WO2021243551A1 - Techniques for handover or redirection of ue from 4g to 5g (sa) - Google Patents

Techniques for handover or redirection of ue from 4g to 5g (sa) Download PDF

Info

Publication number
WO2021243551A1
WO2021243551A1 PCT/CN2020/093893 CN2020093893W WO2021243551A1 WO 2021243551 A1 WO2021243551 A1 WO 2021243551A1 CN 2020093893 W CN2020093893 W CN 2020093893W WO 2021243551 A1 WO2021243551 A1 WO 2021243551A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
threshold
network
wireless communication
rsrp
Prior art date
Application number
PCT/CN2020/093893
Other languages
French (fr)
Inventor
Ying Wang
Ye Liu
Wulin WANG
Chaofeng HUI
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/093893 priority Critical patent/WO2021243551A1/en
Publication of WO2021243551A1 publication Critical patent/WO2021243551A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/144Reselecting a network or an air interface over a different radio air interface technology
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0022Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies
    • H04W36/00222Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies between different packet switched [PS] network technologies, e.g. transferring data sessions between LTE and WLAN or LTE and 5G

Definitions

  • aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to techniques for handover and redirection of a UE from 4G network service to 5G (SA) network service.
  • SA 5G
  • Certain aspects of the technology discussed below can enable and provide enhanced communication features and techniques for communication systems, including high performance, high reliability, low latency, low complexity, power-efficient device operations, and aiding devices to discover, select, recover, handover, and use network service.
  • Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources.
  • a wireless communication network may include a number of base stations or node Bs that can support communication for a number of user equipments (UEs) .
  • a UE may communicate with a base station via downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the base station to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the base station.
  • a base station may transmit data and control information on the downlink to a UE and/or may receive data and control information on the uplink from the UE.
  • a transmission from the base station may encounter interference due to transmissions from neighbor base stations or from other wireless radio frequency (RF) transmitters.
  • RF radio frequency
  • a transmission from the UE may encounter interference from uplink transmissions of other UEs communicating with the neighbor base stations or from other wireless RF transmitters. This interference may degrade performance on both the downlink and uplink.
  • a method of wireless communication can include determining, by a UE, that a reference signal reference power (RSRP) associated with a second base station is less than a first threshold while the UE is registered in a first wireless communication network associated with a first base station.
  • the method can also include triggering, by the UE, a registration procedure to register the UE in a second wireless communication network associated with the second base station upon determining that the RSRP associated with the second base station is greater than a second threshold.
  • RSRP reference signal reference power
  • an apparatus configured for wireless communication.
  • the apparatus can include means for determining that a RSRP associated with a second base station is less than a first threshold while a UE is registered in a first wireless communication network associated with a first base station.
  • the apparatus can also include means for triggering a registration procedure to register the UE in a second wireless communication network associated with the second base station upon determining that the RSRP associated with the second base station is greater than a second threshold.
  • a non-transitory computer-readable medium having program code recorded thereon is provided.
  • the program code can include program code executable by a computer for causing the computer to determine that a RSRP associated with a second base station is less than a first threshold while a UE is registered in a first wireless communication network associated with a first base station.
  • the program code can also include program code executable by the computer for causing the computer to trigger a registration procedure to register the UE in a second wireless communication network associated with the second base station upon determining that the RSRP associated with the second base station is greater than a second threshold.
  • an apparatus configured for wireless communication.
  • the apparatus includes at least one processor, and a memory coupled to the processor.
  • the at least one processor can be configured to determine that a RSRP associated with a second base station is less than a first threshold while a UE is registered in a first wireless communication network associated with a first base station.
  • the at least one processor can also be configured to trigger a registration procedure to register the UE in a second wireless communication network associated with the second base station upon determining that the RSRP associated with the second base station is greater than a second threshold.
  • FIG. 1 is a block diagram illustrating details of a wireless communication system according to some aspects of the present disclosure.
  • FIG. 2 is a block diagram conceptually illustrating a design of a base station and a UE configured according to some aspects of the present disclosure.
  • FIG. 3 is a block diagram illustrating a method for handover and redirection of a UE from non-5G (SA) network service to 5G (SA) network service according to some aspects of the present disclosure.
  • FIG. 4 is a diagram illustrating operations performed by a UE as part of a handover and redirection procedure from non-5G (SA) network service, e.g., 4G/LTE network service, to 5G(SA) network service according to some aspects of the present disclosure.
  • SA non-5G
  • SA 4G/LTE network service
  • FIG. 5 is a block diagram conceptually illustrating a design of a UE configured according to some aspects of the present disclosure.
  • This disclosure relates generally to providing or participating in communication as between two or more wireless devices in one or more wireless communications systems, also referred to as wireless communications networks.
  • the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, GSM networks, 5 th Generation (5G) or new radio (NR) networks (sometimes referred to as “5G NR” networks/systems/devices) , as well as other communications networks.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single-carrier FDMA
  • LTE long-term evolution
  • GSM Global System for Mobile communications
  • 5G 5 th Generation
  • NR new radio
  • a CDMA network may implement a radio technology such as universal terrestrial radio access (UTRA) , cdma2000, and the like.
  • UTRA includes wideband-CDMA (W-CDMA) and low chip rate (LCR) .
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • a TDMA network may, for example implement a radio technology such as GSM.
  • 3GPP defines standards for the GSM EDGE (enhanced data rates for GSM evolution) radio access network (RAN) , also denoted as GERAN.
  • GERAN is the radio component of GSM/EDGE, together with the network that joins the base stations (for example, the Ater and Abis interfaces) and the base station controllers (A interfaces, etc. ) .
  • the radio access network represents a component of a GSM network, through which phone calls and packet data are routed from and to the public switched telephone network (PSTN) and Internet to and from subscriber handsets, also known as user terminals or user equipments (UEs) .
  • PSTN public switched telephone network
  • UEs subscriber handsets
  • a mobile phone operator's network may comprise one or more GERANs, which may be coupled with Universal Terrestrial Radio Access Networks (UTRANs) in the case of a UMTS/GSM network.
  • UTRANs Universal Terrestrial Radio Access Networks
  • An operator network may also include one or more LTE networks, and/or one or more other networks.
  • the various different network types may use different radio access technologies (RATs) and radio access networks (RANs) .
  • RATs radio access technologies
  • RANs radio access networks
  • An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like.
  • E-UTRA evolved UTRA
  • GSM Global System for Mobile Communications
  • LTE long term evolution
  • UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP)
  • cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP 3rd Generation Partnership Project
  • 3GPP long term evolution LTE
  • UMTS universal mobile telecommunications system
  • the 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices.
  • the present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
  • 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. To achieve these goals, further enhancements to LTE and LTE-A are considered in addition to development of the new radio technology for 5G NR networks.
  • the 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (e.g., ⁇ 1M nodes/km 2 ) , ultra-low complexity (e.g., ⁇ 10s ofbits/sec) , ultra-low energy (e.g., ⁇ 10+years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ⁇ 99.9999%reliability) , ultra-low latency (e.g., ⁇ 1 ms) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ⁇ 10 Tbps/km 2 ) , extreme data rates (e.g., multi-Gbps rate, 100+Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
  • IoTs Internet of things
  • 5G NR devices, networks, and systems may be implemented to use optimized OFDM-based waveform features. These features may include scalable numerology and transmission time intervals (TTIs) ; a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • TTIs transmission time intervals
  • TDD dynamic, low-latency time division duplex
  • FDD frequency division duplex
  • advanced wireless technologies such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • Scalability of the numerology in 5G NR with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments.
  • subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like bandwidth.
  • subcarrier spacing may occur with 30 kHz over 80/100 MHz bandwidth.
  • the subcarrier spacing may occur with 60 kHz over a 160 MHz bandwidth.
  • subcarrier spacing may occur with 120 kHz over a 500MHz bandwidth.
  • the scalable numerology of 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency.
  • QoS quality of service
  • 5G NR also contemplates a self-contained integrated subframe design with uplink/downlink scheduling information, data, and acknowledgement in the same subframe.
  • the self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink/downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
  • LTE terminology may be used as illustrative examples in portions of the description below; however, the description is not intended to be limited to LTE applications.
  • the present disclosure is concerned with shared access to wireless spectrum between networks using different radio access technologies or radio air interfaces, such as those of5G NR.
  • wireless communication networks adapted according to the concepts herein may operate with any combination of licensed or unlicensed spectrum depending on loading and availability. Accordingly, it will be apparent to one of skill in the art that the systems, apparatus and methods described herein may be applied to other communications systems and applications than the particular examples provided.
  • Implementations may range from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregated, distributed, or OEM devices or systems incorporating one or more described aspects.
  • devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described embodiments. It is intended that innovations described herein may be practiced in a wide variety of implementations, including both large/small devices, chip-level components, multi-component systems (e.g. RF-chain, communication interface, processor) , distributed arrangements, end-user devices, etc. of varying sizes, shapes, and constitution.
  • FIG. 1 shows wireless network 100 for communication according to some embodiments.
  • Wireless network 100 may, for example, comprise a 5G wireless network.
  • components appearing in FIG. 1 are likely to have related counterparts in other network arrangements including, for example, cellular-style network arrangements and non-cellular-style-network arrangements (e.g., device to device or peer to peer or ad hoc network arrangements, etc. ) .
  • Wireless network 100 illustrated in FIG. 1 includes a number of base stations 105 and other network entities.
  • a base station may be a station that communicates with the UEs and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like.
  • eNB evolved node B
  • gNB next generation eNB
  • Each base station 105 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to this particular geographic coverage area of a base station and/or a base station subsystem serving the coverage area, depending on the context in which the term is used.
  • base stations 105 may be associated with a same operator or different operators (e.g., wireless network 100 may comprise a plurality of operator wireless networks) , and may provide wireless communications using one or more of the same frequencies (e.g., one or more frequency bands in licensed spectrum, unlicensed spectrum, or a combination thereof) as a neighboring cell.
  • an individual base station 105 or UE 115 may be operated by more than one network operating entity.
  • each base station 105 and UE 115 may be operated by a single network operating entity.
  • a base station may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • a base station for a macro cell may be referred to as a macro base station.
  • a base station for a small cell may be referred to as a small cell base station, a pico base station, a femto base station or a home base station. In the example shown in FIG.
  • base stations 105d and 105e are regular macro base stations, while base stations 105a-105c are macro base stations enabled with one of 3 dimension (3D) , full dimension (FD) , or massive MIMO. Base stations 105a-105c take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity.
  • Base station 105f is a small cell base station which may be a home node or portable access point.
  • a base station may support one or multiple (e.g., two, three, four, and the like) cells.
  • Wireless network 100 may support synchronous or asynchronous operation.
  • the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time.
  • the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
  • networks may be enabled or configured to handle dynamic switching between synchronous or asynchronous operations.
  • UEs 115 are dispersed throughout the wireless network 100, and each UE may be stationary or mobile.
  • a mobile apparatus is commonly referred to as user equipment (UE) in standards and specifications promulgated by the 3rd Generation Partnership Project (3GPP)
  • UE user equipment
  • 3GPP 3rd Generation Partnership Project
  • a mobile station MS
  • subscriber station a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, a gaming device, an augmented reality device, vehicular component device/module, or some other suitable terminology.
  • AT access terminal
  • a “mobile” apparatus or UE need not necessarily have a capability to move, and may be stationary.
  • Some non-limiting examples of a mobile apparatus such as may comprise embodiments of one or more of UEs 115, include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) .
