WO2021241043A1 - 蓄電池監視装置及び蓄電池監視装置の保守方法 - Google Patents

蓄電池監視装置及び蓄電池監視装置の保守方法 Download PDF

Info

Publication number
WO2021241043A1
WO2021241043A1 PCT/JP2021/015372 JP2021015372W WO2021241043A1 WO 2021241043 A1 WO2021241043 A1 WO 2021241043A1 JP 2021015372 W JP2021015372 W JP 2021015372W WO 2021241043 A1 WO2021241043 A1 WO 2021241043A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
monitoring
identification information
storage battery
sensor unit
Prior art date
Application number
PCT/JP2021/015372
Other languages
English (en)
French (fr)
Inventor
広和 伊藤
裕也 紀平
一夫 春木
伊吹 綿野
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to US17/927,218 priority Critical patent/US20230223776A1/en
Publication of WO2021241043A1 publication Critical patent/WO2021241043A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/371Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with remote indication, e.g. on external chargers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a storage battery monitoring device and a maintenance method for the storage battery monitoring device.
  • Patent Document 1 discloses that in a power storage system, a relay board is communicated and connected to a higher power control device and each lower storage battery board.
  • One aspect of the present invention provides a storage battery monitoring device using wireless communication and a maintenance method thereof.
  • the storage battery monitoring device includes a plurality of monitoring units attached to a plurality of storage batteries connected in series and / or in parallel, and a management unit capable of wireless communication connection with the plurality of monitoring units.
  • the management unit sequentially selects the identification information of the plurality of monitoring units stored in advance, and requests a connection including the identification information of the selected monitoring unit in order to establish communication with the selected monitoring unit.
  • the message is transmitted to the plurality of monitoring units via wireless communication.
  • the management unit further updates the identification information of the other monitoring unit to the identification information of the one monitoring unit when one monitoring unit is replaced with another monitoring unit via wireless communication.
  • Storage battery monitoring including a plurality of monitoring units attached to a plurality of storage batteries connected in series and / or in parallel according to another aspect of the present invention, and a management unit capable of wireless communication connection with the plurality of monitoring units.
  • the maintenance method of the device is to replace one monitoring unit with another monitoring unit, select the identification information of the other monitoring unit on the touch panel provided in the management unit, and use the management unit and the other monitoring unit. Communication is established, and the identification information of the other monitoring unit is updated to the identification information of the one monitoring unit via wireless communication on the touch panel provided in the management unit.
  • the identification information can be easily updated.
  • Bluetooth Low Energy is attracting attention for IoT applications (hereinafter referred to as BLE).
  • BLE wireless communication can be performed at low cost.
  • the lead-acid battery monitoring device shown in FIG. 1 has a plurality of sensor units (monitoring units) 20 attached to each of a plurality of lead-acid batteries 1 connected in series and / or in parallel, and a wireless communication connection with the plurality of sensor units 20. It is provided with a possible control unit (management unit) 10.
  • a bank in which a plurality of lead-acid batteries 1 are connected in series may be referred to as a domain
  • a domain in which a plurality of banks are connected in parallel may be referred to as a domain
  • the control unit 10 and the plurality of sensor units 20 may be installed in a storage battery panel that stores a plurality of lead storage batteries to be monitored.
  • the control unit 10 is attached to the inside of the opening / closing lid of the storage battery panel.
  • the plurality of sensor units 20 are installed on each of the plurality of lead storage batteries 1 arranged in the storage battery panel.
  • the control unit 10 has a Web server function and may accept access from a computer (PC) connected to a network or a terminal such as a tablet.
  • PC computer
  • FIG. 2 is a block diagram showing the configuration of the control unit 10.
  • the control unit 10 includes a control unit 100, a storage unit 110, a display unit 30, an operation unit 40, a first communication unit 51, a second communication unit 52, and a third communication unit 53.
  • the control unit 100 has a processor and controls the first communication unit 51, the second communication unit 52, and the third communication unit 53 based on the program stored in the storage unit 110.
  • the storage unit 110 uses a non-volatile memory.
  • the storage unit 110 stores the program in advance.
  • the storage unit 110 stores the contents set by the operation on the menu screen described later.
  • the storage unit 110 stores the storage battery information acquired by the control unit 100.
  • the display unit 30 is, for example, a liquid crystal panel.
  • the operation unit 40 is a touch panel built in the liquid crystal panel.
  • the operation unit 40 may include a physical button.
  • the first communication unit 51 is a wireless communication module that realizes a wireless communication connection with the sensor unit 20.
  • the control unit 10 communicates with a plurality of sensor units 20 by the first communication unit 51.
  • the first communication unit 51 realizes communication by BLE.
  • the second communication unit 52 is a connection module for connecting to the network of the customer (customer who owns a power storage system such as a backup power source using a lead storage battery 1) shown in FIG. 1, and is a network card corresponding to, for example, a wired LAN. Is.
  • the third communication unit 53 is a communication module that enables communication connection with a computer (PC) connected to a network or a tablet terminal.
  • the third communication unit 53 is, for example, USB (Universal Serial Bus).
  • FIG. 3 is a schematic diagram showing communication between the control unit 10 and the sensor unit 20.
  • the message broadcastly transmitted from the control unit 10 to the plurality of sensor units 20 includes identification information of the specific sensor unit 20.
  • the message may include a MAC address storage unit and a message body.
  • the identification information of the specific sensor unit 20 may be stored in the MAC address storage unit.
  • the control unit 10 has a Web server function and creates screen data for screen display including an icon showing the overall state of the plurality of lead-acid batteries 1.
  • FIG. 4 shows an example of a remote monitoring screen displayed on a Web browser terminal connected to the control unit 10 via a network.
  • the remote monitoring screen includes an icon for the overall status, an icon for the battery voltage status, and an icon for the battery internal resistance status.
  • the icon indicating "caution” and the icon indicating “warning” may be prepared.
  • icons indicating "caution” and "warning” may be prepared.
  • the message transmitted from the control unit 10 to the plurality of sensor units 20 includes the identification information of the specific sensor unit 20, and the identification information is used to identify the control unit 10 and the identification. Establishes communication with the sensor unit 20 of. Therefore, even when hundreds of sensor units 20 attached to hundreds of lead-acid batteries 1 are provided, such as a power storage system having a storage battery group in the form of a domain including a plurality of banks, the sensor units 20 are sequentially started. , The monitoring data can be reliably acquired by the control unit 10.
  • the sensor unit 20 and the control unit 10 are installed on the same storage battery panel. It is relatively easy to attach (retrofit) this lead-acid battery monitoring device to an existing storage battery board that does not have a monitoring device.
