WO2021244540A1 - 复用方法、装置、设备及存储介质 - Google Patents

复用方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2021244540A1
WO2021244540A1 PCT/CN2021/097734 CN2021097734W WO2021244540A1 WO 2021244540 A1 WO2021244540 A1 WO 2021244540A1 CN 2021097734 W CN2021097734 W CN 2021097734W WO 2021244540 A1 WO2021244540 A1 WO 2021244540A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
configuration information
resource
measurement
threshold
Prior art date
Application number
PCT/CN2021/097734
Other languages
English (en)
French (fr)
Inventor
刘文豪
苗婷
卢有雄
邢卫民
毕峰
张淑娟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021244540A1 publication Critical patent/WO2021244540A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • H04B1/1036Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal with automatic suppression of narrow band noise or interference, e.g. by using tuneable notch filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • H04B2001/1045Adjacent-channel interference

Definitions

  • This application relates to the field of wireless communication technologies, for example, to a multiplexing method, device, device, and storage medium.
  • the Integrated Access Backhaul (IAB) node includes a mobile terminal (MT) unit and a distributed unit (DU). Among them, the IAB node is connected to the upper-level node through the MT. The upper-level node is called the parent node of the IAB node. The link between the IAB MT and the parent node is called upstream. The IAB DU and the next-level node or The link between the terminals is called downstream.
  • MT mobile terminal
  • DU distributed unit
  • the IAB node will perform upstream transmission (upstream Transmission, upstream Tx) and downstream transmission (downstream Transmission, downstream Tx) at the same time.
  • the IAB node will simultaneously receive upstream (upstream Receiving, upstream Rx) and downstream (downstream Receiving, downstream Rx). How to avoid the interference between the two links is a problem that needs to be solved urgently when performing simultaneous sending operations or simultaneous receiving operations.
  • This application provides a multiplexing method, device, equipment, and storage medium to coordinate the interference between two links when an IAB node performs simultaneous receiving and transmitting operations.
  • An embodiment of the present application provides a multiplexing method, which is applied to a first node, and includes:
  • An embodiment of the present application also provides a multiplexing method, which is applied to a second node, and includes:
  • An embodiment of the present application also provides a multiplexing device, which is configured in a first node and includes:
  • the first sending module is configured to send measurement configuration information to the second node, where the measurement configuration information is used to instruct the second node to measure related information of the resource corresponding to the measurement configuration information; the first receiving module is configured to Receiving the measurement result sent by the second node.
  • An embodiment of the present application also provides a multiplexing device, which is configured on a second node and includes:
  • the second receiving device is configured to receive measurement configuration information sent by the first node, where the measurement configuration information is used to instruct the second node to measure the related information of the resource corresponding to the measurement configuration information; the second sending module is configured To send the measurement result to the first node.
  • An embodiment of the present application also provides a device, including:
  • One or more processors comprising: a memory, configured to store one or more programs; when the one or more programs are executed by the one or more processors, the one or more processors are implemented as Apply the multiplexing method provided in the embodiment.
  • the embodiment of the present application also provides a storage medium that stores a computer program, and when the computer program is executed by a processor, it implements the multiplexing method provided in the embodiment of the present application.
  • Figure 1 is a schematic diagram of the relationship and links of the nodes in the IAB network
  • Figure 2 is a flowchart of a multiplexing method provided by an embodiment of the present application.
  • Fig. 3 is a flowchart of a multiplexing method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the period of a reference signal provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a time offset of a reference signal provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the effective measurement duration of a reference signal provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the timing deviation between upstream transmission and downstream transmission of an IAB node according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an IAB node specifying configuration rules for a parent node according to an embodiment of the present application
  • FIG. 9 is a schematic diagram of interference when receiving data from two links at the same time by an IAB node provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the correspondence between resources and reference signals provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a multiplexing device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a multiplexing device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • Figure 1 is a schematic diagram of the relationship and links of the nodes in the IAB network. As shown in Figure 1, the three nodes from top to bottom are called parent node, IAB node and child node or user Equipment (User Equipment, UE), the node served by the IAB node in Figure 1 is a UE or a child node.
  • parent node IAB node and child node or user Equipment (User Equipment, UE)
  • UE User Equipment
  • IAB nodes support upstream and downstream time division multiplexing with high priority, but at the same time the protocol is also forward compatible and supports other multiplexing methods. , Such as frequency division multiplexing (Frequency Division Multiplexing, FDM), space division multiplexing (Space Division Multiplexing, SDM) and full duplex.
  • FDM Frequency Division Multiplexing
  • SDM Space Division Multiplexing
  • DU Distributed Unit of the IAB acts as a base station to provide network services for child nodes or terminals through the downstream, and the MT unit of the IAB is connected to the parent node through the upstream.
  • the DU resource is the resource used by the DU unit of the IAB node to serve the child node or terminal.
  • the Downlink (DL) resource of the DU is the resource for the DU unit of the IAB node to transmit downstream data for the child node or terminal.
  • the MT resource of the IAB node is indicated by the semi-static configuration on the network side and the dynamic signaling of the parent node.
  • the resource used for downstream transmission of the DU unit of the IAB node may correspond to the resource used for upstream transmission of the MT. On this resource, the IAB node has the opportunity to perform downstream transmission and upstream transmission at the same time.
  • the resource used for downstream reception of the DU unit of the IAB node may correspond to the resource used for upstream reception of the MT. On this resource, the IAB node has the opportunity to perform downstream reception and upstream reception at the same time.
  • a multiplexing method is provided, and the method is applied to the first node.
  • the multiplexing method provided in the embodiment of the present application mainly includes steps S11 and S12.
  • the first node is an IAB node as shown in FIG. 1.
  • the second node is the parent node as shown in Figure 1.
  • the second node is a child node or UE as shown in FIG. 1.
  • the measurement configuration information is information sent by the IAB node to the parent node.
  • the parent node performs measurement according to the measurement configuration information, and feeds back the measurement result to the IAB node.
  • the IAB node performs upstream transmission and downstream transmission at the same time, it selects the beam with little interference to the parent node for downstream transmission according to the measurement result.
  • the measurement result fed back by the parent node to the IAB node includes at least one of the following: resource index, received power of the corresponding resource, path loss of the corresponding resource, and reference signal receiving power (RSRP) of the corresponding resource ), the parent node receives Reference Signal Receiving Quality (RSRQ) or Signal to Interference plus Noise Ratio (SINR) or Channel Quality Indicator (CQI) sent upstream from the IAB node .
  • RSRQ Reference Signal Receiving Quality
  • SINR Signal to Interference plus Noise Ratio
  • CQI Channel Quality Indicator
  • the measurement configuration information includes first measurement configuration information and second measurement configuration information, wherein the measurement configuration information includes reference signal configuration information for the second node measurement reference signal, or, The measurement configuration information includes time-frequency resource configuration information for the second node to measure the time-frequency resource.
  • the second measurement configuration information includes quasi co-located reference signal configuration information or corresponding spatial reception parameters corresponding to the measurement performed by the second node.
  • the reference signal configuration information includes one or more of the following: frequency domain configuration information, Sequence configuration information, power configuration information, time configuration information (first time configuration information), and whether the time limit is enabled.
  • the type of the reference signal includes one or more of the following: Sounding Reference Signal (Sounding Reference Signal, SRS), Channel State Information Reference Signal CSI-RS, Synchronization Signal/Physical Broadcast Channel Block , SSB), physical downlink control channel demodulation reference signal (Physical Downlink Control Channel DMRS, PDCCH DMRS), physical downlink shared channel demodulation reference signal PDSCH DMRS.
  • Sounding Reference Signal Sounding Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • SSB Synchronization Signal/Physical Broadcast Channel Block
  • SSB Synchronization Signal/Physical Broadcast Channel Block
  • Physical downlink control channel demodulation reference signal Physical Downlink Control Channel DMRS, PDCCH DMRS
  • PDSCH DMRS physical downlink shared channel demodulation reference signal
  • the time-frequency resource configuration information includes one or more of the following: time-frequency resource correspondence The channel type, frequency domain configuration information, time configuration information (second time configuration information), and whether the time limit is enabled.
  • the second measurement configuration information includes one or more of the following: time-frequency resource correspondence The quasi co-located reference signal, the spatial receiving parameter.
  • the time configuration information includes one or more of the following: timing of occurrence, effective time, and timing deviation, where the effective time is the effective time for the second node to perform the measurement operation, and the timing deviation is the first The amount of time adjusted by the second node to perform the measurement operation.
  • the timing deviation is a timing deviation value adjusted based on the communication timing between the second node and the first node. For example, the second node adjusts the timing based on the received reference signal sent upstream of the first node.
  • the first time configuration information includes a first occurrence time, a first effective time, and a first timing deviation, wherein the first effective time is the effective time of the second node measurement reference signal, and the timing deviation is the second node The amount of time adjusted by the measurement reference signal.
  • the second time configuration information includes a second time of occurrence, a second effective time, and a second timing deviation, where the second effective time is the effective time for the second node to measure the time-frequency resource, and the second timing deviation is The second node measures the amount of time adjusted by the time-frequency resource.
  • the effective time includes one or more of the following: effective measurement duration, starting point, and offset.
  • whether the time limit is enabled or not indicates whether the measurement operation can be performed in multiple measurement cycles when the second node performs the measurement operation.
  • the quasi-co-location reference signal indicates that the reference signal configuration information of the second node measurement reference signal and the quasi-co-location reference signal satisfy a quasi-co-location relationship.
  • the quasi-co-location reference signal indicates that the time-frequency resource configuration information of the second node to measure the time-frequency resource and the quasi-co-location reference signal satisfy the quasi-co-location relationship.
  • the CSI-RS and the quasi-co-location reference signal satisfy the quasi-co-location relationship with respect to at least one of the following parameters: 1) Doppler frequency shift 2) Doppler spread 3) Average delay 4) Delay spread 5) Space receiving parameters.
  • the measurement result includes: the received power of the resource corresponding to the first measurement configuration information, the received power of the resource corresponding to the first measurement configuration information and the second measurement configuration information, and the path loss value corresponding to the first measurement configuration information , The path loss values of the resources corresponding to the first measurement configuration information and the second measurement configuration information, and the link quality between the second node and the first node measured in the second measurement configuration information.
  • the received power satisfies one of the following conditions: the signal received power of the first measurement configuration information is greater than or equal to the first threshold; the signal received power of the first measurement configuration information is less than or equal to the second threshold Value; the ratio of the signal received power of the first measurement configuration information to the signal received power of the first node sending data upstream is greater than or equal to the third threshold; the signal receiving power of the first measurement configuration information is compared with the first node sending upstream The ratio of the received signal power of the data is less than or equal to the fourth threshold value.
  • the path loss value satisfies one of the following conditions: the path loss value corresponding to the signal of the first measurement configuration information is greater than or equal to the fifth threshold; the signal corresponding to the first measurement configuration information The path loss value of is less than or equal to the sixth threshold; the ratio of the path loss value corresponding to the signal of the first measurement configuration information to the path loss value between the second node and the first node is greater than or equal to the seventh threshold Value; the ratio of the path loss value corresponding to the signal of the first measurement configuration information to the path loss value between the second node and the first node is less than or equal to the eighth threshold; measured in the second measurement configuration information The link quality between the second node and the first node is less than or equal to the ninth threshold; the link quality between the second node and the first node measured in the second measurement configuration information is greater than or equal to the tenth threshold .
  • the first node is an integrated access and backhaul IAB node
  • the second node is a parent node of the IAB node, or the second node is a child node of the IAB node .
  • the method further includes: selecting a beam that meets the requirements based on the measurement result Combine simultaneous transmission of upstream and downstream.
  • the IAB node performs downstream transmission and upstream transmission at the same time, and its downstream transmission avoids beams that interfere with the parent node.
  • the method further includes: selecting a requirement based on the measurement result The beam combination performs simultaneous upstream and downstream reception.
  • the IAB node performs downstream reception and upstream reception at the same time, and its upstream reception corresponds to the transmission to avoid interference with downstream reception.
  • a multiplexing method is provided, and the multiplexing method is applied to a second node.
  • the multiplexing method provided in the embodiment of the present application mainly includes steps S21 and S22.
  • the first node is an IAB node as shown in FIG. 1.
  • the second node is the parent node as shown in Figure 1.
  • the second node is a child node or UE as shown in FIG. 1.
  • the parent node needs to perform measurement based on the measurement configuration information, and the quantity that the parent node needs to measure includes at least one of the following: Reference Signal Receiving Power (RSRP), target link quality, path loss value, Signal to Interference Ratio (SIR).
  • RSRP Reference Signal Receiving Power
  • SIR Signal to Interference Ratio
  • the aforementioned RSRP may be the RSRP of the reference signal in the measurement configuration information, or the RSRP of the reference signal (such as SRS, DMRS, CSI-RS, etc.) sent upstream of the IAB node.
  • the path loss value is the path loss value corresponding to the reference signal measured by the parent node according to the resource in the measurement configuration information, or the path loss value between the IAB node and the parent node measured by the parent node.
  • the measurement configuration information includes first measurement configuration information and second measurement configuration information, wherein the measurement configuration information includes reference signal configuration information for the second node measurement reference signal, or, The measurement configuration information includes time-frequency resource configuration information for the second node to measure the time-frequency resource.
  • the second measurement configuration information includes quasi co-located reference signal configuration information or corresponding spatial reception parameters corresponding to the measurement performed by the second node.
  • the reference signal configuration information includes one or more of the following: frequency domain configuration information, sequence configuration Information, power configuration information, time configuration information (first time configuration information), and whether the time limit is enabled.
  • the types of reference signals include one or more of the following: channel state information reference signal CSI-RS, synchronous broadcast block SSB, physical downlink control channel demodulation reference signal PDCCH DMRS, physical downlink shared channel demodulation Reference signal PDSCH DMRS.
  • the time-frequency resource configuration information includes one or more of the following: time-frequency resource correspondence The channel type, frequency domain configuration information, time configuration information (second time configuration information), and whether the time limit is enabled.
  • the second measurement configuration information includes one or more of the following: time-frequency resource correspondence The quasi co-located reference signal, the spatial receiving parameter.
  • the time configuration information includes one or more of the following: timing of occurrence, effective time, and timing deviation, where the effective time is the effective time for the second node to perform the measurement operation, and the timing deviation is the first The amount of time adjusted by the second node to perform the measurement operation.
  • the timing deviation is a timing deviation value adjusted based on the communication timing between the second node and the first node. For example, the second node adjusts the timing based on the received reference signal sent upstream of the first node.
  • the first time configuration information includes a first occurrence time, a first effective time, and a first timing deviation, wherein the first effective time is the effective time of the second node measurement reference signal, and the timing deviation is the second node The amount of time adjusted by the measurement reference signal.
  • the second time configuration information includes a second time of occurrence, a second effective time, and a second timing deviation, where the second effective time is the effective time for the second node to measure the time-frequency resource, and the second timing deviation is The second node measures the amount of time adjusted by the time-frequency resource.
  • the effective time includes one or more of the following: effective measurement duration, starting point, and offset.
  • whether the time limit is enabled or not indicates whether the measurement operation can be performed in multiple measurement cycles when the second node performs the measurement operation.
  • the quasi-co-location reference signal indicates that the reference signal configuration information of the second node measurement reference signal and the quasi-co-location reference signal satisfy a quasi-co-location relationship.
  • the quasi-co-location reference signal indicates that the time-frequency resource configuration information of the second node to measure the time-frequency resource and the quasi-co-location reference signal satisfy the quasi-co-location relationship.
  • the CSI-RS and the quasi-co-location reference signal satisfy the quasi-co-location relationship with respect to at least one of the following parameters: 1) Doppler frequency shift 2) Doppler spread 3) Average delay 4) Delay spread 5) Space receiving parameters.
  • the measurement result includes: the received power of the resource corresponding to the first measurement configuration information, the received power of the resource corresponding to the first measurement configuration information and the second measurement configuration information, and the path loss value corresponding to the first measurement configuration information , The path loss values of the resources corresponding to the first measurement configuration information and the second measurement configuration information, and the link quality between the second node and the first node measured in the second measurement configuration information.
  • the received power satisfies one of the following conditions: the signal received power of the first measurement configuration information is greater than or equal to the first threshold; the signal received power of the first measurement configuration information is less than or equal to the second threshold Value; the ratio of the signal received power of the first measurement configuration information to the signal received power of the first node sending data upstream is greater than or equal to the third threshold; the signal receiving power of the first measurement configuration information is compared with the first node sending upstream The ratio of the received signal power of the data is less than or equal to the fourth threshold value.
  • the path loss value satisfies one of the following conditions: the path loss value corresponding to the signal of the first measurement configuration information is greater than or equal to the fifth threshold; the signal corresponding to the first measurement configuration information The path loss value of is less than or equal to the sixth threshold; the ratio of the path loss value corresponding to the signal of the first measurement configuration information to the path loss value between the second node and the first node is greater than or equal to the seventh threshold Value; the ratio of the path loss value corresponding to the signal of the first measurement configuration information to the path loss value between the second node and the first node is less than or equal to the eighth threshold; measured in the second measurement configuration information The link quality between the second node and the first node is less than or equal to the ninth threshold; the link quality between the second node and the first node measured in the second measurement configuration information is greater than or equal to the tenth threshold .
  • a method for an IAB node to report to a parent node a channel state information reference signal (Channel State Information Reference Signal, CSI-RS) that needs to be measured by the parent node.
  • CSI-RS Channel State Information Reference Signal
  • the IAB nodes When the IAB nodes perform upstream transmission and downstream transmission at the same time, they may interfere with each other. For example, the downstream transmission of the IAB node interferes with the parent node's reception of the upstream transmission of the IAB node. In order to solve the above problems, the following solutions are given.
  • the IAB node reports the measurement configuration information to the parent node, the parent node performs measurement according to the measurement configuration information, and the parent node feeds back the measurement result to the IAB node.
  • the downstream transmission uses a beam with little interference to the parent node.
  • the measurement configuration information includes one or more resource sets, and each resource set includes one or more reference signal resource configuration information.
  • the reference signal resource configuration information includes at least one of the following: time configuration information, frequency domain configuration information, sequence configuration information, transmission power configuration information, corresponding quasi co-located reference signal configuration information or corresponding spatial reception parameters.
  • the reference signal can be a CSI-RS or a synchronous broadcast block (Synchronization Signal/Physical Broadcast Channel Block, SSB), a demodulation reference signal (Demodulation Reference Signal, DMRS), or a phase tracking reference signal (Phase Tracking Reference Signal, PTRS), etc. Any kind.
  • SSB Synchronization Signal/Physical Broadcast Channel Block
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the quantity that the parent node needs to measure includes at least one of the following: Reference Signal Receiving Power (RSRP), target link quality, path loss value, and Signal to Interference Ratio (SIR).
  • RSRP Reference Signal Receiving Power
  • SIR Signal to Interference Ratio
  • the aforementioned RSRP may be the RSRP of the reference signal in the measurement configuration information, or the RSRP of the reference signal (such as SRS, DMRS, CSI-RS, etc.) sent upstream of the IAB node.
  • the target link quality is the link quality sent by the parent node upstream of the IAB node, including the reception quality of the reference signal (Reference Signal Receiving Quality, RSRQ), the signal to interference plus noise ratio of the reference signal (Signal to Interference plus Noise Ratio, SINR) ) Or reference signal channel quality indication (Channel Quality Indication, CQI).
  • RSRQ Reference Signal Receiving Quality
  • SINR Signal to Interference plus Noise Ratio
  • CQI Channel Quality Indication
  • SIR is the ratio of Ps and Pi, where Ps is the received power of the reference signal sent upstream of the IAB node measured by the parent node, and Pi is the received power of the reference signal sent downstream of the IAB node measured by the parent node. Power is expressed in dB, so the ratio of power corresponds to the difference in dB.
  • the path loss value is the path loss value corresponding to the reference signal measured by the parent node according to the resource in the measurement configuration information, or the path loss value between the IAB node and the parent node measured by the parent node.
  • the measurement result fed back by the parent node to the IAB node includes at least one of the following: resource index, received power of the corresponding resource, path loss of the corresponding resource, RSRP of the corresponding resource, RSRQ or SINR of the reference signal sent by the parent node upstream of the IAB node, or CQI, the parent node receives the SINR of the reference signal sent upstream of the IAB node.
  • the parent node determines the measurement result based on at least one of the following methods: feeding back the amount that satisfies the threshold condition; feeding back the amount that satisfies the threshold condition and one or more related measurement quantities.
  • the IAB node performs downstream transmission and upstream transmission at the same time, and its downstream transmission avoids beams that interfere with the parent node.
  • the time configuration information of the reference signal resource configuration information includes at least one of the following: the period of the reference signal, the time offset of the reference signal, the effective measurement time of the reference signal, and the timing offset between the downstream transmission of the IAB node and the upstream transmission of the IAB node.
  • the period of the reference signal (denoted as P) is that the IAB node sends the reference signal with the period P.
  • the time offset of the reference signal refers to the time offset from the start of the period P as the boundary.
  • the time offset can be several radio frames, several subframes, several time slots, and several orthogonal frequency divisions. At least one of the multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbols.
  • the effective measurement duration of the reference signal indicates the effective time for the parent node to perform the reference signal measurement. If the IAB node does not send the reference signal or the beam has changed or the transmission power has changed outside the effective time, the IAB node informs the parent node of the effective time for performing the reference signal measurement.
  • the timing offset between the reference signal and the upstream sending of the IAB node refers to the time deviation between the sending timing of the reference signal downstream of the IAB node and the upstream sending timing of the IAB node.
  • the timing offset is several OFDM symbols or several time-domain samples (Tc or Ts) or several OFDM symbols and several time-domain samples.
  • Tc or Ts time-domain samples
  • the IAB node reports the reference signal to be measured to the parent node
  • the IAB node also reports to the parent node the timing deviation between the upstream transmission of the IAB node and the downstream transmission of the IAB node.
  • the deviation is the upstream transmission time of the IAB node and the downstream of the IAB node.
  • the parent node uses the received timing sent upstream of the IAB node as a reference to postpone or advance the timing offset to measure the reference signal to be tested reported by the IAB node.
  • the frequency domain configuration information of the reference signal resource configuration includes at least one of the following: carrier information of the reference signal, bandwidth occupied by the reference signal, frequency domain density of the reference signal, subcarrier spacing of the reference signal, and frequency domain offset of the reference signal.
  • the carrier information of the reference signal is the absolute carrier number or the carrier offset between the carrier of the reference signal under test and the corresponding carrier of the IAB node MT.
  • the carrier offset is the number of RBs or the number of subcarriers (SC) or resource blocks (RB, Resource Block) number and SC number.
  • the frequency domain offset of the reference signal refers to the offset of the reference signal in the RB.
  • the RB size and SC size of the carrier offset are determined by the reference subcarrier (reference SC) interval.
  • the reference subcarrier has a value of 15*2 ⁇ u, and u is a natural number greater than or equal to 0.
  • u can be a value agreed between nodes, or a value used in the communication process between the parent node and the IAB node, or the value notified by the IAB node, OAM, or CU to the parent node.
  • the reference signal sequence configuration information includes at least one of the following: the sequence type of the reference signal, and the method of generating the reference signal sequence.
  • the reference signal sequence generation method includes the reference signal sequence generation method and initialization parameters.
  • the CSI-RS sequence generation method and initialization are as follows:
  • x 1 (n+31) (x 1 (n+3)+x 1 (n))mod2 formula one
  • x 2 (n+31) (x 2 (n+3)+x 2 (n+2)+x 2 (n+1)+x 2 (n))mod2
  • formula 1 is the random sequence generation method
  • the initial sequence of the random sequence is determined by the initial value of the sequence, as shown in formula 2
  • the reference signal sequence is generated according to the random sequence as shown in formula 3, which is used for the initial generation of the reference signal sequence
  • the value is shown in equation four.
  • the sender and the measuring party can agree on the method of generating the random sequence, and the IAB node does not need to report the sequence generation method for the parent node; if the sender and the measuring party agree on the method of generating the initial sequence value, the IAB node does not need to report the initial value of the sequence to the parent node.
  • the parent node can determine the time-related variables of the sequence initialization value according to its own timing.
  • the time-related variables in Equation 4 are the OFDM symbol number in the time slot and the time slot number in the radio frame. Equation 4 also includes variables for configuring the sequence. Time-dependent variables and variables that configure the sequence are used to interfere with randomized or quasi-orthogonal multi-user transmission.
  • the IAB node does not need to inform the parent
  • the IAB node reports the index number of the corresponding resource to the parent node, and the parent node can determine the location of the resource to be tested.
  • the transmit power of the reference signal is the transmit power of the reference signal sent downstream of the IAB node.
  • the parent node measures the reference signal in the resource set of the measurement configuration reported by the IAB node or the reference signal sent upstream of the IAB node according to the received beam measurement corresponding to the resource set of the measurement configuration reported by the IAB node. If the reference signal configuration of the measurement configuration reported by the IAB node If the corresponding quasi co-located reference signal configuration or the corresponding spatial receiving parameter is not included, the parent node will perform corresponding measurement according to the historical receiving parameter of the IAB node.
  • the measurement quantity includes at least one of the following: RSRP, RSRQ, SINR, path loss, and SIR.
  • the parent node feeds back the resource set index corresponding to the measured quantity that meets the threshold to the IAB node.
  • the satisfaction threshold is at least one of the following: the measured quantity is greater than or equal to a specific threshold, the measured quantity is less than or equal to the specific threshold, the measured quantity is greater than the specific threshold, and the measured quantity is less than the specific threshold.
  • RSRP_i The RSRP of the reference signal in the parent node measurement resource set is recorded as RSRP_i
  • the parent node feeds back the resource set index corresponding to the RSRP_i that meets the threshold to the IAB node
  • the threshold corresponding to RSRP_i is recorded as threshold_1.
