WO2021244372A1 - 随机接入的方法、装置和*** - Google Patents

随机接入的方法、装置和*** Download PDF

Info

Publication number
WO2021244372A1
WO2021244372A1 PCT/CN2021/096096 CN2021096096W WO2021244372A1 WO 2021244372 A1 WO2021244372 A1 WO 2021244372A1 CN 2021096096 W CN2021096096 W CN 2021096096W WO 2021244372 A1 WO2021244372 A1 WO 2021244372A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
terminal device
rar
random access
carried
Prior art date
Application number
PCT/CN2021/096096
Other languages
English (en)
French (fr)
Inventor
温容慧
余政
张向东
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010498461.1A external-priority patent/CN113766659B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21817206.2A priority Critical patent/EP4145939A4/en
Publication of WO2021244372A1 publication Critical patent/WO2021244372A1/zh
Priority to US18/061,087 priority patent/US20230096371A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • This application relates to the field of communications, and more specifically, to a method, device, and system for random access.
  • the standard refers to the user equipment (UE) of massive machine type communications (Massive Machine Type Communications, mMTC) services as low-complexity UE (reduced capability UE, REDCAP UE).
  • UE user equipment
  • mMTC massive machine type communications
  • REDCAP UE reduced capability UE
  • This type of UE may be in bandwidth, Power consumption and number of antennas are less complex than other UEs, such as narrower bandwidth, lower power consumption, and fewer antennas.
  • RAR Random Access Response
  • the corresponding RARs of the two types of UEs are carried in different PDSCHs for transmission, Will lead to large signaling overhead.
  • This application provides a random access method and device, which can save signaling overhead.
  • a random access method including: a first terminal device determines a first physical random access resource, wherein the first terminal device is a first type terminal device; the first terminal device is Sending a first random access request message on the first physical random access resource; the first terminal device receives first downlink control information DCI, where the first DCI is used to schedule a first random access response RAR; The first terminal device receives the first RAR according to the first DCI; the first DCI and the second downlink control information DCI received by the second terminal device are carried in the same physical downlink control channel PDCCH, and/or The second random access response RAR scheduled by the first RAR and the second DCI is carried in the same physical layer downlink shared channel PDSCH, where the second terminal device is a second type of terminal device.
  • the first DCI used to schedule the first random access response RAR corresponding to the first type of terminal equipment and the second DCI corresponding to the second type of terminal equipment are carried in the same PDCCH, or the first DCI is used
  • the first RAR used for scheduling and the second DCI used for scheduling are carried in the same PDSCH, that is, two different types of terminal equipment can receive DCI on the same PDCCH channel or can receive RAR on the same PDSCH channel, improving
  • the resource utilization rate is saved, and the overhead of transmitting signaling is saved.
  • the first physical random access resource is not completely the same as the second physical random access resource used by the second terminal device to send the second random access request message.
  • the method before the first terminal device receives the first downlink control information DCI, the method further includes: the first terminal device receives first indication information, the first indication information Indicate whether the first DCI and the second DCI are carried in the same PDCCH.
  • the first terminal device can correctly receive the first DCI according to the corresponding random access wireless network temporary identifier RA-RNTI according to the first indication information.
  • the method before the first terminal device receives the first RAR according to the first DCI, the method further includes: the first terminal device receives second indication information, the The second indication information indicates whether the first RAR and the second RAR are carried in the same PDSCH. The first terminal device can accurately obtain the first RAR according to the second indication information.
  • the method before the first terminal device receives the first downlink control information DCI, the method further includes: the bandwidth of the first terminal device is greater than or equal to a first threshold, and the first terminal device A DCI and the second DCI are carried in the same PDCCH, and/or, the first RAR and the second RAR are carried in the same PDSCH. According to the relationship between the bandwidth of the first terminal device and the first threshold, it can be determined whether the two types of terminal devices share the PDSCH or whether they share the PDCCH. No additional signaling is required for indication, which saves signaling overhead.
  • the method before the first terminal device receives the first downlink control information DCI, the method further includes: the bandwidth of the first terminal device is less than a first threshold, and the first DCI And the second DCI is carried in a different PDCCH, and/or, the first RAR and the second RAR are carried in a different PDSCH.
  • the first threshold is determined according to at least one of the following parameters: the bandwidth of the control channel resource set CORESET corresponding to the second terminal device, and the CORESET occupation corresponding to the second terminal device The size of the time domain resources of the second terminal device, the interleaving mode of the physical layer downlink control channel PDCCH corresponding to the second terminal device, and the subcarrier interval corresponding to the second terminal device.
  • the receiving of the first downlink control information DCI by the first terminal device includes: the first DCI and the second DCI are carried in different PDCCHs, and the first terminal device is based on The first physical random access resource determines the first random access radio network temporary identifier RA-RNTI, and receives the first DCI according to the first RA-RNTI; or, the first DCI and the second The DCI is carried in the same PDCCH, the first terminal device determines the second random access radio network temporary identity RA-RNTI according to the second physical random access resource, and receives the first random access radio network identifier according to the second RA-RNTI. DCI.
  • the first terminal device receiving the first RAR according to the first DCI includes: when the first RAR and the second RAR are carried on the first PDSCH, the The media access control protocol data unit MAC PDU carried by the first PDSCH includes a first sub-protocol data unit subPDU, the first subPDU includes third information, and the third information is used to indicate whether the first subPDU includes The first RAR.
  • the third information is carried in any of the following fields in the first subPDU: a random access preamble identifier RAPID field, a T field, and a MAC RAR field.
  • the bandwidth of the first terminal device is smaller than the bandwidth of the second terminal device; and/or the number of antennas of the first terminal device is smaller than the number of antennas of the second terminal device
  • the power consumption of the first terminal device is lower than the power consumption of the second terminal device; and/or, the number of times of blind detection of the physical layer downlink control channel PDCCH of the first terminal device is less than the first terminal device 2.
  • the number of blind PDCCH checks of the terminal device.
  • a communication method including: a network device sends first downlink control information DCI to a first terminal device, and sends second downlink control information DCI to a second terminal device, where the first DCI is used for scheduling A first random access response RAR, and the second DCI is used to schedule a second random access response RAR, where the first terminal device is a first type terminal device, and the second terminal device is a second type terminal Device; the network device sends the first RAR to the first terminal device, and sends the second RAR to the second terminal device; the first DCI and the second DCI are carried on the same physical downlink In the control channel PDCCH, and/or, the first RAR and the second RAR are carried in the same physical layer downlink shared channel PDSCH.
  • the method before the network device sends the first downlink control information DCI to the first terminal device, the method further includes: the network device sends the first indication information to the first terminal device, The first indication information indicates whether the first DCI and the second DCI are carried in the same PDCCH.
  • the method before the network device sends the first RAR to the first terminal device, the method further includes: the network device sends a second instruction to the first terminal device Information, the second indication information indicates whether the first RAR and the second RAR are carried in the same PDSCH.
  • the method before the network device sends the first downlink control information DCI to the first terminal device, the method further includes: the bandwidth of the first terminal device is greater than or equal to the first threshold, The first DCI and the second DCI are carried in the same PDCCH, and/or, the first RAR and the second RAR are carried in the same PDSCH.
  • the method before the network device sends the first downlink control information DCI to the first terminal device, the method further includes: the bandwidth of the first terminal device is less than a first threshold, and the first The DCI and the second DCI are carried in different PDCCHs, and/or, the first RAR and the second RAR are carried in different PDSCHs.
  • the first threshold is determined according to at least one of the following parameters: the bandwidth of the control channel resource set CORESET corresponding to the second terminal device, and the CORESET occupation corresponding to the second terminal device The size of the time domain resources of the second terminal device, the interleaving mode of the physical layer downlink control channel PDCCH corresponding to the second terminal device, and the subcarrier interval corresponding to the second terminal device.
  • the sending of the first DCI by the network device to the first terminal device includes: the first DCI and the second DCI are carried in different PDCCHs, and the network device Determine the first random access radio network temporary identifier RA-RNTI according to the first physical random access resource, and use the first RA-RNTI to send the first DCI, where the first physical random access resource is all
  • the network device is allocated by the first terminal device; or, the first DCI and the second DCI are carried in the same PDCCH, and the network device determines the second random access according to the second physical random access resource
  • the wireless network temporary identifier RA-RNTI uses the second RA-RNTI to send the first DCI, where the second physical random access resource is allocated by the network device to the second terminal device.
  • the network device sending the first RAR to the first terminal device includes: when the first RAR and the second RAR are carried on the first PDSCH, the first RAR A media access control protocol data unit MAC PDU carried by a PDSCH includes a first sub-protocol data unit subPDU, the first subPDU includes third information, and the third information is used to indicate whether the first subPDU includes all The first RAR.
  • the third information is carried in any of the following fields in the first subPDU: a random access preamble identifier RAPID field, a T field, and a MAC RAR field.
  • the bandwidth of the first terminal device is smaller than the bandwidth of the second terminal device; and/or the number of antennas of the first terminal device is smaller than the number of antennas of the second terminal device
  • the power consumption of the first terminal device is lower than the power consumption of the second terminal device; and/or, the number of times of blind detection of the physical layer downlink control channel PDCCH of the first terminal device is less than the first terminal device 2.
  • the number of blind PDCCH checks of the terminal device.
  • a communication device including: a processing unit, configured to determine a first physical random access resource; and a transceiver unit, configured to send a first random access request on the first physical random access resource Message; the transceiver unit is also used to receive first downlink control information DCI, the first DCI is used to schedule a first random access response RAR; the transceiver unit is also used to receive according to the first DCI
  • the first RAR; the first DCI and the second downlink control information DCI received by the second terminal device are carried in the same physical downlink control channel PDCCH, and/or, the first RAR and the second DCI are scheduled
  • the second random access response RAR is carried in the same physical layer downlink shared channel PDSCH.
  • the first physical random access resource is not completely the same as the second physical random access resource used by the second terminal device to send the second random access request message.
  • the transceiver unit is further configured to receive first indication information, where the first indication information indicates whether the first DCI and the second DCI are carried in the same PDCCH.
  • the transceiver unit is further configured to receive second indication information, where the second indication information indicates whether the first RAR and the second RAR are carried in the same PDSCH.
  • the bandwidth of the first terminal device is greater than or equal to a first threshold
  • the first DCI and the second DCI are carried in the same PDCCH
  • the first RAR It is carried in the same PDSCH as the second RAR.
  • the bandwidth of the first terminal device is less than a first threshold
  • the first DCI and the second DCI are carried in different PDCCHs
  • the first RAR and the The second RAR is carried in a different PDSCH.
  • the first threshold is determined according to at least one of the following parameters: the bandwidth of the control channel resource set CORESET corresponding to the second terminal device, and the CORESET occupation corresponding to the second terminal device The size of the time domain resources of the second terminal device, the interleaving mode of the physical layer downlink control channel PDCCH corresponding to the second terminal device, and the subcarrier interval corresponding to the second terminal device.
  • the first DCI and the second DCI are carried in different PDCCHs, and the processing unit is specifically configured to determine the first random access according to the first physical random access resource Radio network temporary identification RA-RNTI; the transceiver unit is specifically configured to receive the first DCI according to the first RA-RNTI; the first DCI and the second DCI are carried in the same PDCCH, the The processing unit is specifically configured to determine a second random access radio network temporary identifier RA-RNTI according to the second physical random access resource; the transceiver unit is specifically configured to receive the first RA-RNTI according to the second RA-RNTI One DCI.
  • RA-RNTI Radio network temporary identification
  • the MAC PDU carried by the first PDSCH includes the first sub-protocol data Unit subPDU
  • the first subPDU includes third information
  • the third information is used to indicate whether the first subPDU includes the first RAR.
  • a communication device including: a transceiving unit, configured to send first downlink control information DCI to a first terminal device, and send second downlink control information DCI to a second terminal device, the first DCI Is used to schedule a first random access response RAR, and the second DCI is used to schedule a second random access response RAR, wherein the first terminal device is a first type terminal device, and the second terminal device is a first Type two terminal equipment; the transceiving unit is further configured to send the first RAR to the first terminal device, and send the second RAR to the second terminal device; the first DCI and the first RAR The second DCI is carried in the same physical downlink control channel PDCCH, and/or, the first RAR and the second RAR are carried in the same physical layer downlink shared channel PDSCH.
  • a transceiving unit configured to send first downlink control information DCI to a first terminal device, and send second downlink control information DCI to a second terminal device, the first DCI Is used to schedule a first random
  • the transceiving unit is further configured to send first indication information to the first terminal device, where the first indication information indicates whether the first DCI and the second DCI are carried In the same PDCCH.
  • the transceiving unit is further configured to send second indication information to the first terminal device, where the second indication information indicates whether the first RAR and the second RAR are carried In the same PDSCH.
  • the bandwidth of the first terminal device is greater than or equal to the first threshold
  • the first DCI and the second DCI are carried in the same PDCCH
  • the first One RAR and the second RAR are carried in the same PDSCH.
  • the bandwidth of the first terminal device is less than a first threshold
  • the first DCI and the second DCI are carried in different PDCCHs
  • the first RAR and the The second RAR is carried in a different PDSCH.
  • the first threshold is determined according to at least one of the following parameters: the bandwidth of the control channel resource set CORESET corresponding to the second terminal device, and the CORESET occupation corresponding to the second terminal device The size of the time domain resources of the second terminal device, the interleaving mode of the physical layer downlink control channel PDCCH corresponding to the second terminal device, and the subcarrier interval corresponding to the second terminal device.
  • the apparatus further includes a processing unit; the first DCI and the second DCI are carried in different PDCCHs, and the processing unit is configured to determine according to the first physical random access resource The first random access wireless network temporary identifier RA-RNTI, where the first physical random access resource is allocated by the processing unit to the first terminal device; the transceiver unit is specifically configured to use the The first RA-RNTI sends the first DCI; the first DCI and the second DCI are carried in the same PDCCH, and the processing unit is configured to determine the second random access according to the second physical random access resource Radio network temporary identification RA-RNTI, where the second physical random access resource is allocated by the processing unit to the second terminal device; the transceiver unit is specifically configured to use the second RA-RNTI Sending the first DCI.
  • the first random access wireless network temporary identifier RA-RNTI where the first physical random access resource is allocated by the processing unit to the first terminal device
  • the transceiver unit is specifically configured to use the The first RA-RNTI sends
  • the MAC PDU carried by the first PDSCH includes the first sub-protocol data Unit subPDU
  • the first subPDU includes third information
  • the third information is used to indicate whether the first subPDU includes the first RAR.
  • a computer-readable storage medium is provided, and the computer-readable medium is used to store a computer program; when the computer program is run on a computer, the computer can execute the first aspect or any possible aspect of the first aspect The method in the implementation mode.
  • a computer-readable storage medium is provided, and the computer-readable medium is used to store a computer program; when the computer program runs on a computer, the computer executes the second aspect or any possible aspect of the second aspect The method in the implementation mode.
  • the embodiments of the present application provide a computer-readable storage medium or a non-volatile storage medium.
  • the computer-readable storage medium or the non-volatile storage medium stores instructions or programs.
  • the computer When running on a computer, the computer is caused to execute the methods described in the above aspects, or when the instructions or programs are running on one or more processors, the communication device including the one or more processors is caused to execute the first Aspect or the method of the second aspect.
  • the embodiments of the present application provide a computer program product, the computer program product is used to store a computer program, and when the computer program runs on a computer, the computer executes the first aspect or the first aspect described above. The method described in the two aspects.
  • an embodiment of the present application provides a chip or a device for transmitting instruction information, including: at least one processor, the at least one processor is coupled to a memory, the memory includes instructions, and the at least one processor runs The instruction causes the device for transmitting a common signal to execute the method according to the first aspect or the second aspect described above.
  • a communication device in a tenth aspect, includes one or more processors, and one or more memories or non-volatile storage media. Stored with instructions or programs, when the one or more processors execute the instructions or programs, the communication device or the one or more processors execute the method described in the first or second aspect above .
  • a terminal device or a communication device configured to perform the method described in the first aspect.
  • a network device or a communication device configured to execute the method described in the second aspect.
  • an embodiment of the present application provides a communication system including the communication device related to the third aspect and the communication device related to the fourth aspect.
  • FIG. 1 is a schematic diagram of the architecture of a mobile communication system according to an embodiment of the application.
  • Figure 2 is a schematic diagram of the random access process of a terminal device.
  • Fig. 3 is a schematic flowchart of a random access method according to an embodiment of the application.
  • Figure 4 is a schematic diagram of the mapping of control information on CORESET frequency domain resources when the interleaving depth is 2.
  • Figure 5 is a schematic diagram of the structure of the MAC PDU.
  • Figure 6 is a schematic diagram of the structure of the MAC subheader with BI.
  • Figure 7 is a schematic diagram of the structure of the MAC subheader with RAPID.
  • Figure 8 is a schematic diagram of the structure of the MAC RAR.
  • FIG. 9 is a schematic block diagram of a communication device according to an embodiment of the application.
  • FIG. 10 is a schematic block diagram of another communication device according to an embodiment of the application.
  • FIG. 11 is a schematic block diagram of a communication device according to an embodiment of the application.
