WO2021237839A1 - 一种全光谱led光源及其制作方法 - Google Patents

一种全光谱led光源及其制作方法 Download PDF

Info

Publication number
WO2021237839A1
WO2021237839A1 PCT/CN2020/097193 CN2020097193W WO2021237839A1 WO 2021237839 A1 WO2021237839 A1 WO 2021237839A1 CN 2020097193 W CN2020097193 W CN 2020097193W WO 2021237839 A1 WO2021237839 A1 WO 2021237839A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
blue
blue light
full
light source
Prior art date
Application number
PCT/CN2020/097193
Other languages
English (en)
French (fr)
Inventor
皮保清
刘吉伟
杨宇
石红丽
罗丽光
Original Assignee
中山市木林森电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山市木林森电子有限公司 filed Critical 中山市木林森电子有限公司
Priority to US17/799,689 priority Critical patent/US20230070872A1/en
Priority to EP20938070.8A priority patent/EP4095907A4/en
Publication of WO2021237839A1 publication Critical patent/WO2021237839A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/90Methods of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Definitions

  • the invention belongs to the field of LED technology, and more specifically, relates to a full-spectrum LED light source and a manufacturing method thereof.
  • the full-spectrum LED light source is a light source that uses a light-emitting diode (LED) as the luminous body that is similar to the solar spectrum.
  • the light-emitting device LED filament A of the bulb in Figure 1 is a full-spectrum LED light source.
  • the structure of the full-spectrum LED light source with encapsulation glue is mainly composed of a bracket, a chip set and encapsulation glue, wherein the chip set contains a light-emitting diode capable of emitting blue light (hereinafter referred to as a "blue chip” for short).
  • the color rendering index (CRI) refers to the ability of a light source to restore the visual perception of an object under the sun.
  • the color rendering index of the existing full-spectrum LED light source is higher than that of the ordinary LED light source, CRI>95, except for the special color rendering index R9 (saturated red) and R12 (saturated blue) values are not ideal, the rest of the color rendering index The index values are all above 90.
  • the problem to be solved by the present invention is to provide a full-spectrum LED light source with high luminous efficiency and low cost, which can increase the values of special color rendering indexes R9 and R12 in R1-R15 to above 90 and a manufacturing method thereof.
  • the first aspect of the present invention provides a full-spectrum LED light source, which includes a bracket, a chip set and packaging glue, the packaging glue is mixed with phosphors, and the chip set has a peak wavelength of A first blue chip with a peak wavelength of 450nm-460nm, a second blue chip with a peak wavelength of 450nm-460nm, and a third blue chip with a peak wavelength of 460nm-475nm are connected in series or in parallel.
  • the phosphors include yellow phosphors with a peak wavelength of 540nm-550nm under blue excitation, green phosphors with a peak wavelength of 490nm-530nm under blue excitation, and The lower emission peak wavelength is red phosphor with 620nm ⁇ 660nm.
  • the weight percentage of the yellow phosphor is 5% to 25%
  • the weight percentage of the green phosphor is 5% to 35%
  • the weight percentage of the red phosphor is 10%.
  • % To 35% the weight percentage of the encapsulating glue is 40% to 80%.
  • the full-spectrum LED light source is a filament
  • the bracket is provided with multiple sets of chip sets, and the multiple sets of the chip sets are connected in series or in parallel, and each set of the chips The group is composed of the first blue light chip, the second blue light chip and the third blue light chip connected in series or in parallel according to a set arrangement sequence.
  • the set arrangement sequence is a first blue chip, a second blue chip, and a third blue chip;
  • the set arrangement sequence is the first blue light chip, the third blue light chip, and the second blue light chip;
  • the set arrangement sequence is the second blue light chip, the first blue light chip, and the third blue light chip;
  • the set arrangement order is the second blue light chip, the third blue light chip, and the first blue light chip;
  • the set arrangement sequence is the third blue light chip, the first blue light chip and the second blue light chip;
  • the set arrangement sequence is the third blue light chip, the second blue light chip and the first blue light chip.
  • the second aspect of the present invention provides a method for manufacturing a full-spectrum LED light source, which is characterized in that it includes the following steps:
  • a substrate is provided, and at least one bracket for fixing the chip is provided on the substrate.
  • the bracket is long and printed with series and parallel circuits electrically connected to the chip.
  • At least one bracket is provided on both sides of each bracket.
  • the brackets are parallel through slots, and the through slots are trough bodies that penetrate the upper and lower surfaces of the substrate;
  • a plurality of chip sets are arranged on the support, and the plurality of chip sets are connected in series or in parallel, and each set of the chip sets consists of a first blue chip with a peak wavelength of 435nm ⁇ 450nm and a peak wavelength of 450nm ⁇
  • the 460nm second blue chip and the third blue chip with a peak wavelength of 460nm ⁇ 475nm are connected in series or in parallel, and the chipset on the same bracket forms a chip array group arranged along the length of the bracket;
