WO2021235912A1 - Surface processing system and method for cylindrical and annular objects to be processed, using atmospheric plasma generation device - Google Patents

Surface processing system and method for cylindrical and annular objects to be processed, using atmospheric plasma generation device Download PDF

Info

Publication number
WO2021235912A1
WO2021235912A1 PCT/KR2021/006452 KR2021006452W WO2021235912A1 WO 2021235912 A1 WO2021235912 A1 WO 2021235912A1 KR 2021006452 W KR2021006452 W KR 2021006452W WO 2021235912 A1 WO2021235912 A1 WO 2021235912A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
nozzle unit
generating device
annular
vacuum suction
Prior art date
Application number
PCT/KR2021/006452
Other languages
French (fr)
Korean (ko)
Inventor
이창훈
Original Assignee
이창훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이창훈 filed Critical 이창훈
Priority to EP21794450.3A priority Critical patent/EP3952619A4/en
Priority to JP2021564859A priority patent/JP2022538202A/en
Priority claimed from KR1020210066020A external-priority patent/KR20210144602A/en
Priority to US17/519,519 priority patent/US20220061146A1/en
Publication of WO2021235912A1 publication Critical patent/WO2021235912A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/01Handling plasma, e.g. of subatomic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma

Definitions

  • the present disclosure relates to a system and method for surface treatment of a cylindrical and annular target object using an atmospheric pressure plasma generating device, and more particularly, coupled to each other through plasma treatment of the outer surface of the cylindrical object and plasma treatment of the inner surface of the annular object.
  • a system and method for performing surface modification of cylindrical and annular workpieces are provided.
  • Plasma is an ionized gas such as electrons and neutral particles, and can react directly with the surface of another material or by elastic collision.
  • the plasma generating apparatus mainly includes a tube configured to generate plasma by means of compressed air intersecting with high-frequency, high-voltage electric charges.
  • an atmospheric pressure plasma apparatus instead of a low pressure plasma has been increasing.
  • an atmospheric pressure plasma apparatus it can be applied to various materials and substrates through a low-temperature process, and since it does not require a vacuum container or an evacuation device, the processing speed is fast and economical.
  • the adhesion is good and the deposition temperature is low, so in the conventional surface treatment process, semiconductor process, and display process, deformation and denaturation accompanying high temperature heating can be reduced. It is used in a relatively wide variety of industries.
  • the target surface of the target object when treating the surface of a planar target object, can be treated by linear or linear motion of the target object or the plasma generating device. do.
  • the outer surface of the object in the case of surface treatment of a cylindrical object, can be uniformly treated by rotating the object while the plasma generating device is fixed.
  • the inner surface of the object to be treated in the case of an annular object to be treated, can be uniformly treated by rotating the plasma device while moving the inside of the object to surface the inner surface of the object.
  • the plasma surface treatment system according to the prior art has a problem in that it is difficult to apply when the size of the plasma generating device or the movement range is limited, and the size of the cylindrical or annular object to be treated is small or the area to be surface treated is local. have.
  • the present disclosure provides a tab structure for controlling the injection direction of a plasma beam emitted from a nozzle of a rotary plasma generating device in order to surface-treat the outer surface of a cylindrical object to be processed. It provides a surface treatment system for a cylindrical to-be-processed object comprising a. In addition, the present disclosure provides a surface treatment system for an annular to-be-processed object in which a nozzle of a plasma generating device disposed on one side of the object and a vacuum suction device are disposed on the other side of the object to surface-treat the inner surface of the annular to-be-processed object provides
  • a surface treatment system for a cylindrical object using an atmospheric pressure plasma generating device includes a rotary plasma generating device including a nozzle part from which plasma is discharged and a body part from which the nozzle part is detached, and a rotation axis of the nozzle part as the center and a plasma beam guide tab attached to one side of the nozzle part by a furnace, wherein the plasma beam guide tab is configured with respect to at least a portion of the side surface of the object to be processed in a state in which the rotational axis of the rotary plasma generating device is aligned with the central axis of the cylindrical object to be processed. configured to emit a plasma beam.
  • one end of the plasma beam guide tab is attached to a position deviated from the rotation axis on the nozzle unit, and the other terminal of the plasma beam guide tab is configured to face the rotation axis.
  • the other terminal of the plasma beam guide tab is spaced apart from the side surface of the cylindrical object to be rotated about the rotational axis of the rotary plasma generating device.
  • the nozzle unit includes a first opening formed on one side of the nozzle unit, and the first opening is formed on one side of the nozzle unit at a predetermined angle or more with respect to the rotation axis.
  • one end of the plasma beam guide tab is coupled to the first opening, and the inside of the nozzle part is formed to have a narrow cross-section in the direction of the first opening.
  • a surface treatment system for an annular target object using an atmospheric pressure plasma generating device includes a plasma generating device including a nozzle part from which plasma is discharged and a body part from which the nozzle part is detachable, and at a position opposite to the nozzle part. and a vacuum suction device arranged, wherein the vacuum suction device is configured to perform vacuum suction on the other terminal of the annular object when a plasma beam is generated for one terminal of the annular object from a nozzle portion of the plasma generating apparatus.
  • the nozzle unit and the vacuum suction device include a measuring device for measuring the inner size of the annular object to be processed.
  • the controller further includes a controller for controlling whether at least one of the plasma generating device and the vacuum suction device is driven based on the internal size of the annular to-be-processed object measured by the measuring device.
  • the controller controls the position of at least one of the plasma generating device and the vacuum suction device.
  • the nozzle unit includes a second opening formed on one surface in the direction of the annular object, and the cross-section of the second opening is equal to that of the cross-section of the third opening formed at one terminal of the annular object. smaller than the width
  • a uniform and effective surface for the side surface of the cylindrical object to be processed processing is possible.
  • a plasma beam is applied from the nozzle portion of the plasma generating apparatus to one terminal of the annular to-be-processed object.
  • FIG. 1 is an exemplary view showing a surface treatment and bonding procedure of a cylindrical to-be-treated object and an annular to-be-processed object according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of a system for surface-treating a side surface of a cylindrical object to be processed using a rotary plasma generating apparatus according to an embodiment of the present disclosure.
  • FIG 3 is a cross-sectional view of a nozzle unit and a plasma beam guide tab according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a method for surface treatment of a cylindrical object to be treated using a surface treatment system according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a system for surface-treating an inner surface of an annular object using a plasma generating device and a vacuum suction device according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of a method for surface treatment of an annular target object using a surface treatment system according to an embodiment of the present disclosure.
  • the upper side of a drawing may be referred to as “upper” or “upper side”, and the lower side thereof may be referred to as “lower side” or “lower side” of the configuration shown in the drawing.
  • the remaining portions between the upper and lower portions of the illustrated configuration or except for the upper and lower portions may be referred to as “side” or “side”.
  • Relative terms such as “upper”, “upper”, etc. may be used to describe the relationship between the components shown in the drawings, and the present disclosure is not limited by such terms.
  • references to “A and/or B” in this disclosure means A, or B, or A and B.
  • the term 'part or portion' or 'module' means a mechanical or hardware component, a software component, or a combination thereof, and 'part' or 'module' refers to a specific role or function can be configured to perform
  • 'part' or 'module' is not meant to be limited to mechanical components or hardware or software.
  • a 'unit' or 'module' may be configured to reside on an addressable storage medium, or it may be configured to execute one or more processors.
  • 'part' or 'module' refers to components such as software components, object-oriented software components, class components and task components, processes, functions, properties, Includes procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays and variables.
  • Components and 'units' or 'modules' described in the present disclosure may be combined with a smaller number of components and 'units' or 'modules', or additional components and 'units' ' or 'modules'.
  • a 'system' may mean a mechanical device including one or more plasma generating devices, vacuum suction devices, computing devices, etc., an electromechanical device, or a device or equipment including a combination thereof, but is limited thereto it's not going to be
  • FIG. 1 is an exemplary view showing the surface treatment and bonding procedure of the cylindrical to-be-processed object 110 and the annular to-be-processed object 120 according to an embodiment of the present disclosure.
  • the cylindrical to-be-processed object may be performed on a portion 112 of the outer surface of 110 and a portion 122 of the inner surface of the annular to-be-processed object 120 .
  • a plasma generating apparatus used for such plasma surface treatment may modify the surface of the object by, for example, discharging the generated plasma to the surfaces of the objects to be treated 110 and 120 composed of a polymer organic material. .
  • the plasma generating device may be used for surface treatment of the to-be-processed objects 110 and 120 made of metal, in this case, by coating the metal surface with a cemented carbide film such as TiN/C, CrN/C, AIN, etc. Abrasion resistance and corrosion resistance can be improved.
  • the cylindrical to-be-processed object 110 and the annular to-be-processed object 120 whose surface adhesiveness is improved through plasma surface treatment may be bonded after fitting.
  • FIG. 2 is a schematic diagram of a system 200 for surface-treating a side surface of a cylindrical object 110 using a rotary plasma generating device 210 according to an embodiment of the present disclosure.
  • the system 200 includes a rotary plasma generating device 210 including a nozzle part 214 from which plasma is discharged and a body part 212 from which the nozzle part 214 is detachable, and a nozzle part ( It may include a plasma beam guide tab 216 attached to one side of the nozzle unit 214 about the rotation axis of the 214 .
  • the rotary plasma generating device 210 When the rotary plasma generating device 210 is an atmospheric pressure plasma generating device, it may include a generator, a high voltage transformer, electrodes generating plasma discharge, and the like so as to be driven in a normal room temperature/normal pressure environment.
  • the rotary plasma generating device 210 as shown in FIG. 2 , the nozzle unit 214 from which plasma is discharged, the nozzle unit 214 is detached from one side, and the working gas is supplied from the other side.
  • a gas supply pipe (not shown), a cable connected to a high voltage transformer (not shown) to be detached from the body 212, and a motor (not shown) configured to rotate the body about the rotating shaft 240.
  • the high frequency high voltage generated by the high voltage transformer is applied to the electrodes installed inside the body 212 , and a high frequency discharge in the form of an electric arc may be generated between the electrodes by the applied voltage.
  • the working gas may be in contact with the electric arc to be converted into a plasma state.
  • the plasma beam generated by the body 212 may be discharged through the first opening of the nozzle 214 .
  • the nozzle unit 214 of the rotary plasma generating device 210 is a part from which a plasma beam is discharged, and may be integrally coupled to the rotary plasma generating device 210 or coupled in a detachable form.
  • the area and intensity in which the plasma beam spreads may be adjusted according to the size, length, and shape of the nozzle unit 214 of the rotary plasma generating apparatus 210 .
  • a plasma beam that is up to 1.5 to 2 times longer than that of a conventional nozzle may be generated, and in the case of a circular nozzle, a wider surface treatment may be possible compared to a general nozzle.
  • a first opening may be formed at a side surface of the nozzle unit 214 at a predetermined angle or more with respect to the rotation shaft 240 .
  • the first opening may correspond to the last part of a path through which the plasma beam is discharged within the nozzle unit 214 .
  • the plasma beam guide tab 216 may be attached to one side of the nozzle unit 214 about the rotation shaft 240 to guide the movement and discharge path of the plasma beam.
  • the plasma beam guide tab 216 is a side surface of the cylindrical object 110 in a state in which the rotation shaft 240 of the rotary plasma generating device 210 is aligned with the central axis of the cylindrical object 110 . It may be configured to discharge the plasma beam 220 for at least a portion of the 112 .
  • the plasma beam guide tab 216 has a configuration of a pipe-shaped or arc-shaped curved shape as a whole, but is not limited thereto.
  • the plasma beam guide tab 216 may include a pipe-shaped or arc-shaped configuration bent at an angle at one or more locations in its longitudinal direction.
