WO2021244550A1 - 自动聚焦装置和聚焦方法 - Google Patents

自动聚焦装置和聚焦方法 Download PDF

Info

Publication number
WO2021244550A1
WO2021244550A1 PCT/CN2021/097773 CN2021097773W WO2021244550A1 WO 2021244550 A1 WO2021244550 A1 WO 2021244550A1 CN 2021097773 W CN2021097773 W CN 2021097773W WO 2021244550 A1 WO2021244550 A1 WO 2021244550A1
Authority
WO
WIPO (PCT)
Prior art keywords
focus
distance
configuration information
control
measured object
Prior art date
Application number
PCT/CN2021/097773
Other languages
English (en)
French (fr)
Inventor
王浩
Original Assignee
王浩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王浩 filed Critical 王浩
Publication of WO2021244550A1 publication Critical patent/WO2021244550A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/671Focus control based on electronic image sensor signals in combination with active ranging signals, e.g. using light or sound signals emitted toward objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/022Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of tv-camera scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the automatic focusing device and focusing method of the present invention relate to the detection application field.
  • Various detection devices such as various imaging devices, partial discharge devices, shooting devices that mix multiple image sensors, and detection devices that mix multiple detection sensors, are widely used in industry, security, and other fields.
  • imaging devices such as visible light imaging units, thermal imaging devices, and ultraviolet imaging devices are used, and regular imaging of equipment, etc., is an important part of condition maintenance.
  • the present invention provides an automatic focusing device based on distance measurement, including:
  • the photographing department is used for photographing and obtaining thermal image data
  • the distance measuring unit is used to obtain the distance information of the measured object
  • the focus control part is used to control the focus drive components of the photographing part
  • the operating part is used for the user to perform focusing operations
  • Configure the recording unit in response to the user's recording instructions, associate and record the focus drive parameters corresponding to the focus operation and the corresponding distance information of the subject to generate focus configuration information;
  • the focus control unit in response to the focus instruction, controls the focus based on the subject distance information of the subject obtained by the distance measuring unit and based on the focus configuration information.
  • the automatic focusing device includes:
  • the distance measuring unit is used to obtain the distance information of the measured object
  • the focus control part is used to control the focus driving part of the detection part
  • the operating part is used for the user to perform focusing operations
  • the configuration recording unit in response to the recording instruction, associates and records the focus drive parameters corresponding to the focus operation and the corresponding distance information of the measured object to generate focus configuration information;
  • the focus control unit in response to the focus instruction, controls the focus of the detection unit based on the subject distance information of the subject obtained by the distance measuring unit and based on the focus configuration information.
  • the automatic focusing device includes:
  • the distance measuring unit is used to obtain the distance information of the measured object; the distance measuring and the lens are roughly coaxial;
  • the focus control part is used to control the focus driving part of the detection part
  • the focus control section in response to the focus instruction, controls the focus of the detection section based on the subject distance information of the subject obtained by the distance measuring section and based on the focus configuration information; the focus configuration information includes the subject distance information And the corresponding relationship with the focus drive parameters.
  • the focusing method of the present invention includes:
  • the distance measurement step is used to obtain the distance information of the measured object
  • the focus drive parameters corresponding to the focus operation and the corresponding distance information of the measured object are associated and recorded to generate focus configuration information
  • the focus control step in response to a focus instruction, the focus of the detection unit is controlled based on the subject distance information of the subject obtained in the distance measurement step, and based on the focus configuration information.
  • automatic focusing methods include:
  • the distance measurement step is used to obtain the distance information of the measured object
  • the focus control step is used to control the focus driving component of the detection unit
  • the focus control step in response to the focus instruction, controls the focus of the detection unit based on the subject distance information of the subject obtained in the distance measurement step, and based on the focus configuration information; the focus configuration information includes the subject distance information And the corresponding relationship with the focus drive parameters.
  • FIG. 1 is a block diagram of the electrical structure of the autofocus device based on distance measurement in the first embodiment.
  • FIG. 2 is an external view of the autofocus device based on distance measurement in Embodiment 1.
  • FIG. 2 is an external view of the autofocus device based on distance measurement in Embodiment 1.
  • Fig. 3 shows an example of focus configuration information.
  • Figure 4 shows an example of a processing flow
  • Embodiment 1 takes a substation in the power industry as an example. In other applications, it can also be applied to inspection or detection applications such as power lines, distribution networks, security, industry, warehouses, and public facilities, etc. A variety of application industries.
  • Automatic focusing device including:
  • the distance measuring unit is used to obtain the distance information of the measured object; preferably, the detection direction axis of the distance measuring module and the detection device, such as the axis of the lens, is approximately coaxial or parallel;
  • the focus control unit is used to control the focus driving component of the detection device; for example, the focus control unit (also called the imaging control unit) is used to control the focus motor of the imaging unit of the infrared thermal imaging device;
  • the focus control section in response to the focus instruction, controls the focus based on the subject distance information of the subject obtained by the distance measuring section and based on the focus configuration information; the focus configuration information includes the subject distance information and the focus Correspondence of driving parameters.
  • the focus of the infrared image can be controlled according to the distance information of the measured object obtained from the distance measurement and the corresponding relationship between the distance information of the measured object and the motor drive parameters.
  • the automatic focusing device includes:
  • the distance measuring unit is used to obtain the distance information of the measured object
  • the focus control part is used to control the focus driving part of the detection device
  • the operating part is used for the user to perform focusing operations
  • Configure the recording unit in response to the user's recording instructions, associate and record the focus drive parameters corresponding to the focus operation and the corresponding distance information of the subject to generate focus configuration information;
  • the focus control unit in response to the focus instruction, controls the focus based on the subject distance information of the subject obtained by the distance measuring unit and based on the focus configuration information.
  • the automatic focusing device includes:
  • the photographing department is used for photographing and obtaining thermal image data
  • the distance measuring unit is used to obtain the distance information of the measured object
  • the focus control part is used to control the focus drive components of the photographing part
  • the operating part is used for the user to perform focusing operations
  • Configure the recording unit in response to the user's recording instructions, associate and record the focus drive parameters corresponding to the focus operation and the corresponding distance information of the subject to generate focus configuration information;
  • the focus control unit in response to the focus instruction, controls the focus based on the subject distance information of the subject obtained by the distance measuring unit and based on the focus configuration information.
  • the automatic focusing device based on distance measurement can have a variety of forms
  • the autofocus device may not have a detection unit, for example, it can be used in conjunction with a device with a detection unit, such as a photographing device with visible light and thermal image, to receive and process the images acquired by the photographing device, such as portable Terminals, laptops, etc.
  • a detection unit such as a photographing device with visible light and thermal image
  • the auto-focusing device may also be various processing devices, for example, by receiving detection data from other devices to obtain detection data. It can also be applied to processing devices that receive detection data, such as personal computers, personal digital processing devices, servers and other processing devices;
  • the autofocus device can be used as a component of the detection device with the detection unit, and can be applied to various detection devices;
  • the autofocus device can be various detection devices with detection units; the detection unit can be with imaging sensors (the detection unit can be called a photographing unit or an imaging unit at this time), or it can be equipped with an imaging sensor.
  • Imaging sensors imaging sensors such as infrared, visible light, low light, ultraviolet and other sensors are used to obtain the corresponding images; it can also be non-imaging sensors, non-imaging sensors, non-imaging but used to obtain the corresponding signal.
  • Some sensors, such as partial discharge, ultraviolet and other specific sensors also need to be controlled by the optical part of the focus or the focus of the sensor in order to detect the effectiveness.
  • Detection devices for example, various shooting and imaging devices, such as thermal imaging cameras, visible light cameras, low-light imagers, laser imagers, gas imagers, etc.; automatic focusing devices, including: detection units, used to capture detection data (image data );
  • the auto-focusing device can also be various non-photographic imaging detection devices, such as non-photographic imaging partial discharge detectors.
  • an example is a portable automatic focusing device based on distance measurement with an image capturing function (hereinafter referred to as focusing device 12).
  • Portable can be hand-held, wearable such as head-mounted, wristband, user's body part, etc. But it can also be used for on-board, on-board, and online testing devices.
  • the detection data below is an example of image AD value data.
  • the detection data is not limited to the image AD value data.
  • it may be data obtained after predetermined processing of the detection data, such as image data, etc., or these One or more mixed compressed data in the data.
  • FIG. 1 is a block diagram of the electrical structure of the focusing device 12 of the first embodiment.
  • FIG. 2 is an external view of the portable focusing device 12 of the first embodiment.
