to the relative distance of the plurality of sensors, the position variable of the wire to be measured, the first electric field intensity, the second electric field intensity, the third electric field intensity, and the cosine value of the included angle. And the corresponding relationship between the third electric field strength and the voltage of the wire to be measured.
  • the computer equipment needs to correct the corresponding relationship between the electric field strength and the voltage of the wire to be measured according to the included angle.
  • the specific correction formula is as follows :
  • the computer equipment determines the corrected first electric field according to the correction formula, the relative distance of the multiple sensors, the position variable of the wire to be measured, the first electric field strength, the second electric field strength, the third electric field strength, and the cosine value of the included angle ⁇ . Correspondence between the intensity, the second electric field intensity and the third electric field intensity and the voltage of the wire to be measured.
  • step 203 includes: obtaining the current value of the wire to be measured according to the magnetic induction intensity, the spatial distance, the cosine value of the included angle, and the preset Biosafar algorithm.
  • the computer equipment needs to correct the corresponding relationship between the magnetic induction intensity and the current of the wire to be measured according to the included angle.
  • the specific correction formula is as follows :
  • the computer equipment obtains the current value of the wire to be measured according to the correction formula, the magnetic induction intensity, the space distance, the cosine value of the included angle ⁇ , and the preset Biosafar algorithm.
  • the first single-axis electric field sensor, the second single-axis electric field sensor, the third single-axis electric field sensor and the single-axis magnetic field sensor are arranged collinearly along the same straight line, and the straight line intersects with the straight line to be measured on different planes.
  • the included angle is not right angle, which reduces the difficulty of installing the sensor.
  • the computer equipment corrects the corresponding relationship between electric field intensity and voltage, and the corresponding relationship between magnetic induction intensity and current, which improves the measurement of the voltage value and current value of the wire to be measured. Accuracy.
  • a power parameter measurement system 100 is provided.
  • the system includes multiple sensors.
  • the multiple sensors at least include a first single-axis electric field sensor 110, a second single-axis electric field sensor 120, and a second single-axis electric field sensor.
  • the three uniaxial electric field sensors 130 and the uniaxial magnetic field sensor 140, the first uniaxial electric field sensor 110, the second uniaxial electric field sensor 120, the third uniaxial electric field sensor 130 and the uniaxial magnetic field sensor 140 are arranged collinearly along the same straight line, and The straight line is not coplanar with the wire 200 to be tested.
  • the first single-axis electric field sensor 110 is used to obtain the first electric field intensity generated by the wire to be measured 200 at the position of the first single-axis electric field sensor 110.
  • the second single-axis electric field sensor 120 is used to obtain the second electric field intensity generated by the wire to be measured 200 at the position of the second single-axis electric field sensor 120.
  • the third uniaxial electric field sensor 130 is used to obtain the third electric field intensity generated by the wire to be measured 200 at the position of the third uniaxial electric field sensor 130.
  • the single-axis magnetic field sensor 140 is used to obtain the magnetic induction intensity generated by the wire 200 to be measured at the position of the single-axis magnetic field sensor 140.
  • the first electric field intensity, the second electric field intensity, the third electric field intensity, and the magnetic induction intensity are used to measure the current value and the voltage value of the wire 200 to be tested.
  • the power parameter measurement system includes multiple sensors.
  • the first single-axis electric field sensor, the second single-axis electric field sensor, the third single-axis electric field sensor, and the single-axis magnetic field sensor are arranged collinearly along the same straight line, and the straight line and The wires to be measured are not coplanar.
  • the first electric field intensity, the second electric field strength, the third electric field intensity, and the magnetic induction data collected by the power parameter measurement system do not need to fix the spatial position relationship between the wire to be measured and the sensor device in advance.
  • the voltage value and current value of the wire to be measured can be obtained, which reduces the installation difficulty of the sensor device.
  • the current and voltage measurement results of the wire to be measured are not affected by the spatial position relationship between the wire to be measured and the sensor device, which improves the power The accuracy of parameter measurement results.
  • a power parameter measurement device 700 is provided, which is applied to a power parameter measurement system.
  • the system includes multiple sensors.
  • the multiple sensors include a first single-axis electric field sensor and a second single-axis electric field sensor.
  • the axial electric field sensor, the third single-axis electric field sensor and the single-axis magnetic field sensor, the first single-axis electric field sensor, the second single-axis electric field sensor, the third single-axis electric field sensor, and the single-axis magnetic field sensor are arranged collinearly along the same straight line, and are arranged in a straight line.
  • the device 700 includes: an acquisition module 710, a first processing module 720, and a second processing module 730, where:
  • the obtaining module 710 is used to obtain the first electric field intensity, the second electric field intensity, the third electric field intensity, the magnetic induction intensity, the reference distance, and the relative distance between the multiple sensors.
  • the electric field intensity generated at the sensor position, the second electric field intensity is the electric field intensity generated by the wire to be measured at the position of the second uniaxial electric field sensor, and the third electric field intensity is the electric field generated by the wire to be measured at the position of the third uniaxial electric field sensor
  • the magnetic induction intensity is the intensity of the magnetic field generated by the wire to be measured at the position of the single-axis magnetic field sensor
  • the reference distance is the distance between the wire to be measured and the preset power reference point.
  • the first processing module 720 is configured to determine the first electric field strength in the preset reference coordinate system according to the relative distance of the multiple sensors, the position variable of the wire to be measured, the first electric field strength, the second electric field strength, and the third electric field strength , The corresponding relationship between the second electric field strength and the third electric field strength and the voltage of the wire to be measured, and according to the corresponding relationship, the voltage value and the position variable value of the wire to be measured are obtained.
  • the second processing module 730 is used to obtain the current value of the wire to be measured according to the variable value of the position of the wire to be measured, the magnetic induction intensity, and the relative distance between the plurality of sensors.
  • the first processing module 720 is specifically configured to determine the spatial distance relationship between the plurality of sensors and the wire to be measured according to the relative distances of the plurality of sensors and the position variable of the wire to be measured, and the spatial distance relationship includes at least the first single axis The first spatial distance relationship between the electric field sensor and the wire to be measured, the second spatial distance relationship between the second uniaxial electric field sensor and the wire to be measured, and the third spatial distance relationship between the third uniaxial electric field sensor and the wire to be measured.
  • the first corresponding relationship between the first electric field strength and the voltage of the wire to be measured is determined.
  • a second corresponding relationship between the second electric field strength and the voltage of the wire to be measured is determined.
  • a third corresponding relationship between the third electric field strength and the wire voltage to be measured is determined.
  • the voltage value of the wire to be tested is obtained.
  • the variable value of the position of the wire to be measured is determined.
  • the first processing module 720 is specifically configured to determine the position coordinate values of the multiple sensors according to the relative distances between the multiple sensors in the preset reference coordinate system, and the position coordinate values of the multiple sensors include the first The first position coordinate value of a single-axis electric field sensor, the second position coordinate value of the second single-axis electric field sensor, and the third position coordinate value of the third single-axis electric field sensor.
  • the first spatial distance relationship between the wire to be measured and the first single-axis electric field sensor is determined.
  • the second spatial distance relationship between the wire to be measured and the second single-axis electric field sensor is determined.
  • the third spatial distance relationship between the wire to be measured and the third single-axis electric field sensor is determined.
  • the second processing module 730 is specifically configured to determine the spatial distance between the single-axis magnetic field sensor and the wire to be measured according to the relative distance of the multiple sensors and the variable value of the wire to be measured.
  • the spatial distance and the preset Biosaffar algorithm According to the magnetic induction intensity, the spatial distance and the preset Biosaffar algorithm, the current value of the wire to be measured is obtained.
  • the Biosaffar algorithm characterizes the functional relationship between the magnetic induction intensity and the current.
  • the first single-axis electric field sensor, the second single-axis electric field sensor, the third single-axis electric field sensor, and the single-axis magnetic field sensor are arranged collinearly along the same straight line, and the straight line intersects with the wire to be measured on different sides and is clamped. The angle is not right.
  • the first processing module 720 is specifically configured to determine the first electric field strength, the first electric field strength, the third electric field strength, and the cosine value of the included angle according to the relative distance of the plurality of sensors, the position variable of the wire to be measured, the first electric field strength, the second electric field strength, the third electric field strength, and the cosine value of the included angle. Correspondence between the second electric field intensity and the third electric field intensity and the voltage of the wire to be measured.
  • the second processing module 730 is specifically configured to obtain the current value of the wire to be measured according to the magnetic induction intensity, the spatial distance, the cosine value of the included angle, and the preset Biosafar algorithm.
  • the above-mentioned power parameter measurement device 700 includes: an acquisition module 710, a first processing module 720, a second processing module 730, and an acquisition module 710 for acquiring the first electric field intensity, the second electric field intensity, the third electric field intensity, the magnetic induction intensity, The reference distance and the relative distance between the multiple sensors;
  • the first processing module 720 is used for in the preset reference coordinate system, according to the relative distance of the multiple sensors, the variable of the position of the wire to be measured, the first electric field intensity, the second electric field intensity And the third electric field strength, determine the corresponding relationship between the first electric field strength, the second electric field strength and the third electric field strength and the voltage of the wire to be measured, and obtain the voltage value and the position variable value of the wire to be measured according to the corresponding relationship;
  • the module is used to obtain the current value of the wire to be measured according to the variable value of the position of the wire to be measured, the magnetic induction intensity, and the relative distance between multiple sensors.
