WO2021243832A1 - 带有爆震燃气能量分布平顺结构的脉冲爆震燃烧室 - Google Patents

带有爆震燃气能量分布平顺结构的脉冲爆震燃烧室 Download PDF

Info

Publication number
WO2021243832A1
WO2021243832A1 PCT/CN2020/104842 CN2020104842W WO2021243832A1 WO 2021243832 A1 WO2021243832 A1 WO 2021243832A1 CN 2020104842 W CN2020104842 W CN 2020104842W WO 2021243832 A1 WO2021243832 A1 WO 2021243832A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
pulse detonation
detonation
intake
energy distribution
Prior art date
Application number
PCT/CN2020/104842
Other languages
English (en)
French (fr)
Inventor
李晓丰
肖俊峰
胡孟起
王峰
王玮
夏林
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2021243832A1 publication Critical patent/WO2021243832A1/zh
Priority to US17/740,612 priority Critical patent/US11732894B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R7/00Intermittent or explosive combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C5/00Gas-turbine plants characterised by the working fluid being generated by intermittent combustion
    • F02C5/12Gas-turbine plants characterised by the working fluid being generated by intermittent combustion the combustion chambers having inlet or outlet valves, e.g. Holzwarth gas-turbine plants

Definitions

  • the invention relates to a pulse detonation combustion chamber with a smooth structure of detonation gas energy distribution, which is suitable for gas turbine power generation and power equipment.
  • Pulse detonation combustion chamber is a new type of combustion chamber based on knock combustion. Compared with slow combustion, knock combustion has the advantages of self-pressurization, fast flame propagation, and low pollutant emissions. The development of knock combustion-based The power plant is expected to improve the overall performance of the existing power plant.
  • pulse detonation combustion is a kind of premixed combustion, with fast combustion speed and short residence time of combustion products in the high temperature zone, which can reduce the generation of NOx and other pollutants.
  • the invention proposes a pulse detonation combustion chamber with a smooth structure of detonation gas energy distribution. Aiming at the supersonic propagation characteristics of pulse detonation combustion waves, the present invention designs a plurality of nozzles with different convergence ratios and expansion ratios at the exit of the detonation combustion chamber.
  • the axial lengths of the convergent nozzles and the expansion nozzles are the same, and the radial directions are staggered. Arrangement, the supersonic detonation gas is spatially separated into multiple high-temperature gas, and then the aerodynamic characteristics of supersonic gas decelerating in the convergent nozzle and accelerating in the expanding nozzle are used to isolate the pulse detonation from the perspective of time Gas, so that the space-separated multiple bursts of detonation gas reach the nozzle outlet section at different times, completely isolate the original strong pulse detonation gas at the pulse detonation combustion outlet into multiple weak detonation gases, and extend the high-energy gas
  • the proportion of time occupied in a single cycle achieves the purpose of adjusting the energy distribution of pulse detonation gas, so as to meet the quasi-steady-state incoming flow design conditions of the existing turbine and improve the energy conversion efficiency of pulse detonation gas.
  • the present invention also proposes a pneumatic valve structure that can adaptively follow the changes in the operating frequency of the pulse detonation combustion chamber.
  • the pressure difference between the intake pressure and the knocking combustion wave is used to reverse the pressure difference, and the pneumatic valve is automatically opened and closed to solve the problem of knocking combustion.
  • the back propagation of wave pressure affects the compressor's work.
  • a pulse detonation combustion chamber with a structure for smooth detonation gas energy distribution comprising a combustion chamber inlet, a pulse detonation combustion chamber, a pulse detonation gas energy distribution adjustment device and a transition section which are connected in sequence;
  • An intake cone is installed in the intake duct of the combustion chamber, and an atomizing air passage, a fuel passage and a conical swirl nozzle are arranged in the intake cone.
  • the high-pressure atomizing air intake pipe is connected, and the fuel passage is connected with the fuel supply pipe that extends from the combustion chamber intake port into the intake cone.
  • the conical swirl nozzle is connected with the atomizing air passage and the fuel passage.
  • Pneumatic valve is installed at the end;
  • a spark plug installation seat is arranged on the pulse detonation combustion chamber, and a spark plug is installed on the spark plug installation seat.
  • combustion chamber intake passage has a rectangular cross-sectional cavity structure, which is the main intake passage of the combustion air for the pulse detonation combustion chamber.
  • a further improvement of the present invention is that the head of the intake cone is a cone, the main body is a cylindrical structure, and the intake cone is a fuel supply structure for the combustion chamber to achieve atomization and injection of liquid fuel.
  • the shaped swirl nozzle is sheared and broken under the action of the high-pressure atomizing air rotating jet to form fine oil droplets and sprayed into the combustion chamber.
  • the pneumatic valve includes an air inlet orifice plate, a detonation wave cut-off plate and an air inlet cover cup arranged in sequence.
  • the shock wave cut-off plate is a rectangular thin plate
  • the air intake cup is a rectangular cavity structure with an opening at the right end and a hole at the left end;
  • the detonation wave cut-off plate moves to the right under the action of the intake pressure until it is stagnated by the intake cup and completely covers the opening structure at the left end of the intake cup.
  • the cavity structure formed by the intake cup and the combustion chamber inlet enters the pulse detonation combustion chamber to complete the air supply for combustion in the combustion chamber; a detonation combustion wave is formed in the pulse detonation combustion chamber and propagates upstream of the combustion chamber inlet
  • the detonation wave cut-off plate moves to the left under the reverse pressure of the detonation combustion wave, until it is stagnated by the intake orifice plate, and completely covers the intake holes opened on the intake orifice plate to prevent the detonation combustion wave from continuing It spreads upstream and affects the compressor's work.
  • a further improvement of the present invention is that the pulse detonation combustion chamber is a straight-tube cavity structure with a rectangular cross section. Fresh air and fuel are mixed while being filled in the pulse detonation combustion chamber. After the filling is completed, the spark plug is ignited Combustible mixture in the combustion chamber, the combustion flame forms a detonation combustion wave in the process of propagating to the right, completing the combustion and heat release process of the combustible mixture.
  • a further improvement of the present invention is that the pulse detonation gas energy distribution adjustment device is composed of a plurality of gas baffles with the same axial length, and the gas baffles divide the rectangular straight tube cavity structure into a plurality of different convergence ratios and expansion ratios.
  • the nozzle channel of the pulse detonation gas; the pulse detonation gas energy distribution adjustment device is used to separate the strong pulse detonation gas formed by the pulse detonation combustion chamber into multiple weak high-temperature gas from the time and space scales, so as to extend the high-energy gas in a single cycle Adjust the energy distribution of the strong pulse detonation gas.
  • a further improvement of the present invention is that the transition section is used to connect the pulse detonation gas energy distribution adjustment device and the downstream turbine components.
  • the present invention has the following beneficial effects:
  • the present invention proposes a pulse detonation combustion chamber with a smooth structure of detonation gas energy distribution.
  • a plurality of nozzle channels with different convergence ratios and expansion ratios are designed at different radial positions at the exit of the pulse detonation combustion chamber, and at the same time, the super
  • the aerodynamic characteristics of sonic detonation gas decelerating in the convergent nozzle and accelerating in the expansion nozzle respectively separate a strong pulse detonation gas into multiple weak high-temperature gas from the perspective of space and time, extending the high-energy gas in a single cycle
  • the proportion of time occupied by the internal combustion engine plays a role in adjusting the energy distribution of pulse detonation gas;
  • the present invention proposes a pneumatic valve structure capable of high-speed adaptive response, which utilizes the combustion chamber intake pressure difference and the reverse transmission of the knocking combustion wave The pressure difference realizes the automatic opening of the pneumatic valve when the combustion chamber intakes air, and the automatic closing of the pneumatic valve when the det
  • Fig. 1 is a schematic diagram of an implementation case of a pulse detonation combustion chamber with a smooth detonation gas energy distribution structure according to the present invention.