  • one end of the plasma beam guide tab 216 may be attached to a position deviated from the rotation shaft 240 on the nozzle unit 214 .
  • one end of the plasma beam guide tab 216 may be coupled to a first opening formed on one side of the nozzle unit 214 .
  • one end of the plasma beam guide tab 216 may be screwed with the first opening.
  • one terminal of the plasma beam guide tab 216 is illustrated as being coupled to the side surface of the nozzle unit 214 , but is not limited thereto. In another embodiment, one end of the plasma beam guide tab 216 may be coupled to a lower surface or another side of the nozzle unit 214 rather than the side surface of the nozzle unit 214 . In addition, in one embodiment, one terminal of the plasma beam guide tab 216 may be installed in a detachable form on the side surface of the nozzle unit 214 as well as integrally coupled to one side of the nozzle unit 214 . can be
  • the other terminal of the plasma beam guide tab 216 may be configured to face the cylindrical object 110 positioned on the rotation shaft 240 .
  • the other terminal of the plasma beam guide tab 216 is spaced apart from the side surface of the cylindrical object 110 , and the body 212 and the nozzle 214 of the rotary plasma generating device 210 . may be rotated together as it rotates about the rotation shaft 240 .
  • the plasma beam 220 discharged through the first opening of the nozzle unit 214 is introduced through one end of the plasma beam guide tab 216 to guide the plasma beam. It is guided along a passage formed inside the tab 216 , and may be discharged through the other terminal of the plasma beam guide tab 216 . As shown, the plasma beam 220 discharged through the other terminal of the plasma beam guide tab 216 is part ( 112) can be discharged. In addition, as the other terminal of the plasma beam guide tab 216 rotates about the rotation shaft 240 , the plasma beam 220 may be discharged along the circumference of the side surface of the cylindrical object 110 .
  • FIG 3 is a cross-sectional view of the nozzle unit 310 and the plasma beam guide tab 320 according to an embodiment of the present disclosure.
  • FIG. 3 configurations corresponding to the cylindrical object 110 and the body 212 shown in FIG. 2 are omitted for a clearer understanding of the structure of the rotary plasma generator.
  • the nozzle unit 310 and the plasma beam guide tab 320 shown in FIG. 3 may be used as, for example, the nozzle unit 214 and the plasma guide tab 216 shown in FIG. 2 .
  • the nozzle unit 310 may have a structure in which the rotating plasma generating device (or body unit) is detachable from one terminal 316 .
  • one terminal 316 of the nozzle unit 310 may include a structure capable of fitting or screwing into the rotary plasma generating device.
  • a space 312 in which the movement of the plasma beam introduced from one terminal 316 of the nozzle unit 310 is guided may be formed inside the nozzle unit 310 .
  • a first opening 314 to which the plasma guide tab 320 is coupled may be formed at one terminal of the space 312 .
  • the space 312 may be formed to have a narrow cross-sectional area in a direction from one terminal 316 of the nozzle unit 310 to the first opening 314 .
  • the space 312 may have a conical shape that narrows in a direction from one terminal 316 of the nozzle unit 310 to the first opening 314 .
  • One terminal of the plasma guide tab 320 may be coupled to the first opening 314 formed at a position deviated from the rotation shaft 240 .
  • a coupling method between the plasma guide tab 320 and the first opening 314 is illustrated as an insertion coupling method by an interference fit, but is not limited thereto.
  • the coupling method between the plasma guide tab 320 and the first opening 314 may be a screw coupling method through threads formed on the inner and outer circumferential surfaces of the coupling elements of each configuration.
  • a passage 322 for guiding the movement and discharge direction of the plasma beam may be formed inside the plasma guide tab 320 .
  • the plasma beam generated by the rotary plasma generating apparatus is introduced through one terminal 316 of the nozzle unit 310 and moves along a passage 322 connected to the space 312 and one terminal of the plasma guide tab 320 . Thus, it may be finally discharged through the other terminal of the plasma guide tab 320 .
  • the counterweight 318 is installed at a position opposite to the first opening 314 on the side where the first opening 314 is formed about the rotational shaft 240 of the nozzle unit 310 .
  • a space 317 may be formed.
  • a coupling hole to which the counterweight 318 can be coupled may be formed on the inner surface of the counterweight space 317, and one end of the counterweight 318 may be coupled to the coupling hole in a screw coupling method, for example. have.
  • the counterweight space 317 and the counterweight 318 are formed between the first opening 314 and the counterweight space 317 with the nozzle unit 310 about the rotation shaft 240 when the nozzle unit 310 is rotated. It may be configured to maintain weight balance.
  • the size of the counterweight space 317 and the position, weight and/or size of the counterweight 318 may be appropriately adjusted to maintain weight balance with the first opening 314 .
  • FIG. 4 is a flowchart of a method for surface treatment of a cylindrical object to be treated using a surface treatment system according to an embodiment of the present disclosure.
  • the method for the surface of the cylindrical object to be processed may be initiated by aligning the rotational axis of the rotary plasma generating device with the central axis of the cylindrical object (S420).
  • the plasma beam generated by the rotary plasma generating apparatus may be guided along a passage formed inside the plasma beam guide tab and discharged to at least a portion of the side surface of the cylindrical object to be processed ( S440 ).
  • the plasma beam guide tab in a state in which the plasma beam guide tab is spaced apart from the side surface of the cylindrical object to be processed, it may be rotated about the rotation axis of the rotary plasma generating apparatus ( S460 ). Accordingly, by the plasma beam discharged from the plasma beam guide tab that rotates about the rotation axis, the circumference of the side surface of the cylindrical object to be processed can be surface-treated in the circumferential direction.
  • FIG. 5 is a schematic diagram of a system 500 for surface-treating the inner surface 122 of the annular object 120 using the plasma generating device 510 and the vacuum suction device 530 according to an embodiment of the present disclosure. .
  • the system 500 includes a plasma generating device 510 including a nozzle unit 514 from which plasma is discharged, and a body unit 512 from which the nozzle unit 514 is detached, and an object 120 to be processed.
  • a vacuum suction device 530 disposed at a position opposite to the nozzle unit 514 with reference to, and a controller 550 for controlling the driving and position of the plasma generating device 510 and the vacuum suction device 530 .
  • the plasma generating device 510 When the plasma generating device 510 is an atmospheric pressure plasma generating device, it may include a generator, a high voltage transformer, electrodes for generating plasma discharge, and the like so as to be driven in a normal room temperature/normal pressure environment.
  • the nozzle part 514 from which plasma is discharged the nozzle part 514 is detached from one side, and the gas to which the working gas is supplied from the other side.
  • a supply pipe (not shown), a cable connected to a high voltage transformer (not shown), etc. may include a body portion 512 detachable.
  • the high frequency high voltage generated by the high voltage transformer is applied to the electrodes installed inside the body 512 , and a high frequency discharge in the form of an electric arc may be generated between the electrodes by the applied voltage.
  • the working gas may be in contact with the electric arc to be converted into a plasma state.
  • the plasma beam generated by the body part 512 may be discharged through the opening of the nozzle part 514 .
  • the nozzle unit 514 of the plasma generating device 510 is a portion from which a plasma beam is discharged, and may be integrally coupled to the plasma generating device 510 or may be detachably coupled to the plasma generating device 510 .
  • the area and intensity in which the plasma beam spreads may be adjusted according to the size, length, and shape of the nozzle unit 514 of the plasma generating device 510 . For example, in the case of a thin and long nozzle, a plasma beam that is up to 1.5 to 2 times longer than that of a conventional nozzle may be generated, and in the case of a circular nozzle, a wider surface treatment may be possible compared to a general nozzle.
  • a second opening 516 may be formed on one surface of the nozzle unit 514 opposite to one end of the annular to-be-processed object 120 .
  • the second opening 516 may correspond to the last part of the path through which the plasma beam is discharged from within the nozzle unit 514 .
  • the area of the cross-section of the second opening 516 is at one terminal of the annular object 120 so that the plasma beam 520 is discharged to the inner surface 122 of the annular object 120 . It may be smaller than the width of the cross-section of the formed third opening 124 .
  • the plasma beam 520 discharged from the nozzle unit 514 passes through the third opening 124 formed in one terminal of the annular object 120 to the annular object 120 . can reach the inner surface 122 of However, depending on the shape or structure of the nozzle unit 514 , the plasma beam 520 may not sufficiently reach a region requiring surface treatment among the inner surface 122 of the annular object 120 . Accordingly, while the plasma beam 520 is discharged from the plasma generating device 510 , the vacuum suction device 530 installed at the other terminal of the annular object 120 may be driven.
  • the annular object 120 When the plasma beam 520 is generated from the nozzle unit 514 of the plasma generating device 510 to one terminal of the annular object 120 in the vacuum suction device 530, the annular object 120 is It can be configured to perform vacuum suction for the other terminal of the. According to the operation of the vacuum suction device 530 , the plasma beam 520 may be expanded in the direction 540 of the vacuum suction device 530 . It can reach the inner surface 122 located a little deeper.
  • the nozzle unit 514 and the vacuum suction device 530 may include a measuring device (not shown) for measuring the length and/or size of the inner space of the annular object 120 .
  • the measuring device is configured to measure the length and/or size of the internal space of the annular object 120 to calculate the discharge amount and the discharge size of the plasma beam 520 before the plasma beam 520 is discharged can be
  • the measuring instrument is a type in which an infrared transmitter and a receiver are installed in the nozzle unit 514 and the vacuum suction device 530, respectively, and may correspond to a device capable of outputting different electrical signals depending on the length or size of the measurement target.
  • the measuring device may transmit an electrical signal including a current value or a voltage value determined according to the internal size of the annular object 120 to the controller 550 .
  • the controller 550 may receive the electrical signal transmitted from the measuring device, and determine the discharge amount or the discharge size of the plasma beam 520 corresponding to the inner length or size of the annular object 120 . According to the discharge amount or discharge size of the plasma beam 520 determined in this way, the controller 550 may control the driving time and intensity of at least one of the plasma generating device 510 and the vacuum suction device 530 . .
  • the controller 550 determines that the internal size (eg, the diameter of the cross-section of the internal space) of the annular object 120 is equal to or less than the reference value, based on the electrical signal of the measuring device.
  • the discharge intensity of the plasma beam 520 of the plasma generating device 510 may be adjusted downward, or the vacuum suction intensity of the vacuum suction device 530 may be adjusted upward.
  • the controller 550 determines that the internal size of the annular object 120 is equal to or greater than the reference value, based on the electrical signal of the measuring device, the plasma beam 520 discharge intensity of the plasma generating device 510 . may be adjusted upward, or the vacuum suction strength of the vacuum suction device 530 may be adjusted downward.
  • the operation control of the plasma generating device 510 and the vacuum suction device 530 by the controller 550 as described above may be sequentially executed. For example, after controlling the operation of the plasma generating device 510 , the controller 550 may control the operation of the vacuum suction device 530 , and repeat the operation control of these two steps. In another embodiment, the operation control of the plasma generating device 510 and the vacuum suction device 530 by the controller 550 may be executed simultaneously in parallel. In another embodiment, the controller 550 may execute only the operation control for the plasma generating device 510 without the operation control for the vacuum suction device 530 .
  • the controller 550 may control the positions of the plasma generating device 510 and the vacuum suction device 530 .
  • the controller 550 may control the position movement of the plasma generating device 510 and the vacuum suction device 530 in the direction of the annular object 120 .
  • the controller 550 may include the plasma generating device 510 and the vacuum suction device so that the plasma beam 520 can reach the inner surface 122 located more deeply inside the annular object 120 .
  • the position of the 530 may be moved closer to the annular object 120 .
  • the controller 550 may control the position of the plasma generating device 510 on a plane perpendicular to the direction of the annular object 120 .