  • the voltage value and current value of the wire to be measured can be obtained without pre-fixing the spatial position relationship between the wire to be measured and the sensor device, which reduces the installation difficulty of the sensor device.
  • the current and voltage of the wire to be measured are measured The result is not affected by the value of the spatial position relationship between the wire to be measured and the sensor device, and the accuracy of the power parameter measurement result is improved.
  • Each module in the above-mentioned power parameter measuring device can be implemented in whole or in part by software, hardware and a combination thereof.
  • the foregoing modules may be embedded in the form of hardware or independent of the processor in the computer device, or may be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the foregoing modules.
  • a computer device is provided.
  • the computer device may be a server, and its internal structure diagram may be as shown in FIG. 8.
  • the computer equipment includes a processor, a memory, and a network interface connected through a system bus. Among them, the processor of the computer device is used to provide calculation and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system, a computer program, and a database.
  • the internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium.
  • the database of the computer equipment is used to store data such as the first electric field intensity, the second electric field intensity, the third electric field intensity, the relative distance between multiple sensors, the reference distance, and the measured voltage value and current value.
  • the network interface of the computer device is used to communicate with an external terminal through a network connection.
  • the computer program is executed by the processor to realize a power parameter measurement method.
  • FIG. 8 is only a block diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation on the computer device to which the solution of the present application is applied.
  • the specific computer device may Including more or fewer parts than shown in the figure, or combining some parts, or having a different arrangement of parts.
  • a computer device including a memory and a processor, and a computer program is stored in the memory, and the processor implements the steps in the foregoing method embodiments when the computer program is executed.
  • a computer-readable storage medium is provided, and a computer program is stored thereon, and when the computer program is executed by a processor, the steps in the foregoing method embodiments are implemented.
  • Non-volatile memory can include read-only memory (Read-Only Memory, ROM), magnetic tape, floppy disk, flash memory, or optical storage.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM may be in various forms, such as static random access memory (Static Random Access Memory, SRAM) or dynamic random access memory (Dynamic Random Access Memory, DRAM), etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Locating Faults (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种电力参数测量方法,该方法包括:获取第一电场强度、第二电场强度、第三电场强度、磁感应强度、参考距离和多个传感器间的相对距离(S201);在预设参考坐标系中,根据多个传感器的相对距离、待测导线位置变量及第一电场强度、第二电场强度和第三电场强度,确定第一电场强度、第二电场强度和第三电场强度与待测导线电压的对应关系,并根据该对应关系,得到待测导线的电压值及位置变量值(S203);根据待测导线位置变量值、磁感应强度、多个传感器间的相对距离,得到待测导线的电流值(S204)。采用该方法,降低了传感器设备的安装难度,提高了电力参数测量结果的准确性。还提供了一种电力参数测量***、装置、计算机设备和存储介质。

Description

电力参数测量方法、***、装置、计算机设备和存储介质 技术领域
本申请涉及电力***检测技术领域,特别是涉及一种电力参数测量方法、***、装置、计算机设备和存储介质。
背景技术
随着电力***的快速发展,电网容量的扩大使电网结构更加复杂,要保证电网的安全、稳定运行,对电力***的实时检测、控制就显得尤为重要,而电流、电压作为电力***输、变电设备运行状态的两种主要电气量,对电流、电压参数的检测成为了检测电力***安全稳定运行的关键。传统的电流、电压检测技术采用电流互感器和电压互感器对导线中的电流和电压进行测量,但电流互感器、电压互感器体积大、重量重,安装要求高,并且由于频带较窄,使用具有局限性。
近年来,随着传感芯片相关技术的进步,出现了利用单个磁场传感器测量导线电流的方法,但是利用单个磁场传感器测量电流时,需要预先获知该传感器与导线间的空间位置关系(传感器与导线间的空间距离),即由该空间位置关系与测量的磁场强度,计算得到导线电流,因此,该磁场传感器安装难度大,一旦安装时,磁场传感器与导线的空间位置关系发生偏差,就会影响测量结果的准确性,并且根据单个磁场传感器也无法得到导线的电压,进而无法完成电力参数的整体测量。
因此,如何对电力参数进行测量,成为亟待解决的问题。
发明内容
基于此,有必要针对上述技术问题,提供一种电力参数测量方法、***、装置、计算机设备和存储介质。
一种电力参数测量方法,所述方法应用于电力参数测量***,所述***包括多个传感器,所述多个传感器包括第一单轴电场传感器、第二单轴电场传感器、第三单轴电场传感器和单轴磁场传感器,所述第一单轴电场传感器、所述第二单轴电场传感器、所述第三单轴电场传感器和所述单轴磁场传感器沿同一直线共线设置,且所述直线与待测导线不共面,所述方法包括:
获取第一电场强度、第二电场强度、第三电场强度、磁感应强度、参考距离和所述多个传感器间的相对距离,所述第一电场强度为所述待测导线在所述第一单轴电场传感器位置处产生的电场强度,所述第二 电场强度为所述待测导线在所述第二单轴电场传感器位置处产生的电场强度,所述第三电场强度为所述待测导线在所述第三单轴电场传感器位置处产生的电场强度,所述磁感应强度为所述待测导线在所述单轴磁场传感器位置处产生的磁场强度,所述参考距离为所述待测导线与预设的电力参考点间的距离;