  • the sensor unit 20 wirelessly transmits monitoring data of the voltage, internal resistance, and temperature of the lead-acid battery 1 to which the sensor unit 20 is connected to the control unit 10. Therefore, the health condition (SOH) of the lead-acid battery 1 can be monitored.
  • the control unit 10 may determine the overall state by comparing the monitoring data (numerical data) of the plurality of lead-acid batteries 1 with the threshold value and performing statistical processing. Remote monitoring of the lead-acid battery 1 can be performed with a Web browser of a terminal connected to the control unit 10 via a LAN.
  • the icon representing the overall state of the plurality of lead-acid batteries 1 makes it easy to grasp the state of the power storage system.
  • FIG. 5 is a flowchart showing an example of the processing procedure in the control unit 10.
  • the control unit 10 executes the following processing in bank units at predetermined timings (for example, once a day).
  • the control unit 10 executes processing for all banks in order.
  • the control unit 10 stores in the built-in memory the timing for executing the following processing and the identification information of the sensor unit 20 to be connected.
  • the control unit 10 selects one identification information of the sensor unit 20 (step S201).
  • the control unit 10 transmits a connection request message including the selected identification information by BLE (step S202), and determines whether or not a communication connection (pairing) with the sensor unit 20 of the selected identification information has been established (step S202).
  • Step S203 A connection request may be transmitted from the control unit 10 at a timing different from that during normal monitoring (measurement), and this point will be described later.
  • step S203 When it is determined in step S203 that the communication connection has been established (S203: YES), the control unit 10 transmits a measurement request to the sensor unit 20 connected to the communication (step S204), and measures in response to the measurement request. It is determined whether or not the monitoring data obtained is received (step S205).
  • control unit 10 transmits a sleep instruction to the sensor unit 20 having a communication connection (step S206), and disconnects the communication connection (step S207). , The process proceeds to the next step S208.
  • the control unit 10 determines whether or not the identification information of all the sensor units 20 included in the target bank has been selected (step S208). If it is determined that all of them have not been selected (S208: NO), the control unit 10 returns the process to step S201 and selects the next identification information of the sensor unit 20.
  • control unit 10 ends the processing for the bank.
  • step S203 If it is determined in step S203 that the process has not been established (S203: NO), the control unit 10 returns the process to step S203 and stands by. The control unit 10 tries a predetermined number of times in a predetermined standby time, and if communication cannot be established, the process proceeds to step S207.
  • step S205 If it is determined in step S205 that reception is not possible (S205: NO), the control unit 10 returns the process to step S205 and waits. The control unit 10 tries a predetermined number of times in a predetermined waiting time, and if data cannot be received, the process proceeds to step S207.
  • FIG. 6 is a flowchart showing an example of the processing procedure in the sensor unit 20.
  • the sensor unit 20 intermittently activates the BLE communication device from the sleep state, for example, every 2 seconds or 3 seconds (step S301), and determines whether or not a connection request to itself has been received (step S302). ..
  • the sensor unit 20 transitions to the sleep state again (step S303), and the process ends.
  • step S302 When it is determined in step S302 that the connection request could be received (S302: YES), the sensor unit 20 starts the whole (step S304) and determines whether or not the measurement request has been received (step S305). When it is determined that the measurement request has been received (S305: YES), the sensor unit 20 measures the voltage, internal resistance, and temperature monitoring data in the lead storage battery to which the own device is attached (step S306). The sensor unit 20 transmits the monitoring data obtained by the measurement to the control unit 10 as a response to the measurement request (step S307).
  • the sensor unit 20 determines whether or not the sleep instruction has been received (step S308), and if it determines that the sleep instruction has been received, the sensor unit 20 transitions to the sleep state (step S303) and ends the process.
  • step S305 When it is determined in step S305 that the measurement request could not be received (S305: NO), the sensor unit 20 returns the process to step S305 and waits. The sensor unit 20 tries a predetermined number of times in a predetermined standby time, and if the measurement request cannot be received, the process proceeds to step S303.
  • step S308 When it is determined in step S308 that the sleep instruction could not be received (S308: NO), the sensor unit 20 returns the process to step S308 and waits. The sensor unit 20 tries a predetermined number of times in a predetermined standby time, and if the sleep instruction cannot be received, the process proceeds to step S303.
  • FIG. 7 is a schematic diagram showing a communication procedure.
  • the start-up time in the sensor unit 20 is shown by the control unit 10 performing the procedure shown in the flowchart of FIG. 5 and the sensor unit 20 correspondingly performing the procedure shown in the flowchart of FIG.
  • the sensor unit 20 intermittently determines whether or not the connection request can be received by the BLE communication device, and monitors the lead storage battery 1 to which the sensor unit is attached only when the connection request can be received. The data is measured and the measured monitoring data is wirelessly transmitted to the control unit 10.
  • FIG. 8 shows a menu screen displayed on the display unit 30 of the control unit 10.
  • the menu screens are "1. Current status", “2. Measurement screen”, “3. Current alarm”, “4. History display”, “5. Graph display”, “6. Various settings", “7. It has displays (icons) such as “system information”, “8. alarm output setting confirmation”, and “9. data storage”. It may have a display (icon) of "screen OFF”.
  • the lead-acid battery monitoring device issues an alarm when various abnormalities occur. Specifically, in addition to the voltage and internal resistance of the lead-acid battery 1 monitored by the sensor unit 20, the temperature of the lead-acid battery 1 (the temperature detected by the temperature sensor installed near the lead-acid battery 1) is abnormal. If the value is high, the lead-acid battery monitoring device issues an alarm. Further, the lead-acid battery monitoring device issues an alarm regarding an abnormality in the communication state between the sensor unit 20 and the control unit 10 or an abnormality in the sensor unit 20 itself.
  • a sensor unit initial ID is set as identification information in the spare sensor unit.
  • the spare sensor unit may always have the same initial ID.
  • the initial ID is, for example, "0-N / A-0".
  • the set number indicates a number (for example, a serial number) of the control unit 10.
  • the bank information indicates which of the plurality of banks (A, B, C, D) managed by the control unit 10 is.
  • the battery number indicates the series order of batteries in the bank.
  • the maintenance staff inputs "0" in the "set number input” field, "N / A” in the “bank information input” field, and the battery number on the display unit of the control unit 10. Confirm that "0” is displayed in the column of, and press "Start Connection”. As a result, the control unit 10 sends a connection request and starts an attempt to make a communication connection with the sensor unit 20 whose identification information is "0-N / A-0". Meanwhile, a screen as shown in FIG. 10 is displayed on the display unit of the control unit 10.
  • the connection request at this time is called an ID setting request to distinguish it from the connection request at the time of normal monitoring.