  • the upper and lower surfaces of the chip area of the bracket are covered with encapsulation glue, the encapsulation glue fills the through groove, and the encapsulation glue is mixed with phosphor;
  • the packaging glue After the packaging glue is solidified, it is cut along the through groove to obtain a full-spectrum LED light source surrounded by glue.
  • the phosphor includes a yellow phosphor with a peak wavelength of 540nm to 550nm under blue excitation, a green phosphor with a peak wavelength of 490nm to 530nm under blue excitation, and When excited by blue light, it emits red phosphor with a peak wavelength of 620nm ⁇ 660nm.
  • the weight percentage of the yellow phosphor is 5% to 25%
  • the weight percentage of the green phosphor is 5% to 35%
  • the weight of the red phosphor The percentage is 10% to 35%
  • the weight percentage of the encapsulating glue is 40% to 80%.
  • each group of the chip group consists of the first blue chip, the second blue chip and the third blue chip in a set arrangement Sequentially connected in series or connected in parallel.
  • the set arrangement sequence is the first blue chip, the second blue chip and the third blue chip;
  • the set arrangement sequence is the first blue light chip, the third blue light chip, and the second blue light chip;
  • the set arrangement sequence is the second blue light chip, the first blue light chip, and the third blue light chip;
  • the set arrangement order is the second blue light chip, the third blue light chip, and the first blue light chip;
  • the set arrangement sequence is the third blue light chip, the first blue light chip and the second blue light chip;
  • the set arrangement sequence is the third blue light chip, the second blue light chip and the first blue light chip.
  • a full-spectrum LED light source and a manufacturing method thereof provided by the present invention have the following beneficial effects:
  • the present invention mixes and mixes blue chips in the three bands of 435nm ⁇ 450nm, 450nm ⁇ 460nm, and 460nm ⁇ 475nm to excite the phosphor while supplementing the missing part of the spectrum, and increase the special color rendering index R9 (saturated red) and R12 (saturated red). Blue) value, make the two values above 90, high luminous efficiency and low cost, the spectrum is closer to the solar spectrum, can better restore the true color of the real object, the light color is comfortable and not hurting the eyes; and its production process is simple, production High efficiency, conducive to market promotion.
  • Figure 1 is a schematic diagram of the structure of an LED bulb, the light-emitting device LED filament A is a full-spectrum LED light source;
  • FIG. 2 is a schematic diagram of the structure of a full-spectrum LED light source provided by the present invention with a filament as an example;
  • FIG. 3 is a schematic diagram of the structure when the three blue light chips in the chipset are connected in series;
  • FIG. 4 is a schematic diagram of the structure when the three blue light chips in the chipset are connected in parallel;
  • FIG. 5 is a schematic diagram of the structure when the three Blu-ray chips in each chip set are connected in series, and the multiple sets of chip sets are connected in series;
  • FIG. 6 is a schematic diagram of the structure when the three Blu-ray chips in each chip set are connected in parallel, and the multiple chip sets are connected in parallel;
  • FIG. 7 is a schematic diagram of the structure when the three Blu-ray chips in each chip set are connected in series, and the multiple chip sets are connected in parallel;
  • FIG. 8 is a schematic diagram of the structure when the three Blu-ray chips in each chip set are connected in parallel, and the multiple sets of chip sets are connected in series;
  • FIG. 9 is a schematic diagram of the structure of a substrate with multiple supports.
  • Fig. 10 is a cross-sectional view taken along the line B-B in the structure shown in Fig. 9;
  • Figure 11 is a schematic diagram of the structure after covering the encapsulant on the bracket
  • Figure 12 is a cross-sectional view taken along the line C-C in the structure shown in Figure 11;
  • Figure 13 is a spectrum diagram of a traditional single blue chip excited encapsulant
  • Figure 14 is a spectrum diagram of a traditional blue chip with a violet chip to excite the packaging glue
  • Fig. 15 is a spectrum diagram of a full-spectrum LED light source provided by the present invention.
  • a preferred embodiment of the present invention is a full-spectrum LED light source, which can be LED filament or LED lamp beads, which includes a bracket 11, a chipset 2 and a packaging glue 3, the packaging glue 3 is mixed in With phosphor, the chip set 2 is connected in series by a first blue chip 21 with a peak wavelength of 435nm-450nm, a second blue chip 22 with a peak wavelength of 450nm-460nm, and a third blue chip 23 with a peak wavelength of 460nm-475nm. (See Figure 3) or parallel connection (see Figure 4).
  • the production method includes the following steps:
  • a substrate 1 is provided, and at least one support 11 for chip fixing is provided on the substrate 1, and the support 11 is elongated, and at least one through slot 12 parallel to the support 11 is provided on both sides of each support 11 ,
  • the through groove 12 is a groove body that penetrates the upper and lower surfaces of the substrate 1; wherein, a circuit electrically connected to the chip is printed on the bracket 11;