  • a mobile such as may comprise embodiments of one or more of UEs 115, include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) .
  • PDA personal digital assistant
  • a mobile apparatus may additionally be an “Internet of things” (IoT) or “Internet of everything” (IoE) device such as an automotive or other transportation vehicle, a satellite radio, a global positioning system (GPS) device, a logistics controller, a drone, a multi-copter, a quad-copter, a smart energy or security device, a solar panel or solar array, municipal lighting, water, or other infrastructure; industrial automation and enterprise devices; consumer and wearable devices, such as eyewear, a wearable camera, a smart watch, a health or fitness tracker, a mammal implantable device, gesture tracking device, medical device, a digital audio player (e.g., MP3 player) , a camera, a game console, etc.
  • IoT Internet of things
  • IoE Internet of everything
  • a UE may be a device that includes a Universal Integrated Circuit Card (UICC) .
  • a UE may be a device that does not include a UICC.
  • UEs that do not include UICCs may also be referred to as IoE devices.
  • a UE may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like.
  • MTC machine type communication
  • eMTC enhanced MTC
  • NB-IoT narrowband IoT
  • UEs 115e-115k illustrated in FIG. 1 are examples of various machines configured for communication that access wireless network 100.
  • a mobile apparatus such as UEs 115, may be able to communicate with any type of the base stations, whether macro base stations, pico base stations, femto base stations, relays, and the like.
  • a lightning bolt e.g., communication link
  • UEs may operate as base stations or other network nodes in some scenarios.
  • Backhaul communication between base stations of wireless network 100 may occur using wired and/or wireless communication links.
  • base stations 105a-105c serve UEs 115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity.
  • Macro base station 105d performs backhaul communications with base stations 105a-105c, as well as small cell, base station 105f.
  • Macro base station 105d also transmits multicast services which are subscribed to and received by UEs 115c and 115d.
  • Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
  • Wireless network 100 of embodiments supports mission critical communications with ultra-reliable and redundant links for mission critical devices, such UE 115e, which is a drone. Redundant communication links with UE 115e include from macro base stations 105d and 105e, as well as small cell base station 105f.
  • UE 115f thermometer
  • UE 115g smart meter
  • UE 115h wearable device
  • Wireless network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such as in a vehicle-to-vehicle (V2V) mesh network between UEs 115i-115k communicating with macro base station 105e.
  • V2V vehicle-to-vehicle
  • FIG. 2 shows a block diagram of a design of a base station 105 and a UE 115, which may be any of the base stations and one of the UEs in FIG. 1.
  • base station 105 may be small cell base station 105f in FIG. 1
  • UE 115 may be UE 115c or 115D operating in a service area of base station 105f, which in order to access small cell base station 105f, would be included in a list of accessible UEs for small cell base station 105f.
  • Base station 105 may also be a base station of some other type. As shown in FIG. 2, base station 105 may be equipped with antennas 234a through 234t, and UE 115 may be equipped with antennas 252a through 252r for facilitating wireless communications.
  • transmit processor 220 may receive data from data source 212 and control information from controller/processor 240.
  • the control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid-ARQ (automatic repeat request) indicator channel (PHICH) , physical downlink control channel (PDCCH) , enhanced physical downlink control channel (EPDCCH) , MTC physical downlink control channel (MPDCCH) , etc.
  • the data may be for the PDSCH, etc.
  • Transmit processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • Transmit processor 220 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) and secondary synchronization signal (SSS) , and cell-specific reference signal.
  • Transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • TX multiple-input multiple-output
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator 232 may additionally or alternatively process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 232a through 232t may be transmitted via antennas 234a through 234t, respectively.
  • the antennas 252a through 252r may receive the downlink signals from base station 105 and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • MIMO detector 256 may obtain received symbols from demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • Receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for UE 115 to data sink 260, and provide decoded control information to controller/processor 280.
  • transmit processor 264 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from data source 262 and control information (e.g., for the physical uplink control channel (PUCCH) ) from controller/processor 280. Transmit processor 264 may also generate reference symbols for a reference signal. The symbols from transmit processor 264 may be precoded by TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for SC-FDM, etc. ) , and transmitted to base station 105.
  • data e.g., for the physical uplink shared channel (PUSCH)
  • control information e.g., for the physical uplink control channel (PUCCH)
  • controller/processor 280 e.g., for the physical uplink control channel (PUCCH)
  • Transmit processor 264 may also generate reference symbols for a reference signal.
  • the symbols from transmit processor 264 may be precoded by TX MIMO processor 266 if applicable,
  • the uplink signals from UE 115 may be received by antennas 234, processed by demodulators 232, detected by MIMO detector 236 if applicable, and further processed by receive processor 238 to obtain decoded data and control information sent by UE 115.
  • Processor 238 may provide the decoded data to data sink 239 and the decoded control information to controller/processor 240.
  • Controllers/processors 240 and 280 may direct the operation at base station 105 and UE 115, respectively. Controller/processor 240 and/or other processors and modules at base station 105 and/or controller/processor 280 and/or other processors and modules at UE 115 may perform or direct the execution of various processes for the techniques described herein, such as to perform or direct the execution illustrated in FIG. 3, and/or other processes for the techniques described herein. Memories 242 and 282 may store data and program codes for base station 105 and UE 115, respectively. Scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
  • Wireless communications systems operated by different network operating entities may share spectrum.
  • a network operating entity may be configured to use an entirety of a designated shared spectrum for at least a period of time before another network operating entity uses the entirety of the designated shared spectrum for a different period of time.
  • certain resources e.g., time
  • a network operating entity may be allocated certain time resources reserved for exclusive communication by the network operating entity using the entirety of the shared spectrum.
  • the network operating entity may also be allocated other time resources where the entity is given priority over other network operating entities to communicate using the shared spectrum.
  • These time resources, prioritized for use by the network operating entity may be utilized by other network operating entities on an opportunistic basis if the prioritized network operating entity does not utilize the resources. Additional time resources may be allocated for any network operator to use on an opportunistic basis.
  • Access to the shared spectrum and the arbitration of time resources among different network operating entities may be centrally controlled by a separate entity, autonomously determined by a predefined arbitration scheme, or dynamically determined based on interactions between wireless nodes of the network operators.
  • UE 115 and base station 105 may operate in a shared radio frequency spectrum band, which may include licensed or unlicensed (e.g., contention-based) frequency spectrum.
  • UEs 115 or base stations 105 may traditionally perform a medium-sensing procedure to contend for access to the frequency spectrum.
  • UE 115 or base station 105 may perform a listen before talk (LBT) procedure such as a clear channel assessment (CCA) prior to communicating in order to determine whether the shared channel is available.
  • LBT listen before talk
  • CCA clear channel assessment
  • a CCA may include an energy detection procedure to determine whether there are any other active transmissions.
  • a device may infer that a change in a received signal strength indicator (RSSI) of a power meter indicates that a channel is occupied.
  • RSSI received signal strength indicator
  • a CCA also may include detection of specific sequences that indicate use of the channel.
  • another device may transmit a specific preamble prior to transmitting a data sequence.
  • an LBT procedure may include a wireless node adjusting its own backoff window based on the amount of energy detected on a channel and/or the acknowledge/negative-acknowledge (ACK/NACK) feedback for its own transmitted packets as a proxy for collisions.
  • ACK/NACK acknowledge/negative-acknowledge
  • a UE such as UE 115, may obtain wireless network service from various wireless communication networks using various types of radio access technology (RAT) .
  • RAT radio access technology
  • a network may be associated with one or more base stations that utilize the same RAT utilized by the associated network.
  • the wireless communication network may provide wireless network service to a UE through associated base stations.
  • 5G NR technology exhibits many improvements over legacy non-5G NR technology as well as over technology that is a mixture of5G NR technology and legacy non-5G NR technology.
  • a RAT that includes only 5G NR technology may be referred to as a RAT that operates in a standalone (SA) mode of 5G NR.
  • SA standalone
  • a RAT may be referred to as 5G (SA) .
  • a RAT that includes a mixture of 5G NR technology and non-5G NR technology, such as 4G or a particular type of LTE technology may be referred to as a RAT that operates in a non-standalone (NSA) mode of 5G NR.
  • NSA non-standalone
  • a 5G (NSA) network may be a network that includes a primary/anchor base station that utilizes 4G/LTE technology and also includes a secondary base station that utilizes 5G (SA) technology.
  • non-5G NR technology may refer to any technology that does not include 5G NR.
  • non-5G technology may include LTE (or a particular type of LTE, such as LTE Advanced (LTE-A) , LTE in unlicensed spectrum (LTE-U) , etc. ) , 4G, WCDMA, CDMA2000, GSM, TD-SCDMA, IS-95, to name only a few.
  • a UE may be configured to prefer 5G (SA) network service over 5G (NSA) network service or non-5G network service. For example, when 5G (SA) network service becomes available while a UE is receiving non-5G (SA) network service, the UE may attempt to get 5G (SA) network service to make use of the many advantages of 5G (SA) technology. In other words, even when a UE is currently receiving reliable 4G/LTE network service from a 4G/LTE network, the UE may still attempt to obtain 5G (SA) network service when the 5G (SA) network service becomes available from a 5G (SA) network.
  • the process of transitioning from one type of network service, such as 5G (NSA) network service or non-5G network service, to another type of network service, such as 5G (SA) may be referred to as a handover and/or redirection process.
  • Prior techniques for handover and redirection of a UE from non-5G (SA) network service, e.g., 5G (NSA) network service or 4G/LTE network service, to 5G (SA) network service yield unfavorable operations in some instances.
  • SA non-5G
  • NSA 5G
  • 4G/LTE network service 4G/LTE network service
  • prior techniques may not trigger a handover or redirection process, and instead may cause a UE to remain in a 4G/LTE network for a long period of time even after 5G (SA) network service becomes available.
  • prior techniques may not trigger a handover or redirection process when reliable 4G/LTE network service is received by the UE and/or when a signal power associated with the 5G (SA) network does not exceed some predetermined fixed threshold.
  • a UE may not quickly handover or redirect to a preferred 5G (SA) network and instead may remain in a 4G/LTE network for a longer-than-necessary amount of time. This often results in poor user experience with the UE.
  • SA 5G
  • FIG. 3 shows a block diagram illustrating a method for handover and/or redirection of a UE from non-5G (SA) network service to 5G (SA) network service according to some aspects of the present disclosure.
  • Aspects of method 300 may be implemented with various other aspects of this disclosure described with respect to FIGS. 1-2 and 4-5, such as a mobile device/UE.
  • controller/processor 280 of UE 115 may control UE 115 to perform method 300.
  • FIG. 5 is a block diagram conceptually illustrating a design of a UE configured according to some aspects of the present disclosure.
  • UE 115 may include various structures, hardware, and components, such as those illustrated for UE 115 of FIG. 2.
  • UE 115 includes controller/processor 280, which operates to execute logic or computer instructions stored in memory 282.
  • the controller/processor 280 can also control components of UE 115 that provide the features and functionality of UE 115.
  • UE 115 under control of controller/processor 280, transmits and receives signals via wireless radios 501a-r and antennas 252a-r.
  • Wireless radios 501a-r include various components and hardware, as illustrated in FIG. 2 for UE 115, including modulator/demodulators 254a-r, MIMO detector 256, receive processor 258, transmit processor 264, and TX MIMO processor 266.
  • the controller/processor 280 can be provided with digital signals obtained from sampling received analog wireless signals for purposes of controlling communication operations.
  • FIG. 3 illustrates a method 300 that may be performed by a wireless communication device, such as a UE 115.
  • Method 300 includes, at block 302, determining, by a UE, that a reference signal reference power (RSRP) associated with a second base station is less than a first threshold while the UE is registered in a first wireless communication network associated with a first base station.
  • RSRP reference signal reference power
  • method 300 includes triggering, by the UE, a registration procedure to register the UE in a second wireless communication network associated with the second base station upon determining that the RSRP associated with the second base station is greater than a second threshold.
  • the actions shown at blocks 302 and 304 of method 300 may be a subset of the overall operations performed by a UE to handover or redirect to a 5G (SA) network from a non-5G (SA) network.
  • SA 5G
  • SA non-5G
  • the relationship between the actions shown at blocks 302 and 304 of method 300 and other operations that are performed by a UE to handover or redirect to a 5G (SA) network from a non-5G (SA) network may become more evident from a discussion of the overall operations performed by a UE to handover or redirect to a 5G (SA) network from a non-5G (SA) network.
  • FIG. 4 is a diagram illustrating operations performed by a UE as part of a handover and/or redirection procedure from non-5G (SA) network service, e.g., 4G/LTE network service, to 5G(SA) network service according to some aspects of the present disclosure.