  • 1-combustion chamber inlet 2-inlet cone; 3-atomized air inlet pipe; 4-fuel supply pipe; 5-atomized air channel; 6-fuel channel; 7-air inlet orifice; 8- Pneumatic valve; 9- Detonation wave cut-off plate; 10- Intake cover cup; 11- Cone swirl nozzle; 12- Pulse detonation combustion chamber; 13- Spark plug; 14- Spark plug mounting seat; 15- Pulse detonation gas Energy distribution adjustment device; 16-gas partition; 17-transition section.
  • a layer/element when a layer/element is referred to as being “on” another layer/element, the layer/element may be directly on the other layer/element, or there may be an intermediate layer/element between them. element.
  • the layer/element may be located "under” the other layer/element when the orientation is reversed.
  • the present invention provides a pulse detonation combustion chamber with a structure for smooth detonation gas energy distribution, which includes a combustion chamber intake passage 1, an intake cone 2, a pneumatic valve 8, and a pulse detonation combustion chamber 12. Spark plug 13, pulse detonation gas energy distribution adjustment device 15 and transition section 17.
  • the combustion chamber intake passage 1 has a rectangular cross-sectional cavity structure, which is the main intake passage of the combustion air for the pulse detonation combustion chamber, and an intake cone 2 and a pneumatic valve 8 are installed in it.
  • the head of the intake cone 2 is a cone, and the main body is a cylindrical structure.
  • the intake cone 2 is provided with an atomizing air channel 5, a fuel channel 6 and a conical swirl nozzle 11, and the atomizing air channel 5 and high-pressure mist
  • the air intake pipe 3 is connected, the fuel passage 6 is connected with the fuel supply pipe 4, the conical swirl nozzle 11 is connected with the atomizing air passage 5 and the fuel passage 6, and a pneumatic valve 8 is installed at the end of the intake cone 2.
  • the intake cone 2 is the fuel supply structure of the combustion chamber, which mainly realizes the atomization and injection of liquid fuel.
  • the liquid fuel passes through the conical swirl nozzle 11 and is sheared and broken under the action of the rotating jet of high-pressure atomizing air to form fine oil.
  • the drops are sprayed into the combustion chamber.
  • the pneumatic valve 8 has the characteristics of high-speed response and self-adaptive work. It is composed of an air inlet orifice plate 7, a detonation wave cut-off plate 9 and an air inlet cover cup 10. There are multiple air intake holes, the detonation wave cut-off plate 9 is a rectangular thin plate, and the air intake cup 10 is a rectangular cavity structure with an opening at the right end and a left end.
  • the detonation wave cut-off plate 9 moves to the right under the action of the intake pressure until it is stagnated by the intake cup 10 and completely covers the left end of the intake cup 10 With the opening structure, fresh air enters the pulse detonation combustion chamber from the cavity structure formed by the intake cup 10 and the combustion chamber inlet 1 to complete the air supply for combustion in the combustion chamber; a detonation combustion wave is formed in the pulse detonation combustion chamber And when propagating upstream of the combustion chamber intake port 1, the knocking wave cut-off plate 9 moves to the left under the action of the back propagation pressure of the knocking combustion wave until it is stagnated by the intake orifice 7 and completely covers the intake orifice 7 The air intake opening on the upper side prevents the knocking combustion wave from continuing to propagate upstream and affects the compressor's work.
  • the pulse detonation combustion chamber 12 is a straight-tube cavity structure with a rectangular cross section, and a spark plug mounting seat 14 is provided on it for mounting a spark plug 13. Fresh air and fuel are mixed while filling in the pulse detonation combustion chamber 12. After the filling is completed, the spark plug 13 ignites the combustible mixture in the combustion chamber, and the combustion flame forms a detonation combustion wave as it propagates to the right to complete the combustion of the combustible mixture. Heat release process.
  • the pulse detonation gas energy distribution adjustment device 15 is composed of a plurality of gas partitions 16 with the same axial length.
  • the gas partitions 16 divide the rectangular straight tube cavity structure into a plurality of nozzle channels with different convergence ratios and expansion ratios. ;
  • the function of the pulse detonation gas energy distribution adjustment device 15 is to separate the strong pulse detonation gas formed by the pulse detonation combustion chamber 12 into multiple weak high-temperature gas from the time and space scale, and extend the high-energy gas in a single cycle. Adjust the energy distribution of the strong pulse detonation gas.
  • the transition section 17 is mainly used to connect the pulse detonation gas energy distribution adjustment device 15 and the downstream turbine component, and its structure and shape can be changed according to the structure and size of the turbine component.
  • the combustion chamber inlet 1 cavity has a length of 500mm, a width of 200mm, a height of 100mm, and a wall thickness of 3mm;
  • the pulse detonation combustion chamber 12 has a cavity of 1,400mm long, 200mm wide, and 100mm high with a wall Thickness of 3mm;
  • pulse detonation gas energy distribution adjustment device 15 has an axial length of 300mm, a width of 200mm, a height of 100mm, and a wall thickness of 3mm.
  • Three gas partitions with a wall thickness of 2mm 16 divide the cavity structure with a rectangular cross section into 4 nozzles from top to bottom, nozzles No. 1 and No.
  • expansion nozzles with expansion ratios of 1.44 and 1.90, respectively
  • nozzles No. 2 and No. 4 from top to bottom are contraction Type nozzles have convergence ratios of 2.21 and 1.43, respectively
  • the transition section 17 cavity has a length of 200mm, a width of 200mm, a height of 100mm, and a wall thickness of 3mm.
  • the air required to participate in fuel combustion enters from the combustion chamber intake port 1, and is formed by the intake cup 10 and the combustion chamber intake port 1 through the intake orifice plate 7 of the pneumatic valve 8 installed in the combustion chamber intake port 1.
  • the airflow channel enters the pulse detonation combustion chamber 12;
  • the high-pressure atomization air used for the atomization of the liquid fuel enters the atomization air intake pipe 3 installed on the intake cone 2, and enters the cone tangentially through the atomization air channel 5 Cone swirl nozzle 11, and form a high-speed rotating airflow in the cone swirl nozzle 11;
  • the liquid fuel enters from the fuel supply pipe 4 installed on the intake cone 2, and flows axially through the fuel passage 6 inside the intake cone 2.
  • Conical swirl nozzle 11 the liquid fuel is sheared and broken by high-speed rotating atomizing air in the conical swirl nozzle 11 to form small oil droplets, and then sprayed from the conical swirl nozzle 11 into the pulse detonation combustion chamber 12 at high speed.
  • the main air entering the combustion chamber through the pneumatic valve 8 to participate in the fuel combustion is further mixed and atomized into smaller oil droplets; the fresh air and the atomized oil droplets are combusted in the pulse detonation combustion chamber 12, and finally
  • the gas energy distribution adjustment device 15 and the transition section 17 are discharged through the pulse detonation.
  • a working cycle of a pulse detonation combustion chamber with a smooth structure of detonation gas energy distribution is divided into three stages: filling, combustion and exhaust.
  • the pneumatic valve 8 opens under the action of the intake pressure difference to participate
  • the fuel-burning air enters the pulse detonation combustion chamber through the pneumatic valve 8.
  • the high-pressure atomized air and liquid fuel enter the pulse detonation combustion chamber 12 through the intake cone 2.
  • Fresh air and fresh fuel fill the pulse detonation combustion chamber 12 At the same time, complete the mixing of air and fuel to form a combustible mixture.
  • the filling phase ends; in the combustion phase: after the filling phase is completed, the spark plug 13 generates a high-energy spark to ignite the pulse detonation combustion chamber
  • the fresh combustible mixture filled in 12 first forms a weak combustion compression wave at the head of the pulse detonation combustion chamber 12.
  • the pneumatic valve 8 is closed under the action of the reverse pressure, and the weak combustion compression wave moves to the right in the pulse detonation combustion chamber 12 Gradually superimpose and strengthen during the propagation process, and finally form a detonation combustion wave.
  • the combustion phase ends; in the exhaust phase: after the combustion phase is completed, the pulse detonation gas energy distribution
  • the adjusting device 15 separates the supersonic pulse detonation gas injected from the exit of the pulse detonation combustion chamber 12 into multiple high-temperature gas from the perspective of space and time, so as to realize the adjustment of the energy distribution of the pulse detonation gas.
  • the adjusted gas finally passes through The transition section 17 is discharged.
  • the expansion wave continuously enters the combustion chamber from the exit of the transition section 17, and the pressure in the pulse detonation combustion chamber is continuously reduced until the intake pressure is greater than the pressure in the combustion chamber, and the exhaust phase ends.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