  • the focusing device 12 has an imaging unit 1, a processing unit 2, a display unit 3, a focusing unit 4, a temporary storage unit 5, a memory card 6, a memory card I/F 7, a flash memory 8, a control unit 9, an operating unit 10, and not shown
  • the distance measuring unit and the control unit 9 are connected to the above-mentioned corresponding parts through the control and data bus 11 and are responsible for the overall control of the focusing device 12.
  • the focusing device 12 may have one or more different types of detection parts, for example, one of them or a plurality of them at the same time, there are differences in optical components, sensors, etc., and different processing methods.
  • the detection part of the focusing device 12 is the imaging part 1, including a thermal imaging photographing part 01 and a visible light photographing part 02.
  • the focusing device 12 is also equipped with a laser distance measuring device 03 as an example of the distance measuring part;
  • the imaging unit 01 is used for photographing and obtaining thermal image data; in one embodiment, the infrared imaging unit 01 is composed of optical components, lens driving components, infrared detectors, signal preprocessing circuits, etc., not shown.
  • the optical component consists of an infrared optical lens, which is used to focus the received infrared radiation to the infrared detector.
  • a lens driving component such as a stepping motor drives the lens according to a control signal from the control section 9 to perform focusing or zooming operations.
  • Infrared detectors such as refrigerated or uncooled infrared focal plane detectors, convert infrared radiation passing through optical components into electrical signals.
  • the signal preprocessing circuit includes a sampling circuit, an AD conversion circuit, etc.
  • the signal read from the infrared detector is sampled in a specified period, automatic gain control and other signal processing, and converted into digital thermal image data by the AD conversion circuit.
  • the processing unit 2 is used to perform prescribed processing on the thermal image data obtained by the infrared photographing unit 1 and convert them into data suitable for display and recording.
  • the imaging unit 1 is an ultraviolet acquisition unit
  • the imaging unit 1 is composed of an unillustrated ultraviolet optical component, an ultraviolet lens driving component, an ultraviolet sensor, a signal preprocessing circuit, and the like.
  • the ultraviolet optical component is composed of an optical lens
  • the lens driving component (such as a motor) drives the lens according to the control signal of the control unit 9 to perform focusing or zooming operations.
  • it can also be a manually adjusted optical component.
  • the ultraviolet detector is composed of, for example, an ultraviolet image intensifier, etc., and converts an ultraviolet signal of a specific wavelength band passing through an optical component into an electrical signal.
  • the signal preprocessing circuit includes a sampling circuit, an AD conversion circuit, etc., which perform signal processing such as sampling, automatic gain control, and AD conversion on the electrical signal generated from the ultraviolet detector in a specified period; the result of various signal processing is to obtain the ultraviolet data.
  • ultraviolet imaging refers to the ultraviolet signal generated when the receiving device is discharged, which is processed to overlap with the visible light image and displayed on the screen of the instrument to determine the position and intensity of the corona, thereby providing further evaluation of the operation of the equipment A more reliable basis.
  • the imaging unit 1 is a visible light imaging unit
  • the visible light imaging unit is composed of optical components, lens driving components, image sensors, signal preprocessing circuits, etc., not shown.
  • the optical component is composed of an optical lens, and the subject image is incident on the image sensor from the optical component.
  • the lens driving part drives the lens according to the control signal of the control unit 9 to perform focusing or zooming operations, and may also be a manually adjusted optical part.
  • the image sensor converts the image of the measured body through the optical components into electrical signals, that is, photographs to obtain visible light data.
  • the processing unit 2 is used to convert the acquired detection data into processing suitable for data for display, recording, transmission, etc., in accordance with prescribed processing.
  • the display unit 3 displays data such as images based on the control of the control unit 9.
  • the display unit 3 may also be another display device connected to the focusing device 12, and the electric structure of the focusing device 12 may not have a display device.
  • the focus part 4 drives the optical part and/or the detector based on the control of the control part 9;
  • the focus motor that drives the infrared optical part can be a stepping motor, a DC motor, a servo Motor etc.
  • the temporary storage unit 5 is a volatile memory such as RAM, DRAM, etc., as a buffer memory for temporarily storing the detection data acquired by the detection unit 1 (such as the imaging unit 1), and at the same time as a working memory for the processing unit 2 and the control unit 9 It functions to temporarily store data processed by the processing unit 2 and the control unit 9.
  • the memory or registers contained in the processor such as the control unit 9 and the processing unit 2 may also be interpreted as a temporary storage unit.
  • the focusing device 12 may further include a distance measuring unit for acquiring the distance information of the measured object; the distance measuring unit, such as a laser distance measuring module, is used for acquiring the distance information of the measured object; Preferably, it is integrated in the focusing device 12, and is approximately coaxial or parallel to the detection direction of the lens or the detector of the detection part;
  • the focusing device 12 may also include a communication unit, such as an interface for connecting and data exchange with external devices in accordance with USB, 1394, Bluetooth, networks such as WIFI, communication networks such as 4G, 5G and other wired or wireless communication standards, as an external device, such as Examples include personal computers, servers, cloud servers, PDAs (personal digital assistants), other thermal imaging devices, visible light shooting devices, storage devices, etc.; the above-mentioned storage medium may be the storage medium in the focusing device 12 or an external The storage medium of the device can also be a mixture of the two;
  • the memory card I/F7 is used as the interface of the memory card 6.
  • the memory card 6 as a rewritable non-volatile memory is connected to the memory card I/F7.
  • the card is detachably mounted on the main body of the focusing device 12 In the groove, data such as detection data is recorded under the control of the control unit 9.
  • the flash memory 8 stores a program for control and various data used in the control of each part.
  • a storage medium it can be used to store focus configuration information; the storage medium can be, for example, the storage medium in the focusing device 12, such as a non-volatile storage medium such as a flash memory 8, a memory card 6, and a temporary storage unit.
  • the focusing device 12 can obtain information stored, obtained, and processed in other devices through wired or wireless means, such as focusing configuration information; preferably, the focusing configuration information, Pre-stored in the storage medium of the autofocus device.
  • the focus configuration information is pre-stored in the focus device 12 or a non-volatile storage medium connected to it.
  • the operating unit 10 is used by the user to perform various operations such as recording instruction operations, focusing operations, or inputting setting information.
  • the control unit 9 executes corresponding programs based on the operating signals of the operating unit 10 and the like.
  • the operation unit 10 is constituted by the keys shown in FIG. 2 and is not limited to this, and the touch screen 4 or a voice recognition component may also be used to realize the operation.
  • the control part 9 is used as an example of a focus control part to control a focus driving part; such as a focus driving part that controls a detection part; in the embodiment, it controls the focus of an image such as an infrared image; when the focus device 12 has multiple detection parts,
  • the control unit 9 can perform focus control of one or more of the multiple detection units; for example, when an infrared imaging unit and an ultraviolet imaging unit are provided, it can perform focus control of the two detection units.
  • the control unit 9 can perform focus drive control according to the user's operation instructions; for example, based on the user's manual adjustment instructions, drive the movement of a focus drive component such as a motor.
  • the control unit 9 will control the position of the recording lens after manual adjustment.
  • the rotating part of the lens is equipped with a Reading the identification mark of the adjustment position, etc.
  • the control unit 9 can obtain the position of the lens rotation to facilitate subsequent drive control during auto-focusing.
  • the focus configuration information includes the adjustment position of the lens, the distance of the measured object, and the corresponding relationship of the focus drive parameters; in another example, the focus configuration information includes the lens type, the adjustment position of the lens, and the distance of the measured object. , Correspondence of focus drive parameters.
  • the control unit 9 responds to the focus instruction, controls the focus based on the subject distance information of the subject obtained by the distance measurement unit, and based on the focus configuration information; the focus configuration information includes at least the subject distance information and Correspondence with focus drive parameters.
  • the focus instruction may be issued by the user, or it may generate a focus instruction when the distance information of the subject obtained within a predetermined period of time changes, so as to achieve the effect of continuous automatic focus.
  • the table shown in Fig. 3 represents an example of the focus configuration information; the focus configuration information includes the correspondence between the distance of the subject to be measured and the focus drive parameters. It may include multiple correlations between the distance of the measured object and the corresponding focus driving parameters such as motor driving parameters; usually, an optical lens component corresponding to a parameter of a detection part of the focusing device 12.
  • the focus configuration information includes one or more of the detection unit, the lens, and the manual adjustment position, and the corresponding relationship with the distance of the object to be measured and the focus drive parameters.
  • the focus configuration information includes the correspondence relationship between the lens, the distance of the subject to be measured, and the focus drive parameters.
  • the focus configuration information may include one or more of the multiple groups of lenses, the respective corresponding focus configuration information, and the corresponding focus configuration information of the lens, Represents the corresponding relationship between the distance of the measured object corresponding to the lens and the focus drive parameters (such as motor drive parameters).
  • the focus configuration information includes the corresponding relationship between the detection unit, the lens, the distance of the subject, and the focus drive parameter.
  • the focus configuration information includes the distance information of the subject and the correspondence relationship with the focus drive parameters of the multiple detection units; for example, when multiple imaging and shooting units are configured, the focus configuration information