  • a plurality of sets of chipsets 2 are arranged on the bracket 11, and the plurality of sets of the chipsets 2 are connected in series or in parallel.
  • the second blue chip 22 with a peak wavelength of 450nm ⁇ 460nm and the third blue chip 23 with a peak wavelength of 460nm ⁇ 475nm are connected in series or in parallel.
  • the multiple chip sets 2 on the same bracket form a line along the length of the bracket 11.
  • the upper and lower surfaces of the support 1 provided with a chip area (that is, the dotted area D in FIG. 11) are covered with encapsulation glue 3, and the encapsulation glue 3 fills the through groove 12;
  • the encapsulation glue 3 is solidified, it is cut along the through groove 12 to obtain a full-spectrum LED light source with a ring glue around it.
  • circuit on the bracket 11 includes at least the following four implementation forms:
  • the bracket 11 is a light-transmitting bracket, which is conducive to 360-degree light emission from the filament.
  • the phosphor in order to make the spectrum of the LED light source closer to the solar spectrum, includes a yellow phosphor with a peak wavelength of 540 nm to 550 nm under blue excitation, and a green phosphor with a peak wavelength of 490 nm to 530 nm under blue excitation. Powder and red phosphor with a peak wavelength of 620nm ⁇ 660nm when excited by blue light. Further, the weight percentage of the yellow phosphor is 5% to 25%, the weight percentage of the green phosphor is 5% to 35%, the weight percentage of the red phosphor is 10% to 35%, and the packaging glue The weight percentage is 40% to 80%.
  • the encapsulation glue includes epoxy resin adhesive and epoxy resin curing agent. The weight ratio between epoxy resin adhesive and epoxy resin curing agent can be matched with reference to the prior art, which will not be repeated here. .
  • each group of the chipset 2 is set by the first blue light chip 21, the second blue light chip 22, and the third blue light chip 23.
  • the arrangement sequence is connected in series or connected in parallel.
  • the set arrangement sequence specifically includes the following implementation forms:
  • the set arrangement sequence is the first blue light chip 21, the second blue light chip 22 and the third blue light chip 23;
  • the set arrangement sequence is the first blue light chip 21, the third blue light chip 23 and the second blue light chip 22;
  • the set arrangement sequence is the second blue light chip 22, the first blue light chip 21 and the third blue light chip 23;
  • the set arrangement sequence is the second blue light chip 22, the third blue light chip 23 and the first blue light chip 21;
  • the set arrangement sequence is the third blue light chip 23, the first blue light chip 21 and the second blue light chip 22;
  • the set arrangement sequence is the third blue light chip 23, the second blue light chip 22 and the first blue light chip 21.
  • a single blue chip, a blue chip+violet chip, and the light generated by the full-spectrum LED light source of this embodiment excited by the encapsulant 3 were compared in a spectrum test.
  • the peak wavelength of one blue chip among the three blue chips with different wavelength bands of the full-spectrum LED light source of this embodiment is 450 nm to 460 nm, which is the same as the peak wavelength of the blue chips of the other two groups of experiments.
  • FIG. 13 is a spectrum diagram of a single blue chip test
  • FIG. 14 is a spectrum diagram of a blue chip + a purple light chip test
  • FIG. 15 is a spectrum diagram of a full-spectrum LED light source test of this embodiment.
  • the relative intensities in Figs. 13 to 15 are the values relative to 100 for the other wavelengths when the intensity value corresponding to a wavelength of 550 nm is 100.
  • the full-spectrum LED light source has lower peaks in the blue band, and the relative intensity of the spectrum is closer to the sunlight spectrum; and the spectrum of the full-spectrum LED light source passes 3 different peak wavelengths
  • the phosphor can emit light in more wavelength ranges under the excitation of blue light with high, medium and low peak wavelengths, supplementing part of the missing spectrum, and the curve trend of its spectrum (pointed by solid lines in Figure 13 to Figure 15) It is closer to the curve trend of the sunlight spectrum (indicated by dotted lines in Figure 13 to Figure 15).
  • R1-R15 value test data of the full-spectrum LED light source of the embodiment of the present invention is shown in Table 1 below; from Table 1, it can be seen that the R1-R15 values can reach 95 or more.
  • the full-spectrum LED light source and the manufacturing method thereof provided by the embodiments of the present invention, by mixing and matching blue chips in the three bands of 435nm ⁇ 450nm, 450nm ⁇ 460nm, and 460nm ⁇ 475nm, the phosphor powder is excited while supplementing the spectrum.
  • the special color rendering index R9 saturated red
  • R12 saturated blue
  • the light efficiency is high and the cost is low.
  • the spectrum is closer to the solar spectrum, which can be better restored.
  • the real color of the real object the light color is comfortable and does not hurt the eyes; and its production process is simple, and the production efficiency is high, which is conducive to market promotion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)