一种带有爆震燃气能量分布平顺结构的脉冲爆震燃烧室(12),其包括依次连通的燃烧室进气道(1)、脉冲爆震燃烧室(12)、脉冲爆震燃气能量分布调整装置(15)和过渡段(17);其中,燃烧室进气道(1)内安装有进气锥(2),进气锥(2)内设置有雾化空气通道(5)、燃料通道(6)和锥形旋流喷嘴(11),雾化空气通道(5)与由燃烧室进气道(1)外伸入至进气锥(2)内的高压雾化空气进气管道(3)相连,燃料通道(6)与由燃烧室进气道(1)外伸入至进气锥(2)内的燃料供给管道(4)相连,锥形旋流喷嘴(11)与雾化空气通道(5)和燃料通道(6)相连,在进气锥(2)的末端安装有气动阀(8);脉冲爆震燃烧室(12)上设置有火花塞安装座(14),火花塞安装座(14)上安装有火花塞(13)。该脉冲爆震燃烧室(12)解决了脉冲爆震燃烧高温燃气能流密度集中、涡轮对爆震燃气能量转换提取效率低、爆震燃烧波压力反传的问题。

Description

带有爆震燃气能量分布平顺结构的脉冲爆震燃烧室 【技术领域】
本发明涉及一种带有爆震燃气能量分布平顺结构的脉冲爆震燃烧室,适用于燃气轮机发电和动力设备。
【背景技术】
脉冲爆震燃烧室是一种基于爆震燃烧的新型燃烧室,与缓燃燃烧相比,爆震燃烧具有自增压、火焰传播速度快、污染物排放低等优点,发展基于爆震燃烧的动力装置有望提高现有动力装置的总体性能。
现有航空发动机和地面燃气轮机等动力装置普遍采用等压燃烧室,燃料喷入燃烧室的燃烧过程,燃气压力基本不变或略有降低。因爆震燃烧具有自增压特点,燃料在燃烧室的燃烧过程中,燃气压力同时上升,将航空发动机和地面燃气轮机等动力装置中的等压燃烧室替换为脉冲爆震燃烧室后,可适当减少航空发动机和地面燃气轮机的压气机级数,降低压气机压缩功,进而间接增加燃料燃烧后高温燃气能量用于做功的比例,提高航空发动机和地面燃气轮机的循环热效率。另因脉冲爆震燃烧火焰以爆震波的速度传播,达到上千米每秒,是缓燃燃烧火焰传播速度的几千倍,因此燃烧稳定性好,可解决在役地面燃气轮机采用贫燃预混低氮燃烧方式遇到的燃烧稳定性问题。同时,脉冲爆震燃烧是一种预混燃烧,燃烧速度快,燃烧产物在高温区的停留时间短,可减少NOx等污染物的生成。
然而在研究将脉冲爆震燃烧室替换航空发动机或地面燃气轮机等动力装置的等压燃烧室时发现,1)因脉冲爆震燃烧后的燃气能量具有强脉动特性,能量主要集中在爆震燃烧阶段,而爆震燃烧速度快,占整个周期的时间比例小,基于 准稳态来流条件设计的涡轮对脉冲爆震燃气能量的转换提取效率较低,大部分能量还未来得及利用就已被排出;2)因脉冲爆震燃烧室形成爆震燃烧波后,燃烧室头部压力上升,爆震燃烧波会反传至燃烧室进气通道,进而影响压气机的工作特性。因此延长脉冲爆震燃气中高能量燃气在单个周期内所占的时间比例,调整脉冲爆震燃气能流密度随时间的分布,同时设计燃烧室进气气动阀,阻止爆震燃烧波的压力反传,有望提高基于脉冲爆震燃烧的航空发动机或地面燃气轮机循环热效率。
【发明内容】
为了提高基于脉冲爆震燃烧的航空发动机或地面燃气轮机循环热效率,解决脉冲爆震燃烧高温燃气能流密度集中、涡轮对爆震燃气能量转换提取效率低、爆震燃烧波压力反传的问题,本发明提出一种带有爆震燃气能量分布平顺结构的脉冲爆震燃烧室。本发明针对脉冲爆震燃烧波超音速传播的特点,在爆震燃烧室出口设计多个收敛比和扩张比不同的喷管,收敛喷管和扩张喷管的轴向长度相同,径向呈错开布置,将超音速爆震燃气先从空间上分离成多股高温燃气,然后利用超音速燃气在收敛喷管中减速而在扩张喷管中加速的气动特性,再从时间角度隔开脉冲爆震燃气,使空间分离的多股爆震燃气到达喷管出口截面的时间不同,将脉冲爆震燃烧出口原来的一股强脉冲爆震燃气完全隔离成多股弱爆震燃气,延长高能量燃气在单个周期内所占的时间比例,实现调整脉冲爆震燃气能量分布的目的,以满足现有涡轮准稳态的来流设计条件,提高脉冲爆震燃气能量转换效率。本发明同时提出了一种可自适应跟随脉冲爆震燃烧室工作频率变化的气动阀结构,利用进气压力差和爆震燃烧波反传压力差,自动打开和关闭气动阀,解决爆震燃烧波压力反传影响压气机工作的问题。
为达到上述目的,本发明采用以下技术方案予以实现:
一种带有爆震燃气能量分布平顺结构的脉冲爆震燃烧室,包括依次连通的燃烧室进气道、脉冲爆震燃烧室、脉冲爆震燃气能量分布调整装置和过渡段;其中,
燃烧室进气道内安装有进气锥,进气锥内设置有雾化空气通道、燃料通道和锥形旋流喷嘴,雾化空气通道与由燃烧室进气道外伸入至进气锥内的高压雾化空气进气管道相连,燃料通道与由燃烧室进气道外伸入至进气锥内的燃料供给管道相连,锥形旋流喷嘴与雾化空气通道和燃料通道相连,在进气锥的末端安装有气动阀;
脉冲爆震燃烧室上设置有火花塞安装座,火花塞安装座上安装有火花塞。