在预设参考坐标系中,根据所述多个传感器的相对距离、待测导线位置变量及所述第一电场强度、所述第二电场强度和所述第三电场强度,确定所述第一电场强度、所述第二电场强度和所述第三电场强度与待测导线电压的对应关系,并根据所述对应关系,得到所述待测导线的电压值及位置变量值;
根据所述待测导线位置变量值、所述磁感应强度、所述多个传感器间的相对距离,得到所述待测导线的电流值。
在其中一个实施例中,所述根据所述多个传感器的相对距离、待测导线位置变量及所述第一电场强度、所述第二电场强度和所述第三电场强度,确定所述第一电场强度、所述第二电场强度和所述第三电场强度与待测导线电压的对应关系,并根据所述对应关系,得到所述待测导线的电压值及位置变量值,包括:
根据所述多个传感器的相对距离及所述待测导线位置变量,确定所述多个传感器与所述待测导线的空间距离关系,所述空间距离关系至少包括所述第一单轴电场传感器与所述待测导线的第一空间距离关系、所述第二单轴电场传感器与所述待测导线的第二空间距离关系和所述第三单轴电场传感器与所述待测导线的第三空间距离关系;
根据所述第一电场强度、所述第一空间距离关系、所述参考距离,确定所述第一电场强度与所述待测导线电压的第一对应关系;
根据所述第二电场强度、所述第二空间距离关系、所述参考距离,确定所述第二电场强度与所述待测导线电压的第二对应关系;
根据所述第三电场强度、所述第三空间距离关系、所述参考距离,确定所述第三电场强度与所述待测导线电压的第三对应关系;
根据所述第一对应关系、所述第二对应关系和所述第三对应关系,得到所述待测导线的电压值;
根据所述第一对应关系、所述第二对应关系、所述第三对应关系中的任意两个及所述待测导线的电压值,确定所述待测导线位置变量值。
在其中一个实施例中,根据所述多个传感器的相对距离及所述待测导线位置变量,确定所述多个传感器与所述待测导线的空间距离关系,包括:
在所述预设的参考坐标系中,根据所述多个传感器间的相对距离,确定所述多个传感器的位置坐标值,所述多个传感器的位置坐标值包括所述第一单轴电场传感器的第一位置坐标值、所述第二单轴电场传感器 的第二位置坐标值、所述第三单轴电场传感器的第三位置坐标值;
根据所述第一位置坐标值及所述待测导线位置变量,确定所述待测导线与所述第一单轴电场传感器的第一空间距离关系;
根据所述第二位置坐标值及所述待测导线位置变量,确定所述待测导线与所述第二单轴电场传感器的第二空间距离关系;
根据所述第三位置坐标值及所述待测导线位置变量,确定所述待测导线与所述第三单轴电场传感器的第三空间距离关系。
在其中一个实施例中,所述根据所述待测导线位置变量值、所述磁感应强度、所述多个传感器间的相对距离,得到所述待测导线的电流值,包括:
根据所述多个传感器的相对距离、所述待测导线位置变量值,确定所述单轴磁场传感器与所述待测导线的空间距离;
根据所述磁感应强度、所述空间距离及预设的比奥萨法尔算法,得到所述待测导线电流值,所述比奥萨法尔算法表征磁感应强度与电流之间的函数关系。
在其中一个实施例中,所述第一单轴电场传感器、所述第二单轴电场传感器、所述第三单轴电场传感器和所述单轴磁场传感器沿同一直线共线设置,所述直线与待测导线异面相交且所呈夹角非直角;
所述根据所述多个传感器的相对距离、待测导线位置变量及所述第一电场强度、所述第二电场强度和所述第三电场强度,确定所述第一电场强度、所述第二电场强度和所述第三电场强度与待测导线电压的对应关系,包括:
根据所述多个传感器的相对距离、待测导线位置变量、所述第一电场强度、所述第二电场强度、所述第三电场强度及所述夹角的余弦值,确定所述第一电场强度、所述第二电场强度和所述第三电场强度与待测导线电压的对应关系;
所述根据所述磁感应强度、所述空间距离及预设的比奥萨法尔算法,得到所述待测导线电流值,包括:
根据所述磁感应强度、所述空间距离、所述夹角的余弦值及所述预设的比奥萨法尔算法,得到所述待测导线电流值。
一种电力参数测量***,所述***包括多个传感器,所述多个传感器至少包括第一单轴电场传感器、第二单轴电场传感器、第三单轴电场传感器和单轴磁场传感器,所述第一单轴电场传感器、所述第二单轴电场传感器、所述第三单轴电场传感器和所述单轴磁场传感器沿同一直线共线设置,且所述直线与待测导线不共面;
所述第一单轴电场传感器用于获取所述待测导线在所述第一单轴电场传感器位置处产生的第一电场强度;
所述第二单轴电场传感器用于获取所述待测导线在所述第二单轴电场传感器位置处产生的第二电场强度;
所述第三单轴电场传感器用于获取所述待测导线在所述第三单轴电场传感器位置处产生的第三电场强度;
所述单轴磁场传感器用于获取所述待测导线在所述单轴磁场传感器位置处产生的磁感应强度;
所述第一电场强度、所述第二电场强度、所述第三电场强度和所述磁感应强度用于测量所述待测导线的电流值和电压值。
一种电力参数测量装置,所述装置应用于电力参数测量***,所述***包括多个传感器,所述多个传感器包括第一单轴电场传感器、第二单轴电场传感器、第三单轴电场传感器和单轴磁场传感器,所述第一单轴电场传感器、所述第二单轴电场传感器、所述第三单轴电场传感器和所述单轴磁场传感器沿同一直线共线设置,且所述直线与待测导线不共面,所述装置包括:
获取模块,用于获取第一电场强度、第二电场强度、第三电场强度、磁感应强度、参考距离和所述多个传感器间的相对距离,所述第一电场强度为所述待测导线在所述第一单轴电场传感器位置处产生的电场强度,所述第二电场强度为所述待测导线在所述第二单轴电场传感器位置处产生的电场强度,所述第三电场强度为所述待测导线在所述第三单轴电场传感器位置处产生的电场强度,所述磁感应强度为所述待测导线在所述单轴磁场传感器位置处产生的磁场强度,所述参考距离为所述待测导线与预设的电力参考点间的距离;
第一处理模块,用于在预设参考坐标系中,根据所述多个传感器的相对距离、待测导线位置变量及所述第一电场强度、所述第二电场强度和所述第三电场强度,确定所述第一电场强度、所述第二电场强度和所述第三电场强度与待测导线电压的对应关系,并根据所述对应关系,得到所述待测导线的电压值及位置变量值;
第二处理模块,用于根据所述待测导线位置变量值、所述磁感应强度、所述多个传感器间的相对距离,得到所述待测导线的电流值。
在其中一个实施例,所述第一处理模块具体用于根据所述多个传感器的相对距离及所述待测导线位置变量,确定所述多个传感器与所述待测导线的空间距离关系,所述空间距离关系至少包括所述第一单轴电场传感器与所述待测导线的第一空间距离关系、所述第二单轴电场传感器与所述待测导线的第二空间距离 关系和所述第三单轴电场传感器与所述待测导线的第三空间距离关系;
根据所述第一电场强度、所述第一空间距离关系、所述参考距离,确定所述第一电场强度与所述待测导线电压的第一对应关系;
根据所述第二电场强度、所述第二空间距离关系、所述参考距离,确定所述第二电场强度与所述待测导线电压的第二对应关系;
根据所述第三电场强度、所述第三空间距离关系、所述参考距离,确定所述第三电场强度与所述待测导线电压的第三对应关系;
根据所述第一对应关系、所述第二对应关系和所述第三对应关系,得到所述待测导线的电压值;
根据所述第一对应关系、所述第二对应关系、所述第三对应关系中的任意两个及所述待测导线的电压值,确定所述待测导线位置变量值。
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
获取第一电场强度、第二电场强度、第三电场强度、磁感应强度、参考距离和所述多个传感器间的相对距离,所述第一电场强度为所述待测导线在所述第一单轴电场传感器位置处产生的电场强度,所述第二电场强度为所述待测导线在所述第二单轴电场传感器位置处产生的电场强度,所述第三电场强度为所述待测导线在所述第三单轴电场传感器位置处产生的电场强度,所述磁感应强度为所述待测导线在所述单轴磁场传感器位置处产生的磁场强度,所述参考距离为所述待测导线与预设的电力参考点间的距离;
在预设参考坐标系中,根据所述多个传感器的相对距离、待测导线位置变量及所述第一电场强度、所述第二电场强度和所述第三电场强度,确定所述第一电场强度、所述第二电场强度和所述第三电场强度与待测导线电压的对应关系,并根据所述对应关系,得到所述待测导线的电压值及位置变量值;
根据所述待测导线位置变量值、所述磁感应强度、所述多个传感器间的相对距离,得到所述待测导线的电流值。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
获取第一电场强度、第二电场强度、第三电场强度、磁感应强度、参考距离和所述多个传感器间的相对距离,所述第一电场强度为所述待测导线在所述第一单轴电场传感器位置处产生的电场强度,所述第二电场强度为所述待测导线在所述第二单轴电场传感器位置处产生的电场强度,所述第三电场强度为所述待测导线在所述第三单轴电场传感器位置处产生的电场强度,所述磁感应强度为所述待测导线在所述单轴磁场传感器位置处产生的磁场强度,所述参考距离为所述待测导线与预设的电力参考点间的距离;
在预设参考坐标系中,根据所述多个传感器的相对距离、待测导线位置变量及所述第一电场强度、所述第二电场强度和所述第三电场强度,确定所述第一电场强度、所述第二电场强度和所述第三电场强度与待测导线电压的对应关系,并根据所述对应关系,得到所述待测导线的电压值及位置变量值;
根据所述待测导线位置变量值、所述磁感应强度、所述多个传感器间的相对距离,得到所述待测导线的电流值。
上述电力参数测量方法、***、装置、计算机设备和存储介质,获取第一电场强度、第二电场强度、第三电场强度、磁感应强度、参考距离和多个传感器间的相对距离,其中,第一电场强度为所述待测导线在第一单轴电场传感器位置处产生的电场强度,第二电场强度为所述待测导线在第二单轴电场传感器位置处产生的电场强度,第三电场强度为所述待测导线在第三单轴电场传感器位置处产生的电场强度,磁感应强度为所述待测导线在单轴磁场传感器位置处产生的磁场强度,参考距离为所述待测导线与预设的电力参考点间的距离;在预设参考坐标系中,根据所述多个传感器的相对距离、待测导线位置变量及第一电场强度、第二电场强度和第三电场强度,确定所述第一电场强度、所述第二电场强度和所述第三电场强度与待测导线电压的对应关系,并根据所述对应关系,得到所述待测导线的电压值及位置变量值;根据所述待测导线位置变量值、磁感应强度、多个传感器间的相对距离,得到所述待测导线的电流值。通过上述方法、***、装置、计算机设备和存储介质,不需要预先固定待测导线与传感器设备的空间位置关系,即可得到待测导线的电压值和电流值,降低了传感器设备的安装难度,同时,待测导线的电流、电压测量结果不受待测导线与传感器设备空间位置关系值的影响,提高了电力参数测量结果的准确性。