  • RSRP_i may be the average value of the reference signal RSRP of different resources in a resource set, or the minimum value of the reference signal RSRP of different resources in a resource set, or the maximum value of the reference signal RSRP of different resources in a resource set.
  • the parent node feeds back the RSRP_i value that meets the threshold to the IAB node.
  • the parent node measures the channel quality of the reference signal sent upstream of the IAB node.
  • the channel quality can be characterized by one of the following quantities: RSRQ, SINR, CQI, and the corresponding measurement results are respectively marked as RSRQ_s, SINR, CQI, and the parent node will meet the threshold measurement
  • the index of the resource set corresponding to the result is fed back to the IAB node, and the threshold corresponding to RSRQ_s or SINR or CQI is recorded as threshold_2.
  • the parent node feeds back the RSRQ_s value, SINR value or CQI value that meets the threshold to the IAB node.
  • the path loss value of the reference signal in the parent node's measurement resource set is recorded as PL_i
  • the parent node feeds back the resource set index corresponding to PL_i that meets the threshold to the IAB node
  • the threshold corresponding to RSRP_i is recorded as threshold_3.
  • PL_i can be the average value of the reference signal path loss of different resources in a resource set, or when the parent node feeds back the resource collection index corresponding to the path loss greater than or equal to or greater than the threshold, the path loss value can also be one The minimum value of the reference signal path loss of different resources in the resource set, or when the parent node feeds back the resource set index corresponding to the path loss that is less than or equal to or less than the threshold, the path loss value can also be different in a resource set. The maximum value of the reference signal path loss of the resource.
  • the parent node may feed back the value of RSRP_i that meets the condition to the IAB node.
  • the path loss value corresponding to the reference signal sent by the parent node measured upstream of the IAB node is denoted as PL_s
  • the path loss value of the reference signal in the parent node measurement resource set is denoted as PL_i
  • the parent node feeds back the resource set index corresponding to the SIR_PL that meets the threshold to the IAB node, and the threshold corresponding to the SIR_PL is marked as threshold_4.
  • the parent node may feed back the SIR_PL value that meets the threshold to the IAB node.
  • the parent node measures the received power of the signal corresponding to the reference signal sent upstream of the IAB node as Ps. For example, the parent node measures the received power of the SRS signal sent upstream of the IAB node.
  • the parent node feeds back the resource set index corresponding to the SIR that meets the threshold to the IAB node, corresponding to SIR
  • the threshold of is recorded as threshold_5.
  • the parent node may feed back the SIR value that satisfies the threshold to the IAB node.
  • the IAB node When the IAB node receives the parent node's feedback result as one or a combination of the following conditions, the IAB node considers that the downstream IAB transmission corresponding to the resource set index causes interference to the parent node's reception:
  • the parent node feeds back the resource collection index corresponding to RSRP_i greater than or equal to threshold_1; the parent node feeds back the resource collection index corresponding to RSRQ_s or SINR or CQI less than or equal to threshold_2; the parent node feeds back the resource collection index corresponding to PL_i less than or equal to threshold_3; the parent node feeds back SIR_PL The corresponding resource collection index less than or equal to threshold_4; the parent node feeds back the corresponding resource collection index with SIR less than or equal to threshold_5.
  • the IAB node When the amount of feedback received by the IAB node from the parent node is one or a combination of the following conditions, the IAB node considers that the downstream IAB transmission corresponding to the resource set index does not cause interference to the parent node's reception:
  • the parent node feeds back the resource collection index corresponding to RSRP_i less than or equal to threshold_1; the parent node feeds back the resource collection index corresponding to RSRQ_s or SINR or CQI greater than or equal to threshold_2; the parent node feeds back the resource collection index corresponding to PL_i greater than or equal to threshold_3; the parent node feeds back SIR_PL The resource collection index corresponding to threshold_4 or less; the parent node feeds back the corresponding resource collection index whose SIR is less than or equal to threshold_5.
  • SIR or SIR_PL is defined as the ratio of two quantities. If the two compared values are dB values, the ratio is used to calculate the subtraction of the two quantities of SIR or SIR_PL.
  • the measurement result fed back by the IAB node from the parent node can determine that the IAB node sends downstream beams that cause interference to the parent node.
  • the IAB node performs downstream transmission and upstream transmission at the same time, and the IAB node selects the downstream transmission corresponding beam so that the downstream transmission of the IAB node does not interfere with the parent node or the downstream transmission of the IAB node causes less interference to the parent node.
  • the signal type of the measurement configuration is not limited to CSI-RS, and may also be SSB, DMRS, PTRS, and other signals.
  • an IAB node reporting beam capability is provided (the DU has multi-beam capability), and the parent node configures the CSI-RS of the IAB node DU for the IAB node.
  • the IAB node reports its DU multi-beam capability n_Simul_Beam to the parent node, where n_Simul_Beam represents the number of beams that the DU unit of the IAB node can transmit at the same time.
  • the IAB node reports the number of SRS sets or the number of SRS resources included in the SRS set to the parent node.
  • the parent node determines the number of simultaneous transmission beams of the DU according to the report of the IAB node.
  • the parent node learns that the DU unit of the IAB node can send n_Simul_Beam beams at the same time, and the parent node uses the CSI-RS resource configuration method described in the foregoing embodiment to configure a CSI-RS resource set for the IAB node DU.
  • the parent node uses the CSI-RS resource configuration method described in the foregoing embodiment to configure a CSI-RS resource set for the IAB node DU.
  • at most n_Simul_Beam CSI-RS resources can be configured on the same time resource.
  • the parent node configures N CSI-RS resource sets for the IAB node, which is recorded as CSI-RS-Resource -set-1 ⁇ CSI-RS-Resource-set-N, where N>n_Simul_Beam, the parent node should configure at most n_Simul_Beam CSI-RS resource sets on the same time domain resource, and the parent node must be at least these CSI -The RS resource collection configures ceil (N/n_Simul_Beam) time domain resources. Where ceil() represents the rounding operation.
  • the centralized control unit (CU, Center Unit) or operation and maintenance management (OAM, Operation Administration and Maintenance) of the network configures CSI-RS resources for the IAB node DU, and informs the parent node about the IAB node DU through F1 signaling or OAM CSI-RS resource configuration.
  • the parent node configures the SRS resource collection for the IAB node.
  • the parent node configures the correspondence between the CSI-RS resource set and the SRS resource set for the IAB node. Based on this correspondence, the IAB node simultaneously performs downstream transmission and upstream transmission on the beam corresponding to the SRS resource set and the beam corresponding to the CSI-RS resource set or the quasi co-location configuration of the SRS resource set and the CSI-RS resource set.
  • the SRS resource set is a channel measurement resource set
  • the CSI-RS resource set is an interference measurement resource set.
  • the parent node measures the received power of the CSI-RS signal sent downstream of the child node, the parent node measures the received power of the SRS signal sent upstream of the child node, and the parent node feeds back the measured value to the IAB node. Based on the method described in the foregoing embodiment, the parent node provides granular feedback according to the time domain resource corresponding to the CSI-RS resource set.
  • the parent node feedbacks one or a combination of the following, which means that the parent node measures the interference sent downstream of the IAB node at the corresponding time domain resource index:
  • the parent node feeds back one or more CSI-RS resource indexes whose RSRP_i is greater than or equal to the threshold threshold_1; the parent node feeds back one or more CSI-RS resource sets whose RSRQ_s or SINR or CQI is less than or equal to the threshold threshold_2.
  • the IAB node believes that the corresponding time domain resource index has not measured the interference caused by the IAB downstream transmission to the parent node:
  • the parent node feeds back the time domain resource index corresponding to one or more CSI-RS resource sets whose RSRP_i is less than or equal to the threshold threshold_1; the parent node feeds back one or more CSI-RS resource sets whose RSRQ_s or SINR or CQI is greater than or equal to the threshold threshold_2.
  • SIR or SIR_PL is defined as the ratio of two quantities. If the compared two quantities are dB values, the ratio is used to calculate the subtraction of the two quantities of SIR or SIR_PL.
  • the IAB node When the IAB node performs downstream transmission and upstream transmission at the same time, its downstream transmission avoids the use of beams that cause interference to the parent node, or the downstream transmission uses beams that have little interference to the parent node.
  • the IAB node receives the feedback from the parent node to determine that the IAB node sends a beam that causes interference to the parent node downstream.
  • the IAB node performs downstream transmission and upstream transmission at the same time, and the IAB node selects the downstream transmission corresponding beam so that the downstream transmission of the IAB node does not interfere with the parent node or the downstream transmission of the IAB node causes less interference to the parent node.
  • the interference measurement set configured by the parent node for the IAB node is not limited to CSI-RS, but may also be SSB, DMRS, PTRS, and other signals.
  • the measurement beam is refined: the resource feedback is subdivided in the CSI-RS resource set.
  • the IAB node reports the CSI-RS that the parent node needs to measure to the parent node, and the IAB node reports a set of CSI-RS resource set to the parent node.
  • the CSI-RS resource set contains one or more CSI-RS resources.
  • the reporting method is the same as the method provided in the foregoing embodiment, and will not be repeated in this embodiment.
  • the parent node performs measurement according to each CSI-RS resource in the CSI-RS resource set reported by the IAB node, and feeds back the measured value to the IAB node.
  • the parent node feeds back to the IAB node with the CSI-RS resource as the granularity.
  • the parent node feeds back one or a combination of the following, indicating that the parent node measures the interference sent downstream of the IAB node at the corresponding CSI-RS resource set index and CSI-RS resource index:
  • the parent node feeds back the CSI-RS resource set index and CSI-RS resource index corresponding to RSRP_i greater than or equal to the threshold threshold_1; the parent node feeds back the CSI-RS resource set index and CSI-RS corresponding to the RSRQ_s or SINR or CQI less than or equal to the threshold threshold_2 RS resource index; the parent node feeds back the CSI-RS resource set index and CSI-RS resource index corresponding to PL_i less than or equal to the threshold threshold_3; the parent node feeds back the CSI-RS resource set index and CSI-RS resource index corresponding to the SIR_PL less than or equal to the threshold threshold_4 RS resource index; the parent node feeds back the CSI-RS resource set index and CSI-RS resource index corresponding to the SIR less than or equal to the threshold threshold_5.
  • the IAB node believes that the downstream transmission corresponding to the corresponding time domain resource index does not cause major interference to the parent node:
  • the parent node feeds back the CSI-RS resource set index and CSI-RS resource index corresponding to RSRP_i less than or equal to the threshold threshold_1; the parent node feeds back the CSI-RS resource set index and CSI-RS corresponding to RSRQ_s or SINR or CQI greater than or equal to the threshold threshold_2 RS resource index; the parent node feedbacks that PL_i is greater than or equal to the threshold threshold_3 corresponding to the CSI-RS resource set index and CSI-RS resource index; the parent node feedbacks that SIR_PL is less than or equal to the threshold threshold_4 corresponding to the CSI-RS resource set index and CSI- RS resource index; the parent node feeds back the CSI-RS resource set index and CSI-RS resource index corresponding to the SIR less than or equal to the threshold threshold_5.
  • the IAB node receives the measurement value fed back by the parent node to determine the CSI-RS resource set index and CSI-RS resource index that cause interference to the parent node, or can determine the CSI-RS resource set index and CSI-RS resource that does not cause interference to the parent node Index.
  • an IAB node performs downstream transmission and upstream transmission at the same time, its downstream transmission avoids the use of beams that cause interference to the parent node, or the downstream transmission uses beams that do not interfere or interfere with the parent node.
  • different CSI-RS resources of the CSI-RS resource set may correspond to different time domain positions.
  • the CSI-RS sent downstream of the IAB node can be time division multiplexed (TDM) and sent by using their respective beams.
  • the parent node can measure the interference of the downstream transmission of the IAB node to the parent node at different times. The parent node feeds back the measured value according to the method described above. When the IAB node performs downstream transmission and upstream transmission at the same time, the downstream transmission of the IAB node avoids the use of pairing The beam causing interference from the parent node.
  • this method can be used to execute the downstream of the respective beam directions at different times in the scenario where the downstream transmission of the IAB node does not have the capability of multi-beam transmission.
  • the sending achieves the purpose of measuring the interference of the parent node by the downstream sending of the parent node to the IAB node.
  • the IAB node can determine that the downstream of the IAB node sends a beam that causes interference to the parent node, or the IAB node determines that the downstream of the IAB node sends a beam that does not cause interference to the parent node. Therefore, when the IAB node performs downstream transmission and upstream transmission at the same time, its downstream transmission avoids the use of beams that cause interference to the parent node, or the downstream transmission uses beams that have little interference to the parent node.
  • the parent node can only feed back the resource number in the set based on the above feedback.
  • the measurement beam is refined on the basis of the above-mentioned embodiment.
  • the IAB node reports the CSI-RS resource set to be measured in the manner of the foregoing embodiment, and one CSI-RS resource set corresponds to one or more CSI-RS resources.
  • the parent node measures the CSI-RS resource set index and CSI-RS resource.
  • a resource can include one or more reference signal ports.
  • the parent node measures each reference signal port in the resource indexed by the CSI-RS resource set. Based on the foregoing embodiment, this embodiment uses the port as a granular feedback.
  • the feedback method adopts the method described in the above embodiment. Details are not repeated in this embodiment.
  • the parent node feeds back one or a combination of the following, indicating that the parent node measures the interference sent downstream of the IAB node at the corresponding CSI-RS resource set index, CSI-RS resource index, and reference signal port index:
  • the parent node feeds back the CSI-RS resource set index, CSI-RS resource index, and reference signal port index with RSRP_i greater than or equal to the threshold threshold_1; the parent node feeds back the CSI-RS resource set index and CSI with RSRQ_s or SINR or CQI less than or equal to the threshold threshold_2 -RS resource index and reference signal port index; parent node feedbacks CSI-RS resource set index, CSI-RS resource index and reference signal port index whose PL_i is less than or equal to threshold_3; parent node feeds back CSI- whose SIR_PL is less than or equal to threshold_4 RS resource set index, CSI-RS resource index, and reference signal port index; the parent node feeds back the CSI-RS resource set index, CSI-RS resource index, and reference signal port index whose SIR is less than or equal to the threshold threshold_5.
  • the IAB node When the parent node feeds back one or a combination of the following conditions, the IAB node considers that the downstream transmissions corresponding to the CSI-RS resource set index, CSI-RS resource index, and reference signal port index do not cause significant interference to the parent node:
  • the parent node feeds back the CSI-RS resource set index, CSI-RS resource index, and reference signal port index with RSRP_i less than or equal to the threshold threshold_1; the parent node feeds back the CSI-RS resource set index and CSI with RSRQ_s or SINR or CQI greater than or equal to the threshold threshold_2 -RS resource index and reference signal port index; parent node feedbacks CSI-RS resource set index, CSI-RS resource index and reference signal port index whose PL_i is greater than or equal to threshold_3; parent node feedbacks CSI- whose SIR_PL is less than or equal to threshold_4 RS resource set index, CSI-RS resource index, and reference signal port index; the parent node feeds back the CSI-RS resource set index, CSI-RS resource index, and reference signal port index whose SIR is less than or equal to the threshold threshold_5.
  • the IAB node receives the measurement value fed back by the parent node to determine the CSI-RS resource set index, CSI-RS resource index, and reference signal port index that cause interference to the parent node, or it can determine the CSI-RS resource set that does not cause interference to the parent node. Index, CSI-RS resource index and reference signal port index.
  • an IAB node performs downstream transmission and upstream transmission at the same time, its downstream transmission avoids the use of CSI-RS resource set index, CSI-RS resource index and reference signal that cause interference to the parent node
  • the beam corresponding to the port index, or the beam corresponding to the CSI-RS resource set index, the CSI-RS resource index, and the reference signal port index with little interference to the parent node is used for downstream transmission.
  • the parent node can only feed back the corresponding resource number and corresponding port in the set based on the above feedback.
  • the IAB node configures only one CSI-RS resource set for the parent node and the resource set has only one resource, the parent node can only feed back the corresponding port in the set based on the above feedback.
  • the IAB node requests SRS resources from the parent node, and the IAB node configures the association relationship between the SRS resource and the downstream CSI-RS resource of the IAB node to the child node or UE.
  • the child node or UE performs measurement, and the child node or UE will The measured value is reported to the IAB node.
  • the IAB node receives the reported value of the child node or the UE.
  • the upstream transmission of the IAB node may cause interference to the receiver's child node or the UE that is transmitted downstream of the IAB node.
  • the IAB node can configure SRS for the child node or UE.
  • the IAB node requests the parent node to send reference signal resources upstream of the IAB.
  • the IAB node requests periodic SRS from the parent node.
  • the IAB node configures the measurement configuration for the child node or UE.
  • the measurement configuration information includes one or more resource sets, and each resource set includes one or more reference signal resource configurations; the reference signal resource configuration includes at least one of the following: time configuration, frequency domain configuration, sequence configuration, transmission power, Quasi co-location reference signal configuration, receiving beam indication.
  • the reference signal can be SRS or DMRS; the measurement result includes at least one of the following: RSRP, target link quality, path loss, and SIR.
  • the RSRP may be the RSRP of the reference signal in the measurement configuration of the UE or the subnode, or the RSRP of the reference signal (such as CSI-RS, SSB, DMRS, PTRS, etc.) sent downstream by the IAB node measured by the UE or the subnode.
  • the target link quality is the RSRQ or SINR or CQI of the reference signal sent downstream of the IAB node measured by the UE or the child node.
  • SIR is the ratio of Ps and Pi, where Ps is the received power of the reference signal sent downstream of the IAB node measured by the UE or the child node, and Pi is the received power of the reference signal sent upstream of the IAB node measured by the UE or the child node. Power is often expressed in dB, so the ratio of power corresponds to the difference in dB.
  • the path loss is the path loss measured by the UE or the child node according to the resources in the measurement configuration, or the path loss between the IAB node and the UE or the child node measured by the UE or the child node.
  • the amount of feedback from the UE or the child node to the IAB node includes at least one of the following: resource index, path loss corresponding to the resource, RSRP corresponding to the resource, RSRQ of the reference signal sent upstream of the IAB node received by the parent node, and IAB node received by the parent node SINR of the reference signal sent upstream.
  • the IAB node performs downstream transmission and upstream transmission at the same time, and its downstream transmission avoids beams that interfere with the parent node.
  • the measurement configuration configured by the IAB node for the UE or the child node includes one or more SRS resource sets.
  • the SRS resource set includes one or more SRS resource configurations, or the SRS resource set includes one or more SRS resource configurations and receive beam indications corresponding to the SRS resource set.
  • An SRS resource configuration includes one or a combination of the following: frequency domain configuration of SRS resources; sequence configuration of SRS resources; time configuration of SRS resources; SRS transmission power; SRS resource quasi co-located reference signal configuration; SRS resource reception beam indication .
  • the frequency domain configuration includes at least one of the following: the bandwidth occupied by the reference signal, the frequency domain density of the reference signal, the subcarrier spacing of the reference channel, and the frequency domain offset of the reference signal.
  • the sequence configuration of the SRS resource includes at least one of the following: the sequence type of the reference signal, and the manner of generating the reference signal sequence.
  • the time configuration includes at least one of the following: the period of the SRS, the time offset of the SRS, the effective measurement time of the SRS, the timing offset between the SRS signal and the IAB node downstream (the timing offset needs to be refined), and whether the time limit is Turn on.
  • the period of the SRS (denoted as P) means that the IAB node periodically sends the reference signal at P, as shown in Fig. 4.
  • the time offset of the reference signal refers to the time offset with the starting point of the period P as the boundary.
  • the time offset can be at least one of several radio frames, several subframes, several time slots, and several OFDM symbols, as shown in the figure 5.
  • the effective measurement time of the reference signal indicates the effective time for the parent node to perform the reference signal measurement.
  • the child node or UE should not measure the reference signal of these time domain positions, so it needs to instruct the child node or UE to perform
  • the effective time of the measurement is shown in Figure 6.
  • the transmit power of the reference signal is the transmit power of the reference signal sent upstream of the IAB node.
  • the UE or the sub-node measures the reference signal of the IAB node according to the received beam of the resource set of the IAB node's measurement configuration. If the resource set of the measurement configuration of the IAB node does not include the receive beam, the UE or the sub-node performs corresponding measurement according to the historical receive beam of the communication with the IAB node.
  • the UE or the child node feeds back the resource set index corresponding to the measurement quantity that meets the threshold to the IAB node.
  • the satisfaction threshold is at least one of the following: the measured quantity is greater than or equal to a specific threshold, the measured quantity is less than or equal to the specific threshold, the measured quantity is greater than the specific threshold, and the measured quantity is less than the specific threshold.
  • RSRP_i The RSRP of the reference signal in the UE or child node measurement resource set is recorded as RSRP_i
  • the UE or the child node feeds back the resource set index corresponding to the RSRP_i that meets the threshold to the IAB node
  • the threshold corresponding to RSRP_i is recorded as threshold_1.
  • RSRP_i may be the average value of the reference signal RSRP of different resources in a resource set, or the minimum value of the reference signal RSRP of different resources in a resource set, or the maximum value of the reference signal RSRP of different resources in a resource set.
  • the UE or the child node feeds back the RSRP_i value that meets the threshold to the IAB node.
  • the UE or the child node measures the channel quality corresponding to the reference signal sent downstream of the IAB node.
  • the channel quality can be characterized by one of the following quantities: RSRQ, SINR, CQI, and the corresponding measurement quantities are respectively marked as RSRQ_s, SINR, CQI, UE or child node
  • RSRQ_s the measurement quantity that satisfies the threshold
  • SINR the measurement quantity that satisfies the threshold
  • UE or child node feeds back the RSRQ_s value, SINR value or CQI value that meets the threshold to the IAB node.
  • the path loss of the reference signal in the UE or sub-node measurement resource set is marked as PL_i
  • the UE or the sub-node feeds back the index of the resource set corresponding to the measurement quantity that meets the threshold to the IAB node, and the threshold corresponding to PL_i is recorded as threshold_3.
  • PL_i can be the average value of the reference signal path loss of different resources in a resource set, or when the UE or a child node feeds back the resource set index corresponding to the path loss greater than or equal to the threshold, the path loss can also be a resource set The minimum value of the reference signal path loss of different resources in the resource set, or when the UE or the child node feeds back the resource set index corresponding to the path loss less than or equal to the threshold, the path loss can also be the reference signal of different resources in a resource set The maximum value of path loss.
  • the UE or the child node may feed back the PL_i value that satisfies the threshold to the IAB node.
  • the path loss corresponding to the reference signal sent by the UE or the child node measured upstream of the IAB node is denoted as PL_s
  • the path loss of the reference signal in the UE or child node measurement resource set is denoted as PL_i
  • the UE or the child node feeds back the resource set index corresponding to the SIR_PL that meets the threshold to the IAB node, and the threshold corresponding to the SIR_PL is recorded as threshold_4.
  • the UE or the child node may feed back the SIR_PL value that satisfies the threshold to the IAB node.
  • the IAB node When the feedback amount received by the IAB node from the UE or the child node is one or a combination of the following conditions, the IAB node considers that the downstream transmission of the IAB corresponding to the resource set index causes interference to the UE or the child node reception:
  • the UE or the child node feeds back the corresponding resource set index with RSRP_i greater than or equal to threshold_1; the UE or the child node feeds back the corresponding resource set index with RSRQ_i less than or equal to threshold_2; the UE or the child node feeds back the corresponding resource set index with PL_i less than or equal to threshold_3; UE or The child node feeds back the corresponding resource set index with SIR_PL less than or equal to threshold_4; the UE or the child node feeds back the corresponding resource set index with SIR less than or equal to threshold_5.
  • the IAB node When the feedback amount received by the IAB node from the UE or the child node is one or a combination of the following conditions, the IAB node considers that the downstream transmission of the IAB corresponding to the resource set index does not cause significant interference to the UE or the child node reception:
  • the SIR_PL is less than or equal to the threshold_4 corresponding resource set index; the UE or the child node feeds back the corresponding resource set index with the SIR less than or equal to the threshold_5.
  • SIR or SIR_PL is defined as the ratio of two quantities. If the two compared values are dB values, the ratio is used to calculate the subtraction of the two quantities of SIR or SIR_PL.
  • the IAB node receives the feedback from the UE or the sub-node to determine that the IAB node sends upstream beams that cause interference to the UE or the sub-node.
  • the IAB node performs downstream transmission and upstream transmission at the same time, and its upstream transmission avoids the use of beams that cause interference to the UE or sub-nodes, or the upstream transmission uses beams that cause little interference to the UE or the sub-nodes.
  • the signal type of the measurement configuration is not limited to CSI-RS, and can also be SSB, DMRS, PTRS, and other signals.
  • the number of SRS resources configured by the parent node is the number of SRS resources requested by the IAB node, or the number of SRS resources configured by the parent node is less than the number of SRS resources requested by the IAB node.
  • the IAB node requests the upstream receiving beam direction from the parent node, and the parent node configures the upstream receiving beam direction of the IAB node for the IAB node
  • the IAB node performs upstream reception and downstream reception at the same time, that is, at the same time that the IAB node receives the data sent by the parent node, the IAB node also receives the data sent by the child node or the UE.
  • the data sent by the parent node corresponds to the upstream receiving operation of the IAB node
  • the data sent by the child node or the UE corresponds to the downstream receiving operation of the IAB node.
  • the IAB node in FIG. 9 receives data from two links (downstream reception and upstream reception) at the same time, and the data sent by the parent node may interfere with downstream reception.
  • the IAB node reports one or more receive beam sets to the parent node; the parent node configures one or more receive beam sets to the IAB node; the receive beam set configured by the parent node for the IAB node includes one of the following: one or more receive beams, The time corresponding to the receiving beam, and the time corresponding to the receiving beam set.