  • the configuration information includes the distance information of the measured object and the corresponding relationship with the motor drive parameters of the predetermined optical lens of the multiple detection units; in one example, when the autofocus device has multiple imaging units, each measured object distance can be associated with one or Multiple focus drive parameters correspond to the drive motors of each of the multiple imaging units.
  • the focus control unit is used to control the focus of the multiple detection units, and perform focus control based on the subject distance information obtained from the distance measurement according to the respective corresponding focus configuration information.
  • Focus driving parameters are the driving parameters from the zero position (such as the starting point of the electric focusing mechanism such as the lens or the detector mechanism or a certain fixed point) to the sharp focus point.
  • the driving parameters are the driving parameters of various driving motors. Parameters, such as stepping motor drive parameters such as pulse number, pulse width, voltage, etc.
  • the focus drive parameter is 300 pulses of the stepper motor driven by the lens
  • the focus drive parameter is the lens driven stepper motor
  • the number of pulses is 98; in this way, when the distance between the measured body and the measured body is 20 meters, the control unit 9 can control the motor to return to the zero position, and drive the motor according to 300 pulses to achieve the effect of fast focusing.
  • the focus drive parameters after focusing, the focus position of the optical components, etc. can be recorded, such as stored in a temporary storage unit, so that subsequent auto-focusing can be performed directly based on the recorded parameters. Focus control.
  • the focus configuration information may be prepared in advance during the production process, for example, the user configures it on site, and the information configuration device may be configured with a storage medium that stores the focus configuration information;
  • a configuration recording unit is provided, in response to a user's recording instruction, the focus drive parameter corresponding to the focus operation and the corresponding object distance information are associated and recorded to generate focus configuration information.
  • the focus drive parameter corresponding to the focus operation and the corresponding object distance information are associated and recorded to generate focus configuration information.
  • the operating part is used for the user to perform the focusing operation; in one example, the user adopts an electric adjustment method, that is, driving the focus motor to adjust the lens, and the user focusing operation generates the focus driving parameters; the recording part is configured to respond to the user's recording instructions , To associate the focus drive parameters corresponding to the focus operation, such as the focus drive parameters generated by the user focusing, with the corresponding distance information of the measured object, and generate the focus configuration information;
  • the focusing and rotating part of the lens is equipped with an identification mark that can read the adjustment position, and the user manually adjusts the lens without triggering the movement of the driving motor (the driving motor stays at the original driving position, and the focus driving parameter It is a parameter such as the number of pulses from the zero position to this position.
  • the driving motor stays at the original driving position, and the focus driving parameter It is a parameter such as the number of pulses from the zero position to this position.
  • a motor is usually used to drive the forward and backward movement of the detector and/or the lens), and the control unit 9 can obtain the position of the lens rotation.
  • the position of the adjusted lens, the focus drive parameters, and the corresponding distance information of the measured object are associated and recorded to generate focus configuration information.
  • the motor is not driven when the lens is adjusted, but is used to drive the detector; at this time, the focus configuration information includes the lens adjustment position and its corresponding driving parameters, the distance information of the measured object, and the focus driving parameters of the detector. The corresponding relationship.
  • the driving parameters corresponding to the adjustment position of the lens are converted into driving parameters (such as the number of pulses, which can be adjusted according to the lens)
  • driving parameters such as the number of pulses, which can be adjusted according to the lens
  • the distance information of the measured object such as the distance of the measured object obtained by laser ranging
  • the focus driving parameter of the detector such as the driving parameter (such as the number of pulses) from the detector zero position to the position of the lens in the state of the zero position of the lens according to the distance measurement information of the measured object.
  • the focus drive parameter is 300 pulses of the stepping motor driven by the detector, and corresponding to the measured object distance of 10 meters, the focus drive parameter is the step of the detector drive.
  • the number of pulses entering the motor is 98; when the user triggers the auto-focusing of a 20-meter target, 300 pulses make the assembly structure of the detector move until the focus is clear. Then, the user manually adjusts the lens to shoot a 10-meter target, and the lens is manually Adjust to clear focus.
  • the lens position is equivalent to the effect produced by 202 negative pulses, but the position of the detector remains unchanged. For example, when a 20-meter target is photographed again, the auto focus will be triggered to generate 202 pulses to make the focus clear.
  • the auto-focusing device includes: a photographing section for photographing; a distance measuring section for acquiring the distance information of the measured object; a focus control section for controlling the focus driving component; the focus driving component can be used for driving the photographing
  • the focus configuration information includes the corresponding relationship between the lens adjustment position and its corresponding drive parameters, the distance information of the measured object, and the focus drive parameters of the detector.
  • the focus configuration information includes the correspondence between the lens, the lens focus position, the distance of the subject, and the focus drive parameters.
  • the focus control unit in response to the focus instruction, controls the focus based on the subject distance information of the subject obtained by the distance measuring unit and based on the focus configuration information.
  • the control unit can freeze the image in response to the freeze instruction, and store the corresponding focus drive parameters and distance information of the measured object in the temporary storage unit for use. Confirmation of the person; preferably, configure the recording unit, which can respond to the user’s recording instructions in the image freezing state to associate the focus drive parameters corresponding to the focus operation, the distance information with the corresponding subject, etc., to generate the focus configuration information.
  • a configuration part which can be configured with an operation interface for the user to set and edit the focus configuration information; in one example, the operation interface may be similar to the form of the table in FIG. 3.
  • the configuration part can be used to display focus configuration information or a number representing the focus configuration information; the focus configuration information can be automatically sorted and displayed according to the distance of the measured object, if it is displayed at the bottom of the image, the user can choose to delete One of the selected focus configuration information.
  • the focus configuration information can be automatically sorted and displayed according to the distance of the measured object, if it is displayed at the bottom of the image, the user can choose to delete One of the selected focus configuration information.
  • it can be updated according to the user's confirmation operation, or the user can delete it according to the effect.
  • the control unit 9, the operation unit, the display unit, etc. may constitute a configuration unit for configuring the parameters included in the focus configuration information.
  • the flash memory 8 contains the focus configuration information as shown in the exemplary list in FIG. 3 is pre-stored.
  • the control unit 9 controls the overall operation of the focusing device 12, and the control unit 9 is realized by, for example, a CPU, MPU, SOC, programmable FPGA, or the like.
  • the flash memory 8 stores a program for control and various data used in the control of each part. Referring to Figure 4, the control steps are as follows:
  • Step A01 based on the control of the control unit 9, obtain the distance data of the measured body;
  • the distance data of the measured object can be obtained, for example, according to a distance measuring unit, such as a laser distance measuring device;
  • the distance of the measured object can be obtained based on the calculation of a specific image size by the image algorithm; in another example, the distance of the measured object can be calculated based on the focus parameters of other image sensors;
  • the focus parameter 1 is obtained according to the obtained object distance 1; and the focus control is performed according to this parameter.
  • the focus of multiple imaging units can be controlled and driven according to the distance information of the measured object; the effect of linkage can be achieved.
  • the measurement distance information such as the pulse number of the stepping motor from the starting point to the position where the current focus effect is satisfactory, corresponds to the distance information of the measured object, and is recorded as the focus configuration information; for subsequent recall; preferably, it can be automatically replaced with the same before Focus configuration information for the distance of the measured object.
  • a dedicated circuit a general-purpose processor, or a programmable FPGA can also be used to implement the processing and control functions of some or all of the components in the embodiments of the present invention.
  • the application of the object under test in the power industry is taken as an example of the scenario in the embodiment, and it is also applicable to a wide range of applications in various industries of infrared detection.
  • the present autofocus device can also eliminate the acquisition unit, which also constitutes the present invention, and can be used as a module of the device having the detection unit.
  • a dedicated circuit, a general-purpose processor, or a programmable FPGA can also be used to implement the processing and control functions of some or all of the components in the embodiments of the present invention.
  • the functional blocks in the drawings can be realized by hardware, software or a combination thereof, it is usually not necessary to configure the structure of the functional blocks in a one-to-one correspondence manner; for example, one software or hardware unit can realize multiple functions.
  • a functional block, or a functional block can also be realized by multiple software or hardware units.
  • the application of the object under test in the power industry is taken as an example of the scenario in the embodiment, which is also applicable to a wide range of applications in various detection industries.
  • it can also be the application of drones, robots, etc. carried on moving objects such as animals.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)

