WO2021243817A1 - 导热无卤阻燃聚氨酯弹性体及其制备方法 - Google Patents

导热无卤阻燃聚氨酯弹性体及其制备方法 Download PDF

Info

Publication number
WO2021243817A1
WO2021243817A1 PCT/CN2020/102539 CN2020102539W WO2021243817A1 WO 2021243817 A1 WO2021243817 A1 WO 2021243817A1 CN 2020102539 W CN2020102539 W CN 2020102539W WO 2021243817 A1 WO2021243817 A1 WO 2021243817A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
polyurethane elastomer
halogen
flame
thermally conductive
Prior art date
Application number
PCT/CN2020/102539
Other languages
English (en)
French (fr)
Inventor
陈海良
孙志强
李涛
曹士强
Original Assignee
山东一诺威聚氨酯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东一诺威聚氨酯股份有限公司 filed Critical 山东一诺威聚氨酯股份有限公司
Publication of WO2021243817A1 publication Critical patent/WO2021243817A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6685Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3237Polyamines aromatic
    • C08G18/324Polyamines aromatic containing only one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4808Mixtures of two or more polyetherdiols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4812Mixtures of polyetherdiols with polyetherpolyols having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4829Polyethers containing at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/22Halogen free composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts

Definitions

  • the invention belongs to the technical field of polyurethane products, and specifically relates to a thermally conductive halogen-free flame-retardant polyurethane elastomer and a preparation method thereof.
  • Polyurethane elastomer has entered various areas of life with its excellent performance since its advent.
  • Polyurethane potting glue as a compound special potting material, has more and more characteristics due to its moderate hardness, good elasticity, insulation, mildew resistance, shock resistance, corrosion resistance, high and low temperature impact resistance, high temperature and humidity resistance, flame retardancy, and thermal conductivity. It is applied to equipment and places that require insulation, flame retardancy, heat conduction and moisture resistance, such as electrical potting, battery packaging, circuit board packaging and assembly.
  • Polyurethane potting glue can reduce the influence of external environmental conditions on components after curing through the potting process, ensure that the lithium battery and its supporting components operate well under standard working environments, and improve their stability and service life.
  • Polyurethane potting glue can be cured at room temperature, avoiding the damage and performance degradation of electronic and electrical parts caused by temperature rise during heating and curing. Since potting and curing at room temperature does not require huge heating and curing equipment, it is an ideal potting material for the lithium battery industry.
  • the thermal conductivity and flame retardancy of the potting compound are directly related to the safety of the entire lithium battery assembly.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the prior art and provide a thermally conductive halogen-free flame-retardant polyurethane elastomer, which has a V0 flame-retardant grade, is environmentally friendly and does not contain halogen, and has excellent thermal conductivity; the present invention also The preparation method is provided, which is scientific, reasonable, simple and easy to implement.
  • the thermally conductive halogen-free flame-retardant polyurethane elastomer of the present invention is made of component A and component B, and the mass ratio of component A to component B is 100:90-110, wherein, in weight percentage,
  • the polyoxypropylene ether polyol is one or more of polyoxypropylene polyols with a functionality of 2 or 3 and a number average molecular weight of 1000-6000;
  • the polytetrahydrofuran ether polyol is one or more of PTMG650, PTMG1000 or PTMG2000 with a sub-weight ranging from 650 to 2000.
  • the diisocyanate is 4,4'-diphenylmethane diisocyanate (MDI-100), modified liquefied 4,4'-diphenylmethane diisocyanate (liquefied MDI), H12MDI, IPDI or toluene diisocyanate One or more of (TDI).
  • the plasticizer is dioctyl phthalate (DOTP), butyl benzyl phthalate (BBP), dimethyl ethylene glycol phthalate (DMEP), and dioctyl terephthalate.
  • DBP dioctyl phthalate
  • BBP butyl benzyl phthalate
  • DMEP dimethyl ethylene glycol phthalate
  • dioctyl terephthalate One or more of ester, dipropylene glycol dibenzoate, diethylene glycol dibenzoate, or BenzoflexTM 9-88SG, preferably dioctyl phthalate.
  • the content of the diisocyanate can be reasonably adjusted within the above range according to actual needs, such as 35%, 40%, 45%, etc.; the content of the polyoxypropylene ether polyol in the A component can be adjusted according to It needs to be adjusted reasonably within the above range, such as 25%, 30%, 35%, etc.; the content of the polytetrahydrofuran ether polyol in the above component A can be reasonably adjusted within the above range as required, for example, 25%, 30%, 35%, etc.; the content of the plasticizer in the above component A can be reasonably adjusted within the above range as required, for example, it can be 15%, 20%, etc.; the above reaction temperature can be adjusted according to the reaction The situation is adjusted within the above range, and it can also be 79°C, 83°C, 85°C, and so on.
  • the amine chain extender is one or more of 3,5-dimethylthiotoluenediamine, MCDEA, 740M, E100 or P1000, preferably E100.
  • the vegetable oil polyol is one or more of castor oil, palm oil or soybean oil, preferably castor oil.
  • the flame retardant is one or more of IPPP, TCP or RDP.
  • the thermally conductive filler is one or more of boron nitride, aluminum nitride, aluminum oxide, magnesium oxide or silicon powder, preferably aluminum nitride.
  • the catalyst is one or more of organic bismuth, organic zinc or organic zirconium, preferably organic bismuth catalysts.
  • the anti-aging agent is one or more of 1076, 770, 292 or UV-1, preferably UV-1.