  • the IAB node schedules the UE or the child node so that the parent node’s transmission data will cause little or no interference to the downstream reception of the IAB node; or the IAB node schedules the UE or the child node so that the UE or The data sent by the child node causes little or no interference to the upstream reception of the IAB node; or the IAB node schedules the UE or child node so that the data sent by the UE or child node causes little or no interference to the upstream reception of the IAB node In addition, the data sent by the parent node causes little or no interference to the downstream reception of the IAB node.
  • the IAB node DU uses one or more receiving beams to measure on multiple receiving beams in a time-division manner. If the IAB node has the ability to measure multiple beams simultaneously, the IAB node can measure the parent node or on multiple receiving beams at the same time. Data sent by the UE or child node.
  • the parent node configures the IAB node with the receiving beam set received upstream of the IAB node, denoted as TCI-state-set-1 and TCI-state-set-2, where the time corresponding to the receiving beam of TCI-state-set-1 is time-TCI-state-set-1, the time corresponding to the receiving beam of TCI-state-set-2 is time-TCI-state-set-2.
  • the IAB node receives the configuration of the parent node and determines to use the TCI-state-set-1 corresponding beam to receive the data sent by the parent node within the time corresponding to time-TCI-state-set-1.
  • the IAB node schedules the UE or child node within the time corresponding to time-TCI-state-set-1.
  • the IAB node schedules the UE or the child node to send data within the time corresponding to time-TCI-state-set-1 so that the transmission satisfies one or a combination of the following: the data sent by the UE or the child node is not relevant to the upstream reception of the IAB node The interference or interference is small; the transmission of the parent node has no interference or small interference to the downstream reception of the IAB node.
  • the IAB node takes the intersection of the times corresponding to the different receiving beams, and determines the receiving beam at the corresponding time.
  • the receiving beams of receiving beam set 1 are beam 1 and beam 2, the time corresponding to receiving beam 1 is t1, and the time corresponding to receiving beam 2 is t2, and the overlapping part of t1 and t2 is t-overlap.
  • the IAB node can determine that the time when t-overlap is removed in t1 corresponds to receiving beam 1, the time when t-overlap corresponds to receiving beam 1 and receiving beam 2, and the time when t-overlap is out of t2 corresponds to receiving beam 2.
  • the IAB node schedules the UE or sub-nodes according to the receiving beam at the corresponding time. Based on the configuration of the parent node, the IAB node schedules the UE or child node within the time corresponding to t1.
  • the IAB node schedules the UE or the child node to send data within the time corresponding to t1 so that the transmission satisfies one or a combination of the following: the data sent by the UE or the child node has no or little interference to the upstream reception of the IAB node; the parent node’s The transmission has no or little interference to the downstream reception of the IAB node.
  • the IAB node requests the upstream receiving beam direction from the parent node, and the parent node configures the IAB node with the corresponding quasi co-located reference signal configuration or spatial reception parameter for the upstream reception of the IAB node.
  • the IAB node performs upstream reception and downstream reception at the same time, that is, at the same time that the IAB node receives the data sent by the parent node, the IAB node also receives the data sent by the child node or the UE.
  • the data sent by the parent node corresponds to the upstream receiving operation of the IAB node
  • the data sent by the child node or the UE corresponds to the downstream receiving operation of the IAB node.
  • the IAB node in Figure 1 simultaneously receives data from two links (downstream reception and upstream reception), and the data sent by the parent node may interfere with downstream reception.
  • the IAB node reports the measurement configuration to the parent node; the parent node performs measurement, and the parent node feeds back the measurement result to the IAB node; when the IAB node performs upstream reception and downstream reception at the same time, the downstream transmission uses a beam with little interference to the parent node.
  • the receiving beam set configured by the parent node for the IAB node includes one of the following: one or more quasi-co-located reference signal configuration sets or spatial receiving parameter sets, the time corresponding to the quasi-co-located reference signal configuration set or the spatial receiving parameter set, and the quasi-common The time corresponding to the address reference signal configuration set or the spatial receiving parameter set.
  • the IAB node schedules the UE or the child node so that the parent node’s transmission data will cause little or no interference to the downstream reception of the IAB node; or the IAB node schedules the UE or the child node so that the UE or The data sent by the child node causes little or no interference to the upstream reception of the IAB node; or the IAB node schedules the UE or child node so that the data sent by the UE or child node causes little or no interference to the upstream reception of the IAB node In addition, the data sent by the parent node causes little or no interference to the downstream reception of the IAB node.
  • the IAB node DU adopts one or more quasi co-located reference signal configurations or spatial reception parameter measurement can be measured on multiple receiving beams in a time-division manner. If the IAB node has the capability of multi-beam simultaneous measurement, the IAB node can measure at the same time. Measure the transmitted data of the parent node or UE or child node on each receiving beam.
  • the parent node configures the IAB node with the spatial receiving parameter upstream of the IAB node as the receiving beam set, denoted as TCI-state-set-1 and TCI-state-set-2, where the receiving beam of TCI-state-set-1 corresponds to The time of is time-TCI-state-set-1, and the time corresponding to the receiving beam of TCI-state-set-2 is time-TCI-state-set-2.
  • the IAB node receives the configuration of the parent node and determines to use the TCI-state-set-1 corresponding beam to receive the data sent by the parent node within the time corresponding to time-TCI-state-set-1.
  • the IAB node schedules the UE or child node within the time corresponding to time-TCI-state-set-1.
  • the IAB node schedules the UE or the child node to send data within the time corresponding to time-TCI-state-set-1 so that the transmission satisfies one or a combination of the following: the data sent by the UE or the child node is not relevant to the upstream reception of the IAB node The interference or interference is small; the transmission of the parent node has no interference or small interference to the downstream reception of the IAB node.
  • the IAB node takes the intersection of the times corresponding to the different receiving beams, and determines the receiving beam at the corresponding time.
  • the receiving beams of receiving beam set 1 are beam 1 and beam 2, the time corresponding to receiving beam 1 is t1, and the time corresponding to receiving beam 2 is t2, and the overlapping part of t1 and t2 is t-overlap.
  • the IAB node can determine that the time of removing t-overlap in t1 corresponds to receiving beam 1, the time of t-overlap corresponds to receiving beam 1 and receiving beam 2, and the time of going out t-overlap in t2 corresponds to receiving beam 2.
  • the IAB node schedules the UE or sub-nodes according to the receiving beam at the corresponding time. Based on the configuration of the parent node, the IAB node schedules the UE or child node within the time corresponding to t1.
  • the IAB node schedules the UE or the child node to send data within the time corresponding to t1 so that the transmission satisfies one or a combination of the following: the data sent by the UE or the child node has no or little interference to the upstream reception of the IAB node; the parent node’s The transmission has no or little interference to the downstream reception of the IAB node.
  • the parent node applies for measuring CSI-RS resource set or CSI-RS resource.
  • the CU or OAM notifies the parent node of the CSI-RS resource configuration of the IAB node.
  • the CSI-RS resource configuration includes at least one of the following: time, frequency domain, sequence, transmission power, quasi co-located reference signal configuration or spatial reception parameters, As described in the above embodiment.
  • One index value corresponds to one CSI-RS resource set or one index value corresponds to one CSI-RS resource or one or more ports in one CSI-RS resource.
  • the parent node requests the CSI-RS to be measured from the IAB node, and the parent node can request to measure different CSI-RS resources through the index value of the CSI-RS resource configuration.
  • the CU or OAM or IAB node notifies the parent node of the timing deviation between the downstream transmission of the IAB node and the upstream transmission of the IAB node.
  • the IAB node sends the corresponding CSI-RS according to the index value or a subset of the CSI-RS resource configuration requested by the parent node.
  • the parent node measures the CSI-RS resource sent by the IAB node, and the parent node feeds back the measured value to the IAB node. Based on the foregoing embodiment, the parent node feeds back to the IAB node with CSI-RS resource as the granularity.
  • the parent node feedbacks one or a combination of the following, which means that the parent node measures the interference to the parent node from the downstream transmission of the IAB node at the corresponding CSI-RS resource set index and CSI-RS resource index:
  • the parent node feeds back the CSI-RS resource set index and CSI-RS resource index corresponding to RSRP_i greater than or equal to the threshold threshold_1; the parent node feeds back the CSI-RS resource set index and CSI-RS corresponding to the RSRQ_s or SINR or CQI less than or equal to the threshold threshold_2 RS resource index; the parent node feeds back the CSI-RS resource set index and CSI-RS resource index corresponding to PL_i less than or equal to the threshold threshold_3; the parent node feeds back the CSI-RS resource set index and CSI-RS resource index corresponding to the SIR_PL less than or equal to the threshold threshold_4 RS resource index; the parent node feeds back the CSI-RS resource set index and CSI-RS resource index corresponding to the SIR less than or equal to the threshold threshold_5.
  • the IAB node When the parent node feedbacks one or a combination of the following conditions, the IAB node considers that the downstream transmission corresponding to the corresponding time domain resource index does not cause interference to the parent node:
  • the parent node feeds back the CSI-RS resource set index and CSI-RS resource index corresponding to RSRP_i less than or equal to the threshold threshold_1; the parent node feeds back the CSI-RS resource set index and CSI-RS corresponding to RSRQ_s or SINR or CQI greater than or equal to the threshold threshold_2 RS resource index; the parent node feedbacks that PL_i is greater than or equal to the threshold threshold_3 corresponding to the CSI-RS resource set index and CSI-RS resource index; the parent node feedbacks that SIR_PL is less than or equal to the threshold threshold_4 corresponding to the CSI-RS resource set index and CSI- RS resource index; the parent node feeds back the CSI-RS resource set index and CSI-RS resource index corresponding to the SIR less than or equal to the threshold threshold_5.
  • the IAB node receives the measurement value fed back by the parent node to determine the CSI-RS resource set index and CSI-RS resource index that cause interference to the parent node, or can determine the CSI-RS resource set index and CSI-RS resource that does not cause interference to the parent node Index.
  • an IAB node performs downstream transmission and upstream transmission at the same time, its downstream transmission avoids the use of beams that cause interference to the parent node, or the downstream transmission uses beams that do not interfere or interfere with the parent node.
  • different CSI-RS resources of the CSI-RS resource set may correspond to different time domain positions.
  • the CSI-RS sent downstream of the IAB node can be sent by TDM using their respective beams.
  • the parent node can measure the interference of the downstream transmission of the IAB node to the parent node at different times. The parent node feeds back the measured value according to the method described above.
  • the downstream transmission of the IAB node avoids the use of pairing The beam causing interference from the parent node.
  • this method can be used to execute the downstream of the respective beam directions at different times in the scenario where the downstream transmission of the IAB node does not have the capability of multi-beam transmission.
  • the sending achieves the purpose of measuring the interference of the parent node by the downstream sending of the parent node to the IAB node.
  • the IAB node can determine that the downstream of the IAB node sends a beam that causes interference to the parent node, or the IAB node determines that the downstream of the IAB node sends a beam that does not cause interference to the parent node. Therefore, when the IAB node performs downstream transmission and upstream transmission at the same time, its downstream transmission avoids the use of beams that cause interference to the parent node, or the downstream transmission uses beams that have little interference to the parent node.
  • the parent node configures the IAB node with a correspondence between an SRS resource and one or more CSI-RS resources, where the IAB node has the ability to simultaneously transmit the one SRS resource and the one or more CSI-RS resources.
  • CSI-RS resources For example, the intersection of the SRS resource and the time domain resources occupied by the one or more CSI-RS resources may be non-empty.
  • the time domain resources occupied by the SRS resource and the one or more CSI-RS resources may not necessarily overlap, but the transmission beam corresponding to the SRS resource and the one or more CSI-RS resources do not necessarily overlap.
  • the transmission beam corresponding to the RS resource can be transmitted by the IAB node at the same time, that is, the IAB node has the ability to transmit the SRS resource and the one or more CSI-RS resources on the same time domain resource. Only considering interference or power in the measurement phase, the intersection between the SRS resource and the time domain resource occupied by the one or more CSI-RS resources may be non-empty or empty.
  • the SRS resource is a channel measurement resource
  • the CSI-RS resource is an interference measurement resource
  • the SRS resource and the CSI-RS resource are measurement resources to be sent by the IAB node; as shown in FIG. 10, the SRS resource is the uplink measurement reference signal on the link corresponding to the IAB node MT, and the CSI-RS resource is DU corresponds to the measurement reference signal on the link.
  • the parent node configures one or more corresponding CSI-RS resources for different SRS resource configurations.
  • the one SRS resource and the ID corresponding to each CSI-RS resource are different, and the IDs corresponding to different CSI-RS resources are also different.
  • the ID corresponds to the transmit antenna index/transmit antenna port of the IAB node, or the panel ) Index
  • a panel can only transmit one beam at a time, different transmission beams of a panel can only be time-division multiplexed, and beams of different panels can be transmitted at the same time.
  • the parent node configures the IAB node with a correspondence between an SRS resource set and one or more CSI-RS resources, and all SRS resources in the SRS resource set and the one or more CSI-RS resources are the IAB nodes can send at the same time.
  • the SRS resource set is a non-codebook SRS set on the MT link.
  • the parent node configures the IAB node with a correspondence between an SRS resource and one or more CSI-RS resource sets, wherein the IAB node has the ability to simultaneously transmit the SRS resource and the one CSI-RS One CSI-RS resource in the resource set, or the IAB node is capable of simultaneously transmitting SRS resources and one CSI-RS resource in each CSI-RS resource set in the multiple CSI-RS resource sets, the IAB A node cannot send different CSI-RS resources in one CSI-RS resource set at the same time, and the CSI-RS resources and the SRS resources in different CSI-RS resource sets can be sent by the IAB node at the same time.
  • the SRS resource is a channel measurement resource
  • the CSI-RS resource is an interference measurement resource
  • Both the SRS resource and the CSI-RS resource are measurement resources to be sent by the IAB node.
  • the SRS resource is an uplink measurement reference signal on the MT link
  • the CSI-RS resource is a measurement reference signal on the DU link.
  • the parent node respectively configures one or more corresponding CSI-RS resources for different SRS resources.
  • the one SRS resource and the ID corresponding to each CSI-RS resource set are different, and the IDs corresponding to different CSI-RS resource sets are also different.
  • the ID corresponds to the transmit antenna index of the IAB node, or the panel index, one panel Only one beam can be transmitted at a time, different transmission beams of a panel can only be time-division multiplexed, and beams of different panels can be transmitted at the same time.
  • the SRS resource set is a non-codebook SRS set on the MT link.
  • the parent node configures the IAB node with uplink channel or signal spatial relationship information on the MT link, and the spatial relationship information includes the downlink measurement reference signal resource index on the DU link, and the IAB node
  • the spatial transmission filter of the downlink measurement reference signal on the link obtains the spatial transmission filter for transmitting the uplink channel or signal on the MT link.
  • the spatial transmission filter may also be referred to as a transmission beam.
  • the CSI-RS resource on the DU link is configured in the spatial relationship information of the SRS resource on the MT link configured by the parent node to the IAB node, that is, the IAB node is instructed to use the same transmission beam as the CSI-RS resource on the DU link Send the SRS resource.
  • the parent node configures the IAB node with quasi co-located reference signal information of a downlink channel or signal on the MT link, and the quasi co-located reference signal information includes an uplink measurement reference signal resource index of the DU link.
  • the parent node configures the SRS resource on the DU link in the quasi co-located reference signal information of the CSI-RS resource on the MT link configured by the IAB node, that is, instructs the IAB node to use the SRS on the DU link
  • the receiving beam with the same SRS resource receives the CSI-RS resource on the MT link.
  • the IAB node reports to the parent node the time-frequency resources that need to be measured by the parent node.
  • IAB nodes execute upstream Tx and downstream Tx at the same time, they may interfere with each other.
  • the downstream Tx of the IAB node interferes with the parent node receiving the upstream Tx of the IAB node.
  • the IAB node reports the measurement configuration information to the parent node; the parent node performs measurement, and the parent node feeds back the measurement result to the IAB node; when the IAB node executes upstream Tx and downstream Tx at the same time, the downstream Tx adopts a beam with little interference to the parent node.
  • the measurement configuration information includes one or more resource sets, and each resource set includes one or more time-frequency resource configuration information to be measured.
  • the time-frequency resource configuration information includes at least one of the following: time, frequency domain, transmit power, receive beam indication, whether time limit is on, and quasi co-located reference signal.
  • the measurement quantity includes at least one of the following: signal received power, target link quality, path loss value, SIR, SINR.
  • the signal received power may be the received power corresponding to the position of the time-frequency resource to be measured in the measurement configuration, or the received power of the IAB node upstream Tx at the position of the time-frequency resource to be measured.
  • the target link quality is the link quality of the parent node receiving the upstream Tx of the IAB node, including the RSRQ of the reference signal, the SINR of the reference signal, or the CQI of the reference signal.
  • SIR is the ratio of Ps and Pi, where Ps is the received power of the reference signal of the upstream Tx IAB node measured by the parent node, and Pi is the received power corresponding to the position of the time-frequency resource to be measured reported by the IAB node measured by the parent node. Power is often expressed in dB, so the ratio of power corresponds to the difference in dB.
  • the path loss is the path loss value corresponding to the time-frequency resource to be measured measured by the parent node according to the resources in the measurement configuration, or the path loss between the IAB node and the parent node measured by the parent node.
  • the amount of feedback from the parent node to the IAB node includes at least one of the following: resource index, received power of the corresponding resource, path loss of the corresponding resource, received power of the corresponding resource, and the RSRQ or SINR or SINR or SINR of the parent node’s upstream Tx reference signal received by the IAB node CQI.
  • the parent node determines the amount of feedback based on at least one of the following ways: feedback the amount that satisfies the threshold condition; feedback the amount that satisfies the threshold condition and one or more other related quantities.
  • the IAB node executes downstream Tx and upstream Tx at the same time, and its downstream Tx avoids beams that interfere with the parent node.
  • the time configuration of the time-frequency resource configuration includes at least one of the following: the period of the time-frequency resource to be measured, the time offset of the time-frequency resource to be measured, the effective measurement time of the time-frequency resource to be measured, IAB node downstream Tx and IAB node upstream The timing offset of Tx.
  • the period of the time-frequency resource to be measured (denoted as P) is that the IAB node uses the period P to potentially send data on the corresponding time-frequency resource to be measured, as shown in FIG. 4.
  • the time offset of the time-frequency resource to be measured refers to the time offset with the starting point of the period P as the boundary.
  • the time offset can be at least one of several radio frames, several subframes, several time slots, and several OFDM symbols. , As shown in Figure 5.
  • the effective measurement duration of the time-frequency resource to be measured indicates the effective time for the parent node to perform the measurement of the time-frequency resource to be measured. For example, if the IAB node has no transmission power or the beam has changed outside the effective time, the IAB node informs the parent node of the effective time of the time-frequency resource measurement to be measured, as shown in FIG. 6.
  • the configuration information of the time-frequency resource to be measured includes information about whether the time restriction for measuring the time-frequency resource to be measured is enabled.
  • the IAB node can change the transmission parameters of the time-frequency resource to be measured in each transmission period of the CSI-RS, such as the transmission beam and the transmission power.
  • the timing offset between the time-frequency resource to be measured and the upstream Tx of the IAB node refers to the time deviation between the downstream sending timing of the IAB node and the upstream Tx sending timing of the IAB node.
  • the timing offset is a number of OFDM symbols or a number of time-domain samples (Tc or Ts) or a number of OFDM symbols and a number of time-domain samples.
  • the IAB node reports the time-frequency resources to be measured to the parent node
  • the IAB node also reports the timing deviation between the upstream Tx of the IAB node and the downstream Tx of the IAB node to the parent node.
  • the deviation is the upstream Tx timing of the IAB node and the downstream Tx of the IAB node.
  • the parent node uses the received IAB node's upstream Tx timing as a reference to postpone or advance the timing offset to measure the time-frequency resources to be measured reported by the IAB node, as shown in Figure 7.
  • the frequency domain configuration of the time-frequency resource to be measured includes at least one of the following: the carrier information of the time-frequency resource to be measured, the bandwidth occupied by the time-frequency resource to be measured, the frequency domain density of the time-frequency resource to be measured, and the subordinate of the time-frequency resource to be measured. Carrier spacing, the frequency domain offset of the time-frequency resource to be measured.
  • the carrier information of the time-frequency resource to be measured is the absolute carrier number or the carrier offset between the carrier of the time-frequency resource to be measured and the corresponding carrier of the IAB node MT.
  • the carrier offset is the number of RBs or the subcarrier (SC, Subcarrier Carrier) Number or resource block (RB, Resource Block) number and SC number.
  • the frequency domain offset of the reference signal refers to the offset of the reference signal in the RB.
  • the RB size and SC size of the carrier offset are determined by the reference subcarrier (reference SC) interval, for example, the reference subcarrier value is 15*2 ⁇ u, u is a natural number greater than or equal to 0, u can be agreed between nodes
  • the value of is either the value used in the communication process between the parent node and the IAB node, or the value notified by the IAB node or OAM or CU to the parent node.
  • the transmit power of the time-frequency resource to be measured is the transmit power of the downstream Tx of the IAB node on the corresponding time-frequency resource.
  • the parent node measures the to-be-measured time-frequency resource or the upstream Tx reference signal of the IAB node in the resource set of the measurement configuration reported by the IAB node according to the receiving beam corresponding to the resource set of the measurement configuration reported by the IAB node.
  • the measurement configuration reported by the IAB node includes the time-frequency resource to be measured, and the receiving beam parameter of the time-frequency resource to be measured is the receiving beam on the parent node side.
  • the receiving beam parameter of the time-frequency resource to be measured corresponds to upstream Tx.
  • the SRS resource index on the above, that is, the parent node uses the received beam corresponding to the upstream Tx SRS resource to measure the time-frequency resource to be measured reported by the IAB node.
  • the quasi-colocation-type D (Quasi-Colocation-TypeD, QCL-TypeD) reference signal of the quasi-colocation-type D (Quasi-Colocation-TypeD) of the time-frequency resource to be measured is a signal or channel on the upstream Tx, such as the SRS resource of the upstream Tx.
  • the configuration information of the QCL-TypeD quasi co-location reference signal associated with the time-frequency resource to be measured includes the SRS resource on the upstream Tx.
  • the QCL-TypeD quasi co-location reference signal of the time-frequency resource to be measured is a signal or channel on the downstream Tx, such as the SSB resource of the downstream Tx, that is, the quasi co-location of the QCL-TypeD associated with the CSI-RS resource
  • the configuration information of the reference signal includes the SSB resources on the downstream Tx.
  • the corresponding time-frequency resource is the control channel of IAB node downstream Tx, or the corresponding time-frequency resource is the traffic channel of IAB node downstream Tx, where the traffic channel can be semi-static Business channel.
  • the QCL-TypeA quasi co-location reference signal of the CSI-RS resource is a signal or channel on the upstream Tx, for example, the SRS resource of the upstream Tx, that is, the quasi co-location reference of the QCL-TypeA associated with the CSI-RS resource
  • the configuration information of the signal includes the SRS resource on the upstream Tx.
  • the QCL-TypeA quasi co-location reference signal of the CSI-RS resource is a signal or channel on the downstream Tx, for example, the SSB resource of the downstream Tx, that is, the quasi co-location reference of the QCL-TypeA associated with the CSI-RS resource
  • the configuration information of the signal includes the SSB resources on the downstream Tx.
  • the parent node performs corresponding measurement according to the historical receiving beam of the IAB node.
  • the measurement quantity includes at least one of the following: RSRP, RSRQ, SINR, path loss, and SIR.
  • the parent node feeds back the resource set index to the IAB node, and the fed-back time-frequency resource set index to be measured is the set index corresponding to the time-frequency resource to be measured corresponding to the receiving performance of the parent node meeting the threshold, where the meeting threshold is at least as follows One: the measured quantity is greater than or equal to a specific threshold, the measured quantity is less than or equal to the specific threshold, the measured quantity is greater than the specific threshold, and the measured quantity is less than the specific threshold.
  • the received power of the time-frequency resource to be measured in the parent node measurement resource set is recorded as P_i
  • the parent node feeds back the resource set index corresponding to P_i that meets the threshold to the IAB node
  • the threshold corresponding to P_i is recorded as threshold_1.
  • P_i may be the average value of the reference signal RSRP of different resources in a resource set, or the minimum value of the reference signal RSRP of different resources in a resource set, or the maximum value of the reference signal RSRP of different resources in a resource set.
  • the parent node feeds back the value of P_i that meets the threshold to the IAB node.
  • the parent node measures the channel quality of the reference signal of the upstream Tx of the IAB node.
  • the channel quality can be characterized by one of the following quantities: RSRQ, SINR, CQI, RSRP, and the corresponding measurement quantities are respectively marked as RSRQ_s, SINR, CQI, and the parent node will meet the threshold
  • the index of the resource set corresponding to the measured quantity is fed back to the IAB node, and the threshold corresponding to RSRQ_s or SINR or CQI is recorded as threshold_2.
  • the parent node feeds back the RSRQ_s value, SINR value or CQI value that meets the threshold to the IAB node.
  • the path loss corresponding to the time-frequency resource to be measured in the parent node measurement resource set is recorded as PL_i
  • the parent node feeds back the resource set index corresponding to PL_i that meets the threshold to the IAB node
  • the threshold corresponding to PL_i is recorded as threshold_3.
  • PL_i can be the average value of the path loss corresponding to the time-frequency resources to be measured for different resources in a resource set, or when the parent node feeds back the resource set index corresponding to the path loss greater than or equal to or greater than the threshold, the path loss is returned It can be the minimum value of the path loss corresponding to the time-frequency resource to be measured in a resource set, or when the parent node feeds back the resource set index corresponding to the path loss that is less than or equal to or less than the threshold, the path loss can also be a resource The maximum value of the path loss corresponding to the time-frequency resource to be measured in the set.
  • the parent node may feed back the value of PL_i that meets the condition to the IAB node.