  • FIG. 4 shows a UE 402, a 4G/LTE base station 404, and a 5G (SA) base station 406.
  • a 5G (SA) base station 406 may refer to a base station that utilizes 5G (SA) RAT and that is part of a 5G (SA) network.
  • a 4G/LTE base station 404 may refer to a base station that utilizes 4G/LTE RAT.
  • 4G/LTE base station 404 may be part of a 4G/LTE network or part of a 5G (NSA) network.
  • UE 402 and 4G/LTE base station 404 may be configured to communicate information, such as user data and/or measurement configuration data, back and forth to each other.
  • UE 402 may be registered for service in a 4G/LTE wireless communication network associated with 4G/LTE base station 404 and/or may have a radio resource control (RRC) connection with 4G/LTE base station 404.
  • RRC radio resource control
  • UE 402 may have a RRC connection with a network associated with 4G/LTE base station 404 to transmit/receive information to/from 4G/LTE base station 404, e.g., to upload and/or download information.
  • UE 402 may perform measurements of parameters associated with 5G (SA) base station 406 while it is registered for service in a 4G/LTE wireless communication network associated with 4G/LTE base station 404.
  • measurements of parameters associated with 5G (SA) base station 406 may be triggered while UE 402 is registered for service in a 4G/LTE wireless communication network associated with 4G/LTE base station 404.
  • UE 402 may trigger and/or perform the measurements of parameters associated with 5G (SA) base station 406, as is illustrated in FIG. 4 with communication 412 between UE 402 and 5G (SA) base station 406.
  • 5G (SA) base station 406 may trigger the UE to perform measurements of parameters associated with 5G (SA) base station 406, as is illustrated in FIG.
  • UE 402 may receive, detect, and/or measure a RSRP associated with 5G (SA) base station 406.
  • UE 402 may make a decision 413 based on processing of the RSRP associated with 5G (SA) base station 406. For example, UE 402 may make a decision 413 as to whether or not the RSRP associated with 5G (SA) base station 406 is less than, equal to, or greater than a first threshold, shown in FIG. 4 as threshold “thresholdNR. ”
  • UE 402 may determine at decision 413 that a measured RSRP associated with 5G (SA) base station 406 is less than (or equal to) the “thresholdNR” threshold used at decision 413.
  • the determination made at decision 413 may be performed while UE 402 is registered in a 4G/LTE network associated with 4G/LTE base station 404.
  • the foregoing actions, such as the determination made at decision 413 may correspond to actions shown at block 302 of FIG. 3, such as the determining, by a UE, that a RSRP associated with a second base station is less than a first threshold.
  • the determination made by UE 402 at decision 413 that the measured RSRP associated with 5G (SA) base station 406 is less than (or equal to) the “thresholdNR” threshold used at decision 413 may correspond to the determination that a RSRP associated with a second base station is less than a first threshold, as shown at block 302 of FIG. 3.
  • the RSRP associated with 5G (SA) base station 406 may correspond to the RSRP shown at block 302 of FIG. 3
  • the thresholdNR threshold used at decision 413 may correspond to the first threshold shown at block 302 of FIG. 3.
  • the first base station shown at block 302 of FIG. 3 may not be a 5G (SA) base station.
  • the first base station shown at block 302 of FIG. 3 may be 4G/LTE base station 404, which may be part of a 4G/LTE network or part of a 5G (NSA) network.
  • the first wireless communication network shown at block 302 of FIG. 3 may be a 4G/LTE network.
  • 4G/LTE base station 404 may be referred to as a primary/anchor base station.
  • the second base station shown at block 302 of FIG. 3 may be a 5G (SA) base station.
  • the second base station shown at block 302 of FIG. 3 may be 5G (SA) base station 406, which may be part of a 5G (SA) network.
  • SA 5G
  • UE 402 may make another decision 414 upon determining at decision 413 that the RSRP associated with 5G (SA) base station 406 is less than (or equal to) the thresholdNR threshold used at decision 413. For example, UE 402 may make a decision 414 as to whether or not the RSRP associated with 5G (SA) base station 406 is less than, equal to, or greater than a second threshold, shown in FIG. 4 as threshold “CUST_THRESHOLD_NR. ”
  • UE 402 may determine at decision 414 that the measured RSRP associated with 5G (SA) base station 406 is less than (or equal to) the “CUST_THRESHOLD_NR” threshold used at decision 414. In some aspects, upon determining at decision 414 that the RSRP associated with 5G (SA) base station 406 is less than (or equal to) the CUST_THRESHOLD_NR threshold used at decision 414, UE 402 may not proceed with attempting to handover or redirect to a 5G (SA) network. Instead, UE 402 may wait until another measurement of parameters associated with 5G (SA) base station 406 is triggered before returning to decision 413.
  • SA 5G
  • UE 402 may determine at decision 414 that the measured RSRP associated with 5G (SA) base station 406 is greater than the “CUST_THRESHOLD_NR” threshold used at decision 414.
  • the foregoing actions such as the determination made at decision 414, may correspond to actions shown at block 304 of FIG. 3, such as the determining, by the UE, that the RSRP associated with a second base station is greater than a second threshold.
  • the determination made by UE 402 at decision 414 that the measured RSRP associated with 5G (SA) base station 406 is greater than the “CUST_THRESHOLD_NR” threshold used at decision 414 may correspond to the determination that the RSRP associated with the second base station is greater than the second threshold, as shown at block 304 of FIG. 3.
  • the CUST_THRESHOLD_NR threshold used at decision 414 may correspond to the second threshold shown at block 304 of FIG. 3.
  • UE 402 may transmit to the first base station, e.g., 4G/LTE base station 404, a measurement report message 415 associated with the first threshold, e.g., the thresholdNR threshold.
  • the transmitted measurement report message 415 may be and/or may include an indication that the RSRP associated with the second base station, e.g., 5G (SA) base station 406, is greater than the first threshold, e.g., the thresholdNR threshold.
  • the transmitted indication may be an “Event B1” indication and/or an “Event B2” indication, as is illustrated in FIG. 4 as being included in measurement report message 415.
  • inclusion of the “Event B1” indication in the measurement report message 415 may indicate that the RSRP associated with the 5G (SA) base station 406, e.g., the second base station, is greater than the thresholdNR threshold, e.g., the first threshold.
  • SA 5G
  • inclusion of the“Event B2” indication in the measurement report message 415 may indicate that the RSRP associated with the 5G (SA) base station 406 is greater than the thresholdNR threshold and that an RSRP associated with the 4G/LTE base station 404, e.g., the first base station, is less than another (third) threshold.
  • transmission of measurement report message 415 may also be triggered based on decision 413.
  • UE 402 may determine at decision 413 that a measured RSRP associated with 5G (SA) base station 406 is greater than the “thresholdNR” threshold used at decision 413.
  • UE 402 may transmit to 4G/LTE base station 404 measurement report message 415.
  • 4G/LTE base station 404 in response to receiving the measurement report message 415, 4G/LTE base station 404, e.g., the first base station, may send to UE 402 a message 416, e.g., the MobilityFromEUTRACommand message or RRCConnectionRelease with redirectedCarrierInfo nr-r15 message shown in FIG. 4.
  • UE 402 may receive the message 416 sent by 4G/LTE base station 404.
  • the received message 416 may itself be and/or may include an indication to register UE 402 in the 5G (SA) network associated with 5G (SA) base station 406, e.g., a second wireless communication network associated with the second base station.
  • the received message 416 and/or any indications provided with message 416 may be associated with, e.g., based on or responsive to, the transmitted measurement report message 415, the Event B1 indication, and/or the Event B2 indication.
  • UE 402 may trigger a registration procedure with 5G (SA) base station 406 to register UE 402 in a 5G (SA) network so that UE 402 may receive 5G (SA) network service.
  • SA 5G
  • UE 402 may trigger a registration procedure to register UE 402 for service in a second wireless communication network associated with the second base station, e.g., the 5G (SA) network associated with 5G (SA) base station 406.
  • the registration procedure to register UE 402 in a 5G (SA) network associated with 5G (SA) base station 406 may be triggered upon, based on, or responsive to, UE 402 receiving message 416 and/or any indications provided with message 416 from 4G/LTE base station 404, such as the indication to register UE 402 in the 5G (SA) network associated with 5G (SA) base station 406.
  • the registration procedure to register UE 402 in a 5G (SA) network associated with 5G (SA) base station 406 may also be triggered based on, or responsive to, the determination made by UE 402 at decision 414.
  • UE 402 may trigger the registration procedure to register UE 402 in a 5G (SA) network associated with 5G (SA) base station 406, e.g., a second wireless communication network associated with the second base station, upon determining that the RSRP associated with the 5G (SA) base station 406 is greater than a second threshold, such as at decision 414.
  • the foregoing actions may correspond to actions shown at block 304 of FIG. 3, such as the triggering, by the UE, of a registration procedure to register the UE in a second wireless communication network associated with the second base station upon determining that the RSRP associated with the second base station is greater than a second threshold.
  • the triggered registration procedure with 5G (SA) base station 406 shown in FIG. 4 may correspond to the triggered registration procedure shown at block 304 of FIG. 3.
  • the registration procedure triggered by UE 402 with 5G (SA) base station 406 to register UE 402 in a 5G (SA) network associated with 5G (SA) base station 406 may include various operations.
  • the triggered registration procedure may include communication 417 between UE 402 and 5G (SA) base station 406 so that UE 402 may acquire the target 5G (SA) base station 406 technology.
  • the triggered registration procedure may also include UE 402 transmitting a message 418 indicating that an RRC connection configuration between UE 402 and 5G (SA) base station 406 is complete.
  • the second threshold e.g., the CUST_THRESHOLD_NR threshold used at decision 414
  • a value of the second threshold may be adjusted from a first value to a second value that is different than the first value.
  • the value of the second threshold may be adjusted from a first value to a second value after the UE determines at decision 414 that the measured RSRP associated with 5G (SA) base station 406 is less than (or equal to) the currently used second threshold, e.g., the “CUST_THRESHOLD_NR” threshold used at decision 414.
  • the second threshold e.g., the CUST_THRESHOLD_NR threshold used at decision 414
  • the first threshold e.g., the thresholdNR threshold used at decision 413.
  • the first threshold e.g., the thresholdNR threshold used at decision 413
  • the first threshold may be a fixed threshold.
  • the first threshold may be preset by a wireless communication network or a wireless communication specification, such as a 3GPP specification, to a value and may not be adjusted from that value.
  • the first threshold and/or the second threshold may be provided to UE 402 by 4G/LTE base station 404.
  • 4G/LTE base station 404 may transmit to UE 402 a message 411, e.g., a measurement configuration message, that includes the first threshold and/or the second threshold.
  • 4G/LTE base station 404 may provide to UE 402 the first threshold and/or the second threshold in a message transmitted from 4G/LTE base station 404 to UE 402 as part of communication 410.
  • techniques for handover and redirection of a UE from 4G network service to 5G (SA) network service may include a UE determining that a RSRP associated with a second base station is less than a first threshold while the UE is registered in a first wireless communication network associated with a first base station.
  • Techniques for handover and redirection of a UE from 4G network service to 5G (SA) network service may also include triggering a registration procedure to register the UE in a second wireless communication network associated with the second base station upon determining that the RSRP associated with the second base station is greater than a second threshold.
  • Techniques for handover and redirection of a UE from 4G network service to 5G (SA) network service may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the UE may transmit to the first base station a measurement report associated with the first threshold upon determining that the RSRP associated with the second base station is greater than the second threshold.
  • the UE may receive from the first base station an indication to register the UE in the second wireless communication network associated with the second base station, wherein the received indication is associated with the transmitted measurement report, and wherein the registration procedure is triggered upon receiving the indication from the first base station.
  • the second threshold may be adjustable.
  • the first base station may not be a 5G (SA) base station.
  • SA 5G
  • the second base station may be a 5G (SA) base station.
  • SA 5G
  • the functional blocks and modules described herein may comprise processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof.
  • features discussed herein may be implemented via specialized processor circuitry, via executable instructions, and/or combinations thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a user terminal.
  • the processor and the storage medium may reside as discrete components in a user terminal.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. Computer-readable storage media may be any available media that can be accessed by a general purpose or special purpose computer.
  • such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • a connection may be properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, or digital subscriber line (DSL) , then the coaxial cable, fiber optic cable, twisted pair, or DSL, are included in the definition of medium.
  • DSL digital subscriber line
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , hard disk, solid state disk, and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • the term “and/or, ” when used in a list of two or more items means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed.
  • the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Wireless communication techniques that include techniques for handover or redirection of a UE from 4G network service to 5G (SA) network service are discussed. A UE may determine that a RSRP associated with a second base station is less than a first threshold while the UE is registered in a first wireless communication network associated with a first base station. The UE may also trigger a registration procedure to register the UE in a second wireless communication network associated with the second base station upon determining that the RSRP associated with the second base station is greater than a second threshold. Other aspects and features are also claimed and described.