Abstract

自动聚焦装置(12),包括:测距部,用于获取目标的距离信息;成像控制部(9),用于控制拍摄部的聚焦驱动部件;成像控制部(9),根据聚焦配置信息来控制红外图像的聚焦;聚焦配置信息包括距离信息及与聚焦驱动参数的对应关系。

Description

自动聚焦装置和聚焦方法 技术领域
本发明的自动聚焦装置和聚焦方法,涉及检测应用领域。
背景技术
各种检测装置,例如各种影像拍摄装置、局放装置、混合多种图像传感器的拍摄装置、混合多种检测传感器的检测装置等,在工业、安防等领域的应用广泛,例如,在注重状态检修的工业领域,使用可见光拍摄部、热像拍摄装置、紫外拍摄装置等拍摄装置,定期对设备等进行拍摄为状态检修的重要一环。
如果能将多个图像按照测距装置测量的被测体距离,进行自动聚焦,能大幅度提高用户体验。
因此,所理解需要一种基于测距的自动聚焦装置,来解决目前存在的问题。
发明内容
本发明提供一种基于测距的自动聚焦装置,包括:
拍摄部,用于拍摄获得热像数据;
测距部,用于获取被测体的被测体距离信息;
聚焦控制部,用于控制拍摄部的聚焦驱动部件;
操作部,用于使用者进行聚焦操作;
配置记录部,响应使用者的记录指示,将聚焦操作对应的聚焦驱动参数、与对应的被测体距离信息,关联记录,生成聚焦配置信息;
所述聚焦控制部,响应聚焦指示,根据测距部获得的被测体的被测体距离信息,并基于聚焦配置信息,来控制聚焦。
在另一个方案中,自动聚焦装置,包括:
测距部,用于获取被测体的被测体距离信息;
聚焦控制部,用于控制检测部的聚焦驱动部件;
操作部,用于使用者进行聚焦操作;
配置记录部,响应记录指示,将聚焦操作对应的聚焦驱动参数、与对应的被测体距离信息,关联记录,生成聚焦配置信息;
所述聚焦控制部,响应聚焦指示,根据测距部获得的被测体的被测体距离信息,并基于聚焦配置信息,来控制检测部的聚焦。
在另一个方案中,自动聚焦装置,包括:
测距部,用于获取被测体的被测体距离信息;测距与镜头位于大致同轴;
聚焦控制部,用于控制检测部的聚焦驱动部件;
所述聚焦控制部,响应聚焦指示,根据测距部获得的被测体的被测体距离信息,并基于聚焦配置信息,来控制检测部的聚焦;所述聚焦配置信息包括被测体距离信息及与聚焦驱动参数的对应关系。
本发明的聚焦方法,包括:
测距步骤,用于获取被测体的被测体距离信息;
操作步骤,用于使用者进行聚焦操作;
配置记录步骤,响应使用者的记录指示,将聚焦操作对应的聚焦驱动参数、与对应的被测体距离信息,关联记录,生成聚焦配置信息;
所述聚焦控制步骤,响应聚焦指示,根据测距步骤获得的被测体的被测体距离信息,并基于聚焦配置信息,来控制检测部的聚焦。
在另一个方案中,自动聚焦方法,包括:
测距步骤,用于获取被测体的被测体距离信息;
聚焦控制步骤,用于控制检测部的聚焦驱动部件;
所述聚焦控制步骤,响应聚焦指示,根据测距步骤获得的被测体的被测体距离信息,并基于聚焦配置信息,来控制检测部的聚焦;所述聚焦配置信息包括被测体距离信息及与聚焦驱动参数的对应关系。
本发明的其他方面和优点将通过下面的说明书进行阐述。
附图说明:
图1是实施例1的基于测距的自动聚焦装置的电气结构框图。
图2是实施例1的基于测距的自动聚焦装置的外型图。
图3是表示聚焦配置信息的一个示例。
图4表示处理流程的示例;
具体实施方式
下面介绍本发明的实施例,实施例1以电力行业的变电站为例,在其他的应用中,也可应用于电力的线路、配网、安保、工业、仓库、公共设施等巡视或检测应用等多种应用行业。
自动聚焦装置,包括:
测距部,用于获取被测体的被测体距离信息;优选的,测距模块与检测装置的检测方向的轴线,如镜头的轴线,大致同轴或平行;
聚焦控制部,用于控制检测装置的聚焦驱动部件;例如聚焦控制部(也可称为成像控制部),用于控制红外热像拍摄装置的拍摄部的聚焦电机;
所述聚焦控制部,响应聚焦指示,根据测距部获得的被测体的被测体距离信息,并基于聚焦配置信息,来控制聚焦;所述聚焦配置信息包括被测体距离信息及与聚焦驱动参数的对应关系。
例如,根据测距获得的被测体距离信息,及被测体距离信息与电机驱动参数的对应关系,来控制红外图像的聚焦。
另一实施例中,自动聚焦装置,包括:
测距部,用于获取被测体的被测体距离信息;
聚焦控制部,用于控制检测装置的聚焦驱动部件;
操作部,用于使用者进行聚焦操作;
配置记录部,响应使用者的记录指示,将聚焦操作对应的聚焦驱动参数、与对应的被测体距离信息,关联记录,生成聚焦配置信息;
所述聚焦控制部,响应聚焦指示,根据测距部获得的被测体的被测体距离信息,并基于聚焦配置信息,来控制聚焦。
在另一实施例中,自动聚焦装置,包括:
拍摄部,用于拍摄获得热像数据;
测距部,用于获取被测体的被测体距离信息;
聚焦控制部,用于控制拍摄部的聚焦驱动部件;
操作部,用于使用者进行聚焦操作;
配置记录部,响应使用者的记录指示,将聚焦操作对应的聚焦驱动参数、与对应的被测体距离信息,关联记录,生成聚焦配置信息;
所述聚焦控制部,响应聚焦指示,根据测距部获得的被测体的被测体距离信息,并基于聚焦配置信息,来控制聚焦。
基于测距的自动聚焦装置,可以有多种形态;
在一例中,自动聚焦装置,也可不带有检测部,例如用于和带有检测部的装置如带有可见光和热像的拍摄装置配合使用,接收拍摄装置获取的图像并进行处理,例如便携终端、笔记本电脑等。
在另一例中,自动聚焦装置,也可为各种处理装置,例如通过接收其他装置的检测数据,来获取检测数据。也可适用于接收检测数据的处理装置,如个人计算机,个人数字处理装置,服务器等处理装置;
在另一例中,自动聚焦装置,可作为具有检测部的检测装置中的一个组成部分,可应用于各种检测装置;