本发明进一步的改进在于,所述燃烧室进气道为长方形横截面腔体结构,是脉冲爆震燃烧室燃烧用空气的主要进气通道。
本发明进一步的改进在于,所述进气锥头部为锥形体,主体为圆柱体结构,进气锥是燃烧室燃料的供给结构,用于实现液体燃料的雾化和喷射,液体燃料经锥形旋流喷嘴,在高压雾化空气旋转射流的作用下剪切破碎形成细小油滴喷入燃烧室。
本发明进一步的改进在于,气动阀包括依次设置的进气孔板、爆震波截止板和进气罩杯,进气孔板为长方形薄板结构,其上均匀等距开设有多个进气孔,爆震波截止板为长方形薄板,进气罩杯为右端开口左端开孔的长方形腔体结构;
在脉冲爆震燃烧室填充新鲜空气和燃料阶段,爆震波截止板在进气压力作用下向右移动,直至被进气罩杯滞止,并完全遮盖进气罩杯左端的开孔结构,新鲜空气从进气罩杯与燃烧室进气道形成的腔体结构进入脉冲爆震燃烧室,完成燃烧室燃烧用空气供给;在脉冲爆震燃烧室内形成爆震燃烧波并往燃烧室进气道的上 游传播时,爆震波截止板在爆震燃烧波反传压力作用下向左移动,直至被进气孔板滞止,并完全遮盖进气孔板上所开设的进气孔,阻止爆震燃烧波继续往上游传播,影响压气机工作。
本发明进一步的改进在于,所述脉冲爆震燃烧室是一横截面为长方形的直管腔体结构,新鲜空气和燃料在脉冲爆震燃烧室内边填充边掺混,待填充完成后,火花塞点燃燃烧室内可燃混合物,燃烧火焰在往右传播过程中形成爆震燃烧波,完成可燃混合物的燃烧释热过程。
本发明进一步的改进在于,所述脉冲爆震燃气能量分布调整装置由多个轴向长度相同的燃气隔板组成,燃气隔板将长方形直管腔体结构划分成多个不同收敛比和扩张比的喷管通道;脉冲爆震燃气能量分布调整装置用于将脉冲爆震燃烧室形成的强脉冲爆震燃气从时间和空间尺度分离成多股弱高温燃气,延长高能量燃气在单个周期内所占的时间比例,调整强脉冲爆震燃气的能量分布。
本发明进一步的改进在于,过渡段用于连接脉冲爆震燃气能量分布调整装置和下游的涡轮部件。
与现有技术相比,本发明具有以下有益效果:
本发明提出的一种带有爆震燃气能量分布平顺结构的脉冲爆震燃烧室,在脉冲爆震燃烧室出口不同径向位置设计多个不同收敛比和扩张比的喷管通道,同时利用超音速爆震燃气在收敛喷管中减速而在扩张喷管中加速的气动特性,分别从空间和时间角度将一股强脉冲爆震燃气分离成多股弱高温燃气,延长高能量燃气在单个周期内所占的时间比例,起到调整脉冲爆震燃气能量分布的作用;另本发明提出了一种可高速自适应响应的气动阀结构,利用燃烧室进气压力差以及爆震燃烧波反传压力差,实现燃烧室进气时气动阀自动打开,爆震燃烧波反传时气动 阀自动关闭,气动阀可自适应跟随脉冲爆震燃烧的工作频率工作,解决了脉冲爆震燃烧波的压力反传问题。
【附图说明】
图1是本发明一种带有爆震燃气能量分布平顺结构的脉冲爆震燃烧室实施案例的示意图。
其中:1-燃烧室进气道;2-进气锥;3-雾化空气进气管道;4-燃料供给管道;5-雾化空气通道;6-燃料通道;7-进气孔板;8-气动阀;9-爆震波截止板;10-进气罩杯;11-锥形旋流喷嘴;12-脉冲爆震燃烧室;13-火花塞;14-火花塞安装座;15-脉冲爆震燃气能量分布调整装置;16-燃气隔板;17-过渡段。
【具体实施方式】
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,不是全部的实施例,而并非要限制本发明公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要的混淆本发明公开的概念。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
在附图中示出了根据本发明公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
本发明公开的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合附图对本发明做进一步详细描述:
参见图1,本发明提供的一种带有爆震燃气能量分布平顺结构的脉冲爆震燃烧室,包括燃烧室进气道1、进气锥2、气动阀8、脉冲爆震燃烧室12、火花塞13、脉冲爆震燃气能量分布调整装置15和过渡段17。
所述燃烧室进气道1为长方形横截面腔体结构,是脉冲爆震燃烧室燃烧用空气的主要进气通道,其内安装有进气锥2和气动阀8。
所述进气锥2头部为锥形体,主体为圆柱体结构,进气锥2内设置有雾化空气通道5、燃料通道6和锥形旋流喷嘴11,雾化空气通道5与高压雾化空气进气管道3相连,燃料通道6与燃料供给管道4相连,锥形旋流喷嘴11与雾化空气通道5、燃料通道6相连,在进气锥2的末端安装有气动阀8。所述进气锥2是 燃烧室燃料的供给结构,主要实现液体燃料的雾化和喷射,液体燃料经锥形旋流喷嘴11,在高压雾化空气旋转射流的作用下剪切破碎形成细小油滴喷入燃烧室。