  • the path loss corresponding to the reference signal of the IAB node upstream Tx measured by the parent node is denoted as PL_s
  • the path loss of the time-frequency resource to be measured in the parent node's measurement resource set is denoted as PL_i
  • the parent node feeds back the resource set index corresponding to the SIR_PL that meets the threshold to the IAB node, and the threshold corresponding to the SIR_PL is marked as threshold_4.
  • the parent node may feed back the SIR_PL value that meets the threshold to the IAB node.
  • the parent node measures the received signal power corresponding to the reference signal of the upstream Tx of the IAB node and is denoted as Ps. For example, the parent node measures the received power of the SRS signal of the upstream Tx of the IAB node.
  • the parent node feeds back the resource set index corresponding to the SIR that meets the threshold to the IAB node ,
  • the threshold corresponding to SIR is marked as threshold_5.
  • the parent node feeds back the SIR value that meets the threshold to the IAB node.
  • the IAB node When the feedback amount received by the IAB node from the parent node is one or a combination of the following conditions, the IAB node considers that the IAB downstream Tx corresponding to the resource set index causes interference to the parent node Rx:
  • the parent node feeds back the resource collection index corresponding to P_i greater than or equal to threshold_1; the parent node feeds back the resource collection index corresponding to RSRQ_s or SINR or CQI less than or equal to threshold_2; the parent node feeds back the resource collection index corresponding to PL_i less than or equal to threshold_3; the parent node feeds back SIR_PL The corresponding resource collection index less than or equal to threshold_4; the parent node feeds back the corresponding resource collection index with SIR less than or equal to threshold_5.
  • the IAB node When the feedback received by the IAB node from the parent node is one or a combination of the following conditions, the IAB node considers that the IAB downstream Tx corresponding to the resource set index does not cause interference to the parent node Rx:
  • the parent node feeds back the resource collection index corresponding to P_i less than or equal to threshold_1; the parent node feeds back the resource collection index corresponding to RSRQ_s or SINR or CQI greater than or equal to threshold_2; the parent node feeds back the source collection index corresponding to the resource where PL_i is greater than or equal to threshold_3; parent node feedback SIR_PL is less than or equal to the resource collection index corresponding to threshold_4; the parent node feeds back the corresponding resource collection index with SIR less than or equal to threshold_5.
  • SIR or SIR_PL is defined as the ratio of two quantities. If the two compared values are dB values, the ratio is used to calculate the subtraction of the two quantities of SIR or SIR_PL.
  • the IAB node receives the feedback from the parent node to determine the beam that the downstream Tx of the IAB node causes interference to the parent node.
  • the IAB node executes downstream Tx and upstream Tx at the same time, and the IAB node selects the beam corresponding to the downstream Tx so that the downstream Tx of the IAB node does not interfere with the parent node or the downstream Tx of the IAB node causes less interference to the parent node.
  • the signal type of the measurement configuration is not limited to CSI-RS, and can also be SSB, DMRS, PTRS, and other signals.
  • the IAB node configures the association relationship between SRS resources and CSI-RS resources to the child node or UE, the child node or UE performs a measurement operation, and the child node or UE reports the measurement value to the IAB node.
  • the IAB node receives the reported value of the child node or the UE, and when the IAB node executes the upstream Tx and the downstream Tx at the same time, it avoids using the beam that causes interference to the child node or the UE to perform the upstream Tx.
  • the upstream Tx of the IAB node may interfere with the receiver's child node or the UE of the downstream Tx of the IAB node.
  • the IAB node can configure SRS for the child node or UE.
  • the IAB node configures the measurement configuration for the child node or UE.
  • the measurement configuration information includes one or more resource sets, and each resource set includes one or more reference signal configuration information; the reference signal configuration information includes at least one of the following: time configuration, frequency domain configuration, sequence configuration, transmit power, and receive beam instruct.
  • the reference signal can be SRS or DMRS.
  • the measurement quantity includes at least one of the following: RSRP, target link quality, path loss value, SIR.
  • the RSRP may be the RSRP of the reference signal in the measurement configuration of the UE or the child node, or the RSRP of the downstream Tx reference signal (such as CSI-RS, SSB, DMRS, PTRS, etc.) of the IAB node measured by the UE or the child node.
  • the target link quality is the RSRQ or SINR or CQI of the downstream Tx reference signal of the IAB node measured by the UE or the child node.
  • SIR is the ratio of Ps and Pi, where Ps is the received power of the IAB node downstream Tx reference signal measured by the UE or the child node, and Pi is the reference signal received power of the IAB node upstream Tx measured by the UE or the child node. Power is often expressed in dB, so the ratio of power corresponds to the difference in dB.
  • the path loss value is the path loss measured by the UE or the child node according to the resources in the measurement configuration, or the path loss between the IAB node and the UE or the child node measured by the UE or the child node.
  • the amount of feedback from the UE or the child node to the IAB node includes at least one of the following: resource index, path loss corresponding to the resource, RSRP corresponding to the resource, RSRQ of the IAB node upstream Tx reference signal received by the parent node, and IAB node received by the parent node SINR of upstream Tx reference signal.
  • the IAB node executes downstream Tx and upstream Tx at the same time, and its downstream Tx avoids beams that interfere with the parent node.
  • the measurement configuration configured by the IAB node for the UE or the child node includes one or more SRS resource sets.
  • the SRS resource set includes one or more SRS resource configurations, or the SRS resource set includes one or more SRS resource configurations and receive beam indications corresponding to the SRS resource set.
  • An SRS resource configuration includes one or a combination of the following: frequency domain configuration of SRS resources; sequence configuration of SRS resources; time configuration of SRS resources; SRS transmission power; SRS resource quasi co-located reference signal configuration; SRS resource reception beam indication .
  • the frequency domain configuration includes at least one of the following: the bandwidth occupied by the reference signal, the frequency domain density of the reference signal, the subcarrier spacing of the reference channel, and the frequency domain offset of the reference signal.
  • the sequence configuration of the SRS resource includes at least one of the following: the sequence type of the reference signal, and the manner of generating the reference signal sequence.
  • the time configuration includes at least one of the following: the period of the SRS, the time offset of the SRS, the effective measurement time of the SRS, and the timing offset between the SRS signal and the downstream Tx of the IAB node (the timing offset needs to be refined).
  • the period of the SRS (denoted as P) means that the IAB node periodically sends the reference signal at P, as shown in Fig. 4.
  • the time offset of the reference signal refers to the time offset with the starting point of the period P as the boundary.
  • the time offset can be at least one of several radio frames, several subframes, several time slots, and several OFDM symbols, as shown in Figure 5.
  • the effective measurement time of the reference signal indicates the effective time for the parent node to perform the reference signal measurement.
  • the child node or UE should not measure the reference signal of these time domain positions, so it needs to instruct the child node or UE to perform
  • the effective time of the measurement is shown in Figure 6.
  • the transmit power of the reference signal is the transmit power of the reference signal of the upstream Tx of the IAB node.
  • the UE or the sub-node measures the reference signal of the IAB node according to the received beam of the resource set of the IAB node's measurement configuration. If the resource set of the measurement configuration of the IAB node does not include the receive beam, the UE or the sub-node performs corresponding measurement according to the historical receive beam of the communication with the IAB node.
  • the UE or the child node feeds back the resource set index corresponding to the measurement quantity that meets the threshold to the IAB node.
  • the satisfaction threshold is at least one of the following: the measured quantity is greater than or equal to a specific threshold, the measured quantity is less than or equal to the specific threshold, the measured quantity is greater than the specific threshold, and the measured quantity is less than the specific threshold.
  • RSRP_i The RSRP of the reference signal in the UE or child node measurement resource set is recorded as RSRP_i
  • the UE or the child node feeds back the resource set index corresponding to the RSRP_i that meets the threshold to the IAB node
  • the threshold corresponding to RSRP_i is recorded as threshold_1.
  • RSRP_i may be the average value of the reference signal RSRP of different resources in a resource set, or the minimum value of the reference signal RSRP of different resources in a resource set, or the maximum value of the reference signal RSRP of different resources in a resource set.
  • the UE or the child node feeds back the RSRP_i value that meets the threshold to the IAB node.
  • the UE or the child node measures the channel quality corresponding to the reference signal of the downstream Tx of the IAB node.
  • the channel quality can be characterized by one of the following quantities: RSRQ, SINR, CQI, and the corresponding measurement quantities are respectively marked as RSRQ_s, SINR, CQI, UE or child node
  • RSRQ_s the measurement quantity that satisfies the threshold
  • SINR the measurement quantity that satisfies the threshold
  • UE or child node feeds back the RSRQ_s value, SINR value or CQI value that meets the threshold to the IAB node.
  • the path loss of the reference signal in the UE or sub-node measurement resource set is marked as PL_i
  • the UE or the sub-node feeds back the index of the resource set corresponding to the measurement quantity that meets the threshold to the IAB node, and the threshold corresponding to PL_i is recorded as threshold_3.
  • PL_i can be the average value of the reference signal path loss of different resources in a resource set, or when the UE or a child node feeds back the resource set index corresponding to the path loss greater than or equal to the threshold, the path loss can also be a resource set The minimum value of the reference signal path loss of different resources in the resource set, or when the UE or the child node feeds back the resource set index corresponding to the path loss less than or equal to the threshold, the path loss can also be the reference signal of different resources in a resource set The maximum value of path loss.
  • the UE or the child node may feed back the PL_i value that satisfies the threshold to the IAB node.
  • the path loss corresponding to the reference signal measured by the UE or the child node of the upstream Tx of the IAB node is denoted as PL_s
  • the path loss of the reference signal in the UE or child node measurement resource set is denoted as PL_i
  • the UE or the child node feeds back the resource set index corresponding to the SIR_PL that meets the threshold to the IAB node, and the threshold corresponding to the SIR_PL is recorded as threshold_4.
  • the UE or the child node may feed back the SIR_PL value that satisfies the threshold to the IAB node.
  • the signal received power corresponding to the reference signal measured by the UE or the child node of the downstream Tx of the IAB node is denoted as Ps.
  • the UE or the child node measures the received power of the CSI-RS signal of the downstream Tx of the IAB node.
  • the UE or the child node feeds back the resource set index corresponding to the SIR that meets the threshold to the IAB node,
  • the threshold corresponding to SIR is recorded as threshold_5.
  • the UE or the child node may feed back the SIR value that satisfies the threshold to the IAB node.
  • the IAB node When the feedback amount received by the IAB node from the UE or the child node is one or a combination of the following conditions, the IAB node considers that the IAB upstream Tx corresponding to the resource set index causes interference to the UE or the child node Rx:
  • the UE or the child node feeds back the corresponding resource set index with RSRP_i greater than or equal to threshold_1; the UE or the child node feeds back the resource set index corresponding to RSRQ_i less than or equal to threshold_2; the UE or the child node feeds back the corresponding resource set index with PL_i less than or equal to threshold_3; The UE or the child node feeds back the corresponding resource set index with SIR_PL less than or equal to threshold_4; the UE or the child node feeds back the corresponding resource set index with SIR less than or equal to threshold_5.
  • the IAB node When the feedback amount received by the IAB node from the UE or the child node is one or a combination of the following conditions, the IAB node considers that the IAB upstream Tx corresponding to the resource set index does not cause significant interference to the UE or the child node Rx:
  • the UE or child node feeds back the resource collection index corresponding to RSRP_i less than or equal to threshold_1; the UE or child node feeds back the resource collection index corresponding to RSRQ_i greater than or equal to threshold_2; the UE or child node feeds back the resource collection index corresponding to PL_i greater than or equal to threshold_3; UE or The child node feeds back the resource collection index corresponding to SIR_PL less than or equal to threshold_4; the UE or the child node feeds back the corresponding resource collection index with SIR less than or equal to threshold_5.
  • SIR or SIR_PL is defined as the ratio of two quantities. If the two compared values are dB values, the ratio is used to calculate the subtraction of the two quantities of SIR or SIR_PL.
  • the IAB node receives the feedback from the UE or the sub-node to determine the beam that the upstream Tx of the IAB node causes interference to the UE or the sub-node.
  • the IAB node executes downstream Tx and upstream Tx at the same time, and its upstream Tx avoids using beams that cause interference to the UE or sub-nodes, or upstream Tx uses beams that cause little interference to the UE or sub-nodes.
  • the signal type of the measurement configuration is not limited to CSI-RS, and can also be SSB, DMRS, PTRS, and other signals.
  • a multiplexing device is provided, and the device is applied to a first node.
  • the multiplexing device provided in an embodiment of the present application mainly includes a first sending module 101 and a first receiving module. 102.
  • the first sending module 101 is configured to send measurement configuration information to a second node, where the measurement configuration information is used to instruct the second node to measure the related information of the resource corresponding to the measurement configuration information; the first receiving module 102 is Configured to receive the measurement result sent by the second node.
  • the measurement configuration information includes first measurement configuration information and second measurement configuration information, wherein the measurement configuration information includes reference signal configuration information for the second node measurement reference signal, or, The measurement configuration information includes time-frequency resource configuration information for the second node to measure the time-frequency resource; the second measurement configuration information includes quasi co-located reference signal configuration information or corresponding spatial reception parameters corresponding to the measurement performed by the second node.
  • the reference signal configuration information includes one or more of the following: frequency domain configuration information, Sequence configuration information, power configuration information, time configuration information, and whether the time limit is enabled.
  • the types of reference signals include one or more of the following: sounding reference signal SRS, channel state information reference signal CSI-RS, synchronous broadcast block SSB, physical downlink control channel demodulation reference signal PDCCH DMRS, physical Downlink shared channel demodulation reference signal PDSCH DMRS.
  • the time-frequency resource configuration information includes one or more of the following: time-frequency resource correspondence The channel type, frequency domain configuration information, time configuration information, and whether the time limit is enabled.
  • the time configuration information includes one or more of the following: timing of occurrence, effective time, and timing deviation, where the effective time is the effective time for the second node to perform the measurement operation, and the timing deviation is the first The amount of time adjusted by the second node to perform the measurement operation.
  • the effective time includes one or more of the following: effective measurement duration, starting point, and offset.
  • the measurement result includes one or more of the following: the received power of the resource corresponding to the first measurement configuration information, the received power of the resource corresponding to the first measurement configuration information and the second measurement configuration information, and the first measurement configuration information The corresponding path loss value, the path loss value of the resource corresponding to the first measurement configuration information and the second measurement configuration information, and the link quality between the second node and the first node measured in the second measurement configuration information.
  • the received power satisfies one of the following conditions: the signal received power of the first measurement configuration information is greater than or equal to the first threshold; the signal received power of the first measurement configuration information is less than or equal to the second threshold Value; the ratio of the signal received power of the first measurement configuration information to the signal received power of the first node sending data upstream is greater than or equal to the third threshold; the signal receiving power of the first measurement configuration information is compared with the first node sending upstream The ratio of the received signal power of the data is less than or equal to the fourth threshold value.
  • the path loss value satisfies one of the following conditions: the path loss value corresponding to the signal of the first measurement configuration information is greater than or equal to the fifth threshold; the signal corresponding to the first measurement configuration information The path loss value of is less than or equal to the sixth threshold; the ratio of the path loss value corresponding to the signal of the first measurement configuration information to the path loss value between the second node and the first node is greater than or equal to the seventh threshold Value; the ratio of the path loss value corresponding to the signal of the first measurement configuration information to the path loss value between the second node and the first node is less than or equal to the eighth threshold; measured in the second measurement configuration information The link quality between the second node and the first node is less than or equal to the ninth threshold; the link quality between the second node and the first node measured in the second measurement configuration information is greater than or equal to the tenth threshold .
  • the device further includes: a data sending module configured to, after receiving the measurement result sent by the second node, select a beam combination that meets the requirements based on the measurement result to perform simultaneous upstream and downstream transmission .
  • the first node is an integrated access and backhaul IAB node
  • the second node is a parent node of the IAB node, or the second node is a child node of the IAB node .
  • the device further includes: a data receiving module configured to receive the measurement result sent by the second node when the second node is the parent node of the IAB node After that, based on the measurement result, a beam combination that meets the requirements is selected to perform simultaneous upstream and downstream transmission.
  • a data receiving module configured to receive the measurement result sent by the second node when the second node is the parent node of the IAB node After that, based on the measurement result, a beam combination that meets the requirements is selected to perform simultaneous upstream and downstream transmission.
  • the device further includes: a data receiving module configured to receive a measurement result sent by the second node when the second node is a child node of the IAB node After that, based on the measurement result, a beam combination that meets the requirements is selected to perform simultaneous upstream and downstream reception.
  • a data receiving module configured to receive a measurement result sent by the second node when the second node is a child node of the IAB node After that, based on the measurement result, a beam combination that meets the requirements is selected to perform simultaneous upstream and downstream reception.
  • the multiplexing device provided in this embodiment can execute the multiplexing method provided in any embodiment of the present application, and has the corresponding functional modules and effects for executing the method.
  • the multiplexing method provided in any embodiment of this application please refer to the multiplexing method provided in any embodiment of this application.
  • the various units and modules included are only divided according to the functional logic, but are not limited to the above division, as long as the corresponding function can be realized; in addition, the name of each functional unit is also It is just for the convenience of distinguishing each other, and is not used to limit the scope of protection of this application.
  • a multiplexing device is provided, and the multiplexing device is applied to a second node.
  • the multiplexing method provided in the embodiment of the present application mainly includes a second receiving device 111 and a second receiving device 111. ⁇ 112 ⁇ Sending device 112.
  • the second receiving device 111 is configured to receive measurement configuration information sent by the first node, where the measurement configuration information is used to instruct the second node to measure related information of the resource corresponding to the measurement configuration information; the second sending device 112, Is configured to send the measurement result to the second node.
  • the measurement configuration information includes first measurement configuration information and second measurement configuration information, wherein the measurement configuration information includes reference signal configuration information for the second node measurement reference signal, or, The measurement configuration information includes time-frequency resource configuration information for the second node to measure the time-frequency resource; the second measurement configuration information includes quasi co-located reference signal configuration information corresponding to the second node measurement or corresponding spatial reception parameters.
  • the reference signal configuration information includes one or more of the following: frequency domain configuration information, Sequence configuration information, power configuration information, time configuration information, and whether the time limit is enabled.
  • the type of the reference signal includes one or more of the following:
  • Sounding reference signal SRS channel state information reference signal CSI-RS, synchronous broadcast block SSB, physical downlink control channel demodulation reference signal PDCCH DMRS, physical downlink shared channel demodulation reference signal PDSCH DMRS.
  • the time-frequency resource configuration information includes one or more of the following: time-frequency resource correspondence The channel type, frequency domain configuration information, time configuration information, and whether the time limit is enabled.
  • the time configuration information includes one or more of the following: timing of occurrence, effective time, and timing deviation, where the effective time is the effective time for the second node to perform the measurement operation, and the timing deviation is the first The amount of time adjusted by the second node to perform the measurement operation.
  • the effective time includes one or more of the following: effective measurement duration, starting point, and offset.
  • the measurement result includes one or more of the following: the received power of the resource corresponding to the first measurement configuration information, the received power of the resource corresponding to the first measurement configuration information and the second measurement configuration information, and the first measurement configuration information The corresponding path loss value, the path loss value of the resource corresponding to the first measurement configuration information and the second measurement configuration information, and the link quality between the second node and the first node measured in the second measurement configuration information.
  • the received power satisfies one of the following conditions: the signal received power of the first measurement configuration information is greater than or equal to the first threshold; the signal received power of the first measurement configuration information is less than or equal to the second threshold Value; the ratio of the signal received power of the first measurement configuration information to the signal received power of the first node sending data upstream is greater than or equal to the third threshold; the signal receiving power of the first measurement configuration information is compared with the first node sending upstream The ratio of the received signal power of the data is less than or equal to the fourth threshold value.
  • the path loss value satisfies one of the following conditions: the path loss value corresponding to the signal of the first measurement configuration information is greater than or equal to the fifth threshold; the signal corresponding to the first measurement configuration information The path loss value of is less than or equal to the sixth threshold; the ratio of the path loss value corresponding to the signal of the first measurement configuration information to the path loss value between the second node and the first node is greater than or equal to the seventh threshold Value; the ratio of the path loss value corresponding to the signal of the first measurement configuration information to the path loss value between the second node and the first node is less than or equal to the eighth threshold; measured in the second measurement configuration information The link quality between the second node and the first node is less than or equal to the ninth threshold; the link quality between the second node and the first node measured in the second measurement configuration information is greater than or equal to the tenth threshold .
  • the multiplexing device provided in this embodiment can execute the multiplexing method provided in any embodiment of the present application, and has the corresponding functional modules and effects for executing the method.
  • the multiplexing method provided in any embodiment of this application please refer to the multiplexing method provided in any embodiment of this application.
  • the various units and modules included are only divided according to the functional logic, but are not limited to the above division, as long as the corresponding function can be realized; in addition, the name of each functional unit is also It is just for the convenience of distinguishing each other, and is not used to limit the scope of protection of this application.
  • FIG. 13 is a schematic structural diagram of a device provided by an embodiment of the application.
  • the device includes a processor 121, a memory 122, an input device 123, an output device 124, and The communication device 125; the number of processors 121 in the device can be one or more.
  • one processor 121 is taken as an example; the processor 121, the memory 122, the input device 123 and the output device 124 in the device can be connected via a bus or Connect in other ways.
  • connection via a bus is taken as an example.
  • the memory 122 can be used to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the multiplexing method in the embodiment of the present application (for example, the first The sending module 101 and the first receiving module 102).
  • program instructions/modules corresponding to the multiplexing method in the embodiment of the present application for example, the second receiving device 111 and the second sending device 112 in the multiplexing device.
  • the processor 121 executes various functional applications and data processing of the device by running software programs, instructions, and modules stored in the memory 122, that is, implements any multiplexing method provided in the embodiments of the present application.
  • the memory 122 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the device, and the like.
  • the memory 122 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 122 may include a memory remotely provided with respect to the processor 121, and these remote memories may be connected to the device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 123 can be used to receive inputted number or character information, and generate key signal input related to user settings and function control of the device.
  • the output device 124 may include a display device such as a display screen.
  • the communication device 125 may include a receiver and a transmitter.
  • the communication device 125 is configured to perform information transceiving and communication under the control of the processor 121.
  • the processor 121 executes various functional applications and data processing by running programs stored in the system memory 122, such as implementing the demultiplexing method provided in the embodiments of the present application.
  • Methods include:
  • the processor 121 may also implement the technical solution of the multiplexing method provided in any embodiment of the present application.
  • the hardware structure and function of the device please refer to the content explanation of this embodiment.
  • the processor 121 executes various functional applications and data processing by running programs stored in the system memory 122, for example, to implement the multiplexing method provided in the embodiment of the present application.
  • programs stored in the system memory 122 for example, to implement the multiplexing method provided in the embodiment of the present application.
  • the processor 121 may also implement the technical solution of the message interaction method provided by any embodiment of the present application.
  • the hardware structure and function of the device please refer to the content explanation of this embodiment.
  • an embodiment of the present application further provides a storage medium containing computer-executable instructions, which are used to perform a multiplexing method when executed by a computer processor, and The method is applied to the first node and includes:
  • An embodiment of the application provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are not limited to the method operations described above, and can also perform related operations in the multiplexing method provided in any embodiment of the application. .
  • An embodiment of the present application also provides a storage medium containing computer-executable instructions, which are used to perform a multiplexing method when executed by a computer processor, and the method is applied to a second node and includes:
  • An embodiment of the application provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are not limited to the method operations described above, and can also perform related operations in the multiplexing method provided in any embodiment of the application. .
  • this application can be implemented by software and necessary general-purpose hardware, or can be implemented by hardware.
  • the technical solution of this application can essentially be embodied in the form of a software product.
  • the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk, a read-only memory (Read-Only Memory, ROM), and random access Memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disk, etc., including several instructions to make a computer device (which can be a personal computer, server, or network device, etc.) execute the various embodiments of this application Methods.
  • the term user terminal encompasses any suitable type of wireless user equipment, such as mobile phones, portable data processing devices, portable web browsers, or vehicular mobile stations.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the application is not limited thereto.