在另一例中,自动聚焦装置可以是各种带有检测部的检测装置;检测部可以是带有成像类传感器的(这时检测部可称为拍摄部、成像部),也可带有非成像类传感器,成像类传感器例如红外、可见光、微光、紫外等多种传感器用于获得相应的图像;也可以是非成像类传感器的,非成像类传感器,非成像但用来获得相应信号的某些传感器,例如局放、紫外等特定传感器,为检测的有效性,也需要通过光学部分聚焦或传感器的聚焦控制。
检测装置例如,各种拍摄成像装置,如热像仪、可见光相机、微光成像仪、激光成像仪、气体成像仪等;自动聚焦装置,包括:检测部,用于拍摄获取检测数据(图像数据);另一例中,自动聚焦装置,也可为各类非拍摄成像类的检测装置,例如非拍摄成像类的局放检测仪等。
实施例1中,示例便携式带有影像拍摄功能的基于测距的自动聚焦装置(下文中简称聚焦装置12)。便携式可以是手持的、穿戴式如头戴、腕带式、使用者身体部位等。但也可用于机载、车载、在线类的检测装置。
并且,下面所谓的检测数据是以图像AD值数据为例,此外,检测数据并不限定于图像的AD值数据,例如也可以是检测数据经规定处理后获得的数据例如图像数据等,或这些的数据中的一种或多种混合的压缩数据等。
现在将根据附图详细说明本发明的典型实施例。注意,以下要说明的实施例用于更好地理解本发明,所以不限制本发明的范围,并且可以改变本发明的范围内的各种形式。
图1是实施例1的聚焦装置12的电气结构框图。图2是实施例1的便携式的聚焦装置12的外型图。
聚焦装置12具有成像部1、处理部2、显示部3、聚焦部4、临时存储部5、存储卡6、存储卡I/F7、闪存8、控制部9、操作部10、未图示的测距部,控制部9通过控制与数据总线11与上述相应部分进行连接,负责聚焦装置12的总体控制。
聚焦装置12可以有一种或多种不同类型的检测部,例如,其中的一种或同时具有多种,存在光学部件、传感器等的差异,及处理方式的不同。如图2所示,聚焦装置12的检测部为成像部1,包括热像拍摄部01,可见光拍摄部02,此外,聚焦装置12还配置有激光测距装置03,作为测距部的例子;
实施例1中,成像部01,用于拍摄获得热像数据;一种实施方式,红外成像部01由未图示的光学部件、镜头驱动部件、红外探测器、信号预处理电路等构成。光学部件由红外光学透镜组成,用于将接收的红外辐射聚焦到红外探测器。镜头驱动部件如步进电机,根据控制部9的控制信号驱动透镜来执行聚焦或变焦操作。红外探测器如制冷或非制冷类型的红外焦平面探测器,把通过光学部件的红外辐射转换为电信号。信号预处理电路包括采样电路、AD转换电路等,将从红外探测器读出的信号在规定的周期下进行取样、自动增益控制等信号处理,经AD转换电路转换为数字热像数据。处理部2用于对通过红外拍摄部1获得的热像数据进行规定的处理,进行转换为适合于显示用、记录用等数据的处理。
如成像部1为紫外获取部时,一种实施方式的例子,成像部1由未图示的紫外光学部件、紫外镜头驱动部件、紫外传感器、信号预处理电路等构成。紫外光学部件由光学透镜组成,镜头驱动部件(如电机)根据控制部9的控制信号驱动透镜来执行聚焦或变焦操作,此外,也可为手动调节的光学部件。紫外探测器例如由紫外像增强器等构成,把通过光学部件的特定波段的紫外信号转换为电信号。信号预处理电路包括采样电路、AD转换电路等,将从紫外探测器产生的电信号在规定的周期下进行取样、自动增益控制、AD转换等信号处理;各种信号处理的结果是,获得紫外数据。例如,紫外成像是指接收设备放电时产生的紫外讯号,经处理后与可见光影像重叠,显示在仪器的屏幕上,达到确定电晕的位置和强度的目的,从而为进一步评估设备的运行情况提供更可靠的依据。
如成像部1为可见光拍摄部时,一种实施方式,可见光拍摄部由未图示的光学部件、镜头驱动部件、图像传感器、信号预处理电路等构成。光学部件由光学透镜组成,被测体像从光学部件入射到图像传感器。镜头驱动部件根据控制部9的控制信号驱动透镜来执行聚焦或变焦操作,此外,也可为手动调节的光学部件。图像传感器把通过光学部件的被测体像转换为电信号,即拍摄获得可见光数据。
处理部2用于将获取的检测数据按照规定的处理,转换为适合于显示用、记录用、传输用等数据的处理。
显示部3基于控制部9的控制,进行图像等数据的显示。显示部3还可以是与聚焦装置12连接的其他显示装置,而聚焦装置12自身的电气结构中可以没有显示装置。
聚焦部4,作为检测装置的聚焦驱动部件,基于控制部9的控制,对光学部分和/或探测器进行驱动;例如对红外光学部分驱动的聚焦电机,可以是步进电机、直流电机、伺服电机等。
临时存储部5如RAM、DRAM等易失性存储器,作为对检测部1(如成像部1)获取的检测数据进行临时存储的缓冲存储器,同时,作为处理部2和控制部9的工作存储器起作用,暂 时存储由处理部2和控制部9进行处理的数据。不限与此,控制部9、处理部2等处理器内部包含的存储器或者寄存器等也可以解释为一种临时存储部。
聚焦装置12还可包括测距部,所述测距部用于获取被测体的被测体距离信息;测距部例如激光测距模块,用于获取被测体的被测体距离信息;优选的,集成于聚焦装置12,并与检测部的镜头或探测器的检测方向,大致同轴、或平行;
聚焦装置12还可包括通信部,例如按照USB、1394、蓝牙、网络如WIFI、通讯网络例如4G,5G等有线或无线通信规范,与外部装置进行连接并数据交换的接口,作为外部装置,例如可以列举个人计算机、服务器、云端服务器、PDA(个人数字助理装置)、其他的热像装置、可见光拍摄装置、存储装置等;上述的存储介质可以是聚焦装置12中的存储介质,也可以是外部装置的存储介质,也可以采用二者的混合;
存储卡I/F7,作为存储卡6的接口,在存储卡I/F7上,连接有作为可改写的非易失性存储器的存储卡6,可自由拆装地安装在聚焦装置12主体的卡槽内,根据控制部9的控制记录检测数据等数据。