所述气动阀8具有高速响应和自适应工作特点,由进气孔板7、爆震波截止板9和进气罩杯10组成,进气孔板7为长方形薄板结构,其上均匀等距开设有多个进气孔,爆震波截止板9为长方形薄板,进气罩杯10为右端开口左端开孔的长方形腔体结构。所述气动阀8在脉冲爆震燃烧室填充新鲜空气和燃料阶段,爆震波截止板9在进气压力作用下向右移动,直至被进气罩杯10滞止,并完全遮盖进气罩杯10左端的开孔结构,新鲜空气从进气罩杯10与燃烧室进气道1形成的腔体结构进入脉冲爆震燃烧室,完成燃烧室燃烧用空气供给;在脉冲爆震燃烧室内形成爆震燃烧波并往燃烧室进气道1的上游传播时,爆震波截止板9在爆震燃烧波反传压力作用下向左移动,直至被进气孔板7滞止,并完全遮盖进气孔板7上所开设的进气孔,阻止爆震燃烧波继续往上游传播,影响压气机工作。
所述脉冲爆震燃烧室12是一横截面为长方形的直管腔体结构,其上设置有火花塞安装座14,用于安装火花塞13。新鲜空气和燃料在脉冲爆震燃烧室12内边填充边掺混,待填充完成后,火花塞13点燃燃烧室内可燃混合物,燃烧火焰在往右传播过程中形成爆震燃烧波,完成可燃混合物的燃烧释热过程。
所述脉冲爆震燃气能量分布调整装置15由多个轴向长度相同的燃气隔板16组成,燃气隔板16将长方形直管腔体结构划分成多个不同收敛比和扩张比的喷管通道;脉冲爆震燃气能量分布调整装置15的作用是将脉冲爆震燃烧室12形成的强脉冲爆震燃气从时间和空间尺度分离成多股弱高温燃气,延长高能量燃气在单个周期内所占的时间比例,调整强脉冲爆震燃气的能量分布。
所述过渡段17主要用于连接脉冲爆震燃气能量分布调整装置15和下游的涡 轮部件,其结构形状可根据涡轮部件的结构尺寸变化。
请参阅图1所示,本实施例中燃烧室进气道1腔体长500mm,宽200mm,高100mm,壁厚3mm;脉冲爆震燃烧室12腔体长1400mm,宽200mm,高100mm,壁厚3mm;脉冲爆震燃气能量分布调整装置15轴向长度为300mm,宽200mm,高100mm,壁厚3mm,3块壁厚为2mm的燃气隔板16将横截面为长方形的腔体结构划分为从上至下的4个喷管,从上至下第1和第3号喷管为扩张型喷管,扩张比分别为1.44和1.90,从上至下第2和第4号喷管为收缩型喷管,收敛比分别为2.21和1.43;过渡段17腔体长200mm,宽200mm,高100mm,壁厚3mm。
本实施例一种带有爆震燃气能量分布平顺结构的脉冲爆震燃烧室的具体工作方式如下:
参与燃料燃烧所需的空气从燃烧室进气道1进入,经安装在燃烧室进气道1内气动阀8的进气孔板7,由进气罩杯10与燃烧室进气道1所形成的气流通道进入脉冲爆震燃烧室12;用于液态燃料雾化的高压雾化空气由安装在进气锥2上的雾化空气进气管道3进入,经雾化空气通道5切向进入锥形旋流喷嘴11,并在锥形旋流喷嘴11内形成高速旋转气流;液态燃料由安装在进气锥2上的燃料供给管道4进入,经进气锥2内部的燃料通道6轴向流入锥形旋流喷嘴11;液态燃料在锥形旋流喷嘴11内被高速旋转的雾化空气剪切破碎形成小油滴,然后从锥形旋流喷嘴11高速喷入脉冲爆震燃烧室12,并与经气动阀8进入燃烧室参与燃料燃烧的主空气进一步掺混雾化成更小的油滴颗粒;新鲜的空气和雾化后的油滴颗粒在脉冲爆震燃烧室12内完成燃烧,最终经脉冲爆震燃气能量分布调整装置15和过渡段17排出。
一种带有爆震燃气能量分布平顺结构的脉冲爆震燃烧室的一个工作循环分为填充、燃烧和排气三个阶段,在填充阶段:气动阀8在进气压差作用下打开,参与燃料燃烧的空气经气动阀8后进入脉冲爆震燃烧室,高压雾化空气和液态燃料经进气锥2进入脉冲爆震燃烧室12,新鲜空气和新鲜燃料在填充脉冲爆震燃烧室12的同时完成空气与燃料的掺混,形成可燃混合物,待可燃混合物充满脉冲爆震燃烧室12后,填充阶段结束;在燃烧阶段:填充阶段完成后,火花塞13产生高能火花,点燃脉冲爆震燃烧室12内填充的新鲜可燃混合物,先在脉冲爆震燃烧室12头部形成弱燃烧压缩波,气动阀8在反传压力的作用下关闭,弱燃烧压缩波在脉冲爆震燃烧室12内往右传播过程中逐渐叠加增强,最终形成爆震燃烧波,待脉冲爆震燃烧室12内填充的可燃混合物燃烧完成后,燃烧阶段结束;在排气阶段:燃烧阶段完成后,脉冲爆震燃气能量分布调整装置15将从脉冲爆震燃烧室12出口喷入的超音速脉冲爆震燃气,从空间和时间角度分离成多股高温燃气,实现脉冲爆震燃气能量分布的调整,调整后的燃气最终经过渡段17排出,在排气阶段膨胀波不断从过渡段17出口传入燃烧室,脉冲爆震燃烧室内压力不断降低,直至进气压力大于燃烧室内压力,排气阶段结束。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (7)