  • the controller 550 may control the relative position of the plasma generating device 510 with respect to the annular object 120 so that the plasma beam 520 is discharged only to the inside rather than the outside of the annular object 120 . can be adjusted.
  • the controller 550 controls the positions of the plasma generating device 510 and the vacuum suction device 530, each of the plasma generating device 510 and the vacuum suction device 530 to the object ( 120) and may include an electromechanical device capable of linear movement.
  • the controller 550 may include a linear motor capable of linearly moving each of the plasma generating device 510 and the vacuum suction device 530 with respect to the object 120 .
  • the discharge amount, size, position, etc. of the plasma beam 520 is within an appropriate range.
  • the surface treatment can be appropriately performed up to the inner surface 122 deeper inside the annular object 120 .
  • FIG. 6 is a flowchart of a method for surface treatment of an annular target object using a surface treatment system according to an embodiment of the present disclosure.
  • the method for the surface of the annular to-be-processed object may be started by discharging a plasma beam from the nozzle unit toward one end of the annular to-be-processed object by the plasma generating device (S610).
  • the vacuum suction device can perform vacuum suction on the other terminal of the annular target object (S620).
  • the internal size of the annular to-be-processed object can be measured by the measuring device (S630).
  • a measuring device (not shown) installed in the plasma generating device 510 and the vacuum suction device 530 may measure the internal size of the annular object 120 .
  • the measuring device may transmit an electrical signal determined according to the inner length or size of the annular object 120 to the controller 550 .
  • the controller may determine whether the internal size of the object to be processed is less than or equal to a reference value (S640). In one embodiment, referring to FIG. 5 , the controller 550 may determine whether the internal size of the annular object 120 is equal to or less than a reference value, based on an electrical signal of the measuring device.
  • the controller may lower the plasma beam discharge intensity of the plasma generating apparatus (S650). Then, the controller may adjust the vacuum suction strength of the vacuum suction device upward (S660). As described above, by allowing the plasma beam to be discharged to the inside of the annular target object for a long time by the plasma generating device and the vacuum suction device, the surface treatment can be appropriately performed to a deeper inner surface of the annular target object.
  • the controller may increase the plasma beam discharge intensity of the plasma generating apparatus (S670). Then, the controller may adjust the vacuum suction strength of the vacuum suction device downward (S680). As described above, by allowing the plasma beam to be widely discharged to the inside of the annular target object by the plasma generating device and the vacuum suction device, the surface treatment can be appropriately performed on the inner surface of the annular target object.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma Technology (AREA)

Abstract

A surface processing system for a cylindrical object to be processed, using an atmospheric plasma generation device, according to one embodiment of the present disclosure, comprises: a rotating plasma generation device including a nozzle part from which plasma is discharged, and a body part from which the nozzle part is detached; and a plasma beam guide tab attached to one side of the nozzle part with the rotational axis of the nozzle part as the center thereof, wherein the plasma beam guide tab discharges the plasma beam to at least a part of the side of the object to be processed in a state in which the rotational axis of the rotating plasma generation device is aligned with the central axis of the cylindrical object to be processed.

Description

대기압 플라즈마 발생 장치를 이용한 원통형 및 환형 피처리물의 표면처리 시스템 및 방법System and method for surface treatment of cylindrical and annular objects to be treated using atmospheric pressure plasma generator
본 개시는 대기압 플라즈마 발생 장치를 이용한 원통형 및 환형 피처리물의 표면처리 시스템 및 방법에 관한 것으로, 보다 상세하게는, 원통형 피처리물의 외면의 플라즈마 처리와 환형 피처리물의 내면의 플라즈마 처리를 통해 상호 결합되는 원통형 및 환형 피처리물의 표면 개질을 실행하는 시스템 및 방법에 관한 것이다.The present disclosure relates to a system and method for surface treatment of a cylindrical and annular target object using an atmospheric pressure plasma generating device, and more particularly, coupled to each other through plasma treatment of the outer surface of the cylindrical object and plasma treatment of the inner surface of the annular object. A system and method for performing surface modification of cylindrical and annular workpieces.
플라즈마는 전자, 중성입자 등의 이온화된 가스로서, 다른 재료의 표면과 직접 반응하거나 탄성 충돌에 의해 반응할 수 있다. 플라즈마 발생 장치는, 주로 압축된 공기가 고주파수, 고전압의 전하와 교차하여 플라즈마를 발생하도록 구성된 튜브를 포함한다. 최근에는 저압 플라즈마를 대신하여 대기압 플라즈마 장치를 이용하는 경우가 증가해 오고 있다. 대기압 플라즈마 장치의 경우, 저온공정으로 다양한 재료와 기판에 적용할 수 있고, 진공 용기나 진공 배기 장치를 필요로 하지 않기 때문에 처리속도가 빠르고 경제적이다. 또한, 대기압 플라즈마를 이용한 증착법을 이용할 경우 부착력이 좋고 증착 온도가 낮아지기 때문에, 종래의 표면처리 공정, 반도체 공정, 디스플레이 공정에서, 고온 가열에 수반되는 변형, 변성을 줄일 수 있는 등의 장점을 활용하여 비교적 다양한 산업에서 사용되고 있다.Plasma is an ionized gas such as electrons and neutral particles, and can react directly with the surface of another material or by elastic collision. The plasma generating apparatus mainly includes a tube configured to generate plasma by means of compressed air intersecting with high-frequency, high-voltage electric charges. In recent years, the case of using an atmospheric pressure plasma apparatus instead of a low pressure plasma has been increasing. In the case of an atmospheric pressure plasma apparatus, it can be applied to various materials and substrates through a low-temperature process, and since it does not require a vacuum container or an evacuation device, the processing speed is fast and economical. In addition, when the deposition method using atmospheric pressure plasma is used, the adhesion is good and the deposition temperature is low, so in the conventional surface treatment process, semiconductor process, and display process, deformation and denaturation accompanying high temperature heating can be reduced. It is used in a relatively wide variety of industries.
일반적으로 플라즈마 표면처리 시스템에서 사용되는 플라즈마 발생 장치의 경우, 평면 형태의 피처리물의 표면을 처리할 때는 피처리물 또는 플라즈마 발생 장치를 직선 또는 선형 운동함으로써 피처리물의 타겟 표면이 처리될 수 있도록 구성된다. 한편, 원통형의 피처리물의 표면 처리 시에는, 플라즈마 발생 장치가 고정된 상태에서 피처리물을 회전시킴으로써 피처리물의 외면이 균일하게 처리될 수 있다. 또한, 환형의 피처리물의 경우 그 내면을 표면처리하기 위해 플라즈마 장치를 피처리물의 내부로 이동한 상태에서 회전시킴으로써 피처리물의 내면을 균일하게 처리할 수 있다. 다만, 이러한 종래기술에 따른 플라즈마 표면처리 시스템은, 플라즈마 발생 장치의 크기나 이동 범위의 제한 때문에, 원통형 또는 환형의 피처리물의 크기가 작거나 표면처리될 영역이 국소적인 경우에 적용하기 어려운 문제점이 있다.In general, in the case of a plasma generating device used in a plasma surface treatment system, when treating the surface of a planar target object, the target surface of the target object can be treated by linear or linear motion of the target object or the plasma generating device. do. On the other hand, in the case of surface treatment of a cylindrical object, the outer surface of the object can be uniformly treated by rotating the object while the plasma generating device is fixed. In addition, in the case of an annular object to be treated, the inner surface of the object to be treated can be uniformly treated by rotating the plasma device while moving the inside of the object to surface the inner surface of the object. However, the plasma surface treatment system according to the prior art has a problem in that it is difficult to apply when the size of the plasma generating device or the movement range is limited, and the size of the cylindrical or annular object to be treated is small or the area to be surface treated is local. have.
이상 설명한 바와 같은 종래기술의 문제점을 해결하기 위해, 본 개시는, 원통형 피처리물의 외면을 표면처리하기 위해, 회전형 플라즈마 발생 장치의 노즐에서 방출되는 플라즈마 빔의 분사 방향을 조절하기 위한 탭 구조를 포함하는 원통형 피처리물의 표면처리 시스템을 제공한다. 또한, 본 개시는, 환형 피처리물의 내면을 표면처리하기 위해, 피처리물의 일 측면에 배치된 플라즈마 발생 장치의 노즐과 피처리물의 다른 측면에 진공 흡인 장치를 배치한 환형 피처리물의 표면처리 시스템을 제공한다.In order to solve the problems of the prior art as described above, the present disclosure provides a tab structure for controlling the injection direction of a plasma beam emitted from a nozzle of a rotary plasma generating device in order to surface-treat the outer surface of a cylindrical object to be processed. It provides a surface treatment system for a cylindrical to-be-processed object comprising a. In addition, the present disclosure provides a surface treatment system for an annular to-be-processed object in which a nozzle of a plasma generating device disposed on one side of the object and a vacuum suction device are disposed on the other side of the object to surface-treat the inner surface of the annular to-be-processed object provides
본 개시의 일 실시예에 따른 대기압 플라즈마 발생 장치를 이용한 원통형 피처리물의 표면처리 시스템은, 플라즈마가 토출되는 노즐부 및 노즐부가 탈착되는 몸체부를 포함하는 회전형 플라즈마 발생 장치, 및 노즐부의 회전축을 중심으로 노즐부의 일 측면에 부착되는 플라즈마 빔 가이드 탭을 포함하며, 플라즈마 빔 가이드 탭은, 회전형 플라즈마 발생 장치의 회전축이 원통형 피처리물의 중심축과 정렬된 상태에서 피처리물의 측면 중 적어도 일부에 대해 플라즈마 빔을 토출하도록 구성된다.A surface treatment system for a cylindrical object using an atmospheric pressure plasma generating device according to an embodiment of the present disclosure includes a rotary plasma generating device including a nozzle part from which plasma is discharged and a body part from which the nozzle part is detached, and a rotation axis of the nozzle part as the center and a plasma beam guide tab attached to one side of the nozzle part by a furnace, wherein the plasma beam guide tab is configured with respect to at least a portion of the side surface of the object to be processed in a state in which the rotational axis of the rotary plasma generating device is aligned with the central axis of the cylindrical object to be processed. configured to emit a plasma beam.
일 실시예에 따르면, 플라즈마 빔 가이드 탭의 일 단말은 노즐부 상에서 회전축으로부터 벗어난 위치에 부착되며, 플라즈마 빔 가이드 탭의 타 단말은 회전축을 향하도록 구성된다.According to an embodiment, one end of the plasma beam guide tab is attached to a position deviated from the rotation axis on the nozzle unit, and the other terminal of the plasma beam guide tab is configured to face the rotation axis.
일 실시예에 따르면, 플라즈마 빔 가이드 탭의 타 단말은 원통형 피처리물의 측면으로부터 이격되어 회전형 플라즈마 발생 장치의 회전축을 중심으로 회전한다.According to one embodiment, the other terminal of the plasma beam guide tab is spaced apart from the side surface of the cylindrical object to be rotated about the rotational axis of the rotary plasma generating device.
일 실시예에 따르면, 노즐부는 노즐부의 일 측면에 형성되는 제1 개구를 포함하고, 제1 개구는 회전축을 기준으로 사전에 정해진 각도 이상의 일 측면으로 형성된다.According to an embodiment, the nozzle unit includes a first opening formed on one side of the nozzle unit, and the first opening is formed on one side of the nozzle unit at a predetermined angle or more with respect to the rotation axis.
일 실시예에 따르면, 플라즈마 빔 가이드 탭의 일 단말은 제1 개구와 결합되며, 노즐부의 내부는 제1 개구의 방향으로 단면의 넓이가 좁아지도록 형성된다.According to an embodiment, one end of the plasma beam guide tab is coupled to the first opening, and the inside of the nozzle part is formed to have a narrow cross-section in the direction of the first opening.