Abstract

本发明属于LED技术领域,具体公开了一种全光谱LED光源及其制作方法,其包括支架、芯片组和封装胶,所述芯片组由峰值波长为435nm~450nm的第一蓝光芯片、峰值波长为450nm~460nm的第二蓝光芯片和峰值波长为460nm~475nm的第三蓝光芯片串联连接或并联连接组成。采用本发明,具有光效高、成本低,能够将R1-R15中特殊显色指数R9和R12数值提升至90以上的优点。

Description

一种全光谱LED光源及其制作方法 技术领域
本发明属于LED技术领域,更具体地说,涉及一种全光谱LED光源及其制作方法。
背景技术
随着LED行业的不断发展,厂商们不再只是考虑纯粹的光效或使用寿命,而是考虑人对光的感觉,光对人的影响,希望能制造出更接近自然光的人造光。全光谱LED光源和健康照明成为近几年的行业热点。
全光谱LED光源是与太阳光谱相近的以发光二极管(LED)为发光体的光源,如图1中灯泡的发光器件LED灯丝A就是一种全光谱LED光源。封装胶全光谱LED光源其结构主要由支架、芯片组和封装胶构成,其中所述芯片组含有能发出蓝色光的发光二极管(下面简称为“蓝光芯片”)。显色指数(CRI)是指光源对物体还原阳光下给人的视觉感受能力的高低。显色性越高,显色指数值越接近100,对物体的色彩还原能力越强,人眼区分物体颜色越轻松。现有全光谱LED光源的显色指数较普通LED光源显色指数更高,CRI>95,除特殊显色指数R9(饱和红色)和R12(饱和蓝色)数值并非理想之外,其余显色指数的数值均在90以上。
针对全光谱LED光源的特殊显色指数R9(饱和红色)和R12(饱和蓝色)数值不理想的问题,现有技术中,已有一些改进的方案:
(1)在蓝光芯片外部覆盖的封装胶内加入特定波长的荧光粉,特定波长的荧光粉被蓝光芯片所发射的光虽然补充缺失的光谱,光谱连续性更好,光谱更接近太阳光谱,但是LED光源采用蓝光芯片激发荧光粉的方式,不同波长的荧光粉激发效率相差较大,红色荧光粉 激发效率高,蓝绿荧光粉激发效率低且用量大,导致LED的光效低、成本高。这种全光谱LED光源虽然特殊显色指数R9(饱和红色)的数值得到一定提升,但特殊显色指数R12(饱和蓝色)的数值提升不明显。
(2)有些改进方案采用了能发出紫色光的发光二极管(下面简称为“紫光芯片”),并与蓝光芯片进行搭配,虽然可以有针对性地提升R9和R12的数值,而且光效降低较少,但是由于紫光芯片比蓝光芯片的生产工艺更为复杂,价格高太多,导致产品成本较高。
发明内容
本发明所要解决的问题在于,提供一种光效高、成本低,能够将R1-R15中特殊显色指数R9和R12数值提升至90以上的全光谱LED光源及其制作方法。
为了解决上述技术问题,本发明的第一个方面提供了一种全光谱LED光源,其包括支架、芯片组和封装胶,所述封装胶内混合有荧光粉,所述芯片组由峰值波长为435nm~450nm的第一蓝光芯片、峰值波长为450nm~460nm的第二蓝光芯片和峰值波长为460nm~475nm的第三蓝光芯片串联连接或并联连接组成。
作为上述全光谱LED光源的优选方案,所述荧光粉包括在蓝光激发下发射峰值波长在540nm~550nm的黄色荧光粉、在蓝光激发下发射峰值波长在490nm~530nm的绿色荧光粉和在蓝光激发下发射峰值波长在620nm~660nm的红色荧光粉。
作为上述全光谱LED光源的优选方案,所述黄色荧光粉的重量百分数为5%~25%,所述绿色荧光粉的重量百分数为5%~35%,所述红色荧光粉的重量百分数为10%~35%,封装胶水的重量百分数为40%~80%。
作为上述全光谱LED光源的优选方案,所述全光谱LED光源为灯丝,所述支架上设有多组芯片组,多组所述芯片组之间为串联连接或并联连接,每组所述芯片组由所述第一蓝光芯片、第二蓝光芯片和 第三蓝光芯片按设定的排列顺序串联连接或并联连接组成。
作为上述全光谱LED光源的优选方案,所述设定的排列顺序为第一蓝光芯片、第二蓝光芯片和第三蓝光芯片;
或者,所述设定的排列顺序为第一蓝光芯片、第三蓝光芯片和第二蓝光芯片;
或者,所述设定的排列顺序为第二蓝光芯片、第一蓝光芯片和第三蓝光芯片;
或者,所述设定的排列顺序为第二蓝光芯片、第三蓝光芯片和第一蓝光芯片;
或者,所述设定的排列顺序为第三蓝光芯片、第一蓝光芯片和第二蓝光芯片;
或者,所述设定的排列顺序为第三蓝光芯片、第二蓝光芯片和第一蓝光芯片。
本发明的第二个方面提供了一种全光谱LED光源的制作方法,其特征在于,包括如下步骤:
提供一基板,所述基板上设有至少一条供芯片固定的支架,所述支架为长条状且印刷有与芯片电连接的串并联电路,每条所述支架两侧至少各设置一条与所述支架平行的通槽,所述通槽为贯通基板上下表面的槽体;