Description

TECHNIQUES FOR HANDOVER OR REDIRECTION OF UE FROM 4G TO 5G (SA) TECHNICAL FIELD
Aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to techniques for handover and redirection of a UE from 4G network service to 5G (SA) network service. Certain aspects of the technology discussed below can enable and provide enhanced communication features and techniques for communication systems, including high performance, high reliability, low latency, low complexity, power-efficient device operations, and aiding devices to discover, select, recover, handover, and use network service.
INTRODUCTION
Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources.
A wireless communication network may include a number of base stations or node Bs that can support communication for a number of user equipments (UEs) . A UE may communicate with a base station via downlink and uplink. The downlink (or forward link) refers to the communication link from the base station to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the base station.
A base station may transmit data and control information on the downlink to a UE and/or may receive data and control information on the uplink from the UE. On the downlink, a transmission from the base station may encounter interference due to transmissions from neighbor base stations or from other wireless radio frequency (RF) transmitters. On the uplink, a transmission from the UE may encounter interference from uplink transmissions of other UEs communicating with the neighbor base stations or from other wireless RF transmitters. This interference may degrade performance on both the downlink and uplink.
As the demand for mobile broadband access continues to increase, the possibilities of interference and congested networks grows with more UEs accessing the long-range wireless communication networks and more short-range wireless systems being deployed in communities. Research and development continue to advance wireless technologies not only  to meet the growing demand for mobile broadband access, but to advance and enhance the user experience with mobile communications.
BRIEF SUMMARY OF SOME EMBODIMENTS
The following summarizes some aspects of the present disclosure to provide a basic understanding of the discussed technology. This summary is not an extensive overview of all contemplated features of the disclosure and is intended neither to identify key or critical elements of all aspects of the disclosure nor to delineate the scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts of one or more aspects of the disclosure in summary form as a prelude to the more detailed description that is presented later.
In one aspect of the disclosure, a method of wireless communication is provided. For example, a method can include determining, by a UE, that a reference signal reference power (RSRP) associated with a second base station is less than a first threshold while the UE is registered in a first wireless communication network associated with a first base station. The method can also include triggering, by the UE, a registration procedure to register the UE in a second wireless communication network associated with the second base station upon determining that the RSRP associated with the second base station is greater than a second threshold.
In another aspect of the disclosure, an apparatus configured for wireless communication is provided. For example, the apparatus can include means for determining that a RSRP associated with a second base station is less than a first threshold while a UE is registered in a first wireless communication network associated with a first base station. The apparatus can also include means for triggering a registration procedure to register the UE in a second wireless communication network associated with the second base station upon determining that the RSRP associated with the second base station is greater than a second threshold.
In an additional aspect of the disclosure, a non-transitory computer-readable medium having program code recorded thereon is provided. The program code can include program code executable by a computer for causing the computer to determine that a RSRP associated with a second base station is less than a first threshold while a UE is registered in a first wireless communication network associated with a first base station. The program code can also include program code executable by the computer for causing the computer to trigger a registration procedure to register the UE in a second wireless communication network  associated with the second base station upon determining that the RSRP associated with the second base station is greater than a second threshold.
In another aspect of the disclosure, an apparatus configured for wireless communication is provided. The apparatus includes at least one processor, and a memory coupled to the processor. The at least one processor can be configured to determine that a RSRP associated with a second base station is less than a first threshold while a UE is registered in a first wireless communication network associated with a first base station. The at least one processor can also be configured to trigger a registration procedure to register the UE in a second wireless communication network associated with the second base station upon determining that the RSRP associated with the second base station is greater than a second threshold.
Other aspects, features, and embodiments will become apparent to those of ordinary skill in the art, upon reviewing the following description of specific, exemplary embodiments in conjunction with the accompanying figures. While features may be discussed relative to certain embodiments and figures below, all embodiments can include one or more of the advantageous features discussed herein. In other words, while one or more embodiments may be discussed as having certain advantageous features, one or more of such features may also be used in accordance with the various embodiments. In similar fashion, while exemplary embodiments may be discussed below as device, system, or method embodiments the exemplary embodiments can be implemented in various devices, systems, and methods.
BRIEF DESCRIPTION OF THE DRAWINGS
A further understanding of the nature and advantages of the present disclosure may be realized by reference to the following drawings. In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label with a second label that distinguishes among the similar components. Ifjust the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
FIG. 1 is a block diagram illustrating details of a wireless communication system according to some aspects of the present disclosure.
FIG. 2 is a block diagram conceptually illustrating a design of a base station and a UE configured according to some aspects of the present disclosure.
FIG. 3 is a block diagram illustrating a method for handover and redirection of a UE from non-5G (SA) network service to 5G (SA) network service according to some aspects of the present disclosure.
FIG. 4 is a diagram illustrating operations performed by a UE as part of a handover and redirection procedure from non-5G (SA) network service, e.g., 4G/LTE network service, to 5G(SA) network service according to some aspects of the present disclosure.
FIG. 5 is a block diagram conceptually illustrating a design of a UE configured according to some aspects of the present disclosure.
DETAILED DESCRIPTION
The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to limit the scope of the disclosure. Rather, the detailed description includes specific details for the purpose of providing a thorough understanding of the inventive subject matter. It will be apparent to those skilled in the art that these specific details are not required in every case and that, in some instances, well-known structures and components are shown in block diagram form for clarity of presentation.
This disclosure relates generally to providing or participating in communication as between two or more wireless devices in one or more wireless communications systems, also referred to as wireless communications networks. In various embodiments, the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, GSM networks, 5 th Generation (5G) or new radio (NR) networks (sometimes referred to as “5G NR” networks/systems/devices) , as well as other communications networks. As described herein, the terms “networks” and “systems” may be used interchangeably.
A CDMA network, for example, may implement a radio technology such as universal terrestrial radio access (UTRA) , cdma2000, and the like. UTRA includes wideband-CDMA (W-CDMA) and low chip rate (LCR) . CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
A TDMA network may, for example implement a radio technology such as GSM. 3GPP defines standards for the GSM EDGE (enhanced data rates for GSM evolution) radio access network (RAN) , also denoted as GERAN. GERAN is the radio component of GSM/EDGE,  together with the network that joins the base stations (for example, the Ater and Abis interfaces) and the base station controllers (A interfaces, etc. ) . The radio access network represents a component of a GSM network, through which phone calls and packet data are routed from and to the public switched telephone network (PSTN) and Internet to and from subscriber handsets, also known as user terminals or user equipments (UEs) . A mobile phone operator's network may comprise one or more GERANs, which may be coupled with Universal Terrestrial Radio Access Networks (UTRANs) in the case of a UMTS/GSM network. An operator network may also include one or more LTE networks, and/or one or more other networks. The various different network types may use different radio access technologies (RATs) and radio access networks (RANs) .
An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like. UTRA, E-UTRA, and Global System for Mobile Communications (GSM) are part of universal mobile telecommunication system (UMTS) . In particular, long term evolution (LTE) is a release of UMTS that uses E-UTRA. UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP) , and cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . These various radio technologies and standards are known or are being developed. For example, the 3rd Generation Partnership Project (3GPP) is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification. 3GPP long term evolution (LTE) is a 3GPP project which was aimed at improving the universal mobile telecommunications system (UMTS) mobile phone standard. The 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices. The present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. To achieve these goals, further enhancements to LTE and LTE-A are considered in addition to development of the new radio technology for 5G NR networks. The 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (e.g., ~1M nodes/km 2) , ultra-low complexity (e.g., ~10s ofbits/sec) , ultra-low energy  (e.g., ~10+years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ~99.9999%reliability) , ultra-low latency (e.g., ~1 ms) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ~10 Tbps/km 2) , extreme data rates (e.g., multi-Gbps rate, 100+Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
5G NR devices, networks, and systems may be implemented to use optimized OFDM-based waveform features. These features may include scalable numerology and transmission time intervals (TTIs) ; a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility. Scalability of the numerology in 5G NR, with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments. For example, in various outdoor and macro coverage deployments of less than 3GHz FDD/TDD implementations, subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like bandwidth. For other various outdoor and small cell coverage deployments of TDD greater than 3 GHz, subcarrier spacing may occur with 30 kHz over 80/100 MHz bandwidth. For other various indoor wideband implementations, using a TDD over the unlicensed portion of the 5 GHz band, the subcarrier spacing may occur with 60 kHz over a 160 MHz bandwidth. Finally, for various deployments transmitting with mmWave components at a TDD of 28 GHz, subcarrier spacing may occur with 120 kHz over a 500MHz bandwidth.
The scalable numerology of 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency. The efficient multiplexing of long and short TTIs to allow transmissions to start on symbol boundaries. 5G NR also contemplates a self-contained integrated subframe design with uplink/downlink scheduling information, data, and acknowledgement in the same subframe. The self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink/downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
For clarity, certain aspects of the apparatus and techniques may be described below with reference to exemplary LTE implementations or in an LTE-centric way, and LTE terminology may be used as illustrative examples in portions of the description below; however, the description is not intended to be limited to LTE applications. Indeed, the present disclosure is concerned with shared access to wireless spectrum between networks using different radio access technologies or radio air interfaces, such as those of5G NR.
Moreover, it should be understood that, in operation, wireless communication networks adapted according to the concepts herein may operate with any combination of licensed or unlicensed spectrum depending on loading and availability. Accordingly, it will be apparent to one of skill in the art that the systems, apparatus and methods described herein may be applied to other communications systems and applications than the particular examples provided.
While aspects and embodiments are described in this application by illustration to some examples, those skilled in the art will understand that additional implementations and use cases may come about in many different arrangements and scenarios. Innovations described herein may be implemented across many differing platform types, devices, systems, shapes, sizes, packaging arrangements. For example, embodiments and/or uses may come about via integrated chip embodiments and/or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, AI-enabled devices, etc. ) . While some examples may or may not be specifically directed to use cases or applications, a wide assortment of applicability of described innovations may occur. Implementations may range from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregated, distributed, or OEM devices or systems incorporating one or more described aspects. In some practical settings, devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described embodiments. It is intended that innovations described herein may be practiced in a wide variety of implementations, including both large/small devices, chip-level components, multi-component systems (e.g. RF-chain, communication interface, processor) , distributed arrangements, end-user devices, etc. of varying sizes, shapes, and constitution.
FIG. 1 shows wireless network 100 for communication according to some embodiments. Wireless network 100 may, for example, comprise a 5G wireless network. As appreciated by those skilled in the art, components appearing in FIG. 1 are likely to have related counterparts  in other network arrangements including, for example, cellular-style network arrangements and non-cellular-style-network arrangements (e.g., device to device or peer to peer or ad hoc network arrangements, etc. ) .
Wireless network 100 illustrated in FIG. 1 includes a number of base stations 105 and other network entities. A base station may be a station that communicates with the UEs and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like. Each base station 105 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to this particular geographic coverage area of a base station and/or a base station subsystem serving the coverage area, depending on the context in which the term is used. In implementations of wireless network 100 herein, base stations 105 may be associated with a same operator or different operators (e.g., wireless network 100 may comprise a plurality of operator wireless networks) , and may provide wireless communications using one or more of the same frequencies (e.g., one or more frequency bands in licensed spectrum, unlicensed spectrum, or a combination thereof) as a neighboring cell. In some examples, an individual base station 105 or UE 115 may be operated by more than one network operating entity. In other examples, each base station 105 and UE 115 may be operated by a single network operating entity.
A base station may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell. A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . A base station for a macro cell may be referred to as a macro base station. A base station for a small cell may be referred to as a small cell base station, a pico base station, a femto base station or a home base station. In the example shown in FIG. 1,  base stations  105d and 105e are regular macro base stations, while base stations 105a-105c are macro base stations enabled with one of 3 dimension (3D) , full dimension (FD) , or massive MIMO. Base stations 105a-105c take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity. Base station 105f is a small cell base station  which may be a home node or portable access point. A base station may support one or multiple (e.g., two, three, four, and the like) cells.
Wireless network 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time. In some scenarios, networks may be enabled or configured to handle dynamic switching between synchronous or asynchronous operations.