附图说明
图1为一个实施例中电力参数测量***的应用环境图;
图2为一个实施例中电力参数测量方法的流程示意图;
图3为一个实施例中确定电场强度与待测导线电压对应关系方法的流程图;
图4为一个实施例中确定各传感器与待测导线空间距离关系方法的流程图;
图5为一个实施例中确定待测导线电流值方法的流程示意图;
图6为一个实施例中待测导线与传感器所沿直线异面不垂直的应用环境图;
图7为一个实施例中电力参数测量装置的结构框图;
图8为一个实施例中计算机设备的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请提供的电力参数测量方法,如图1所示,可以应用于电力参数测量***100。该***100包括多个传感器,其中,多个传感器包括第一单轴电场传感器110、第二单轴电场传感器120、第三单轴电场传感器130和单轴磁场传感器140,第一单轴电场传感器110、第二单轴电场传感器120、第三单轴电场传感器130和单轴磁场传感器140沿同一直线共线设置,并且该直线与待测导线200不共面。通过该电力参数测量***100,不需要预先固定待测导线200与各传感器的空间位置关系,即可得到待测导线200的电压值和电流值,降低了各传感器的安装难度,同时,通过该***100得到的待测导线200的电流、电压测量结果不受待测导线200与传感器空间位置关系值的影响,提高了电力参数测量结果的准确性。
在一个实施例中,如图2所示,提供了一种电力参数测量方法,以该方法应用于图1中的电力参数测量***进行说明,包括以下步骤:
步骤201,获取第一电场强度、第二电场强度、第三电场强度、磁感应强度、参考距离和多个传感器间的相对距离,第一电场强度为待测导线在第一单轴电场传感器位置处产生的电场强度,第二电场强度为待测导线在第二单轴电场传感器位置处产生的电场强度,第三电场强度为待测导线在第三单轴电场传感器位置处产生的电场强度,磁感应强度为待测导线在单轴磁场传感器位置处产生的磁场强度,参考距离为待测导线与预设的电力参考点间的距离。
在实施中,待测导线在第一单轴电场传感器、第二单轴电场传感器和第三单轴电场传感器所在位置处会产生电场强度,分别为第一电场强度、第二电场强度和第三电场强度。待测导线在单轴磁场传感器所在位置处会产生磁感应强度。进而,计算机设备获取第一电场强度、第二电场强度、第三电场强度、磁感应强度,并同时获取多个传感器间的相对距离和待测导线与电力参考点间的已知参考距离。其中,多个传感器间的相对距离可以为多个传感器中任意两个传感器间的相对距离,例如,如图1,第一单轴电场传感器与第二单轴电场传感器间的相对距离m;第二单轴电场传感器与第三单轴电场传感器间的相对距离n;第三单轴电场传感器与单轴磁场传感器间的相对距离h。可选的,多个传感器间可以但不限于按照等距d共线设置(即m=n=h=d)。本申请实施例中将以多个传感器按照相同距离间隔d设置为例进行说明。
步骤202,在预设参考坐标系中,根据多个传感器的相对距离、待测导线位置变量及第一电场强度、第二电场强度和第三电场强度,确定第一电场强度、第二电场强度和第三电场强度与待测导线电压的对应关系,并根据对应关系,得到待测导线的电压值及位置变量值。
在实施中,在预设的参考坐标系中,计算机设备根据多个传感器的相对距离、待测的导线位置变量(可以为位置坐标变量,如(l,p))以及第一电场强度、第二电场强度和第三电场强度,分别确定第一电场强度、第二电场强度和第三电场强度与待测导线电压参数间的对应关系,并根据该对应关系,得到待测导线的电压值及位置变量值(即坐标值)。
步骤203,根据待测导线位置变量值、磁感应强度、多个传感器间的相对距离,得到待测导线的电流值。
在实施中,计算机设备根据待测导线位置变量值、磁感应强度、多个传感器间的相对距离,可以得到待测导线的电流值。
上述电力参数测量方法中,计算机设备获取第一电场强度、第二电场强度、第三电场强度、磁感应强度、参考距离和多个传感器间的相对距离;然后,在预设参考坐标系中,计算机设备根据多个传感器的相对距离、待测导线位置变量及第一电场强度、第二电场强度和第三电场强度,确定第一电场强度、第二电场强度和第三电场强度与待测导线电压的对应关系,并根据该对应关系,得到待测导线的电压值及位置变量值;最后,计算机设备根据待测导线位置变量值、磁感应强度、多个传感器间的相对距离,得到待测导线的电流值。通过上述方法,不需要预先固定待测导线与传感器设备的空间位置关系,即可得到待测导线的电压值和电流值,降低了传感器设备的安装难度,同时,待测导线的电流、电压测量结果不受待测导线与传感器设备空间位置关系值的影响,提高了电力参数测量结果的准确性。
在一个实施例中,如图3所示,步骤202包括的具体处理过程如下所示:
步骤2021,根据多个传感器的相对距离及待测导线位置变量,确定多个传感器与待测导线的空间距离关系,空间距离关系至少包括第一单轴电场传感器与待测导线的第一空间距离关系、第二单轴电场传感器与待测导线的第二空间距离关系和第三单轴电场传感器与待测导线的第三空间距离关系。
在实施中,在预设的参考坐标系中,计算机设备根据多个传感器的相对距离及待测导线的位置变量,可以确定出多个传感器与待测导线的空间距离关系。其中,对应多个传感器,其空间距离关系至少包括第一单轴电场传感器与待测导线的第一空间距离关系,第二单轴电场传感器与待测导线的第二空间距离关系和第三单轴电场传感器与待测导线的第三空间距离关系。
步骤2022,根据第一电场强度、第一空间距离关系、参考距离,确定第一电场强度与待测导线电压的第一对应关系。
在实施中,计算机设备由高斯定理和导线电压算法,可以得到电场强度与导线电压的对应公式,具体 的,高斯定理计算公式为
Figure PCTCN2021098321-appb-000001
其中,E为电场强度,λ为导线单位长度上的电荷,ε 0为真空介电常数,ε 0=8.85×10 -12C 2/(N·m 2),x为待测导线与电场传感器的空间距离。导线电压算法公式为
Figure PCTCN2021098321-appb-000002
其中,U为导线电压,R为导线半径,x 0为已知参考距离,进而计算机设备可以得到的电场强度与导线电压的对应公式为
Figure PCTCN2021098321-appb-000003
然后,计算机设备根据该对应公式、第一电场强度、第一空间距离关系、参考距离,可以确定出第一电场强度与待测导线电压的第一对应关系。具体的计算公式如下所示:
Figure PCTCN2021098321-appb-000004
其中,E 1为第一单轴电场传感器所在位置处的第一电场强度,U 0为待测导线的电压参数,R为导线半径,x 0为已知参考距离,
Figure PCTCN2021098321-appb-000005
为第一单轴电场传感器与待测导线的第一空间距离关系。由于第一单轴电场传感器只能测量水平方向的电场强度,因此,第一电场强度仅为待测导线与第一单轴电场传感器间电场强度的水平分量,因此,计算机设备需要对该对应公式中的电场强度做正交分解,对应得到其水平方向的分量(即第一电场强度)。具体操作:对由高斯定理和导线电压算法确定的对应公式乘以第一空间距离所在直线与水平方向所在直线夹角的余弦值
Figure PCTCN2021098321-appb-000006
即等于水平方向的第一电场强度。
步骤2023,根据第二电场强度、第二空间距离关系、参考距离,确定第二电场强度与待测导线电压的第二对应关系。
在实施中,电场强度与导线电压的对应关系公式如步骤2022中所述,该对应关系公式具体实现步骤,本申请实施例不再赘述。计算机设备根据该对应关系公式、第二电场强度、第二空间距离关系、参考距离,确定第二电场强度与待测导线电压的第二对应关系。具体的,计算公式如下所示:
Figure PCTCN2021098321-appb-000007
其中,E 2为第二电场强度,U 0为待测导线的电压参数,R为导线半径,x 0为已知参考距离,d为第一单轴电场传感器与第二单轴电场传感器间的相对距离,
Figure PCTCN2021098321-appb-000008
为第二单轴电场传感器与待测导线的第二空间距离关系,
Figure PCTCN2021098321-appb-000009
为第二空间距离所在直线与水平方向所在直线夹角的余弦值。
步骤2024,根据第三电场强度、第三空间距离关系、参考距离,确定第三电场强度与待测导线电压的 第三对应关系。
在实施中,计算机设备根据电场强度与导线电压的对应公式、第三电场强度、第三空间距离关系、参考距离,确定第三电场强度与待测导线电压的第三对应关系。具体的,计算公式如下所示:
Figure PCTCN2021098321-appb-000010
其中,E 3为第三电场强度,U 0为待测导线的电压参数,R为导线半径,x 0为已知参考距离,
Figure PCTCN2021098321-appb-000011
为第三单轴电场传感器与待测导线的第三空间距离关系,
Figure PCTCN2021098321-appb-000012
为第三空间距离所在直线与水平方向所在直线夹角的余弦值。
步骤2025,根据第一对应关系、第二对应关系和第三对应关系,得到待测导线的电压值。
在实施中,计算机设备根据得到的第一对应关系、第二对应关系和第三对应关系,得到待测导线的电压值。
具体的,计算机设备引入中间变量k 1、k 2和k 3,对上述公式(1)(2)和(3)(即第一对应关系、第二对应关系和第三对应关系)分别进行等式变换,过程如下:
Figure PCTCN2021098321-appb-000013
Figure PCTCN2021098321-appb-000014
Figure PCTCN2021098321-appb-000015
由公式(4)和(5)联立,可以得到:
Figure PCTCN2021098321-appb-000016
由公式(4)和(6)联立,可以得到:
Figure PCTCN2021098321-appb-000017
进一步地,由公式(7)和(8)可以得到:
Figure PCTCN2021098321-appb-000018
将公式(4)至(6)中k 1、k 2和k 3的等式代入到公式(9)中,可以得到如下方程:
Figure PCTCN2021098321-appb-000019
最后,计算机设备根据预设的一元二次方程求解算法,对公式(10)这个方程进行求解,得到待测导线的电压值,具体公式如下所示:
Figure PCTCN2021098321-appb-000020
可选的,计算机设备根据公式(11)求解得到的U 0的值为两个,计算机设备根据预设的电压范围阈值,对得到的两个值进行判断,判定在预设的电压范围阈值内的U 0值,作为待测导线电压值。
步骤2026,根据第一对应关系、第二对应关系、第三对应关系中的任意两个及待测导线的电压值,确定待测导线位置变量值。
在实施中,计算机设备根据第一对应关系、第二对应关系、第三对应关系中的任意两个,以及得到的待测导线电压值U 0,确定待测导线的位置变量值(即待测导线位置坐标值),具体的,例如,计算机设备将得到的待测导线电压值分别代入到第一对应关系和第二对应关系中,由第一对应关系与第二对应关系联立,可以求得待测导线到的位置变量值,即位置坐标值(l,p)。
本实施例中,首先,计算机设备根据多个传感器的相对距离及待测导线位置变量,确定多个传感器与待测导线的空间距离关系;根据第一电场强度、第一空间距离关系、参考距离,确定第一电场强度与待测导线电压的第一对应关系;根据第二电场强度、第二空间距离关系、参考距离,确定第二电场强度与待测导线电压的第二对应关系;根据第三电场强度、第三空间距离关系、参考距离,确定第三电场强度与待测导线电压的第三对应关系;然后,计算机设备根据第一对应关系、第二对应关系和第三对应关系,得到待测导线的电压值;最后,计算机设备根据第一对应关系、第二对应关系、第三对应关系中的任意两个及待测导线的电压值,确定待测导线位置变量值,通过该方法,不需要预先固定电场传感器与待测导线间的位置关系,即可得到待测导线的电压值,降低传感器的安装难度,另外,通过该方法还可以同时得到待测导线的空间位置变量值,无需人为测量,提高了待测导线空间位置数据的精确度。
在一个实施例中,如图4所示,步骤2021包括的具体处理过程如下所示:
步骤20211,在预设的参考坐标系中,根据多个传感器间的相对距离,确定多个传感器的位置坐标值, 多个传感器的位置坐标值包括第一单轴电场传感器的第一位置坐标值、第二单轴电场传感器的第二位置坐标值、第三单轴电场传感器的第三位置坐标值。
在实施中,在预设的参考坐标系中,计算机设备根据获取到的多个传感器间的相对距离,确定多个传感器在该参考系中的位置坐标值。具体的,预设的参考坐标系以第一单轴电场传感器所在位置处为坐标原点,以水平方向为x轴方向,竖直向上方向为y轴方向,则多个传感器的位置坐标值分别为:第一单轴电场传感器位置坐标(0,0),第二单轴电场传感器位置坐标(0,d),第三单轴电场传感器位置坐标(0,2d)。
步骤20212,根据第一位置坐标值及待测导线位置变量,确定待测导线与第一单轴电场传感器的第一空间距离关系。
在实施中,计算机设备根据第一位置坐标值及待测导线位置变量,确定待测导线与第一单轴电场传感器的第一空间距离关系,具体的,设待测导线在预设的参考坐标系中的位置坐标为(l,p),则计算机设备根据两点间距离公式,可以得到第一单轴电场传感器与待测导线的第一空间距离关系为
Figure PCTCN2021098321-appb-000021
步骤20213,根据第二位置坐标值及待测导线位置变量,确定待测导线与第二单轴电场传感器的第二空间距离关系。
在实施中,计算机设备根据第二位置坐标值及待测导线位置变量,确定待测导线与第二单轴电场传感器的第二空间距离关系,具体的第二空间距离关系对应公式为
Figure PCTCN2021098321-appb-000022
第二空间距离关系计算过程与步骤20212中第一空间距离关系相类似,本申请实施例不再赘述。
步骤20214,根据第三位置坐标值及待测导线位置变量,确定待测导线与第三单轴电场传感器的第三空间距离关系。
在实施中,计算机设备根据第三位置坐标及待测导线位置变量,确定待测导线与第三单轴电场传感器的第三空间距离关系,具体的第三空间距离关系对应公式为
Figure PCTCN2021098321-appb-000023
其具体计算过程本申请实施例不再赘述。
本实施例中,在预设的参考坐标系中,根据多个传感器间的相对距离,确定多个传感器的位置坐标,并根据多个传感器间的位置坐标,分别确定各传感器与待测导线的空间距离关系,以使根据这些空间距离关系得到多个传感器对应的电场强度与待测导线电压的对应关系,进一步可以求得待测导线电压值。采用该方法,不需要固定传感器的位置,即可得到多个传感器与待测导线的空间距离关系,根据空间距离关系及电场强度与电压的对应关系,得到待测导线电压值,使待测导线电压值不受多个传感器与待测导线具体空间距离值(空间位置关系)的影响,提高了待测导线电压值的测量精确度。
在一个实施例中,如图5所示,步骤203包括的具体处理过程如下所示:
步骤2031,根据多个传感器的相对距离、待测导线位置变量值,确定单轴磁场传感器与待测导线的空间距离。
在实施中,计算机设备根据多个传感器的相对距离、待测导线位置变量值,确定单轴磁场传感器与待测导线的空间距离。具体的,在预设的参考坐标系中,计算机设备根据多个传感器间的相对距离,确定单轴磁场传感器的位置坐标值为(0,3d),由步骤202求得的待测导线的位置变量值为(l,p),则计算机设备根据单轴磁场传感器的位置坐标值、待测导线位置变量值及两点间距离公式,得到单轴磁场传感器与待测导线的空间距离为
Figure PCTCN2021098321-appb-000024
步骤2032,根据磁感应强度、空间距离及预设的比奥萨法尔算法,得到待测导线电流值,比奥萨法尔算法表征磁感应强度与电流之间的函数关系。
在实施中,比奥萨法尔算法表征磁感应强度与电流之间的函数关系,其具体公式为
Figure PCTCN2021098321-appb-000025
其中,B为磁感应强度,μ 0为空气磁导率常量,μ 0=4π×10 -7,I为导线电流,x为传感器与导线间的空间距离。则计算机设备根据比奥萨法尔算法确定的单轴磁场传感器的磁感应强度,具体公式如下所示:
Figure PCTCN2021098321-appb-000026
其中,B 1为单轴磁场传感器位置处的磁感应强度,
Figure PCTCN2021098321-appb-000027
为单轴磁场传感器与待测导线的空间距离,
Figure PCTCN2021098321-appb-000028
为单轴磁场传感器与待测导线的空间距离所在直线与水平方向所在直线夹角的余弦值。由于单轴磁场传感器只能测量水平方向的磁感应强度,因此,磁感应强度仅为待测导线与单轴磁场传感器间磁感应强度的水平分量,因此,计算机设备需要对该对应公式中的磁感应强度做正交分解,对应得到其水平方向的分量。具体操作:对磁感应强度公式乘以空间距离所在直线与水平方向所在直线夹角的余弦值
Figure PCTCN2021098321-appb-000029
即等于水平方向的磁感应强度。
进一步地,计算机设备对该磁感应强度公式(12)进行变换,并将公式(4)代入,可以得到待测导线电流值,具体公式如下:
Figure PCTCN2021098321-appb-000030
本实施例中,计算机设备根据多个传感器的相对距离、待测导线位置变量值,确定单轴磁场传感器与待测导线的空间距离;然后,计算机设备根据磁感应强度、空间距离及预设的比奥萨法尔算法,得到待测导线电流值。采用该方法,通过电压、电流计算过程中的耦合关系,即通过求解电压值时得到的待测导线的位置变量值,进一步求得待测导线电流值,无需预先固定待测导线的位置,且不需要预先测量传感器与 待测导线的空间距离值,即可得到待测导线电流值,降低了传感器的安装难度,提高了待测导线电流值的测量精度。
可选的,上述实施例中均以多个传感器间相对距离按照等距d设置进行说明,当多个传感器间相对距离不等距,即m≠n≠h时,上述步骤过程的公式中等距d替换成对应的相对距离值即可,例如,替换后的第二电场强度与待测导线电压的第二对应关系公式:
Figure PCTCN2021098321-appb-000031
替换后的第三电场强度与待测导线电压的第三对应关系公式:
Figure PCTCN2021098321-appb-000032
替换后的单轴磁场传感器的磁感应强度公式:
Figure PCTCN2021098321-appb-000033
因此,多个传感器间相对距离不等距设置情况与上述实施例中多个传感器等距设置情况类似,本申请实施例不再详细赘述。
在一个实施例中,如图6所示,第一单轴电场传感器、第二单轴电场传感器、第三单轴电场传感器和单轴磁场传感器沿同一直线共线设置,该直线与待测导线异面相交且所呈夹角非直角。
在实施中,多个传感器中第一单轴电场传感器、第二单轴电场传感器、第三单轴电场传感器和单轴磁场传感器所沿直线,与待测导线所在直线可以不异面垂直设置,如图6所示,多个传感器所沿直线与待测导线所在直线异面相交,例如,多个传感器所沿直线与待测导线所在直线异面相交,其夹角为α。
则步骤202包括:根据多个传感器的相对距离、待测导线位置变量、第一电场强度、第二电场强度、第三电场强度及夹角的余弦值,确定第一电场强度、第二电场强度和第三电场强度与待测导线电压的对应关系。
在实施中,因为待测导线所在直线与多个传感器所在直线并非异面垂直,则计算机设备需要根据所呈夹角对电场强度与待测导线电压的对应关系进行修正,具体修正公式如下所示:
Figure PCTCN2021098321-appb-000034
则计算机设备根据该修正公式、多个传感器的相对距离、待测导线位置变量、第一电场强度、第二电场强度、第三电场强度及夹角α的余弦值,分别确定修正后第一电场强度、第二电场强度和第三电场强度与待测导线电压的对应关系。
则步骤203包括:根据磁感应强度、空间距离、夹角的余弦值及预设的比奥萨法尔算法,得到待测导线电流值。
在实施中,因为待测导线所在直线与多个传感器所在直线并非异面垂直,则计算机设备需要根据所呈 夹角对磁感应强度与待测导线电流的对应关系进行修正,具体修正公式如下所示:
Figure PCTCN2021098321-appb-000035
则计算机设备根据该修正公式、根据磁感应强度、空间距离、夹角α的余弦值及预设的比奥萨法尔算法,得到待测导线电流值。
本实施例中,通过第一单轴电场传感器、第二单轴电场传感器、第三单轴电场传感器和单轴磁场传感器沿同一直线共线设置,且该直线与待测导线所在直线异面相交,所呈夹角非直角,降低了传感器的安装难度,同时,计算机设备对电场强度与电压的对应关系、磁感应强度与电流的对应关系进行修正,提高了待测导线电压值和电流值的测量精度。