  • the method for preparing the thermally conductive halogen-free flame-retardant polyurethane elastomer of the present invention has the following steps:
  • Component A The polyoxypropylene ether polyol, polytetrahydrofuran ether polyol, diisocyanate and plasticizer are reacted at 75 ⁇ 85°C for 2 ⁇ 3 hours to obtain a preform with an isocyanate content of 8.0 ⁇ 12.0% Polymer, that is, component A;
  • Component B After mixing amine chain extender, polyoxypropylene ether polyol, vegetable oil polyol, flame retardant, thermal conductive filler, catalyst and anti-aging agent, at 100 ⁇ 110°C, -0.095 Vacuum dehydration below MPa until the moisture content is less than 0.05% to obtain component B;
  • the polyurethane elastomer prepared by the invention can be used in equipment and places that require insulation, flame retardancy, heat conduction, moisture resistance, etc., such as electrical potting, battery packaging, circuit board packaging and assembly.
  • the present invention has the following beneficial effects:
  • the thermally conductive halogen-free flame-retardant polyurethane elastomer of the present invention reaches the V0 flame-retardant level, the product is environmentally friendly and contains no halogen elements, and the thermal conductivity is greater than 0.3W/mK. It has broad applications in the lithium battery potting industry prospect.
  • the thermally conductive, halogen-free, flame-retardant polyurethane elastomer of the present invention has a fast product molding speed, a moderate operating time, and the production speed can be adjusted according to needs.
  • EP-3600 Polyoxypropylene ether polyol, functionality 3, molecular weight 6000;
  • PTMG1000 Polytetrahydrofuran ether polyol, functionality 2, molecular weight 1000;
  • PTMG650 Polytetrahydrofuran ether polyol, functionality 2, molecular weight 650;
  • CD-C carbodiimide modified MDI CD-C carbodiimide modified MDI
  • DOTP Environmental protection plasticizer dioctyl phthalate
  • IPPP50 Halogen-free flame retardant, triisopropylphenyl phosphate
  • Soybean oil vegetable oil polyol Soybean oil vegetable oil polyol
  • the raw materials used in the examples are all commercially available materials except those already described above.
  • Component A Calculated by weight percentage, DL-1000 8%, PTMG650 21%, MDI-100 32.2%, CD-C 13.8%, DOTP 25%, reacted at 80°C for 2.5 hours to obtain an isocyanate content of 12.0% ⁇ prepolymer;
  • B component Calculated by weight percentage, E100 20%, EP-3600 20%, castor oil 20.2%, IPPP50 34%, aluminum nitride 5%, CH-07 0.3%, UV-1 0.5%, at 105°C, -Vacuum dehydration below 0.095MPa until the moisture content is less than 0.05% to obtain component B;
  • a component and B component are in a mass ratio of 100:100, and the mixing temperature is 35°C. After mixing, they are poured into a mold at a temperature of 30°C for reaction. After curing at room temperature, a polyurethane elastomer product is obtained. Standby test.
  • Component A Calculated by weight percentage, DL-1000 8%, PTMG650 21%, MDI-100 32.2%, CD-C 13.8%, DOTP 25%, react at 75°C for 3 hours to obtain an isocyanate content of 12.0% ⁇ prepolymer;
  • B component Calculated by weight percentage, E100 20%, DL-2000 52.7%, castor oil 10%, RDP 11%, aluminum nitride 5%, CH-07 0.3%, UV-1 1.0%, at 100°C, -Vacuum dehydration below 0.095MPa until the moisture content is less than 0.05% to obtain component B;
  • a component and B component are in a mass ratio of 100:100, and the mixing temperature is 30°C. After mixing, they are poured into a mold at a temperature of 30°C for reaction, and cured at room temperature to obtain a polyurethane elastomer product Standby test.
  • Component A Calculated by weight percentage, DL-1000 12%, PTMG650 32%, MDI-100 35.7%, CD-C 15.3%, DOTP 5%, react at 85°C for 2 hours to obtain an isocyanate content of 12.0% ⁇ prepolymer;
  • B component Calculated by weight percentage, E100 20%, EP-3600 20%, castor oil 20.2%, IPPP50 34%, aluminum nitride 5%, CH-07 0.3%, UV-1 0.5%, at 110°C, -Vacuum dehydration below 0.095MPa until the moisture content is less than 0.05% to obtain component B;
  • a component and B component are in a mass ratio of 100:100, and the mixing temperature is 35°C. After mixing, they are poured into a mold at a temperature of 30°C for reaction. After curing at room temperature, a polyurethane elastomer product is obtained. Standby test.
  • Component A Calculated by weight percentage, DL-1000 12%, PTMG650 32%, MDI-100 35.7%, CD-C 15.3%, DOTP 5%, reacted at 80°C for 2.5 hours to obtain an isocyanate content of 12.0% ⁇ prepolymer;
  • B component Calculated by weight percentage, E100 20%, DL-2000 53.2%, castor oil 10%, RDP 11%, aluminum nitride 5%, CH-07 0.3%, UV-1 0.5%, at 105°C, -Vacuum dehydration below 0.095MPa until the moisture content is less than 0.05% to obtain component B;
  • a component and B component are in a mass ratio of 100:100, and the mixing temperature is 35°C. After mixing, they are poured into a mold at a temperature of 30°C for reaction. After curing at room temperature, a polyurethane elastomer product is obtained. Standby test.
  • Component A Calculated by weight percentage, EP-3600 24%, PTMG2000 12%, MDI-100 27.3%, CD-C 11.7%, DOTP 25%, react at 85°C for 2 hours to obtain an isocyanate content of 12.0% ⁇ prepolymer;
  • B component Calculated by weight percentage, E100 20%, EP-3600 20%, castor oil 20.2%, IPPP50 34%, aluminum nitride 5%, CH-07 0.3%, UV-1 0.5%, at 100°C, -Vacuum dehydration below 0.095MPa until the moisture content is less than 0.05% to obtain component B;
  • a component and B component are in a mass ratio of 100:100, and the mixing temperature is 30°C. After mixing, they are poured into a mold at a temperature of 30°C for reaction, and cured at room temperature to obtain a polyurethane elastomer product Standby test.
  • Component A Calculated by weight percentage, EP-3600 24%, PTMG2000 12%, MDI-100 27.3%, CD-C 11.7%, DOTP 25%, react at 75°C for 3 hours to obtain an isocyanate content of 12.0 % Of prepolymer;