  • the embodiments of the present application may be implemented by executing computer program instructions by a data processor of a mobile device, for example, in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions can be assembly instructions, instruction set architecture (Instruction Set Architecture, ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (ROM), random access memory (RAM), optical storage devices and systems (digital multi-function discs) (Digital Video Disc, DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASICs application specific integrated circuits
  • FPGA Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开一种复用方法、装置、设备和存储介质。复用方法包括:向第二节点发送测量配置信息,其中,所述测量配置信息用于指示所述第二节点测量所述测量配置信息对应资源的相关信息;接收所述第二节点发送的测量结果。

Description

复用方法、装置、设备及存储介质 技术领域
本申请涉及无线通信技术领域,例如涉及一种复用方法、装置、设备和存储介质。
背景技术
集成接入和回传(Integrated Access Backhaul,IAB)节点包括移动终端(Mobile Termination,MT)单元和分布式单元(Distributed Unit,DU)。其中IAB节点通过MT连接上一级节点,上一级节点称之为该IAB节点的父节点(parent node),IAB MT与父节点的链路称之为upstream,IAB DU与下一级节点或终端之间的链路称之为downstream。
IAB节点会同时进行上游发送(upstream Transmission,upstream Tx)和下游发送(downstream Transmission,downstream Tx)。IAB节点会同时进行上游接收(upstream Receiving,upstream Rx)和下游接收(downstream Receiving,downstream Rx)。同时进行发送操作或同时进行接收操作时,如何规避两个链路之间的干扰是亟待解决的问题。
发明内容
本申请提供一种复用方法、装置、设备和存储介质,以协调IAB节点在同时进行收发操作时两个链路之间的干扰。
本申请实施例提供一种复用方法,所述方法应用于第一节点,包括:
向第二节点发送测量配置信息,其中,所述测量配置信息用于指示第二节点测量所述测量配置信息对应资源的相关信息;接收所述第二节点发送的测量结果。
本申请实施例还提供一种复用方法,所述方法应用于第二节点,包括:
接收第一节点发送的测量配置信息,其中,所述测量配置信息用于指示第二节点测量所述测量配置信息对应资源的相关信息;向所述第一节点发送测量结果。
本申请实施例还提供一种复用装置,所述装置配置于第一节点,包括:
第一发送模块,被配置为向第二节点发送测量配置信息,其中,所述测量 配置信息用于指示第二节点测量所述测量配置信息对应资源的相关信息;第一接收模块,被配置为接收所述第二节点发送的测量结果。
本申请实施例还提供一种复用装置,所述装置配置于第二节点,包括:
第二接收装置,被配置为接收第一节点发送的测量配置信息,其中,所述测量配置信息用于指示第二节点测量所述测量配置信息对应资源的相关信息;第二发送模块,被配置为向所述第一节点发送测量结果。
本申请实施例还提供一种设备,包括:
一个或多个处理器;存储器,被配置为存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请实施例提供的复用方法。
本申请实施例还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现他、如本申请实施例提供的复用方法。
附图说明
图1是IAB网络中各节点的关系和链路的示意图;
图2是本申请实施例提供的复用方法的流程图;
图3是本申请实施例提供的复用方法的流程图;
图4是本申请实施例提供的参考信号的周期的示意图;
图5是本申请实施例提供的参考信号的时间偏移量的示意图;
图6是本申请实施例提供的参考信号的有效测量持续时间的示意图;
图7是本申请实施例提供的IAB节点上游发送和下游发送的定时偏差的示意图;
图8是本申请实施例提供的IAB节点为父节点指定配置规则的示意图;
图9是本申请实施例提供的IAB节点同时接收两个链路的数据存在干扰的示意图;
图10是本申请实施例提供的资源与参考信号对应关系的示意图;
图11是本申请实施例提供的复用装置的结构示意图;
图12是本申请实施例提供的复用装置的结构示意图;
图13是本申请实施例提供的一种设备的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机***中执行。并且,虽然在流程图中示出了逻辑顺序,但是在一些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
首先,对IAB网络中各节点的关系和链路进行说明。
图1是IAB网络中各节点的关系和链路的示意图,如图1所示,从上至下的三个节点分别称为父节点(parent node),IAB节点和子节点(child node)或用户设备(User Equipment,UE),图1中IAB节点所服务的节点为UE或子节点。
在版本-16(Release-16,Rel-16)中,IAB节点高优先级地支持上游(upstream)和下游(downstream)时分复用,但同时协议也前向兼容支持对其他复用方式的支持,例如频分多路复用(Frequency Division Multiplexing,FDM)、空分复用(Space Division Multiplexing,SDM)和全双工。IAB的分布单元(Distributed Unit,DU)充当基站功能通过下游为子节点或终端提供网络服务,IAB的MT单元通过上游与父节点相连。
DU资源是IAB节点的DU单元用于服务子节点或终端的资源,例如DU的下行链路(Downlink,DL)资源是IAB节点的DU单元为子节点或终端传输下游数据的资源。IAB节点的MT资源由网络侧半静态配置以及父节点的动态信令指示。IAB节点的DU单元的用于下游发送的资源可能对应着MT的用于上游发送的资源,在这种资源上IAB节点有机会同时进行下游发送和上游发送。IAB节点的DU单元的用于下游接收的资源可能对应着MT的用于上游接收的资源,在这种资源上IAB节点有机会同时进行下游接收和上游接收。
这种同时进行接收操作或同时进行发送操作的两个链路之间的干扰如何规避或协调需要考虑有效的方案,否则影响IAB节点下游和上游的传输性能。
在一个实施例中,提供一种复用方法,所述方法应用于第一节点,如图2所示,本申请实施例提供的复用方法,主要包括步骤S11和S12。
S11、向第二节点发送测量配置信息,其中,所述测量配置信息用于指示第二节点测量所述测量配置信息对应资源的相关信息。
S12、接收所述第二节点发送的测量结果,其中,所述测量结果用于第一节点进行链路传输复用。
在本实施例中,所述第一节点是如图1中所示的IAB节点。第二节点是如 图1中所示的父节点。或者,第二节点是如图1中所示的子节点或UE。
所述测量配置信息是IAB节点发送至父节点的信息。父节点依据测量配置信息进行测量,并向IAB节点反馈测量结果。IAB节点同时执行上游发送和下游发送时,依据测量结果选择对父节点干扰小的波束进行下游的发送。
在本实施例中,父节点给IAB节点反馈的测量结果包括如下至少之一:资源索引,对应资源的接收功率,对应资源的路损,对应资源的参考信号接收功率(Reference Signal Receiving Power,RSRP),父节点接收IAB节点上游发送的参考信号接收质量(Reference Signal Receiving Quality,RSRQ)或信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)或信道质量指示(Channel Quality Indicator,CQI)。
在一个实施方式中,所述测量配置信息包括第一测量配置信息和第二测量配置信息,其中,所述测量配置信息包括用于第二节点测量参考信号的参考信号配置信息,或者,所述测量配置信息包括用于第二节点测量时频资源的时频资源配置信息。所述第二测量配置信息包括第二节点执行测量对应的准共址参考信号配置信息或对应的空间接收参数。
在一个实施方式中,在所述第一测量配置信息包括用于第二节点测量参考信号的参考信号配置信息的情况下,所述参考信号配置信息包括如下一个或多个:频域配置信息,序列配置信息,功率配置信息,时间配置信息(第一时间配置信息),时间限制是否开启。
在一个实施方式中,所述参考信号的类型包括如下一个或多个:探测参考信号(Sounding Reference Signal,SRS),信道状态信息参考信号CSI-RS,同步广播块(Synchronization Signal/Physical Broadcast Channel Block,SSB),物理下行控制信道解调参考信号(Physical Downlink Control Channel DMRS,PDCCH DMRS),物理下行共享信道解调参考信号PDSCH DMRS。
在一个实施方式中,在所述测量配置信息包括用于第二节点测量时频资源的时频资源配置信息的情况下,所述时频资源配置信息包括如下一个或多个:时频资源对应的信道类型,频域配置信息,时间配置信息(第二时间配置信息),时间限制是否开启。
在一个实施方式中,在所述测量配置信息包括用于第二节点测量时频资源的时频资源配置信息的情况下,所述第二测量配置信息包括如下一个或多个:时频资源对应的准共址参考信号,空间接收参数。
在一个实施方式中,所述时间配置信息包括如下一个或多个:出现时机、有效时间和定时偏差,其中,所述有效时间是第二节点执行测量操作的有效时 间,所述定时偏差是第二节点执行测量操作所调整的时间量。一实施例中,定时偏差是基于第二节点与第一节点通信定时调整的定时偏差值,例如第二节点基于接收的第一节点上游发送的参考信号的定时进行调整。
所述第一时间配置信息包括第一出现时机、第一有效时间和第一定时偏差,其中,所述第一有效时间是第二节点测量参考信号的有效时间,所述定时偏差是第二节点测量参考信号所调整的时间量。
所述第二时间配置信息包括第二出现时机、第二有效时间和第二定时偏差,其中,所述第二有效时间是第二节点测量时频资源的有效时间,所述第二定时偏差是第二节点测量时频资源所调整的时间量。
在一个实施方式中,所述有效时间包括如下一个或多个:有效测量持续时间,起始点,偏移量。在一个实施方式中,所述时间限制是否开启指示第二节点执行测量操作时是否可在多个测量周期上执行该测量操作。
所述时间限制开启,则指示第二节点执行测量操作时不可以在多个测量周期上执行该测量操作。所述时间限制未开启,则指示第二节点执行测量操作时可以在多个测量周期上执行该测量操作。在一个实施方式中,所述准共址参考信号指示第二节点测量参考信号的参考信号配置信息与准共址参考信号满足准共址关系。所述准共址参考信号指示第二节点测量时频资源的时频资源配置信息与准共址参考信号满足准共址关系。
比如,CSI-RS与准共址参考信号关于如下参数中的至少之一满足准共址关系:1)多普勒频移2)多普勒扩展3)平均时延4)时延扩展5)空间接收参数。
在一个实施方式中,所述测量结果包括:第一测量配置信息对应资源的接收功率,第一测量配置信息和第二测量配置信息对应资源的接收功率,第一测量配置信息对应的路损值,第一测量配置信息和第二测量配置信息对应资源的路损值,在第二测量配置信息中测得的第二节点和第一节点之间的链路质量。
在一个实施方式中,所述接收功率满足如下条件之一:第一测量配置信息的信号接收功率大于或等于第一门限值;第一测量配置信息的信号接收功率小于或等于第二门限值;第一测量配置信息的信号接收功率与第一节点在上游发送数据的信号接收功率的比值大于或等于第三门限值;第一测量配置信息的信号接收功率与第一节点在上游发送数据的信号接收功率的比值小于或等于第四门限值。
在一个实施方式中,所述路损值满足如下条件之一:所述第一测量配置信息的信号对应的路损值大于或等于第五门限值;所述第一测量配置信息的信号对应的路损值小于或等于第六门限值;所述第一测量配置信息的信号对应的路 损值与第二节点和第一节点之间的路损值的比值大于或等于第七门限值;所述第一测量配置信息的信号对应的路损值与第二节点和第一节点之间的路损值的比值小于或等于第八门限值;在第二测量配置信息中测得的第二节点与第一节点的链路质量小于或等于第九门限值;在第二测量配置信息中测得的第二节点与第一节点的链路质量大于或等于第十门限值。
在一个实施方式中,所述第一节点是集成接入和回传IAB节点,所述第二节点是所述IAB节点的父节点,或者,所述第二节点是所述IAB节点的子节点。
在一个实施方式中,在所述第二节点是所述IAB节点的父节点的情况下,在接收所述第二节点发送的测量结果之后,还包括:基于所述测量结果选择满足要求的波束组合执行上游和下游的同时发送。
IAB节点同时执行下游发送和上游发送,其下游发送避开对父节点干扰的波束。
在一个实施方式中,在所述第二节点是所述IAB节点的子节点的情况下,在所述接收所述第二节点发送的测量结果之后,还包括:基于所述测量结果选择满足要求的波束组合执行上游和下游的同时接收。
IAB节点同时执行下游接收和上游接收,其上游接收对应的传输避开对下游接收的干扰。
在一个实施例中,提供一种复用方法,所述复用方法应用于第二节点,如图3所示,本申请实施例提供的复用方法,主要包括步骤S21和S22。
S21、接收第一节点发送的测量配置信息,其中,所述测量配置信息用于指示第二节点测量所述测量配置信息对应资源的相关信息。
S22、向所述第一节点发送测量结果。
在本实施例中,所述第一节点是如图1中所示的IAB节点。第二节点是如图1中所示的父节点。或者,第二节点是如图1中所示的子节点或UE。在本实施例中,父节点需要基于测量配置信息进行测量,父节点需要测量的量包括如下至少之一:参考信号接收功率(Reference Signal Receiving Power,RSRP),目标链路质量,路损值,信号干扰比(Signal to Interference Ratio,SIR)。
上述RSRP可以是测量配置信息中的参考信号的RSRP,也可以是IAB节点上游发送的参考信号(例如SRS,DMRS,CSI-RS等)的RSRP。
路损值是父节点按照测量配置信息中的资源测得的参考信号对应的路损值,或者父节点测量的IAB节点和父节点之间的路损值。
在一个实施方式中,所述测量配置信息包括第一测量配置信息和第二测量配置信息,其中,所述测量配置信息包括用于第二节点测量参考信号的参考信号配置信息,或者,所述测量配置信息包括用于第二节点测量时频资源的时频资源配置信息。所述第二测量配置信息包括第二节点执行测量对应的准共址参考信号配置信息或对应的空间接收参数。
在一个实施方式中,在所述测量配置信息包括用于第二节点测量参考信号的参考信号配置信息的情况下,所述参考信号配置信息包括如下一个或多个:频域配置信息,序列配置信息,功率配置信息,时间配置信息(第一时间配置信息),时间限制是否开启。
在一个实施方式中,所述参考信号的类型包括如下一个或多个:信道状态信息参考信号CSI-RS,同步广播块SSB,物理下行控制信道解调参考信号PDCCH DMRS,物理下行共享信道解调参考信号PDSCH DMRS。
在一个实施方式中,在所述测量配置信息包括用于第二节点测量时频资源的时频资源配置信息的情况下,所述时频资源配置信息包括如下一个或多个:时频资源对应的信道类型,频域配置信息,时间配置信息(第二时间配置信息),时间限制是否开启。
在一个实施方式中,在所述测量配置信息包括用于第二节点测量时频资源的时频资源配置信息的情况下,所述第二测量配置信息包括如下一个或多个:时频资源对应的准共址参考信号,空间接收参数。
在一个实施方式中,所述时间配置信息包括如下一个或多个:出现时机、有效时间和定时偏差,其中,所述有效时间是第二节点执行测量操作的有效时间,所述定时偏差是第二节点执行测量操作所调整的时间量。一实施例中,定时偏差是基于第二节点与第一节点通信定时调整的定时偏差值,例如第二节点基于接收的第一节点上游发送的参考信号的定时进行调整。
所述第一时间配置信息包括第一出现时机、第一有效时间和第一定时偏差,其中,所述第一有效时间是第二节点测量参考信号的有效时间,所述定时偏差是第二节点测量参考信号所调整的时间量。
所述第二时间配置信息包括第二出现时机、第二有效时间和第二定时偏差,其中,所述第二有效时间是第二节点测量时频资源的有效时间,所述第二定时偏差是第二节点测量时频资源所调整的时间量。
在一个实施方式中,所述有效时间包括如下一个或多个:有效测量持续时间,起始点,偏移量。在一个实施方式中,所述时间限制是否开启指示第二节点执行测量操作时是否可在多个测量周期上执行该测量操作。
所述时间限制开启,则指示第二节点执行测量操作时不可以在多个测量周期上执行该测量操作。所述时间限制未开启,则指示第二节点执行测量操作时可以在多个测量周期上执行该测量操作。在一个实施方式中,所述准共址参考信号指示第二节点测量参考信号的参考信号配置信息与准共址参考信号满足准共址关系。所述准共址参考信号指示第二节点测量时频资源的时频资源配置信息与准共址参考信号满足准共址关系。
比如,CSI-RS与准共址参考信号关于如下参数中的至少之一满足准共址关系:1)多普勒频移2)多普勒扩展3)平均时延4)时延扩展5)空间接收参数。
在一个实施方式中,所述测量结果包括:第一测量配置信息对应资源的接收功率,第一测量配置信息和第二测量配置信息对应资源的接收功率,第一测量配置信息对应的路损值,第一测量配置信息和第二测量配置信息对应资源的路损值,在第二测量配置信息中测得的第二节点和第一节点之间的链路质量。
在一个实施方式中,所述接收功率满足如下条件之一:第一测量配置信息的信号接收功率大于或等于第一门限值;第一测量配置信息的信号接收功率小于或等于第二门限值;第一测量配置信息的信号接收功率与第一节点在上游发送数据的信号接收功率的比值大于或等于第三门限值;第一测量配置信息的信号接收功率与第一节点在上游发送数据的信号接收功率的比值小于或等于第四门限值。
在一个实施方式中,所述路损值满足如下条件之一:所述第一测量配置信息的信号对应的路损值大于或等于第五门限值;所述第一测量配置信息的信号对应的路损值小于或等于第六门限值;所述第一测量配置信息的信号对应的路损值与第二节点和第一节点之间的路损值的比值大于或等于第七门限值;所述第一测量配置信息的信号对应的路损值与第二节点和第一节点之间的路损值的比值小于或等于第八门限值;在第二测量配置信息中测得的第二节点与第一节点的链路质量小于或等于第九门限值;在第二测量配置信息中测得的第二节点与第一节点的链路质量大于或等于第十门限值。
在一个实施例中,提供一种IAB节点向父节点上报需要父节点测量的信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)的方法。
当IAB节点同时执行上游发送和下游发送时可能相互干扰。例如,IAB节点的下游发送干扰父节点对IAB节点的上游发送的接收。为解决上述问题,给出了如下方案。
IAB节点向父节点上报测量配置信息,父节点依据测量配置信息进行测量, 父节点向IAB节点反馈测量结果。
IAB节点同时执行上游发送和下游发送时,下游发送采用对父节点干扰小的波束。
测量配置信息包含一个或多个资源集合,每个资源集合包含一个或多个参考信号资源配置信息。
参考信号资源配置信息包括如下至少之一:时间配置信息,频域配置信息,序列配置信息,发射功率配置信息,对应的准共址参考信号配置信息或对应的空间接收参数。
参考信号可以是CSI-RS或同步广播块(Synchronization Signal/Physical Broadcast Channel Block,SSB)或解调参考信号(Demodulation Reference Signal,DMRS)或相位追踪参考信号(Phase Tracking Reference Signal,PTRS)等中的任一种。
父节点需要测量的量包括如下至少之一:参考信号接收功率(Reference Signal Receiving Power,RSRP),目标链路质量,路损值,信号干扰比(Signal to Interference Ratio,SIR)。
上述RSRP可以是测量配置信息中的参考信号的RSRP,也可以是IAB节点上游发送的参考信号(例如SRS,DMRS,CSI-RS等)的RSRP。
目标链路质量是父节点接收IAB节点上游发送的链路质量,包括参考信号的接收质量(Reference Signal Receiving Quality,RSRQ),参考信号的信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)或参考信号的信道质量指示(Channel Quality Indication,CQI)。
SIR是Ps和Pi的比值,其中,Ps为父节点测量的IAB节点上游发送的参考信号的接收功率,Pi为父节点测量的IAB节点下游发送的参考信号的接收功率。功率以dB值表示,因此功率的比值对应着dB值的差值。
路损值是父节点按照测量配置信息中的资源测得的参考信号对应的路损值,或者父节点测量的IAB节点和父节点之间的路损值。
父节点给IAB节点反馈的测量结果包括如下至少之一:资源索引,对应资源的接收功率,对应资源的路损,对应资源的RSRP,父节点接收IAB节点上游发送的参考信号的RSRQ或SINR或CQI,父节点接收IAB节点上游发送的参考信号的SINR。
父节点基于以下方式中的至少之一确定测量结果:反馈满足门限条件的量;反馈满足门限条件的量以及一个或多个相关测量量。
IAB节点同时执行下游发送和上游发送,其下游发送避开对父节点干扰的波束。
参考信号资源配置信息的时间配置信息包括如下至少之一:参考信号的周期,参考信号的时间偏移量,参考信号的有效测量时间,IAB节点下游发送与IAB节点上游发送的定时偏移量。
如图4所示,参考信号的周期(记为P)为IAB节点以周期P发送参考信号。如图5所示,参考信号的时间偏移量是指以周期P起点为边界的时间偏移量,时间偏移量可以是若干无线帧,若干子帧,若干时隙,若干正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号中的至少之一。如图6所示,参考信号的有效测量持续时间指示父节点执行参考信号测量的有效时间。若IAB节点在有效时间之外没有发送参考信号或波束发生了改变或发射功率发生了改变,则IAB节点告知父节点执行参考信号测量的有效时间。
参考信号与IAB节点上游发送的定时偏移量是指IAB节点下游的参考信号发送定时和IAB节点上游的发送定时之间的时间偏差。定时偏移量为若干OFDM符号或若干时域样点(Tc或Ts)或若干OFDM符号和若干时域样点。如图7所示,IAB节点的上游发送和IAB节点的下游发送可能存在定时偏差。IAB节点在向父节点上报待测量的参考信号时,IAB节点还向父节点上报IAB节点的上游发送和IAB节点的下游发送的定时偏差,偏差量为IAB节点的上游发送时间和IAB节点的下游发送时间之差或IAB节点的下游发送时间和IAB节点的上游发送时间之差。父节点以接收的IAB节点上游发送的定时为基准推后或提前定时偏移量测量IAB节点上报的待测参考信号。
参考信号资源配置的频域配置信息包括如下至少之一:参考信号的载波信息,参考信号占据的带宽,参考信号的频域密度,参考信号的子载波间隔,参考信号的频域偏移量。
参考信号的载波信息是绝对的载波编号或者是待测参考信号的载波与IAB节点MT对应载波的载波偏移量,载波偏移量为RB数或子载波(Subcarrier Carrier,SC)数或资源块(RB,Resource Block)数和SC数。
参考信号的频域偏移量是指参考信号在RB内的偏移量。
载波偏移量的RB大小和SC大小由参考子载波(reference SC)间隔确定,例如参考子载波取值为15*2^u,u为大于或等于0的自然数。u可以是节点间约定好的数值,或者是父节点和IAB节点之间的通信过程所采用的数值,或者是IAB节点或OAM或CU向父节点通知的数值。
参考信号序列配置信息包括如下至少之一:参考信号的序列类型,参考信 号序列生成方式。其中,参考信号序列生成方式包括生成参考信号的序列产生方式和初始化参数,例如,CSI-RS的序列产生方式和初始化如下:
c(n)=(x 1(n+N C)+x 2(n+N C))mod2
x 1(n+31)=(x 1(n+3)+x 1(n))mod2     式一
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod2
Figure PCTCN2021097734-appb-000001
Figure PCTCN2021097734-appb-000002
Figure PCTCN2021097734-appb-000003
其中,式一为随机序列的生成方式,随机序列的初始序列由序列的初始值确定,如式二所示,根据随机序列生成参考信号序列如式三所示,用于参考信号序列生成的初始值如式四所示。发送方和测量方可以约定随机序列的生成方式,则IAB节点不用为父节点上报序列生成方式;若发送方和测量方约定序列初值产生方式,则IAB节点不用为父节点上报序列初值的产生方式;若IAB节点上游发送和IAB节点下游发送的时间对齐,则父节点可根据自身的定时确定序列初始化值的时间相关变量。如式四中的时间相关变量为时隙内的OFDM符号编号,无线帧之内的时隙编号。式四还包括对序列进行配置的变量。时间相关变量和对序列进行配置的变量用于干扰随机化或准正交多用户传输。
如图8所示,若无线网络的集中控制单元(Center Unit,CU)或操作维护管理(OAM,Operation Administration and Maintenance)为父节点指定了IAB节点的CSI-RS的配置则IAB节点不必告知父节点关于IAB节点的CSI-RS的映射位置,IAB节点将对应资源的索引号上报给父节点,父节点即可判断待测资源的位置。
参考信号的发射功率为IAB节点下游发送参考信号的发射功率。
父节点按照IAB节点上报的测量配置的资源集合对应的接收波束测量IAB节点上报的测量配置的资源集合中的参考信号或IAB节点上游发送的参考信号,若IAB节点上报的测量配置的参考信号配置不包含对应的准共址参考信号配置或对应的空间接收参数则父节点按照与IAB节点的历史接收参数进行相应的测量。测量量包括如下至少之一:RSRP,RSRQ,SINR,路损,SIR。
父节点将满足门限的测量量对应的资源集合索引反馈给IAB节点。其中,满足门限为如下至少之一:测量量大于或等于特定门限,测量量小于或等于特 定门限,测量量大于特定门限,测量量小于特定门限。
父节点测量资源集合中参考信号的RSRP记为RSRP_i,父节点将满足门限的RSRP_i对应的资源集合索引反馈给IAB节点,对应RSRP_i的门限记为threshold_1。RSRP_i可以是一个资源集合中不同资源的参考信号RSRP的平均值,或者为一个资源集合中不同资源的参考信号RSRP的最小值,或者为一个资源集合中不同资源的参考信号RSRP的最大值。可选的,父节点将满足门限的RSRP_i数值反馈给IAB节点。
父节点测量IAB节点上游发送的参考信号的信道质量,信道质量可通过以下量之一表征:RSRQ,SINR,CQI,对应的测量结果分别记为RSRQ_s,SINR,CQI,父节点将满足门限的测量结果对应的资源集合的索引反馈给IAB节点,对应RSRQ_s或SINR或CQI的门限记为threshold_2。可选的,父节点将满足门限的RSRQ_s数值,SINR数值或CQI数值反馈给IAB节点。
父节点测量资源集合中参考信号的路损值记为PL_i,父节点将满足门限的PL_i对应的资源集合索引反馈给IAB节点,对应RSRP_i的门限记为threshold_3。PL_i可以是一个资源集合中不同资源的参考信号路损的平均值,或者当父节点反馈大于或等于,或大于门限值的路损对应的资源集合索引时,则路损值还可以为一个资源集合中不同资源的参考信号路损的最小值,或者当父节点反馈小于或等于,或小于门限值的路损对应的资源集合索引时,则路损值还可以为一个资源集合中不同资源的参考信号路损的最大值。可选的,父节点可以将满足条件的RSRP_i数值反馈给IAB节点。