在所述支架上设置多组芯片组,多组所述芯片组之间为串联连接或并联连接,每组所述芯片组由峰值波长为435nm~450nm的第一蓝光芯片、峰值波长为450nm~460nm的第二蓝光芯片和峰值波长为460nm~475nm的第三蓝光芯片串联连接或并联连接组成,同一条支架上的芯片组形成一条沿支架长度方向排列的芯片列组;
在所述支架设有芯片区域的上下表面覆盖封装胶,所述封装胶填满所述通槽内,所述封装胶内混合有荧光粉;
将所述封装胶固型后,沿所述通槽进行切割,得到四周环胶的全光谱LED光源。
作为上述全光谱LED光源的制作方法的优选方案,所述荧光粉 包括在蓝光激发下发射峰值波长在540nm~550nm的黄色荧光粉、在蓝光激发下发射峰值波长在490nm~530nm的绿色荧光粉和在蓝光激发下发射峰值波长在620nm~660nm的红色荧光粉。
作为上述全光谱LED光源的制作方法的优选方案,所述黄色荧光粉的重量百分数为5%~25%,所述绿色荧光粉的重量百分数为5%~35%,所述红色荧光粉的重量百分数为10%~35%,封装胶水的重量百分数为40%~80%。
作为上述全光谱LED光源的制作方法的优选方案,同一条所述芯片列组中,每组所述芯片组由所述第一蓝光芯片、第二蓝光芯片和第三蓝光芯片按设定的排列顺序串联连接或并联连接组成。
作为上述全光谱LED光源的制作方法的优选方案,所述设定的排列顺序为第一蓝光芯片、第二蓝光芯片和第三蓝光芯片;
或者,所述设定的排列顺序为第一蓝光芯片、第三蓝光芯片和第二蓝光芯片;
或者,所述设定的排列顺序为第二蓝光芯片、第一蓝光芯片和第三蓝光芯片;
或者,所述设定的排列顺序为第二蓝光芯片、第三蓝光芯片和第一蓝光芯片;
或者,所述设定的排列顺序为第三蓝光芯片、第一蓝光芯片和第二蓝光芯片;
或者,所述设定的排列顺序为第三蓝光芯片、第二蓝光芯片和第一蓝光芯片。
实施本发明提供的一种全光谱LED光源及其制作方法,与现有技术相比较,具有如下有益效果:
本发明通过将435nm~450nm、450nm~460nm、460nm~475nm三个波段的蓝光芯片进行混搭,激发荧光粉的同时补充光谱中缺失的部分,提升特殊显色指数R9(饱和红色)和R12(饱和蓝色)数值,使两者数值达到90以上,光效高且成本低,光谱更接近太阳光谱,能更好地还原实物本真色彩,光色舒适不伤眼;而且其制作工艺简单, 生产效率高,有利于市场推广。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍。
图1是LED灯泡的结构示意图,其发光器件LED灯丝A是一种全光谱LED光源;
图2是本发明提供的一种全光谱LED光源以灯丝为实例的结构示意图;
图3是芯片组中的3个蓝光芯片之间为串联连接时的结构示意图;
图4是芯片组中的3个蓝光芯片之间为并联连接时的结构示意图;
图5是每组芯片组中的3个蓝光芯片之间为串联连接,且多组芯片组之间为串联连接时的结构示意图;
图6是每组芯片组中的3个蓝光芯片之间为并联连接,且多组芯片组之间为并联连接时的结构示意图;
图7是每组芯片组中的3个蓝光芯片之间为串联连接,且多组芯片组之间为并联连接时的结构示意图;
图8是每组芯片组中的3个蓝光芯片之间为并联连接,且多组芯片组之间为串联连接时的结构示意图;
图9是具有多个支架的基板的结构示意图;
图10是于图9所示结构中B-B向的剖视图;
图11是在支架上覆盖封装胶后的结构示意图;
图12是于图11所示结构中C-C向的剖视图;
图13是传统的单个蓝光芯片激发封装胶的光谱图;
图14是传统的蓝光芯片搭配紫光芯片激发封装胶的光谱图;
图15是本发明提供的一种全光谱LED光源的光谱图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图2所示,本发明的优选实施例,一种全光谱LED光源,其可以为LED灯丝或LED灯珠,其包括支架11、芯片组2和封装胶3,所述封装胶3内混合有荧光粉,所述芯片组2由峰值波长为435nm~450nm的第一蓝光芯片21、峰值波长为450nm~460nm的第二蓝光芯片22和峰值波长为460nm~475nm的第三蓝光芯片23串联连接(见图3)或并联连接(见图4)组成。
基于上述全光谱LED光源,下面以制作LED灯丝为例,如图9至图12所示,其制作方法包括如下步骤:
提供一基板1,所述基板1上设有至少一条供芯片固定的支架11,支架11呈长条状,每条所述支架11两侧至少各设置一条与所述支架11平行的通槽12,所述通槽12为贯通基板1上下表面的槽体;其中,支架11上印刷有与芯片电连接的电路;
在所述支架11上设置多组的芯片组2,多组所述芯片组2之间为串联连接或并联连接,每组所述芯片组2由峰值波长为435nm~450nm的第一蓝光芯片21、峰值波长为450nm~460nm的第二蓝光芯片22和峰值波长为460nm~475nm的第三蓝光芯片23串联连接或并联连接组成,同一条支架上的多组芯片组2形成一条沿支架11长度方向排列的芯片列组;