  • the embodiments of this application can be applied to various communication systems, such as Wireless Local Area Network (WLAN), Narrow Band-Internet of Things (NB-IoT), and Global System for Mobile Communications, GSM, Enhanced Data rate for GSM Evolution (EDGE), Wideband Code Division Multiple Access (WCDMA), Code Division Multiple Access 2000 (Code Division Multiple) Access, CDMA2000), Time Division-Synchronization Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE), Satellite Communications, the 5th Generation (5G) Systems or new communication systems that will appear in the future.
  • WLAN Wireless Local Area Network
  • NB-IoT Narrow Band-Internet of Things
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access 2000
  • TD-SCDMA Time Division-Synchronization Code Division Multiple Access
  • LTE Long Term Evolution
  • Satellite Communications the 5th Generation (5G) Systems or new communication systems that will appear in the future.
  • the International Telecommunication Union defines three types of application scenarios for 5G and future mobile communication systems: enhanced mobile broadband (eMBB), ultra-reliable and low-latency communications communications, URLLC) and massive machine type communications (mMTC).
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low-latency communications
  • mMTC massive machine type communications
  • Typical eMBB services include: ultra-high-definition video, augmented reality (AR), virtual reality (virtual reality, VR), etc.
  • the main characteristics of these services are large transmission data volume and high transmission rate.
  • Typical URLLC businesses include wireless control in industrial manufacturing or production processes, motion control of unmanned vehicles and drones, and tactile interaction applications such as remote repair and remote surgery.
  • the main feature of these services is that they require ultra-high reliability. With high performance, low latency, less data transmission, and bursty.
  • Typical mMTC services include: smart grid distribution automation, smart cities, etc. The main features are the huge number of networked devices, the small amount of transmitted data, and the data insensitive to transmission delay. These mMTC terminals need to meet low cost and very long standby time. The need for time.
  • the standard refers to user equipment (UE) of the mMTC service as a low-complexity UE (reduced capability UE, REDCAP UE), or narrow-bandwidth user equipment, or IoT device, or low-end smart handheld terminal.
  • UE user equipment
  • This type of UE may have lower complexity than other UEs in terms of bandwidth, power consumption, and number of antennas, such as narrower bandwidth, lower power consumption, and fewer antennas.
  • This type of UE may also be referred to as a lightweight terminal device (NR light, NRL).
  • the maximum bandwidth supported by mMTC user equipment is less than 100MHz. It should be noted that the mMTC user equipment in the present invention is not only a machine-type communication device, but also a smart handheld terminal.
  • the mobile communication system includes a core network device 110, a wireless access network device 120, and at least one terminal device (the terminal device 130 and the terminal device 140 in FIG. 1).
  • the terminal device is connected to the wireless access network device in a wireless manner
  • the wireless access network device is connected to the core network device in a wireless or wired manner.
  • the core network device and the wireless access network device can be separate and different physical devices, or the function of the core network device and the logical function of the wireless access network device can be integrated on the same physical device, or it can be a physical device It integrates the functions of part of the core network equipment and part of the wireless access network equipment.
  • the terminal device can be a fixed location, or it can be movable.
  • Fig. 1 is only a schematic diagram.
  • the communication system may also include other network equipment, such as wireless relay equipment and wireless backhaul equipment, which are not shown in Fig. 1.
  • the embodiments of the present application do not limit the number of core network equipment, radio access network equipment, and terminal equipment included in the mobile communication system.
  • Radio access network equipment is the access equipment that terminal equipment accesses to the mobile communication system through wireless means. It can be a base station NodeB, an evolved base station (eNodeB), a base station in a 5G mobile communication system, and a future mobile communication system.
  • eNodeB evolved base station
  • 5G mobile communication system a base station in a 5G mobile communication system
  • future mobile communication system a base station in a 5G mobile communication system
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the wireless access network device.
  • the terminal device may also be called a terminal (Terminal), user equipment UE, a mobile station (mobile station, MS), a mobile terminal (mobile terminal, MT), and so on.
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality (VR) terminal devices, augmented reality (Augmented Reality, AR) terminal devices, industrial control (industrial control) Wireless terminals in ), wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, wireless terminals in smart grid (smart grid), wireless terminals in transportation safety (transportation safety) Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • VR virtual reality
  • AR Augmented Reality
  • Wireless terminals in wireless terminals in self-driving
  • wireless terminals in remote medical surgery wireless terminals in smart grid (smart grid), wireless terminals in transportation safety (transportation safety) Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • Wireless access network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airborne aircraft, balloons, and satellites.
  • the embodiments of the present application do not limit the application scenarios of wireless access network equipment and terminal equipment.
  • the embodiments of the present application may be applicable to downlink signal transmission, may also be applicable to uplink signal transmission, and may also be applicable to device-to-device (D2D) signal transmission.
  • the sending device is a wireless access network device, and the corresponding receiving device is a terminal device.
  • the sending device is a terminal device, and the corresponding receiving device is a wireless access network device.
  • D2D signal transmission the sending device is a terminal device, and the corresponding receiving device is also a terminal device.
  • the embodiment of the present application does not limit the transmission direction of the signal.
  • Wireless access network equipment and terminal equipment and between terminal equipment and terminal equipment can be through licensed spectrum (licensed spectrum), or through unlicensed spectrum (unlicensed spectrum), or through both licensed spectrum and free spectrum.
  • Authorize spectrum for communication Wireless access network equipment and terminal equipment and between terminal equipment and terminal equipment can communicate through the frequency spectrum below 6G, or through the frequency spectrum above 6G, and can also use the frequency spectrum below 6G and the spectrum above 6G at the same time To communicate.
  • the embodiment of the present application does not limit the spectrum resource used between the radio access network device and the terminal device.
  • the random access process is as follows:
  • the user equipment UE randomly selects the preamble according to the broadcast message of the base station, and sends a random access request message including the preamble sequence in the pre-configured random access occasion (RACH occasion, RO) resource;
  • the base station If the base station successfully receives the preamble sequence and allows the UE to access, it sends a feedback message, that is, RAR information, to the UE within the window of the pre-configured random access response (Random Access Response, RAR);
  • the UE monitors the downlink control information (DCI) transmitted on the physical layer downlink control channel (Physical downlink control channel, PDCCH) in the pre-configured RAR window.
  • DCI downlink control information
  • PDCCH Physical downlink control channel
  • the DCI is used to instruct the UE to downlink from the physical layer.
  • the RAR information is obtained from the Media Access Control (MAC) protocol data unit (Protocol Data Unit, PDU) carried by the physical downlink shared channel (PDSCH).
  • MAC Media Access Control
  • PDU Physical downlink shared channel
  • the base station will not send RAR information, and the UE will not detect DCI and DCI in the RAR window. MAC RAR, then this random access fails.
  • Figure 2 shows a schematic diagram of the first two steps of the random access procedure on the UE side.
  • the UE in the first step, in the first time period, the UE sends a random access request message to the base station on the RO resource, that is, performs uplink (Up-Link, UL) transmission; in the second step, In the second time period, the UE obtains the RAR message sent by the base station in the RAR window, that is, performs Down-Link (DL) transmission.
  • Up-Link Up-Link
  • the PDCCH and PDSCH corresponding to the RAR are both transmitted in the control channel resource set CORESET indicated in the broadcast message.
  • RRC Radio Resource Control
  • the random access information corresponding to legacy UE and REDCAP UE is transmitted in the same PDCCH and PDCSH, which can save signaling overhead.
  • REDCAP UE may be a UE that needs coverage enhancement.
  • Some low-end UEs have only one antenna, and the channel performance is poor.
  • RAR needs to be repeatedly sent to enhance coverage; for example, for some energy-saving REDCAP UEs, if the random access response information corresponding to two types of UEs is transmitted in the same PDSCH, the transport block (TB) will consume a lot of power.
  • REDCAP UE needs to decode the data of the two types of UEs at the same time. Get information about yourself.
  • the radio access network device may determine whether to carry the random access information corresponding to the two types of UEs in the same PDCCH and/or PDCSH for transmission according to the related information of the REDCAP UE, such as bandwidth information and the number of antennas.
  • This application proposes a random access method 300. As shown in FIG. 3, a schematic flowchart of a random access method 300 according to an embodiment of the present application is shown.
  • the first terminal device determines the first physical random access resource, where the first terminal device is a first type of terminal device, and may be a low-complexity REDCAP UE.
  • the first terminal device sends a first random access request message on the first physical random access resource
  • the second terminal device sends a second random access request message on the second physical random access resource
  • the second terminal device is a second type of terminal device, which may be a legacy UE, such as an eMBB UE.
  • the first physical random access resource and the second physical random access resource are not completely the same, and at least one of the real-time domain resource, the frequency domain resource, and the preamble sequence is different.
  • the difference between the first terminal device and the second terminal device can be embodied in multiple aspects such as bandwidth, number of antennas, and device power consumption. For example, it may only be reflected in the bandwidth, and the bandwidth supported by the first terminal device is less than the bandwidth supported by the second terminal device; for example, it may only be reflected in the number of antennas, where the number of antennas of the first terminal device is smaller than that of the second terminal device For example, it can only be reflected in the power consumption of the device, and the power consumption of the first terminal device is lower than the power consumption of the second terminal device; for another example, the number of blind checks of the physical layer downlink control channel PDCCH of the first terminal device is less than that of the first terminal device. 2.
  • the number of blind PDCCH checks of the terminal device for example, the maximum modulation mode supported by the first terminal device is lower than the maximum modulation mode supported by the second terminal device; for example, the maximum transmit power of the first terminal device is lower than that of the second terminal device
  • the maximum transmit power refers to at least one of the maximum bandwidth that the terminal device can reach for sending uplink signals, the maximum bandwidth that the terminal device can reach for receiving downlink signals, and the maximum bandwidth supported by the terminal device in communication. It should be understood that the difference between the first terminal device and the second terminal device can also be reflected in multiple aspects at the same time.
  • the bandwidth supported by the first terminal device is smaller than the bandwidth supported by the second terminal device, and the number of antennas of the first terminal device is smaller than that of the second terminal device.
  • the number of antennas of the second terminal device does not limit this.
  • the network device After receiving the random access request message, the network device (base station) determines whether to allow the terminal device to access the network. Send the first downlink control information DCI to the first terminal device, and send the second downlink control information DCI to the second terminal device. The first DCI is used to schedule the first random access response RAR, and the second DCI is used to schedule the second random access response. Access response RAR.
  • the first terminal device receives the first DCI
  • the second terminal device receives the second DCI.
  • the network device sends a first RAR, and the network device sends a second RAR.
  • the first terminal device receives the first RAR according to the first DCI
  • the second terminal device receives the second RAR according to the second DCI.
  • the first DCI and the second DCI are carried in the same physical downlink control channel PDCCH, and/or the first RAR and the second RAR are carried in the same physical layer downlink shared channel PDSCH.
  • PDCCH includes the same downlink control information, and the DCIs of different UEs are all in the same PDCCH; the same PDSCH includes the same downlink data, and all downlink data packets are carried in the PDSCH.
  • the first DCI and the second DCI are carried in the same PDCCH, and the first RAR and the second RAR are carried in different PDSCHs.
  • the network device puts the first DCI and the second DCI in the same PDCCH for transmission. It can be understood that the network device puts the DCI information corresponding to the REDCAP UE and the DCI information corresponding to the legacy UE into one DCI and sends it, where REDCAP UE corresponds to The DCI information can be indicated by a reserved bit field in the existing DCI.
  • the network equipment carries the first RAR and the second RAR in different PDSCHs and sends them.
  • the PDSCH used for scheduling by the DCI corresponding to the REDCAP UE is different from the PDSCH used for scheduling by the DCI corresponding to the legacy UE.
  • the first DCI and the second DCI are carried in different PDCCHs, and the first RAR and the second RAR are carried in the same PDSCH.
  • the network equipment puts the first DCI and the second DCI into different PDCCHs for transmission.
  • the first RAR and the second RAR are carried in the same PDSCH and sent to the REDCAP UE and the legacy UE.
  • the PDSCH scheduled by the first DCI and the second DCI are scheduled The PDSCH is the same.
  • the first DCI and the second DCI are carried in the same PDCCH, and the first RAR and the second RAR are also carried in the same PDSCH. That is, the network device puts the first DCI and the second DCI in the same PDCCH for transmission, and carries the first RAR and the second RAR on the same PDSCH for transmission.
  • the first type of UE and the second type of UE can share PDCCH and PDSCH resources.
  • the two types of UEs have the same resources for receiving DCI, and the RAR is also carried in the same PDSCH, which improves resource utilization efficiency and saves Signaling overhead.
  • REDCAP UE needs to know in advance whether the network equipment puts the RAR information corresponding to the two types of UEs in the same PDCCH or PDCSH, otherwise it may not be able to correctly receive the corresponding DCI or RAR. For example: when two types of UEs share the same PDCCH, REDCAP UE needs to receive the corresponding DCI in the same way as the legacy UE; when the two types of UEs do not share the same PDCCH, REDCAP UE needs to receive the DCI in a different way than the legacy UE.
  • the corresponding DCI namely REDCAP UE and legacy UE, must receive their respective DCI in different ways.
  • the DCI corresponding to the two types of UEs can be distinguished by using different scrambling codes or reserved bits. If REDCAP UE does not know in advance Whether the corresponding DCI and the DCI corresponding to the legacy UE share the same PDCCH, it is possible that the DCI is received in the way that the legacy UE receives the DCI, which will cause reception errors and fail to obtain the corresponding RAR information.
  • REDCAP UE knowing whether the network equipment puts the DCI corresponding to the two types of UEs into the same PDCCH, or whether to put the RAR information corresponding to the two types of UEs into the same PDCSH, can improve the reception of the corresponding first DCI and The correctness of the first RAR.
  • the network device may indicate whether two types of UEs share a PDCCH and/or PDSCH through signaling.
  • the above-mentioned signaling may be RRC signaling, MAC signaling, system message, broadcast message, or DCI, which may directly indicate whether the two types of UEs currently share the status of a PDCCH and/or PDSCH, or through bit inversion (toggle ) Indication, for example: "0" indicates that the current shared/independent state remains unchanged, and "1" indicates that the current state is changed. This embodiment of the application does not limit this.
  • the network device sends first indication information to the first terminal device, where the first indication information indicates whether the first DCI and the second DCI are carried In the same PDCCH. If the first DCI and the second DCI are carried in different PDCCHs, the network device determines the first random access radio network temporary identity (Random Access Radio Network Tempory Identity, RA-RNTI) according to the first physical random access resource, and passes the first physical random access resource.
  • RA-RNTI Random Access Radio Network Tempory Identity
  • a PDCCH scrambled by RA-RNTI sends the first DCI; the network device determines the second RA-RNTI according to the second physical random access resource, and sends the second DCI through the PDCCH scrambled by the second RA-RNTI. If the first DCI and the second DCI are carried in the same PDCCH, the network device determines the second RA-RNTI according to the second physical random access resource, and sends the DCI through the PDCCH scrambled by the second RA-RNTI.
  • the DCI includes REDCAP DCI information corresponding to the UE and legacy DCI information corresponding to the UE.
  • RA-RNTI is related to physical random access resources, and the specific calculation method is:
  • RA-RNTI 1+t_id+10*f_id
  • t_id represents the first subframe sent by the preamble
  • f_id represents the frequency domain position (f_id ⁇ 6).
  • the first terminal device receives the first indication information, and determines whether the first DCI and the second DCI are carried in the same PDCCH according to the first indication information. If the first indication information indicates that the first DCI and the second DCI are carried in different PDCCHs, the first terminal device determines the first RA-RNTI according to the first physical random access resource, and obtains the first RA-RNTI from the corresponding PDCCH according to the first RA-RNTI. Receive the first DCI.
  • the first terminal device receives the first DCI from the corresponding PDCCH according to the second RA-RNTI, and the first DCI includes the DCI corresponding to the REDCAP UE Information and legacy information of the DCI corresponding to the UE.
  • first DCI and the second DCI carried in the same PDCCH means that the first DCI and the second DCI are in the same time-frequency resources; the first DCI and the second DCI carried in different PDCCHs means that the first DCI and the second DCI are carried in different PDCCHs. 2.
  • the time-frequency resources where the DCI is located are different.
  • the network device sends second indication information to the first terminal device, where the second indication information is used to indicate whether the first RAR and the second RAR are carried on the same PDSCH.
  • the first terminal device receives the second indication information, and receives the first RAR according to the second indication information.
  • the first RAR and the second RAR are carried on the same PDSCH, it means that the time-frequency resources of the first RAR and the second RAR are the same; when the first RAR and the second RAR are carried on different PDSCHs, it means that the first RAR and the second RAR are located. Frequency resources are different.
  • the first indication information and the second indication information may be included in different signaling, or may be included in the same signaling.
  • one signaling can indicate whether the first DCI and the second DCI are carried in the same PDCCH, or whether the first RAR and the second RAR are carried in the same PDSCH,
  • the first terminal device can learn whether the first DCI and the second DCI are carried in the same PDCCH and whether the first RAR and the second RAR are carried in the same PDSCH by receiving a signaling.
  • the first indication field is used to indicate whether the first DCI and the second DCI are carried in the same PDCCH, and the first indication field is used to Indicates whether the first RAR and the second RAR are carried in the same PDSCH.
  • the second indication information used to indicate whether the two types of UEs share a PDSCH can also be reserved bit information in the existing DCI, and the reserved bits indicate whether the two types of UEs share a PDSCH, for example If the reserved bit indication in the existing DCI is "1", it indicates that two types of UEs share one PDSCH, and the reserved bit indication in the existing DCI is "0", which indicates that the two types of UEs do not share a PDSCH. Therefore, the second indication information may not be indicated through separate signaling.
  • legacy UE still interprets DCI according to the existing method, and does not interpret reserved bit information;
  • REDCAP UE interprets DCI in a new way, and reads the bits that legacy UE considers to be reserved bit information. In this way, the way the legacy UE receives the DCI will not be changed, and the legacy UE will not be affected, and the unused bits in the original DCI are used without increasing signaling overhead.