  • B component Calculated by weight percentage, E100 20%, DL-2000 53.2%, castor oil 10%, RDP 11%, aluminum nitride 5%, CH-07 0.3%, UV-1 0.5%, at 110°C, -Vacuum dehydration below 0.095MPa until the moisture content is less than 0.05% to obtain component B;
  • a component and B component are in a mass ratio of 100:100, and the mixing temperature is 35°C. After mixing, they are poured into a mold at a temperature of 30°C for reaction. After curing at room temperature, a polyurethane elastomer product is obtained. Standby test.
  • Component A In terms of weight percentage, EP3600 37%, PTMG2000 18%, MDI-100 28%, CD-C 12%, DOTP 5%, reacted at 80°C for 2.5 hours to obtain a pre-isocyanate content of 12.0% Polymer
  • B component Calculated by weight percentage, E100 20%, EP-3600 20%, castor oil 20.2%, IPPP50 34%, aluminum nitride 5%, CH-07 0.3%, UV-1 0.5%, at 105°C, -Vacuum dehydration below 0.095MPa until the moisture content is less than 0.05% to obtain component B;
  • a component and B component are in a mass ratio of 100:100, and the mixing temperature is 35°C. After mixing, they are poured into a mold at a temperature of 30°C for reaction. After curing at room temperature, a polyurethane elastomer product is obtained. Standby test.
  • Component A In terms of weight percentage, EP3600 37%, PTMG2000 18%, MDI-100 28%, CD-C 12%, DOTP 5%, reacted at 80°C for 2.5 hours to obtain a pre-isocyanate content of 12.0% Polymer
  • B component Calculated by weight percentage, E100 20%, DL-2000 53%, castor oil 10%, RDP 11%, aluminum nitride 5%, CH-07 0.5%, UV-1 0.5%, at 105°C, -Vacuum dehydration below 0.095MPa until the moisture content is less than 0.05% to obtain component B;
  • a component and B component are in a mass ratio of 100:100, and the mixing temperature is 30°C. After mixing, they are poured into a mold at a temperature of 30°C for reaction, and cured at room temperature to obtain a polyurethane elastomer product Standby test.
  • Component A Calculated by weight percentage, DL-1000 14%, PTMG650 39%, MDI-100 29.4%, CD-C 12.6%, DOTP 5%, react at 80°C for 2.5 hours to obtain an isocyanate content of 8.0% ⁇ prepolymer;
  • B component in weight percentage, E100 9%, EP-3600 34.2%, castor oil 30%, RDP 11%, aluminum nitride 15%, CH-07 0.3%, UV-1 0.5%, at 110°C, -Vacuum dehydration below 0.095MPa until the moisture content is less than 0.05% to obtain component B;
  • a component and B component are in a mass ratio of 100:100, and the mixing temperature is 35°C. After mixing, they are poured into a mold at a temperature of 30°C for reaction. After curing at room temperature, a polyurethane elastomer product is obtained. Standby test.
  • Component A Calculated by weight percentage, DL-1000 10%, PTMG1000 19.6%, PTMG2000 8.4%, MDI-10025.9%, CD-C 11.1%, DOTP 25%, react at 75°C for 2 hours to obtain the isocyanate content 8.0% prepolymer;
  • B component in weight percentage, E100 9%, EP-3600 34.2%, castor oil 30%, RDP 11%, aluminum nitride 15%, CH-07 0.3%, UV-1 0.5%, at 105°C, -Vacuum dehydration below 0.095MPa until the moisture content is less than 0.05% to obtain component B;
  • a component and B component are in a mass ratio of 100:100, and the mixing temperature is 35°C. After mixing, they are poured into a mold at a temperature of 30°C for reaction. After curing at room temperature, a polyurethane elastomer product is obtained. Standby test.
  • Component A Calculated by weight percentage, DL-1000 10.6%, PTMG650 28.8%, MDI-100 28.4%, CD-C 12.2%, DOTP 20%, react at 85°C for 2 hours to obtain an isocyanate content of 9.0% ⁇ prepolymer;
  • B component Calculated by weight percentage, E100 5%, DL-1000 68.2%, castor oil 10%, RDP 11%, aluminum nitride 5%, CH-07 0.3%, UV-1 0.5%, at 110°C, -Vacuum dehydration below 0.095MPa until the moisture content is less than 0.05% to obtain component B;
  • a component and B component are in a mass ratio of 100:110, and the mixing temperature is 30°C. After mixing, they are poured into a mold at a temperature of 30°C for reaction. After curing at room temperature, a polyurethane elastomer product is obtained. Standby test.
  • Component A Calculated by weight percentage, EP-3600 22%, PTMG2000 11%, MDI-100 29.4%, CD-C 12.6%, DOTP 25%, reacted at 80°C for 2.5 hours to obtain an isocyanate content of 8.0% ⁇ prepolymer;
  • B component in weight percentage, E100 5%, DL-1000 68.2%, castor oil 10%, RDP 11%, aluminum nitride 5%, CH-07 0.3%, UV-1 0.5%, at 100°C, -Vacuum dehydration below 0.095MPa until the moisture content is less than 0.05% to obtain component B;
  • a component and B component are in a mass ratio of 100:100, and the mixing temperature is 30°C. After mixing, they are poured into a mold at a temperature of 30°C for reaction, and cured at room temperature to obtain a polyurethane elastomer product Standby test.
  • Component A Calculated by weight percentage, DL-1000 32%, EP-3600 12%, PTMG2000 14%, MDI-100 20.3%, CD-C 16.7%, DOTP 5%, react at 80°C for 2.5 hours to obtain A prepolymer with a cyanate content of 8.0%;
  • B component Calculated by weight percentage, E100 5%, DL-1000 68.4%, soybean oil 10%, RDP 11%, aluminum nitride 5%, CH-07 0.1%, UV-1 0.5%, at 110°C, -Vacuum dehydration below 0.095MPa until the moisture content is less than 0.05% to obtain component B;
  • a component and B component are in a mass ratio of 100:90, and the mixing temperature is 35°C. After mixing, they are poured into a mold at a temperature of 30°C for reaction. After curing at room temperature, a polyurethane elastomer product is obtained. Standby test.
  • the hardness is measured according to the GB/T 531.1-2008 standard.
  • Viscosity is measured according to GB/T 12008.8-1992 standard;
  • the thermal conductivity is tested in accordance with the GB/T 3139-2005 standard.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明属于聚氨酯制品技术领域,具体涉及一种导热无卤阻燃聚氨酯弹性体及其制备方法。所述的聚氨酯弹性体,由A组分和B组分制成,A组分与B组分的质量比为100:90~110;将聚氧化丙烯醚多元醇、聚四氢呋喃醚多元醇、二异氰酸酯和增塑剂在75~85℃反应2~3小时,制得的异氰酸根含量为8.0~12.0%的预聚物,即为A组分;将胺类扩链剂、聚氧化丙烯醚多元醇、植物油类多元醇、阻燃剂、导热填料、催化剂和抗老化剂混合均匀后,在100~110℃下真空脱水,制得B组分。本发明制备的聚氨酯弹性体具有V0级阻燃等级,环保不含卤素,并具有优异的导热特性;其制备方法,科学合理、简单易行。