  1. 一种带有爆震燃气能量分布平顺结构的脉冲爆震燃烧室,其特征在于,包括依次连通的燃烧室进气道(1)、脉冲爆震燃烧室(12)、脉冲爆震燃气能量分布调整装置(15)和过渡段(17);其中,
    燃烧室进气道(1)内安装有进气锥(2),进气锥(2)内设置有雾化空气通道(5)、燃料通道(6)和锥形旋流喷嘴(11),雾化空气通道(5)与由燃烧室进气道(1)外伸入至进气锥(2)内的高压雾化空气进气管道(3)相连,燃料通道(6)与由燃烧室进气道(1)外伸入至进气锥(2)内的燃料供给管道(4)相连,锥形旋流喷嘴(11)与雾化空气通道(5)和燃料通道(6)相连,在进气锥(2)的末端安装有气动阀(8);
    脉冲爆震燃烧室(12)上设置有火花塞安装座(14),火花塞安装座(14)上安装有火花塞(13)。
  2. 根据权利要求1所述的一种带有爆震燃气能量分布平顺结构的脉冲爆震燃烧室,其特征在于,所述燃烧室进气道(1)为长方形横截面腔体结构,是脉冲爆震燃烧室燃烧用空气的主要进气通道。
  3. 根据权利要求1所述的一种带有爆震燃气能量分布平顺结构的脉冲爆震燃烧室,其特征在于,所述进气锥(2)头部为锥形体,主体为圆柱体结构,进气锥(2)是燃烧室燃料的供给结构,用于实现液体燃料的雾化和喷射,液体燃料经锥形旋流喷嘴(11),在高压雾化空气旋转射流的作用下剪切破碎形成细小油滴喷入燃烧室。
  4. 根据权利要求1所述的一种带有爆震燃气能量分布平顺结构的脉冲爆震燃烧室,其特征在于,气动阀(8)包括依次设置的进气孔板(7)、爆震波截止板(9)和进气罩杯(10),进气孔板(7)为长方形薄板结构,其上均匀等距开 设有多个进气孔,爆震波截止板(9)为长方形薄板,进气罩杯(10)为右端开口左端开孔的长方形腔体结构;
    在脉冲爆震燃烧室填充新鲜空气和燃料阶段,爆震波截止板(9)在进气压力作用下向右移动,直至被进气罩杯(10)滞止,并完全遮盖进气罩杯(10)左端的开孔结构,新鲜空气从进气罩杯(10)与燃烧室进气道(1)形成的腔体结构进入脉冲爆震燃烧室,完成燃烧室燃烧用空气供给;在脉冲爆震燃烧室内形成爆震燃烧波并往燃烧室进气道(1)的上游传播时,爆震波截止板(9)在爆震燃烧波反传压力作用下向左移动,直至被进气孔板(7)滞止,并完全遮盖进气孔板(7)上所开设的进气孔,阻止爆震燃烧波继续往上游传播,影响压气机工作。
  5. 根据权利要求1所述的一种带有爆震燃气能量分布平顺结构的脉冲爆震燃烧室,其特征在于,所述脉冲爆震燃烧室(12)是一横截面为长方形的直管腔体结构,新鲜空气和燃料在脉冲爆震燃烧室(12)内边填充边掺混,待填充完成后,火花塞(13)点燃燃烧室内可燃混合物,燃烧火焰在往右传播过程中形成爆震燃烧波,完成可燃混合物的燃烧释热过程。
  6. 根据权利要求1所述的一种带有爆震燃气能量分布平顺结构的脉冲爆震燃烧室,其特征在于,所述脉冲爆震燃气能量分布调整装置(15)由多个轴向长度相同的燃气隔板(16)组成,燃气隔板(16)将长方形直管腔体结构划分成多个不同收敛比和扩张比的喷管通道;脉冲爆震燃气能量分布调整装置(15)用于将脉冲爆震燃烧室(12)形成的强脉冲爆震燃气从时间和空间尺度分离成多股弱高温燃气,延长高能量燃气在单个周期内所占的时间比例,调整强脉冲爆震燃气的能量分布。
  7. 根据权利要求1所述的一种带有爆震燃气能量分布平顺结构的脉冲爆震 燃烧室,其特征在于,过渡段(17)用于连接脉冲爆震燃气能量分布调整装置(15)和下游的涡轮部件。
PCT/CN2020/104842 2020-06-03 2020-07-27 带有爆震燃气能量分布平顺结构的脉冲爆震燃烧室 WO2021243832A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/740,612 US11732894B2 (en) 2020-06-03 2022-05-10 Pulse detonation combustion system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010496107.5 2020-06-03
CN202010496107.5A CN111520767B (zh) 2020-06-03 2020-06-03 一种可调整出口燃气能量分布的脉冲爆震燃烧室