  • the REDCAP UE may not be able to accurately determine its corresponding PDSCH. For example, when two types of UEs do not share the same PDSCH, REDCAP UE cannot determine whether the information in the reserved bits is the scheduling information of the second PDSCH or the filling bit information (usually the base station will randomly fill the bit information in the reserved bits), it is possible The first PDSCH indicated in the DCI is mistaken as its corresponding PDSCH, and the information for scheduling its corresponding second PDSCH in the reserved field is not obtained. Therefore, through the indication of the second indication information, the REDCAP UE can accurately obtain its corresponding RAR.
  • first DCI and the second DCI are carried in different PDCCHs, and the first RAR and the second RAR are also carried in different PDSCHs, are also applicable to the technical solutions in the embodiments of the present application.
  • both sides of the UE and the network device may determine whether the two types of UEs share a PDCCH and/or PDSCH according to a predefined rule.
  • the predefined rule may be: if the bandwidth of the REDCAP UE is greater than or equal to the first threshold, the REDCAP UE and the network device may determine that the first DCI and the second DCI are carried in the same PDCCH, and/or the first RAR It is carried in the same PDSCH as the second RAR.
  • the bandwidth of the REDCAP UE is less than the first threshold, the first DCI and the second DCI are carried in different PDCCHs, and/or, the first RAR and the second RAR are carried in different PDSCHs.
  • the UE and the network device have defaulted that the first DCI and the second DCI are carried in the same PDCCH or carried in different PDCCHs, it only needs to determine whether the first RAR and the second RAR are carried in the same PDSCH. If the UE and the network equipment have defaulted that the first RAR and the second RAR are carried in the same PDSCH or are carried in different PDSCHs, they only need to determine whether the first DCI and the second DCI are carried in the same PDCCH.
  • the UE and the network equipment both need to determine whether the first DCI and the second DCI are carried in the same PDCCH, but also need to determine whether the first RAR and the second RAR are carried in the same PDSCH, and determine whether the two types of UEs use the same PDCCH according to a predefined rule
  • the two types of UEs use the same PDSCH when the two types of UEs use different PDCCHs according to predefined rules, the two types of UEs also use different PDSCHs.
  • the first threshold may be based on the size of the frequency domain resources occupied by the Control-Resource Set (CORESET) corresponding to the second terminal equipment (legacy UE), the interleaving method of the PDCCH corresponding to the UE, and the legacy At least one of the parameters such as the subcarrier spacing corresponding to the UE is determined. It should be understood that the first threshold may also be preset or determined according to other indication information. The embodiment of the application does not limit this.
  • interleaving refers to how control information is mapped on the frequency domain resources of the control channel resource set CORESET. If it is not interleaved, the control information is continuously mapped on the physical resource; if it is interleaved, it is mapped to multiple resources according to the interleaving depth, and the multiple resources may not be continuous.
  • the interleaving depth is configurable, for example: 2, 3, 6. Take the interleaving depth of 2 and the aggregation level of the PDCCH as 4 as an example. As shown in Figure 4, the abscissa is the frequency domain resource number, and the resources of different grids correspond to different candidates (candidate positions).
  • the interleaving depth is 2
  • the PDCCH resources are evenly allocated to the left and right resources, that is, two resource units in the high frequency band and two resource units in the low frequency band.
  • the resource unit is a resource block (RB), a resource unit group set (REG bundle), a control channel element (CCE), and so on.
  • the base station sends a broadcast message. Both REDCAP UE and legacy UE can initiate a random access request based on the broadcast message, and the control channel resource indicated in the broadcast message is the CORESET corresponding to the legacy UE. Then the REDCAP UE can learn the bandwidth of the CORESET, and The interleaving mode of the PDCCH corresponding to the legacy UE.
  • the interleaving method of the PDCCH corresponding to the legacy UE can be determined in a manner predefined by the protocol, for example, the interleaving and the interleaving depth are 2.
  • the base station side can learn the bandwidth of the REDCAP UE and other information according to the random access request information initiated by the REDCAP UE.
  • the following describes the case where the UE and the base station both need to determine whether the first DCI and the second DCI are carried in the same PDCCH, and also need to determine whether the first RAR and the second RAR are carried in the same PDSCH.
  • REDCAP UE receives the first DCI according to the second RA-RNTI, and obtains its corresponding RAR information according to the PDSCH indicated by the first DCI.
  • the bandwidth of the REDCAP UE is greater than or equal to the bandwidth of the CORESET corresponding to the legacy UE, the two types of UEs share the same PDCCH and share the same PDSCH.
  • the REDCAP UE receives the first DCI according to the first RA-RNTI, and obtains its corresponding RAR information according to the PDSCH indicated by the first DCI.
  • the bandwidth supported by the REDCAP UE is 10MHz
  • the bandwidth of the CORESET corresponding to the legacy UE is 20MHz
  • the legacy UE transmits DCI within the 20MHz bandwidth
  • the REDCAP UE can only be used on 10MHz of the 20MHz resources.
  • the base station sends DCI outside of the 10 MHz that the REDCAP UE can receive
  • the REDCAP UE may not receive the DCI or only receives part of the DCI. Therefore, when the bandwidth of the REDCAP UE is smaller than the bandwidth of the CORESET corresponding to the legacy UE, the two types of UEs do not share the same PDCCH, nor do they share the same PDSCH.
  • the bandwidth supported by REDCAP UE is 30MHz
  • the bandwidth of CORESET corresponding to legacy UE is 20MHz
  • legacy UE transmits DCI within 20MHz bandwidth
  • REDCAP UE can detect DCI within 30MHz bandwidth
  • base station can detect DCI within 30MHz bandwidth.
  • the REDCAP UE must be able to receive DCI. Therefore, when the bandwidth of the REDCAP UE is greater than or equal to the bandwidth of the CORESET corresponding to the legacy UE, the two types of UEs can share one PDCCH and one PDSCH.
  • the PDCCH corresponding to the legacy UE is not interleaved, that is, the DCI sent by the legacy UE is transmitted on continuous physical resources in COREST.
  • the bandwidth of the REDCAP UE is less than the bandwidth of the CORESET*2 ⁇ u/symbol_num, the two types of UEs are not shared The same PDCCH does not share the same PDSCH; if the REDCAP UE's bandwidth is greater than or equal to the CORESET bandwidth*2 ⁇ u/symbol_num, the two types of UEs share the same PDCCH and share the same PDSCH.
  • the MAC PDU carried by the first PDSCH includes the first sub-protocol data unit subPDU, and the first subPDU is The third information is included, and the third information is used to indicate whether the first subPDU includes the first RAR.
  • the third information is carried in any of the following fields in the first subPDU: a random access preamble identifier (Random Access Preamble Identifier, RAPID) field, a T field, and a MAC RAR field.
  • RAPID Random Access Preamble Identifier
  • the MAC PDU is composed of one or more MAC sub-protocol data units subPDU and optional padding.
  • Each subPDU corresponds to a MAC subheader (MAC subheader).
  • the MAC subheader includes the following:
  • the subheader of BI If the MAC subheader of BI is included, the subheader only appears once and is located at the first MAC subheader of the MAC header. Only the MAC subheader with RAPID and the MAC subPDU with MAC RAR with RAPID can be placed anywhere between the MAC subPDU of BI (if present) and padding (if present).
  • the MAC subheader with BI is composed of five header fields E/T/R/R/BI. As shown in FIG. 6, a schematic structural diagram of the MAC subheader with BI is shown.
  • BI specifies the time range that the UE needs to wait before resending the preamble. If the UE does not receive the RAR within the RAR time window, or if none of the received RAR preamble matches its own, it is considered that the RAR reception has failed. At this time, the UE needs to wait for a period of time and then initiate a random access request again .
  • the waiting time is a value randomly selected within the waiting time interval specified by the value 0 to BI.
  • the value of BI reflects the load situation of the cell from the side. If there are more UEs connected, the value can be set larger; if there are fewer UEs connected, the value can be set smaller. This is achieved by the base station. Decide.
  • the content of RAPID corresponds to the preamble index when the UE initiates random access.
  • the RAR feedback corresponding to the preamble index is used to respond to a system message request (SI request)
  • SI request system message request
  • the MAC subheader is a MAC subheader with only RAPID.
  • the corresponding MAC sub-header with RAPID is composed of three fields E/T/RAPID, as shown in Fig. 7, showing the structure diagram of the MAC sub-header with RAPID.
  • the MAC subheader is a MAC subheader with RAPID and MACRAR.
  • the structure of MAC RAR is shown in Figure 8.
  • the UE After the UE sends the preamble, it will monitor the PDCCH carrying the RA-RNTI within the time window of the RAR to receive its own RAR.
  • the RARs corresponding to the two types of UEs can pass the MAC sub-frame. It is distinguished by RAPID in the header, and RAPID indicates preamble index information.
  • the preamble index used by the REDCAP UE and the legacy UE may be the same.
  • the T field in the MAC subheader can be used to indicate the RAR corresponding to the REDCAP UE, and the reserved bits in the MAC RAR field can also be used to indicate the RAR corresponding to the REDCAP UE.
  • the subPDU corresponding to the MAC subheader includes the first MAC subheader corresponding to the REDCAP UE.
  • One RAR It should be understood that if there is a MAC subheader indicated by BI, the BI indication information is still placed in subPDU1, and the subPDU corresponding to the MAC subheader whose T field is indicated as "0" in the subsequent MAC subheader includes the first RAR.
  • the second RAR corresponding to the legacy UE is preferentially placed, and the subPDU including the first RAR corresponding to the REDCAP UE is located after the subPDU including the second RAR corresponding to the legacy UE.
  • the legacy UE obtains its corresponding RAR information, it will end the reading of the PDSCH, which does not affect the legacy UE's information acquisition, delay, etc.
  • the first RAR corresponding to the REDCAP UE is not in subPDU1.
  • the first subheader is indicated by BI: the reserved field indicates "1" or the BI field indicates the reserved state "14"/"15", as shown in Table 2;
  • the legacy UE reads the BI, it will be considered as an error decoding and will not affect the subsequent reading of the REDCAP UE.
  • the first subheader is indicated in the legacy UE RAPID format: but RAPID indicates the preamble index that is not detected in the corresponding RO; REDCAP UE starts from the second subheader and indicates according to the aforementioned method .
  • the reserved bit indication in the MAC RAR field is "1"
  • the reserved bit indication in the MAC RAR field is "0”
  • An embodiment of the present application provides a communication device 900. As shown in FIG. 9, a schematic block diagram of a communication device is shown.
  • the communication device 900 includes: a processing unit 910.
  • a transceiver unit 920 may also be included.
  • the communication device may be applied to a terminal device, or may be applied to a chip in the terminal device or other combination devices, components, etc. having the above-mentioned terminal device functions.
  • the transceiving unit 920 may be a transceiver
  • the transceiver may include an antenna and a radio frequency circuit, etc.
  • the processing unit 910 may be a processor or a processing circuit, such as a baseband processor.
  • the baseband processor includes One or more CPUs.
  • the transceiver unit 920 may be a radio frequency unit, and the processing unit 910 may be a processor or a processing circuit, such as a baseband processor.
  • the transceiver unit 920 may be an input/output interface of a chip (for example, a baseband chip), and the processing unit 910 may be a processor or a processing circuit of the chip system, and may include one or more central processing units. .
  • processing unit 910 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component (or, referred to as a processing circuit), and the transceiver unit 920 may be implemented by a transceiver or a transceiver-related circuit component.
  • the processing unit 910 is configured to determine the first physical random access resource
  • the transceiver unit 920 is configured to send a first random access request message on the first physical random access resource
  • the transceiving unit 920 is further configured to receive first downlink control information DCI, where the first DCI is used to schedule a first random access response RAR;
  • the transceiving unit is further configured to receive the first RAR according to the first DCI;
  • the first DCI and the second downlink control information DCI received by the second terminal device are carried in the same physical downlink control channel PDCCH, and/or the second random access scheduled by the first RAR and the second DCI
  • the response RAR is carried in the same physical layer downlink shared channel PDSCH.
  • the first physical random access resource is not completely the same as the second physical random access resource for which the second terminal device sends a second random access request message.
  • the transceiving unit 920 is further configured to receive first indication information, where the first indication information indicates whether the first DCI and the second DCI are carried in the same PDCCH.
  • the transceiving unit 920 is further configured to receive second indication information, where the second indication information indicates whether the first RAR and the second RAR are carried in the same PDSCH.
  • the bandwidth of the first terminal device is greater than or equal to a first threshold
  • the first DCI and the second DCI are carried in the same PDCCH
  • the first RAR and the second RAR is carried in the same PDSCH.
  • the bandwidth of the first terminal device is less than a first threshold
  • the first DCI and the second DCI are carried in different PDCCHs
  • the first RAR and the second RAR are carried In different PDSCHs.
  • the first threshold is determined according to at least one of the following parameters: the bandwidth of the control channel resource set CORESET corresponding to the second terminal device, and the time domain resources occupied by the CORESET corresponding to the second terminal device The size, the interleaving mode of the physical layer downlink control channel PDCCH corresponding to the second terminal device, and the subcarrier interval corresponding to the second terminal device.
  • the first DCI and the second DCI are carried in different PDCCHs, and the processing unit is specifically configured to determine a first random access radio network temporary identifier RA according to the first physical random access resource -RNTI; the transceiver unit is specifically configured to receive the first DCI according to the first RA-RNTI; the first DCI and the second DCI are carried in the same PDCCH, and the processing unit is specifically configured to Determine a second random access radio network temporary identifier RA-RNTI according to the second physical random access resource; the transceiver unit is specifically configured to receive the first DCI according to the second RA-RNTI.
  • the MAC PDU carried by the first PDSCH includes a first sub-protocol data unit subPDU
  • the The first subPDU includes third information
  • the third information is used to indicate whether the first subPDU includes the first RAR.
  • An embodiment of the present application provides another communication device 1000. As shown in FIG. 10, a schematic block diagram of another communication device is shown.
  • the communication device 1000 includes a transceiver unit 1010.
  • a processing unit 1020 may also be included.
  • the communication apparatus 1000 may be applied to an access network device, or may be applied to a chip in an access network device or other combination devices, components, etc. having the functions of the access network device described above.
  • the transceiver unit 1010 may be a transceiver
  • the transceiver may include an antenna and a radio frequency circuit, etc.
  • the processing unit 1020 may be a processor or a processing circuit, such as a baseband processor, baseband processing
  • the processor can include one or more CPUs.
  • the transceiver unit 1010 may be a radio frequency unit, and the processing unit 1020 may be a processor or a processing circuit, such as a baseband processor.
  • the transceiver unit 1010 may be an input/output interface of a chip (for example, a baseband chip), and the processing unit 1020 may be a processor (or processing circuit) of the chip system, and may include one or more central Processing unit.
  • processing unit 1020 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component (or, referred to as a processing circuit), and the transceiver unit 1010 may be implemented by a transceiver or a transceiver-related circuit component.
  • the transceiver unit 1010 is configured to send first downlink control information DCI to a first terminal device, and send second downlink control information DCI to a second terminal device, where the first DCI is used to schedule the first random access
  • the second DCI is used to schedule a second random access response RAR, where the first terminal device is a first type terminal device, and the second terminal device is a second type terminal device;
  • the transceiving unit 1010 is further configured to send the first RAR to the first terminal device and send the second RAR to the second terminal device;
  • the first DCI and the second DCI are carried in the same physical downlink control channel PDCCH, and/or the first RAR and the second RAR are carried in the same physical layer downlink shared channel PDSCH.
  • the transceiving unit 1010 is further configured to send first indication information to the first terminal device, where the first indication information indicates whether the first DCI and the second DCI are carried in the same PDCCH .
  • the transceiving unit 1010 is further configured to send second indication information to the first terminal device, where the second indication information indicates whether the first RAR and the second RAR are carried in the same PDSCH .
  • the bandwidth of the first terminal device is greater than or equal to the first threshold
  • the first DCI and the second DCI are carried in the same PDCCH
  • the first RAR and the The second RAR is carried in the same PDSCH.
  • the bandwidth of the first terminal device is less than a first threshold
  • the first DCI and the second DCI are carried in different PDCCHs
  • the first RAR and the second RAR are carried In different PDSCHs.
  • the first threshold is determined according to at least one of the following parameters: the bandwidth of the control channel resource set CORESET corresponding to the second terminal device, and the time domain resources occupied by the CORESET corresponding to the second terminal device The size, the interleaving mode of the physical layer downlink control channel PDCCH corresponding to the second terminal device, and the subcarrier interval corresponding to the second terminal device.
  • the device further includes a processing unit 1020;
  • the first DCI and the second DCI are carried in different PDCCHs, and the processing unit 1020 is configured to determine the first random access radio network temporary identifier RA-RNTI according to the first physical random access resource, where: The first physical random access resource is allocated by the processing unit 1020 for the first terminal device;
  • the transceiving unit 1010 is specifically configured to send the first DCI by using the first RA-RNTI;
  • the first DCI and the second DCI are carried in the same PDCCH, and the processing unit 1020 is configured to determine the second random access radio network temporary identifier RA-RNTI according to the second physical random access resource, where: The second physical random access resource is allocated by the processing unit 1020 for the second terminal device;
  • the transceiving unit 1010 is specifically configured to send the first DCI by using the second RA-RNTI.
  • the MAC PDU carried by the first PDSCH includes a first sub-protocol data unit subPDU
  • the The first subPDU includes third information
  • the third information is used to indicate whether the first subPDU includes the first RAR.
  • FIG. 11 shows a schematic block diagram of a communication device according to an embodiment of the present application.
  • the network device 1100 includes: a memory 1110, a communication interface 1120, and a processor 1130;
  • the memory 1110 is used to store executable instructions
  • the processor 1130 is coupled with the memory through a communication interface, and the processor 1130 is configured to call and run the executable instructions in the memory 1110 to implement the method in the embodiment of the present application.
  • the aforementioned processor may be an integrated circuit chip with signal processing capabilities.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the aforementioned memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the foregoing memory may be integrated in a processor, or the foregoing processor and memory may also be integrated on the same chip, or may be located on different chips and connected through interface coupling. This embodiment of the application does not limit this.
  • the embodiment of the present application also provides a computer-readable storage medium on which is stored a computer program for implementing the method in the foregoing method embodiment.
  • the computer program runs on a computer, the computer can implement the method in the foregoing method embodiment.
  • the term "and/or” in this application is only an association relationship describing the associated objects, which means that there can be three types of relationships, for example, A and/or B, which can mean that A alone exists, and both A and B exist. , There are three cases of B alone.
  • the character "/" in this article generally means that the associated objects before and after are in an "or” relationship; the term “at least one” in this application can mean “one” and "two or more", for example, A At least one of, B and C can mean: A alone exists, B alone exists, C exists alone, A and B exist alone, A and C exist simultaneously, C and B exist simultaneously, and A and B and C exist simultaneously, this Seven situations.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种随机接入的方法,能够节省信令的开销。该方法包括:第一终端设备确定第一物理随机接入资源,其中,所述第一终端设备为第一类型终端设备;所述第一终端设备在所述第一物理随机接入资源上发送第一随机接入请求消息;所述第一终端设备接收第一下行控制信息DCI,所述第一DCI用于调度第一随机接入响应RAR;所述第一终端设备根据所述第一DCI接收所述第一RAR;所述第一DCI与第二终端设备接收的第二下行控制信息DCI承载在同一物理下行控制信道PDCCH中,和/或,所述第一RAR与所述第二DCI调度的第二随机接入响应RAR承载在同一物理层下行共享信道PDSCH中,其中,所述第二终端设备为第二类型终端设备。