UEs 115 are dispersed throughout the wireless network 100, and each UE may be stationary or mobile. It should be appreciated that, although a mobile apparatus is commonly referred to as user equipment (UE) in standards and specifications promulgated by the 3rd Generation Partnership Project (3GPP) , such apparatus may also be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, a gaming device, an augmented reality device, vehicular component device/module, or some other suitable terminology. Within the present document, a “mobile” apparatus or UE need not necessarily have a capability to move, and may be stationary. Some non-limiting examples of a mobile apparatus, such as may comprise embodiments of one or more of UEs 115, include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) . A mobile apparatus may additionally be an “Internet of things” (IoT) or “Internet of everything” (IoE) device such as an automotive or other transportation vehicle, a satellite radio, a global positioning system (GPS) device, a logistics controller, a drone, a multi-copter, a quad-copter, a smart energy or security device, a solar panel or solar array, municipal lighting, water, or other infrastructure; industrial automation and enterprise devices; consumer and wearable devices, such as eyewear, a wearable camera, a smart watch, a health or fitness tracker, a mammal implantable device, gesture tracking device, medical device, a digital audio player (e.g., MP3 player) , a camera, a game console, etc. ; and digital home or smart home devices such as a home audio, video, and multimedia device, an appliance, a sensor, a vending machine, intelligent lighting, a home security system, a smart meter, etc. In one aspect, a UE may be a device that includes a Universal Integrated Circuit Card (UICC) . In another aspect, a UE  may be a device that does not include a UICC. In some aspects, UEs that do not include UICCs may also be referred to as IoE devices. UEs 115a-115d of the embodiment illustrated in FIG. 1 are examples of mobile smart phone-type devices accessing wireless network 100 A UE may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like. UEs 115e-115k illustrated in FIG. 1 are examples of various machines configured for communication that access wireless network 100.
A mobile apparatus, such as UEs 115, may be able to communicate with any type of the base stations, whether macro base stations, pico base stations, femto base stations, relays, and the like. In FIG. 1, a lightning bolt (e.g., communication link) indicates wireless transmissions between a UE and a serving base station, which is a base station designated to serve the UE on the downlink and/or uplink, or desired transmission between base stations, and backhaul transmissions between base stations. UEs may operate as base stations or other network nodes in some scenarios. Backhaul communication between base stations of wireless network 100 may occur using wired and/or wireless communication links.
In operation at wireless network 100, base stations 105a-105c serve UEs 115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity. Macro base station 105d performs backhaul communications with base stations 105a-105c, as well as small cell, base station 105f. Macro base station 105d also transmits multicast services which are subscribed to and received by  UEs  115c and 115d. Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
Wireless network 100 of embodiments supports mission critical communications with ultra-reliable and redundant links for mission critical devices, such UE 115e, which is a drone. Redundant communication links with UE 115e include from  macro base stations  105d and 105e, as well as small cell base station 105f. Other machine type devices, such as UE 115f (thermometer) , UE 115g (smart meter) , and UE 115h (wearable device) may communicate through wireless network 100 either directly with base stations, such as small cell base station 105f, and macro base station 105e, or in multi-hop configurations by communicating with another user device which relays its information to the network, such as UE 115f communicating temperature measurement information to the smart meter, UE 115g, which is then reported to the network through small cell base station 105f. Wireless network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD  communications, such as in a vehicle-to-vehicle (V2V) mesh network between UEs 115i-115k communicating with macro base station 105e.
FIG. 2 shows a block diagram of a design of a base station 105 and a UE 115, which may be any of the base stations and one of the UEs in FIG. 1. For a restricted association scenario (as mentioned above) , base station 105 may be small cell base station 105f in FIG. 1, and UE 115 may be UE 115c or 115D operating in a service area of base station 105f, which in order to access small cell base station 105f, would be included in a list of accessible UEs for small cell base station 105f. Base station 105 may also be a base station of some other type. As shown in FIG. 2, base station 105 may be equipped with antennas 234a through 234t, and UE 115 may be equipped with antennas 252a through 252r for facilitating wireless communications.
At base station 105, transmit processor 220 may receive data from data source 212 and control information from controller/processor 240. The control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid-ARQ (automatic repeat request) indicator channel (PHICH) , physical downlink control channel (PDCCH) , enhanced physical downlink control channel (EPDCCH) , MTC physical downlink control channel (MPDCCH) , etc. The data may be for the PDSCH, etc. Transmit processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. Transmit processor 220 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) and secondary synchronization signal (SSS) , and cell-specific reference signal. Transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator 232 may additionally or alternatively process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 232a through 232t may be transmitted via antennas 234a through 234t, respectively.
At UE 115, the antennas 252a through 252r may receive the downlink signals from base station 105 and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. MIMO  detector 256 may obtain received symbols from demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. Receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for UE 115 to data sink 260, and provide decoded control information to controller/processor 280.
On the uplink, at UE 115, transmit processor 264 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from data source 262 and control information (e.g., for the physical uplink control channel (PUCCH) ) from controller/processor 280. Transmit processor 264 may also generate reference symbols for a reference signal. The symbols from transmit processor 264 may be precoded by TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for SC-FDM, etc. ) , and transmitted to base station 105. At base station 105, the uplink signals from UE 115 may be received by antennas 234, processed by demodulators 232, detected by MIMO detector 236 if applicable, and further processed by receive processor 238 to obtain decoded data and control information sent by UE 115. Processor 238 may provide the decoded data to data sink 239 and the decoded control information to controller/processor 240.
Controllers/ processors  240 and 280 may direct the operation at base station 105 and UE 115, respectively. Controller/processor 240 and/or other processors and modules at base station 105 and/or controller/processor 280 and/or other processors and modules at UE 115 may perform or direct the execution of various processes for the techniques described herein, such as to perform or direct the execution illustrated in FIG. 3, and/or other processes for the techniques described herein.  Memories  242 and 282 may store data and program codes for base station 105 and UE 115, respectively. Scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
Wireless communications systems operated by different network operating entities (e.g., network operators) may share spectrum. In some instances, a network operating entity may be configured to use an entirety of a designated shared spectrum for at least a period of time before another network operating entity uses the entirety of the designated shared spectrum for a different period of time. Thus, in order to allow network operating entities use of the full designated shared spectrum, and in order to mitigate interfering communications between the different network operating entities, certain resources (e.g., time) may be partitioned and allocated to the different network operating entities for certain types of communication.
For example, a network operating entity may be allocated certain time resources reserved for exclusive communication by the network operating entity using the entirety of the shared  spectrum. The network operating entity may also be allocated other time resources where the entity is given priority over other network operating entities to communicate using the shared spectrum. These time resources, prioritized for use by the network operating entity, may be utilized by other network operating entities on an opportunistic basis if the prioritized network operating entity does not utilize the resources. Additional time resources may be allocated for any network operator to use on an opportunistic basis.
Access to the shared spectrum and the arbitration of time resources among different network operating entities may be centrally controlled by a separate entity, autonomously determined by a predefined arbitration scheme, or dynamically determined based on interactions between wireless nodes of the network operators.
In some cases, UE 115 and base station 105 may operate in a shared radio frequency spectrum band, which may include licensed or unlicensed (e.g., contention-based) frequency spectrum. In an unlicensed frequency portion of the shared radio frequency spectrum band, UEs 115 or base stations 105 may traditionally perform a medium-sensing procedure to contend for access to the frequency spectrum. For example, UE 115 or base station 105 may perform a listen before talk (LBT) procedure such as a clear channel assessment (CCA) prior to communicating in order to determine whether the shared channel is available. A CCA may include an energy detection procedure to determine whether there are any other active transmissions. For example, a device may infer that a change in a received signal strength indicator (RSSI) of a power meter indicates that a channel is occupied. Specifically, signal power that is concentrated in a certain bandwidth and exceeds a predetermined noise floor may indicate another wireless transmitter. A CCA also may include detection of specific sequences that indicate use of the channel. For example, another device may transmit a specific preamble prior to transmitting a data sequence. In some cases, an LBT procedure may include a wireless node adjusting its own backoff window based on the amount of energy detected on a channel and/or the acknowledge/negative-acknowledge (ACK/NACK) feedback for its own transmitted packets as a proxy for collisions.
A UE, such as UE 115, may obtain wireless network service from various wireless communication networks using various types of radio access technology (RAT) . A network may be associated with one or more base stations that utilize the same RAT utilized by the associated network. The wireless communication network may provide wireless network service to a UE through associated base stations.
Of the various wireless communication RATs commercially available throughout the world, 5G NR technology exhibits many improvements over legacy non-5G NR technology as well  as over technology that is a mixture of5G NR technology and legacy non-5G NR technology. In some aspects, a RAT that includes only 5G NR technology may be referred to as a RAT that operates in a standalone (SA) mode of 5G NR. Such a RAT may be referred to as 5G (SA) . According to some aspects, a RAT that includes a mixture of 5G NR technology and non-5G NR technology, such as 4G or a particular type of LTE technology, may be referred to as a RAT that operates in a non-standalone (NSA) mode of 5G NR. Such a RAT may be referred to as 5G (NSA) . As an example, a 5G (NSA) network may be a network that includes a primary/anchor base station that utilizes 4G/LTE technology and also includes a secondary base station that utilizes 5G (SA) technology. In some aspects, non-5G NR technology may refer to any technology that does not include 5G NR. For example, non-5G technology may include LTE (or a particular type of LTE, such as LTE Advanced (LTE-A) , LTE in unlicensed spectrum (LTE-U) , etc. ) , 4G, WCDMA, CDMA2000, GSM, TD-SCDMA, IS-95, to name only a few.
Because of the advantages of5G (SA) technology, a UE may be configured to prefer 5G (SA) network service over 5G (NSA) network service or non-5G network service. For example, when 5G (SA) network service becomes available while a UE is receiving non-5G (SA) network service, the UE may attempt to get 5G (SA) network service to make use of the many advantages of 5G (SA) technology. In other words, even when a UE is currently receiving reliable 4G/LTE network service from a 4G/LTE network, the UE may still attempt to obtain 5G (SA) network service when the 5G (SA) network service becomes available from a 5G (SA) network. The process of transitioning from one type of network service, such as 5G (NSA) network service or non-5G network service, to another type of network service, such as 5G (SA) , may be referred to as a handover and/or redirection process.
Prior techniques for handover and redirection of a UE from non-5G (SA) network service, e.g., 5G (NSA) network service or 4G/LTE network service, to 5G (SA) network service yield unfavorable operations in some instances. For example, prior techniques may not trigger a handover or redirection process, and instead may cause a UE to remain in a 4G/LTE network for a long period of time even after 5G (SA) network service becomes available. As an example, prior techniques may not trigger a handover or redirection process when reliable 4G/LTE network service is received by the UE and/or when a signal power associated with the 5G (SA) network does not exceed some predetermined fixed threshold. As a result, a UE may not quickly handover or redirect to a preferred 5G (SA) network and instead may remain in a 4G/LTE network for a longer-than-necessary amount of time. This often results in poor user experience with the UE.
Aspects of the disclosure aid a UE in performing handover or redirection from a non-5G (SA) network, such as a 5G (NSA) network or a 4G/LTE network, to a 5G (SA) network. FIG. 3, as an example, shows a block diagram illustrating a method for handover and/or redirection of a UE from non-5G (SA) network service to 5G (SA) network service according to some aspects of the present disclosure. Aspects of method 300 may be implemented with various other aspects of this disclosure described with respect to FIGS. 1-2 and 4-5, such as a mobile device/UE. For example, with reference to FIG. 2, controller/processor 280 of UE 115 may control UE 115 to perform method 300.
The example blocks of method 300 will also be described with respect to UE 115 as illustrated in FIG. 5. FIG. 5 is a block diagram conceptually illustrating a design of a UE configured according to some aspects of the present disclosure. UE 115 may include various structures, hardware, and components, such as those illustrated for UE 115 of FIG. 2. For example, UE 115 includes controller/processor 280, which operates to execute logic or computer instructions stored in memory 282. The controller/processor 280 can also control components of UE 115 that provide the features and functionality of UE 115. UE 115, under control of controller/processor 280, transmits and receives signals via wireless radios 501a-r and antennas 252a-r. Wireless radios 501a-r include various components and hardware, as illustrated in FIG. 2 for UE 115, including modulator/demodulators 254a-r, MIMO detector 256, receive processor 258, transmit processor 264, and TX MIMO processor 266. The controller/processor 280 can be provided with digital signals obtained from sampling received analog wireless signals for purposes of controlling communication operations.
FIG. 3 illustrates a method 300 that may be performed by a wireless communication device, such as a UE 115. Method 300 includes, at block 302, determining, by a UE, that a reference signal reference power (RSRP) associated with a second base station is less than a first threshold while the UE is registered in a first wireless communication network associated with a first base station. At block 304, method 300 includes triggering, by the UE, a registration procedure to register the UE in a second wireless communication network associated with the second base station upon determining that the RSRP associated with the second base station is greater than a second threshold. The actions shown at  blocks  302 and 304 of method 300 may be a subset of the overall operations performed by a UE to handover or redirect to a 5G (SA) network from a non-5G (SA) network. The relationship between the actions shown at  blocks  302 and 304 of method 300 and other operations that are performed by a UE to handover or redirect to a 5G (SA) network from a non-5G (SA) network may  become more evident from a discussion of the overall operations performed by a UE to handover or redirect to a 5G (SA) network from a non-5G (SA) network.
FIG. 4 is a diagram illustrating operations performed by a UE as part of a handover and/or redirection procedure from non-5G (SA) network service, e.g., 4G/LTE network service, to 5G(SA) network service according to some aspects of the present disclosure. FIG. 4 shows a UE 402, a 4G/LTE base station 404, and a 5G (SA) base station 406. A 5G (SA) base station 406 may refer to a base station that utilizes 5G (SA) RAT and that is part of a 5G (SA) network. A 4G/LTE base station 404 may refer to a base station that utilizes 4G/LTE RAT. 4G/LTE base station 404 may be part of a 4G/LTE network or part of a 5G (NSA) network.