Description

导热无卤阻燃聚氨酯弹性体及其制备方法 技术领域
本发明属于聚氨酯制品技术领域,具体涉及一种导热无卤阻燃聚氨酯弹性体及其制备方法。
背景技术
聚氨酯弹性体自其问世后凭借其优异的性能进入到生活中各大领域中。聚氨酯灌封胶作为复合型特殊灌封材料,由于其硬度适中、弹性好、绝缘、防霉、防震、防腐蚀、耐高低温冲击、耐高温高湿、阻燃、导热等特性越来越多的应用到电器灌封、电池封装、电路板封装和组装等要求绝缘、阻燃、导热和防潮等要求的设备和场所。聚氨酯灌封胶通过灌封工艺固化后可以减少元器件受外界环境条件影响,确保锂电池及其配套元器件在标准工作环境下良好运行,提高其稳定性与使用寿命。聚氨酯灌封胶可室温固化,避免了由于在加热固化中温度上升造成电子电器零部件的损坏及性能下降。由于室温下灌封固化,不需要庞大的加热固化设备,因而,它是锂电池行业理想的灌封材料。
但由于其链段中含有大量的碳氢键,遇到明火会持续燃烧,所以普通的聚氨酯弹性体不具有自熄性,因此,为了达到一定的阻燃要求,必须添加合适的阻燃剂才能提升聚氨酯弹性体的阻燃等级。卤素阻燃剂作为产量最大的传统阻燃剂,具有阻燃效果好、价格便宜的特点,然而由于其在使用时具有烟雾量大、分解产物毒性大等弊端,正逐步被无卤阻燃剂取代。由于锂电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加安全隐患,因此,灌封胶的导热、阻燃性能直接关系到整个锂电池组件的安全。
发明内容
本发明要解决的技术问题是:克服现有技术的不足,提供一种导热无卤阻燃聚氨酯弹性体,具有V0级阻燃等级,环保不含卤素,并具有优异的导热特性;本发明同时提供其制备方法,科学合理、简单易行。
本发明所述的导热无卤阻燃聚氨酯弹性体,由A组分和B组分制成,A组分与B组分的质量比为100:90~110,其中,以重量百分数计,
A组分:
Figure PCTCN2020102539-appb-000001
Figure PCTCN2020102539-appb-000002
B组分:
Figure PCTCN2020102539-appb-000003
所述的聚氧化丙烯醚多元醇为官能度为2或3,数均分子量在1000~6000的聚氧化丙烯多元醇中的一种或几种;
所述的聚四氢呋喃醚多元醇为子量650~2000范围内的PTMG650、PTMG1000或PTMG2000中的一种或几种。
所述的二异氰酸酯为4,4’-二苯基甲烷二异氰酸酯(MDI-100)、改性的液化4,4’-二苯基甲烷二异氰酸酯(液化MDI)、H12MDI、IPDI或甲苯二异氰酸酯(TDI)中的一种或几种。
所述的增塑剂为邻苯二甲酸二辛酯(DOTP)、邻苯二甲酸丁苄酯(BBP)、邻苯二甲酸二甲基乙二醇酯(DMEP)、对苯二甲酸二辛酯、二丙二醇二苯甲酸酯、二甘醇二苯甲酸酯或BenzoflexTM 9-88SG中的一种或几种,优选邻苯二甲酸二辛酯。
所述的二异氰酸酯的含量可根据实际需要在上述范围内进行合理地调整,如还可以为35%、40%、45%等;上述A组分中的聚氧化丙烯醚多元醇的含量可根据需要在上述范围内进行合理地调整,例如可以为25%、30%、35%等;上述A组分中的聚四氢呋喃醚多元醇的含量可根据需要在上述范围内进行合理地调整,例如可以为25%、30%、35%等;上述A组分中的增塑剂的含量可根据需要在上述范围内进行合理地调整,例如可以为15%、20%等;上述反应温度可根据反应情况在上述范围内进行调整,还可以为79℃、83℃、85℃等。
所述的胺类扩链剂为3,5-二甲硫基甲苯二胺、MCDEA、740M、E100或P1000中的一种或几种,优选E100。
所述的植物油类多元醇为蓖麻油、棕榈油或大豆油中的一种或几种,优选蓖麻油。
所述的阻燃剂为IPPP、TCP或RDP中的一种或几种。
所述的导热填料为氮化硼、氮化铝、氧化铝、氧化镁或硅微粉中的一种或几种,优选氮化铝。
所述的催化剂为有机铋、有机锌或有机锆中的一种或几种,优选有机铋类催化剂。
所述的抗老化剂为1076、770、292或UV-1中的一种或几种,优选UV-1。
本发明所述的导热无卤阻燃聚氨酯弹性体的制备方法,步骤如下:
(1)A组分:将聚氧化丙烯醚多元醇、聚四氢呋喃醚多元醇、二异氰酸酯和增塑剂在75~85℃反应2~3小时,得到异氰酸根含量为8.0~12.0%的预聚物,即得A组分;
(2)B组分:将胺类扩链剂、聚氧化丙烯醚多元醇、植物油类多元醇、阻燃剂、导热填料、催化剂和抗老化剂混合均匀后,在100~110℃,-0.095MPa以下真空脱水至水分小于0.05%,得到B组分;
(3)将A组分和B组分在30~35℃下混合均匀,混合后的粘度在800~1500CPS,浇注到温度为30℃的模具中反应,可操作时间在5~25分钟之间,室温固化后,得到邵A硬度55~95聚氨酯弹性体制品。
本发明制备的聚氨酯弹性体可以用于电器灌封、电池封装、电路板封装和组装等要求绝缘、阻燃、导热和防潮等要求的设备和场所。
与现有技术相比,本发明有益效果如下:
(1)本发明所述的导热无卤阻燃聚氨酯弹性体,达到V0级阻燃等级、产品环保不含卤元素,导热系数大于0.3W/m.K,在锂电池灌封行业中具有广阔的应用前景。
(2)本发明所述的导热无卤阻燃聚氨酯弹性体,产品的成型速度快,可操作时间适中,可根据需要调整生产速度。
(3)本发明的制备方法,科学合理、简单易行。
具体实施方式
以下结合实施例对本发明做进一步描述,但其并不限制本发明的实施。
实施例中所用材料,说明如下:
DL-2000       聚氧化丙烯醚多元醇,官能度2,分子量2000;
DL-1000       聚氧化丙烯醚多元醇,官能度2,分子量1000;
EP-3600       聚氧化丙烯醚多元醇,官能度3,分子量6000;
PTMG1000      聚四氢呋喃醚多元醇,官能度2,分子量1000;
PTMG2000      聚四氢呋喃醚多元醇,官能度2,分子量2000;
PTMG650       聚四氢呋喃醚多元醇,官能度2,分子量650;
MDI-100        4,4'-二苯基甲烷二异氰酸酯;
CD-C           碳化二亚胺改性MDI;
DOTP           环保增塑剂,邻苯二甲酸二辛酯;
IPPP50         无卤阻燃剂,磷酸三异丙基苯酯;
RDP            无卤阻燃剂;
蓖麻油         植物油类多元醇;
大豆油         植物油类多元醇;
氮化铝         粉体导热填料;
CH-07          环保有机铋催化剂;
E100           DETDA,二乙基甲苯二胺;
UV-1           抗氧化剂。
实施例中采用的原料除上述已经说明的,均为市售材料。
实施例1
A组分:以重量百分数计,DL-1000 8%,PTMG650 21%,MDI-100 32.2%,CD-C 13.8%,DOTP 25%,在80℃反应2.5小时,得到异氰酸根含量为12.0%的预聚物;
B组分:以重量百分数计,E100 20%,EP-3600 20%,蓖麻油20.2%,IPPP50 34%,氮化铝5%,CH-07 0.3%,UV-1 0.5%,在105℃,-0.095MPa以下真空脱水至水分小于0.05%,得到B组分;
聚氨酯弹性体的制作:A组份和B组分按照质量配比在100:100,混合温度在35℃,混合后浇注到温度为30℃的模具中反应,室温固化后,得到聚氨酯弹性体制品备用测试。
实施例2
A组分:以重量百分数计,DL-1000 8%,PTMG650 21%,MDI-100 32.2%,CD-C 13.8%,DOTP 25%,在75℃反应3小时,得到异氰酸根含量为12.0%的预聚物;
B组分:以重量百分数计,E100 20%,DL-2000 52.7%,蓖麻油10%,RDP 11%,氮化铝5%,CH-07 0.3%,UV-1 1.0%,在100℃,-0.095MPa以下真空脱水至水分小于0.05%,得到B组分;
聚氨酯弹性体的制作:A组份和B组分按照质量配比在100:100,混合温度在30℃,混合后浇注到温度为30℃的模具中反应,室温固化后,得到聚氨酯弹性体制品备用测试。
实施例3
A组分:以重量百分数计,DL-1000 12%,PTMG650 32%,MDI-100 35.7%,CD-C 15.3%, DOTP 5%,在85℃反应2小时,得到异氰酸根含量为12.0%的预聚物;
B组分:以重量百分数计,E100 20%,EP-3600 20%,蓖麻油20.2%,IPPP50 34%,氮化铝5%,CH-07 0.3%,UV-1 0.5%,在110℃,-0.095MPa以下真空脱水至水分小于0.05%,得到B组分;
聚氨酯弹性体的制作:A组份和B组分按照质量配比在100:100,混合温度在35℃,混合后浇注到温度为30℃的模具中反应,室温固化后,得到聚氨酯弹性体制品备用测试。
实施例4
A组分:以重量百分数计,DL-1000 12%,PTMG650 32%,MDI-100 35.7%,CD-C 15.3%,DOTP 5%,在80℃反应2.5小时,得到异氰酸根含量为12.0%的预聚物;
B组分:以重量百分数计,E100 20%,DL-2000 53.2%,蓖麻油10%,RDP 11%,氮化铝5%,CH-07 0.3%,UV-1 0.5%,在105℃,-0.095MPa以下真空脱水至水分小于0.05%,得到B组分;
聚氨酯弹性体的制作:A组份和B组分按照质量配比在100:100,混合温度在35℃,混合后浇注到温度为30℃的模具中反应,室温固化后,得到聚氨酯弹性体制品备用测试。
实施例5
A组分:以重量百分数计,EP-3600 24%,PTMG2000 12%,MDI-100 27.3%,CD-C 11.7%,DOTP 25%,在85℃反应2小时,得到异氰酸根含量为12.0%的预聚物;
B组分:以重量百分数计,E100 20%,EP-3600 20%,蓖麻油20.2%,IPPP50 34%,氮化铝5%,CH-07 0.3%,UV-1 0.5%,在100℃,-0.095MPa以下真空脱水至水分小于0.05%,得到B组分;
聚氨酯弹性体的制作:A组份和B组分按照质量配比在100:100,混合温度在30℃,混合后浇注到温度为30℃的模具中反应,室温固化后,得到聚氨酯弹性体制品备用测试。
实施例6
A组分:以重量百分数计,EP-3600 24%,PTMG2000 12%,MDI-100 27.3%,CD-C 11.7%,DOTP 25%,在75℃℃反应3小时,得到异氰酸根含量为12.0%的预聚物;
B组分:以重量百分数计,E100 20%,DL-2000 53.2%,蓖麻油10%,RDP 11%,氮化铝5%,CH-07 0.3%,UV-1 0.5%,在110℃,-0.095MPa以下真空脱水至水分小于0.05%,得到B组分;
聚氨酯弹性体的制作:A组份和B组分按照质量配比在100:100,混合温度在35℃,混合后浇注到温度为30℃的模具中反应,室温固化后,得到聚氨酯弹性体制品备用测试。