Description

随机接入的方法、装置和***
本申请要求于2020年6月4日提交中国专利局、申请号为202010498461.1、申请名称为“随机接入的方法、装置和***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种随机接入的方法、装置和***。
背景技术
目前,标准中将海量机器类通信(massive machine type communications,mMTC)业务的用户设备(user equipment,UE)称为低复杂度的UE(reduced capability UE,REDCAP UE),该类UE可能在带宽、功耗、天线数等方面比其他UE复杂度低一些,如带宽更窄、功耗更低、天线数更少等。
在随机接入过程中,针对REDCAP UE和普通UE对应的随机接入响应(Random Access Response,RAR)信息是否在相同的物理层下行控制信道(Physical downlink control channel,PDCCH)或物理层下行共享信道(Physical downlink shared channel,PDSCH)资源中传输,协议没有规定。
若将两类UE的用于调度其对应的RAR的下行控制信息(Downlink control information,DCI)分别承载在不同的PDCCH中传输,将两类UE的对应的RAR分别承载在不同的PDSCH中传输,会导致信令开销较大。
发明内容
本申请提供一种随机接入的方法和装置,能够节省信令的开销。
第一方面,提供一种随机接入的方法,包括:第一终端设备确定第一物理随机接入资源,其中,所述第一终端设备为第一类型终端设备;所述第一终端设备在所述第一物理随机接入资源上发送第一随机接入请求消息;所述第一终端设备接收第一下行控制信息DCI,所述第一DCI用于调度第一随机接入响应RAR;所述第一终端设备根据所述第一DCI接收所述第一RAR;所述第一DCI与第二终端设备接收的第二下行控制信息DCI承载在同一物理下行控制信道PDCCH中,和/或,所述第一RAR与所述第二DCI调度的第二随机接入响应RAR承载在同一物理层下行共享信道PDSCH中,其中,所述第二终端设备为第二类型终端设备。
基于上述技术方案,用于调度该第一类型终端设备对应的第一随机接入响应RAR的第一DCI与第二类型终端设备对应的第二DCI承载在相同PDCCH中,或者,第一DCI用于调度的第一RAR与第二DCI用于调度的第二RAR承载在相同PDSCH中,即两种不同类型的终端设备可以在相同的PDCCH信道接收DCI或者可以在相同的PDSCH信道接 收RAR,提升了资源利用率,节省传输信令的开销。
在一种可能的实现方式中,所述第一物理随机接入资源与所述第二终端设备发送第二随机接入请求消息的第二物理随机接入资源不完全相同。
在一种可能的实现方式中,在所述第一终端设备接收第一下行控制信息DCI之前,所述方法还包括:所述第一终端设备接收第一指示信息,所述第一指示信息指示所述第一DCI与所述第二DCI是否承载在同一PDCCH中。第一终端设备根据第一指示信息可以根据对应的随机接入无线网络临时标识RA-RNTI正确地接收第一DCI。
在一种可能的实现方式中,在所述第一终端设备根据所述第一DCI接收所述第一RAR之前,所述方法还包括:所述第一终端设备接收第二指示信息,所述第二指示信息指示所述第一RAR与所述第二RAR是否承载在同一PDSCH中。第一终端设备根据第二指示信息可以准确地获取第一RAR。
在一种可能的实现方式中,在所述第一终端设备接收第一下行控制信息DCI之前,所述方法还包括:所述第一终端设备的带宽大于或等于第一阈值,所述第一DCI与所述第二DCI承载在同一PDCCH中,和/或,所述第一RAR与所述第二RAR承载在同一PDSCH中。根据第一终端设备的带宽与第一阈值的关系,可以确定两类终端设备是否共享PDSCH或是否共享PDCCH。不需要额外的信令来进行指示,节省了信令的开销。
在一种可能的实现方式中,在所述第一终端设备接收第一下行控制信息DCI之前,所述方法还包括:所述第一终端设备的带宽小于第一阈值,所述第一DCI与所述第二DCI承载在不同PDCCH中,和/或,所述第一RAR与所述第二RAR承载在不同PDSCH中。
在一种可能的实现方式中,所述第一阈值是根据以下至少一种参数确定的:所述第二终端设备对应的控制信道资源集合CORESET的带宽、所述第二终端设备对应的CORESET占用的时域资源的大小、所述第二终端设备对应的物理层下行控制信道PDCCH的交织方式、所述第二终端设备对应的子载波间隔。
在一种可能的实现方式中,所述第一终端设备接收第一下行控制信息DCI,包括:所述第一DCI与所述第二DCI承载在不同PDCCH中,所述第一终端设备根据所述第一物理随机接入资源确定第一随机接入无线网络临时标识RA-RNTI,根据所述第一RA-RNTI接收所述第一DCI;或者,所述第一DCI与所述第二DCI承载在同一PDCCH中,所述第一终端设备根据所述第二物理随机接入资源确定第二随机接入无线网络临时标识RA-RNTI,根据所述第二RA-RNTI接收所述第一DCI。
在一种可能的实现方式中,所述第一终端设备根据所述第一DCI接收所述第一RAR,包括:所述第一RAR与所述第二RAR承载在第一PDSCH时,所述第一PDSCH承载的媒体接入控制协议数据单元MAC PDU中包括第一子协议数据单元subPDU,所述第一subPDU中包括第三信息,所述第三信息用于指示所述第一subPDU是否包括所述第一RAR。
在一种可能的实现方式中,所述第三信息承载于所述第一subPDU中以下任意字段:随机接入前导码标识RAPID字段、T字段、MAC RAR字段。
在一种可能的实现方式中,所述第一终端设备的带宽小于所述第二终端设备的带宽;和/或,所述第一终端设备的天线数量小于所述第二终端设备的天线数量;和/或,所述第一终端设备的功耗低于所述第二终端设备的功耗;和/或,所述第一终端设备的物理层下 行控制信道PDCCH盲检次数小于所述第二终端设备的PDCCH盲检次数。
第二方面,提供了一种通信方法,包括:网络设备向第一终端设备发送第一下行控制信息DCI,向第二终端设备发送第二下行控制信息DCI,所述第一DCI用于调度第一随机接入响应RAR,所述第二DCI用于调度第二随机接入响应RAR,其中,所述第一终端设备为第一类型终端设备,所述第二终端设备为第二类型终端设备;所述网络设备向所述第一终端设备发送所述第一RAR,向所述第二终端设备发送所述第二RAR;所述第一DCI与所述第二DCI承载在同一物理下行控制信道PDCCH中,和/或,所述第一RAR与所述第二RAR承载在同一物理层下行共享信道PDSCH中。
在一种可能的实现方式中,在网络设备向第一终端设备发送第一下行控制信息DCI之前,所述方法还包括:所述网络设备向所述第一终端设备发送第一指示信息,所述第一指示信息指示所述第一DCI与所述第二DCI是否承载在同一PDCCH中。
在一种可能的实现方式中,在所述网络设备向所述第一终端设备发送所述第一RAR之前,所述方法还包括:所述网络设备向所述第一终端设备发送第二指示信息,所述第二指示信息指示所述第一RAR与所述第二RAR是否承载在同一PDSCH中。
在一种可能的实现方式中,在网络设备向第一终端设备发送第一下行控制信息DCI之前,所述方法还包括:所述第一终端设备的带宽大于或等于所述第一阈值,所述第一DCI与所述第二DCI承载在同一PDCCH中,和/或,所述第一RAR与所述第二RAR承载在同一PDSCH中。
在一种可能的实现方式中,在网络设备向第一终端设备发送第一下行控制信息DCI之前,所述方法还包括:所述第一终端设备的带宽小于第一阈值,所述第一DCI与所述第二DCI承载在不同PDCCH中,和/或,所述第一RAR与所述第二RAR承载在不同PDSCH中。
在一种可能的实现方式中,所述第一阈值是根据以下至少一种参数确定的:所述第二终端设备对应的控制信道资源集合CORESET的带宽、所述第二终端设备对应的CORESET占用的时域资源的大小、所述第二终端设备对应的物理层下行控制信道PDCCH的交织方式、所述第二终端设备对应的子载波间隔。
在一种可能的实现方式中,所述网络设备向所述第一终端设备发送所述第一DCI,包括:所述第一DCI与所述第二DCI承载在不同PDCCH中,所述网络设备根据第一物理随机接入资源确定第一随机接入无线网络临时标识RA-RNTI,利用所述第一RA-RNTI发送所述第一DCI,其中,所述第一物理随机接入资源是所述网络设备为所述第一终端设备分配的;或者,所述第一DCI与所述第二DCI承载在同一PDCCH中,所述网络设备根据第二物理随机接入资源确定第二随机接入无线网络临时标识RA-RNTI,利用所述第二RA-RNTI发送所述第一DCI,其中,所述第二物理随机接入资源是所述网络设备为所述第二终端设备分配的。
在一种可能的实现方式中,所述网络设备向所述第一终端设备发送所述第一RAR,包括:所述第一RAR与所述第二RAR承载在第一PDSCH时,所述第一PDSCH承载的媒体接入控制协议数据单元MAC PDU中包括第一子协议数据单元subPDU,所述第一subPDU中包括第三信息,所述第三信息用于指示所述第一subPDU是否包括所述第一RAR。
在一种可能的实现方式中,所述第三信息承载于所述第一subPDU中以下任意字段:随机接入前导码标识RAPID字段、T字段、MAC RAR字段。
在一种可能的实现方式中,所述第一终端设备的带宽小于所述第二终端设备的带宽;和/或,所述第一终端设备的天线数量小于所述第二终端设备的天线数量;和/或,所述第一终端设备的功耗低于所述第二终端设备的功耗;和/或,所述第一终端设备的物理层下行控制信道PDCCH盲检次数小于所述第二终端设备的PDCCH盲检次数。
第三方面,提供了一种通信装置,包括:处理单元,用于确定第一物理随机接入资源;收发单元,用于在所述第一物理随机接入资源上发送第一随机接入请求消息;所述收发单元还用于,接收第一下行控制信息DCI,所述第一DCI用于调度第一随机接入响应RAR;所述收发单元还用于,根据所述第一DCI接收所述第一RAR;所述第一DCI与第二终端设备接收的第二下行控制信息DCI承载在同一物理下行控制信道PDCCH中,和/或,所述第一RAR与所述第二DCI调度的第二随机接入响应RAR承载在同一物理层下行共享信道PDSCH中。
在一种可能的实现方式中,所述第一物理随机接入资源与所述第二终端设备发送第二随机接入请求消息的第二物理随机接入资源不完全相同。
在一种可能的实现方式中,所述收发单元还用于,接收第一指示信息,所述第一指示信息指示所述第一DCI与所述第二DCI是否承载在同一PDCCH中。
在一种可能的实现方式中,所述收发单元还用于,接收第二指示信息,所述第二指示信息指示所述第一RAR与所述第二RAR是否承载在同一PDSCH中。
在一种可能的实现方式中,所述第一终端设备的带宽大于或等于第一阈值,所述第一DCI与所述第二DCI承载在同一PDCCH中,和/或,所述第一RAR与所述第二RAR承载在同一PDSCH中。
在一种可能的实现方式中,所述第一终端设备的带宽小于第一阈值,所述第一DCI与所述第二DCI承载在不同PDCCH中,和/或,所述第一RAR与所述第二RAR承载在不同PDSCH中。
在一种可能的实现方式中,所述第一阈值是根据以下至少一种参数确定的:所述第二终端设备对应的控制信道资源集合CORESET的带宽、所述第二终端设备对应的CORESET占用的时域资源的大小、所述第二终端设备对应的物理层下行控制信道PDCCH的交织方式、所述第二终端设备对应的子载波间隔。
在一种可能的实现方式中,所述第一DCI与所述第二DCI承载在不同PDCCH中,所述处理单元具体用于,根据所述第一物理随机接入资源确定第一随机接入无线网络临时标识RA-RNTI;所述收发单元具体用于,根据所述第一RA-RNTI接收所述第一DCI;所述第一DCI与所述第二DCI承载在同一PDCCH中,所述处理单元具体用于,根据所述第二物理随机接入资源确定第二随机接入无线网络临时标识RA-RNTI;所述收发单元具体用于,根据所述第二RA-RNTI接收所述第一DCI。
在一种可能的实现方式中,所述第一RAR与所述第二RAR承载在第一PDSCH时,所述第一PDSCH承载的媒体接入控制协议数据单元MAC PDU中包括第一子协议数据单元subPDU,所述第一subPDU中包括第三信息,所述第三信息用于指示所述第一subPDU是否包括所述第一RAR。
第四方面,提供了一种通信装置,包括:收发单元,用于向第一终端设备发送第一下行控制信息DCI,向第二终端设备发送第二下行控制信息DCI,所述第一DCI用于调度第一随机接入响应RAR,所述第二DCI用于调度第二随机接入响应RAR,其中,所述第一终端设备为第一类型终端设备,所述第二终端设备为第二类型终端设备;所述收发单元还用于,向所述第一终端设备发送所述第一RAR,向所述第二终端设备发送所述第二RAR;所述第一DCI与所述第二DCI承载在同一物理下行控制信道PDCCH中,和/或,所述第一RAR与所述第二RAR承载在同一物理层下行共享信道PDSCH中。
在一种可能的实现方式中,所述收发单元还用于,向所述第一终端设备发送第一指示信息,所述第一指示信息指示所述第一DCI与所述第二DCI是否承载在同一PDCCH中。
在一种可能的实现方式中,所述收发单元还用于,向所述第一终端设备发送第二指示信息,所述第二指示信息指示所述第一RAR与所述第二RAR是否承载在同一PDSCH中。
在一种可能的实现方式中,所述第一终端设备的带宽大于或等于所述第一阈值,所述第一DCI与所述第二DCI承载在同一PDCCH中,和/或,所述第一RAR与所述第二RAR承载在同一PDSCH中。
在一种可能的实现方式中,所述第一终端设备的带宽小于第一阈值,所述第一DCI与所述第二DCI承载在不同PDCCH中,和/或,所述第一RAR与所述第二RAR承载在不同PDSCH中。
在一种可能的实现方式中,所述第一阈值是根据以下至少一种参数确定的:所述第二终端设备对应的控制信道资源集合CORESET的带宽、所述第二终端设备对应的CORESET占用的时域资源的大小、所述第二终端设备对应的物理层下行控制信道PDCCH的交织方式、所述第二终端设备对应的子载波间隔。
在一种可能的实现方式中,所述装置还包括处理单元;所述第一DCI与所述第二DCI承载在不同PDCCH中,所述处理单元,用于根据第一物理随机接入资源确定第一随机接入无线网络临时标识RA-RNTI,其中,所述第一物理随机接入资源是所述处理单元为所述第一终端设备分配的;所述收发单元具体用于,利用所述第一RA-RNTI发送所述第一DCI;所述第一DCI与所述第二DCI承载在同一PDCCH中,所述处理单元,用于根据第二物理随机接入资源确定第二随机接入无线网络临时标识RA-RNTI,其中,所述第二物理随机接入资源是所述处理单元为所述第二终端设备分配的;所述收发单元具体用于,利用所述第二RA-RNTI发送所述第一DCI。
在一种可能的实现方式中,所述第一RAR与所述第二RAR承载在第一PDSCH时,所述第一PDSCH承载的媒体接入控制协议数据单元MAC PDU中包括第一子协议数据单元subPDU,所述第一subPDU中包括第三信息,所述第三信息用于指示所述第一subPDU是否包括所述第一RAR。
第五方面,提供了一种计算机可读存储介质,所述计算机可读介质用于存储有计算机程序;所述计算机程序在计算机上运行时,使得计算机执行第一方面或第一方面任意可能的实现方式中的方法。
第六方面,提供了一种计算机可读存储介质,所述计算机可读介质用于存储有计算机程序;所述计算机程序在计算机上运行时,使得计算机执行第二方面或第二方面任意可能的实现方式中的方法。
第七方面,本申请实施例提供了一种计算机可读存储介质或非易失性存储介质,所述计算机可读存储介质或非易失性存储介质中存储有指令或程序,当指令或程序在计算机上运行时,使得计算机执行上述各方面所述的方法,或当指令或程序在一个或多个处理器上运行时,使得包含所述一个或多个处理器的通信装置执行上述第一方面或第二方面所述的方法。
第八方面,本申请实施例提供了一种计算机程序产品,所述计算机程序产品用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如上述第一方面或第二方面所述的方法。
第九方面,本申请实施例提供了一种芯片或传输指示信息的装置,包括:至少一个处理器,所述至少一个处理器与存储器耦合,所述存储器包括指令,所述至少一个处理器运行所述指令使所述用于传输公共信号的装置执行如上述第一方面或第二方面所述的方法。
第十方面,提供了一种通信设备,此通信设备包括一个或多个处理器,以及一个或多个存储器或非易失性存储介质,此一个或多个存储器或非易失性存储介质中存储有指令或程序,当所述一个或多个处理器执行所述指令或程序时,使得所述通信设备或所述一个或多个处理器执行上述第一方面或第二方面所述的方法。
第十一方面,提供了一种终端装置或通信装置,配置为执行上述第一方面所述的方法。
第十二方面,提供了一种网络装置或通信装置,配置为执行上述第二方面所述的方法。
第十三方面,本申请实施例提供了一种通信***,所述通信***包括上述第三方面涉及的通信装置及第四方面涉及的通信装置。
附图说明
图1为本申请实施例的移动通信***的架构示意图。
图2为终端设备随机接入过程示意图。
图3为本申请实施例的一种随机接入方法的示意性流程图。
图4为交织深度为2时控制信息在CORESET的频域资源上映射示意图。
图5为MAC PDU的组成结构示意图。
图6为具有BI的MAC子头的结构示意图。
图7为具有RAPID的MAC子头的结构示意图。
图8为MAC RAR的组成结构示意图。
图9为本申请实施例的一种通信装置的示意性框图。
图10为本申请实施例的另一种通信装置的示意性框图。