  • the ID setting request may include a first ID setting request (ID setting request 0) and a second ID setting request (ID setting request 1).
  • ID setting request 0 a first ID setting request
  • ID setting request 1 a second ID setting request
  • the display unit light emitting unit such as an LED included in the sensor unit 20 receives it.
  • the surroundings may be notified that the first ID setting request has been received (for example, the LED may be lit).
  • the maintenance personnel can confirm that the spare sensor unit 20 attached to the lead storage battery 1 has started communication with the control unit 10.
  • the sensor unit 20 whose identification information is "0-N / A-0" receives the second ID setting request transmitted by the control unit 10, and a communication connection between the control unit 10 and the spare sensor unit 20 is established. And, by the input of the maintenance staff on the screen shown in FIG. 11, the identification information "0-N / A-0" of the spare sensor unit is updated to the identification information "123-A-123" of the removed sensor unit. Accept to do.
  • the maintenance person presses the "ID setting" shown in FIG.
  • the identification information of the spare sensor unit is updated to "123-A-123”
  • the screen transitions to the screen shown in FIG. "123-A-123” is displayed in the "Sensor unit ID” column.
  • the lead-acid battery monitoring device has a plurality of sensor units 20 attached to a plurality of lead-acid batteries 1 connected in series and / or in parallel, and wireless communication connection with the sensor units 20. It comprises a possible control unit 10.
  • the control unit 10 performs the following steps: The identification information of the plurality of sensor units 20 stored in advance is sequentially selected, and the identification information is sequentially selected. In order to establish communication with the selected sensor unit 20, a connection request message including the identification information of the selected sensor unit is transmitted to the plurality of sensor units 20. A measurement request for monitoring data is transmitted to the sensor unit 20 for which communication has been established.
  • the monitoring data of the lead storage battery 1 to which the sensor unit 20 is attached responds to the reception of the measurement request. Is measured, and the measured monitoring data is wirelessly transmitted to the control unit 10.
  • one sensor unit (sensor unit whose identification information is "123-A-123”) is replaced with another sensor unit (sensor unit whose identification information is "0-N / A-0").
  • the identification information "0-N / A-0" of another sensor unit is updated to the identification information "123-A-123" of one sensor unit.
  • the forms of the identification information "123-A-123” and “0-N / A-0" are examples, and the identification information is not limited to this form, and simply, the serial number of the sensor unit 20 is used. May be.
  • the identification information can be easily updated.
  • the probability of abnormality occurrence of the sensor unit 20 increases as the number of sensor units 20 attached to each lead-acid battery 1 increases, and the sensor unit The frequency of replacement will also increase.
  • the maintenance activity of the lead-acid battery monitoring device is significantly simplified. While continuing the operation of the power storage system (minimizing the inconvenience and burden on the customer), it is possible to quickly change the settings of the sensor unit due to the replacement work. It is possible to establish a wireless communication connection between the control unit 10 and the spare sensor unit 20 by a connection procedure similar to that in the normal monitoring operation, update the sensor unit ID, and return to the normal monitoring operation.
  • the control unit 10 includes a touch panel type display unit 30, and the touch panel display unit 30 displays a reception screen for receiving an update of the identification information of the sensor unit 20.
  • the maintenance staff who visits the storage battery panel to which the alarm is issued can replace the sensor unit 20 and update the identification information of the sensor unit 20 at the site without bringing various maintenance devices. Can be done.
  • the spare sensor unit 20 (not attached to the lead-acid battery 1) has a unique sensor unit initial ID "0-N /" before the identification information is updated by the control unit 10. Has A-0 ".
  • a part of the maintenance activity is standardized, and the maintenance activity is further simplified. It is possible to prevent a situation in which a maintenance person makes a mistake in work or forgets the initial ID of the sensor unit at the site.
  • the above-described embodiment is an example, and the present invention is not limited thereto.
  • the communication standard of wireless communication used is not limited to BLE.
  • the storage battery is not limited to the lead storage battery, and may be a lithium ion battery or another secondary battery.
  • the identification information of the sensor unit 20 may be updated remotely without the maintenance staff visiting the storage battery panel.
  • the sensor unit replacement may be left to the customer operator (first operator), and the maintenance staff (second operator) may update the identification information of the sensor unit 20 from the terminal connected to the control unit 10 via the network. good.
  • the procedure shown in FIGS. 9 to 12 is not limited to the case of replacing the failed sensor unit 20, but may be carried out for updating the identification information of the sensor unit in other situations. For example, when a storage battery monitoring device is newly installed in a power storage system (battery panel, etc.), the identification information of the sensor unit 20 set as unintended identification information due to a setting error or the like is changed to appropriate identification information. This procedure may be performed.
  • the storage battery monitoring device in the above-described embodiment has the following configurations.
  • the storage battery monitoring device includes a plurality of monitoring units attached to a plurality of storage batteries connected in series and / or in parallel, and a management unit capable of wireless communication connection with the plurality of monitoring units.
  • a connection request message including the identification information of the selected monitoring unit is sent via wireless communication. It is transmitted to the plurality of monitoring units, a measurement request for monitoring data is transmitted to the monitoring unit for which communication has been established, and the plurality of monitoring units each receive the connection request message and communicate with the management unit.
  • the monitoring data of the storage battery to which the monitoring unit is attached is measured in response to the reception of the measurement request, and the measured monitoring data is wirelessly transmitted to the management unit, and the management unit further When one monitoring unit is replaced with another monitoring unit via wireless communication, the identification information of the other monitoring unit is updated with the identification information of the one monitoring unit. That is, in the above-described embodiment, each monitoring unit measures the monitoring data of the storage battery in response to the reception of the measurement request transmitted from the management unit. Alternatively, the monitoring unit may autonomously measure the monitoring data of the storage battery without waiting for the measurement request from the management unit. The monitoring unit may measure the monitoring data of the storage battery to which the monitoring unit is attached as an event (for example, at a predetermined cycle), and wirelessly transmit the measured monitoring data to the management unit.
  • Control unit management unit
  • Sensor unit monitoring unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の一態様に係る蓄電池監視装置は、直列及び/又は並列に接続された複数の蓄電池に取り付けられる複数の監視ユニットと、前記複数の監視ユニットと無線通信接続が可能な管理ユニットと、を備え、前記管理ユニットは、予め記憶してある前記複数の監視ユニットの識別情報を順次選択し、選択した監視ユニットとの間の通信を確立すべく、選択した監視ユニットの識別情報を含む接続リクエストメッセージを、無線通信を介して前記複数の監視ユニットへ送信する。前記管理ユニットは更に、無線通信を介して、一の監視ユニットが他の監視ユニットに交換された際に、前記他の監視ユニットの識別情報を前記一の監視ユニットの識別情報に更新する。