实施例7
A组分:以重量百分数计,EP3600 37%,PTMG2000 18%,MDI-100 28%,CD-C 12%,DOTP 5%,在80℃反应2.5小时,得到异氰酸根含量为12.0%的预聚物;
B组分:以重量百分数计,E100 20%,EP-3600 20%,蓖麻油20.2%,IPPP50 34%,氮化铝5%,CH-07 0.3%,UV-1 0.5%,在105℃,-0.095MPa以下真空脱水至水分小于0.05%,得到B组分;
聚氨酯弹性体的制作:A组份和B组分按照质量配比在100:100,混合温度在35℃,混合后浇注到温度为30℃的模具中反应,室温固化后,得到聚氨酯弹性体制品备用测试。
实施例8
A组分:以重量百分数计,EP3600 37%,PTMG2000 18%,MDI-100 28%,CD-C 12%,DOTP 5%,在80℃反应2.5小时,得到异氰酸根含量为12.0%的预聚物;
B组分:以重量百分数计,E100 20%,DL-2000 53%,蓖麻油10%,RDP 11%,氮化铝5%,CH-07 0.5%,UV-1 0.5%,在105℃,-0.095MPa以下真空脱水至水分小于0.05%,得到B组分;
聚氨酯弹性体的制作:A组份和B组分按照质量配比在100:100,混合温度在30℃,混合后浇注到温度为30℃的模具中反应,室温固化后,得到聚氨酯弹性体制品备用测试。
实施例9
A组分:以重量百分数计,DL-1000 14%,PTMG650 39%,MDI-100 29.4%,CD-C 12.6%,DOTP 5%,在80℃反应2.5小时,得到异氰酸根含量为8.0%的预聚物;
B组分:以重量百分数计,E100 9%,EP-3600 34.2%、蓖麻油30%,RDP 11%,氮化铝15%,CH-07 0.3%,UV-1 0.5%,在110℃,-0.095MPa以下真空脱水至水分小于0.05%,得到B组分;
聚氨酯弹性体的制作:A组份和B组分按照质量配比在100:100,混合温度在35℃,混合后浇注到温度为30℃的模具中反应,室温固化后,得到聚氨酯弹性体制品备用测试。
实施例10
A组分:以重量百分数计,DL-1000 10%,PTMG1000 19.6%,PTMG2000 8.4%,MDI-10025.9%,CD-C 11.1%,DOTP 25%,在75℃反应2小时,得到异氰酸根含量为8.0%的预聚物;
B组分:以重量百分数计,E100 9%,EP-3600 34.2%,蓖麻油30%,RDP 11%,氮化铝15%,CH-07 0.3%,UV-1 0.5%,在105℃,-0.095MPa以下真空脱水至水分小于0.05%,得到B组分;
聚氨酯弹性体的制作:A组份和B组分按照质量配比在100:100,混合温度在35℃,混合后浇注到温度为30℃的模具中反应,室温固化后,得到聚氨酯弹性体制品备用测试。
实施例11
A组分:以重量百分数计,DL-1000 10.6%,PTMG650 28.8%,MDI-100 28.4%,CD-C 12.2%,DOTP 20%,在85℃反应2小时,得到异氰酸根含量为9.0%的预聚物;
B组分:以重量百分数计,E100 5%,DL-1000 68.2%,蓖麻油10%,RDP 11%,氮化铝5%,CH-07 0.3%,UV-1 0.5%,在110℃,-0.095MPa以下真空脱水至水分小于0.05%,得到B组分;
聚氨酯弹性体的制作:A组份和B组分按照质量配比在100:110,混合温度在30℃,混合后浇注到温度为30℃的模具中反应,室温固化后,得到聚氨酯弹性体制品备用测试。
实施例12
A组分:以重量百分数计,EP-3600 22%,PTMG2000 11%,MDI-100 29.4%,CD-C 12.6%,DOTP 25%,在80℃反应2.5小时,得到异氰酸根含量为8.0%的预聚物;
B组分:以重量百分数计,E100 5%,DL-1000 68.2%,蓖麻油10%,RDP 11%,氮化铝5%,CH-07 0.3%,UV-1 0.5%,在100℃,-0.095MPa以下真空脱水至水分小于0.05%,得到B组分;
聚氨酯弹性体的制作:A组份和B组分按照质量配比在100:100,混合温度在30℃,混合后浇注到温度为30℃的模具中反应,室温固化后,得到聚氨酯弹性体制品备用测试。
实施例13
A组分:以重量百分数计,DL-1000 32%,EP-3600 12%,PTMG2000 14%,MDI-100 20.3%,CD-C 16.7%,DOTP 5%,在80℃反应2.5小时,得到异氰酸根含量为8.0%的预聚物;
B组分:以重量百分数计,E100 5%,DL-1000 68.4%,大豆油10%,RDP 11%,氮化铝5%,CH-07 0.1%,UV-1 0.5%,在110℃,-0.095MPa以下真空脱水至水分小于0.05%,得到B组分;
聚氨酯弹性体的制作:A组份和B组分按照质量配比在100:90,混合温度在35℃,混合后浇注到温度为30℃的模具中反应,室温固化后,得到聚氨酯弹性体制品备用测试。
以上实施例制得的弹性体按照以下标准进行测试:
硬度按GB/T 531.1-2008标准测定;
粘度按照GB/T 12008.8-1992标准测定;
凝胶时间使用秒表进行测试;
阻燃等级按照UL-94标准测试;
导热系数按照GB/T 3139-2005标准进行测试。
表1 实施例测试结果
Figure PCTCN2020102539-appb-000004