图11为本申请实施例的一种通信设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例可以应用于各种通信***,例如无线局域网***(Wireless Local Area Network,WLAN)、窄带物联网***(Narrow Band-Internet of Things,NB-IoT)、全球移动通信***(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进***(Enhanced Data rate for GSM Evolution,EDGE)、宽带码分多址***(Wideband  Code Division Multiple Access,WCDMA)、码分多址2000***(Code Division Multiple Access,CDMA2000)、时分同步码分多址***(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA),长期演进***(Long Term Evolution,LTE)、卫星通信、第五代(5th generation,5G)***或者将来出现的新的通信***等。
移动通信技术已经深刻地改变了人们的生活,但人们对更高性能的移动通信技术的追求从未停止。为了应对未来***性的移动数据流量增长、海量移动通信的设备连接、不断涌现的各类新业务和应用场景,5G移动通信***应运而生。国际电信联盟(international telecommunication union,ITU)为5G以及未来的移动通信***定义了三大类应用场景:增强型移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延通信(ultra reliable and low latency communications,URLLC)以及海量机器类通信(massive machine type communications,mMTC)。
典型的eMBB业务有:超高清视频、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)等,这些业务的主要特点是传输数据量大、传输速率很高。典型的URLLC业务有:工业制造或生产流程中的无线控制、无人驾驶汽车和无人驾驶飞机的运动控制以及远程修理、远程手术等触觉交互类应用,这些业务的主要特点是要求超高可靠性、低延时,传输数据量较少以及具有突发性。典型的mMTC业务有:智能电网配电自动化、智慧城市等,主要特点是联网设备数量巨大、传输数据量较小、数据对传输时延不敏感,这些mMTC终端需要满足低成本和非常长的待机时间的需求。
不同业务对移动通信***的需求不同,如何更好地同时支持多种不同业务的数据传输需求,是当前5G移动通信***所需要解决的技术问题。例如,如何同时支持mMTC业务和eMBB业务,或者同时支持URLLC业务和eMBB业务。
5G标准对mMTC的研究还没有广泛开展。
目前,标准中将mMTC业务的用户设备(user equipment,UE)称为低复杂度的UE(reduced capability UE,REDCAP UE),或窄带宽用户设备,或物联设备,或低端智能手持终端。该类UE可能在带宽、功耗、天线数等方面比其他UE复杂度低一些,如带宽更窄、功耗更低、天线数更少等。该类UE也可以称为轻量版的终端设备(NR light,NRL)。mMTC用户设备支持的最大带宽小于100MHz。需要说明的是,本发明中的mMTC用户设备不只是机器类通信的设备,也可以是智能手持终端。
本申请实施例应用的移动通信***的架构示意图。如图1所示,该移动通信***包括核心网设备110、无线接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信***中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信***中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
无线接入网设备是终端设备通过无线方式接入到该移动通信***中的接入设备,可以 是基站NodeB、演进型基站(Evolved Node B,eNodeB)、5G移动通信***中的基站、未来移动通信***中的基站或WiFi***中的接入节点等,本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。
终端设备也可以称为终端(Terminal)、用户设备UE、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
无线接入网设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例对无线接入网设备和终端设备的应用场景不做限定。
本申请的实施例可以适用于下行信号传输,也可以适用于上行信号传输,还可以适用于设备到设备(device to device,D2D)的信号传输。对于下行信号传输,发送设备是无线接入网设备,对应的接收设备是终端设备。对于上行信号传输,发送设备是终端设备,对应的接收设备是无线接入网设备。对于D2D的信号传输,发送设备是终端设备,对应的接收设备也是终端设备。本申请的实施例对信号的传输方向不做限定。
无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过6G以下的频谱进行通信,也可以通过6G以上的频谱进行通信,还可以同时使用6G以下的频谱和6G以上的频谱进行通信。本申请的实施例对无线接入网设备和终端设备之间所使用的频谱资源不做限定。
为了方便理解本申请实施例提出的随机接入的方法,对现有的随机接入过程进行简单描述。随机接入过程如下:
用户设备UE根据基站的广播消息,随机选取前导preamble,在预配置的随机接入时机(RACH occasion,RO)资源中发送包括preamble序列的随机接入请求消息;
如果基站成功接收到了前导preamble序列并且允许UE接入,则在预配置的随机接入响应(Random Access Response,RAR)的窗口(window)内,给UE发送反馈消息,即RAR信息;
同时,UE在预配置的RAR window内,监听在物理层下行控制信道(Physical downlink control channel,PDCCH)上传输的下行控制信息(Downlink control information,DCI),该DCI用于指示UE从物理层下行共享信道(Physical downlink shared channel,PDSCH)承载的媒体接入控制(Media Access Control,MAC)协议数据单元(Protocol Data Unit,PDU)中获取RAR信息。
应理解,如果不同UE之间选择的preamble index冲突,或者信道条件差等原因,导致基站无法接收到preamble序列,则基站不会发送RAR信息,那么UE在RAR window中就不会检测到DCI和MAC RAR,那么本次随机接入失败。
图2出示了UE侧的随机接入过程的前两步骤示意图。如图2所示,第一步,在第一时间段内,UE在RO资源上向基站发送随机接入请求消息,即进行上行链路(Up-Link,UL)传输;第二步,在第二时间段内,UE获取基站在RAR window内发送的RAR消息,即进行下行链路(Down-Link,DL)传输。
在无线资源控制(Radio Resource Control,RRC)建立连接之前,RAR对应的PDCCH和PDSCH都为在广播消息中指示的控制信道资源集合CORESET内传输。
现有技术中,基站针对不同类型UE发送的随机接入请求消息对应的RAN信息是否在相同的资源(PDCCH+PDSCH)中发送,协议没有规定,由基站灵活处理。
针对不同类型的UE,例如,legacy UE和REDCAP UE对应的随机接入信息在相同PDCCH和PDCSH中传输,可以节省信令开销。但是,某些场景不适合放在一起传输,例如,REDCAP UE可能为需要覆盖增强UE,某些低端UE仅有1根天线,信道性能差,需要重复发送RAR来增强覆盖;又例如,对于一些节能REDCAP UE来说,如果两类UE对应的随机接入响应信息在相同的PDSCH中传输,传输块(Transport Block,TB)大导致耗电,REDCAP UE需要同时解码出两类UE的数据才能获取自己的信息。
因此,两类UE对应的DCI是否承载在同一PDCCH中或两类UE对应的RAR是否承载在同一PDCSH中,可以根据实际情况考虑。无线接入网设备(例如,基站)可以根据REDCAP UE的相关信息,例如:带宽信息、天线数量,确定是否将两类UE对应的随机接入信息承载在同一PDCCH和/或PDCSH中发送。
本申请提出了一种随机接入的方法300,如图3所示,出示了本申请实施例的一种随机接入方法300的示意性流程图。
310,第一终端设备确定第一物理随机接入资源,其中,第一终端设备为第一类型终端设备,可以为低复杂度的REDCAP UE。
320,第一终端设备在所述第一物理随机接入资源上发送第一随机接入请求消息,第二终端设备在第二物理随机接入资源上发送第二随机接入请求消息,其中,第二终端设备为第二类型终端设备,可以为legacy UE,如eMBB UE。第一物理随机接入资源和第二物理随机接入资源不完全相同,即时域资源、频域资源和preamble序列中的至少一项不同。
第一终端设备和第二终端设备的区别可以体现在带宽、天线数量、设备功耗等多个方面。例如,可以仅体现在带宽上,第一终端设备支持的带宽小于第二终端设备支持的带宽;又例如,可以仅体现在天线数量上,第一终端设备的天线数量小于第二终端设备的天线数量;又例如,可以仅体现在设备功耗上,第一终端设备的功耗低于第二终端设备的功耗;又例如,第一终端设备的物理层下行控制信道PDCCH盲检次数小于第二终端设备的PDCCH盲检次数;又例如,第一终端设备的支持最大调制方式低于第二终端设备的支持最大调制方式;又例如,第一终端设备的最大发射功率低于第二终端设备的最大发射功率。其中,支持的带宽指的是终端设备发送上行信号能够达到的最大带宽、终端设备接收下行信号能够达到的最大带宽、终端设备通信中支持的最大带宽中的至少一种。应理解,第一终端设备和第二终端设备的区别还可以同时体现在多个方面,例如:第一终端设备支持的带宽小于第二终端设备支持的带宽,并且第一终端设备的天线数量小于第二终端设备的天线数量。本申请实施例对此不做限定。
330,网络设备(基站)接收到的随机接入请求消息后,确定是否允许终端设备接入 网络。向第一终端设备发送第一下行控制信息DCI,向第二终端设备发送第二下行控制信息DCI,第一DCI用于调度第一随机接入响应RAR,第二DCI用于调度第二随机接入响应RAR。
340,第一终端设备接收第一DCI,第二终端设备接收第二DCI。
350,网络设备发送第一RAR,网络设备发送第二RAR。
360,第一终端设备根据第一DCI接收第一RAR,第二终端设备根据第二DCI接收第二RAR。
370,第一DCI与第二DCI承载在同一物理下行控制信道PDCCH中,和/或,第一RAR与第二RAR承载在同一物理层下行共享信道PDSCH中。应理解,同一PDCCH中包括同一下行控制信息,不同UE的DCI都在同一PDCCH中;同一PDSCH中包括同一下行数据,所有的下行数据包都承载在该PDSCH中。
在一种实现方式中,可选的,第一DCI与第二DCI承载在同一PDCCH中,第一RAR与第二RAR承载在不同PDSCH中。网络设备将第一DCI和第二DCI放入同一PDCCH中发送,可以理解为网络设备将REDCAP UE对应的DCI信息和legacy UE对应的DCI的信息放入一个DCI中发送,其中,REDCAP UE对应的DCI信息可以通过现有DCI中的预留比特字段指示。网络设备将第一RAR与第二RAR承载在不同的PDSCH中发送,REDCAP UE对应的DCI用于调度的PDSCH和legacy UE对应的DCI用于调度的PDSCH不同。
在一种实现方式中,可选的,第一DCI与第二DCI承载在不同PDCCH中,第一RAR与第二RAR承载在同一PDSCH中。网络设备将第一DCI和第二DCI分别放入不同的PDCCH中发送,第一RAR与第二RAR承载在同一PDSCH中向REDCAP UE和legacy UE发送,第一DCI调度的PDSCH和第二DCI调度的PDSCH相同。
在一种实现方式中,可选的,第一DCI与第二DCI承载在同一PDCCH中,且第一RAR与第二RAR也承载在同一PDSCH中。即网络设备将第一DCI和第二DCI放入同一PDCCH中发送,并且将第一RAR与第二RAR承载在同一PDSCH中发送。在这种情况下,第一类UE与第二类UE可以实现PDCCH以及PDSCH资源的共享,两类UE接收DCI的资源相同,RAR也承载在相同的PDSCH中,提升了资源利用效率,节省了信令的开销。
本申请实施例提供的技术方案中,无论是将用于调度第一类型终端设备对应的第一随机接入响应RAR的第一DCI与第二类型终端设备对应的第二DCI承载在相同PDCCH中,还是将第一DCI调度的第一RAR与第二DCI调度的第二RAR承载在相同PDSCH中,都可以节省信令的开销。
REDCAP UE需要事先获知网络设备是否将两类UE对应的RAR信息放入同一PDCCH或PDCSH中,否则有可能不能正确地接收其对应的DCI或RAR。例如:两类UE共享同一PDCCH时,REDCAP UE需要采用和legacy UE相同接收DCI的方式接收其对应的DCI;两类UE不共享同一PDCCH时,REDCAP UE需要采用和legacy UE不同接收DCI的方式接收其对应的DCI,即REDCAP UE和legacy UE要按照不同的方式来接收各自的DCI,该情况下两类UE对应的DCI可以使用不同的扰码或预留比特来区分,若REDCAP UE没有事先获知其对应的DCI是否与legacy UE对应的DCI共享同一PDCCH, 则有可能以legacy UE接收DCI的方式接收DCI,会导致接收错误,从而无法获取其对应的RAR信息。
因此,对于REDCAP UE来说,获知网络设备是否将两类UE对应的DCI放入同一PDCCH,或者是否将两类UE对应的RAR信息放入同一PDCSH中,可以提高接收其对应的第一DCI以及第一RAR的正确性。
在一种实施方式中,可选的,网络设备可以通过信令指示两类UE是否共用一个PDCCH和/或PDSCH。
可选的,上述信令可以是RRC信令、MAC信令、***消息、广播消息或者DCI,可以直接指示两类UE当前是否共用一个PDCCH和/或PDSCH的状态,也可以通过比特翻转(toggle)指示,例如:“0”指示当前的共享/独立状态保持不变,“1”表示改变当前状态。本申请实施例对此不做限定。
可选的,在网络设备向第一终端设备发送第一下行控制信息DCI之前,网络设备向第一终端设备发送第一指示信息,该第一指示信息指示第一DCI与第二DCI是否承载在同一PDCCH中。若第一DCI与第二DCI承载在不同PDCCH中,网络设备根据第一物理随机接入资源确定第一随机接入无线网络临时标识(Random Access Radio Network Tempory Identity,RA-RNTI),通过该第一RA-RNTI加扰的PDCCH发送第一DCI;网络设备根据第二物理随机接入资源确定第二RA-RNTI,通过该第二RA-RNTI加扰的PDCCH发送第二DCI。若第一DCI与第二DCI承载在相同PDCCH中,网络设备根据第二物理随机接入资源确定第二RA-RNTI,通过该第二RA-RNTI加扰的PDCCH发送DCI,该DCI中包括REDCAP UE对应的DCI信息和legacy UE对应的DCI的信息。
应理解,RA-RNTI的计算与物理随机接入资源有关,具体的计算方式为:
RA-RNTI=1+t_id+10*f_id
其中,t_id表示preamble发送的第一个子帧,f_id表示频域位置(f_id<6)。
相应的,第一终端设备接收该第一指示信息,并根据该第一指示信息确定第一DCI与第二DCI是否承载在同一PDCCH中。若第一指示信息指示第一DCI与第二DCI承载在不同PDCCH中,第一终端设备根据第一物理随机接入资源确定第一RA-RNTI,根据该第一RA-RNTI从对应的PDCCH上接收第一DCI。若第一指示信息指示第一DCI与第二DCI承载在同一PDCCH中,第一终端设备根据第二RA-RNTI从对应的PDCCH上接收第一DCI,该第一DCI中包括REDCAP UE对应的DCI信息和legacy UE对应的DCI的信息。
应理解,第一DCI与第二DCI承载在同一PDCCH中是指第一DCI与第二DCI所在的时频资源相同;第一DCI与第二DCI承载在不同PDCCH中是指第一DCI与第二DCI所在的时频资源不同。
可选的,在网络设备向第一终端设备发送第一RAR之前,网络设备向第一终端设备发送第二指示信息,该第二指示信息用于指示第一RAR与第二RAR是否承载在同一PDSCH中。相应的,第一终端设备接收该第二指示信息,并根据该第二指示信息接收第一RAR。第一RAR与第二RAR承载在同一PDSCH是指第一RAR与第二RAR所在的时频资源相同;第一RAR与第二RAR承载在不同PDSCH是指第一RAR与第二RAR所在的时频资源不同。
应理解,第一指示信息和第二指示信息可以包括在不同的信令中,也可以包括在同一信令中。可选的,包括在同一信令中时,通过一个信令既可以指示第一DCI与第二DCI是否承载在同一PDCCH中,也可以指示第一RAR与第二RAR是否承载在同一PDSCH中,第一终端设备通过接收一个信令便可获知第一DCI与第二DCI是否承载在同一PDCCH中以及第一RAR与第二RAR是否承载在同一PDSCH中。可选的,包括在同一信令中时,也可以通过不同的指示域分别指示,即第一指示域用于指示第一DCI与第二DCI是否承载在同一PDCCH中,第一指示域用于指示第一RAR与第二RAR是否承载在同一PDSCH中。
两类UE共用一个PDCCH时,用于指示两类UE是否共用一个PDSCH的第二指示信息也可以是现有DCI中的预留比特信息,通过预留比特指示两类UE是否共用一个PDSCH,例如,现有DCI中的预留比特指示为“1”,则指示两类UE共用一个PDSCH,现有DCI中的预留比特指示为“0”,则指示两类UE不共用一个PDSCH。因此,第二指示信息也可以不用通过单独的信令来指示。即,legacy UE还是按照现有的方式解读DCI,不会解读预留比特信息;REDCAP UE按照新的方式解读DCI,读取legacy UE认为是预留比特信息的比特。这样,不会改变legacy UE接收DCI的方式,对legacy UE不会造成影响,又利用了原有DCI中未被使用的比特,不增加信令开销。