父节点测量IAB节点上游发送的参考信号对应的路损值记为PL_s,父节点测量资源集合中参考信号的路损值记为PL_i,PL_s和PL_i之比记为SIR_PL=PL_s/PL_i。父节点将满足门限的SIR_PL对应的资源集合索引反馈给IAB节点,对应SIR_PL的门限记为threshold_4。可选的,父节点可以将满足门限的SIR_PL数值反馈给IAB节点。
父节点测量IAB节点上游发送的参考信号对应的信号接收功率记为Ps,例如父节点测量IAB节点上游发送的SRS信号接收功率。父节点测量资源集合中参考信号的信号接收功率记为Pi,Ps与Pi的比值记为测量量SIR=Ps/Pi,父节点将满足门限的SIR对应的资源集合索引反馈给IAB节点,对应SIR的门限记为threshold_5。可选的,父节点可以将满足门限的SIR数值反馈给IAB节点。
当IAB节点收到父节点的反馈结果为以下情况之一或其组合则IAB节点认为对应资源集合索引的IAB下游发送对父节点接收造成干扰:
父节点反馈RSRP_i大于或等于threshold_1对应的资源集合索引;父节点 反馈RSRQ_s或SINR或CQI小于或等于threshold_2对应的资源集合索引;父节点反馈PL_i小于或等于threshold_3对应的资源集合索引;父节点反馈SIR_PL小于或等于threshold_4的对应的资源集合索引;父节点反馈SIR小于或等于threshold_5的对应的资源集合索引。
当IAB节点收到父节点的反馈量为以下情况之一或其组合则IAB节点认为对应资源集合索引的IAB下游发送没有对父节点接收造成干扰:
父节点反馈RSRP_i小于或等于threshold_1对应的资源集合索引;父节点反馈RSRQ_s或SINR或CQI大于或等于threshold_2对应的资源集合索引;父节点反馈PL_i大于或等于threshold_3对应的资源集合索引;父节点反馈SIR_PL小于或等于threshold_4对应的资源集合索引;父节点反馈SIR小于或等于threshold_5的对应的资源集合索引。
上述SIR或SIR_PL定义为两个数量的比值,若相比的两个数值为dB值,则该比值用于计算SIR或SIR_PL的两个量相减。
IAB节点收到父节点反馈的测量结果可以确定IAB节点下游发送对父节点造成干扰的波束。
IAB节点同时执行下游发送和上游发送,IAB节点选择下游发送对应的波束使得IAB节点下游发送不干扰父节点或者IAB节点下游发送对父节点产生较小的干扰。其中,测量配置的信号类型不限于CSI-RS,还可以是SSB、DMRS、PTRS等信号。
以上只是描述本申请的具体实施方式,对此实施例的扩充包括以下方面,这些扩充也在本申请保护范围之内。
在一个实施例中,提供IAB节点上报波束能力(DU具备多波束能力),父节点为IAB节点配置IAB节点DU的CSI-RS的方法。
本实施例中IAB节点向父节点上报其DU多波束能力n_Simul_Beam,其中,n_Simul_Beam表示IAB节点DU单元在同一时刻可以发送的波束数量。
或者IAB节点向父节点上报SRS set的数量或者SRS set中包括的SRS资源数量。父节点根据IAB节点的所述上报确定DU同时发送波束的数量。
父节点获知IAB节点的DU单元可以同时发送n_Simul_Beam个波束,父节点采用上述实施例中所述的CSI-RS资源配置方式为IAB节点DU配置CSI-RS资源集合。在为IAB节点配置CSI-RS资源集合时可最多将n_Simul_Beam个CSI-RS资源配置在相同的时间资源上,例如父节点为IAB节点配置N个CSI-RS  resource set,记为CSI-RS-Resource-set-1~CSI-RS-Resource-set-N,其中,N>n_Simul_Beam,则父节点应当将最多n_Simul_Beam个CSI-RS资源集合配置在同一个时域资源上,父节点至少要为这些CSI-RS资源集合配置ceil(N/n_Simul_Beam)个时域资源。其中ceil()表示上取整操作。
或者网络的集中控制单元(CU,Center Unit)或操作维护管理(OAM,Operation Administration and Maintenance)为IAB节点DU配置CSI-RS资源,且通过F1信令或通过OAM向父节点通知关于IAB节点DU的CSI-RS资源配置。
父节点为IAB节点配置SRS资源集合。父节点为IAB节点配置CSI-RS资源集合和SRS资源集合的对应关系。IAB节点基于此对应关系在SRS资源集合对应的波束和CSI-RS资源集合所对应的波束或SRS资源集合和CSI-RS资源集合准共址配置同时执行下游发送和上游发送。SRS资源集合为信道测量资源集合,CSI-RS资源集合是干扰测量资源集合。
父节点测量子节点下游发送的CSI-RS信号接收功率,父节点测量子节点上游发送的SRS信号接收功率,父节点向IAB节点反馈测量值。父节点基于上述实施例所述方法按照CSI-RS resource set对应的时域资源为粒度反馈。
父节点反馈以下之一或其组合表示父节点在对应时域资源索引测量到IAB节点下游发送的干扰:
父节点反馈RSRP_i大于或等于门限threshold_1的一个或多个CSI-RS resource set对应的时域资源索引;父节点反馈RSRQ_s或SINR或CQI小于或等于门限threshold_2的一个或多个CSI-RS resource set对应的时域资源索引;父节点反馈PL_i小于或等于门限threshold_3的一个或多个CSI-RS resource set对应的时域资源索引;父节点反馈SIR_PL小于或等于门限threshold_4的一个或多个CSI-RS resource set对应的时域资源索引;父节点反馈SIR小于或等于门限threshold_5的一个或多个CSI-RS resource set对应的时域资源索引。
父节点反馈以下情况之一或其组合则IAB节点认为对应时域资源索引没有测量到IAB下游发送对父节点造成干扰:
父节点反馈RSRP_i小于或等于门限threshold_1的一个或多个CSI-RS resource set对应的时域资源索引;父节点反馈RSRQ_s或SINR或CQI大于或等于门限threshold_2的一个或多个CSI-RS resource set对应的时域资源索引;父节点反馈PL_i大于或等于门限threshold_3的一个或多个CSI-RS resource set对应的时域资源索引;父节点反馈SIR_PL小于或等于门限threshold_4的一个或多个CSI-RS resource set对应的时域资源索引;父节点反馈SIR小于或等于门限 threshold_5的一个或多个CSI-RS resource set对应的时域资源索引。
上述SIR或SIR_PL定义为两个数量的比值,若相比的两个量为dB值,则该比值用于计算SIR或SIR_PL的两个量相减。
IAB节点同时执行下游发送和上游发送时,其下游发送避免使用对父节点造成干扰的波束,或者下游发送采用对父节点干扰小的波束。
IAB节点收到父节点的反馈可以确定IAB节点下游发送对父节点造成干扰的波束。
IAB节点同时执行下游发送和上游发送,IAB节点选择下游发送对应的波束使得IAB节点下游发送不干扰父节点或者IAB节点下游发送对父节点产生较小的干扰。其中,父节点为IAB节点配置的干扰测量集合不限于CSI-RS也可以是SSB,DMRS、PTRS等信号。
以上只是描述本申请的具体实施方式,对此实施例的扩充包括以下方面,这些扩充也在本申请保护范围之内。
在一个实施例中,在上述实施例的基础上,细化测量波束:CSI-RS resource set内细分resource反馈。
IAB节点向父节点上报父节点需要测量的CSI-RS,IAB节点向父节点上报一套CSI-RS resource set。CSI-RS resource set包含一个或多个CSI-RS resource。上报方式如上述实施例提供的方法,本实施例中不再赘述。
父节点根据IAB节点上报的CSI-RS resource set中各个CSI-RS resource进行测量,并将测量值反馈给IAB节点。父节点以CSI-RS resource为粒度向IAB节点反馈。
父节点反馈以下之一或其组合表示父节点在对应CSI-RS resource set索引和CSI-RS resource索引测量到IAB节点下游发送的干扰:
父节点反馈RSRP_i大于或等于门限threshold_1所对应的CSI-RS resource set索引和CSI-RS resource索引;父节点反馈RSRQ_s或SINR或CQI小于或等于门限threshold_2所对应的CSI-RS resource set索引和CSI-RS resource索引;父节点反馈PL_i小于或等于门限threshold_3所对应的CSI-RS resource set索引和CSI-RS resource索引;父节点反馈SIR_PL小于或等于门限threshold_4所对应的CSI-RS resource set索引和CSI-RS resource索引;父节点反馈SIR小于或等于门限threshold_5所对应的CSI-RS resource set索引和CSI-RS resource索引。
当父节点反馈以下情况之一或其组合则IAB节点认为对应时域资源索引对 应的下游发送未对父节点造成大的干扰:
父节点反馈RSRP_i小于或等于门限threshold_1所对应的CSI-RS resource set索引和CSI-RS resource索引;父节点反馈RSRQ_s或SINR或CQI大于或等于门限threshold_2所对应的CSI-RS resource set索引和CSI-RS resource索引;父节点反馈PL_i大于或等于门限threshold_3所对应的CSI-RS resource set索引和CSI-RS resource索引;父节点反馈SIR_PL小于或等于门限threshold_4所对应的CSI-RS resource set索引和CSI-RS resource索引;父节点反馈SIR小于或等于门限threshold_5所对应的CSI-RS resource set索引和CSI-RS resource索引。
IAB节点接收到父节点反馈的测量值可以确定对父节点造成干扰的CSI-RS resource set索引和CSI-RSresource索引或者可以确定未对父节点造成干扰的CSI-RS resource set索引和CSI-RS resource索引,IAB节点同时执行下游发送和上游发送时,其下游发送避免使用对父节点造成干扰的波束,或者下游发送采用对父节点没有干扰或干扰小的波束。
可选地,CSI-RS resource set的不同CSI-RS resource可对应不同的时域位置。IAB节点下游发送的CSI-RS可时分复用(Time Division Multiplexing,TDM)采用各自的波束发送。父节点可在不同时刻测量IAB节点的下游发送对父节点的干扰,父节点按照如上所述的方法反馈测量值,IAB节点在同时执行下游发送和上游发送时,IAB节点的下游发送避免采用对父节点造成干扰的波束。由于CSI-RS resource set的不同CSI-RS resource对应不同的时间资源,这种方式在IAB节点的下游发送不具备多波束同时发送能力的场景中可通过IAB节点在不同时间执行各自波束方向的下游发送达到父节点测量IAB节点的下游发送对父节点干扰测量的目的。IAB节点收到父节点的反馈,IAB节点即可确定IAB节点的下游发送对父节点造成干扰的波束,或IAB节点确定IAB节点的下游发送对父节点未造成干扰的波束。由此,IAB节点同时执行下游发送和上游发送时,其下游发送避免使用对父节点造成干扰的波束,或者下游发送采用对父节点干扰小的波束。
当IAB节点仅给父节点配置了一个CSI-RS resource set时,父节点可以基于上述反馈仅反馈set内的resource编号。
在一个实施例中,在上述实施例的基础上细化测量波束。
IAB节点按照上述实施例的方式上报待测量的CSI-RS resource set,一个CSI-RS resource set对应一个或多个CSI-RS resource。
父节点针对CSI-RS resource set索引和CSI-RS resource进行测量。一个 resource可以包括一个或多个参考信号端口。父节点对CSI-RS resource set索引的resource中的各个参考信号端口进行测量。基于上述实施例,本实施例按照端口为粒度反馈。反馈方法采用上述实施例所述的方法。本实施例中不再赘述。
父节点反馈以下之一或其组合表示父节点在对应的CSI-RS resource set索引、CSI-RS resource索引和参考信号端口索引测量到IAB节点下游发送的干扰:
父节点反馈RSRP_i大于或等于门限threshold_1的CSI-RS resource set索引、CSI-RS resource索引和参考信号端口索引;父节点反馈RSRQ_s或SINR或CQI小于或等于门限threshold_2的CSI-RS resource set索引、CSI-RS resource索引和参考信号端口索引;父节点反馈PL_i小于或等于门限threshold_3的CSI-RS resource set索引、CSI-RS resource索引和参考信号端口索引;父节点反馈SIR_PL小于或等于门限threshold_4的CSI-RS resource set索引、CSI-RS resource索引和参考信号端口索引;父节点反馈SIR小于或等于门限threshold_5的CSI-RS resource set索引、CSI-RS resource索引和参考信号端口索引。
当父节点反馈以下情况之一或其组合则IAB节点认为CSI-RS resource set索引、CSI-RS resource索引和参考信号端口索引对应的下游发送传输未对父节点造成大的干扰:
父节点反馈RSRP_i小于或等于门限threshold_1的CSI-RS resource set索引、CSI-RS resource索引和参考信号端口索引;父节点反馈RSRQ_s或SINR或CQI大于或等于门限threshold_2的CSI-RS resource set索引、CSI-RS resource索引和参考信号端口索引;父节点反馈PL_i大于或等于门限threshold_3的CSI-RS resource set索引、CSI-RS resource索引和参考信号端口索引;父节点反馈SIR_PL小于或等于门限threshold_4的CSI-RS resource set索引、CSI-RS resource索引和参考信号端口索引;父节点反馈SIR小于或等于门限threshold_5的CSI-RS resource set索引、CSI-RS resource索引和参考信号端口索引。
IAB节点接收到父节点反馈的测量值可以确定对父节点造成干扰的CSI-RS resource set索引、CSI-RS resource索引和参考信号端口索引或者可以确定未对父节点造成干扰的CSI-RS resource set索引、CSI-RS resource索引和参考信号端口索引,IAB节点同时执行下游发送和上游发送时,其下游发送避免使用对父节点造成干扰的CSI-RS resource set索引、CSI-RS resource索引和参考信号端口索引对应的波束,或者下游发送采用对父节点干扰小的CSI-RS resource set索引、CSI-RS resource索引和参考信号端口索引对应的波束。
当IAB节点仅给父节点配置了一个CSI-RS resource set,父节点可以基于上述反馈仅反馈set内的对应的resource编号和对应端口。当IAB节点仅给父节点配置了一个CSI-RS resource set且resource set仅有一个resource,父节点可以基 于上述反馈仅反馈set内对应端口。
在一个实施例中,IAB节点向父节点请求SRS资源,IAB节点向子节点或UE配置SRS资源和IAB节点的下游CSI-RS资源的关联关系,子节点或UE执行测量,子节点或UE将测量值上报给IAB节点。IAB节点接收子节点或UE的上报值,IAB节点同时执行上游发送和下游发送时避免采用对子节点或UE造成干扰的波束进行上游发送。
IAB节点上游发送可能会对IAB节点下游发送的接收者子节点或UE产生干扰。IAB节点可为子节点或UE配置SRS。
IAB节点向父节点请求IAB上游发送参考信号资源。可选地,IAB节点向父节点请求周期性的SRS。
IAB节点为子节点或UE配置测量配置。其中,测量配置信息包含一个或多个资源集合,每个资源集合包含一个或多个参考信号资源配置;参考信号资源配置包括如下至少之一:时间配置,频域配置,序列配置,发射功率,准共址参考信号配置,接收波束指示。
参考信号可以是SRS或DMRS;测量结果包括如下至少之一:RSRP,目标链路质量,路损,SIR。
RSRP可以是UE或子节点的测量配置中的参考信号的RSRP,也可以是UE或子节点测量的IAB节点下游发送的参考信号(例如CSI-RS,SSB,DMRS,PTRS等)的RSRP。
目标链路质量是UE或子节点测量的IAB节点下游发送的参考信号的RSRQ或SINR或CQI。
SIR是Ps和Pi的比值,其中,Ps为UE或子节点测量的IAB节点下游发送的参考信号的接收功率,Pi为UE或子节点测量的IAB节点上游发送的参考信号接收功率。功率经常以dB值表示,因此功率的比值对应着dB值的差值。
路损是UE或子节点按照测量配置中的资源测量的路损,或者UE或子节点测量的IAB节点和UE或子节点之间的路损。
UE或子节点向IAB节点的反馈量包括如下至少之一:资源索引,对应资源的路损,对应资源的RSRP,父节点接收的IAB节点上游发送的参考信号的RSRQ,父节点接收的IAB节点上游发送的参考信号的SINR。
IAB节点同时执行下游发送和上游发送,其下游发送避开对父节点干扰大的波束。
IAB节点为UE或子节点配置的测量配置包括一个或多个SRS资源集合。
SRS资源集包含一个或多个SRS资源配置,或者SRS资源集合包含一个或多个SRS资源配置和SRS资源集合对应的接收波束指示。一个SRS资源配置包括如下之一或其组合:SRS资源的频域配置;SRS资源的序列配置;SRS资源的时间配置;SRS的发射功率;SRS资源准共址参考信号配置;SRS资源接收波束指示。
频域配置包括如下至少之一:参考信号占据的带宽,参考信号的频域密度,参考信道的子载波间隔,参考信号的频域偏移量。
SRS资源的序列配置包括如下至少之一:参考信号的序列类型,参考信号序列生成方式。
时间配置包括如下至少之一:SRS的周期,SRS的时间偏移量,SRS的有效测量时间,SRS信号与IAB节点下游发送的定时偏移量(定时偏移量有待细化),时间限制是否开启。
SRS的周期(记为P)是指IAB节点以P周期性发送参考信号,如图4所示。参考信号的时间偏移量是指以周期P起点为边界的时间偏移量,时间偏移量可以是若干无线帧,若干子帧,若干时隙,若干OFDM符号中的至少之一,如图5。参考信号的有效测量时间指示父节点执行参考信号测量的有效时间。例如IAB节点在有效时间之外没有发送参考信号或波束发生了改变或参考信号的功率发生了改变,则子节点或UE不应测量这些时域位置的参考信号,因此需要指示子节点或UE执行测量的有效时间,如图6所示。
参考信号的发射功率为IAB节点上游发送的参考信号的发射功率。
UE或子节点按照IAB节点的测量配置的资源集合的接收波束测量IAB节点的参考信号。若IAB节点的测量配置的资源集合不包含接收波束则UE或子节点按照与IAB节点通信的历史接收波束进行相应的测量。
UE或子节点将满足门限的测量量对应的资源集合索引反馈给IAB节点。其中满足门限为如下至少之一:测量量大于或等于特定门限,测量量小于或等于特定门限,测量量大于特定门限,测量量小于特定门限。
UE或子节点测量资源集合中参考信号的RSRP记为RSRP_i,UE或子节点将满足门限的RSRP_i对应的资源集合索引反馈给IAB节点,对应RSRP_i的门限记为threshold_1。RSRP_i可以是一个资源集合中不同资源的参考信号RSRP的平均值,或者为一个资源集合中不同资源的参考信号RSRP的最小值,或者为一个资源集合中不同资源的参考信号RSRP的最大值。可选的,UE或子节点将满足门限的RSRP_i数值反馈给IAB节点。
UE或子节点测量IAB节点下游发送的参考信号对应的信道质量,信道质量可通过以下量之一表征:RSRQ,SINR,CQI,对应的测量量分别记为RSRQ_s,SINR,CQI,UE或子节点将满足门限的测量量对应的资源集合的索引反馈给IAB节点,对应RSRQ_s或SINR或CQI的门限记为threshold_2。可选的,UE或子节点将满足门限的RSRQ_s数值,SINR数值或CQI数值反馈给IAB节点。
UE或子节点测量资源集合中参考信号的路损记为PL_i,UE或子节点将满足门限的测量量对应资源集合的索引反馈给IAB节点,对应PL_i的门限记为threshold_3。PL_i可以是一个资源集合中不同资源的参考信号路损的平均值,或者当UE或子节点反馈大于或等于门限值的路损对应的资源集合索引时,则路损还可以为一个资源集合中不同资源的参考信号路损的最小值,或者当UE或子节点反馈小于或等于门限值的路损对应的资源集合索引时,则路损还可以为一个资源集合中不同资源的参考信号路损的最大值。可选的,UE或子节点可以将满足门限的PL_i数值反馈给IAB节点。
UE或子节点测量IAB节点上游发送的参考信号对应的路损记为PL_s,UE或子节点测量资源集合中参考信号的路损记为PL_i,PL_s和PL_i之比记为SIR_PL=PL_s/PL_i。UE或子节点将满足门限的SIR_PL对应的资源集合索引反馈给IAB节点,对应SIR_PL的门限记为threshold_4。可选的,UE或子节点可以将满足门限的SIR_PL数值反馈给IAB节点。
UE或子节点测量IAB节点下游发送的参考信号对应的信号接收功率记为Ps,例如UE或子节点测量IAB节点下游发送的CSI-RS信号接收功率。UE或子节点测量资源集合中参考信号的信号接收功率记为Pi,Ps与Pi的比值记为SIR=Ps/Pi,UE或子节点将满足门限的SIR对应的资源集合索引反馈给IAB节点,对应SIR的门限记为threshold_5。可选的,UE或子节点可以将满足门限的SIR数值反馈给IAB节点。
当IAB节点收到UE或子节点的反馈量为以下情况之一或其组合则IAB节点认为对应资源集合索引的IAB下游发送对UE或子节点接收造成干扰:
UE或子节点反馈RSRP_i大于或等于threshold_1的对应的资源集合索引;UE或子节点反馈RSRQ_i小于或等于threshold_2对应资源集合索引;UE或子节点反馈PL_i小于或等于threshold_3的对应资源集合索引;UE或子节点反馈SIR_PL小于或等于threshold_4的对应资源集合索引;UE或子节点反馈SIR小于或等于threshold_5的对应资源集合索引。
当IAB节点收到UE或子节点的反馈量为以下情况之一或其组合则IAB节点认为对应资源集合索引的IAB下游发送未对UE或子节点接收造成大的干扰:
UE或子节点反馈RSRP_i小于或等于threshold_1对应资源集合索引;UE或子节点反馈RSRQ_i大于或等于threshold_2对应资源集合索引;UE或子节点反馈PL_i大于或等于threshold_3对应资源集合索引;UE或子节点反馈SIR_PL小于或等于threshold_4对应资源集合索引;UE或子节点反馈SIR小于或等于threshold_5的对应资源集合索引。
上述SIR或SIR_PL定义为两个数量的比值,若相比的两个数值为dB值,则该比值用于计算SIR或SIR_PL的两个量相减。
IAB节点收到UE或子节点的反馈可以确定IAB节点上游发送对UE或子节点造成干扰的波束。
IAB节点同时执行下游发送和上游发送,其上游发送避免使用对UE或子节点造成干扰的波束,或者上游发送采用对UE或子节点干扰小的波束。
以上只是描述本申请的具体实施方式,对此实施例的扩充包括以下方面,这些扩充也在本申请保护范围之内。
测量配置的信号类型不限于CSI-RS,还可以是SSB、DMRS、PTRS等信号。
父节点配置的SRS资源数量为IAB节点请求的SRS资源数量,或者父节点配置的SRS数量小于IAB节点请求的SRS资源数量。
在一个实施例中,IAB节点向父节点请求上游接收波束方向,parent node为IAB节点配置IAB节点的上游接收波束方向
IAB节点同时执行上游接收和下游接收,即IAB节点接收父节点发送的数据同时,IAB节点还接收子节点或UE发送的数据。其中,父节点发送的数据对应着IAB节点上游接收操作,子节点或UE发送的数据对应着IAB节点下游接收操作。
如图9所示,图9中IAB节点同时接收两个链路(下游接收和上游接收)的数据,父节点发送的数据可能对下游的接收造成干扰。
IAB节点向父节点上报一个或多个接收波束集合;父节点向IAB节点配置一个或多个接收波束集合;父节点为IAB节点配置的接收波束集合包括以下之一:一个或多个接收波束,接收波束对应的时间,接收波束集合对应的时间。
IAB节点同时执行下游接收和上游接收时,IAB节点调度UE或子节点使得父节点的发送数据对IAB节点的下游接收产生较小干扰或不产生干扰;或者IAB节点调度UE或子节点使得UE或子节点的发送数据对IAB节点的上游接收产生较小干扰或不产生干扰;或者IAB节点调度UE或子节点使得UE或子节点的发 送数据对IAB节点的上游接收产生较小干扰或不产生干扰且父节点的发送数据对IAB节点的下游接收产生较小干扰或不产生干扰。
IAB节点DU采用一个或多个接收波束测量可以是以时分的方式在多个接收波束上测量,若IAB节点具备多波束同时测量的能力则IAB节点可同时在多个接收波束上测量父节点或UE或子节点的发送数据。
例如父节点向IAB节点配置IAB节点上游接收的接收波束集合,记为TCI-state-set-1和TCI-state-set-2,其中,TCI-state-set-1的接收波束对应的时间为time-TCI-state-set-1,TCI-state-set-2的接收波束对应的时间为time-TCI-state-set-2。IAB节点收到父节点的配置确定在time-TCI-state-set-1对应的时间内采用TCI-state-set-1对应波束接收父节点发送的数据。基于父节点的配置,IAB节点在time-TCI-state-set-1对应的时间内调度UE或子节点。可选地,IAB节点在time-TCI-state-set-1对应的时间内调度UE或子节点发送数据使得传输满足以下之一或其组合:UE或子节点发送的数据对IAB节点上游接收没有干扰或干扰小;父节点的发送对IAB节点下游接收没有干扰或干扰小。
或者,父节点为IAB节点配置的接收波束集合的接收波束配置了各自的时间,则IAB节点对不同接收波束对应的时间取交集,确定对应时间的接收波束。
例如接收波束集合1的接收波束为波束1和波束2,接收波束1对应的时间为t1,接收波束2对应的时间为t2,t1和t2的重合部分即为t-overlap。则IAB节点可判断t1中除去t-overlap的时间对应接收波束1,在t-overlap时间对应接收波束1和接收波束2,在t2中出去t-overlap的时间对应接收波束2。IAB节点根据对应时间的接收波束调度UE或子节点。基于父节点的配置,IAB节点在t1对应的时间内调度UE或子节点。可选地,IAB节点在t1对应的时间内调度UE或子节点发送数据使得传输满足以下之一或其组合:UE或子节点发送的数据对IAB节点上游接收没有干扰或干扰小;父节点的发送对IAB节点下游接收没有干扰或干扰小。
在一个实施例中,IAB节点向父节点请求上游接收波束方向,parent node为IAB节点配置IAB节点的上游接收对应的准共址参考信号配置或空间接收参数。
IAB节点同时执行上游接收和下游接收,即IAB节点接收父节点发送的数据同时,IAB节点还接收子节点或UE发送的数据。其中,父节点发送的数据对应着IAB节点上游接收操作,子节点或UE发送的数据对应着IAB节点下游接收操作。
如图1所示,图1中IAB节点同时接收两个链路(下游接收和上游接收)的数据,父节点发送的数据可能对下游的接收造成干扰。
IAB节点向父节点上报测量配置;父节点进行测量,父节点向IAB节点反馈测量结果;IAB节点同时执行上游接收和下游接收时,下游发送采用对父节点干扰小的波束。
父节点为IAB节点配置的接收波束集合包括以下之一:一个或多个准共址参考信号配置集合或空间接收参数集合,准共址参考信号配置集合或空间接收参数集合对应的时间,准共址参考信号配置集合或空间接收参数集合对应的时间。