应该理解的是,虽然图2-5的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图2-5中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图1所示,提供了一种电力参数测量***100,***包括多个传感器,多个传感器至少包括第一单轴电场传感器110、第二单轴电场传感器120、第三单轴电场传感器130和单轴磁场传感器140,第一单轴电场传感器110、第二单轴电场传感器120、第三单轴电场传感器130和单轴磁场传感器140沿同一直线共线设置,且直线与待测导线200不共面。
第一单轴电场传感器110用于获取待测导线200在第一单轴电场传感器110位置处产生的第一电场强度。
第二单轴电场传感器120用于获取待测导线200在第二单轴电场传感器120位置处产生的第二电场强度。
第三单轴电场传感器130用于获取待测导线200在第三单轴电场传感器130位置处产生的第三电场强度。
单轴磁场传感器140用于获取待测导线200在单轴磁场传感器140位置处产生的磁感应强度。
第一电场强度、第二电场强度、第三电场强度和磁感应强度用于测量待测导线200的电流值和电压值。
本实施例中,电力参数测量***包括多个传感器,第一单轴电场传感器、第二单轴电场传感器、第三 单轴电场传感器和单轴磁场传感器沿同一直线共线设置,且该直线与待测导线不共面,通过该电力参数测量***采集的第一电场强度、第二电场强度、第三电场强度和磁感应强度等数据,不需要预先固定待测导线与传感器设备的空间位置关系,即可得到待测导线的电压值和电流值,降低了传感器设备的安装难度,同时,待测导线的电流、电压测量结果不受待测导线与传感器设备空间位置关系值的影响,提高了电力参数测量结果的准确性。
在一个实施例中,如图7所示,提供了一种电力参数测量装置700,装置应用于电力参数测量***,***包括多个传感器,多个传感器包括第一单轴电场传感器、第二单轴电场传感器、第三单轴电场传感器和单轴磁场传感器,第一单轴电场传感器、第二单轴电场传感器、第三单轴电场传感器和单轴磁场传感器沿同一直线共线设置,且直线与待测导线不共面,该装置700包括:获取模块710、第一处理模块720、第二处理模块730,其中:
获取模块710,用于获取第一电场强度、第二电场强度、第三电场强度、磁感应强度、参考距离和多个传感器间的相对距离,第一电场强度为待测导线在第一单轴电场传感器位置处产生的电场强度,第二电场强度为待测导线在第二单轴电场传感器位置处产生的电场强度,第三电场强度为待测导线在第三单轴电场传感器位置处产生的电场强度,磁感应强度为待测导线在单轴磁场传感器位置处产生的磁场强度,参考距离为待测导线与预设的电力参考点间的距离。
第一处理模块720,用于在预设参考坐标系中,根据多个传感器的相对距离、待测导线位置变量及第一电场强度、第二电场强度和第三电场强度,确定第一电场强度、第二电场强度和第三电场强度与待测导线电压的对应关系,并根据对应关系,得到待测导线的电压值及位置变量值。
第二处理模块730,用于根据待测导线位置变量值、磁感应强度、多个传感器间的相对距离,得到待测导线的电流值。
在一个实施例中,第一处理模块720具体用于根据多个传感器的相对距离及待测导线位置变量,确定多个传感器与待测导线的空间距离关系,空间距离关系至少包括第一单轴电场传感器与待测导线的第一空间距离关系、第二单轴电场传感器与待测导线的第二空间距离关系和第三单轴电场传感器与待测导线的第三空间距离关系。
根据第一电场强度、第一空间距离关系、参考距离,确定第一电场强度与待测导线电压的第一对应关系。
根据第二电场强度、第二空间距离关系、参考距离,确定第二电场强度与待测导线电压的第二对应关系。
根据第三电场强度、第三空间距离关系、参考距离,确定第三电场强度与待测导线电压的第三对应关系。
根据第一对应关系、第二对应关系和第三对应关系,得到待测导线的电压值。
根据第一对应关系、第二对应关系、第三对应关系中的任意两个及待测导线的电压值,确定待测导线位置变量值。
在一个实施例中,第一处理模块720具体用于在预设的参考坐标系中,根据多个传感器间的相对距离,确定多个传感器的位置坐标值,多个传感器的位置坐标值包括第一单轴电场传感器的第一位置坐标值、第二单轴电场传感器的第二位置坐标值、第三单轴电场传感器的第三位置坐标值。
根据第一位置坐标值及待测导线位置变量,确定待测导线与第一单轴电场传感器的第一空间距离关系。
根据第二位置坐标值及待测导线位置变量,确定待测导线与第二单轴电场传感器的第二空间距离关系。
根据第三位置坐标值及待测导线位置变量,确定待测导线与第三单轴电场传感器的第三空间距离关系。
在一个实施例中,第二处理模块730具体用于根据多个传感器的相对距离、待测导线位置变量值,确定单轴磁场传感器与待测导线的空间距离。
根据磁感应强度、空间距离及预设的比奥萨法尔算法,得到待测导线电流值,比奥萨法尔算法表征磁感应强度与电流之间的函数关系。
在一个实施例中,第一单轴电场传感器、第二单轴电场传感器、第三单轴电场传感器和单轴磁场传感器沿同一直线共线设置,直线与待测导线异面相交且所呈夹角非直角。
则第一处理模块720具体用于根据多个传感器的相对距离、待测导线位置变量、第一电场强度、第二电场强度、第三电场强度及夹角的余弦值,确定第一电场强度、第二电场强度和第三电场强度与待测导线电压的对应关系。
第二处理模块730具体用于根据磁感应强度、空间距离、夹角的余弦值及预设的比奥萨法尔算法,得到待测导线电流值。
上述电力参数测量装置700,包括:获取模块710、第一处理模块720、第二处理模块730,获取模块710,用于获取第一电场强度、第二电场强度、第三电场强度、磁感应强度、参考距离和多个传感器间的相对距离;第一处理模块720,用于在预设参考坐标系中,根据多个传感器的相对距离、待测导线位置变 量及第一电场强度、第二电场强度和第三电场强度,确定第一电场强度、第二电场强度和第三电场强度与待测导线电压的对应关系,并根据对应关系,得到待测导线的电压值及位置变量值;第二处理模块,用于根据待测导线位置变量值、磁感应强度、多个传感器间的相对距离,得到待测导线的电流值。通过上述装置,不需要预先固定待测导线与传感器设备的空间位置关系,即可得到待测导线的电压值和电流值,降低了传感器设备的安装难度,同时,待测导线的电流、电压测量结果不受待测导线与传感器设备空间位置关系值的影响,提高了电力参数测量结果的准确性。
关于电力参数测量装置的具体限定可以参见上文中对于电力参数测量方法的限定,在此不再赘述。上述电力参数测量装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图8所示。该计算机设备包括通过***总线连接的处理器、存储器和网络接口。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作***、计算机程序和数据库。该内存储器为非易失性存储介质中的操作***和计算机程序的运行提供环境。该计算机设备的数据库用于存储第一电场强度、第二电场强度、第三电场强度、多个传感器间相对距离、参考距离及测量得到的电压值、电流值等数据。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种电力参数测量方法。
本领域技术人员可以理解,图8中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述各方法实施例中的步骤。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器 可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种电力参数测量方法,其特征在于,所述方法应用于电力参数测量***,所述***包括多个传感器,所述多个传感器包括第一单轴电场传感器、第二单轴电场传感器、第三单轴电场传感器和单轴磁场传感器,所述第一单轴电场传感器、所述第二单轴电场传感器、所述第三单轴电场传感器和所述单轴磁场传感器沿同一直线共线设置,且所述直线与待测导线不共面,所述方法包括:
    获取第一电场强度、第二电场强度、第三电场强度、磁感应强度、参考距离和所述多个传感器间的相对距离,所述第一电场强度为所述待测导线在所述第一单轴电场传感器位置处产生的电场强度,所述第二电场强度为所述待测导线在所述第二单轴电场传感器位置处产生的电场强度,所述第三电场强度为所述待测导线在所述第三单轴电场传感器位置处产生的电场强度,所述磁感应强度为所述待测导线在所述单轴磁场传感器位置处产生的磁场强度,所述参考距离为所述待测导线与预设的电力参考点间的距离;
    在预设参考坐标系中,根据所述多个传感器的相对距离、待测导线位置变量及所述第一电场强度、所述第二电场强度和所述第三电场强度,确定所述第一电场强度、所述第二电场强度和所述第三电场强度与待测导线电压的对应关系,并根据所述对应关系,得到所述待测导线的电压值及位置变量值;
    根据所述待测导线位置变量值、所述磁感应强度、所述多个传感器间的相对距离,得到所述待测导线的电流值。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述多个传感器的相对距离、待测导线位置变量及所述第一电场强度、所述第二电场强度和所述第三电场强度,确定所述第一电场强度、所述第二电场强度和所述第三电场强度与待测导线电压的对应关系,并根据所述对应关系,得到所述待测导线的电压值及位置变量值,包括:
    根据所述多个传感器的相对距离及所述待测导线位置变量,确定所述多个传感器与所述待测导线的空间距离关系,所述空间距离关系至少包括所述第一单轴电场传感器与所述待测导线的第一空间距离关系、所述第二单轴电场传感器与所述待测导线的第二空间距离关系和所述第三单轴电场传感器与所述待测导线的第三空间距离关系;
    根据所述第一电场强度、所述第一空间距离关系、所述参考距离,确定所述第一电场强度与所述待测导线电压的第一对应关系;
    根据所述第二电场强度、所述第二空间距离关系、所述参考距离,确定所述第二电场强度与所述待测导线电压的第二对应关系;
    根据所述第三电场强度、所述第三空间距离关系、所述参考距离,确定所述第三电场强度与所述待测导线电压的第三对应关系;
    根据所述第一对应关系、所述第二对应关系和所述第三对应关系,得到所述待测导线的电压值;
    根据所述第一对应关系、所述第二对应关系、所述第三对应关系中的任意两个及所述待测导线的电压值,确定所述待测导线位置变量值。