Description

蓄電池監視装置及び蓄電池監視装置の保守方法
 本発明は、蓄電池監視装置及び蓄電池監視装置の保守方法に関する。
 特許文献1は、蓄電システムにおいて、中継盤が、上位の電力制御装置と下位の各蓄電池盤とに通信接続されることを開示している。
特許第6135767号
 本発明の一態様は、無線通信を用いた蓄電池監視装置及びその保守方法を提供する。
 本発明の一態様に係る蓄電池監視装置は、直列及び/又は並列に接続された複数の蓄電池に取り付けられる複数の監視ユニットと、前記複数の監視ユニットと無線通信接続が可能な管理ユニットと、を備え、前記管理ユニットは、予め記憶してある前記複数の監視ユニットの識別情報を順次選択し、選択した監視ユニットとの間の通信を確立すべく、選択した監視ユニットの識別情報を含む接続リクエストメッセージを、無線通信を介して前記複数の監視ユニットへ送信する。前記管理ユニットは更に、無線通信を介して、一の監視ユニットが他の監視ユニットに交換された際に、前記他の監視ユニットの識別情報を前記一の監視ユニットの識別情報に更新する。
 本発明の他の一態様に係る直列及び/又は並列に接続された複数の蓄電池に取り付けられる複数の監視ユニットと、前記複数の監視ユニットと無線通信接続が可能な管理ユニットと、を備える蓄電池監視装置の保守方法は、一の監視ユニットを他の監視ユニットに交換し、前記管理ユニットが備えるタッチパネルにて前記他の監視ユニットの識別情報を選択して前記管理ユニットと前記他の監視ユニットとの通信を確立し、前記管理ユニットが備えるタッチパネルにて、無線通信を介して、前記他の監視ユニットの識別情報を前記一の監視ユニットの識別情報に更新する。
 上記態様により、一の監視ユニット(例えば故障した監視ユニット)が他の監視ユニット(例えば予備の監視ユニット)に交換された際、識別情報の更新を容易に行える。
蓄電池監視装置の概要を示す図である。 コントロールユニットの構成を示すブロック図である。 コントロールユニットとセンサユニットとの間の通信を示す概略図である。 Webブラウザ上の遠隔監視画面を示す図である。 コントロールユニットにおける処理手順の一例を示すフローチャートである。 センサユニットにおける処理手順の一例を示すフローチャートである。 通信手順を示す概略図である。 蓄電池監視装置のメニュー画面を示す図である。 センサユニットの識別情報更新のための画面を示す図である。 センサユニットの識別情報更新のための画面を示す図である。 センサユニットの識別情報更新のための画面を示す図である。 センサユニットの識別情報更新のための画面を示す図である。
 蓄電システムでは、多数の蓄電池が直列及び/又は並列に接続される。数百個の蓄電池で構成される大規模な蓄電システムもある。大規模な蓄電システムにおいて個々の蓄電池を遠隔監視することに対するニーズが高まっている。そのような蓄電池監視の実現のために、蓄電池それぞれに取り付けられた複数の監視ユニットと、それら監視ユニットからデータを取得する管理ユニットとを有線接続すると、ネットワーク敷設コストがかさんでしまう。
 ワイヤリングコスト及び通信コストを低減しながら、蓄電池の遠隔監視を実現できる技術が求められている。
 近距離無線通信規格の中では、IoT用途で、Bluetooth Low Energyが注目されている(以下、BLEという)。BLEにより、安価に無線通信を行うことができる。
 以下、図面を参照しながら、蓄電池監視装置の実施形態(鉛蓄電池監視装置)を説明する。図1に示す鉛蓄電池監視装置は、直列及び/又は並列に接続された複数の鉛蓄電池1のそれぞれに取り付けられる複数のセンサユニット(監視ユニット)20と、複数のセンサユニット20と無線通信接続が可能なコントロールユニット(管理ユニット)10とを備える。
 ここで、複数の鉛蓄電池1が直列に接続されたものをバンクと称し、複数のバンクが並列に接続されたものをドメインと称してもよい。
 コントロールユニット10と、複数のセンサユニット20とは、監視対象である複数の鉛蓄電池を格納している蓄電池盤に設置されてもよい。例えば、蓄電池盤の開閉蓋の内側に、コントロールユニット10が取り付けられる。複数のセンサユニット20は、蓄電池盤内に並べられる複数の鉛蓄電池1の上にそれぞれ設置される。
 コントロールユニット10は、Webサーバ機能を有し、ネットワーク接続されたコンピュータ(PC)や、タブレット等の端末によるアクセスを受け付けてもよい。
 図2は、コントロールユニット10の構成を示すブロック図である。コントロールユニット10は、制御部100、記憶部110、表示部30、操作部40、第1通信部51、第2通信部52、第3通信部53を備える。
 制御部100は、プロセッサを有しており、記憶部110に記憶してあるプログラムに基づいて第1通信部51、第2通信部52、第3通信部53を制御する。
 記憶部110は、不揮発性メモリを用いる。記憶部110は予めプログラムを記憶する。記憶部110は、後述のメニュー画面での操作によって設定された内容を記憶する。記憶部110は、制御部100によって取得される蓄電池情報を記憶する。
 表示部30は、例えば液晶パネルである。操作部40は、液晶パネルに内蔵されるタッチパネルである。操作部40は物理ボタンを含んでもよい。
 第1通信部51は、センサユニット20と無線通信接続を実現する無線通信モジュールである。コントロールユニット10は、第1通信部51によって複数のセンサユニット20と通信接続する。第1通信部51は、BLEによって通信を実現する。第2通信部52は、図1に示した顧客(鉛蓄電池1によるバックアップ電源などの蓄電システムを所有する顧客)のネットワークと接続するための接続モジュールであって、例えば有線LANに対応するネットワークカードである。第3通信部53は、ネットワーク接続されたコンピュータ(PC)や、タブレット端末との通信接続を可能とする通信モジュールである。第3通信部53は例えばUSB(Universal Serial Bus)である。
 図3は、コントロールユニット10とセンサユニット20との間の通信を示す概略図である。コントロールユニット10から複数のセンサユニット20に同報送信されるメッセージには、特定のセンサユニット20の識別情報が含まれている。