Claims (10)

  1. 一种导热无卤阻燃聚氨酯弹性体,其特征在于:由A组分和B组分制成,A组分与B组分的质量比为100:90~110,其中,以重量百分数计,
    A组分:
    Figure PCTCN2020102539-appb-100001
    B组分:
    Figure PCTCN2020102539-appb-100002
    所述的聚氧化丙烯醚多元醇为官能度为2或3,数均分子量在1000~6000的聚氧化丙烯多元醇;
    所述的聚四氢呋喃醚多元醇为PTMG650、PTMG1000或PTMG2000中的一种或几种。
  2. 根据权利要求1所述的导热无卤阻燃聚氨酯弹性体,其特征在于:所述的二异氰酸酯为MDI-100、液化MDI、H12MDI、IPDI或TDI中的一种或几种。
  3. 根据权利要求1所述的导热无卤阻燃聚氨酯弹性体,其特征在于:所述的增塑剂为邻苯二甲酸二辛酯、邻苯二甲酸丁苄酯、邻苯二甲酸二甲基乙二醇酯、对苯二甲酸二辛酯、二丙二醇二苯甲酸酯、二甘醇二苯甲酸酯或BenzoflexTM 9-88SG中的一种或几种。
  4. 根据权利要求1所述的导热无卤阻燃聚氨酯弹性体,其特征在于:所述的胺类扩链剂为3,5-二甲硫基甲苯二胺、MCDEA、740M、E100或P1000中的一种或几种。
  5. 根据权利要求1所述的导热无卤阻燃聚氨酯弹性体,其特征在于:所述的植物油类多元醇为蓖麻油、棕榈油或大豆油中的一种或几种。
  6. 根据权利要求1所述的导热无卤阻燃聚氨酯弹性体,其特征在于:所述的阻燃剂为IPPP、TCP或RDP中的一种或几种。
  7. 根据权利要求1所述的导热无卤阻燃聚氨酯弹性体,其特征在于:所述的导热填料为氮化硼、氮化铝、氧化铝、氧化镁或硅微粉中的一种或几种。
  8. 根据权利要求1所述的导热无卤阻燃聚氨酯弹性体,其特征在于:所述的催化剂为有机铋、有机锌或有机锆中的一种或几种。
  9. 根据权利要求1所述的导热无卤阻燃聚氨酯弹性体,其特征在于:所述的抗老化剂为1076、770、292或UV-1中的一种或几种。
  10. 一种权利要求1-9任一所述的导热无卤阻燃聚氨酯弹性体的制备方法,其特征在于:步骤如下:
    (1)A组分:将聚氧化丙烯醚多元醇、聚四氢呋喃醚多元醇、二异氰酸酯和增塑剂在75~85℃反应2~3小时,得到异氰酸根含量为8.0~12.0%的预聚物,即得A组分;
    (2)B组分:将胺类扩链剂、聚氧化丙烯醚多元醇、植物油类多元醇、阻燃剂、导热填料、催化剂和抗老化剂混合均匀后,在100~110℃,-0.095MPa以下真空脱水至水分小于0.05%,得到B组分;
    (3)将A组分和B组分在30~35℃下混合均匀,浇注到模具中,固化,得聚氨酯弹性体制品。
PCT/CN2020/102539 2020-06-03 2020-07-17 导热无卤阻燃聚氨酯弹性体及其制备方法 WO2021243817A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010494628.7 2020-06-03
CN202010494628.7A CN111848904A (zh) 2020-06-03 2020-06-03 导热无卤阻燃聚氨酯弹性体及其制备方法

Publications (1)

Publication Number Publication Date
WO2021243817A1 true WO2021243817A1 (zh) 2021-12-09

Family

ID=72985629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102539 WO2021243817A1 (zh) 2020-06-03 2020-07-17 导热无卤阻燃聚氨酯弹性体及其制备方法