As illustrated at communications 410 of FIG. 4, UE 402 and 4G/LTE base station 404 may be configured to communicate information, such as user data and/or measurement configuration data, back and forth to each other. In other words, UE 402 may be registered for service in a 4G/LTE wireless communication network associated with 4G/LTE base station 404 and/or may have a radio resource control (RRC) connection with 4G/LTE base station 404. For example, UE 402 may have a RRC connection with a network associated with 4G/LTE base station 404 to transmit/receive information to/from 4G/LTE base station 404, e.g., to upload and/or download information.
Various operations may be performed by UE 402 while it is registered for service in a 4G/LTE wireless communication network associated with 4G/LTE base station 404. For example, measurements of parameters associated with 5G (SA) base station 406 may be triggered while UE 402 is registered for service in a 4G/LTE wireless communication network associated with 4G/LTE base station 404. In some aspects, UE 402 may trigger and/or perform the measurements of parameters associated with 5G (SA) base station 406, as is illustrated in FIG. 4 with communication 412 between UE 402 and 5G (SA) base station 406. In additional aspects, 5G (SA) base station 406 may trigger the UE to perform measurements of parameters associated with 5G (SA) base station 406, as is illustrated in FIG. 4 with communication 412 between UE 402 and 5G (SA) base station 406. In some aspects, as part of measuring parameters associated with 5G (SA) base station 406 during communication 412, UE 402 may receive, detect, and/or measure a RSRP associated with 5G (SA) base station 406.
In some aspects, UE 402 may make a decision 413 based on processing of the RSRP associated with 5G (SA) base station 406. For example, UE 402 may make a decision 413 as to whether or not the RSRP associated with 5G (SA) base station 406 is less than, equal to, or greater than a first threshold, shown in FIG. 4 as threshold “thresholdNR. ”
According to some aspects, UE 402 may determine at decision 413 that a measured RSRP associated with 5G (SA) base station 406 is less than (or equal to) the “thresholdNR” threshold used at decision 413. In some aspects, the determination made at decision 413 may be performed while UE 402 is registered in a 4G/LTE network associated with 4G/LTE base station 404. According to some aspects of the disclosure, the foregoing actions, such as the determination made at decision 413, may correspond to actions shown at block 302 of FIG. 3, such as the determining, by a UE, that a RSRP associated with a second base station is less than a first threshold. For example, in some aspects, the determination made by UE 402 at decision 413 that the measured RSRP associated with 5G (SA) base station 406 is less than (or equal to) the “thresholdNR” threshold used at decision 413 may correspond to the determination that a RSRP associated with a second base station is less than a first threshold, as shown at block 302 of FIG. 3. In additional aspects, the RSRP associated with 5G (SA) base station 406 may correspond to the RSRP shown at block 302 of FIG. 3, and the thresholdNR threshold used at decision 413 may correspond to the first threshold shown at block 302 of FIG. 3.
According to some aspects of the disclosure, the first base station shown at block 302 of FIG. 3 may not be a 5G (SA) base station. For example, in some aspects, the first base station shown at block 302 of FIG. 3 may be 4G/LTE base station 404, which may be part of a 4G/LTE network or part of a 5G (NSA) network. Similarly, the first wireless communication network shown at block 302 of FIG. 3 may be a 4G/LTE network. According to some aspects, 4G/LTE base station 404 may be referred to as a primary/anchor base station.
In additional aspects, the second base station shown at block 302 of FIG. 3 may be a 5G (SA) base station. For example, in some aspects, the second base station shown at block 302 of FIG. 3 may be 5G (SA) base station 406, which may be part of a 5G (SA) network.
In some aspects, UE 402 may make another decision 414 upon determining at decision 413 that the RSRP associated with 5G (SA) base station 406 is less than (or equal to) the thresholdNR threshold used at decision 413. For example, UE 402 may make a decision 414 as to whether or not the RSRP associated with 5G (SA) base station 406 is less than, equal to, or greater than a second threshold, shown in FIG. 4 as threshold “CUST_THRESHOLD_NR. ”
As illustrated in FIG. 4, according to some aspects of the disclosure, UE 402 may determine at decision 414 that the measured RSRP associated with 5G (SA) base station 406 is less than (or equal to) the “CUST_THRESHOLD_NR” threshold used at decision 414. In some aspects, upon determining at decision 414 that the RSRP associated with 5G (SA) base  station 406 is less than (or equal to) the CUST_THRESHOLD_NR threshold used at decision 414, UE 402 may not proceed with attempting to handover or redirect to a 5G (SA) network. Instead, UE 402 may wait until another measurement of parameters associated with 5G (SA) base station 406 is triggered before returning to decision 413.
According to some aspects, UE 402 may determine at decision 414 that the measured RSRP associated with 5G (SA) base station 406 is greater than the “CUST_THRESHOLD_NR” threshold used at decision 414. According to some aspects of the disclosure, the foregoing actions, such as the determination made at decision 414, may correspond to actions shown at block 304 of FIG. 3, such as the determining, by the UE, that the RSRP associated with a second base station is greater than a second threshold. For example, in some aspects, the determination made by UE 402 at decision 414 that the measured RSRP associated with 5G (SA) base station 406 is greater than the “CUST_THRESHOLD_NR” threshold used at decision 414 may correspond to the determination that the RSRP associated with the second base station is greater than the second threshold, as shown at block 304 of FIG. 3. In additional aspects, the CUST_THRESHOLD_NR threshold used at decision 414 may correspond to the second threshold shown at block 304 of FIG. 3.
In some aspects, upon determining at decision 414 that the RSRP associated with the second base station, e.g., 5G (SA) base station 406, is greater than the second threshold, e.g., the CUST_THRESHOLD_NR threshold used at decision 414, UE 402 may transmit to the first base station, e.g., 4G/LTE base station 404, a measurement report message 415 associated with the first threshold, e.g., the thresholdNR threshold. According to some aspects, the transmitted measurement report message 415 may be and/or may include an indication that the RSRP associated with the second base station, e.g., 5G (SA) base station 406, is greater than the first threshold, e.g., the thresholdNR threshold. In some aspects, the transmitted indication may be an “Event B1” indication and/or an “Event B2” indication, as is illustrated in FIG. 4 as being included in measurement report message 415. According to some aspects, inclusion of the “Event B1” indication in the measurement report message 415 may indicate that the RSRP associated with the 5G (SA) base station 406, e.g., the second base station, is greater than the thresholdNR threshold, e.g., the first threshold. In some aspects, inclusion of the“Event B2” indication in the measurement report message 415 may indicate that the RSRP associated with the 5G (SA) base station 406 is greater than the thresholdNR threshold and that an RSRP associated with the 4G/LTE base station 404, e.g., the first base station, is less than another (third) threshold.
As illustrated in FIG. 4, in additional aspects of the disclosure, transmission of measurement report message 415 may also be triggered based on decision 413. For example, in some aspects, UE 402 may determine at decision 413 that a measured RSRP associated with 5G (SA) base station 406 is greater than the “thresholdNR” threshold used at decision 413. According to some aspects, upon determining at decision 413 that a measured RSRP associated with 5G (SA) base station 406 is greater than the “thresholdNR” threshold used at decision 413, UE 402 may transmit to 4G/LTE base station 404 measurement report message 415.
According to some aspects, in response to receiving the measurement report message 415, 4G/LTE base station 404, e.g., the first base station, may send to UE 402 a message 416, e.g., the MobilityFromEUTRACommand message or RRCConnectionRelease with redirectedCarrierInfo nr-r15 message shown in FIG. 4. UE 402 may receive the message 416 sent by 4G/LTE base station 404. In some aspects, the received message 416 may itself be and/or may include an indication to register UE 402 in the 5G (SA) network associated with 5G (SA) base station 406, e.g., a second wireless communication network associated with the second base station. In some aspects, the received message 416 and/or any indications provided with message 416 may be associated with, e.g., based on or responsive to, the transmitted measurement report message 415, the Event B1 indication, and/or the Event B2 indication.
In some aspects of the disclosure, UE 402 may trigger a registration procedure with 5G (SA) base station 406 to register UE 402 in a 5G (SA) network so that UE 402 may receive 5G (SA) network service. In other words, UE 402 may trigger a registration procedure to register UE 402 for service in a second wireless communication network associated with the second base station, e.g., the 5G (SA) network associated with 5G (SA) base station 406. According to some aspects, the registration procedure to register UE 402 in a 5G (SA) network associated with 5G (SA) base station 406 may be triggered upon, based on, or responsive to, UE 402 receiving message 416 and/or any indications provided with message 416 from 4G/LTE base station 404, such as the indication to register UE 402 in the 5G (SA) network associated with 5G (SA) base station 406.
In some aspects, the registration procedure to register UE 402 in a 5G (SA) network associated with 5G (SA) base station 406 may also be triggered based on, or responsive to, the determination made by UE 402 at decision 414. For example, in some aspects, UE 402 may trigger the registration procedure to register UE 402 in a 5G (SA) network associated with 5G (SA) base station 406, e.g., a second wireless communication network associated  with the second base station, upon determining that the RSRP associated with the 5G (SA) base station 406 is greater than a second threshold, such as at decision 414. According to some aspects of the disclosure, the foregoing actions, such as the triggering of the registration procedure with 5G (SA) base station 406, may correspond to actions shown at block 304 of FIG. 3, such as the triggering, by the UE, of a registration procedure to register the UE in a second wireless communication network associated with the second base station upon determining that the RSRP associated with the second base station is greater than a second threshold. For example, in some aspects, the triggered registration procedure with 5G (SA) base station 406 shown in FIG. 4 may correspond to the triggered registration procedure shown at block 304 of FIG. 3.
In some aspects, the registration procedure triggered by UE 402 with 5G (SA) base station 406 to register UE 402 in a 5G (SA) network associated with 5G (SA) base station 406 may include various operations. For example, as illustrated in FIG. 4, in one aspect of the disclosure, the triggered registration procedure may include communication 417 between UE 402 and 5G (SA) base station 406 so that UE 402 may acquire the target 5G (SA) base station 406 technology. The triggered registration procedure may also include UE 402 transmitting a message 418 indicating that an RRC connection configuration between UE 402 and 5G (SA) base station 406 is complete.
According to some aspects of the disclosure, the second threshold, e.g., the CUST_THRESHOLD_NR threshold used at decision 414, may be adjustable. For example, in some aspects of the disclosure, a value of the second threshold may be adjusted from a first value to a second value that is different than the first value. As an example, in some aspects of the disclosure, the value of the second threshold may be adjusted from a first value to a second value after the UE determines at decision 414 that the measured RSRP associated with 5G (SA) base station 406 is less than (or equal to) the currently used second threshold, e.g., the “CUST_THRESHOLD_NR” threshold used at decision 414. In some aspects of the disclosure, the second threshold, e.g., the CUST_THRESHOLD_NR threshold used at decision 414, may be different than the first threshold, e.g., the thresholdNR threshold used at decision 413.
According to some aspects of the disclosure, the first threshold, e.g., the thresholdNR threshold used at decision 413, may be a fixed threshold. For example, in some aspects, the first threshold may be preset by a wireless communication network or a wireless communication specification, such as a 3GPP specification, to a value and may not be adjusted from that value.
In some aspects of the disclosure, the first threshold and/or the second threshold may be provided to UE 402 by 4G/LTE base station 404. According to some aspects, as illustrated in FIG. 4, 4G/LTE base station 404 may transmit to UE 402 a message 411, e.g., a measurement configuration message, that includes the first threshold and/or the second threshold. In additional aspects, 4G/LTE base station 404 may provide to UE 402 the first threshold and/or the second threshold in a message transmitted from 4G/LTE base station 404 to UE 402 as part of communication 410.
In some aspects, techniques for handover and redirection of a UE from 4G network service to 5G (SA) network service may include a UE determining that a RSRP associated with a second base station is less than a first threshold while the UE is registered in a first wireless communication network associated with a first base station. Techniques for handover and redirection of a UE from 4G network service to 5G (SA) network service may also include triggering a registration procedure to register the UE in a second wireless communication network associated with the second base station upon determining that the RSRP associated with the second base station is greater than a second threshold.
Techniques for handover and redirection of a UE from 4G network service to 5G (SA) network service may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the UE may transmit to the first base station a measurement report associated with the first threshold upon determining that the RSRP associated with the second base station is greater than the second threshold.
In a second aspect, alone or in combination with the first aspect, the UE may receive from the first base station an indication to register the UE in the second wireless communication network associated with the second base station, wherein the received indication is associated with the transmitted measurement report, and wherein the registration procedure is triggered upon receiving the indication from the first base station.
In a third aspect, alone or in combination with one or more of the first and second aspects, the second threshold may be adjustable.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the first base station may not be a 5G (SA) base station.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the second base station may be a 5G (SA) base station.
Those of skill in the art would understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The functional blocks and modules described herein (e.g., the functional blocks and modules in FIG. 2) may comprise processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof. In addition, features discussed herein may be implemented via specialized processor circuitry, via executable instructions, and/or combinations thereof.
Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm processing (e.g., the logical blocks in FIG. 3) described in connection with the disclosure herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure. Skilled artisans will also readily recognize that the order or combination of components, methods, or interactions that are described herein are merely examples and that the components, methods, or interactions of the various aspects of the present disclosure may be combined or performed in ways other than those illustrated and described herein.
The various illustrative logical blocks, modules, and circuits described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a  plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
Features of a method or algorithm described in connection with the disclosure herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
In one or more exemplary designs, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. Computer-readable storage media may be any available media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, a connection may be properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, or digital subscriber line (DSL) , then the coaxial cable, fiber optic cable, twisted pair, or DSL, are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , hard disk, solid state disk, and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
As used herein, including in the claims, the term “and/or, ” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination  of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination. Also, as used herein, including in the claims, “or” as used in a list of items prefaced by “at least one of” indicates a disjunctive list such that, for example, a list of “at least one of A, B, or C” means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) or any of these in any combination thereof.
The previous description of the disclosure is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Thus, the disclosure is not intended to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (24)