IAB节点同时执行下游接收和上游接收时,IAB节点调度UE或子节点使得父节点的发送数据对IAB节点的下游接收产生较小干扰或不产生干扰;或者IAB节点调度UE或子节点使得UE或子节点的发送数据对IAB节点的上游接收产生较小干扰或不产生干扰;或者IAB节点调度UE或子节点使得UE或子节点的发送数据对IAB节点的上游接收产生较小干扰或不产生干扰且父节点的发送数据对IAB节点的下游接收产生较小干扰或不产生干扰。
IAB节点DU采用一个或多个准共址参考信号配置或空间接收参数测量可以是以时分的方式在多个接收波束上测量,若IAB节点具备多波束同时测量的能力则IAB节点可同时在多个接收波束上测量父节点或UE或子节点的发送数据。
例如父节点向IAB节点配置IAB节点上游的空间接收参数为接收波束集合,记为TCI-state-set-1和TCI-state-set-2,其中,TCI-state-set-1的接收波束对应的时间为time-TCI-state-set-1,TCI-state-set-2的接收波束对应的时间为time-TCI-state-set-2。IAB节点收到父节点的配置确定在time-TCI-state-set-1对应的时间内采用TCI-state-set-1对应波束接收父节点发送的数据。基于父节点的配置,IAB节点在time-TCI-state-set-1对应的时间内调度UE或子节点。可选地,IAB节点在time-TCI-state-set-1对应的时间内调度UE或子节点发送数据使得传输满足以下之一或其组合:UE或子节点发送的数据对IAB节点上游接收没有干扰或干扰小;父节点的发送对IAB节点下游接收没有干扰或干扰小。
或者,父节点为IAB节点配置的接收波束集合的接收波束配置了各自的时间,则IAB节点对不同接收波束对应的时间取交集,确定对应时间的接收波束。
例如接收波束集合1的接收波束为波束1和波束2,接收波束1对应的时间为t1,接收波束2对应的时间为t2,t1和t2的重合部分即为t-overlap。则IAB节点可判断t1中除去t-overlap的时间对应接收波束1,在t-overlap时间对应接 收波束1和接收波束2,在t2中出去t-overlap的时间对应接收波束2。IAB节点根据对应时间的接收波束调度UE或子节点。基于父节点的配置,IAB节点在t1对应的时间内调度UE或子节点。可选地,IAB节点在t1对应的时间内调度UE或子节点发送数据使得传输满足以下之一或其组合:UE或子节点发送的数据对IAB节点上游接收没有干扰或干扰小;父节点的发送对IAB节点下游接收没有干扰或干扰小。
在一个实施例中,在上述实施例的基础上父节点申请测量CSI-RS resource set或CSI-RS resource。
CU或OAM向父节点通知IAB节点的CSI-RS的资源配置,CSI-RS的资源配置包括如下至少之一:时间,频域,序列,发射功率,准共址参考信号配置或空间接收参数,如上述实施例所述。一个索引值对应一个CSI-RS resource set或者一个索引值对应一个CSI-RS资源或者对应一个CSI-RS资源中的一个或多个端口。父节点向IAB节点请求待测量的CSI-RS,父节点可通过CSI-RS资源配置的索引值请求测量不同的CSI-RS资源。CU或OAM或IAB节点向父节点通知IAB节点下游发送和IAB节点上游发送的定时偏差。
IAB节点按照父节点请求的CSI-RS资源配置的索引值或其子集发送对应的CSI-RS。
父节点测量IAB节点发送的CSI-RS resource,父节点将测量值反馈给IAB节点。父节点基于上述实施例以CSI-RS resource为粒度向IAB节点反馈。
父节点反馈以下之一或其组合表示父节点在对应CSI-RS resource set索引和CSI-RS resource索引测量到IAB节点下游发送对父节点的干扰:
父节点反馈RSRP_i大于或等于门限threshold_1所对应的CSI-RS resource set索引和CSI-RS resource索引;父节点反馈RSRQ_s或SINR或CQI小于或等于门限threshold_2所对应的CSI-RS resource set索引和CSI-RS resource索引;父节点反馈PL_i小于或等于门限threshold_3所对应的CSI-RS resource set索引和CSI-RS resource索引;父节点反馈SIR_PL小于或等于门限threshold_4所对应的CSI-RS resource set索引和CSI-RS resource索引;父节点反馈SIR小于或等于门限threshold_5所对应的CSI-RS resource set索引和CSI-RS resource索引。
当父节点反馈以下情况之一或其组合则IAB节点认为对应时域资源索引对应的下游发送未对父节点造成干扰:
父节点反馈RSRP_i小于或等于门限threshold_1所对应的CSI-RS resource set索引和CSI-RS resource索引;父节点反馈RSRQ_s或SINR或CQI大于或等 于门限threshold_2所对应的CSI-RS resource set索引和CSI-RS resource索引;父节点反馈PL_i大于或等于门限threshold_3所对应的CSI-RS resource set索引和CSI-RS resource索引;父节点反馈SIR_PL小于或等于门限threshold_4所对应的CSI-RS resource set索引和CSI-RS resource索引;父节点反馈SIR小于或等于门限threshold_5所对应的CSI-RS resource set索引和CSI-RS resource索引。
IAB节点接收到父节点反馈的测量值可以确定对父节点造成干扰的CSI-RS resource set索引和CSI-RSresource索引或者可以确定未对父节点造成干扰的CSI-RS resource set索引和CSI-RS resource索引,IAB节点同时执行下游发送和上游发送时,其下游发送避免使用对父节点造成干扰的波束,或者下游发送采用对父节点没有干扰或干扰小的波束。
可选地,CSI-RS resource set的不同CSI-RS resource可对应不同的时域位置。IAB节点下游发送的CSI-RS可TDM采用各自的波束发送。父节点可在不同时刻测量IAB节点的下游发送对父节点的干扰,父节点按照如上所述的方法反馈测量值,IAB节点在同时执行下游发送和上游发送时,IAB节点的下游发送避免采用对父节点造成干扰的波束。由于CSI-RS resource set的不同CSI-RS resource对应不同的时间资源,这种方式在IAB节点的下游发送不具备多波束同时发送能力的场景中可通过IAB节点在不同时间执行各自波束方向的下游发送达到父节点测量IAB节点的下游发送对父节点干扰测量的目的。IAB节点收到父节点的反馈,IAB节点即可确定IAB节点的下游发送对父节点造成干扰的波束,或IAB节点确定IAB节点的下游发送对父节点未造成干扰的波束。由此,IAB节点同时执行下游发送和上游发送时,其下游发送避免使用对父节点造成干扰的波束,或者下游发送采用对父节点干扰小的波束。
在一个实施中,父节点给IAB节点配置一个SRS资源和一个或者多个CSI-RS资源之间的对应关系,其中,所述IAB节点有能力同时发送所述一个SRS资源与所述一个或者多个CSI-RS资源。比如,所述SRS资源和所述一个或者多个CSI-RS资源所占的时域资源的交集可以非空。
实际配置过程中,所述SRS资源和所述一个或者多个CSI-RS资源所占的时域资源未必一定存在交叠,但是所述SRS资源对应的发送波束和所述一个或者多个CSI-RS资源对应的发送波束是所述IAB节点可同时发送的,即IAB节点有能力在相同的时域资源上发送SRS资源和所述一个或者多个CSI-RS资源。只是在测量阶段考虑到干扰或功率,所述SRS资源和所述一个或者多个CSI-RS资源所占的时域资源之间的交集可以非空也可以为空。
所述SRS资源是信道测量资源,所述CSI-RS资源是干扰测量资源。
所述SRS资源和CSI-RS资源都是IAB节点要发送的测量资源;如图10所示,所述SRS资源是IAB节点MT对应链路上的上行测量参考信号,所述CSI-RS资源是DU对应链路上的测量参考信号。
所述父节点为不同的SRS资源配置分别配置其对应的一个或者多个CSI-RS资源。
所述一个SRS资源和所述每个CSI-RS资源对应的ID不同,不同CSI-RS资源对应的ID也不同,比如所述ID对应IAB节点的发送天线索引/发送天线端口,或面板(panel)索引,一个panel一个时刻只能发送一个波束,一个panel的不同发送波束只能时分复用,不同panel的波束可以同时发送。
或者父节点给IAB节点配置一个SRS资源集合和一个或者多个CSI-RS资源之间的对应关系,所述SRS资源集合中的所有SRS资源以及所述一个或者多个CSI-RS资源是所述IAB节点能同时发送的。所述SRS资源集合是MT链路上的non codebook SRS set。
在一个实施例中,父节点给IAB节点配置一个SRS资源和一个或者多个CSI-RS资源集合之间的对应关系,其中,所述IAB节点有能力同时发送SRS资源和所述一个CSI-RS资源集合中的一个CSI-RS资源,或所述IAB节点有能力同时发送SRS资源和所述多个CSI-RS资源集合中每个CSI-RS资源集合中的一个CSI-RS资源,所述IAB节点不能同时发送一个CSI-RS资源集合中的不同CSI-RS资源,不同CSI-RS资源集合中的CSI-RS资源和所述SRS资源是IAB节点能同时发送的。
所述SRS资源是信道测量资源,所述CSI-RS资源是干扰测量资源。
所述SRS资源和CSI-RS资源都是IAB节点要发送的测量资源。
所述SRS资源是MT链路上的上行测量参考信号,所述CSI-RS资源是DU链路上的测量参考信号。
所述父节点为不同的SRS资源分别配置其对应的一个或者多个CSI-RS资源。
所述一个SRS资源和所述每个CSI-RS资源集合对应的ID不同,不同CSI-RS资源集合对应的ID也不同,比如所述ID对应IAB节点的发送天线索引,或panel索引,一个panel一个时刻只能发送一个波束,一个panel的不同发送波束只能时分复用,不同panel的波束可以同时发送。所述SRS资源集合是MT链路上的非码本SRS set。
在一个实施例中,父节点给IAB节点配置MT链路上的上行信道或信号的空间关系信息,所述空间关系信息包括DU链路上的下行测量参考信号资源索引,IAB节点根据所述DU链路上的下行测量参考信号的空间发送滤波器得到发送所述MT链路上的上行信道或信号的空间发送滤波器,此处空间发送滤波器也可以称为发送波束。
比如父节点给IAB节点配置的MT链路上的SRS资源的空间关系信息中配置DU链路上的CSI-RS资源,即指示IAB节点采用和DU链路上的CSI-RS资源相同的发送波束发送所述SRS资源。
在一个实施例中,父节点给IAB节点配置MT链路上的下行信道或信号的准共址参考信号信息,所述准共址参考信号信息包括DU链路的上行测量参考信号资源索引。
比如父节点给IAB节点配置的MT链路上的CSI-RS资源的关联空间接收参数的准共址参考信号信息中配置DU链路上的SRS资源,即指示IAB节点采用和DU链路上的SRS资源相同的接收波束接收所述MT链路上的CSI-RS资源。
在一个实施例中,IAB节点向父节点上报需要父节点测量的时频资源。当IAB节点同时执行upstream Tx和downstream Tx时可能相互干扰。例如IAB节点的downstream Tx干扰父节点接收IAB节点的upstream Tx。为解决这个问题,给出了如下方案。
IAB节点向父节点上报测量配置信息;父节点进行测量,父节点向IAB节点反馈测量结果;IAB节点同时执行upstream Tx和downstream Tx时,downstream Tx采用对父节点干扰小的波束。
测量配置信息包含一个或多个资源集合,每个资源集合包含一个或多个待测量时频资源配置信息。
时频资源配置信息包括如下至少之一:时间,频域,发射功率,接收波束指示,时间限制是否开启,准共址参考信号。
测量量包括如下至少之一:信号接收功率,目标链路质量,路损值,SIR,SINR。
信号接收功率可以是测量配置中对应待测量时频资源位置上的接收功率,也可以是IAB节点upstream Tx的待测量时频资源位置上的接收功率。
目标链路质量是父节点接收IAB节点upstream Tx的链路质量,包括参考信号的RSRQ,参考信号的SINR或参考信号的CQI。
SIR是Ps和Pi的比值,其中,Ps为父节点测量的IAB节点upstream Tx的 参考信号的接收功率,Pi为父节点测量的IAB节点所上报的待测量时频资源位置对应接收功率。功率经常以dB值表示,因此功率的比值对应着dB值的差值。
路损是父节点按照测量配置中的资源测得的待测量时频资源对应的路损值,或者父节点测量的IAB节点和父节点之间的路损。
父节点给IAB节点的反馈量包括如下至少之一:资源索引,对应资源的接收功率,对应资源的路损,对应资源的接收功率,父节点接收IAB节点upstream Tx的参考信号的RSRQ或SINR或CQI。
父节点基于以下方式至少之一确定反馈量:反馈满足门限条件的量;反馈满足门限条件的量以及一个或多个其他相关量。
IAB节点同时执行downstream Tx和upstream Tx,其downstream Tx避开对父节点干扰大的波束。
时频资源配置的时间配置包括如下至少之一:待测量时频资源的周期,待测量时频资源的时间偏移量,待测量时频资源的有效测量时间,IAB节点downstream Tx与IAB节点upstream Tx的定时偏移量。
待测量时频资源的周期(记为P)为IAB节点以周期P在对应的待测量时频资源上潜在地发送数据,如图4所示。待测量时频资源的时间偏移量是指以周期P起点为边界的时间偏移量,时间偏移量可以是若干无线帧,若干子帧,若干时隙,若干OFDM符号中的至少之一,如图5所示。待测量时频资源的有效测量持续时间指示父节点执行待测量时频资源测量的有效时间。例如,若IAB节点在有效时间之外没有发送功率或波束发生了改变,则IAB节点告知父节点待测量时频资源测量的有效时间,如图6所示。
待测量时频资源的配置信息中包括所述测量待测量时频资源的时间限制(time restriction)是否开启的信息。当时间限制开启的情况下,IAB节点在所述CSI-RS的每个发送周期可以改变所述待测量时频资源的发送参数,比如发送波束,发射功率。待测量时频资源与IAB节点upstream Tx的定时偏移量是指IAB节点downstream的发送定时和IAB节点upstream Tx的发送定时之间的时间偏差。定时偏差量为若干OFDM符号或若干时域样点(Tc或Ts)或若干OFDM符号和若干时域样点。IAB节点的upstream Tx和IAB节点的downstream Tx可能存在定时偏差。IAB节点在向父节点上报待测量时频资源时,IAB节点还向父节点上报IAB节点的upstream Tx和IAB节点的downstream Tx的定时偏差,偏差量为IAB节点的upstream Tx timing和IAB节点的downstream Tx timing之差或IAB节点的downstream Tx timing和IAB节点的upstream Tx timing之差。父节点以接收的IAB节点upstream Tx的定时为基准推后或提前定时偏移量测量 IAB节点上报的待测量时频资源,如图7所示。
待测量时频资源的频域配置包括如下至少之一:待测量时频资源的载波信息,待测量时频资源占据的带宽,待测量时频资源的频域密度,待测量时频资源的子载波间隔,待测量时频资源的频域偏移量。
待测量时频资源的载波信息是绝对的载波编号或者是待测量时频资源的载波与IAB节点MT对应载波的载波偏移量,载波偏移量为RB数或子载波(SC,Subcarrier Carrier)数或资源块(RB,Resource Block)数和SC数。
参考信号的频域偏移量是指参考信号在RB内的偏移量。
载波偏移量的RB大小和SC大小由参考子载波(reference SC)间隔确定,例如参考子载波取值为15*2^u,u为大于或等于0的自然数,u可以是节点间约定好的数值,或者是父节点和IAB节点之间的通信过程所采用的数值,或者是IAB节点或OAM或CU向父节点通知的数值。
待测量时频资源的发射功率为IAB节点的downstream Tx在对应时频资源上的发射功率。
父节点按照IAB节点上报的测量配置的资源集合对应的接收波束,测量IAB节点上报的测量配置的资源集合中的待测量时频资源或IAB节点upstream Tx的参考信号。比如IAB节点上报的测量配置中包括待测量时频资源,所述待测量时频资源的接收波束参数是父节点侧的接收波束,比如所述待测量时频资源的接收波束参数是对应upstream Tx上的SRS资源索引,即父节点采用接收upstream Tx的SRS资源对应的接收波束测量IAB节点上报的待测量时频资源。
可选地,待测量时频资源的准共址类型D(Quasi-Colocation-TypeD,QCL-TypeD)的准共址参考信号是upstream Tx上的信号或信道,例如upstream Tx的SRS资源,即在待测量时频资源的关联QCL-TypeD的准共址参考信号的配置信息中包括upstream Tx上的SRS资源。
可选地,待测量时频资源的QCL-TypeD的准共址参考信号是downstream Tx上的信号或信道,例如downstream Tx的SSB资源,即在CSI-RS资源的关联QCL-TypeD的准共址参考信号的配置信息中包括downstream Tx上的SSB资源。
通知待测量时频资源对应的信道类型,例如对应的时频资源为IAB node downstream Tx的控制信道,或者对应的时频资源为IAB node downstream Tx的业务信道,其中,该业务信道可以为半静态的业务信道。
可选地,CSI-RS资源的QCL-TypeA的准共址参考信号是upstream Tx上的信号或信道,例如upstream Tx的SRS资源,即在CSI-RS资源的关联QCL-TypeA的准共址参考信号的配置信息中包括upstream Tx上的SRS资源。
可选地,CSI-RS资源的QCL-TypeA的准共址参考信号是downstream Tx上的信号或信道,例如downstream Tx的SSB资源,即在CSI-RS资源的关联QCL-TypeA的准共址参考信号的配置信息中包括downstream Tx上的SSB资源。
若IAB节点上报的测量配置的待测量时频资源配置不包含接收波束,则父节点按照与IAB节点的历史接收波束进行相应的测量。测量量包括如下至少之一:RSRP,RSRQ,SINR,路损,SIR。
父节点将资源集合索引反馈给IAB节点,所述反馈的待测量时频资源集合索引是父节点的接收性能满足门限对应的待测量时频资源所对应的集合索引,其中,满足门限为如下至少之一:测量量大于或等于特定门限,测量量小于或等于特定门限,测量量大于特定门限,测量量小于特定门限。
父节点测量资源集合中待测量时频资源的接收功率记为P_i,父节点将满足门限的P_i对应的资源集合索引反馈给IAB节点,对应P_i的门限记为threshold_1。P_i可以是一个资源集合中不同资源的参考信号RSRP的平均值,或者为一个资源集合中不同资源的参考信号RSRP的最小值,或者为一个资源集合中不同资源的参考信号RSRP的最大值。可选的,父节点将满足门限的P_i数值反馈给IAB节点。
父节点测量IAB节点upstream Tx的参考信号的信道质量,信道质量可通过以下量之一表征:RSRQ,SINR,CQI,RSRP,对应的测量量分别记为RSRQ_s,SINR,CQI,父节点将满足门限的测量量对应的资源集合的索引反馈给IAB节点,对应RSRQ_s或SINR或CQI的门限记为threshold_2。可选的,父节点将满足门限的RSRQ_s数值,SINR数值或CQI数值反馈给IAB节点。
父节点测量资源集合中待测量时频资源对应路损记为PL_i,父节点将满足门限的PL_i对应的资源集合索引反馈给IAB节点,对应PL_i的门限记为threshold_3。PL_i可以是一个资源集合中不同资源的待测量时频资源对应路损的平均值,或者当父节点反馈大于或等于,或大于门限值的路损对应的资源集合索引时,则路损还可以为一个资源集合中待测量时频资源对应路损的最小值,或者当父节点反馈小于或等于,或小于门限值的路损对应的资源集合索引时,则路损还可以为一个资源集合中待测量时频资源对应路损的最大值。可选的,父节点可以将满足条件的PL_i数值反馈给IAB节点。
父节点测量IAB节点upstream Tx的参考信号对应的路损记为PL_s,父节点测量资源集合中待测量时频资源的路损记为PL_i,PL_s和PL_i之比记为SIR_PL=PL_s/PL_i。父节点将满足门限的SIR_PL对应的资源集合索引反馈给IAB节点,对应SIR_PL的门限记为threshold_4。可选的,父节点可以将满足门限的SIR_PL数值反馈给IAB节点。
父节点测量IAB节点upstream Tx的参考信号对应的信号接收功率记为Ps,例如父节点测量IAB节点upstream Tx的SRS信号接收功率。父节点测量资源集合中待测量时频资源的信号接收功率记为Pi,Ps与Pi的比值记为测量量SIR=Ps/Pi,父节点将满足门限的SIR对应的资源集合索引反馈给IAB节点,对应SIR的门限记为threshold_5。可选的,父节点将满足门限的SIR数值反馈给IAB节点。
当IAB节点收到父节点的反馈量为以下情况之一或其组合则IAB节点认为对应资源集合索引的IAB downstream Tx对父节点Rx造成干扰:
父节点反馈P_i大于或等于threshold_1对应的资源集合索引;父节点反馈RSRQ_s或SINR或CQI小于或等于threshold_2对应的资源集合索引;父节点反馈PL_i小于或等于threshold_3对应的资源集合索引;父节点反馈SIR_PL小于或等于threshold_4的对应的资源集合索引;父节点反馈SIR小于或等于threshold_5的对应的资源集合索引。
当IAB节点收到父节点的反馈量为以下情况之一或其组合则IAB节点认为对应资源集合索引的IAB downstream Tx没有对父节点Rx造成干扰:
父节点反馈P_i小于或等于threshold_1对应的资源集合索引;父节点反馈RSRQ_s或SINR或CQI大于或等于threshold_2对应的资源集合索引;父节点反馈PL_i大于或等于threshold_3对应资的源集合索引;父节点反馈SIR_PL小于或等于threshold_4对应的资源集合索引;父节点反馈SIR小于或等于threshold_5的对应的资源集合索引。
上述SIR或SIR_PL定义为两个数量的比值,若相比的两个数值为dB值,则该比值用于计算SIR或SIR_PL的两个量相减。
IAB节点收到父节点的反馈可以确定IAB节点downstream Tx对父节点造成干扰的波束。
IAB节点同时执行downstream Tx和upstream Tx,IAB节点选择downstream Tx对应的波束使得IAB节点downstream Tx不干扰父节点或者IAB节点downstream Tx对父节点产生较小的干扰。
以上只是描述本申请的具体实施方式,对此实施例的扩充包括以下方面,这些扩充也在本申请保护范围之内。
测量配置的信号类型不限于CSI-RS,还可以是SSB、DMRS、PTRS等信号。
在一个实施例中,IAB节点向子节点或UE配置SRS资源和CSI-RS资源的 关联关系,子节点或UE执行测量操作,子节点或UE将测量值上报给IAB节点。IAB节点接收子节点或UE的上报值,IAB节点同时执行upstream Tx和downstream Tx时避免采用对子节点或UE造成干扰的波束进行upstream Tx。
IAB节点upstream Tx可能会对IAB节点downstream Tx的接收者子节点或UE产生干扰。IAB节点可为子节点或UE配置SRS。
IAB节点为子节点或UE配置测量配置。
测量配置信息包含一个或多个资源集合,每个资源集合包含一个或多个参考信号配置信息;参考信号配置信息包括如下至少之一:时间配置,频域配置,序列配置,发射功率,接收波束指示。
参考信号可以是SRS或DMRS。测量量包括如下至少之一:RSRP,目标链路质量,路损值,SIR。
RSRP可以是UE或子节点的测量配置中的参考信号的RSRP,也可以是UE或子节点测量的IAB节点downstream Tx的参考信号(例如CSI-RS,SSB,DMRS,PTRS等)的RSRP。
目标链路质量是UE或子节点测量的IAB节点downstream Tx的参考信号的RSRQ或SINR或CQI。
SIR是Ps和Pi的比值,其中,Ps为UE或子节点测量的IAB节点downstream Tx的参考信号的接收功率,Pi为UE或子节点测量的IAB节点upstream Tx的参考信号接收功率。功率经常以dB值表示,因此功率的比值对应着dB值的差值。
路损值是UE或子节点按照测量配置中的资源测量的路损,或者UE或子节点测量的IAB节点和UE或子节点之间的路损。
UE或子节点向IAB节点的反馈量包括如下至少之一:资源索引,对应资源的路损,对应资源的RSRP,父节点接收的IAB节点upstream Tx的参考信号的RSRQ,父节点接收的IAB节点upstream Tx的参考信号的SINR。
IAB节点同时执行downstream Tx和upstream Tx,其downstream Tx避开对父节点干扰大的波束。
IAB节点为UE或子节点配置的测量配置包括一个或多个SRS资源集合。
SRS资源集包含一个或多个SRS资源配置,或者SRS资源集合包含一个或多个SRS资源配置和SRS资源集合对应的接收波束指示。一个SRS资源配置包括如下之一或其组合:SRS资源的频域配置;SRS资源的序列配置;SRS资源的时间配置;SRS的发射功率;SRS资源准共址参考信号配置;SRS资源接收 波束指示。
频域配置包括如下至少之一:参考信号占据的带宽,参考信号的频域密度,参考信道的子载波间隔,参考信号的频域偏移量。
SRS资源的序列配置包括如下至少之一:参考信号的序列类型,参考信号序列生成方式。
时间配置包括如下至少之一:SRS的周期,SRS的时间偏移量,SRS的有效测量时间,SRS信号与IAB节点downstream Tx的定时偏移量(定时偏移量有待细化)。
SRS的周期(记为P)是指IAB节点以P周期性发送参考信号,如图4所示。参考信号的时间偏移量是指以周期P起点为边界的时间偏移量,时间偏移量可以是若干无线帧,若干子帧,若干时隙,若干OFDM符号的至少之一,如图5。参考信号的有效测量时间指示父节点执行参考信号测量的有效时间。例如IAB节点在有效时间之外没有发送参考信号或波束发生了改变或参考信号的功率发生了改变,则子节点或UE不应测量这些时域位置的参考信号,因此需要指示子节点或UE执行测量的有效时间,如图6所示。
参考信号的发射功率为IAB节点upstream Tx的参考信号的发射功率。
UE或子节点按照IAB节点的测量配置的资源集合的接收波束测量IAB节点的参考信号。若IAB节点的测量配置的资源集合不包含接收波束则UE或子节点按照与IAB节点通信的历史接收波束进行相应的测量。
UE或子节点将满足门限的测量量对应的资源集合索引反馈给IAB节点。其中满足门限为如下至少之一:测量量大于或等于特定门限,测量量小于或等于特定门限,测量量大于特定门限,测量量小于特定门限。
UE或子节点测量资源集合中参考信号的RSRP记为RSRP_i,UE或子节点将满足门限的RSRP_i对应的资源集合索引反馈给IAB节点,对应RSRP_i的门限记为threshold_1。RSRP_i可以是一个资源集合中不同资源的参考信号RSRP的平均值,或者为一个资源集合中不同资源的参考信号RSRP的最小值,或者为一个资源集合中不同资源的参考信号RSRP的最大值。可选的,UE或子节点将满足门限的RSRP_i数值反馈给IAB节点。
UE或子节点测量IAB节点downstream Tx的参考信号对应的信道质量,信道质量可通过以下量之一表征:RSRQ,SINR,CQI,对应的测量量分别记为RSRQ_s,SINR,CQI,UE或子节点将满足门限的测量量对应的资源集合的索引反馈给IAB节点,对应RSRQ_s或SINR或CQI的门限记为threshold_2。可选的,UE或子节点将满足门限的RSRQ_s数值,SINR数值或CQI数值反馈给 IAB节点。
UE或子节点测量资源集合中参考信号的路损记为PL_i,UE或子节点将满足门限的测量量对应资源集合的索引反馈给IAB节点,对应PL_i的门限记为threshold_3。PL_i可以是一个资源集合中不同资源的参考信号路损的平均值,或者当UE或子节点反馈大于或等于门限值的路损对应的资源集合索引时,则路损还可以为一个资源集合中不同资源的参考信号路损的最小值,或者当UE或子节点反馈小于或等于门限值的路损对应的资源集合索引时,则路损还可以为一个资源集合中不同资源的参考信号路损的最大值。可选的,UE或子节点可以将满足门限的PL_i数值反馈给IAB节点。