 メッセージは、MACアドレス格納部と、メッセージ本体とを含んでもよい。MACアドレス格納部に、特定のセンサユニット20の識別情報を格納してもよい。
 コントロールユニット10は、Webサーバ機能を有し、複数の鉛蓄電池1の全体的な状態を表すアイコンを含む画面表示用の画面データを作成する。
 図4は、コントロールユニット10にネットワーク接続されたWebブラウザ端末に表示される遠隔監視画面の例を示す。遠隔監視画面は、全体ステータスのアイコンと、蓄電池電圧状態のアイコンと、蓄電池内部抵抗状態のアイコンと、を含む。
 全体ステータスのアイコンとして、「正常」を示すアイコンのほか、「注意」を示すアイコンや、「警告」を示すアイコンが用意されてもよい。蓄電池電圧状態のアイコンと蓄電池内部抵抗状態のアイコンについても、同様に、「注意」や「警告」を示すアイコンが用意されてもよい。
 上述の鉛蓄電池監視装置では、コントロールユニット10から複数のセンサユニット20に同報送信されるメッセージに、特定のセンサユニット20の識別情報を含め、その識別情報を用いて、コントロールユニット10と当該特定のセンサユニット20との間の通信を確立する。
 そのため、複数のバンクを含むドメインの形態の蓄電池群を持つ蓄電システムのように、数百個の鉛蓄電池1に付随する数百個のセンサユニット20が設けられる場合でも、それらセンサユニット20から順次、コントロールユニット10で監視データを確実に取得できる。
 鉛蓄電池監視装置では、センサユニット20と、コントロールユニット10とが、同一の蓄電池盤に設置される。監視装置を備えていない既設の蓄電池盤にも、比較的容易に、この鉛蓄電池監視装置を取り付ける(後付けする)ことが可能である。
 センサユニット20は、当該センサユニット20が接続されている鉛蓄電池1の電圧、内部抵抗、及び温度、の監視データを、コントロールユニット10に無線送信する。そのため、鉛蓄電池1の健康状態(SOH)を監視できる。
 コントロールユニット10は、複数の鉛蓄電池1の監視データ(数値データ)について、閾値との比較や、統計処理を行って、全体的な状態を決定してもよい。
 コントロールユニット10にLAN接続する端末のWebブラウザにて、鉛蓄電池1の遠隔監視を行うことができる。複数の鉛蓄電池1の全体的な状態を表すアイコンにより、蓄電システムの状態の把握が容易になる。
 図5は、コントロールユニット10における処理手順の一例を示すフローチャートである。コントロールユニット10は、所定のタイミングで(例えば1日に1回)、バンク単位で以下の処理を実行する。コントロールユニット10は、全てのバンクについて順に処理を実行する。コントロールユニット10は、内蔵するメモリに、以下の処理を実行するタイミング、接続対象のセンサユニット20の識別情報を記憶している。
 コントロールユニット10は、センサユニット20の識別情報を1つ選択する(ステップS201)。コントロールユニット10は、選択した識別情報を含む接続リクエストメッセージをBLEによって送信し(ステップS202)、選択した識別情報のセンサユニット20との通信接続(ペアリング)が確立したか否かを判断する(ステップS203)。通常の監視時(計測時)とは別のタイミングで、コントロールユニット10から接続リクエトを送信することもあるが、この点については後述する。
 ステップS203において通信接続が確立したと判断した場合(S203:YES)、コントロールユニット10は、計測リクエストを、通信接続しているセンサユニット20へ送信し(ステップS204)、計測リクエストに応じて計測して得られる監視データを受信できたか否か判断する(ステップS205)。
 監視データを受信できたと判断された場合(S205:YES)、コントロールユニット10は、スリープ指示を、通信接続しているセンサユニット20へ送信し(ステップS206)、通信接続を切断し(ステップS207)、処理を次のステップS208へ進める。
 コントロールユニット10は、対象バンクに含まれる全てのセンサユニット20の識別情報を選択したか否かを判断する(ステップS208)。全て選択していないと判断された場合(S208:NO)、コントロールユニット10は、処理をステップS201へ戻し、次のセンサユニット20の識別情報を選択する。
 全て選択したと判断された場合(S208:YES)、コントロールユニット10は、バンクに対する処理を終了する。
 ステップS203にて確立していないと判断された場合(S203:NO)、コントロールユニット10は、処理をステップS203へ戻して待機する。コントロールユニット10は、所定待機時間で所定回数試行し、通信確立ができなかった場合、処理をステップS207へ進める。
 ステップS205で受信できないと判断された場合(S205:NO)、コントロールユニット10は、処理をステップS205へ戻して待機する。コントロールユニット10は、所定待機時間で所定回数試行し、データを受信できなかった場合、処理をステップS207へ進める。
 図6は、センサユニット20における処理手順の一例を示すフローチャートである。センサユニット20は、例えば2秒又は3秒毎と間欠的に、スリープ状態からBLEの通信デバイスを起動させ(ステップS301)、自身への接続リクエストを受信できたか否かを判断する(ステップS302)。
 接続リクエストを受信できなかったと判断された場合(S302:NO)、センサユニット20は、再度スリープ状態へ遷移し(ステップS303)、処理を終了する。
 ステップS302で接続リクエストを受信できたと判断された場合(S302:YES)、センサユニット20は全体を起動し(ステップS304)、計測リクエストを受信したか否かを判断する(ステップS305)。計測リクエストを受信したと判断された場合(S305:YES)、センサユニット20は、自装置が取り付けられている鉛蓄電池における電圧、内部抵抗、及び、温度の監視データを計測する(ステップS306)。センサユニット20は、計測によって得られた監視データを、計測リクエストに対する応答としてコントロールユニット10へ送信する(ステップS307)。