본 개시의 다른 실시예에 따른 대기압 플라즈마 발생 장치를 이용한 환형 피처리물의 표면처리 시스템은, 플라즈마가 토출되는 노즐부 및 노즐부가 탈착되는 몸체부를 포함하는 플라즈마 발생 장치, 및 노즐부와 대향하는 위치에 배치된 진공흡인 장치를 포함하며, 진공흡인 장치는, 플라즈마 발생 장치의 노즐부로부터 환형 피처리물의 일 단말에 대해 플라즈마 빔이 발생될 때 환형 피처리물의 타 단말에 대해 진공흡인을 실행하도록 구성된다.A surface treatment system for an annular target object using an atmospheric pressure plasma generating device according to another embodiment of the present disclosure includes a plasma generating device including a nozzle part from which plasma is discharged and a body part from which the nozzle part is detachable, and at a position opposite to the nozzle part. and a vacuum suction device arranged, wherein the vacuum suction device is configured to perform vacuum suction on the other terminal of the annular object when a plasma beam is generated for one terminal of the annular object from a nozzle portion of the plasma generating apparatus. .
일 실시예에 따르면, 노즐부 및 진공흡인 장치는 환형 피처리물의 내부 크기를 측정하는 측정기를 포함한다.According to an embodiment, the nozzle unit and the vacuum suction device include a measuring device for measuring the inner size of the annular object to be processed.
일 실시예에 따르면, 측정기에 의해 측정된 환형 피처리물의 내부 크기에 기초하여 플라즈마 발생 장치 및 진공흡인 장치 중 적어도 하나의 구동 여부를 제어하는 제어기를 더 포함한다.According to an embodiment, the controller further includes a controller for controlling whether at least one of the plasma generating device and the vacuum suction device is driven based on the internal size of the annular to-be-processed object measured by the measuring device.
일 실시예에 따르면, 제어기는 플라즈마 발생 장치 및 진공흡인 장치 중 적어도 하나의 위치를 제어한다.According to an embodiment, the controller controls the position of at least one of the plasma generating device and the vacuum suction device.
일 실시예에 따르면, 노즐부는 환형 피처리물 방향으로의 일 면에 형성되는 제2 개구를 포함하고, 제2 개구의 단면의 넓이는 환형 피처리물의 일 단말에 형성되는 제3 개구의 단면의 넓이보다 작다.According to an embodiment, the nozzle unit includes a second opening formed on one surface in the direction of the annular object, and the cross-section of the second opening is equal to that of the cross-section of the third opening formed at one terminal of the annular object. smaller than the width
본 개시의 다양한 실시예들에 따르면, 회전식 플라즈마 발생 장치의 노즐부에 부착되는 플라즈마 빔 가이드 탭을 통해 원통형 피처리물의 측면에 대해 플라즈마 빔을 방사함으로써, 원통형 피처리물의 측면에 대한 균일하고 효과적인 표면처리가 가능하다.According to various embodiments of the present disclosure, by radiating a plasma beam to a side surface of a cylindrical object to be processed through a plasma beam guide tab attached to a nozzle portion of a rotary plasma generating apparatus, a uniform and effective surface for the side surface of the cylindrical object to be processed processing is possible.
또한, 본 개시의 다양한 실시예들에 따르면, 플라즈마 발생 장치의 노즐부와 대향하는 위치에 배치된 진공흡인 장치를 이용하여, 플라즈마 발생 장치의 노즐부로부터 환형의 피처리물의 일 단말에 대해 플라즈마 빔이 발생될 때, 피처리물의 타 단말에 대해 진공흡인을 실행함으로써, 플라즈마 빔이 피처리물의 내면의 일정 깊이까지 도달하여 효과적인 표면처리를 실행하는 것이 가능하다.Further, according to various embodiments of the present disclosure, by using a vacuum suction device disposed at a position opposite to the nozzle portion of the plasma generating apparatus, a plasma beam is applied from the nozzle portion of the plasma generating apparatus to one terminal of the annular to-be-processed object. When this occurs, by performing vacuum suction on the other terminal of the object, it is possible for the plasma beam to reach a certain depth of the inner surface of the object to perform effective surface treatment.
본 개시의 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present disclosure are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.
본 개시의 실시예들은, 이하 설명하는 첨부 도면들을 참조하여 설명될 것이며, 여기서 유사한 참조 번호는 유사한 요소들을 나타내지만, 이에 한정되지는 않는다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present disclosure will be described with reference to the accompanying drawings described below, wherein like reference numerals denote like elements, but are not limited thereto.
도 1은 본 개시의 일 실시예에 따른 원통형 피처리물과 환형 피처리물의 표면처리와 본딩 절차를 보여주는 예시도이다.1 is an exemplary view showing a surface treatment and bonding procedure of a cylindrical to-be-treated object and an annular to-be-processed object according to an embodiment of the present disclosure.
도 2는 본 개시의 일 실시예에 따른 회전형 플라즈마 발생 장치를 이용하여 원통형 피처리물의 측면을 표면처리하는 시스템의 개략도이다.2 is a schematic diagram of a system for surface-treating a side surface of a cylindrical object to be processed using a rotary plasma generating apparatus according to an embodiment of the present disclosure.
도 3은 본 개시의 일 실시예에 따른 노즐부와 플라즈마 빔 가이드 탭의 단면도이다.3 is a cross-sectional view of a nozzle unit and a plasma beam guide tab according to an embodiment of the present disclosure.
도 4는 본 개시의 일 실시예에 따른 표면처리 시스템을 이용한 원통형 피처리물의 표면처리 방법의 흐름도이다.4 is a flowchart of a method for surface treatment of a cylindrical object to be treated using a surface treatment system according to an embodiment of the present disclosure.
도 5는 본 개시의 일 실시예에 따른 플라즈마 발생 장치 및 진공흡인 장치를 이용하여 환형 피처리물의 내면을 표면처리하는 시스템의 개략도이다.5 is a schematic diagram of a system for surface-treating an inner surface of an annular object using a plasma generating device and a vacuum suction device according to an embodiment of the present disclosure.
도 6은 본 개시의 일 실시예에 따른 표면처리 시스템을 이용한 환형 피처리물의 표면처리 방법의 흐름도이다.6 is a flowchart of a method for surface treatment of an annular target object using a surface treatment system according to an embodiment of the present disclosure.
이하, 본 개시의 실시를 위한 구체적인 내용을 첨부된 도면을 참조하여 상세히 설명한다. 다만, 이하의 설명에서는 본 개시의 요지를 불필요하게 흐릴 우려가 있는 경우, 널리 알려진 기능이나 구성에 관한 구체적 설명은 생략하기로 한다.Hereinafter, specific contents for carrying out the present disclosure will be described in detail with reference to the accompanying drawings. However, in the following description, if there is a risk of unnecessarily obscuring the subject matter of the present disclosure, detailed descriptions of well-known functions or configurations will be omitted.
첨부된 도면에서, 동일하거나 대응하는 구성요소에는 동일한 참조부호가 부여되어 있다. 또한, 이하의 실시예들의 설명에 있어서, 동일하거나 대응하는 구성요소를 중복하여 기술하는 것이 생략될 수 있다. 그러나 구성요소에 관한 기술이 생략되어도, 그러한 구성요소가 어떤 실시예에 포함되지 않는 것으로 의도되지는 않는다.In the accompanying drawings, identical or corresponding components are assigned the same reference numerals. In addition, in the description of the embodiments below, overlapping description of the same or corresponding components may be omitted. However, even if descriptions regarding components are omitted, it is not intended that such components are not included in any embodiment.
본 개시에서 사용되는 용어에 대해 간략히 설명하고, 개시된 실시예에 대해 구체적으로 설명하기로 한다. 본 개시에서 사용되는 용어는 본 개시에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 관련 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 개시에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 개시의 전반에 걸친 내용을 토대로 정의되어야 한다.Terms used in the present disclosure will be briefly described, and the disclosed embodiments will be described in detail. The terms used in the present disclosure have been selected as currently widely used general terms as possible while considering the functions in the present disclosure, but these may vary depending on the intention or precedent of a person skilled in the relevant field, the emergence of new technology, and the like. In addition, in a specific case, there is a term arbitrarily selected by the applicant, and in this case, the meaning will be described in detail in the description of the corresponding invention. Therefore, the terms used in the present disclosure should be defined based on the meaning of the term and the contents of the present disclosure, rather than the simple name of the term.
개시된 실시예의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것일 뿐이다.Advantages and features of the disclosed embodiments, and methods of achieving them, will become apparent with reference to the embodiments described below in conjunction with the accompanying drawings. However, the present disclosure is not limited to the embodiments disclosed below, but may be implemented in various different forms, and only the present embodiments allow the present disclosure to be complete, and those of ordinary skill in the art to which the present disclosure pertains. It is only provided to fully inform the person of the scope of the invention.
본 개시에서의 단수의 표현은 문맥상 명백하게 단수인 것으로 특정하지 않는 한, 복수의 표현을 포함한다. 또한 복수의 표현은 문맥상 명백하게 복수인 것으로 특정하지 않는 한, 단수의 표현을 포함한다.Expressions in the singular in this disclosure include plural expressions unless the context clearly dictates the singular. Also, the plural expression includes the singular expression unless the context clearly dictates the plural.
본 개시의 전체에서 어떤 부분이 어떤 구성요소를 '포함'한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.In the context of the present disclosure, when a part 'includes' a certain component, it means that other components may be further included, rather than excluding other components, unless otherwise stated.
본 개시에서, 도면의 위쪽은 그 도면에 도시된 구성의 "상부" 또는 "상측", 그 아래쪽은 "하부" 또는 "하측"이라고 지칭할 수 있다. 또한, 도면에 있어서 도시된 구성의 상부와 하부의 사이 또는 상부와 하부를 제외한 나머지 부분은 "측부" 또는 "측면"이라고 지칭할 수 있다. 이러한 "상부", "상측" 등과 같은 상대적인 용어는, 도면에 도시된 구성들 간의 관계를 설명하기 위하여 사용될 수 있으며, 본 개시는 그러한 용어에 의해 한정되지 않는다.In the present disclosure, the upper side of a drawing may be referred to as "upper" or "upper side", and the lower side thereof may be referred to as "lower side" or "lower side" of the configuration shown in the drawing. In addition, in the drawings, the remaining portions between the upper and lower portions of the illustrated configuration or except for the upper and lower portions may be referred to as “side” or “side”. Relative terms such as "upper", "upper", etc. may be used to describe the relationship between the components shown in the drawings, and the present disclosure is not limited by such terms.
본 개시에서 "A 및/또는 B"의 기재는 A, 또는 B, 또는 A 및 B를 의미한다.Reference to “A and/or B” in this disclosure means A, or B, or A and B.
본 개시에서, 용어 '부(part 또는 portion)' 또는 '모듈(module)'은 기계적 또는 하드웨어 구성요소, 소프트웨어 구성요소 또는 이들의 조합을 의미하며, '부' 또는 '모듈'은 특정 역할이나 기능을 수행하기 위해 구성될 수 있다. 그렇지만 '부' 또는 '모듈'은 기계적 구성요소 또는 하드웨어 또는 소프트웨어에 한정되는 의미는 아니다. '부' 또는 '모듈'은 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고, 하나 또는 그 이상의 프로세서들을 실행시키도록 구성될 수도 있다. 따라서, 일 예로서 '부' 또는 '모듈'은 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함한다. 본 개시에서 설명되는 구성요소들과 '부' 또는 '모듈'들은 그 내부에서 제공되는 기능은 더 작은 수의 구성요소들 및 '부' 또는 '모듈'들로 결합되거나 추가적인 구성요소들과 '부' 또는 '모듈'들로 더 분리될 수 있다.In the present disclosure, the term 'part or portion' or 'module' means a mechanical or hardware component, a software component, or a combination thereof, and 'part' or 'module' refers to a specific role or function can be configured to perform However, 'part' or 'module' is not meant to be limited to mechanical components or hardware or software. A 'unit' or 'module' may be configured to reside on an addressable storage medium, or it may be configured to execute one or more processors. Thus, as an example, 'part' or 'module' refers to components such as software components, object-oriented software components, class components and task components, processes, functions, properties, Includes procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays and variables. Components and 'units' or 'modules' described in the present disclosure may be combined with a smaller number of components and 'units' or 'modules', or additional components and 'units' ' or 'modules'.