在所述支架1设有芯片区域(即图11中虚线区域D)的上下表面覆盖封装胶3,所述封装胶3填满所述通槽12内;
将所述封装胶3固型后,沿所述通槽12进行切割,得到四周环胶的全光谱LED光源。
示例性的,所述支架11上的电路至少包括如下4种实施形式:
(1)串联电路,如图5所示,即每组芯片组2中的3个蓝光芯片之间为串联连接,多组芯片组2之间为串联连接。
(2)并联电路,如图6所示,即每组芯片组2中的3个蓝光芯片之间为并联连接,多组芯片组2之间为并联连接;
(3)先串联后并联电路,如图7所示,即先串联连接每组芯片组2中的3个蓝光芯片,后并联连接多组芯片组2;
(4)先并联后串联电路,如图8所示,即先并联连接每组芯片组2中的3个蓝光芯片,后串联连接多组芯片组2。
示例性的,所述支架11为透光支架,有利于灯丝360度出光。
示例性的,为使LED光源的光谱更接近太阳光谱,所述荧光粉包括在蓝光激发下发射峰值波长在540nm~550nm的黄色荧光粉、在蓝光激发下发射峰值波长在490nm~530nm的绿色荧光粉和在蓝光激发下发射峰值波长在620nm~660nm的红色荧光粉。进一步地,所述黄色荧光粉的重量百分数为5%~25%,所述绿色荧光粉的重量百分数为5%~35%,所述红色荧光粉的重量百分数为10%~35%,封装胶水的重量百分数为40%~80%。本实施例中,所述封装胶水包括环氧树脂胶粘剂和环氧树脂固化剂,环氧树脂胶粘剂和环氧树脂固化剂之间的重量配比可参照现有技术进行搭配,在此不再赘述。
示例性的,如图1所示,同一条所述芯片列组中,每组所述芯片组2由所述第一蓝光芯片21、第二蓝光芯片22和第三蓝光芯片23按设定的排列顺序串联连接或并联连接组成。
示例性的,所述设定的排列顺序具体包括如下实施形式:
(1)所述设定的排列顺序为第一蓝光芯片21、第二蓝光芯片22和第三蓝光芯片23;
(2)所述设定的排列顺序为第一蓝光芯片21、第三蓝光芯片23和第二蓝光芯片22;
(3)所述设定的排列顺序为第二蓝光芯片22、第一蓝光芯片21和第三蓝光芯片23;
(4)所述设定的排列顺序为第二蓝光芯片22、第三蓝光芯片23 和第一蓝光芯片21;
(5)所述设定的排列顺序为第三蓝光芯片23、第一蓝光芯片21和第二蓝光芯片22;
(6)所述设定的排列顺序为第三蓝光芯片23、第二蓝光芯片22和第一蓝光芯片21。
下面,针对上述全光谱LED光源的特性进行光谱试验对比:
在同等测试条件(含荧光粉的组成参数)下,分别对单个蓝光芯片,蓝光芯片+紫光芯片以及本实施例全光谱LED光源激发封装胶3所产生的光进行光谱试验对比。本实施例全光谱LED光源的3个不同波段的蓝光芯片中的一个蓝光芯片,其峰值波长为450nm~460nm,与其余两组试验的蓝光芯片的峰值波长相同。
光谱试验后,图13为单个蓝光芯片试验的光谱图,图14为蓝光芯片+紫光芯片试验的光谱图,图15为本实施例全光谱LED光源试验的光谱图。图13至图15中的相对强度是以波长为550nm对应的强度值为100时,其余波长相对于100的值。根据三款光谱图对比明显可看出,全光谱LED光源在蓝光波段内的波峰更低,光谱的相对强度更接近于太阳光光谱;且全光谱LED光源的光谱中通过3个不同峰值波长的蓝光芯片搭配,荧光粉能够在高、中、低峰值波长的蓝光激发下发射更多波段范围的光,补充了部分缺失光谱,其光谱的曲线走势(图13至图15中以实线指出)更接近于太阳光光谱的曲线走势(图13至图15中以虚线指出)。
另外,本发明实施例的全光谱LED光源的R1~R15值测试数据如下表1所示;从表1可知,R1~R15值均能够达到95以上。
表1
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15
99.5 99.9 98.7 98.8 99.2 99.1 99.0 99.7 98.9 98.8 99.3 96.7 99.5 98.9 99.3
由此,根据本发明实施例提供的全光谱LED光源及其制作方法,其通过将435nm~450nm、450nm~460nm、460nm~475nm三个波段的蓝光芯片进行混搭,激发荧光粉的同时补充了光谱中缺失的部 分,提升特殊显色指数R9(饱和红色)和R12(饱和蓝色)数值,使两者数值达到90以上,光效高且成本低,光谱更接近太阳光谱,能更好地还原实物本真色彩,光色舒适不伤眼;而且其制作工艺简单,生产效率高,有利于市场推广。
以上所揭露的仅为本发明的较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明申请专利范围所作的等同变化,仍属本发明所涵盖的范围。