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/740,612 Continuation US11732894B2 (en) 2020-06-03 2022-05-10 Pulse detonation combustion system

Publications (1)

Publication Number Publication Date
WO2021243832A1 true WO2021243832A1 (zh) 2021-12-09

Family

ID=71909756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104842 WO2021243832A1 (zh) 2020-06-03 2020-07-27 带有爆震燃气能量分布平顺结构的脉冲爆震燃烧室

Country Status (3)

Country Link
US (1) US11732894B2 (zh)
CN (1) CN111520767B (zh)
WO (1) WO2021243832A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11619172B1 (en) * 2022-03-01 2023-04-04 General Electric Company Detonation combustion systems

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111520767B (zh) * 2020-06-03 2023-07-25 西安热工研究院有限公司 一种可调整出口燃气能量分布的脉冲爆震燃烧室
CN113777215B (zh) * 2021-09-26 2023-08-25 西安航天动力研究所 一种用于射流助爆研究的试验装置
CN114992676B (zh) * 2022-05-18 2023-03-28 华中科技大学 一种顺流式旋转气波点火爆震燃烧装置及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB337599A (en) * 1929-10-31 1930-11-06 Hans Holzwarth Improvements in process and apparatus for operating explosion turbines
CN101514656A (zh) * 2009-04-01 2009-08-26 西北工业大学 一种涡轮组合脉冲爆震发动机
CN101956631A (zh) * 2010-09-30 2011-01-26 西北工业大学 一种吸气式脉冲爆震发动机进气道
CN102606343A (zh) * 2012-03-31 2012-07-25 西北工业大学 一种脉冲爆震发动机爆震室
CN103089444A (zh) * 2013-01-25 2013-05-08 西北工业大学 一种减小吸气式脉冲爆震发动机进气道反压的结构
CN103867338A (zh) * 2014-03-03 2014-06-18 北京动力机械研究所 一种两相高频预爆器
CN103883428A (zh) * 2014-03-28 2014-06-25 西北工业大学 一种吸气式脉冲爆震发动机防反流进气结构
CN106065830A (zh) * 2016-06-01 2016-11-02 南京航空航天大学 一种基于旋转阀与气动阀组合的脉冲爆震燃烧室装置
CN111520767A (zh) * 2020-06-03 2020-08-11 西安热工研究院有限公司 一种可调整出口燃气能量分布的脉冲爆震燃烧室
CN212408731U (zh) * 2020-06-03 2021-01-26 西安热工研究院有限公司 带有平顺爆震燃气能量分布结构的脉冲爆震燃烧室