본 개시에서, '시스템'은 하나 이상의 플라즈마 발생 장치, 진공 흡인 장치, 컴퓨팅 장치 등을 포함하는 기계적인 장치, 전자 기계적인 장치 또는 이들의 결합을 포함하는 장치 또는 장비를 의미할 수 있으나, 이에 한정되는 것은 아니다.In the present disclosure, a 'system' may mean a mechanical device including one or more plasma generating devices, vacuum suction devices, computing devices, etc., an electromechanical device, or a device or equipment including a combination thereof, but is limited thereto it's not going to be
도 1은 본 개시의 일 실시예에 따른 원통형 피처리물(110)과 환형 피처리물(120)의 표면처리와 본딩 절차를 보여주는 예시도이다.1 is an exemplary view showing the surface treatment and bonding procedure of the cylindrical to-be-processed object 110 and the annular to-be-processed object 120 according to an embodiment of the present disclosure.
도시된 바와 같이, 원통형 피처리물(110)과 환형 피처리물(120)을 상호 결합 및 본딩(bonding)하는 경우에는, 상호 결합되는 면들의 개질 또는 접착력을 향상시키기 위해, 원통형 피처리물(110)의 외면의 일부(112)와 환형 피처리물(120)의 내면의 일부(122)에 대한 플라즈마 표면 처리를 실행할 수 있다.As shown, in the case of mutually bonding and bonding the cylindrical to-be-processed object 110 and the annular to-be-processed object 120, in order to improve the modification or adhesive force of the mutually coupled surfaces, the cylindrical to-be-processed object ( Plasma surface treatment may be performed on a portion 112 of the outer surface of 110 and a portion 122 of the inner surface of the annular to-be-processed object 120 .
이와 같은 플라즈마 표면 처리에 사용되는 플라즈마 발생 장치(미도시)는, 예를 들어, 발생된 플라즈마를 고분자 유기물로 구성된 피처리물(110, 120)의 표면에 토출함으로써 해당 표면의 개질을 실행할 수 있다. 이와 같은 플라즈마 표면 처리를 통해, 고분자 재료의 소수성, 친수성, 염색성, 접착성 등을 개선시킬 수 있다. 다른 예에서, 플라즈마 발생 장치는 금속으로 구성된 피처리물(110, 120)의 표면 처리에 사용될 수 있으며, 이 경우 금속표면에 TiN/C, CrN/C, AIN 등과 같은 초경 피막을 코팅함으로써 표면의 내마모, 내부식 성질을 개선할 수 있다.A plasma generating apparatus (not shown) used for such plasma surface treatment may modify the surface of the object by, for example, discharging the generated plasma to the surfaces of the objects to be treated 110 and 120 composed of a polymer organic material. . Through such plasma surface treatment, hydrophobicity, hydrophilicity, dyeability, adhesiveness, etc. of the polymer material can be improved. In another example, the plasma generating device may be used for surface treatment of the to- be-processed objects 110 and 120 made of metal, in this case, by coating the metal surface with a cemented carbide film such as TiN/C, CrN/C, AIN, etc. Abrasion resistance and corrosion resistance can be improved.
플라즈마 표면 처리를 통해 표면의 접착성이 개선된 원통형 피처리물(110)과 환형 피처리물(120)은 끼움 결합 후에 본딩 처리될 수 있다.The cylindrical to-be-processed object 110 and the annular to-be-processed object 120 whose surface adhesiveness is improved through plasma surface treatment may be bonded after fitting.
도 2는 본 개시의 일 실시예에 따른 회전형 플라즈마 발생 장치(210)를 이용하여 원통형 피처리물(110)의 측면을 표면처리하는 시스템(200)의 개략도이다.FIG. 2 is a schematic diagram of a system 200 for surface-treating a side surface of a cylindrical object 110 using a rotary plasma generating device 210 according to an embodiment of the present disclosure.
도시된 바와 같이, 시스템(200)은, 플라즈마가 토출되는 노즐부(214) 및 노즐부(214)가 탈착 가능한 몸체부(212)를 포함하는 회전형 플라즈마 발생 장치(210), 및 노즐부(214)의 회전축을 중심으로 노즐부(214)의 일 측면에 부착되는 플라즈마 빔 가이드 탭(216)을 포함할 수 있다.As shown, the system 200 includes a rotary plasma generating device 210 including a nozzle part 214 from which plasma is discharged and a body part 212 from which the nozzle part 214 is detachable, and a nozzle part ( It may include a plasma beam guide tab 216 attached to one side of the nozzle unit 214 about the rotation axis of the 214 .
회전형 플라즈마 발생 장치(210)가 대기압 플라즈마 발생 장치인 경우, 통상 상온/상압 환경에서 구동될 수 있도록, 제네레이터, 고전압변압기, 플라즈마 방전을 발생시키는 전극들 등을 포함할 수 있다. 일 실시예에서, 회전형 플라즈마 발생 장치(210)는, 도 2에 도시된 바와 같이, 플라즈마가 토출되는 노즐부(214), 일측에서 노즐부(214)가 탈착되고, 타측에서 동작 가스가 공급되는 가스 공급관(미도시), 고전압 변압기(미도시)에 연결되는 케이블 등이 탈착되는 몸체부(212), 및 회전축(240)을 중심으로 몸체부를 회전시키도록 구성된 모터(미도시)를 포함할 수 있다. 고전압 변압기에 의해 발생된 고주파 고전압은 몸체부(212) 내부에 설치된 전극들에 인가되며, 인가된 전압에 의해 전극들 사이에 전기 아크 형태의 고주파 방전이 발생될 수 있다. 이와 같이 몸체부(212) 내부에 전기 아크가 발생된 상태에서 작동 가스가 전기 아크와 접촉하여 플라즈마 상태로 변환될 수 있다. 몸체부(212)에서 생성된 플라즈마 빔은 노즐부(214)의 제1 개구를 통해 토출될 수 있다.When the rotary plasma generating device 210 is an atmospheric pressure plasma generating device, it may include a generator, a high voltage transformer, electrodes generating plasma discharge, and the like so as to be driven in a normal room temperature/normal pressure environment. In one embodiment, the rotary plasma generating device 210, as shown in FIG. 2 , the nozzle unit 214 from which plasma is discharged, the nozzle unit 214 is detached from one side, and the working gas is supplied from the other side. A gas supply pipe (not shown), a cable connected to a high voltage transformer (not shown) to be detached from the body 212, and a motor (not shown) configured to rotate the body about the rotating shaft 240. can The high frequency high voltage generated by the high voltage transformer is applied to the electrodes installed inside the body 212 , and a high frequency discharge in the form of an electric arc may be generated between the electrodes by the applied voltage. In this way, in a state in which the electric arc is generated inside the body 212, the working gas may be in contact with the electric arc to be converted into a plasma state. The plasma beam generated by the body 212 may be discharged through the first opening of the nozzle 214 .
회전형 플라즈마 발생 장치(210)의 노즐부(214)는 플라즈마 빔이 토출되는 부분으로, 회전형 플라즈마 발생 장치(210)에 일체로 결합되거나 또는 탈착 가능한 형태로 결합될 수 있다. 플라즈마 처리 공정에서는, 회전형 플라즈마 발생 장치(210)의 노즐부(214)의 크기, 길이, 형상에 따라 플라즈마 빔이 퍼지는 면적과 강도 등이 조절될 수 있다. 예를 들어, 얇고 길이가 긴 노즐의 경우 종래의 일반 노즐에 비해 최대 1.5배 내지 2배 정도 긴 플라즈마 빔을 생성할 수 있고, 원형의 노즐의 경우 일반 노즐에 비해 넓은 표면 처리가 가능할 수 있다.The nozzle unit 214 of the rotary plasma generating device 210 is a part from which a plasma beam is discharged, and may be integrally coupled to the rotary plasma generating device 210 or coupled in a detachable form. In the plasma processing process, the area and intensity in which the plasma beam spreads may be adjusted according to the size, length, and shape of the nozzle unit 214 of the rotary plasma generating apparatus 210 . For example, in the case of a thin and long nozzle, a plasma beam that is up to 1.5 to 2 times longer than that of a conventional nozzle may be generated, and in the case of a circular nozzle, a wider surface treatment may be possible compared to a general nozzle.
일 실시예에서, 노즐부(214)의 일 측면에는 회전축(240)을 기준으로 사전에 정해진 각도 이상에서 제1 개구가 형성될 수 있다. 여기서, 제1 개구는 노즐부(214) 내에서 플라즈마 빔이 토출되는 경로의 마지막 부분에 해당할 수 있다.In an embodiment, a first opening may be formed at a side surface of the nozzle unit 214 at a predetermined angle or more with respect to the rotation shaft 240 . Here, the first opening may correspond to the last part of a path through which the plasma beam is discharged within the nozzle unit 214 .
플라즈마 빔 가이드 탭(216)은 회전축(240)을 중심으로 노즐부(214)의 일 측면에 부착되어 플라즈마 빔의 이동 및 토출 경로를 가이드 할 수 있다. 구체적으로, 플라즈마 빔 가이드 탭(216)은 회전형 플라즈마 발생 장치(210)의 회전축(240)이 원통형 피처리물(110)의 중심축과 정렬된 상태에서, 원통형 피처리물(110)의 측면 중 적어도 일부(112)에 대해 플라즈마 빔(220)을 토출하도록 구성될 수 있다.The plasma beam guide tab 216 may be attached to one side of the nozzle unit 214 about the rotation shaft 240 to guide the movement and discharge path of the plasma beam. Specifically, the plasma beam guide tab 216 is a side surface of the cylindrical object 110 in a state in which the rotation shaft 240 of the rotary plasma generating device 210 is aligned with the central axis of the cylindrical object 110 . It may be configured to discharge the plasma beam 220 for at least a portion of the 112 .
도 2에 도시된 바와 같이, 플라즈마 빔 가이드 탭(216)은 전체적으로 둥글게 휘어진 파이프형 또는 아크형의 구성을 갖고 있으나, 이에 한정되는 것은 아니다. 다른 실시예에서, 플라즈마 빔 가이드 탭(216)은 그 길이 방향에서 하나 이상의 위치에서 일정한 각도로 꺾어진 파이프형 또는 아크형의 구성을 포함할 수 있다.As shown in FIG. 2 , the plasma beam guide tab 216 has a configuration of a pipe-shaped or arc-shaped curved shape as a whole, but is not limited thereto. In another embodiment, the plasma beam guide tab 216 may include a pipe-shaped or arc-shaped configuration bent at an angle at one or more locations in its longitudinal direction.
도시된 바와 같이, 플라즈마 빔 가이드 탭(216)의 일 단말은 노즐부(214) 상에서 회전축(240)으로부터 벗어난 위치에 부착될 수 있다. 일 실시예에서, 플라즈마 빔 가이드 탭(216)의 일 단말은 노즐부(214)의 일 측면에 형성된 제1 개구와 결합될 수 있다. 예를 들어, 플라즈마 빔 가이드 탭(216)의 일 단말은 제1 개구와 나사식으로 결합될 수 있다.As shown, one end of the plasma beam guide tab 216 may be attached to a position deviated from the rotation shaft 240 on the nozzle unit 214 . In an embodiment, one end of the plasma beam guide tab 216 may be coupled to a first opening formed on one side of the nozzle unit 214 . For example, one end of the plasma beam guide tab 216 may be screwed with the first opening.