 センサユニット20は、スリープ指示を受信したか否かを判断し(ステップS308)、受信したと判断した場合、スリープ状態へ遷移し(ステップS303)、処理を終了する。
 センサユニット20は、ステップS305で計測リクエストを受信できなかったと判断された場合(S305:NO)、処理をステップS305へ戻して待機する。センサユニット20は、所定待機時間で所定回数試行し、計測リクエストを受信できなかった場合、処理をステップS303へ進める。
 センサユニット20は、ステップS308でスリープ指示を受信できなかったと判断された場合(S308:NO)、処理をステップS308へ戻して待機する。センサユニット20は、所定待機時間で所定回数試行し、スリープ指示を受信できなかった場合、処理をステップS303へ進める。
 図7は、通信手順を示す概略図である。コントロールユニット10が図5のフローチャートに示した手順を実行し、センサユニット20がそれに応じて図6のフローチャートに示した手順を実行することによるセンサユニット20における起動時間が示されている。図7に示すように、センサユニット20は、BLEの通信デバイスで接続リクエストを受信できたか否かを間欠的に判断し、受信できたときのみ当該センサユニットが取り付けられている鉛蓄電池1の監視データを計測し、計測した監視データをコントロールユニット10に無線送信している。
 図8は、コントロールユニット10の表示部30に表示されるメニュー画面を示している。メニュー画面は、「1.現在の状態」、「2.計測画面」、「3.現在警報」、「4.履歴表示」、「5.グラフ表示」、「6.各種設定」、「7.システム情報」、「8.警報出力設定確認」、「9.データ保存」といった表示(アイコン)を有する。「画面OFF」の表示(アイコン)を有してもよい。
 鉛蓄電池監視装置は、各種の異常が発生した際に、警報を発する。具体的には、センサユニット20により監視される鉛蓄電池1の電圧及び内部抵抗に加え、鉛蓄電池1の温度(鉛蓄電池1の近傍に設置された温度センサにて検出される温度)が、異常な値を示す場合に、鉛蓄電池監視装置は警報を発する。
 また、センサユニット20とコントロールユニット10との間の通信状態の異常や、センサユニット20それ自体の異常について、鉛蓄電池監視装置は警報を発する。
 図8における「3.現在警報」を選択すると、発せられている警報を確認することができる。
 センサユニット20について警報が発せられて、あるセンサユニット20が故障していることが判明した場合、故障したセンサユニットは、予備のセンサユニットに交換される。予備のセンサユニットには、識別情報として、センサユニット初期IDが設定されている。予備のセンサユニットは、常に同一の初期IDを有してもよい。初期IDは例えば、「0-N/A-0」である。
 図8における「6.各種設定」を選択すると、各種設定を受付ける画面に遷移し、その画面から更に、図9に示す「センサユニット設定」の画面に遷移することができる。
 図9では、「セット番号入力」の欄に「0」と表示され、「バンク情報入力」の欄に「N/A」と表示され、電池番号入力の欄に「0」と表示されている。これらは、センサユニット20の初期IDである「0-N/A-0」を示している。
 ここで、セット番号とは、コントロールユニット10の番号(例えばシリアル番号)を示す。バンク情報とは、そのコントロールユニット10により管理される複数のバンク(A、B、C、D)のうちのいずれのバンクかを示す。電池番号とは、そのバンクにおける電池の直列順位を示す。
 以下、セット番号123のコントロールユニット10により管理される、バンクAにおける、直列順位123の鉛蓄電池1に取り付けられたセンサユニット20に異常が発生し、予備のセンサユニットに取り替える場合を説明する。これは、通常の監視時(計測時)とは別のタイミングでコントロールユニット10から接続リクエストを送信する例である。
 先ず、保守員(又は顧客のオペレータ)が蓄電池盤を訪れて、故障したセンサユニット20に代えて、予備のセンサユニットを鉛蓄電池1に取り付ける。この時点では、故障して取外されたセンサユニット20には識別情報として「123-A-123」が設定されていて、予備のセンサユニット20には初期IDである「0-N/A-0」が設定されている。
 保守員は、警報が発せられたセンサユニットの識別情報を、取外したセンサユニットの識別情報として記憶してもよい。
 次に保守員は、コントロールユニット10の表示部に、図9に示すように、「セット番号入力」の欄に「0」、「バンク情報入力」の欄に「N/A」、電池番号入力の欄に「0」と表示されていることを確認し、「接続開始」を押す。
 これによりコントロールユニット10は、接続リクエストを送信して、識別情報が「0-N/A-0」のセンサユニット20と通信接続する試みを開始する。その間、コントロールユニット10の表示部には、図10に示すような画面が表示される。
 このときの接続リクエストを、通常の監視時の接続リクエストとは区別して、ID設定リクエストと呼ぶ。
 ID設定リクエストは、第一ID設定リクエスト(ID設定リクエスト0)と、第二ID設定リクエスト(ID設定リクエスト1)とを含んでもよい。コントロールユニット10が送信する第一ID設定リクエストを、識別情報が「0-N/A-0」のセンサユニット20が受信した際、そのセンサユニット20が備える表示部(LEDなどの発光部)が、第一ID設定リクエストを受信したことを周囲に知らせてもよい(例えばLEDが点灯してもよい)。これにより保守員は、鉛蓄電池1に取り付けた予備のセンサユニット20が、コントロールユニット10との通信を開始したことを確認できる。
 コントロールユニット10が送信する第二ID設定リクエストを、識別情報が「0-N/A-0」のセンサユニット20が受信し、コントロールユニット10と予備のセンサユニット20との通信接続が確立されると、図11に示す画面における保守員の入力によって、予備のセンサユニットの識別情報「0-N/A-0」を、取外されたセンサユニットの識別情報「123-A-123」に更新することを受付ける。
 保守員は、図11に示す「ID設定」を押す。