  3. 根据权利要求2所述的方法,其特征在于,根据所述多个传感器的相对距离及所述待测导线位置变量,确定所述多个传感器与所述待测导线的空间距离关系,包括:
    在所述预设的参考坐标系中,根据所述多个传感器间的相对距离,确定所述多个传感器的位置坐标值,所述多个传感器的位置坐标值包括所述第一单轴电场传感器的第一位置坐标值、所述第二单轴电场传感器的第二位置坐标值、所述第三单轴电场传感器的第三位置坐标值;
    根据所述第一位置坐标值及所述待测导线位置变量,确定所述待测导线与所述第一单轴电场传感器的第一空间距离关系;
    根据所述第二位置坐标值及所述待测导线位置变量,确定所述待测导线与所述第二单轴电场传感器的第二空间距离关系;
    根据所述第三位置坐标值及所述待测导线位置变量,确定所述待测导线与所述第三单轴电场传感器的第三空间距离关系。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述待测导线位置变量值、所述磁感应强度、所述多个传感器间的相对距离,得到所述待测导线的电流值,包括:
    根据所述多个传感器的相对距离、所述待测导线位置变量值,确定所述单轴磁场传感器与所述待测导线的空间距离;
    根据所述磁感应强度、所述空间距离及预设的比奥萨法尔算法,得到所述待测导线电流值,所述比奥萨法尔算法表征磁感应强度与电流之间的函数关系。
  5. 根据权利要求4所述的方法,其特征在于,所述第一单轴电场传感器、所述第二单轴电场传感器、所述第三单轴电场传感器和所述单轴磁场传感器沿同一直线共线设置,所述直线与待测导线异面相交且所呈夹角非直角;
    所述根据所述多个传感器的相对距离、待测导线位置变量及所述第一电场强度、所述第二电场强度和所述第三电场强度,确定所述第一电场强度、所述第二电场强度和所述第三电场强度与待测导线电压的对应关系,包括:
    根据所述多个传感器的相对距离、待测导线位置变量、所述第一电场强度、所述第二电场强度、所述第三电场强度及所述夹角的余弦值,确定所述第一电场强度、所述第二电场强度和所述第三电场强度与待 测导线电压的对应关系;
    所述根据所述磁感应强度、所述空间距离及预设的比奥萨法尔算法,得到所述待测导线电流值,包括:
    根据所述磁感应强度、所述空间距离、所述夹角的余弦值及所述预设的比奥萨法尔算法,得到所述待测导线电流值。
  6. 一种电力参数测量***,其特征在于,所述***包括多个传感器,所述多个传感器至少包括第一单轴电场传感器、第二单轴电场传感器、第三单轴电场传感器和单轴磁场传感器,所述第一单轴电场传感器、所述第二单轴电场传感器、所述第三单轴电场传感器和所述单轴磁场传感器沿同一直线共线设置,且所述直线与待测导线不共面;
    所述第一单轴电场传感器用于获取所述待测导线在所述第一单轴电场传感器位置处产生的第一电场强度;
    所述第二单轴电场传感器用于获取所述待测导线在所述第二单轴电场传感器位置处产生的第二电场强度;
    所述第三单轴电场传感器用于获取所述待测导线在所述第三单轴电场传感器位置处产生的第三电场强度;
    所述单轴磁场传感器用于获取所述待测导线在所述单轴磁场传感器位置处产生的磁感应强度;
    所述第一电场强度、所述第二电场强度、所述第三电场强度和所述磁感应强度用于测量所述待测导线的电流值和电压值。
  7. 一种电力参数测量装置,其特征在于,所述装置应用于电力参数测量***,所述***包括多个传感器,所述多个传感器包括第一单轴电场传感器、第二单轴电场传感器、第三单轴电场传感器和单轴磁场传感器,所述第一单轴电场传感器、所述第二单轴电场传感器、所述第三单轴电场传感器和所述单轴磁场传感器沿同一直线共线设置,且所述直线与待测导线不共面,所述装置包括:
    获取模块,用于获取第一电场强度、第二电场强度、第三电场强度、磁感应强度、参考距离和所述多个传感器间的相对距离,所述第一电场强度为所述待测导线在所述第一单轴电场传感器位置处产生的电场强度,所述第二电场强度为所述待测导线在所述第二单轴电场传感器位置处产生的电场强度,所述第三电场强度为所述待测导线在所述第三单轴电场传感器位置处产生的电场强度,所述磁感应强度为所述待测导线在所述单轴磁场传感器位置处产生的磁场强度,所述参考距离为所述待测导线与预设的电力参考点间的距离;
    第一处理模块,用于在预设参考坐标系中,根据所述多个传感器的相对距离、待测导线位置变量及所 述第一电场强度、所述第二电场强度和所述第三电场强度,确定所述第一电场强度、所述第二电场强度和所述第三电场强度与待测导线电压的对应关系,并根据所述对应关系,得到所述待测导线的电压值及位置变量值;
    第二处理模块,用于根据所述待测导线位置变量值、所述磁感应强度、所述多个传感器间的相对距离,得到所述待测导线的电流值。
  8. 根据权利要求7所述的装置,其特征在于,所述第一处理模块具体用于根据所述多个传感器的相对距离及所述待测导线位置变量,确定所述多个传感器与所述待测导线的空间距离关系,所述空间距离关系至少包括所述第一单轴电场传感器与所述待测导线的第一空间距离关系、所述第二单轴电场传感器与所述待测导线的第二空间距离关系和所述第三单轴电场传感器与所述待测导线的第三空间距离关系;
    根据所述第一电场强度、所述第一空间距离关系、所述参考距离,确定所述第一电场强度与所述待测导线电压的第一对应关系;
    根据所述第二电场强度、所述第二空间距离关系、所述参考距离,确定所述第二电场强度与所述待测导线电压的第二对应关系;
    根据所述第三电场强度、所述第三空间距离关系、所述参考距离,确定所述第三电场强度与所述待测导线电压的第三对应关系;
    根据所述第一对应关系、所述第二对应关系和所述第三对应关系,得到所述待测导线的电压值;
    根据所述第一对应关系、所述第二对应关系、所述第三对应关系中的任意两个及所述待测导线的电压值,确定所述待测导线位置变量值。
  9. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至5中任一项所述的方法的步骤。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至5中任一项所述的方法的步骤。
PCT/CN2021/098321 2020-06-05 2021-06-04 电力参数测量方法、***、装置、计算机设备和存储介质 WO2021244636A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010503805.3A CN111650446B (zh) 2020-06-05 2020-06-05 电力参数测量方法、***、装置、计算机设备和存储介质
CN202010503805.3 2020-06-05

Publications (1)

Publication Number Publication Date
WO2021244636A1 true WO2021244636A1 (zh) 2021-12-09

Family

ID=72342225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098321 WO2021244636A1 (zh) 2020-06-05 2021-06-04 电力参数测量方法、***、装置、计算机设备和存储介质

Country Status (2)

Country Link
CN (1) CN111650446B (zh)
WO (1) WO2021244636A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114441833A (zh) * 2022-01-24 2022-05-06 南方电网数字电网研究院有限公司 电流测量方法、装置、计算机设备、存储介质
CN114487966A (zh) * 2022-01-18 2022-05-13 贵州电网有限责任公司 基于梯度下降法的电流传感器磁场传感芯片位置校准方法
CN114487552A (zh) * 2022-01-27 2022-05-13 贵州电网有限责任公司 基于微型电场传感芯片的电压测量方法、装置和设备
CN114814675A (zh) * 2022-03-09 2022-07-29 北京微纳星空科技有限公司 标定磁力矩器磁矩的方法、***、存储介质和电子设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111650446B (zh) * 2020-06-05 2021-07-06 南方电网数字电网研究院有限公司 电力参数测量方法、***、装置、计算机设备和存储介质
CN112255452A (zh) * 2020-10-12 2021-01-22 贵州电网有限责任公司电力科学研究院 导电物体的功率分析方法、装置、功率传感器和存储介质
CN114910118B (zh) * 2021-11-17 2024-07-05 中国电力科学研究院有限公司 一种用于对交流输电线路电磁环境进行观测的方法及***
CN114441834A (zh) * 2022-01-29 2022-05-06 贵州电网有限责任公司 一种基于电场传感芯片的双导体电压测量方法与装置
CN114487557B (zh) * 2022-04-02 2022-07-12 南方电网数字电网研究院有限公司 非侵入式电压测量装置
CN114563619B (zh) * 2022-04-06 2023-02-17 南方电网数字电网研究院有限公司 基于电场传感芯片的抗干扰非接触式电压测量方法、装置
CN114441837B (zh) * 2022-04-06 2022-07-12 南方电网数字电网研究院有限公司 基于双轴电场传感芯片的电压测量方法及装置
CN114487561B (zh) * 2022-04-06 2022-07-12 南方电网数字电网研究院有限公司 基于电场传感器的导线电压测量方法及装置
CN115343542B (zh) * 2022-10-18 2023-04-07 国网浙江省电力有限公司宁波市北仑区供电公司 标识作业人员安全作业范围的方法、装置、设备和介质