闪存8中存储有用于控制的程序,以及各部分控制中使用的各种数据。在实施例1中,作为存储介质的例子,可用于存储聚焦配置信息;存储介质例如可以是聚焦装置12中的存储介质,如闪存8、存储卡6等非易失性存储介质,临时存储部5等易失性存储介质;还可以是与聚焦装置12有线或无线连接的其他存储介质,如通过与通信部4有线或无线连接的进行通讯的其他装置如其他存储装置、或其他拍摄装置、计算机、服务器等中的存储介质;聚焦装置12可通过有线或无线方式,来获得其他装置中存储、获得、处理得到的信息,所述信息例如聚焦配置信息;优选的,所述聚焦配置信息,预先存储在自动聚焦装置的存储介质中。例如聚焦配置信息,预先存储在聚焦装置12中或与其连接的非易失性存储介质中。
操作部10:用于使用者进行操作,记录指示操作、聚焦操作、或者输入设定信息等各种操作,控制部9根据操作部10的操作信号等,执行相应的程序。例如,操作部10由图2中所示的按键等构成,不限于此,也可采用触摸屏4或语音识别部件等来实现操作。
控制部9作为聚焦控制部的例子,用于控制聚焦驱动部件;如控制检测部的聚焦驱动部件;在实施例中控制红外图像等图像的聚焦;当聚焦装置12带有多个检测部时,控制部9可以进行多个检测部其中之一或多个的聚焦控制;例如当带有红外成像部、紫外成像部时,可以进行这二个检测部的聚焦控制。
控制部9可以根据用户的操作指示,来进行聚焦驱动控制;例如基于用户手动调节的指示,来驱动电机等聚焦驱动部件的运动。
在另一个例子中,用户手动调节镜头,并未触发电机等的运动,相应的可具有镜头调节位置获取部,控制部9将控制记录镜头手动调节后的位置,例如镜头的旋转部分配置有可读出调节位置的识别标识等,控制部9可以获取镜头旋转的位置,以便于后续的自动聚焦时的驱动控制。在这种方式中,聚焦配置信息中包括镜头的调节位置、被测体距离、聚焦驱动参数的对应关系;在另一例中,聚焦配置信息,包括镜头类型、镜头的调节位置、被测体距离、聚焦驱动参数的对应关系。
优选的,控制部9,响应聚焦指示,根据测距部获得的被测体的被测体距离信息,并基于聚焦配置信息,来控制聚焦;所述聚焦配置信息至少包括被测体距离信息及与聚焦驱动参 数的对应关系。所述聚焦控制部,聚焦指示可以是使用者发出的,也可以根据规定时间内获得的被测体距离信息发生变化时,即产生聚焦指示,可达到连续自动聚焦的效果。
如图3所示的表,代表了聚焦配置信息的一个例子;聚焦配置信息,包括被测体距离、聚焦驱动参数的对应关系。可以包含多个被测体距离与相应的聚焦驱动参数如电机驱动参数的关联关系;通常对应于聚焦装置12的一个检测部的一种参数的光学镜头部件。
聚焦配置信息,包括检测部、镜头、手动调节位置3者之一或多个,与被测体距离、聚焦驱动参数的对应关系。
在另一例,聚焦配置信息,包括镜头、被测体距离、聚焦驱动参数的对应关系。当聚焦装置12配置有广角、标准、望远等多组镜头时,聚焦配置信息,可包括多组镜头中的一个镜头或多个,各自所对应的聚焦配置信息,镜头对应的聚焦配置信息,代表了该镜头对应的被测体距离和聚焦驱动参数(如电机驱动参数)的对应关系。
在另一例,聚焦配置信息,包括检测部、镜头、被测体距离、聚焦驱动参数的对应关系。当聚焦装置12配置有多个检测部,所述聚焦配置信息包括被测体距离信息及与多个检测部的聚焦驱动参数的对应关系;例如,配置有多个成像拍摄部时,所述聚焦配置信息包括被测体距离信息及与多个检测部预定光学镜头的电机驱动参数的对应关系;在一例中,当自动聚焦装置具有多个拍摄部时,每个被测体距离可以关联一个或多个的聚焦驱动参数,并对应多个拍摄部各自的驱动电机。
聚焦控制部,用于控制多个检测部的聚焦,基于测距获取的被测体距离信息,按照各自所对应的聚焦配置信息,进行聚焦控制。
聚焦驱动参数,对应被测体距离,为零位(如镜头或探测器机构等电动调焦机构的起焦点或某固定点)到聚焦清晰点的驱动参数,驱动参数如各种驱动电机的驱动参数,例如步进电机的驱动参数例如脉冲数、脉宽、电压等。例如,对应于20米的被测体距离,聚焦驱动参数为镜头驱动的步进电机的脉冲数为300个,而对应于10米的被测体距离,聚焦驱动参数为镜头驱动的步进电机的脉冲数为98个;这样当被测体距离被测体距离为20米时,控制部9可以控制电机回零位,并按照300个脉冲来驱动电机,达到快速聚焦的效果。
在另一例中,也可以根据聚焦前的位置,并结合被测体距离,来进行聚焦控制;例如聚焦前的被测体距离为10米并聚焦完成,当后续测量被测体距离的测距为20米,则可以按照(300-98=202)202个脉冲,来进行控制。
优选的,每次自动聚焦完成后,可记录聚焦后的聚焦驱动参数、光学部件的聚焦位置等,如保存在临时存储部,便于后续再次自动聚焦时,可直接基于记录的参数,来进行快速的聚焦控制。
聚焦配置信息,例如可以是在生产环节预先准备的,例如使用者在现场配置的,信息配置装置可配置有存储聚焦配置信息的存储介质;
由于各种影响因素,可能存在结构的形变、聚焦不够清晰等情况,导致生产环节准备的聚焦配置信息不够适用。优选的,具有配置记录部,响应使用者的记录指示,将聚焦操作对应的聚焦驱动参数、与对应的被测体距离信息,关联记录,生成聚焦配置信息。这样,使用者如果对之前的自动聚焦效果不满意,可以进行人工聚焦或启用基于图像算法聚集等,可以在聚焦清晰后,保存测距数据及其对应的聚焦驱动参数,便于在之后的使用中,可以调用。
操作部,用于使用者进行聚焦操作;在一例中,使用者采用电动调节的方式,即驱动聚焦电机来调节镜头,使用者聚焦操作产生聚焦驱动参数;配置记录部,响应使用者的记录指示,将聚焦操作对应的聚焦驱动参数,如使用者聚焦所产生的聚焦驱动参数,与对应的被测体距离信息,关联记录,生成聚焦配置信息;