도 2에서, 플라즈마 빔 가이드 탭(216)의 일 단말은 노즐부(214)의 측면에 결합되는 것으로 도시되었으나, 이에 한정되는 것은 아니다. 다른 실시예에서, 플라즈마 빔 가이드 탭(216)의 일 단말은 노즐부(214)의 측면이 아닌 노즐부(214)의 하면 또는 다른 측면에 결합될 수 있다. 또한, 일 실시예에서 플라즈마 빔 가이드 탭(216)의 일 단말은 노즐부(214)의 측면에 탈착 가능한 형태로 설치될 수 있을 뿐만 아니라, 노즐부(214)의 일 측면과 일체로 결합된 형태일 수 있다.In FIG. 2 , one terminal of the plasma beam guide tab 216 is illustrated as being coupled to the side surface of the nozzle unit 214 , but is not limited thereto. In another embodiment, one end of the plasma beam guide tab 216 may be coupled to a lower surface or another side of the nozzle unit 214 rather than the side surface of the nozzle unit 214 . In addition, in one embodiment, one terminal of the plasma beam guide tab 216 may be installed in a detachable form on the side surface of the nozzle unit 214 as well as integrally coupled to one side of the nozzle unit 214 . can be
일 실시예에서, 플라즈마 빔 가이드 탭(216)의 타 단말은, 회전축(240) 상에 위치한 원통형 피처리물(110)을 향하도록 구성될 수 있다. 이 경우, 플라즈마 빔 가이드 탭(216)의 타 단말은, 원통형 피처리물(110)의 측면으로부터 이격된 상태에서, 회전형 플라즈마 발생 장치(210)의 몸체부(212) 및 노즐부(214)가 회전축(240)을 중심으로 회전함에 따라 함께 회전할 수 있다.In an embodiment, the other terminal of the plasma beam guide tab 216 may be configured to face the cylindrical object 110 positioned on the rotation shaft 240 . In this case, the other terminal of the plasma beam guide tab 216 is spaced apart from the side surface of the cylindrical object 110 , and the body 212 and the nozzle 214 of the rotary plasma generating device 210 . may be rotated together as it rotates about the rotation shaft 240 .
플라즈마 빔 가이드 탭(216)의 상술한 구성에 따르면, 노즐부(214)의 제1 개구를 통해 토출되는 플라즈마 빔(220)은, 플라즈마 빔 가이드 탭(216)의 일단을 통해 유입되어 플라즈마 빔 가이드 탭(216)의 내부에 형성된 통로를 따라 가이드되어, 플라즈마 빔 가이드 탭(216)의 타 단말을 통해 토출될 수 있다. 도시된 바와 같이, 플라즈마 빔 가이드 탭(216)의 타 단말을 통해 토출되는 플라즈마 빔(220)은, 플라즈마 빔 가이드 탭(216)의 타 단말에 인접한 원통형 피처리물(110)의 측면의 일부(112)에 대해 토출될 수 있다. 또한, 플라즈마 빔 가이드 탭(216)의 타 단말이 회전축(240)을 중심으로 회전함에 따라, 플라즈마 빔(220)은 원통형 피처리물(110)의 측면 둘레를 따라 토출될 수 있다.According to the above-described configuration of the plasma beam guide tab 216 , the plasma beam 220 discharged through the first opening of the nozzle unit 214 is introduced through one end of the plasma beam guide tab 216 to guide the plasma beam. It is guided along a passage formed inside the tab 216 , and may be discharged through the other terminal of the plasma beam guide tab 216 . As shown, the plasma beam 220 discharged through the other terminal of the plasma beam guide tab 216 is part ( 112) can be discharged. In addition, as the other terminal of the plasma beam guide tab 216 rotates about the rotation shaft 240 , the plasma beam 220 may be discharged along the circumference of the side surface of the cylindrical object 110 .
도 3은 본 개시의 일 실시예에 따른 노즐부(310)와 플라즈마 빔 가이드 탭(320)의 단면도이다.3 is a cross-sectional view of the nozzle unit 310 and the plasma beam guide tab 320 according to an embodiment of the present disclosure.
도 3에서는 회전형 플라즈마 발생 장치 구조의 보다 명확한 이해를 위해 도 2에 도시된 원통형 피처리물(110), 몸체부(212) 등과 대응되는 구성은 생략되었다. 도 3에 도시된 노즐부(310)와 플라즈마 빔 가이드 탭(320)은, 예를 들어, 도 2에 도시된 노즐부(214)와 플라즈마 가이드 탭(216)으로 사용될 수 있다.In FIG. 3 , configurations corresponding to the cylindrical object 110 and the body 212 shown in FIG. 2 are omitted for a clearer understanding of the structure of the rotary plasma generator. The nozzle unit 310 and the plasma beam guide tab 320 shown in FIG. 3 may be used as, for example, the nozzle unit 214 and the plasma guide tab 216 shown in FIG. 2 .
도시된 바와 같이, 노즐부(310)는 그 일 단말(316)에 회전형 플라즈마 발생 장치(또는 몸체부)가 탈착 가능한 구조를 가질 수 있다. 예를 들어, 노즐부(310)의 일 단말(316)은, 회전형 플라즈마 발생 장치에 끼움 결합 또는 나사식 결합이 가능한 구조를 포함할 수 있다. 일 실시예에서, 노즐부(310)의 내부에는 노즐부(310)의 일 단말(316)로부터 유입되는 플라즈마 빔의 이동이 가이드되는 공간(312)이 형성될 수 있다. 공간(312)의 일 단말에는 플라즈마 가이드 탭(320)이 결합되는 제1 개구(314)가 형성될 수 있다. 공간(312)은 노즐부(310)의 일 단말(316)으로부터 제1 개구(314)로의 방향으로 단면의 넓이가 좁아지도록 형성될 수 있다. 예를 들어, 공간(312)은 노즐부(310)의 일 단말(316)으로부터 제1 개구(314)로의 방향으로 좁아지는 원뿔형 모양일 수 있다.As shown, the nozzle unit 310 may have a structure in which the rotating plasma generating device (or body unit) is detachable from one terminal 316 . For example, one terminal 316 of the nozzle unit 310 may include a structure capable of fitting or screwing into the rotary plasma generating device. In an embodiment, a space 312 in which the movement of the plasma beam introduced from one terminal 316 of the nozzle unit 310 is guided may be formed inside the nozzle unit 310 . A first opening 314 to which the plasma guide tab 320 is coupled may be formed at one terminal of the space 312 . The space 312 may be formed to have a narrow cross-sectional area in a direction from one terminal 316 of the nozzle unit 310 to the first opening 314 . For example, the space 312 may have a conical shape that narrows in a direction from one terminal 316 of the nozzle unit 310 to the first opening 314 .
플라즈마 가이드 탭(320)의 일 단말은 회전축(240)으로부터 벗어난 위치에 형성된 제1 개구(314)와 결합될 수 있다. 도 3에서는 플라즈마 가이드 탭(320)과 제1 개구(314)의 결합 방식이 억지끼움 등에 의한 삽입 결합 방식으로 도시되어 있으나, 이에 한정되지는 않는다. 예를 들어, 플라즈마 가이드 탭(320)과 제1 개구(314)의 결합방식은 각 구성의 결합요소의 내주면 및 외주면에 형성된 나사산을 통한 나사 결합 방식일 수 있다.One terminal of the plasma guide tab 320 may be coupled to the first opening 314 formed at a position deviated from the rotation shaft 240 . In FIG. 3 , a coupling method between the plasma guide tab 320 and the first opening 314 is illustrated as an insertion coupling method by an interference fit, but is not limited thereto. For example, the coupling method between the plasma guide tab 320 and the first opening 314 may be a screw coupling method through threads formed on the inner and outer circumferential surfaces of the coupling elements of each configuration.
플라즈마 가이드 탭(320)의 내부에는 플라즈마 빔의 이동 및 토출 방향을 가이드하는 통로(322)가 형성될 수 있다. 회전형 플라즈마 발생 장치에서 발생된 플라즈마 빔은, 노즐부(310)의 일 단말(316)을 통해 유입되어 공간(312)과 플라즈마 가이드 탭(320)의 일 단말에 연결된 통로(322)를 따라 이동하여, 최종적으로 플라즈마 가이드 탭(320)의 타 단말을 통해 토출될 수 있다.A passage 322 for guiding the movement and discharge direction of the plasma beam may be formed inside the plasma guide tab 320 . The plasma beam generated by the rotary plasma generating apparatus is introduced through one terminal 316 of the nozzle unit 310 and moves along a passage 322 connected to the space 312 and one terminal of the plasma guide tab 320 . Thus, it may be finally discharged through the other terminal of the plasma guide tab 320 .
일 실시예에 따르면, 노즐부(310)의 회전축(240)을 중심으로 제1 개구(314)가 형성된 측면 상에서 제1 개구(314)와 대향하는 위치에 평형추(318)가 설치되는 평형추 공간(317)이 형성될 수 있다. 평형추 공간(317)의 내측면에는 평형추(318)가 결합될 수 있는 결합홀이 형성될 수 있으며, 평형추(318)의 일단은, 예를 들어 나사 결합 방식으로 결합홀에 결합될 수 있다. 평형추 공간(317)과 평형추(318)는, 노즐부(310)의 회전 시 노즐부(310)가 회전축(240)을 중심으로 제1 개구(314)와 평형추 공간(317) 사이의 무게 평형을 유지하도록 구성될 수 있다. 이와 같은 구성에 의해, 노즐부(310)의 회전 시 발생되는 무게 불균형에 따른 진동이나 소음을 감소시킬 수 있다. 평형추 공간(317)의 크기와 평형추(318)의 위치, 무게 및/또는 크기는, 제1 개구(314)와의 무게 평형을 유지하기 위해 적절히 조절될 수 있다.According to one embodiment, the counterweight 318 is installed at a position opposite to the first opening 314 on the side where the first opening 314 is formed about the rotational shaft 240 of the nozzle unit 310 . A space 317 may be formed. A coupling hole to which the counterweight 318 can be coupled may be formed on the inner surface of the counterweight space 317, and one end of the counterweight 318 may be coupled to the coupling hole in a screw coupling method, for example. have. The counterweight space 317 and the counterweight 318 are formed between the first opening 314 and the counterweight space 317 with the nozzle unit 310 about the rotation shaft 240 when the nozzle unit 310 is rotated. It may be configured to maintain weight balance. With such a configuration, vibration or noise caused by weight imbalance generated when the nozzle unit 310 is rotated can be reduced. The size of the counterweight space 317 and the position, weight and/or size of the counterweight 318 may be appropriately adjusted to maintain weight balance with the first opening 314 .
도 4는 본 개시의 일 실시예에 따른 표면처리 시스템을 이용한 원통형 피처리물의 표면처리 방법의 흐름도이다.4 is a flowchart of a method for surface treatment of a cylindrical object to be treated using a surface treatment system according to an embodiment of the present disclosure.
원통형 피처리물의 표면 방법은, 회전형 플라즈마 발생 장치의 회전축을 원통형 피처리물의 중심축과 정렬시키는 단계로 개시될 수 있다(S420).The method for the surface of the cylindrical object to be processed may be initiated by aligning the rotational axis of the rotary plasma generating device with the central axis of the cylindrical object (S420).