  1. A method of wireless communication, comprising:
    determining, by a user equipment (UE) , that a reference signal reference power (RSRP) associated with a second base station is less than a first threshold while the UE is registered in a first wireless communication network associated with a first base station; and
    triggering, by the UE, a registration procedure to register the UE in a second wireless communication network associated with the second base station upon determining that the RSRP associated with the second base station is greater than a second threshold.
  2. The method of claim 1, wherein the second threshold is adjustable.
  3. The method of claim 1, further comprising:
    transmitting, by the UE to the first base station, a measurement report associated with the first threshold upon determining that the RSRP associated with the second base station is greater than the second threshold; and
    receiving, by the UE from the first base station, an indication to register the UE in the second wireless communication network associated with the second base station, wherein the received indication is associated with the transmitted measurement report, and wherein the registration procedure is triggered upon receiving the indication from the first base station.
  4. The method of claim 1, wherein the first base station is not a fifth generation (5G) standalone (SA) base station.
  5. The method of claim 1, wherein the second base station is a fifth generation (5G) standalone (SA) base station.
  6. The method of any combination of claims 1-5.
  7. An apparatus configured for wireless communication, comprising:
    means for determining that a reference signal reference power (RSRP) associated with a second base station is less than a first threshold while a user equipment (UE) is registered in a first wireless communication network associated with a first base station; and
    means for triggering a registration procedure to register the UE in a second wireless communication network associated with the second base station upon determining that the RSRP associated with the second base station is greater than a second threshold.
  8. The apparatus of claim 7, wherein the second threshold is adjustable.
  9. The apparatus of claim 7, further comprising:
    means for transmitting, by the UE to the first base station, a measurement report associated with the first threshold upon determining that the RSRP associated with the second base station is greater than the second threshold; and
    means for receiving, by the UE from the first base station, an indication to register the UE in the second wireless communication network associated with the second base station, wherein the received indication is associated with the transmitted measurement report, and wherein the registration procedure is triggered upon receiving the indication from the first base station.
  10. The apparatus of claim 7, wherein the first base station is not a fifth generation (5G) standalone (SA) base station.
  11. The apparatus of claim 7, wherein the second base station is a fifth generation (5G) standalone (SA) base station.
  12. The apparatus of any combination of claims 7-11.
  13. A non-transitory computer-readable medium having program code recorded thereon, the program code comprising:
    program code executable by a computer for causing the computer to determine that a reference signal reference power (RSRP) associated with a second base station is less than a first threshold while a user equipment (UE) is registered in a first wireless communication network associated with a first base station; and
    program code executable by the computer for causing the computer to trigger a registration procedure to register the UE in a second wireless communication network associated with the second base station upon determining that the RSRP associated with the second base station is greater than a second threshold.
  14. The non-transitory computer-readable medium of claim 13, wherein the second threshold is adjustable.
  15. The non-transitory computer-readable medium of claim 13, further comprising:
    program code executable by the computer for causing the computer to transmit a measurement report associated with the first threshold upon determining that the RSRP associated with the second base station is greater than the second threshold; and
    program code executable by the computer for causing the computer to receive an indication to register the UE in the second wireless communication network associated with the second base station, wherein the received indication is associated with the transmitted measurement report, and wherein the registration procedure is triggered upon receiving the indication from the first base station.
  16. The non-transitory computer-readable medium of claim 13, wherein the first base station is not a fifth generation (5G) standalone (SA) base station.
  17. The non-transitory computer-readable medium of claim 13, wherein the second base station is a fifth generation (5G) standalone (SA) base station.
  18. The non-transitory computer-readable medium of any combination of claims 13-17.
  19. An apparatus configured for wireless communication, the apparatus comprising:
    at least one processor; and
    a memory coupled to the at least one processor,
    wherein the at least one processor is configured to:
    determine that a reference signal reference power (RSRP) associated with a second base station is less than a first threshold while a user equipment (UE) is registered in a first wireless communication network associated with a first base station; and
    trigger a registration procedure to register the UE in a second wireless communication network associated with the second base station upon determining that the RSRP associated with the second base station is greater than a second threshold.
  20. The apparatus of claim 19, wherein the second threshold is adjustable.
  21. The apparatus of claim 19, wherein the at least one processor is further configured to:
    transmit a measurement report associated with the first threshold upon determining that the RSRP associated with the second base station is greater than the second threshold; and
    receive an indication to register the UE in the second wireless communication network associated with the second base station, wherein the received indication is associated with the transmitted measurement report, and wherein the registration procedure is triggered upon receiving the indication from the first base station.
  22. The apparatus of claim 19, wherein the first base station is not a fifth generation (5G) standalone (SA) base station.
  23. The apparatus of claim 19, wherein the second base station is a fifth generation (5G) standalone (SA) base station.
  24. The apparatus of any combination of claims 19-23.
PCT/CN2020/093893 2020-06-02 2020-06-02 Techniques for handover or redirection of ue from 4g to 5g (sa) WO2021243551A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093893 WO2021243551A1 (en) 2020-06-02 2020-06-02 Techniques for handover or redirection of ue from 4g to 5g (sa)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093893 WO2021243551A1 (en) 2020-06-02 2020-06-02 Techniques for handover or redirection of ue from 4g to 5g (sa)