Country Status (2)

Country Link
CN (1) CN111848904A (zh)
WO (1) WO2021243817A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115785879A (zh) * 2023-02-01 2023-03-14 山东一诺威聚氨酯股份有限公司 阻燃耐高温双组分聚氨酯结构胶
CN117447675A (zh) * 2023-12-25 2024-01-26 山东一诺威聚氨酯股份有限公司 用于电子封装的高导热低介电常数tpu及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113717371B (zh) * 2021-08-30 2023-11-10 山东一诺威新材料有限公司 低粘度反应型阻燃聚醚多元醇的制备方法、反应型阻燃导热聚氨酯电子灌封胶及其制备方法
CN114015002A (zh) * 2021-10-26 2022-02-08 山东一诺威聚氨酯股份有限公司 环保无卤高性能聚氨酯地面材料及其制备方法
CN115057983B (zh) * 2022-08-18 2022-12-13 山东一诺威聚氨酯股份有限公司 Ct滑环用聚氨酯弹性体及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708118A (en) * 1996-10-11 1998-01-13 Arco Chemical Technology, L.P. Spandex elastomers
CN1225103A (zh) * 1996-07-15 1999-08-04 阿科化学技术公司 具有改进物理性能的聚氨酯/脲热固化和湿固化弹性体
CN102942894A (zh) * 2012-11-29 2013-02-27 宜兴市江南药用化工厂 一种双组份低硬度阻燃聚氨酯灌封胶及其制备方法
CN103524698A (zh) * 2013-08-27 2014-01-22 福建瑞森化工有限公司 一种无卤阻燃导热聚氨酯灌封胶及其制备方法
CN105885767A (zh) * 2016-06-24 2016-08-24 绵阳惠利电子材料有限公司 Mdi基聚氨酯电子灌封胶与其制备方法和应用方法
CN110885662A (zh) * 2019-12-16 2020-03-17 山东一诺威聚氨酯股份有限公司 聚氨酯软包电池灌封胶及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1225103A (zh) * 1996-07-15 1999-08-04 阿科化学技术公司 具有改进物理性能的聚氨酯/脲热固化和湿固化弹性体
US5708118A (en) * 1996-10-11 1998-01-13 Arco Chemical Technology, L.P. Spandex elastomers
CN102942894A (zh) * 2012-11-29 2013-02-27 宜兴市江南药用化工厂 一种双组份低硬度阻燃聚氨酯灌封胶及其制备方法
CN103524698A (zh) * 2013-08-27 2014-01-22 福建瑞森化工有限公司 一种无卤阻燃导热聚氨酯灌封胶及其制备方法
CN105885767A (zh) * 2016-06-24 2016-08-24 绵阳惠利电子材料有限公司 Mdi基聚氨酯电子灌封胶与其制备方法和应用方法
CN110885662A (zh) * 2019-12-16 2020-03-17 山东一诺威聚氨酯股份有限公司 聚氨酯软包电池灌封胶及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115785879A (zh) * 2023-02-01 2023-03-14 山东一诺威聚氨酯股份有限公司 阻燃耐高温双组分聚氨酯结构胶
CN117447675A (zh) * 2023-12-25 2024-01-26 山东一诺威聚氨酯股份有限公司 用于电子封装的高导热低介电常数tpu及其制备方法
CN117447675B (zh) * 2023-12-25 2024-04-23 山东一诺威聚氨酯股份有限公司 用于电子封装的高导热低介电常数tpu及其制备方法

Also Published As

Publication number Publication date
CN111848904A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2021243817A1 (zh) 导热无卤阻燃聚氨酯弹性体及其制备方法
CN111849410A (zh) 无卤阻燃导热聚氨酯灌封胶及其制备方法
CN107216846B (zh) 一种低粘度阻燃导热型无溶剂聚氨酯电子灌封胶的制备方法及其使用方法
CN102102006A (zh) 一种双组分聚氨酯灌封胶的制备方法及其制品
CN110698706B (zh) 一种纳米复合材料及其制备方法
CN114196365B (zh) 高硬度高粘结性导热聚氨酯结构胶及其制备方法
CN110885662A (zh) 聚氨酯软包电池灌封胶及其制备方法
CN111607351A (zh) 一种用于新能源车电池的导热聚氨酯灌封胶及其制备方法
CN110028923B (zh) 一种无溶剂双组份聚氨酯灌封胶
CN106883806B (zh) 新能源薄膜电容聚氨酯灌封胶及其制备方法
CN112608708A (zh) 一种聚氨酯导热绝缘胶及其制备方法
CN102504436A (zh) 一种阻燃电缆填充料及其制备方法
CN110938404A (zh) 一种导热结构胶及其制备方法
CN114316878A (zh) 一种聚氨酯灌封胶及其制备方法和用途
CN112321955A (zh) 一种环保型阻燃绝缘橡胶复合材料及其制备方法
CN115260971A (zh) 一种高强度绝缘导热双组份聚氨酯结构胶及其制备方法
KR102279438B1 (ko) 에폭시 수지 조성물 및 이를 포함하는 변압기
CN114276772A (zh) 一种阻燃型聚氨酯胶粘剂及其制备方法
EP3728379B1 (en) Thermally conductive polyurethane adhesive with exceptional combination of mechanical properties
CN101847506A (zh) 一种大功率电抗器的封装方法
CN109181279A (zh) 用于手机护套的导热聚氨酯弹性体及其制备方法
CN106701002B (zh) 一种低硬度低收缩抗老化聚氨酯灌封胶材料
JP2021507067A5 (zh)
CN106701005A (zh) 一种用于与粉体复合的聚氨酯胶水
CN110272709B (zh) 一种透明耐黄变的聚氨酯灌封胶及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939260

Country of ref document: EP

Kind code of ref document: A1