다음으로, 회전형 플라즈마 발생 장치에 의해 발생된 플라즈마 빔이 플라즈마 빔 가이드 탭의 내부에 형성된 통로를 따라 가이드되어 원통형 피처리물의 측면 중 적어도 일부에 토출될 수 있다(S440).Next, the plasma beam generated by the rotary plasma generating apparatus may be guided along a passage formed inside the plasma beam guide tab and discharged to at least a portion of the side surface of the cylindrical object to be processed ( S440 ).
이어서, 플라즈마 빔 가이드 탭이 원통형 피처리물의 측면으로부터 이격된 상태에서, 회전형 플라즈마 발생 장치의 회전축을 중심으로 회전할 수 있다(S460). 이에 따라, 회전축을 중심으로 회전하는 플라즈마 빔 가이드 탭으로부터 토출되는 플라즈마 빔에 의해, 원주 방향으로 원통형 피처리물의 측면 둘레가 표면 처리될 수 있다. Subsequently, in a state in which the plasma beam guide tab is spaced apart from the side surface of the cylindrical object to be processed, it may be rotated about the rotation axis of the rotary plasma generating apparatus ( S460 ). Accordingly, by the plasma beam discharged from the plasma beam guide tab that rotates about the rotation axis, the circumference of the side surface of the cylindrical object to be processed can be surface-treated in the circumferential direction.
도 5는 본 개시의 일 실시예에 따른 플라즈마 발생 장치(510) 및 진공흡인 장치(530)를 이용하여 환형 피처리물(120)의 내면(122)을 표면처리하는 시스템(500)의 개략도이다.5 is a schematic diagram of a system 500 for surface-treating the inner surface 122 of the annular object 120 using the plasma generating device 510 and the vacuum suction device 530 according to an embodiment of the present disclosure. .
도시된 바와 같이, 시스템(500)은, 플라즈마가 토출되는 노즐부(514) 및 노즐부(514)가 탈착되는 몸체부(512)를 포함하는 플라즈마 발생 장치(510), 피처리물(120)을 기준으로 노즐부(514)와 대향하는 위치에 배치된 진공흡인 장치(530), 및 플라즈마 발생 장치(510)와 진공흡인 장치(530)의 구동과 위치를 제어하는 제어기(550)를 포함할 수 있다.As shown, the system 500 includes a plasma generating device 510 including a nozzle unit 514 from which plasma is discharged, and a body unit 512 from which the nozzle unit 514 is detached, and an object 120 to be processed. A vacuum suction device 530 disposed at a position opposite to the nozzle unit 514 with reference to, and a controller 550 for controlling the driving and position of the plasma generating device 510 and the vacuum suction device 530 . can
플라즈마 발생 장치(510)가 대기압 플라즈마 발생 장치인 경우, 통상 상온/상압 환경에서 구동될 수 있도록, 제네레이터, 고전압변압기, 플라즈마 방전을 발생시키는 전극들 등을 포함할 수 있다. 일 실시예에서, 플라즈마 발생 장치(510)는, 도 5에 도시된 바와 같이, 플라즈마가 토출되는 노즐부(514), 일측에서 노즐부(514)가 탈착되고, 타측에서 동작 가스가 공급되는 가스 공급관(미도시), 고전압 변압기(미도시)에 연결되는 케이블 등이 탈착되는 몸체부(512)를 포함할 수 있다. 고전압 변압기에 의해 발생된 고주파 고전압은 몸체부(512) 내부에 설치된 전극들에 인가되며, 인가된 전압에 의해 전극들 사이에 전기 아크 형태의 고주파 방전이 발생될 수 있다. 이와 같이 몸체부(512) 내부에 전기 아크가 발생된 상태에서 작동 가스가 전기 아크와 접촉하여 플라즈마 상태로 변환될 수 있다. 몸체부(512)에서 생성된 플라즈마 빔은 노즐부(514)의 개구를 통해 토출될 수 있다.When the plasma generating device 510 is an atmospheric pressure plasma generating device, it may include a generator, a high voltage transformer, electrodes for generating plasma discharge, and the like so as to be driven in a normal room temperature/normal pressure environment. In one embodiment, in the plasma generating apparatus 510, as shown in FIG. 5 , the nozzle part 514 from which plasma is discharged, the nozzle part 514 is detached from one side, and the gas to which the working gas is supplied from the other side. A supply pipe (not shown), a cable connected to a high voltage transformer (not shown), etc. may include a body portion 512 detachable. The high frequency high voltage generated by the high voltage transformer is applied to the electrodes installed inside the body 512 , and a high frequency discharge in the form of an electric arc may be generated between the electrodes by the applied voltage. In this way, in a state in which the electric arc is generated inside the body portion 512, the working gas may be in contact with the electric arc to be converted into a plasma state. The plasma beam generated by the body part 512 may be discharged through the opening of the nozzle part 514 .
플라즈마 발생 장치(510)의 노즐부(514)는 플라즈마 빔이 토출되는 부분으로, 플라즈마 발생 장치(510)에 일체로 결합되거나 또는 탈착 가능한 형태로 결합될 수 있다. 플라즈마 처리 공정에서는, 플라즈마 발생 장치(510)의 노즐부(514)의 크기, 길이, 형상에 따라 플라즈마 빔이 퍼지는 면적과 강도 등이 조절될 수 있다. 예를 들어, 얇고 길이가 긴 노즐의 경우 종래의 일반 노즐에 비해 최대 1.5배 내지 2배 정도 긴 플라즈마 빔을 생성할 수 있고, 원형의 노즐의 경우 일반 노즐에 비해 넓은 표면 처리가 가능할 수 있다.The nozzle unit 514 of the plasma generating device 510 is a portion from which a plasma beam is discharged, and may be integrally coupled to the plasma generating device 510 or may be detachably coupled to the plasma generating device 510 . In the plasma processing process, the area and intensity in which the plasma beam spreads may be adjusted according to the size, length, and shape of the nozzle unit 514 of the plasma generating device 510 . For example, in the case of a thin and long nozzle, a plasma beam that is up to 1.5 to 2 times longer than that of a conventional nozzle may be generated, and in the case of a circular nozzle, a wider surface treatment may be possible compared to a general nozzle.
일 실시예에서, 노즐부(514) 상에서 환형 피처리물(120)의 일단과 대향하는 일 면에는 제2 개구(516)가 형성될 수 있다. 여기서, 제2 개구(516)는 노즐부(514) 내에서 플라즈마 빔이 토출되는 경로의 마지막 부분에 해당할 수 있다. 일 실시예에서, 제2 개구(516)의 단면의 넓이는, 플라즈마 빔(520)이 환형 피처리물(120)의 내면(122)으로 토출되도록, 환형 피처리물(120)의 일 단말에 형성되는 제3 개구(124)의 단면의 넓이보다 작을 수 있다.In an embodiment, a second opening 516 may be formed on one surface of the nozzle unit 514 opposite to one end of the annular to-be-processed object 120 . Here, the second opening 516 may correspond to the last part of the path through which the plasma beam is discharged from within the nozzle unit 514 . In one embodiment, the area of the cross-section of the second opening 516 is at one terminal of the annular object 120 so that the plasma beam 520 is discharged to the inner surface 122 of the annular object 120 . It may be smaller than the width of the cross-section of the formed third opening 124 .
도 5에 도시된 바와 같이, 노즐부(514)로부터 토출되는 플라즈마 빔(520)은, 환형 피처리물(120)의 일 단말에 형성된 제3 개구(124)를 통해 환형 피처리물(120)의 내면(122)에 도달할 수 있다. 그러나, 노즐부(514)의 형상 또는 구조에 따라 플라즈마 빔(520)은 환형 피처리물(120)의 내면(122) 중 표면처리가 필요한 영역까지 충분히 도달하지 못할 수 있다. 따라서, 플라즈마 발생 장치(510)에서 플라즈마 빔(520)이 토출되는 동안, 환형 피처리물(120)의 타 단말에 설치된 진공흡인 장치(530)가 구동될 수 있다.As shown in FIG. 5 , the plasma beam 520 discharged from the nozzle unit 514 passes through the third opening 124 formed in one terminal of the annular object 120 to the annular object 120 . can reach the inner surface 122 of However, depending on the shape or structure of the nozzle unit 514 , the plasma beam 520 may not sufficiently reach a region requiring surface treatment among the inner surface 122 of the annular object 120 . Accordingly, while the plasma beam 520 is discharged from the plasma generating device 510 , the vacuum suction device 530 installed at the other terminal of the annular object 120 may be driven.
진공흡인 장치(530)는, 플라즈마 발생 장치(510)의 노즐부(514)로부터 환형 피처리물(120)의 일 단말에 대해 플라즈마 빔(520)이 발생될 때, 환형 피처리물(120)의 타 단말에 대해 진공흡인을 실행하도록 구성될 수 있다. 진공흡인 장치(530)의 구동에 따라 플라즈마 빔(520)은 진공흡인 장치(530) 방향(540)으로 확장될 수 있으며, 이에 따라 플라즈마 빔(520)이 환형 피처리물(120)의 내부에서 좀 더 깊이 위치한 내면(122)까지 도달할 수 있다.When the plasma beam 520 is generated from the nozzle unit 514 of the plasma generating device 510 to one terminal of the annular object 120 in the vacuum suction device 530, the annular object 120 is It can be configured to perform vacuum suction for the other terminal of the. According to the operation of the vacuum suction device 530 , the plasma beam 520 may be expanded in the direction 540 of the vacuum suction device 530 . It can reach the inner surface 122 located a little deeper.
일 실시예에서, 노즐부(514) 및 진공흡인 장치(530)는 환형 피처리물(120)의 내부 공간의 길이 및/또는 크기를 측정하는 측정기(미도시)를 포함할 수 있다. 구체적으로, 측정기는, 플라즈마 빔(520)이 토출되기 전 플라즈마 빔(520)의 토출 양과 토출 크기를 산정하기 위해, 환형 피처리물(120)의 내부 공간의 길이 및/또는 크기를 측정하도록 구성될 수 있다. 예를 들어, 측정기는 적외선 송신기와 수신기가 각각 노즐부(514)와 진공흡인 장치(530)에 설치된 형태로써, 측정 대상의 길이 또는 크기에 따라 상이한 전기적인 신호를 출력할 수 있는 장치에 해당할 수 있으나, 이에 한정되는 것은 아니다. 측정기는 환형 피처리물(120)의 내부 크기에 따라 결정되는 전류 값 또는 전압 값을 포함하는 전기적인 신호를 제어기(550)에 전달할 수 있다.In one embodiment, the nozzle unit 514 and the vacuum suction device 530 may include a measuring device (not shown) for measuring the length and/or size of the inner space of the annular object 120 . Specifically, the measuring device is configured to measure the length and/or size of the internal space of the annular object 120 to calculate the discharge amount and the discharge size of the plasma beam 520 before the plasma beam 520 is discharged can be For example, the measuring instrument is a type in which an infrared transmitter and a receiver are installed in the nozzle unit 514 and the vacuum suction device 530, respectively, and may correspond to a device capable of outputting different electrical signals depending on the length or size of the measurement target. However, the present invention is not limited thereto. The measuring device may transmit an electrical signal including a current value or a voltage value determined according to the internal size of the annular object 120 to the controller 550 .