Claims (10)

  1. 一种全光谱LED光源,包括支架、芯片组和封装胶,所述封装胶内混合有荧光粉,其特征在于,所述芯片组由峰值波长为435nm~450nm的第一蓝光芯片、峰值波长为450nm~460nm的第二蓝光芯片和峰值波长为460nm~475nm的第三蓝光芯片串联连接或并联连接组成。
  2. 如权利要求1所述的全光谱LED光源,其特征在于,所述荧光粉包括在蓝光激发下发射峰值波长在540nm~550nm的黄色荧光粉、在蓝光激发下发射峰值波长在490nm~530nm的绿色荧光粉和在蓝光激发下发射峰值波长在620nm~660nm的红色荧光粉。
  3. 如权利要求2所述的全光谱LED光源,其特征在于,所述黄色荧光粉的重量百分数为5%~25%,所述绿色荧光粉的重量百分数为5%~35%,所述红色荧光粉的重量百分数为10%~35%,封装胶水的重量百分数为40%~80%。
  4. 如权利要求1所述的全光谱LED光源,其特征在于,所述全光谱LED光源为灯丝,所述支架上设有多组芯片组,多组所述芯片组之间为串联连接或并联连接,每组所述芯片组由所述第一蓝光芯片、第二蓝光芯片和第三蓝光芯片按设定的排列顺序串联连接或并联连接组成。
  5. 如权利要求4所述的全光谱LED光源,其特征在于,所述设定的排列顺序为第一蓝光芯片、第二蓝光芯片和第三蓝光芯片;
    或者,所述设定的排列顺序为第一蓝光芯片、第三蓝光芯片和第二蓝光芯片;
    或者,所述设定的排列顺序为第二蓝光芯片、第一蓝光芯片和第三蓝光芯片;
    或者,所述设定的排列顺序为第二蓝光芯片、第三蓝光芯片和第一蓝光芯片;
    或者,所述设定的排列顺序为第三蓝光芯片、第一蓝光芯片和第 二蓝光芯片;
    或者,所述设定的排列顺序为第三蓝光芯片、第二蓝光芯片和第一蓝光芯片。
  6. 一种全光谱LED光源的制作方法,其特征在于,包括如下步骤:
    提供一基板,所述基板上设有至少一条供芯片固定的支架,所述支架为长条状且印刷有与芯片电连接的串并联电路,每条所述支架两侧至少各设置一条与所述支架平行的通槽,所述通槽为贯通基板上下表面的槽体;
    在所述支架上设置多组芯片组,多组所述芯片组之间为串联连接或并联连接,每组所述芯片组由峰值波长为435nm~450nm的第一蓝光芯片、峰值波长为450nm~460nm的第二蓝光芯片和峰值波长为460nm~475nm的第三蓝光芯片串联连接或并联连接组成,同一条支架上的芯片组形成一条沿支架长度方向排列的芯片列组;
    在所述支架设有芯片区域的上下表面覆盖封装胶,所述封装胶填满所述通槽内,所述封装胶内混合有荧光粉;
    将所述封装胶固型后,沿所述通槽进行切割,得到四周环胶的全光谱LED光源。
  7. 如权利要求6所述的全光谱LED光源的制作方法,其特征在于,所述荧光粉包括在蓝光激发下发射峰值波长在540nm~550nm的黄色荧光粉、在蓝光激发下发射峰值波长在490nm~530nm的绿色荧光粉和在蓝光激发下发射峰值波长在620nm~660nm的红色荧光粉。
  8. 如权利要求7所述的全光谱LED光源的制作方法,其特征在于,所述黄色荧光粉的重量百分数为5%~25%,所述绿色荧光粉的重量百分数为5%~35%,所述红色荧光粉的重量百分数为10%~35%,封装胶水的重量百分数为40%~80%。
  9. 如权利要求6所述的全光谱LED光源的制作方法,其特征在于,同一条所述芯片列组中,每组所述芯片组由所述第一蓝光芯片、第二蓝光芯片和第三蓝光芯片按设定的排列顺序串联连接或并联连 接组成。
  10. 如权利要求9所述的全光谱LED光源的制作方法,其特征在于,所述设定的排列顺序为第一蓝光芯片、第二蓝光芯片和第三蓝光芯片;
    或者,所述设定的排列顺序为第一蓝光芯片、第三蓝光芯片和第二蓝光芯片;
    或者,所述设定的排列顺序为第二蓝光芯片、第一蓝光芯片和第三蓝光芯片;
    或者,所述设定的排列顺序为第二蓝光芯片、第三蓝光芯片和第一蓝光芯片;
    或者,所述设定的排列顺序为第三蓝光芯片、第一蓝光芯片和第二蓝光芯片;
    或者,所述设定的排列顺序为第三蓝光芯片、第二蓝光芯片和第一蓝光芯片。
PCT/CN2020/097193 2020-05-25 2020-06-19 一种全光谱led光源及其制作方法 WO2021237839A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/799,689 US20230070872A1 (en) 2020-05-25 2020-06-19 Full-spectrum light-emitting diode (led) light source and manufacturing method thereof
EP20938070.8A EP4095907A4 (en) 2020-05-25 2020-06-19 CONTINUOUS SPECTRUM LED LIGHT SOURCE AND METHOD OF MAKING THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010450284.XA CN111653555A (zh) 2020-05-25 2020-05-25 一种全光谱led光源及其制作方法
CN202010450284.X 2020-05-25