在另一个例子中,镜头的调焦旋转部分配置有可读出调节位置的识别标识等,用户手动调节镜头,并未触发驱动电机等的运动(驱动电机停留在原先驱动的位置,聚焦驱动参数为零位到该位置的参数如脉冲数,这种方式通常电机用来驱动探测器的前后运动和/或镜头),控制部9可以获取镜头旋转的位置。在这种方式中,响应使用者的记录指示,将调节后镜头的位置、聚焦驱动参数、与对应的被测体距离信息,关联记录,生成聚焦配置信息。
在另一例中,调节镜头时并未驱动电机,而用来驱动探测器;这时所述聚焦配置信息,包括镜头调节位置及其对应的驱动参数、被测体距离信息、探测器聚焦驱动参数的对应关系。
其中,镜头调节位置对应的驱动参数,如包含镜头可手动调节的各个位置与镜头零位(如起焦点,或某一固定位置)的位置并换算为驱动参数(如脉冲数,可以根据镜头调节位置相对镜头零位的运动距离,来换算出探测器机构运动该距离所需的脉冲数);一般需要预先准备;
其中,被测体距离信息,如激光测距获得的被测体距离;
其中,探测器的聚焦驱动参数,如根据被测体测距信息,镜头零位位置状态下,探测器驱动从探测器零位到该位置的驱动参数(如脉冲数)。
例如,对应于20米的被测体距离,聚焦驱动参数为探测器驱动的步进电机的脉冲数为300个,而对应于10米的被测体距离,聚焦驱动参数为探测器驱动的步进电机的脉冲数为98个;当使用者触发自动聚焦20米的目标,则300个脉冲使探测器的装配结构运动至聚焦清晰,而后,使用者手动调节镜头拍摄10米的目标,镜头手动调节至聚焦清晰,该镜头位置相当于202个负脉冲所产生的效果,但探测器位置不变,如后续再次拍摄20米的目标时,则触发自动聚焦产生202个脉冲使聚焦清晰。自动聚焦装置,包括:拍摄部,用于拍摄;测距部,用于获取被测体的被测体距离信息;聚焦控制部,用于控制聚焦驱动部件;所述聚焦驱动部件可用于驱动拍摄部的探测器和/或镜头;操作部,用于使用者进行镜头调节的聚焦操作;所述聚焦控制部,响应聚焦指示,根据测距部获得的被测体距离信息,并基于聚焦配置信息,来控制红外图像的聚焦;所述聚焦配置信息,包括镜头调节位置及其对应的驱动参数、被测体距离信息、探测器的聚焦驱动参数的对应关系。
在另一例中,聚焦配置信息,包括镜头、镜头调焦位置、被测体距离、聚焦驱动参数的对应关系。
所述聚焦控制部,响应聚焦指示,根据测距部获得的被测体的被测体距离信息,并基于聚焦配置信息,来控制聚焦。
优选的,图像清晰状态时,使用者可发出冻结指示,控制部响应冻结指示,可以将图像冻结,并将该图像相应的聚焦驱动参数和被测体距离信息,存储在临时存储部,待使用者的确认;优选的,配置记录部,可以在图像冻结状态下,响应使用者的记录指示,将聚焦操作对应的聚焦驱动参数、与对应的被测体距离信息等,关联记录,生成聚焦配置信息。
优选的,具有配置部,可配置有供使用者设置和编辑聚焦配置信息的操作界面;在一例中,所述操作界面,可以类同于图3中表的形式。
优选的,配置部,可用于显示聚焦配置信息、或代表聚焦配置信息的编号;所述聚焦配置信息可根据被测体距离进行自动排序并显示,如显示在图像的下方,使用者可选择删除其中某选中的聚焦配置信息。当其中具有被测体距离信息相同的聚焦驱动参数,可根据使用者的确认操作进行更新,或使用者可以根据效果情况进行删除。
控制部9、操作部、显示部等,可构成配置部,用于配置聚焦配置信息所含的参数。
以下将对处理流程进行说明,本实施例,在闪存8中预先存储了包含如图3中的示例性列表所示的聚焦配置信息。
控制部9控制了聚焦装置12的整体的动作,控制部9例如由CPU、MPU、SOC、可编程的FPGA等来实现。闪存8中存储有用于控制的程序,以及各部分控制中使用的各种数据。参照图4,控制步骤如下:
步骤A01,基于控制部9的控制,获取被测体距离数据;
优选的,被测体距离数据例如可根据测距部,如激光测距装置来获得;
在其他的例子中,可根据图像算法对特定图像尺寸的计算,来获取被测体距离;在另一例子中,可根据其他图像传感器聚焦的参数,来推算被测体距离;
A02,聚焦控制的处理
根据图3中的配置驱动信息,根据获得的被测体距离1,来获得聚焦参数1;并按照该参数进行聚焦控制。
当配置驱动信息中包含多个镜头的驱动参数时,可根据被测体距离信息,控制驱动多个成像部的聚焦;可达到联动的效果。
此外,如果使用者对聚焦的效果不满意,可进行人工聚焦、启用图像算法聚焦等方式,使获得聚焦效果满意的图像;这时,保持聚焦清晰的状态,可记录聚焦驱动参数及对应的被测体距离信息,例如步进电机从起点到当前聚焦效果满意的位置的脉冲数,与被测体距离信息相对应,记录为聚焦配置信息;以便后续调用;优选的,还可自动替换之前相同被测体距离的聚焦配置信息。
此外,也可以用专用电路或通用处理器或可编程的FPGA实现本发明的实施方式中的部分或全部部件的处理和控制功能。
此外,实施例中以电力行业的被测体应用作为场景例举,也适用在红外检测的各行业广泛运用。
显然,将上述工作步骤进行不同的组合可获得更多的实施方式。显然,根据将上述工作模式进行不同的组合可获得更多的实施方式。
此外,本自动聚焦装置也可去除获取部,也构成本发明,可作为具有检测部的装置的一个模块。
此外,也可以用专用电路或通用处理器或可编程的FPGA实现本发明的实施方式中的部分或全部部件的处理和控制功能。虽然,可以通过硬件、软件或其结合来实现附图中的功能块,但通常不需要设置以一对一的对应方式来实现功能块的结构;例如可通过一个软件或硬件单元来实现多个功能的块,或也可通过多个软件或硬件单元来实现一个功能的块。
此外,实施例中以电力行业的被测体应用作为场景例举,也适用在探测的各行业广泛运用。此外,还可以是动物等活动物体上搭载的、无人机、机器人等的应用。
上述所描述的仅为发明的具体实施方式,各种例举说明不对发明的实质内容构成限定,所属领域的技术人员在阅读了说明书后可对具体实施方式进行其他的修改和变化,而不背离发明的实质和范围。