两类UE共用一个PDCCH时,若没有第二指示信息告知REDCAP UE是否与legacy UE共享一个PDSCH,REDCAP UE可能不能准确地确定其对应的PDSCH。例如,两类UE不共用一个PDSCH时,REDCAP UE不能确定预留比特中的信息是第二PDSCH的调度信息还是填充比特信息(通常基站会在预留比特中随机填充比特信息),则有可能将DCI中指示的第一PDSCH误认为是其对应的PDSCH,而没有获取预留字段中的用于调度其对应的第二PDSCH的信息。因此,通过第二指示信息指示,可以使REDCAP UE准确地获取其对应的RAR。
应理解,第一DCI与第二DCI承载在不同PDCCH中,且第一RAR与第二RAR承载也在不同PDSCH中的情况,也适用于本申请实施例中的技术方案。
本申请实施例中,两类UE是否共用一个PDCCH和/或PDSCH,对legacy UE接收DCI并获取RAR信息没有任何影响,与现有技术相比没有任何改进。
在另一种实施方式中,可选的,UE和网络设备两侧可以根据预定义规则确定两类UE是否共用一个PDCCH和/或PDSCH。
具体而言,该预定义规则可以是:若REDCAP UE的带宽大于或等于第一阈值,REDCAP UE和网络设备可以确定第一DCI与第二DCI承载在同一PDCCH中,和/或,第一RAR与第二RAR承载在同一PDSCH中。
若REDCAP UE的带宽小于第一阈值,第一DCI与第二DCI承载在不同PDCCH中,和/或,第一RAR与第二RAR承载在不同PDSCH中。
应理解,若UE和网络设备已默认第一DCI与第二DCI承载在同一PDCCH中或承载在不同PDCCH中,则只需要确定第一RAR与第二RAR是否承载在同一PDSCH中。若UE和网络设备已默认第一RAR与第二RAR承载在同一PDSCH中或承载在不同PDSCH中,则只需要确定第一DCI与第二DCI是否承载在同一PDCCH中。若UE和网络设备既需要确定第一DCI与第二DCI是否承载在同一PDCCH中,又需要确定第一RAR与第二 RAR是否承载在同一PDSCH中,根据预定义规则确定两类UE使用同一PDCCH时,则两类UE也使用同一PDSCH;根据预定义规则确定两类UE使用不同PDCCH时,则两类UE也使用不同PDSCH。
可选的,该第一阈值可以是根据第二终端设备(legacy UE)对应的控制资源集合(Control-Resource Set,CORESET)占用的频域资源的大小、legacy UE对应的PDCCH的交织方式、legacy UE对应的子载波间隔等参数中的至少一种参数确定的。应理解,第一阈值也可以是预设的,或者是根据其他指示信息确定的。本申请实施例对此不做限定。
应理解,交织指的是控制信息如何在控制信道资源集合CORESET的频域资源上映射。如果不交织,则控制信息在物理资源上连续映射;如果交织,则根据交织深度映射到多块资源上,多块资源可能不连续。交织深度是可配置的,例如:2、3、6。以交织深度为2、PDCCH的聚合级别为4为例,如图4所示,横坐标为频域资源序号,不同网格的资源对应不同的candidates(候选位置),可以看出交织深度为2时,PDCCH资源均匀的分配在左右的资源上,即高频段两块资源单元,低频段两块资源单元。资源单元为资源块(RB)、资源单元组集合(REG bundle)、控制信道单元(CCE)等。
基站发送广播消息,REDCAP UE和legacy UE都可根据该广播消息发起随机接入请求,且广播消息中指示的控制信道资源为legacy UE对应的CORESET,则REDCAP UE便可获知CORESET的带宽大小,以及legacy UE对应的PDCCH的交织方式。legacy UE对应的PDCCH的交织方式可以通过协议预先定义的方式确定,如交织、及交织深度为2。基站侧可以根据REDCAP UE发起的随机接入请求信息,获知该REDCAP UE的带宽等信息。
下面针对UE和基站既需要确定第一DCI与第二DCI是否承载在同一PDCCH中,又需要确定第一RAR与第二RAR是否承载在同一PDSCH中的情况进行说明。
当legacy UE对应的PDCCH交织时,可选的,若REDCAP UE的带宽小于legacy UE对应的CORESET的带宽,两类UE不共用同一个PDCCH,也不共用一个PDSCH。REDCAP UE根据第二RA-RNTI接收第一DCI,并根据该第一DCI指示的PDSCH获取其对应的RAR信息。
若REDCAP UE的带宽大于或等于legacy UE对应的CORESET的带宽,两类UE共用同一个PDCCH,且共用一个PDSCH。REDCAP UE根据第一RA-RNTI接收第一DCI,并根据该第一DCI指示的PDSCH获取其对应的RAR信息。
应理解,若REDCAP UE支持的带宽为10MHz,legacy UE对应的CORESET的带宽为20MHz,legacy UE在20MHz带宽范围内进行DCI的传输,那么就可能出现REDCAP UE只能在20MHz中的其中10MHz资源上进行检测DCI,如果基站在REDCAP UE可接收的10MHz以外发送DCI,就存在REDCAP UE接收不到DCI或只接受到部分DCI的情况。因此,当REDCAP UE的带宽小于legacy UE对应的CORESET的带宽时,两类UE不共用同一个PDCCH,也不共用一个PDSCH。
同理,若REDCAP UE支持的带宽为30MHz,legacy UE对应的CORESET的带宽为20MHz,legacy UE在20MHz带宽范围内进行DCI的传输,REDCAP UE可以在30MHz带宽范围内检测DCI,基站在legacy UE可接收的20MHz带宽范围内发送DCI,REDCAP UE就一定可以接收到DCI。因此,当REDCAP UE的带宽大于或等于legacy UE对应的 CORESET的带宽时,两类UE可以共用一个PDCCH和一个PDSCH。
当legacy UE对应的PDCCH不交织时,即legacy UE发送的DCI在COREST内连续物理资源上传输,可选的,若REDCAP UE的带宽小于CORESET的带宽*2^u/symbol_num,两类UE不共用同一个PDCCH,也不共用一个PDSCH;若REDCAP UE的带宽大于或等于CORESET的带宽*2^u/symbol_num,两类UE共用同一个PDCCH,且共用一个PDSCH。其中u为子载波间隔参数,symbol_num为CORESET在时域的符号数,子载波间隔(sub-carrier spacing,SCS)为15kHz时,u=0;SCS为30kHz时,u=1。应理解,CORESET的带宽可以是CORESET0的带宽。
当REDCAP UE与legacy UE对应的RAR信息共用同一PDSCH时,REDCAP UE如何从该PDSCH承载的MAC PDU中获取其对应的RAR信息,需要对MAC PDU中的字段进行设计并指示给REDCAP UE。
可选的,当REDCAP UE对应的第一RAR与legacy UE对应的第二RAR承载在第一PDSCH时,第一PDSCH承载的MAC PDU中包括第一子协议数据单元subPDU,所述第一subPDU中包括第三信息,所述第三信息用于指示所述第一subPDU是否包括所述第一RAR。
可选的,第三信息承载于第一subPDU中以下任意字段:随机接入前导码标识(Random Access Preamble Identifier,RAPID)字段、T字段、MAC RAR字段。
为了方便对本申请实施例的理解,下面对随机接入过程中的MAC PDU进行简单描述。
如图5所示,MAC PDU由一个或多个MAC子协议数据单元subPDU和可选的填充padding组成,每个subPDU对应一个MAC子头(MAC subheader)。MAC子头包括以下几种:
1)仅具有回退指示(Backoff Indicator,BI)的MAC子头;
2)具有RAPID的MAC子头;
3)具有RAPID和MAC RAR的MAC子头。
如果包括BI的MAC子头,则该子头只出现一次,且位于MAC头的第一个MAC子头处。仅具有RAPID的MAC子头和具有RAPID的MAC RAR的MAC subPDU可以被放置在BI(如果存在)和padding(如果存在)的MAC subPDU之间的任何地方。
具有BI的MAC子头由五个头部字段E/T/R/R/BI组成,如图6所示,出示了具有BI的MAC子头的结构示意图。
BI指定了UE重发preamble前需要等待的时间范围。如果UE在RAR时间窗内没有接收到RAR,或接收到的RAR中没有一个preamble与自己的相符合,则认为此次RAR接收失败,此时UE需要等待一段时间后,再次发起随机接入请求。等待的时间为在0至BI值指定的等待时间区间内随机选取一个值。BI的取值从侧面反映了小区的负载情况,如果接入的UE多,则该值可以设置得大些;如果接入的UE少,该值就可以设置得小一些,这由基站实现所决定。
RAPID的内容与UE发起随机接入时的前导索引preamble index相对应。并且,如果该preamble index对应的RAR反馈是用于响应***消息请求(SI request)的,则后面没有MAC RAR,该MAC子头为仅具有RAPID的MAC子头。
RAPID为基站在检测preamble时得到,如果UE发现该值与自己发送preamble时使用的索引相对应,则认为成功接收到对应的RAR。其对应的具有RAPID的MAC子头由三个字段E/T/RAPID组成,如图7所示,出示了具有RAPID的MAC子头的结构示意图。
如果子头中的RAPID携带的preamble index信息对应的RAR反馈是用于随机接入响应的,则该子头后面会有MAC RAR,该MAC子头为具有RAPID和MAC RAR的MAC子头。MAC RAR组成结构如图8所示。
MAC子头中各域的含义如表1所示。
表1 MAC PDU中MAC子头各域参数
Figure PCTCN2021096096-appb-000001
UE发送preamble之后,将在RAR的时间窗内监听携带RA-RNTI的PDCCH,以接收自己的RAR。
具体而言,当REDCAP UE对应的第一RAR与legacy UE对应的第二RAR承载在同一PDSCH中,且REDCAP UE和legacy UE使用的preamble index不相同时,两类UE对应的RAR可以通过MAC子头中的RAPID来区分,RAPID指示preamble index信息。
由于REDCAP UE对应的第一随机接入资源与legacy UE对应的第二随机接入资源不完全相同,REDCAP UE与legacy UE使用的preamble index可能相同。此时,可以通过MAC子头中的T字段来指示REDCAP UE对应的RAR,也可以通过MAC RAR字段中的预留比特来指示REDCAP UE对应的RAR。
例如,若MAC子头中的T字段指示为“0”,且该MAC子头不位于MAC子头的第一个MAC子头处,则该MAC子头对应的subPDU中包括REDCAP UE对应的第一RAR。应理解,如果有BI指示的MAC子头,则BI指示信息仍放置在subPDU1中,后续的MAC子头中T字段指示为“0”的MAC子头对应的subPDU中包括第一RAR。
又例如,优先放置legacy UE对应的第二RAR,包括REDCAP UE对应的第一RAR的subPDU位于包括legacy UE对应的第二RAR的subPDU之后。这样,legacy UE获取到自己对应的RAR信息后,就会结束对PDSCH的读取,不影响legacy UE的信息获取、时延等。而且,如果没有BI指示信息,也能保证REDCAP UE对应的第一RAR不在subPDU1中。
又例如,如果没有BI和legacy UE的subPDU,第一个subheader按照BI指示:reserved字段指示为“1”或BI字段指示为预留状态“14”/“15”,如表2所示;这时,legacy UE读取到该BI会认为是错误解码,不会影响REDCAP UE的后续读取。
表2 回退参数值
索引 回退参数值(ms)
0 5
1 10
2 20
3 30
4 40
5 60
6 80
7 120
8 160
9 240
10 320
11 480
12 960
13 1920
14 Reserved
15 Reserved
又例如,如果没有BI和legacy UE的subPDU,第一个subheader按照legacy UE RAPID格式指示:但RAPID指示为在对应RO未检测到的preamble index;REDCAP UE从第二个subheader开始,按照前述方法指示。
又例如,若MAC RAR字段中的预留比特指示为“1”,则指示REDCAP UE对应的RAR,若MAC RAR字段中的预留比特指示为“0”,则指示legacy UE对应的RAR。
本申请实施例提供了一种通信装置900,如图9所示,出示了一种通信装置的示意性框图。
该通信装置900包括:处理单元910。可选的,还可以包括收发单元920。示例性地,该通信装置可以应用于终端设备,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当该通信装置900应用于终端设备时,收发单元920可以是收发器,收发器可以包括天线和射频电路等,处理单元910可以是处理器或者处理电路,例如基带处理器,基带处理器中包括一个或多个CPU。当该通信装置900是具有上述终端设备功能的部件时,收发单元920可以是射频单元,处理单元910可以是处理器或者处理电路,例如基带处理器。当该通信装置900是芯片***时,收发单元920可以是芯片(例如,基带芯片)的输入输出接口、处理单元910可以是芯片***的处理器或者处理电路,可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理单元910可以由处理器或处理器相关电路组件(或者,称为处理电路)实现,收发单元920可以由收发器或收发器相关电路组件实现。
具体而言,处理单元910,用于确定第一物理随机接入资源;
收发单元920,用于在所述第一物理随机接入资源上发送第一随机接入请求消息;
所述收发单元920还用于,接收第一下行控制信息DCI,所述第一DCI用于调度第一随机接入响应RAR;
所述收发单元还用于,根据所述第一DCI接收所述第一RAR;
所述第一DCI与第二终端设备接收的第二下行控制信息DCI承载在同一物理下行控制信道PDCCH中,和/或,所述第一RAR与所述第二DCI调度的第二随机接入响应RAR承载在同一物理层下行共享信道PDSCH中。
可选的,所述第一物理随机接入资源与所述第二终端设备发送第二随机接入请求消息的第二物理随机接入资源不完全相同。
可选的,所述收发单元920还用于,接收第一指示信息,所述第一指示信息指示所述第一DCI与所述第二DCI是否承载在同一PDCCH中。
可选的,所述收发单元920还用于,接收第二指示信息,所述第二指示信息指示所述第一RAR与所述第二RAR是否承载在同一PDSCH中。
可选的,所述第一终端设备的带宽大于或等于第一阈值,所述第一DCI与所述第二DCI承载在同一PDCCH中,和/或,所述第一RAR与所述第二RAR承载在同一PDSCH中。
可选的,所述第一终端设备的带宽小于第一阈值,所述第一DCI与所述第二DCI承载在不同PDCCH中,和/或,所述第一RAR与所述第二RAR承载在不同PDSCH中。
可选的,所述第一阈值是根据以下至少一种参数确定的:所述第二终端设备对应的控制信道资源集合CORESET的带宽、所述第二终端设备对应的CORESET占用的时域资源的大小、所述第二终端设备对应的物理层下行控制信道PDCCH的交织方式、所述第二终端设备对应的子载波间隔。
可选的,所述第一DCI与所述第二DCI承载在不同PDCCH中,所述处理单元具体用于,根据所述第一物理随机接入资源确定第一随机接入无线网络临时标识RA-RNTI;所述收发单元具体用于,根据所述第一RA-RNTI接收所述第一DCI;所述第一DCI与所述第二DCI承载在同一PDCCH中,所述处理单元具体用于,根据所述第二物理随机接入资源确定第二随机接入无线网络临时标识RA-RNTI;所述收发单元具体用于,根据所述第二RA-RNTI接收所述第一DCI。
可选的,所述第一RAR与所述第二RAR承载在第一PDSCH时,所述第一PDSCH承载的媒体接入控制协议数据单元MAC PDU中包括第一子协议数据单元subPDU,所述第一subPDU中包括第三信息,所述第三信息用于指示所述第一subPDU是否包括所述第一RAR。
本申请实施例提供了另一种通信装置1000,如图10所示,出示了另一种通信装置的示意性框图。
该通信装置1000包括收发单元1010。可选的,还可以包括处理单元1020。示例性地,该通信装置1000可以应用于接入网设备,也可以是应用于接入网设备中的芯片或者其他具有上述接入网设备功能的组合器件、部件等。当该通信装置1000应用于接入网设备时,收发单元1010可以是收发器,收发器可以包括天线和射频电路等,处理单元1020可以是处理器或者,处理电路,例如基带处理器,基带处理器中可以包括一个或多个CPU。当该 通信装置1000是具有上述接入网设备功能的部件时,收发单元1010可以是射频单元,处理单元1020可以是处理器或者,处理电路,例如基带处理器。当该通信装置1000是芯片***时,收发单元1010可以是芯片(例如基带芯片)的输入输出接口、处理单元1020可以是芯片***的处理器(或者,处理电路),可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理单元1020可以由处理器或处理器相关电路组件(或者,称为处理电路)实现,收发单元1010可以由收发器或收发器相关电路组件实现。
具体而言,收发单元1010,用于向第一终端设备发送第一下行控制信息DCI,向第二终端设备发送第二下行控制信息DCI,所述第一DCI用于调度第一随机接入响应RAR,所述第二DCI用于调度第二随机接入响应RAR,其中,所述第一终端设备为第一类型终端设备,所述第二终端设备为第二类型终端设备;