Publications (1)

Publication Number Publication Date
WO2021243551A1 true WO2021243551A1 (en) 2021-12-09

Family

ID=78831633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093893 WO2021243551A1 (en) 2020-06-02 2020-06-02 Techniques for handover or redirection of ue from 4g to 5g (sa)

Country Status (1)

Country Link
WO (1) WO2021243551A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007067484A2 (en) * 2005-12-05 2007-06-14 Motorola, Inc. Method and system for inter-technology active handoff of a hybrid communication device
US20170055197A1 (en) * 2015-08-21 2017-02-23 Qualcomm Incorporated Methods and apparatus for reducing handover signaling during wireless communication procedures
CN109040327A (en) * 2017-06-09 2018-12-18 中兴通讯股份有限公司 A kind of distribution method and device of IP address of mobile terminal
US20180376384A1 (en) * 2017-01-09 2018-12-27 Lg Electronics Inc. Method for interworking between networks in wireless communication system and apparatus thereof
WO2019090788A1 (en) * 2017-11-13 2019-05-16 Oppo广东移动通信有限公司 Method and apparatus for triggering network handover, and computer storage medium
CN110072279A (en) * 2018-01-24 2019-07-30 华为技术有限公司 A kind of method and terminal of network registry pattern switching
CN110892754A (en) * 2017-07-13 2020-03-17 三星电子株式会社 Method and apparatus for performing handover in wireless communication system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007067484A2 (en) * 2005-12-05 2007-06-14 Motorola, Inc. Method and system for inter-technology active handoff of a hybrid communication device
US20170055197A1 (en) * 2015-08-21 2017-02-23 Qualcomm Incorporated Methods and apparatus for reducing handover signaling during wireless communication procedures
US20180376384A1 (en) * 2017-01-09 2018-12-27 Lg Electronics Inc. Method for interworking between networks in wireless communication system and apparatus thereof
CN109040327A (en) * 2017-06-09 2018-12-18 中兴通讯股份有限公司 A kind of distribution method and device of IP address of mobile terminal
CN110892754A (en) * 2017-07-13 2020-03-17 三星电子株式会社 Method and apparatus for performing handover in wireless communication system
WO2019090788A1 (en) * 2017-11-13 2019-05-16 Oppo广东移动通信有限公司 Method and apparatus for triggering network handover, and computer storage medium
CN110072279A (en) * 2018-01-24 2019-07-30 华为技术有限公司 A kind of method and terminal of network registry pattern switching

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP: "Procedures for the 5G System (5GS)", 3GPP TS 23.502 V16.4.0, 31 March 2020 (2020-03-31), pages 1 - 582, XP051861092 *

Similar Documents

Publication Publication Date Title
WO2021030970A1 (en) Ul transmission method for endc dual connection device
EP4000311B1 (en) Full configuration handover techniques
US11101871B1 (en) Beam selection for multi-subscriber identity module (MSIM) devices
WO2021159504A1 (en) Joint port selection for multiple transmission and reception points
EP3994935A1 (en) Cross carrier activation of a periodic grant
US20230292299A1 (en) History augmented synchronization signal based antenna beam selection
US11115990B2 (en) UE autonomous beam selection
CN114270957B (en) User equipment behavior with respect to obtaining new radio early measurement configuration
US11516824B2 (en) Dynamic UE beam switching for mmWave measurements in asynchronous networks
WO2021243551A1 (en) Techniques for handover or redirection of ue from 4g to 5g (sa)
WO2021237589A1 (en) A method to accelerate ue return 5g from 4g
WO2021237566A1 (en) Network service recovery from abnormal 5g (sa) networks
WO2021237576A1 (en) Network service recovery from abnormal 5g (sa) networks for a dual sim ue
US11382057B2 (en) UE optimization to move between wireless communication networks based on SUCI support
WO2021237610A1 (en) Low-power data scheduling and reception techniques
WO2022027429A1 (en) Multi-beam techniques for small data transfer over preconfigured uplink resources
WO2022056837A1 (en) Improve ue performance by smart measurement scheduling and reporting
WO2021179303A1 (en) Power headroom reporting for a full-duplex mode of operation of a device
WO2022067834A1 (en) Design of nr sidelink transmission gap
US20230231603A1 (en) Techniques for antenna-switched diversity and multi-sim concurrent operation management
WO2021248507A1 (en) Stand alone (sa) 5g idle mobility extension
WO2021159455A1 (en) Data transfer latency reduction for a mobile device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939456

Country of ref document: EP

Kind code of ref document: A1