Claims (10)

  1. 自动聚焦装置,包括:
    拍摄部,用于拍摄获得热像数据;
    测距部,用于获取被测体的距离信息;
    聚焦控制部,用于控制聚焦驱动部件;
    操作部,用于使用者进行聚焦操作;
    配置记录部,响应使用者的记录指示,将聚焦操作对应的聚焦驱动参数、与对应的距离信息,关联记录,生成聚焦配置信息;
    所述聚焦控制部,响应聚焦指示,根据测距部获得的被测体距离信息,并基于聚焦配置信息,来控制聚焦。
  2. 自动聚焦装置,包括:
    测距部,用于获取被测体的距离信息;
    聚焦控制部,用于控制聚焦驱动部件;
    操作部,用于使用者进行聚焦操作;
    配置记录部,响应记录指示,将聚焦操作对应的聚焦驱动参数、与对应的距离信息,关联记录,生成聚焦配置信息;
    所述聚焦控制部,响应聚焦指示,根据测距部获得的被测体的距离信息,并基于聚焦配置信息,来控制聚焦。
  3. 自动聚焦装置,包括:
    测距部,用于获取被测体的距离信息;测距与镜头位于大致同轴;
    聚焦控制部,用于控制聚焦驱动部件;
    所述聚焦控制部,响应聚焦指示,根据测距部获得的被测体的距离信息,并基于聚焦配置信息,来控制聚焦;所述聚焦配置信息包括距离信息及与聚焦驱动参数的对应关系。
  4. 自动聚焦装置,包括:
    拍摄部,用于拍摄;
    测距部,用于获取被测体的距离信息;
    聚焦控制部,用于控制聚焦驱动部件;所述聚焦驱动部件可用于驱动拍摄部的探测器和/或镜头;
    操作部,用于使用者进行镜头调节的聚焦操作;
    所述聚焦控制部,响应聚焦指示,根据测距部获得的被测体距离信息,并基于聚焦配置信息,来控制红外图像的聚焦;所述聚焦配置信息,包括镜头调节位置及其对应的驱动参数、被测体距离信息、探测器的聚焦驱动参数的对应关系。
  5. 如权利要求1所述的基于测距的自动聚焦装置,其特征在于,
    所述聚焦配置信息,可存储在自动聚焦装置的存储介质中。
  6. 如权利要求1所述的基于测距的自动聚焦装置,其特征在于,
    所述聚焦配置信息,至少包括2组镜头各自所对应的聚焦配置信息,所述聚焦配置信息代表了该镜头对应的距离和聚焦驱动参数的对应关系。
  7. 如权利要求1所述的基于测距的自动聚焦装置,其特征在于,
    所述聚焦配置信息,包括镜头调节位置、距离、聚焦驱动参数的对应关系。
  8. 如权利要求1所述的基于测距的自动聚焦装置,其特征在于,具有
    多个检测部;
    所述聚焦配置信息包括距离信息及与多个检测部的聚集驱动参数的对应关系;
    聚焦控制部,用于控制多个检测部的聚焦,按照各自所对应的聚焦配置信息,进行聚焦控制。
  9. 自动聚焦方法,包括:
    拍摄步骤,用于拍摄获得热像数据;
    测距步骤,用于获取被测体的距离信息;
    聚焦控制步骤,用于控制聚焦驱动步骤件;
    操作步骤,用于使用者进行聚焦操作;
    配置记录步骤,响应使用者的记录指示,将聚焦操作对应的聚焦驱动参数、与对应的距离信息,关联记录,生成聚焦配置信息;
    所述聚焦控制步骤,响应聚焦指示,根据测距步骤获得的被测体距离信息,并基于聚焦配置信息,来控制聚焦。
  10. 自动聚焦方法,包括:
    测距步骤,用于获取被测体的距离信息;测距与镜头位于大致同轴;
    聚焦控制步骤,用于控制聚焦驱动步骤件;
    所述聚焦控制步骤,响应聚焦指示,根据测距步骤获得的被测体的距离信息,并基于聚焦配置信息,来控制聚焦;所述聚焦配置信息包括距离信息及与聚焦驱动参数的对应关系。
PCT/CN2021/097773 2020-06-01 2021-06-01 自动聚焦装置和聚焦方法 WO2021244550A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010483576.3 2020-06-01
CN202010483576 2020-06-01

Publications (1)

Publication Number Publication Date
WO2021244550A1 true WO2021244550A1 (zh) 2021-12-09

Family

ID=78094985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097773 WO2021244550A1 (zh) 2020-06-01 2021-06-01 自动聚焦装置和聚焦方法

Country Status (2)

Country Link
CN (1) CN113542590A (zh)
WO (1) WO2021244550A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61269106A (ja) * 1985-05-23 1986-11-28 Nippon Kogaku Kk <Nikon> 自動焦点調節装置
TW505817B (en) * 2000-10-19 2002-10-11 Fuji Electric Co Ltd Automatic focusing device and the electronic image pickup apparatus using the same
CN1847903A (zh) * 2005-04-15 2006-10-18 索尼株式会社 自动聚焦设备和方法
JP2006293383A (ja) * 2006-05-15 2006-10-26 Ricoh Co Ltd 自動合焦装置、デジタルカメラ、携帯情報入力装置、合焦位置検出方法、およびコンピュータが読取可能な記録媒体
CN103207441A (zh) * 2008-09-13 2013-07-17 佳能株式会社 自动聚焦装置及其控制方法
CN110830710A (zh) * 2018-08-14 2020-02-21 高新兴科技集团股份有限公司 一种超长焦镜头的聚焦方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5094068B2 (ja) * 2006-07-25 2012-12-12 キヤノン株式会社 撮像装置及びフォーカス制御方法
WO2015045683A1 (ja) * 2013-09-27 2015-04-02 富士フイルム株式会社 撮像装置及び合焦制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61269106A (ja) * 1985-05-23 1986-11-28 Nippon Kogaku Kk <Nikon> 自動焦点調節装置
TW505817B (en) * 2000-10-19 2002-10-11 Fuji Electric Co Ltd Automatic focusing device and the electronic image pickup apparatus using the same
CN1847903A (zh) * 2005-04-15 2006-10-18 索尼株式会社 自动聚焦设备和方法
JP2006293383A (ja) * 2006-05-15 2006-10-26 Ricoh Co Ltd 自動合焦装置、デジタルカメラ、携帯情報入力装置、合焦位置検出方法、およびコンピュータが読取可能な記録媒体
CN103207441A (zh) * 2008-09-13 2013-07-17 佳能株式会社 自动聚焦装置及其控制方法
CN110830710A (zh) * 2018-08-14 2020-02-21 高新兴科技集团股份有限公司 一种超长焦镜头的聚焦方法

Also Published As

Publication number Publication date
CN113542590A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
EP1363255B1 (en) Monitoring system, monitoring method and imaging apparatus
CN107079106B (zh) 对焦方法和装置、图像拍摄方法和装置及摄像***
WO2022000300A1 (zh) 图像处理方法、图像获取装置、无人机、无人机***和存储介质
US20170142309A1 (en) Imaging apparatus and imaging method
CN103988490A (zh) 图像处理装置、图像处理方法和记录介质
KR102228194B1 (ko) 카메라 초점 유지 장치 및 그 방법
US8265475B2 (en) Focus-point selection system, autofocus system, and camera
CN103179353A (zh) 用于红外重摄的热成像相机
CN101472071A (zh) 摄影装置以及焦点检测装置
CN102348067A (zh) 摄像设备和摄像设备的控制方法
CN108848316A (zh) 摄像机的自动变焦控制方法、自动变焦装置和摄像机
CN104359560A (zh) 基于步进电机的双光谱观测仪视场同步控制***及方法
US7339147B2 (en) System and method for automatic focusing of images
CN111699412A (zh) 利用激光跟踪测距仪的驱动测量、来计算三维数值驱动控制仪器的三维驱动数值的方法
WO2021244550A1 (zh) 自动聚焦装置和聚焦方法
CN116301029A (zh) 无人机自主巡检抓拍方法
CN201054698Y (zh) 定位捕捉追踪装置
JP4502376B2 (ja) フォーカス制御装置及び撮影装置
JP3969172B2 (ja) モニタリングシステムおよび方法並びにプログラムおよび記録媒体
JP2747426B2 (ja) 温度表示ビデオカメラ
JP5176934B2 (ja) 電子カメラ
JP3861475B2 (ja) 3次元入力装置
KR102131585B1 (ko) 전력선로 감시기기의 영상 획득 장치 및 방법
JP7024790B2 (ja) 交換レンズ装置、撮像装置、撮像システム、および方法、並びにプログラム
JP2004173152A (ja) モニタリングシステムおよび方法並びにプログラムおよび記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21817723

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21817723

Country of ref document: EP

Kind code of ref document: A1