所述收发单元1010还用于,向所述第一终端设备发送所述第一RAR,向所述第二终端设备发送所述第二RAR;
所述第一DCI与所述第二DCI承载在同一物理下行控制信道PDCCH中,和/或,所述第一RAR与所述第二RAR承载在同一物理层下行共享信道PDSCH中。
可选的,所述收发单元1010还用于,向所述第一终端设备发送第一指示信息,所述第一指示信息指示所述第一DCI与所述第二DCI是否承载在同一PDCCH中。
可选的,所述收发单元1010还用于,向所述第一终端设备发送第二指示信息,所述第二指示信息指示所述第一RAR与所述第二RAR是否承载在同一PDSCH中。
可选的,所述第一终端设备的带宽大于或等于所述第一阈值,所述第一DCI与所述第二DCI承载在同一PDCCH中,和/或,所述第一RAR与所述第二RAR承载在同一PDSCH中。
可选的,所述第一终端设备的带宽小于第一阈值,所述第一DCI与所述第二DCI承载在不同PDCCH中,和/或,所述第一RAR与所述第二RAR承载在不同PDSCH中。
可选的,所述第一阈值是根据以下至少一种参数确定的:所述第二终端设备对应的控制信道资源集合CORESET的带宽、所述第二终端设备对应的CORESET占用的时域资源的大小、所述第二终端设备对应的物理层下行控制信道PDCCH的交织方式、所述第二终端设备对应的子载波间隔。
可选的,所述装置还包括处理单元1020;
所述第一DCI与所述第二DCI承载在不同PDCCH中,所述处理单元1020,用于根据第一物理随机接入资源确定第一随机接入无线网络临时标识RA-RNTI,其中,所述第一物理随机接入资源是所述处理单元1020为所述第一终端设备分配的;
所述收发单元1010具体用于,利用所述第一RA-RNTI发送所述第一DCI;
所述第一DCI与所述第二DCI承载在同一PDCCH中,所述处理单元1020,用于根据第二物理随机接入资源确定第二随机接入无线网络临时标识RA-RNTI,其中,所述第二物理随机接入资源是所述处理单元1020为所述第二终端设备分配的;
所述收发单元1010具体用于,利用所述第二RA-RNTI发送所述第一DCI。
可选的,所述第一RAR与所述第二RAR承载在第一PDSCH时,所述第一PDSCH承载的媒体接入控制协议数据单元MAC PDU中包括第一子协议数据单元subPDU,所述第一subPDU中包括第三信息,所述第三信息用于指示所述第一subPDU是否包括所述第 一RAR。
本申请实施例提供了一种通信设备1100,图11示出了本申请实施例的一种通信设备的示意性框图。
该网络设备1100包括:存储器1110、通信接口1120和处理器1130;
存储器1110用于存储可执行指令;
处理器1130通过通信接口与存储器耦合,处理器1130用于调用并运行所述存储器1110中的所述可执行指令,以实现本申请实施例中的方法。
上述的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上述的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应理解,上述存储器可以集成于处理器中,或者,上述处理器和存储器也可以集成在同一芯片上,也可以分别处于不同的芯片上并通过接口耦合的方式连接。本申请实施例对此不做限定。
本申请实施例还提供了一种计算机可读存储介质,其上存储有用于实现上述方法实施例中的方法的计算机程序。当该计算机程序在计算机上运行时,使得该计算机可以实现上述方法实施例中的方法。
另外,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;本申请中术语“至少一个”,可以表示“一个”和“两个或两个以上”,例如,A、B和C中至少一个,可以 表示:单独存在A,单独存在B,单独存在C、同时存在A和B,同时存在A和C,同时存在C和B,同时存在A和B和C,这七种情况。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种随机接入的方法,其特征在于,包括:
    第一终端设备确定第一物理随机接入资源,其中,所述第一终端设备为第一类型终端设备;
    所述第一终端设备在所述第一物理随机接入资源上发送第一随机接入请求消息;
    所述第一终端设备接收第一下行控制信息DCI,所述第一DCI用于调度第一随机接入响应RAR;
    所述第一终端设备根据所述第一DCI接收所述第一RAR;
    所述第一DCI与第二终端设备接收的第二下行控制信息DCI承载在同一物理下行控制信道PDCCH中,和/或,所述第一RAR与所述第二DCI调度的第二随机接入响应RAR承载在同一物理层下行共享信道PDSCH中,其中,所述第二终端设备为第二类型终端设备。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一物理随机接入资源与所述第二终端设备发送第二随机接入请求消息的第二物理随机接入资源不完全相同。
  3. 信息DCI之前,所述方法还包括:
    所述第一终端设备接收第一指示信息,所述第一指示信息指示所述第一DCI与所述第二DCI是否承载在同一PDCCH中。
  4. 根据权利要求3所述的方法,其特征在于,在所述第一终端设备根据所述第一DCI接收所述第一RAR之前,所述方法还包括:
    所述第一终端设备接收第二指示信息,所述第二指示信息指示所述第一RAR与所述第二RAR是否承载在同一PDSCH中。
  5. 根据权利要求1或2所述的方法,其特征在于,在所述第一终端设备接收第一下行控制信息DCI之前,所述方法还包括:
    所述第一终端设备的带宽大于或等于第一阈值,所述第一DCI与所述第二DCI承载在同一PDCCH中,和/或,所述第一RAR与所述第二RAR承载在同一PDSCH中。
  6. 根据权利要求5所述的方法,其特征在于,在所述第一终端设备接收第一下行控制信息DCI之前,所述方法还包括:
    所述第一终端设备的带宽小于第一阈值,所述第一DCI与所述第二DCI承载在不同PDCCH中,和/或,所述第一RAR与所述第二RAR承载在不同PDSCH中。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第一阈值是根据以下至少一种参数确定的:
    所述第二终端设备对应的控制信道资源集合CORESET的带宽、所述第二终端设备对应的CORESET占用的时域资源的大小、所述第二终端设备对应的物理层下行控制信道PDCCH的交织方式、所述第二终端设备对应的子载波间隔。
  8. 根据权利要求3至7中任一项所述的方法,其特征在于,所述第一终端设备接收第一下行控制信息DCI,包括:
    所述第一DCI与所述第二DCI承载在不同PDCCH中,所述第一终端设备根据所述第一物理随机接入资源确定第一随机接入无线网络临时标识RA-RNTI,根据所述第一RA-RNTI接收所述第一DCI;或者,
    所述第一DCI与所述第二DCI承载在同一PDCCH中,所述第一终端设备根据所述第二物理随机接入资源确定第二随机接入无线网络临时标识RA-RNTI,根据所述第二RA-RNTI接收所述第一DCI。
  9. 根据权利要求4至8中任一项所述的方法,其特征在于,所述第一终端设备根据所述第一DCI接收所述第一RAR,包括:
    所述第一RAR与所述第二RAR承载在第一PDSCH时,所述第一PDSCH承载的媒体接入控制协议数据单元MAC PDU中包括第一子协议数据单元subPDU,所述第一subPDU中包括第三信息,所述第三信息用于指示所述第一subPDU是否包括所述第一RAR。
  10. 一种随机接入的方法,其特征在于,包括:
    网络设备向第一终端设备发送第一下行控制信息DCI,向第二终端设备发送第二下行控制信息DCI,所述第一DCI用于调度第一随机接入响应RAR,所述第二DCI用于调度第二随机接入响应RAR,其中,所述第一终端设备为第一类型终端设备,所述第二终端设备为第二类型终端设备;
    所述网络设备向所述第一终端设备发送所述第一RAR,向所述第二终端设备发送所述第二RAR;
    所述第一DCI与所述第二DCI承载在同一物理下行控制信道PDCCH中,和/或,所述第一RAR与所述第二RAR承载在同一物理层下行共享信道PDSCH中。
  11. 根据权利要求10所述的方法,其特征在于,在网络设备向第一终端设备发送第一下行控制信息DCI之前,所述方法还包括:
    所述网络设备向所述第一终端设备发送第一指示信息,所述第一指示信息指示所述第一DCI与所述第二DCI是否承载在同一PDCCH中。
  12. 根据权利要求11所述的方法,其特征在于,在所述网络设备向所述第一终端设备发送所述第一RAR之前,所述方法还包括:
    所述网络设备向所述第一终端设备发送第二指示信息,所述第二指示信息指示所述第一RAR与所述第二RAR是否承载在同一PDSCH中。
  13. 根据权利要求10所述的方法,其特征在于,在网络设备向第一终端设备发送第一下行控制信息DCI之前,所述方法还包括:
    所述第一终端设备的带宽大于或等于所述第一阈值,所述第一DCI与所述第二DCI承载在同一PDCCH中,和/或,所述第一RAR与所述第二RAR承载在同一PDSCH中。
  14. 根据权利要求13所述的方法,其特征在于,在网络设备向第一终端设备发送第一下行控制信息DCI之前,所述方法还包括:
    所述第一终端设备的带宽小于第一阈值,所述第一DCI与所述第二DCI承载在不同PDCCH中,和/或,所述第一RAR与所述第二RAR承载在不同PDSCH中。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第一阈值是根据以下至少一种参数确定的:
    所述第二终端设备对应的控制信道资源集合CORESET的带宽、所述第二终端设备对应的CORESET占用的时域资源的大小、所述第二终端设备对应的物理层下行控制信道PDCCH的交织方式、所述第二终端设备对应的子载波间隔。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,所述网络设备向所述第一终端设备发送所述第一DCI,包括:
    所述第一DCI与所述第二DCI承载在不同PDCCH中,所述网络设备根据第一物理随机接入资源确定第一随机接入无线网络临时标识RA-RNTI,利用所述第一RA-RNTI发送所述第一DCI,其中,所述第一物理随机接入资源是所述网络设备为所述第一终端设备分配的;或者,
    所述第一DCI与所述第二DCI承载在同一PDCCH中,所述网络设备根据第二物理随机接入资源确定第二随机接入无线网络临时标识RA-RNTI,利用所述第二RA-RNTI发送所述第一DCI,其中,所述第二物理随机接入资源是所述网络设备为所述第二终端设备分配的。
  17. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一物理随机接入资源;
    收发单元,用于在所述第一物理随机接入资源上发送第一随机接入请求消息;
    所述收发单元还用于,接收第一下行控制信息DCI,所述第一DCI用于调度第一随机接入响应RAR;
    所述收发单元还用于,根据所述第一DCI接收所述第一RAR;
    所述第一DCI与第二终端设备接收的第二下行控制信息DCI承载在同一物理下行控制信道PDCCH中,和/或,所述第一RAR与所述第二DCI调度的第二随机接入响应RAR承载在同一物理层下行共享信道PDSCH中。
  18. 根据权利要求17所述的装置,其特征在于,
    所述第一物理随机接入资源与所述第二终端设备发送第二随机接入请求消息的第二物理随机接入资源不完全相同。
  19. 根据权利要求17或18所述的装置,其特征在于,
    所述收发单元还用于,接收第一指示信息,所述第一指示信息指示所述第一DCI与所述第二DCI是否承载在同一PDCCH中。
  20. 根据权利要求19所述的装置,其特征在于,
    所述收发单元还用于,接收第二指示信息,所述第二指示信息指示所述第一RAR与所述第二RAR是否承载在同一PDSCH中。
  21. 根据权利要求17或18所述的装置,其特征在于,
    所述第一终端设备的带宽大于或等于第一阈值,所述第一DCI与所述第二DCI承载在同一PDCCH中,和/或,所述第一RAR与所述第二RAR承载在同一PDSCH中。
  22. 根据权利要求21所述的装置,其特征在于,
    所述第一终端设备的带宽小于第一阈值,所述第一DCI与所述第二DCI承载在不同PDCCH中,和/或,所述第一RAR与所述第二RAR承载在不同PDSCH中。
  23. 根据权利要求18至22中任一项所述的装置,其特征在于,
    所述第一DCI与所述第二DCI承载在不同PDCCH中,所述处理单元具体用于,根 据所述第一物理随机接入资源确定第一随机接入无线网络临时标识RA-RNTI;
    所述收发单元具体用于,根据所述第一RA-RNTI接收所述第一DCI;
    所述第一DCI与所述第二DCI承载在同一PDCCH中,所述处理单元具体用于,根据所述第二物理随机接入资源确定第二随机接入无线网络临时标识RA-RNTI;
    所述收发单元具体用于,根据所述第二RA-RNTI接收所述第一DCI。
  24. 一种通信装置,其特征在于,包括:
    收发单元,用于向第一终端设备发送第一下行控制信息DCI,向第二终端设备发送第二下行控制信息DCI,所述第一DCI用于调度第一随机接入响应RAR,所述第二DCI用于调度第二随机接入响应RAR,其中,所述第一终端设备为第一类型终端设备,所述第二终端设备为第二类型终端设备;
    所述收发单元还用于,向所述第一终端设备发送所述第一RAR,向所述第二终端设备发送所述第二RAR;
    所述第一DCI与所述第二DCI承载在同一物理下行控制信道PDCCH中,和/或,所述第一RAR与所述第二RAR承载在同一物理层下行共享信道PDSCH中。
  25. 根据权利要求24所述的装置,其特征在于,
    所述收发单元还用于,向所述第一终端设备发送第一指示信息,所述第一指示信息指示所述第一DCI与所述第二DCI是否承载在同一PDCCH中。
  26. 根据权利要求25所述的装置,其特征在于,
    所述收发单元还用于,向所述第一终端设备发送第二指示信息,所述第二指示信息指示所述第一RAR与所述第二RAR是否承载在同一PDSCH中。
  27. 根据权利要求24所述的装置,其特征在于,
    所述第一终端设备的带宽大于或等于所述第一阈值,所述第一DCI与所述第二DCI承载在同一PDCCH中,和/或,所述第一RAR与所述第二RAR承载在同一PDSCH中。
  28. 根据权利要求27所述的装置,其特征在于,
    所述第一终端设备的带宽小于第一阈值,所述第一DCI与所述第二DCI承载在不同PDCCH中,和/或,所述第一RAR与所述第二RAR承载在不同PDSCH中。
  29. 根据权利要求24至28中任一项所述的装置,其特征在于,所述装置还包括处理单元;
    所述第一DCI与所述第二DCI承载在不同PDCCH中,所述处理单元,用于根据第一物理随机接入资源确定第一随机接入无线网络临时标识RA-RNTI,其中,所述第一物理随机接入资源是所述处理单元为所述第一终端设备分配的;
    所述收发单元具体用于,利用所述第一RA-RNTI发送所述第一DCI;
    所述第一DCI与所述第二DCI承载在同一PDCCH中,所述处理单元,用于根据第二物理随机接入资源确定第二随机接入无线网络临时标识RA-RNTI,其中,所述第二物理随机接入资源是所述处理单元为所述第二终端设备分配的;
    所述收发单元具体用于,利用所述第二RA-RNTI发送所述第一DCI。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至9中任意一项所述的方法,或者使得所述计算机执行如权利要求10至16中任意一项所述的方 法。
  31. 一种芯片,其特征在于,包括处理器和通信接口,所述处理器用于读取指令以执行如权利要求1至9中任意一项所述的方法,或者执行如权利要求10至16中任意一项所述的方法。
  32. 一种通信装置,包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至9中任意一项所述的方法,或者执行如权利要求10至16中任意一项所述的方法。
  33. 一种通信***,包括权利要求17至23中任意一项所述的通信装置、以及包括权利要求24至29中任意一项所述的通信装置。
PCT/CN2021/096096 2020-06-04 2021-05-26 随机接入的方法、装置和*** WO2021244372A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21817206.2A EP4145939A4 (en) 2020-06-04 2021-05-26 METHOD, APPARATUS AND SYSTEM FOR RANDOM ACCESS
US18/061,087 US20230096371A1 (en) 2020-06-04 2022-12-02 Random Access Method, Apparatus, and System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010498461.1A CN113766659B (zh) 2020-06-04 随机接入的方法、装置和***
CN202010498461.1 2020-06-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/061,087 Continuation US20230096371A1 (en) 2020-06-04 2022-12-02 Random Access Method, Apparatus, and System