Publications (1)

Publication Number Publication Date
WO2021237839A1 true WO2021237839A1 (zh) 2021-12-02

Family

ID=72352747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097193 WO2021237839A1 (zh) 2020-05-25 2020-06-19 一种全光谱led光源及其制作方法

Country Status (4)

Country Link
US (1) US20230070872A1 (zh)
EP (1) EP4095907A4 (zh)
CN (1) CN111653555A (zh)
WO (1) WO2021237839A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115119355A (zh) * 2022-08-29 2022-09-27 南昌硅基半导体科技有限公司 一种兼顾定位和照明的高速led器件及其制备方法
CN117412432A (zh) * 2023-11-27 2024-01-16 惠州市隆和光电有限公司 一种全光谱led灯

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114373850B (zh) * 2021-12-28 2024-02-09 广州光联电子科技有限公司 全光谱led光源、led发光部件及led照明装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840071A (zh) * 2014-03-21 2014-06-04 苏州东山精密制造股份有限公司 一种led灯条制作方法及led灯条
US20150267879A1 (en) * 2014-03-19 2015-09-24 Cree, Inc. High efficiency led lamp
CN105762144A (zh) * 2016-05-24 2016-07-13 杜军 一种全光谱高显色性led发白光器件及其制作方法
CN208835060U (zh) * 2018-09-04 2019-05-07 易美芯光(北京)科技有限公司 一种多波长芯片组合激发的led光源

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110037081A1 (en) * 2009-08-12 2011-02-17 Wu-Cheng Kuo White light-emitting diode packages with tunable color temperature
CN109671831A (zh) * 2018-11-01 2019-04-23 佛山市中昊光电科技有限公司 一种全光谱cob光源
CN110137164B (zh) * 2019-04-10 2021-05-28 厦门立达信照明有限公司 一种实现低蓝光危害的类太阳光谱白光的方法及白光led

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150267879A1 (en) * 2014-03-19 2015-09-24 Cree, Inc. High efficiency led lamp
CN103840071A (zh) * 2014-03-21 2014-06-04 苏州东山精密制造股份有限公司 一种led灯条制作方法及led灯条
CN105762144A (zh) * 2016-05-24 2016-07-13 杜军 一种全光谱高显色性led发白光器件及其制作方法
CN208835060U (zh) * 2018-09-04 2019-05-07 易美芯光(北京)科技有限公司 一种多波长芯片组合激发的led光源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4095907A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115119355A (zh) * 2022-08-29 2022-09-27 南昌硅基半导体科技有限公司 一种兼顾定位和照明的高速led器件及其制备方法
CN117412432A (zh) * 2023-11-27 2024-01-16 惠州市隆和光电有限公司 一种全光谱led灯
CN117412432B (zh) * 2023-11-27 2024-06-04 惠州市隆和光电有限公司 一种全光谱led灯

Also Published As

Publication number Publication date
US20230070872A1 (en) 2023-03-09
CN111653555A (zh) 2020-09-11
EP4095907A4 (en) 2023-08-02
EP4095907A1 (en) 2022-11-30

Similar Documents

Publication Publication Date Title
WO2021237839A1 (zh) 一种全光谱led光源及其制作方法
CN105870303B (zh) 一种全光谱的led光源
CN105814699B (zh) 具有高显色性的白光发光装置
CN205177879U (zh) 一种用于植物照明的led封装集成光源
TWI482317B (zh) 調整植物生長的光源裝置
CN114373850B (zh) 全光谱led光源、led发光部件及led照明装置
US20100295069A1 (en) High Luminous Flux Warm White Solid State Lighting Device
TW201010125A (en) White light light-emitting diodes
CN101872825A (zh) 制备低色温高显色性大功率白光led的新方法
CN109950384B (zh) 一种全光谱cob光源及含有该光源的cob灯具
JP2022540191A (ja) フルスペクトル白色発光デバイス
CN102637808A (zh) 一种白光led封装结构
WO2008116352A1 (fr) Procédé de production d'une lampe del à lumière blanche et lampe del ainsi obtenue
WO2020248748A1 (zh) 节律照明用的led光源
CN106870976A (zh) 一种光源模组及包括该光源模组的照明装置
CN110047825A (zh) 一种可蓝绿双波段激发红色荧光粉的白光led封装结构及发光方式
KR102193591B1 (ko) 광대역 발광 장치
TW202101787A (zh) 發光二極體混光結構
CN202259428U (zh) 一种白光led封装结构
CN203787466U (zh) Led封装结构
US7701124B2 (en) White light-emitting device having a cap layer formed from a mixture of silicon and a phosphor blend
CN111916547A (zh) 一种led光源
CN110635013A (zh) 一种利用紫光激发的全光谱冷白led光源
CN212725358U (zh) 一种led灯珠
CN109860162B (zh) 一种仿太阳光谱led灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020938070

Country of ref document: EP

Effective date: 20220824

NENP Non-entry into the national phase

Ref country code: DE