 これにより、予備のセンサユニットの識別情報が、「123-A-123」に更新されると、図12に示す画面に遷移する。「センサユニットID」の欄に、「123-A-123」と表示されている。
 以上説明したように、本実施形態に係る鉛蓄電池監視装置は、直列及び/又は並列に接続された複数の鉛蓄電池1に取り付けられる複数のセンサユニット20と、それらセンサユニット20と無線通信接続が可能なコントロールユニット10と、を備える。
 コントロールユニット10は、次のステップを実行する:
 予め記憶してある複数のセンサユニット20の識別情報を順次選択し、
 選択したセンサユニット20との間の通信を確立すべく、選択したセンサユニットの識別情報を含む接続リクエストメッセージを複数のセンサユニット20へ送信し、
 通信が確立されたセンサユニット20に監視データの計測リクエストを送信する。
 複数のセンサユニット20は夫々、接続リクエストメッセージを受信しコントロールユニット10との通信が確立された場合には、計測リクエストの受信に応じて当該センサユニット20が取り付けられている鉛蓄電池1の監視データを計測し、計測した監視データをコントロールユニット10に無線送信する。
 コントロールユニット10は更に、一のセンサユニット(識別情報が「123-A-123」のセンサユニット)が他のセンサユニット(識別情報が「0-N/A-0」のセンサユニット)に交換された際に、他のセンサユニットの識別情報「0-N/A-0」を一のセンサユニットの識別情報「123-A-123」に更新する。
 ここで、識別情報の形態「123-A-123」や「0-N/A-0」は、例示であって、識別情報はこの形態に限定されず、シンプルに、センサユニット20のシリアル番号であってもよい。
 上記構成により、一のセンサユニット(例えば故障したセンサユニット)が他のセンサユニット(例えば予備のセンサユニット)に交換された際、識別情報の更新を容易に行える。
 数百個の鉛蓄電池1で構成される大規模な蓄電システムを監視する場合、各鉛蓄電池1に取り付けられるセンサユニット20の数が多いことに伴いセンサユニット20の異常発生確率が高まり、センサユニット交換の頻度も高まる。上記構成により、鉛蓄電池監視装置の保守活動が著しく簡素化される。蓄電システムの動作を継続しながら(顧客への迷惑や負担を最小限にしながら)、交換作業に伴うセンサユニットの設定変更を迅速に行うことができる。通常の監視動作のときと類似した接続手順によってコントロールユニット10と予備のセンサユニット20との無線通信接続を確立して、センサユニットIDを更新し、通常の監視動作に復帰することができる。
 本実施形態に係る鉛蓄電池監視装置は、コントロールユニット10が、タッチパネル式の表示部30を備え、タッチパネル表示部30に、センサユニット20の識別情報更新を受付ける受付画面が表示される。
 これにより、警報が発せられた蓄電池盤を訪れた保守員は、様々な保守装置を持参しなくても、その現場で、センサユニット20の交換と、センサユニット20の識別情報更新とを行うことができる。
 本実施形態に係る鉛蓄電池監視装置は、予備の(鉛蓄電池1に未装着の)センサユニット20が、コントロールユニット10による識別情報更新の前には、ユニークなセンサユニット初期ID「0-N/A-0」を有する。
 これにより、保守活動の一部が共通化され、保守活動が更に簡素化される。現場で保守員が作業を誤ったり、センサユニット初期IDを失念したりといった事態を未然に防ぐことができる。
 上述した実施形態は例であり、本発明はこれに限定されない。用いられる無線通信の通信規格は、BLEに限定されない。蓄電池は、鉛蓄電池に限定されず、リチウムイオン電池や、その他の二次電池であってもよい。
 保守員が蓄電池盤を訪れることなく、遠隔からセンサユニット20の識別情報更新を行ってもよい。例えば、センサユニット交換は、顧客オペレータ(第一のオペレータ)に任せて、保守員(第二のオペレータ)はコントロールユニット10にネットワーク接続された端末から、センサユニット20の識別情報更新を行ってもよい。
 図9~図12に示した手順は、故障したセンサユニット20を交換する場合に限らず、他の状況においてセンサユニットの識別情報更新のために実施されてもよい。例えば、新規に蓄電池監視装置を蓄電システム(電池盤など)に据え付ける際に、設定の誤りなどにより意図しない識別情報に設定されたセンサユニット20の識別情報を適正な識別情報に変更するために、この手順が実施されてもよい。
 上述した実施形態における蓄電池監視装置は、以下の構成を備える。
 蓄電池監視装置は、直列及び/又は並列に接続された複数の蓄電池に取り付けられる複数の監視ユニットと、前記複数の監視ユニットと無線通信接続が可能な管理ユニットと、を備え、前記管理ユニットは、予め記憶してある前記複数の監視ユニットの識別情報を順次選択し、選択した監視ユニットとの間の通信を確立すべく、選択した監視ユニットの識別情報を含む接続リクエストメッセージを、無線通信を介して前記複数の監視ユニットへ送信し、通信が確立された前記監視ユニットに監視データの計測リクエストを送信し、前記複数の監視ユニットは夫々、前記接続リクエストメッセージを受信し前記管理ユニットとの通信が確立された場合には、前記計測リクエストの受信に応じて当該監視ユニットが取り付けられている前記蓄電池の監視データを計測し、計測した監視データを前記管理ユニットに無線送信し、前記管理ユニットは更に、無線通信を介して、一の監視ユニットが他の監視ユニットに交換された際に、前記他の監視ユニットの識別情報を前記一の監視ユニットの識別情報に更新する。
 すなわち、上述した実施形態では、監視ユニットは夫々、管理ユニットから送信された計測リクエストの受信に応じて蓄電池の監視データを計測する。
 代替的に、管理ユニットからの計測リクエストを待つことなく、監視ユニットが自律的に蓄電池の監視データを計測する構成であってもよい。監視ユニットは、イベントとして(例えば所定の周期で)、当該監視ユニットが取り付けられている蓄電池の監視データを計測し、計測した監視データを管理ユニットに無線送信してもよい。
1  鉛蓄電池
10 コントロールユニット(管理ユニット)
20 センサユニット(監視ユニット)