Publications (1)

Publication Number Publication Date
WO2021244372A1 true WO2021244372A1 (zh) 2021-12-09

Family

ID=78783465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096096 WO2021244372A1 (zh) 2020-06-04 2021-05-26 随机接入的方法、装置和***

Country Status (3)

Country Link
US (1) US20230096371A1 (zh)
EP (1) EP4145939A4 (zh)
WO (1) WO2021244372A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4175394A4 (en) * 2020-06-24 2023-07-19 Beijing Xiaomi Mobile Software Co., Ltd. INFORMATION TRANSMISSION METHOD AND DEVICE, AS WELL AS COMMUNICATION DEVICE AND STORAGE MEDIUM
GB2624168A (en) * 2022-11-07 2024-05-15 Nokia Technologies Oy Random access responses with bandwidth limitation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130195041A1 (en) * 2012-01-26 2013-08-01 Samsung Electronics Co. Ltd. Method and apparatus for scheduling communication for low capability devices
CN103427970A (zh) * 2012-05-23 2013-12-04 华为技术有限公司 传输下行控制信息的方法、用户设备和基站
US20170280484A1 (en) * 2014-09-26 2017-09-28 Nec Corporation Communication system
CN108289339A (zh) * 2017-01-09 2018-07-17 北京三星通信技术研究有限公司 随机接入响应发送和检测的方法及基站、用户设备
CN110875801A (zh) * 2013-11-13 2020-03-10 三星电子株式会社 用于覆盖增强的控制信道和数据信道的传输

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130195041A1 (en) * 2012-01-26 2013-08-01 Samsung Electronics Co. Ltd. Method and apparatus for scheduling communication for low capability devices
CN103427970A (zh) * 2012-05-23 2013-12-04 华为技术有限公司 传输下行控制信息的方法、用户设备和基站
CN110875801A (zh) * 2013-11-13 2020-03-10 三星电子株式会社 用于覆盖增强的控制信道和数据信道的传输
US20170280484A1 (en) * 2014-09-26 2017-09-28 Nec Corporation Communication system
CN108289339A (zh) * 2017-01-09 2018-07-17 北京三星通信技术研究有限公司 随机接入响应发送和检测的方法及基站、用户设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4175394A4 (en) * 2020-06-24 2023-07-19 Beijing Xiaomi Mobile Software Co., Ltd. INFORMATION TRANSMISSION METHOD AND DEVICE, AS WELL AS COMMUNICATION DEVICE AND STORAGE MEDIUM
GB2624168A (en) * 2022-11-07 2024-05-15 Nokia Technologies Oy Random access responses with bandwidth limitation

Also Published As

Publication number Publication date
EP4145939A1 (en) 2023-03-08
EP4145939A4 (en) 2023-11-08
US20230096371A1 (en) 2023-03-30
CN113766659A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
CN111181693B (zh) 发送数据的方法、发送数据的装置、以及终端设备
US20200296706A1 (en) Method for Preempting Resource to Transmit Data
WO2019137213A1 (zh) 上行控制信息传输方法和通信装置
WO2019157947A1 (zh) 数据发送的方法和通信设备
US11601248B2 (en) Communication method and communications apparatus
US10863578B2 (en) Data transmission method, device and system
US20230083882A1 (en) Method for identifying downlink control information and device
WO2019233398A1 (zh) 数据传输方法、通信装置及存储介质
US20170238249A1 (en) Control information utilization method and apparatus of terminal in mobile communication system
EP3863343A1 (en) Reporting method for power headroom report, acquisition method, and device
US20230096371A1 (en) Random Access Method, Apparatus, and System
US11528731B2 (en) Communication method and communications apparatus
WO2021032021A1 (zh) 一种通信方法及装置
US20230156740A1 (en) Method and device for transmitting and receiving pdcch in wireless communication system
WO2018228537A1 (zh) 信息发送、接收方法及装置
WO2020169063A1 (zh) 一种数据传输方法及通信装置
WO2021088075A1 (zh) 信息指示方法及装置
US20230254831A1 (en) Resource determining method and apparatus
CN116508277A (zh) 一种指示反馈信息的方法和装置
US20220368505A1 (en) Data feedback method and apparatus
WO2020098715A1 (zh) 一种通信方法及装置
WO2021031855A1 (zh) 一种通信方法及装置
WO2021088260A1 (zh) 传输反馈信息的方法、终端设备和网络设备
CN113766659B (zh) 随机接入的方法、装置和***
WO2022237640A1 (zh) 一种资源确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817206

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021817206

Country of ref document: EP

Effective date: 20221130

NENP Non-entry into the national phase

Ref country code: DE