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2523378A (en) * 1945-11-28 1950-09-26 Kollsman Paul Wing-mounted jet reaction engine for aircraft
US2609660A (en) * 1946-02-25 1952-09-09 Tenney Resonating pulse jet engine
US2635421A (en) * 1949-10-24 1953-04-21 Felix A Blum Pulse jet convertible to ram jetpropulsion means
US4290558A (en) * 1979-09-18 1981-09-22 United Technologies Corporation Fuel nozzle with water injection
JPH033763Y2 (zh) * 1986-01-28 1991-01-31
US4708159A (en) * 1986-04-16 1987-11-24 Nea Technologies, Inc. Pulse combustion energy system
JP2004245075A (ja) * 2003-02-12 2004-09-02 Ishikawajima Harima Heavy Ind Co Ltd パルスデトネーションエンジン及びパルスデトネーション燃焼方法
US7828546B2 (en) * 2005-06-30 2010-11-09 General Electric Company Naturally aspirated fluidic control for diverting strong pressure waves
CN101713546B (zh) * 2008-10-08 2013-06-26 中国航空工业第一集团公司沈阳发动机设计研究所 适用于多种燃料的低污染燃烧器
US8302377B2 (en) * 2009-01-30 2012-11-06 General Electric Company Ground-based simple cycle pulse detonation combustor based hybrid engine for power generation
CN201407102Y (zh) * 2009-04-01 2010-02-17 西北工业大学 一种涡轮组合脉冲爆震发动机
US8377232B2 (en) * 2009-05-04 2013-02-19 General Electric Company On-line cleaning of turbine hot gas path deposits via pressure pulsations
EP2312126B1 (en) * 2009-10-08 2015-12-23 General Electric Company Power generation system and corresponding power generating method
CN101761419B (zh) * 2010-02-04 2012-05-16 西北工业大学 一种脉冲爆震发动机的折流式进气装置
CN101776027B (zh) * 2010-03-04 2011-08-10 北京大学 吸气式液体燃料脉冲爆震发动机
CN101825042A (zh) * 2010-03-25 2010-09-08 北京大学 脉冲爆震发动机电磁阀高频供油点火***
CN101881238B (zh) * 2010-06-10 2013-04-17 西北工业大学 一种吸气式脉冲爆震发动机及其起爆方法
CN201794667U (zh) * 2010-09-30 2011-04-13 西北工业大学 一种吸气式脉冲爆震发动机进气道
CN101975123A (zh) * 2010-11-04 2011-02-16 西北工业大学 一种带有中心锥体的脉冲爆震发动机的爆震管
US9217392B2 (en) * 2011-12-12 2015-12-22 Curtis E. Graber Vortex cannon with enhanced ring vortex generation
CN103089445B (zh) * 2013-01-25 2015-04-22 西北工业大学 一种吸气式脉冲爆震发动机进气道防反压结构
WO2014123440A1 (ru) * 2013-02-06 2014-08-14 Некоммерческое Партнерство По Научной, Образовательной И Инновационной Деятельности "Центр Импульсного Детонационного Горения" Способ и устройство инициирования детонации в трубе с горючей смесью
CN103953461B (zh) * 2014-04-01 2016-05-25 西北工业大学 一种减小吸气式脉冲爆震发动机进气道反压的机械阀
CN104033248B (zh) * 2014-06-04 2015-10-07 华能国际电力股份有限公司 一种利用脉冲爆震燃烧的地面燃气轮机
CN104153884B (zh) * 2014-08-06 2015-10-28 西安热工研究院有限公司 一种旋转爆震燃气轮机
DE102016009629A1 (de) * 2016-08-06 2018-02-08 Rüdiger Ufermann ,,Anordnung für ein Ventil einer Detonationsbrennkammer"
CN206205999U (zh) * 2016-10-28 2017-05-31 清华大学 连续旋转爆震发电机
CN106285945B (zh) * 2016-10-28 2018-04-10 清华大学 连续旋转爆震发电机
US20180356099A1 (en) * 2017-06-09 2018-12-13 General Electric Company Bulk swirl rotating detonation propulsion system
CN107605603B (zh) * 2017-08-28 2019-02-05 江苏大学 一种用于脉冲爆震发动机的点火***
CN108443912B (zh) * 2018-02-08 2023-10-03 中国船舶重工集团公司第七0三研究所 一种自吸式空气辅助雾化双燃料喷嘴
CN109506249B (zh) * 2018-10-08 2020-07-31 江苏大学 一种气液两相脉冲爆轰发动机燃烧装置
CN109209681A (zh) * 2018-10-08 2019-01-15 西北工业大学 一种回流式的脉冲爆震发动机爆震管结构
CN109681678B (zh) * 2018-11-16 2020-05-01 江苏大学 一种用于脉冲爆轰发动机的气动阀
CN109882315B (zh) * 2019-03-21 2020-07-03 中国航发湖南动力机械研究所 脉冲爆震发动机
CN111120144B (zh) * 2020-01-07 2021-01-05 姚长水 自适应变频互控式脉冲爆震航空发动机及其使用方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB337599A (en) * 1929-10-31 1930-11-06 Hans Holzwarth Improvements in process and apparatus for operating explosion turbines
CN101514656A (zh) * 2009-04-01 2009-08-26 西北工业大学 一种涡轮组合脉冲爆震发动机
CN101956631A (zh) * 2010-09-30 2011-01-26 西北工业大学 一种吸气式脉冲爆震发动机进气道
CN102606343A (zh) * 2012-03-31 2012-07-25 西北工业大学 一种脉冲爆震发动机爆震室
CN103089444A (zh) * 2013-01-25 2013-05-08 西北工业大学 一种减小吸气式脉冲爆震发动机进气道反压的结构
CN103867338A (zh) * 2014-03-03 2014-06-18 北京动力机械研究所 一种两相高频预爆器
CN103883428A (zh) * 2014-03-28 2014-06-25 西北工业大学 一种吸气式脉冲爆震发动机防反流进气结构
CN106065830A (zh) * 2016-06-01 2016-11-02 南京航空航天大学 一种基于旋转阀与气动阀组合的脉冲爆震燃烧室装置
CN111520767A (zh) * 2020-06-03 2020-08-11 西安热工研究院有限公司 一种可调整出口燃气能量分布的脉冲爆震燃烧室
CN212408731U (zh) * 2020-06-03 2021-01-26 西安热工研究院有限公司 带有平顺爆震燃气能量分布结构的脉冲爆震燃烧室

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11619172B1 (en) * 2022-03-01 2023-04-04 General Electric Company Detonation combustion systems

Also Published As

Publication number Publication date
CN111520767A (zh) 2020-08-11
US11732894B2 (en) 2023-08-22
CN111520767B (zh) 2023-07-25
US20220275943A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
WO2021243832A1 (zh) 带有爆震燃气能量分布平顺结构的脉冲爆震燃烧室
CN212408731U (zh) 带有平顺爆震燃气能量分布结构的脉冲爆震燃烧室
CN101881238B (zh) 一种吸气式脉冲爆震发动机及其起爆方法
CN101806260B (zh) 一种多管并联脉冲爆震燃烧室及其点火起爆方法
CN100549399C (zh) 一种高频脉冲爆震发动机及其控制方法
CN101776027B (zh) 吸气式液体燃料脉冲爆震发动机
CN112902225B (zh) 一种带外环旋转爆震增压燃烧室的多级加力燃烧室
CN102003303B (zh) 一种二次爆震的脉冲爆震发动机
CN107762661B (zh) 一种脉冲爆震引射超燃冲压组合发动机
CN106837603B (zh) 一种超声速爆震发动机及其推进***
WO2021243949A1 (zh) 一种利用黏性力转换脉冲爆震燃气能量的燃气轮机发电装置
CN106930864B (zh) 一种超声速爆震发动机及其推进***
CN201858046U (zh) 一种二次爆震的脉冲爆震发动机
CN113280366A (zh) 一种基于自激扫掠振荡燃油喷嘴的加力燃烧室结构
CN103899435A (zh) 一种组合式脉冲爆震发动机爆震室
WO2019228376A1 (zh) 重油发动机的缸头及航空发动机
CN203879631U (zh) 一种利用脉冲爆震燃烧的地面燃气轮机
CN108547697A (zh) 一种采用高能点火技术的转子发动机
CN201696166U (zh) 一种吸气式脉冲爆震发动机
CN202578943U (zh) 一种脉冲爆震发动机射流点火装置
CN201696167U (zh) 一种多管并联脉冲爆震燃烧室
CN113417733B (zh) 一种燃料空气分离主动控制式点火室***
CN104832319A (zh) 一种气体/双燃料发动机燃气梯次喷射装置
CN115263564A (zh) 一种宽域冲压发动机推力突变的调控方法
CN208793086U (zh) 复合喷射的航空重油发动机及航空器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939208

Country of ref document: EP

Kind code of ref document: A1