Claims (5)

  1.  直列及び/又は並列に接続された複数の蓄電池に取り付けられる複数の監視ユニットと、
     前記複数の監視ユニットと無線通信接続が可能な管理ユニットと、を備え、
     前記管理ユニットは、
     予め記憶してある前記複数の監視ユニットの識別情報を順次選択し、
     選択した監視ユニットとの間の通信を確立すべく、選択した監視ユニットの識別情報を含む接続リクエストメッセージを、無線通信を介して前記複数の監視ユニットへ送信し、
     前記管理ユニットは更に、一の監視ユニットが他の監視ユニットに交換された際に、無線通信を介して、前記他の監視ユニットの識別情報を前記一の監視ユニットの識別情報に更新する、蓄電池監視装置。
  2.  前記管理ユニットは、タッチパネル表示部を備え、前記タッチパネル表示部に、前記他の監視ユニットの識別情報の前記一の監視ユニットの識別情報への更新を受付ける受付画面が表示される、請求項1に記載の蓄電池監視装置。
  3.  前記他の監視ユニットは、前記管理ユニットによる更新の前には、前記識別情報として監視ユニット初期IDを有する、請求項1又は2に記載の蓄電池監視装置。
  4.  前記管理ユニットは、当該管理ユニットにネットワーク接続された端末から、前記他の監視ユニットの識別情報の前記一の監視ユニットの識別情報への更新を受付ける、請求項1乃至3のいずれか1項に記載の蓄電池監視装置。
  5.  直列及び/又は並列に接続された複数の蓄電池に取り付けられる複数の監視ユニットと、前記複数の監視ユニットと無線通信接続が可能な管理ユニットと、を備える蓄電池監視装置の保守方法であって、
     一の監視ユニットを他の監視ユニットに交換し、
     前記管理ユニットが備えるタッチパネルにて前記他の監視ユニットの識別情報を選択して前記管理ユニットと前記他の監視ユニットとの通信を確立し、
     前記管理ユニットが備えるタッチパネルにて、無線通信を介して、前記他の監視ユニットの識別情報を前記一の監視ユニットの識別情報に更新する、蓄電池監視装置の保守方法。
PCT/JP2021/015372 2020-05-26 2021-04-14 蓄電池監視装置及び蓄電池監視装置の保守方法 WO2021241043A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/927,218 US20230223776A1 (en) 2020-05-26 2021-04-14 Storage battery monitoring device and method for maintaining storage battery monitoring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020091187A JP2021190182A (ja) 2020-05-26 2020-05-26 蓄電池監視装置及び蓄電池監視装置の保守方法
JP2020-091187 2020-05-26

Publications (1)

Publication Number Publication Date
WO2021241043A1 true WO2021241043A1 (ja) 2021-12-02

Family

ID=78744270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015372 WO2021241043A1 (ja) 2020-05-26 2021-04-14 蓄電池監視装置及び蓄電池監視装置の保守方法

Country Status (3)

Country Link
US (1) US20230223776A1 (ja)
JP (1) JP2021190182A (ja)
WO (1) WO2021241043A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013009531A (ja) * 2011-06-24 2013-01-10 Yoshiaki Shiyafu 蓄電池監視システム及び蓄電池監視方法、サーバ装置及び蓄電池制御装置並びにサーバ装置用プログラム及び蓄電池制御装置用プログラム
JP2015181327A (ja) * 2014-03-07 2015-10-15 株式会社Gsユアサ 蓄電池搭載機器及びその保守運用システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013009531A (ja) * 2011-06-24 2013-01-10 Yoshiaki Shiyafu 蓄電池監視システム及び蓄電池監視方法、サーバ装置及び蓄電池制御装置並びにサーバ装置用プログラム及び蓄電池制御装置用プログラム
JP2015181327A (ja) * 2014-03-07 2015-10-15 株式会社Gsユアサ 蓄電池搭載機器及びその保守運用システム

Also Published As

Publication number Publication date
US20230223776A1 (en) 2023-07-13
JP2021190182A (ja) 2021-12-13

Similar Documents

Publication Publication Date Title
JP6378400B2 (ja) エネルギー管理装置、エネルギー管理システム、及びエネルギー管理システムの制御方法
JP5432767B2 (ja) リモートメンテナンスシステム及び中継ユニット
JP2013009531A (ja) 蓄電池監視システム及び蓄電池監視方法、サーバ装置及び蓄電池制御装置並びにサーバ装置用プログラム及び蓄電池制御装置用プログラム
US11828809B2 (en) Storage battery monitoring apparatus and storage battery monitoring method
WO2019239706A1 (ja) 通信デバイス、情報処理システム、情報処理方法及びコンピュータプログラム
JP7275490B2 (ja) 容量推定システム、容量推定方法、及び通信デバイス
JP6145765B2 (ja) 設備機器の管理装置、設備機器の管理システム
EP3396812B1 (en) Battery management device, battery management system, and battery management method
WO2021241043A1 (ja) 蓄電池監視装置及び蓄電池監視装置の保守方法
JP5680127B2 (ja) 見守りサービスシステム、見守りサービス方法、見守りサーバ装置、及びコンピュータプログラム
AU2018252445B2 (en) Communication adapter and connection test run method therefor
KR20150042593A (ko) 저전력 무선 화재 감지 장치 및 그 제어 방법
JP7485022B2 (ja) 鉛蓄電池監視装置及び鉛蓄電池監視方法
JPH11193981A (ja) ショーケース等の集中管理装置
CN113491050A (zh) 蓄电池监视装置以及蓄电池监视方法
JP6737375B2 (ja) パワーコンディショナ及びコンピュータプログラム
JP2020149362A (ja) 情報処理装置、情報処理システム、情報処理方法及びコンピュータプログラム
JP6690799B1 (ja) 鉛蓄電池監視装置及び鉛蓄電池監視方法
JP2019215832A (ja) 通信デバイス、情報処理システム、情報処理方法及びコンピュータプログラム
JP6515991B1 (ja) パワーコンディショナ、情報処理システム及びコンピュータプログラム
CN108508816B (zh) 分布式吊挂称重***及分布式吊挂***
JP6747542B2 (ja) 通信デバイス
CN111397084A (zh) 空调状态监控装置、方法及***
WO2020174710A1 (ja) 鉛蓄電池監視装置及び鉛蓄電池監視方法
JP2000311014A (ja) 工業用プラントコントローラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813211

Country of ref document: EP

Kind code of ref document: A1