UE或子节点测量IAB节点upstream Tx的参考信号对应的路损记为PL_s,UE或子节点测量资源集合中参考信号的路损记为PL_i,PL_s和PL_i之比记为SIR_PL=PL_s/PL_i。UE或子节点将满足门限的SIR_PL对应的资源集合索引反馈给IAB节点,对应SIR_PL的门限记为threshold_4。可选的,UE或子节点可以将满足门限的SIR_PL数值反馈给IAB节点。
UE或子节点测量IAB节点downstream Tx的参考信号对应的信号接收功率记为Ps,例如UE或子节点测量IAB节点downstream Tx的CSI-RS信号接收功率。UE或子节点测量资源集合中参考信号的信号接收功率记为Pi,Ps与Pi的比值记为SIR=Ps/Pi,UE或子节点将满足门限的SIR对应的资源集合索引反馈给IAB节点,对应SIR的门限记为threshold_5。可选的,UE或子节点可以将满足门限的SIR数值反馈给IAB节点。
当IAB节点收到UE或子节点的反馈量为以下情况之一或其组合则IAB节点认为对应资源集合索引的IAB upstream Tx对UE或子节点Rx造成干扰:
UE或子节点反馈RSRP_i大于或等于threshold_1的对应的资源集合索引;UE或子节点反馈RSRQ_i小于或等于threshold_2对应的资源集合索引;UE或子节点反馈PL_i小于或等于threshold_3的对应的资源集合索引;UE或子节点反馈SIR_PL小于或等于threshold_4的对应的资源集合索引;UE或子节点反馈SIR小于或等于threshold_5的对应的资源集合索引。
当IAB节点收到UE或子节点的反馈量为以下情况之一或其组合则IAB节点认为对应资源集合索引的IAB upstream Tx未对UE或子节点Rx造成大的干扰:
UE或子节点反馈RSRP_i小于或等于threshold_1对应的资源集合索引;UE或子节点反馈RSRQ_i大于或等于threshold_2对应的资源集合索引;UE或子节点反馈PL_i大于或等于threshold_3对应的资源集合索引;UE或子节点反馈 SIR_PL小于或等于threshold_4对应的资源集合索引;UE或子节点反馈SIR小于或等于threshold_5的对应的资源集合索引。
上述SIR或SIR_PL定义为两个数量的比值,若相比的两个数值为dB值,则该比值用于计算SIR或SIR_PL的两个量相减。
IAB节点收到UE或子节点的反馈可以确定IAB节点upstream Tx对UE或子节点造成干扰的波束。
IAB节点同时执行downstream Tx和upstream Tx,其upstream Tx避免使用对UE或子节点造成干扰的波束,或者upstream Tx采用对UE或子节点干扰小的波束。
以上只是描述本申请的具体实施方式,对此实施例的扩充包括以下方面,这些扩充也在本申请保护范围之内。
测量配置的信号类型不限于CSI-RS,还可以是SSB、DMRS、PTRS等信号。
在一个实施例中,提供一种复用装置,所述装置应用于第一节点,如图11所示,本申请实施例提供的复用装置,主要包括第一发送模块101和第一接收模块102。
第一发送模块101,被配置为向第二节点发送测量配置信息,其中,所述测量配置信息用于指示第二节点测量所述测量配置信息对应资源的相关信息;第一接收模块102,被配置为接收所述第二节点发送的测量结果。
在一个实施方式中,所述测量配置信息包括第一测量配置信息和第二测量配置信息,其中,所述测量配置信息包括用于第二节点测量参考信号的参考信号配置信息,或者,所述测量配置信息包括用于第二节点测量时频资源的时频资源配置信息;所述第二测量配置信息包括第二节点执行测量对应的准共址参考信号配置信息或对应的空间接收参数。
在一个实施方式中,在所述第一测量配置信息包括用于第二节点测量参考信号的参考信号配置信息的情况下,所述参考信号配置信息包括如下一个或多个:频域配置信息,序列配置信息,功率配置信息,时间配置信息,时间限制是否开启。
在一个实施方式中,所述参考信号的类型包括如下一个或多个:探测参考信号SRS,信道状态信息参考信号CSI-RS,同步广播块SSB,物理下行控制信道解调参考信号PDCCH DMRS,物理下行共享信道解调参考信号PDSCH DMRS。
在一个实施方式中,在所述测量配置信息包括用于第二节点测量时频资源的时频资源配置信息的情况下,所述时频资源配置信息包括如下一个或多个:时频资源对应的信道类型,频域配置信息,时间配置信息,时间限制是否开启。
在一个实施方式中,所述时间配置信息包括如下一个或多个:出现时机、有效时间和定时偏差,其中,所述有效时间是第二节点执行测量操作的有效时间,所述定时偏差是第二节点执行测量操作所调整的时间量。
在一个实施方式中,所述有效时间包括如下一个或多个:有效测量持续时间,起始点,偏移量。
在一个实施方式中,所述测量结果包括如下一个或多个:第一测量配置信息对应资源的接收功率,第一测量配置信息和第二测量配置信息对应资源的接收功率,第一测量配置信息对应的路损值,第一测量配置信息和第二测量配置信息对应资源的路损值,在第二测量配置信息中测得的第二节点和第一节点之间的链路质量。
在一个实施方式中,所述接收功率满足如下条件之一:第一测量配置信息的信号接收功率大于或等于第一门限值;第一测量配置信息的信号接收功率小于或等于第二门限值;第一测量配置信息的信号接收功率与第一节点在上游发送数据的信号接收功率的比值大于或等于第三门限值;第一测量配置信息的信号接收功率与第一节点在上游发送数据的信号接收功率的比值小于或等于第四门限值。
在一个实施方式中,所述路损值满足如下条件之一:所述第一测量配置信息的信号对应的路损值大于或等于第五门限值;所述第一测量配置信息的信号对应的路损值小于或等于第六门限值;所述第一测量配置信息的信号对应的路损值与第二节点和第一节点之间的路损值的比值大于或等于第七门限值;所述第一测量配置信息的信号对应的路损值与第二节点和第一节点之间的路损值的比值小于或等于第八门限值;在第二测量配置信息中测得的第二节点与第一节点的链路质量小于或等于第九门限值;在第二测量配置信息中测得的第二节点与第一节点的链路质量大于或等于第十门限值。
在一个实施方式中,所述装置还包括:数据发送模块,被配置为在接收所述第二节点发送的测量结果之后,基于所述测量结果选择满足要求的波束组合执行上游和下游的同时发送。
在一个实施方式中,所述第一节点是集成接入和回传IAB节点,所述第二节点是所述IAB节点的父节点,或者,所述第二节点是所述IAB节点的子节点。
在一个实施方式中,所述装置还包括:数据接收模块,被配置为在所述第 二节点是所述IAB节点的父节点的情况下,在所述接收所述第二节点发送的测量结果之后,基于所述测量结果选择满足要求的波束组合执行上游和下游的同时发送。
在一个实施方式中,所述装置还包括:数据接收模块,被配置为在所述第二节点是所述IAB节点的子节点的情况下,在所述接收所述第二节点发送的测量结果之后,基于所述测量结果选择满足要求的波束组合执行上游和下游的同时接收。
本实施例中提供的复用装置可执行本申请任意实施例所提供的复用方法,具备执行该方法相应的功能模块和效果。未在本实施例中详尽描述的技术细节,可参见本申请任意实施例所提供的复用方法。
上述复用装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
在一个实施例中,提供一种复用装置,所述复用装置应用于第二节点,如图12所示,本申请实施例提供的复用方法,主要包括第二接收装置111和第二发送装置112。
第二接收装置111,被配置为接收第一节点发送的测量配置信息,其中,所述测量配置信息用于指示第二节点测量所述测量配置信息对应资源的相关信息;第二发送装置112,被配置为向所述第二节点发送测量结果。
在一个实施方式中,所述测量配置信息包括第一测量配置信息和第二测量配置信息,其中,所述测量配置信息包括用于第二节点测量参考信号的参考信号配置信息,或者,所述测量配置信息包括用于第二节点测量时频资源的时频资源配置信息;所述第二测量配置信息包括第二节点测量对应的准共址参考信号配置信息或对应的空间接收参数。
在一个实施方式中,在所述第一测量配置信息包括用于第二节点测量参考信号的参考信号配置信息的情况下,所述参考信号配置信息包括如下一个或多个:频域配置信息,序列配置信息,功率配置信息,时间配置信息,时间限制是否开启。
在一个实施方式中,所述参考信号的类型包括如下一个或多个:
探测参考信号SRS,信道状态信息参考信号CSI-RS,同步广播块SSB,物理下行控制信道解调参考信号PDCCH DMRS,物理下行共享信道解调参考信号PDSCH DMRS。
在一个实施方式中,在所述测量配置信息包括用于第二节点测量时频资源的时频资源配置信息的情况下,所述时频资源配置信息包括如下一个或多个:时频资源对应的信道类型,频域配置信息,时间配置信息,时间限制是否开启。
在一个实施方式中,所述时间配置信息包括如下一个或多个:出现时机、有效时间和定时偏差,其中,所述有效时间是第二节点执行测量操作的有效时间,所述定时偏差是第二节点执行测量操作所调整的时间量。
在一个实施方式中,所述有效时间包括如下一个或多个:有效测量持续时间,起始点,偏移量。
在一个实施方式中,所述测量结果包括如下一个或多个:第一测量配置信息对应资源的接收功率,第一测量配置信息和第二测量配置信息对应资源的接收功率,第一测量配置信息对应的路损值,第一测量配置信息和第二测量配置信息对应资源的路损值,在第二测量配置信息中测得的第二节点和第一节点之间的链路质量。
在一个实施方式中,所述接收功率满足如下条件之一:第一测量配置信息的信号接收功率大于或等于第一门限值;第一测量配置信息的信号接收功率小于或等于第二门限值;第一测量配置信息的信号接收功率与第一节点在上游发送数据的信号接收功率的比值大于或等于第三门限值;第一测量配置信息的信号接收功率与第一节点在上游发送数据的信号接收功率的比值小于或等于第四门限值。
在一个实施方式中,所述路损值满足如下条件之一:所述第一测量配置信息的信号对应的路损值大于或等于第五门限值;所述第一测量配置信息的信号对应的路损值小于或等于第六门限值;所述第一测量配置信息的信号对应的路损值与第二节点和第一节点之间的路损值的比值大于或等于第七门限值;所述第一测量配置信息的信号对应的路损值与第二节点和第一节点之间的路损值的比值小于或等于第八门限值;在第二测量配置信息中测得的第二节点与第一节点的链路质量小于或等于第九门限值;在第二测量配置信息中测得的第二节点与第一节点的链路质量大于或等于第十门限值。
本实施例中提供的复用装置可执行本申请任意实施例所提供的复用方法,具备执行该方法相应的功能模块和效果。未在本实施例中详尽描述的技术细节,可参见本申请任意实施例所提供的复用方法。
上述复用装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
本申请实施例还提供一种设备,图13是本申请实施例提供的一种设备的结构示意图,如图12所示,该设备包括处理器121、存储器122、输入装置123、输出装置124和通信装置125;设备中处理器121的数量可以是一个或多个,图12中以一个处理器121为例;设备中的处理器121、存储器122、输入装置123和输出装置124可以通过总线或其他方式连接,图12中以通过总线连接为例。
存储器122作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请实施例中的复用方法对应的程序指令/模块(例如,复用装置中的第一发送模块101和第一接收模块102)。又如本申请实施例中的复用方法对应的程序指令/模块(例如,复用装置中的第二接收装置111和第二发送装置112)。处理器121通过运行存储在存储器122中的软件程序、指令以及模块,从而执行设备的各种功能应用以及数据处理,即实现本申请实施例提供的任一复用方法。
存储器122可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器122可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器122可包括相对于处理器121远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置123可用于接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的键信号输入。输出装置124可包括显示屏等显示设备。
通信装置125可以包括接收器和发送器。通信装置125设置为根据处理器121的控制进行信息收发通信。
在上述设备是第一节点的情况下,处理器121通过运行存储在***存储器122中的程序,从而执行各种功能应用以及数据处理,例如实现本申请实施例所提供的消复用方法,该方法包括:
向第二节点发送测量配置信息,其中,所述测量配置信息用于指示第二节点测量所述测量配置信息对应资源的相关信息;接收所述第二节点发送的测量结果。
处理器121还可以实现本申请任意实施例所提供的复用方法的技术方案。该设备的硬件结构以及功能可参见本实施例的内容解释。
在上述设备是第二节点的情况下,处理器121通过运行存储在***存储器 122中的程序,从而执行各种功能应用以及数据处理,例如实现本申请实施例所提供的复用方法,该方法包括:
接收第一节点发送的测量配置信息,其中,所述测量配置信息用于指示第二节点测量所述测量配置信息对应资源的相关信息;向所述第一节点发送测量结果。
处理器121还可以实现本申请任意实施例所提供的消息交互方法的技术方案。该设备的硬件结构以及功能可参见本实施例的内容解释。
在一个示例性的实施方式中,本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种复用方法,所述方法应用于第一节点,包括:
向第二节点发送测量配置信息,其中,所述测量配置信息用于指示第二节点测量所述测量配置信息对应资源的相关信息;接收所述第二节点发送的测量结果。
本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的复用方法中的相关操作。
本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种复用方法,所述方法应用于第二节点,包括:
接收第一节点发送的测量配置信息,其中,所述测量配置信息用于指示第二节点测量所述测量配置信息对应资源的相关信息;向所述第一节点发送测量结果。
本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的复用方法中的相关操作。
通过以上关于实施方式的描述,本申请可借助软件及必需的通用硬件来实现,也可以通过硬件实现。本申请的技术方案本质上可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和***(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (18)

  1. 一种复用方法,应用于第一节点,包括:
    向第二节点发送测量配置信息,其中,所述测量配置信息用于指示所述第二节点测量所述测量配置信息对应资源的相关信息;
    接收所述第二节点发送的测量结果。
  2. 根据权利要求1所述的方法,其中,所述测量配置信息包括第一测量配置信息和第二测量配置信息,其中,所述测量配置信息包括用于所述第二节点测量参考信号的参考信号配置信息,或者,所述测量配置信息包括用于所述第二节点测量时频资源的时频资源配置信息;所述第二测量配置信息包括所述第二节点执行测量对应的准共址参考信号配置信息或对应的空间接收参数。
  3. 根据权利要求2所述的方法,其中,在所述第一测量配置信息包括用于所述第二节点测量参考信号的参考信号配置信息的情况下,所述参考信号配置信息包括如下至少之一:
    频域配置信息,序列配置信息,功率配置信息,时间配置信息,时间限制是否开启。
  4. 根据权利要求3所述的方法,其中,所述参考信号的类型包括如下至少之一:
    探测参考信号SRS,信道状态信息参考信号CSI-RS,同步广播块SSB,物理下行控制信道解调参考信号PDCCH DMRS,物理下行共享信道PDSCH DMRS。
  5. 根据权利要求2所述的方法,其中,在所述测量配置信息包括用于所述第二节点测量时频资源的时频资源配置信息的情况下,所述时频资源配置信息包括如下至少之一:
    时频资源对应的信道类型,频域配置信息,时间配置信息,时间限制是否开启。
  6. 根据权利要求3或5所述的方法,其中,所述时间配置信息包括如下至少之一:
    出现时机、有效时间和定时偏差,其中,所述有效时间是所述第二节点执行测量操作的有效时间,所述定时偏差是所述第二节点执行测量操作所调整的时间量。
  7. 根据权利要求6所述的方法,其中,所述有效时间包括如下至少之一:
    有效测量持续时间,起始点,偏移量。
  8. 根据权利要求1所述的方法,其中,所述测量结果包括如下至少之一:
    所述第一测量配置信息对应资源的接收功率,所述第一测量配置信息和所述第二测量配置信息对应资源的接收功率,所述第一测量配置信息对应的路损值,所述第一测量配置信息和所述第二测量配置信息对应资源的路损值,在所述第二测量配置信息中测得的所述第二节点和所述第一节点之间的链路质量。
  9. 根据权利要求8所述的方法,其中,所述接收功率满足如下条件之一:
    所述第一测量配置信息的信号接收功率大于或等于第一门限值;
    所述第一测量配置信息的信号接收功率小于或等于第二门限值;
    所述第一测量配置信息的信号接收功率与所述第一节点在上游发送数据的信号接收功率的比值大于或等于第三门限值;
    所述第一测量配置信息的信号接收功率与所述第一节点在上游发送数据的信号接收功率的比值小于或等于第四门限值。
  10. 根据权利要求8所述的方法,其中,所述路损值满足如下条件之一:
    所述第一测量配置信息的信号对应的路损值大于或等于第五门限值;
    所述第一测量配置信息的信号对应的路损值小于或等于第六门限值;
    所述第一测量配置信息的信号对应的路损值与所述第二节点和所述第一节点之间的路损值的比值大于或等于第七门限值;
    所述第一测量配置信息的信号对应的路损值与所述第二节点和所述第一节点之间的路损值的比值小于或等于第八门限值;
    在所述第二测量配置信息中测得的所述第二节点与所述第一节点的链路质量小于或等于第九门限值;
    在所述第二测量配置信息中测得的所述第二节点与所述第一节点的链路质量大于或等于第十门限值。
  11. 根据权利要求1所述的方法,其中,所述第一节点是集成接入和回传IAB节点,所述第二节点是所述IAB节点的父节点,或者,所述第二节点是所述IAB节点的子节点。
  12. 根据权利要求11所述的方法,其中,在所述第二节点是所述IAB节点的父节点的情况下,在所述接收所述第二节点发送的测量结果之后,还包括:
    基于所述测量结果选择满足要求的波束组合执行上游和下游的同时发送。
  13. 根据权利要求11所述的方法,在所述第二节点是所述IAB节点的子节点的情况下,在所述接收所述第二节点发送的测量结果之后,还包括:
    基于所述测量结果选择满足要求的波束组合执行上游和下游的同时接收。
  14. 一种复用方法,应用于第二节点,包括:
    接收第一节点发送的测量配置信息,其中,所述测量配置信息用于指示所述第二节点测量所述测量配置信息对应资源的相关信息;
    向所述第一节点发送测量结果。
  15. 一种复用装置,配置于第一节点,包括:
    第一发送模块,被配置为向第二节点发送测量配置信息,其中,所述测量配置信息用于指示所述第二节点测量所述测量配置信息对应资源的相关信息;
    第一接收模块,被配置为接收所述第二节点发送的测量结果。
  16. 一种复用装置,配置于第二节点,包括:
    第二接收装置,被配置为接收第一节点发送的测量配置信息,其中,所述测量配置信息用于指示所述第二节点测量所述测量配置信息对应资源的相关信息;
    第二发送模块,被配置为向所述第一节点发送测量结果。
  17. 一种设备,包括:
    至少一个处理器;
    存储器,被配置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-14任一项所述的复用方法。
  18. 一种存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-14任一项所述的复用方法。
PCT/CN2021/097734 2020-06-02 2021-06-01 复用方法、装置、设备及存储介质 WO2021244540A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010491628.1 2020-06-02
CN202010491628.1A CN111901003A (zh) 2020-06-02 2020-06-02 复用方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021244540A1 true WO2021244540A1 (zh) 2021-12-09

Family

ID=73206603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097734 WO2021244540A1 (zh) 2020-06-02 2021-06-01 复用方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN111901003A (zh)
WO (1) WO2021244540A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111901003A (zh) * 2020-06-02 2020-11-06 中兴通讯股份有限公司 复用方法、装置、设备及存储介质
CN112019463A (zh) * 2020-09-04 2020-12-01 中兴通讯股份有限公司 信道状态发送、接收、信令信息传输方法、节点和介质
EP4265024A1 (en) * 2020-12-15 2023-10-25 Lenovo (Beijing) Limited Method and apparatus for reporting channel state information
US20240187080A1 (en) * 2021-04-02 2024-06-06 Lenovo (Singapore) Pte. Ltd. Communicating based on quasi-collocation properties
CN115701731A (zh) * 2021-08-02 2023-02-10 维沃移动通信有限公司 干扰处理方法、相关设备及可读存储介质
WO2024031483A1 (zh) * 2022-08-10 2024-02-15 Oppo广东移动通信有限公司 测量方法、能力上报方法、测量配置方法、装置及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110691416A (zh) * 2018-07-05 2020-01-14 华为技术有限公司 一种资源调度的方法和装置
CN110831135A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种功率控制的方法和装置
CN110972211A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 一种功率控制的方法和装置
CN111052837A (zh) * 2018-08-07 2020-04-21 Lg电子株式会社 无线通信***中的节点操作方法和使用该方法的设备
CN111096027A (zh) * 2018-08-07 2020-05-01 Lg电子株式会社 在无线通信***中操作节点的方法和使用该方法的装置
CN111901003A (zh) * 2020-06-02 2020-11-06 中兴通讯股份有限公司 复用方法、装置、设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110691416A (zh) * 2018-07-05 2020-01-14 华为技术有限公司 一种资源调度的方法和装置
CN111052837A (zh) * 2018-08-07 2020-04-21 Lg电子株式会社 无线通信***中的节点操作方法和使用该方法的设备
CN111096027A (zh) * 2018-08-07 2020-05-01 Lg电子株式会社 在无线通信***中操作节点的方法和使用该方法的装置
CN110831135A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种功率控制的方法和装置
CN110972211A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 一种功率控制的方法和装置
CN111901003A (zh) * 2020-06-02 2020-11-06 中兴通讯股份有限公司 复用方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN111901003A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
WO2021244540A1 (zh) 复用方法、装置、设备及存储介质
US20240223423A1 (en) Apparatuses and methods of switching between different numerologies
WO2020220330A1 (zh) 无线通信的方法、终端设备和网络设备
CN110995329B (zh) 用于参考信号和csi反馈的***和方法
JP6256610B2 (ja) 情報交換方法、基地局及び通信システム
JP2020516146A (ja) 信号送信方法、装置、およびシステム
US9780901B2 (en) Method and apparatus for reference signaling allocation and channel estimation in distributed antenna systems
TWI739314B (zh) Dmrs埠的傳輸配置指示方法、通信裝置、網路側設備、終端及電腦可讀存儲介質
WO2020200114A1 (zh) Dmrs端口的指示方法及装置
WO2022022732A1 (zh) 一种qcl指示方法及相关设备
JP2021500779A (ja) 時間周波数リソースを決定するための方法およびデバイス
CN107615834A (zh) 自适应导频分配的***和方法
WO2018036451A1 (zh) 无线资源分配信息的配置方法及装置
WO2014005325A1 (zh) 虚拟载波聚合的方法、基站和用户设备
WO2020199910A1 (zh) 一种dmrs端口的传输配置指示方法及装置
JP6169796B2 (ja) キャリア設定方法、基地局、及びユーザ装置
US11909529B2 (en) Method, apparatus for transmitting HARQACK information, electronic device and storage medium
WO2021160031A1 (zh) 信令接收、发送方法及设备
US20210282172A1 (en) Transmission method and apparatus
CN114584271A (zh) 资源确定方法及装置
US10177938B2 (en) Device and method for adaptive channel estimation
WO2023236222A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2020200032A1 (zh) 通信处理方法和装置
WO2018171783A1 (zh) 信号传输方法、装置及***
WO2023050234A1 (zh) 一种探测参考信号srs资源的调整方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21817542

Country of ref document: EP

Kind code of ref document: A1