CN115808578B (zh) * 2022-12-02 2023-12-12 南方电网数字电网研究院有限公司 电力设备的电压获取方法、装置、设备、存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003281230A (ja) * 2002-03-25 2003-10-03 Mitsubishi Electric Corp 送電線下の電界,磁束密度,誘導電圧・電流の計算システム並びにその計算を実行させるためのプログラム
US20120249133A1 (en) * 2011-04-01 2012-10-04 Allegro Microsystems, Inc. Differential magnetic field sensor structure for orientation independent measurement
CN109115217A (zh) * 2018-07-05 2019-01-01 国网陕西省电力公司电力科学研究院 基于电流磁场的输电线路特殊杆塔位置导线参数反演方法
CN109283379A (zh) * 2018-09-28 2019-01-29 南方电网科学研究院有限责任公司 一种导线电流测量方法、装置、设备及可读存储介质
CN208888302U (zh) * 2018-09-28 2019-05-21 南方电网科学研究院有限责任公司 一种电力***中线路电流的测量装置
CN109917172A (zh) * 2019-03-28 2019-06-21 南方电网科学研究院有限责任公司 一种导线电位的测量方法、测量装置及测量***
CN110174548A (zh) * 2019-03-28 2019-08-27 南方电网科学研究院有限责任公司 一种长直导线电位的测量方法、测量装置及测量***
CN110412339A (zh) * 2019-08-08 2019-11-05 南方电网科学研究院有限责任公司 一种电力***电流测量装置及方法
CN111650446A (zh) * 2020-06-05 2020-09-11 南方电网数字电网研究院有限公司 电力参数测量方法、***、装置、计算机设备和存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3515994B2 (ja) * 1999-05-14 2004-04-05 鈴木 文雄 液晶を用いた電場センサ及びそれを用いた立体動画記録再生装置
US8405405B2 (en) * 2010-01-21 2013-03-26 Christos Tsironis Wideband I-V probe and method
EP2466324B1 (en) * 2010-12-15 2013-07-24 ABB Technology AG Combined measuring and detection system
CN102854365B (zh) * 2012-09-03 2015-04-08 中国科学院电工研究所 一种磁声电电流测量装置
CN106249024B (zh) * 2016-07-01 2018-04-03 重庆大学 基于D‑dot电场传感器的输电线路电压测量方法
CN107643438A (zh) * 2017-09-14 2018-01-30 重庆大学 基于法拉第磁光效应的光学电流传感器及其电流测量方法
CN207611086U (zh) * 2017-11-22 2018-07-13 南方电网科学研究院有限责任公司 多轴磁阻电流测量设备和***
CN108872689B (zh) * 2018-06-13 2023-12-05 国网浙江省电力有限公司金华供电公司 一种基于特征电场和磁场的特高压直流线路验电装置
CN109283380B (zh) * 2018-09-28 2020-06-05 南方电网科学研究院有限责任公司 电力***中线路电流的测量方法、装置、设备及存储介质
CN109254191B (zh) * 2018-11-27 2020-08-07 南方电网科学研究院有限责任公司 一种长直导线电流的测量方法、装置及***

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003281230A (ja) * 2002-03-25 2003-10-03 Mitsubishi Electric Corp 送電線下の電界,磁束密度,誘導電圧・電流の計算システム並びにその計算を実行させるためのプログラム
US20120249133A1 (en) * 2011-04-01 2012-10-04 Allegro Microsystems, Inc. Differential magnetic field sensor structure for orientation independent measurement
CN109115217A (zh) * 2018-07-05 2019-01-01 国网陕西省电力公司电力科学研究院 基于电流磁场的输电线路特殊杆塔位置导线参数反演方法
CN109283379A (zh) * 2018-09-28 2019-01-29 南方电网科学研究院有限责任公司 一种导线电流测量方法、装置、设备及可读存储介质
CN208888302U (zh) * 2018-09-28 2019-05-21 南方电网科学研究院有限责任公司 一种电力***中线路电流的测量装置
CN109917172A (zh) * 2019-03-28 2019-06-21 南方电网科学研究院有限责任公司 一种导线电位的测量方法、测量装置及测量***
CN110174548A (zh) * 2019-03-28 2019-08-27 南方电网科学研究院有限责任公司 一种长直导线电位的测量方法、测量装置及测量***
CN110412339A (zh) * 2019-08-08 2019-11-05 南方电网科学研究院有限责任公司 一种电力***电流测量装置及方法
CN111650446A (zh) * 2020-06-05 2020-09-11 南方电网数字电网研究院有限公司 电力参数测量方法、***、装置、计算机设备和存储介质

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114487966A (zh) * 2022-01-18 2022-05-13 贵州电网有限责任公司 基于梯度下降法的电流传感器磁场传感芯片位置校准方法
CN114441833A (zh) * 2022-01-24 2022-05-06 南方电网数字电网研究院有限公司 电流测量方法、装置、计算机设备、存储介质
CN114487552A (zh) * 2022-01-27 2022-05-13 贵州电网有限责任公司 基于微型电场传感芯片的电压测量方法、装置和设备
CN114814675A (zh) * 2022-03-09 2022-07-29 北京微纳星空科技有限公司 标定磁力矩器磁矩的方法、***、存储介质和电子设备

Also Published As

Publication number Publication date
CN111650446A (zh) 2020-09-11
CN111650446B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
WO2021244636A1 (zh) 电力参数测量方法、***、装置、计算机设备和存储介质
CN113049873B (zh) 电流传感器、电流测量设备、***、装置和存储介质
CN109283380B (zh) 电力***中线路电流的测量方法、装置、设备及存储介质
CN111426870A (zh) 导线运行状态检测方法、***、装置和计算机设备
CN111650539A (zh) 导线运行参数检测方法、***、装置和计算机设备
CN113341203B (zh) 电压测量装置、电压测量方法和存储介质
CN111458573A (zh) 导线电力参数测量方法、装置、***和计算机设备
CN103837900B (zh) 一种基于矢量磁场探测的地下电缆定位方法及装置
CN113049874B (zh) 电流传感器、电流测量设备、***、装置和存储介质
CN112305480A (zh) 校准阻抗测量设备
JP6521261B2 (ja) 導電率分布導出方法および導電率分布導出装置
CN111337733A (zh) 基于tmr的母排电流及磁场强度测量装置
CN111189403A (zh) 一种隧道变形的监测方法、装置及计算机可读存储介质
CN109631754B (zh) 一种测量装置坐标系标定的方法及相关装置
BR112016022975B1 (pt) Dispositivo e método para a determinação de um campo magnético em uma área pré- determinada
CN114487966A (zh) 基于梯度下降法的电流传感器磁场传感芯片位置校准方法
CN104776826A (zh) 姿态测量***及方法
CN110488095B (zh) 利用正交标量场分量的场探头各向同性补偿
JP6375956B2 (ja) 等価電界強度推定方法および放射妨害波測定装置
CN113702683A (zh) 电流测量装置、方法、计算机设备和存储介质
CN110687609B (zh) 一种埋地管线交直流杂散电流检测中平行管线干扰消除方法
CN114441832A (zh) 导线电流确定方法、装置、计算机设备和存储介质
CN114487552A (zh) 基于微型电场传感芯片的电压测量方法、装置和设备
EP2325667A2 (en) Method and apparatus for determination of magnetic system manufacturing, assembling and mounting defects
JP6747088B2 (ja) 磁界強度推定装置及び磁界強度推定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21816633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21816633

Country of ref document: EP

Kind code of ref document: A1