제어기(550)는, 측정기로부터 전송되는 전기적인 신호를 입력 받아, 환형 피처리물(120)의 내부 길이 또는 크기에 대응하는 플라즈마 빔(520)의 토출 양 또는 토출 크기를 결정할 수 있다. 이와 같이 결정되는 플라즈마 빔(520)의 토출 양 또는 토출 크기에 따라, 제어기(550)는, 플라즈마 발생 장치(510) 및 진공흡인 장치(530) 중 하나 이상의 구동 시간 및 강도 등을 제어할 수 있다. 예를 들어, 제어기(550)는, 측정기의 전기적인 신호에 기초하여, 환형 피처리물(120)의 내부 크기(예를 들어, 내부 공간의 단면의 지름)가 기준치 이하에 해당한다고 결정하면, 플라즈마 발생 장치(510)의 플라즈마 빔(520) 토출 강도를 하향 조정하거나, 진공흡인 장치(530)의 진공흡인 강도를 상향 조정할 수 있다. 또한, 제어기(550)는, 측정기의 전기적인 신호에 기초하여, 환형 피처리물(120)의 내부 크기가 기준치 이상에 해당한다고 결정하면, 플라즈마 발생 장치(510)의 플라즈마 빔(520) 토출 강도를 상향 조정하거나, 진공흡인 장치(530)의 진공흡인 강도를 하향 조정할 수 있다.The controller 550 may receive the electrical signal transmitted from the measuring device, and determine the discharge amount or the discharge size of the plasma beam 520 corresponding to the inner length or size of the annular object 120 . According to the discharge amount or discharge size of the plasma beam 520 determined in this way, the controller 550 may control the driving time and intensity of at least one of the plasma generating device 510 and the vacuum suction device 530 . . For example, if the controller 550 determines that the internal size (eg, the diameter of the cross-section of the internal space) of the annular object 120 is equal to or less than the reference value, based on the electrical signal of the measuring device, The discharge intensity of the plasma beam 520 of the plasma generating device 510 may be adjusted downward, or the vacuum suction intensity of the vacuum suction device 530 may be adjusted upward. In addition, if the controller 550 determines that the internal size of the annular object 120 is equal to or greater than the reference value, based on the electrical signal of the measuring device, the plasma beam 520 discharge intensity of the plasma generating device 510 . may be adjusted upward, or the vacuum suction strength of the vacuum suction device 530 may be adjusted downward.
일 실시예에서, 이상 설명한 바와 같은 제어기(550)에 의한 플라즈마 발생 장치(510)와 진공흡인 장치(530)의 동작 제어는, 순차적으로 실행될 수 있다. 예를 들어, 제어기(550)는 플라즈마 발생 장치(510)의 동작 제어를 실행한 후, 진공흡인 장치(530)의 동작 제어를 실행할 수 있으며, 이러한 2 단계의 동작 제어를 반복할 수 있다. 다른 실시예에서, 제어기(550)에 의한 플라즈마 발생 장치(510)와 진공흡인 장치(530)의 동작 제어는, 병렬적으로 동시에 실행될 수 있다. 또 다른 실시예에서, 제어기(550)는, 진공흡인 장치(530)에 대한 동작 제어는 없이, 플라즈마 발생 장치(510)에 대한 동작 제어만 실행할 수도 있다.In an embodiment, the operation control of the plasma generating device 510 and the vacuum suction device 530 by the controller 550 as described above may be sequentially executed. For example, after controlling the operation of the plasma generating device 510 , the controller 550 may control the operation of the vacuum suction device 530 , and repeat the operation control of these two steps. In another embodiment, the operation control of the plasma generating device 510 and the vacuum suction device 530 by the controller 550 may be executed simultaneously in parallel. In another embodiment, the controller 550 may execute only the operation control for the plasma generating device 510 without the operation control for the vacuum suction device 530 .
또한, 제어기(550)는 플라즈마 발생 장치(510) 및 진공흡인 장치(530)의 위치를 제어할 수 있다. 일 실시예에서, 제어기(550)는 플라즈마 발생 장치(510) 및 진공흡인 장치(530)의 환형 피처리물(120) 방향으로의 위치 이동을 제어할 수 있다. 예를 들어, 제어기(550)는, 플라즈마 빔(520)이 환형 피처리물(120)의 내부에서 좀 더 깊이 위치한 내면(122)까지 도달할 수 있도록, 플라즈마 발생 장치(510) 및 진공흡인 장치(530)의 위치를 환형 피처리물(120)과 가깝게 이동시킬 수 있다. 다른 실시예에서, 제어기(550)는 플라즈마 발생 장치(510)의 환형 피처리물(120) 방향과 수직한 면 상의 위치를 제어할 수 있다. 예를 들어, 제어기(550)는, 플라즈마 빔(520)이 환형 피처리물(120)의 외부가 아닌 내부로만 토출되도록, 환형 피처리물(120)에 대한 플라즈마 발생 장치(510)의 상대적인 위치를 조정할 수 있다.Also, the controller 550 may control the positions of the plasma generating device 510 and the vacuum suction device 530 . In one embodiment, the controller 550 may control the position movement of the plasma generating device 510 and the vacuum suction device 530 in the direction of the annular object 120 . For example, the controller 550 may include the plasma generating device 510 and the vacuum suction device so that the plasma beam 520 can reach the inner surface 122 located more deeply inside the annular object 120 . The position of the 530 may be moved closer to the annular object 120 . In another embodiment, the controller 550 may control the position of the plasma generating device 510 on a plane perpendicular to the direction of the annular object 120 . For example, the controller 550 may control the relative position of the plasma generating device 510 with respect to the annular object 120 so that the plasma beam 520 is discharged only to the inside rather than the outside of the annular object 120 . can be adjusted.
일 실시예에서, 제어기(550)는, 플라즈마 발생 장치(510) 및 진공흡인 장치(530)의 위치를 제어하기 위해, 플라즈마 발생 장치(510) 및 진공흡인 장치(530) 각각을 피처리물(120)에 대해 직선 이동시킬 수 있는 전자기계적 장치를 포함할 수 있다. 예를 들어, 제어기(550)는, 플라즈마 발생 장치(510) 및 진공흡인 장치(530) 각각을 피처리물(120)에 대해 직선 이동시킬 수 있는 리니어 모터를 포함할 수 있다.In one embodiment, the controller 550 controls the positions of the plasma generating device 510 and the vacuum suction device 530, each of the plasma generating device 510 and the vacuum suction device 530 to the object ( 120) and may include an electromechanical device capable of linear movement. For example, the controller 550 may include a linear motor capable of linearly moving each of the plasma generating device 510 and the vacuum suction device 530 with respect to the object 120 .
이상 설명한 바와 같은, 제어기(550)에 의한 플라즈마 발생 장치(510) 및/또는 진공흡인 장치(530)의 구동 및 위치 제어에 의해, 플라즈마 빔(520)의 토출 양, 크기, 위치 등이 적절한 범위 내로 조절됨으로써, 환형 피처리물(120) 내부의 좀 더 깊은 내면(122)까지 적절히 표면처리가 수행될 수 있다.As described above, by the driving and position control of the plasma generating device 510 and/or the vacuum suction device 530 by the controller 550, the discharge amount, size, position, etc. of the plasma beam 520 is within an appropriate range. By adjusting the inside, the surface treatment can be appropriately performed up to the inner surface 122 deeper inside the annular object 120 .
도 6은 본 개시의 일 실시예에 따른 표면처리 시스템을 이용한 환형 피처리물의 표면처리 방법의 흐름도이다.6 is a flowchart of a method for surface treatment of an annular target object using a surface treatment system according to an embodiment of the present disclosure.
환형 피처리물의 표면 방법은, 플라즈마 발생 장치에 의해, 노즐부로부터 환형 피처리물의 일 단말 방향으로 플라즈마 빔을 토출하는 단계로 개시될 수 있다(S610).The method for the surface of the annular to-be-processed object may be started by discharging a plasma beam from the nozzle unit toward one end of the annular to-be-processed object by the plasma generating device (S610).
다음으로, 진공흡인 장치에 의해, 환형 피처리물의 타 단말에 대해 진공흡인을 실행할 수 있다(S620).Next, the vacuum suction device can perform vacuum suction on the other terminal of the annular target object (S620).
측정기에 의해, 환형 피처리물의 내부 크기를 측정할 수 있다(S630). 일 실시예에서, 도 5를 참조하면, 플라즈마 발생 장치(510) 및 진공흡인 장치(530)에 설치되어 있는 측정기(미도시)는 환형 피처리물(120)의 내부 크기를 측정할 수 있다. 또한, 측정기는 환형 피처리물(120) 내부 길이 또는 크기에 따라 결정되는 전기적인 신호를 제어기(550)에 전달할 수 있다.The internal size of the annular to-be-processed object can be measured by the measuring device (S630). In one embodiment, referring to FIG. 5 , a measuring device (not shown) installed in the plasma generating device 510 and the vacuum suction device 530 may measure the internal size of the annular object 120 . In addition, the measuring device may transmit an electrical signal determined according to the inner length or size of the annular object 120 to the controller 550 .
제어기는 피처리물의 내부 크기가 기준치 이하인지 결정할 수 있다(S640). 일 실시예에서, 도 5를 참조하면, 제어기(550)는, 측정기의 전기적인 신호에 기초하여, 환형 피처리물(120)의 내부 크기가 기준치 이하에 해당하는지 결정할 수 있다.The controller may determine whether the internal size of the object to be processed is less than or equal to a reference value (S640). In one embodiment, referring to FIG. 5 , the controller 550 may determine whether the internal size of the annular object 120 is equal to or less than a reference value, based on an electrical signal of the measuring device.
단계(S640)에서 측정된 피처리물의 크기가 기준치 이하에 해당한다고 결정되면, 제어기는 플라즈마 발생 장치의 플라즈마 빔 토출 강도를 하향 조정할 수 있다(S650). 이어서, 제어기는 진공흡인 장치의 진공흡인 강도를 상향 조정할 수 있다(S660). 이와 같이 플라즈마 발생 장치 및 진공흡인 장치에 의해 플라즈마 빔이 환형 피처리물의 내측으로 길게 토출되도록 함으로써, 환형 피처리물 내부의 좀 더 깊은 내면까지 적절히 표면처리가 수행될 수 있다.When it is determined that the size of the object to be processed measured in step S640 is equal to or less than the reference value, the controller may lower the plasma beam discharge intensity of the plasma generating apparatus (S650). Then, the controller may adjust the vacuum suction strength of the vacuum suction device upward (S660). As described above, by allowing the plasma beam to be discharged to the inside of the annular target object for a long time by the plasma generating device and the vacuum suction device, the surface treatment can be appropriately performed to a deeper inner surface of the annular target object.
한편, 단계(S640)에서 측정된 피처리물의 크기가 기준치를 초과하는 것으로 결정되면, 제어기는 플라즈마 발생 장치의 플라즈마 빔 토출 강도를 상향 조정할 수 있다(S670). 이어서, 제어기는 진공흡인 장치의 진공흡인 강도를 하향 조정할 수 있다(S680). 이와 같이 플라즈마 발생 장치 및 진공흡인 장치에 의해 플라즈마 빔이 환형 피처리물의 내측으로 넓게 토출되도록 함으로써, 환형 피처리물의 내면에 대해 적절히 표면처리가 수행될 수 있다.Meanwhile, when it is determined that the size of the object to be processed measured in step S640 exceeds the reference value, the controller may increase the plasma beam discharge intensity of the plasma generating apparatus (S670). Then, the controller may adjust the vacuum suction strength of the vacuum suction device downward (S680). As described above, by allowing the plasma beam to be widely discharged to the inside of the annular target object by the plasma generating device and the vacuum suction device, the surface treatment can be appropriately performed on the inner surface of the annular target object.
상기한 본 발명의 바람직한 실시예는 예시의 목적으로 개시된 것이고, 본 발명에 대해 통상의 지식을 가진 당업자라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경 및 부가가 가능할 것이며, 이러한 수정, 변경 및 부가는 특허청구 범위에 속하는 것으로 보아야 할 것이다.The above-described preferred embodiments of the present invention have been disclosed for the purpose of illustration, and various modifications, changes and additions will be possible within the spirit and scope of the present invention by those skilled in the art with respect to the present invention, and such modifications, changes and additions should be considered to be within the scope of the claims.
본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서, 여러 가지 치환, 변형 및 변경이 가능하므로, 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다.Those of ordinary skill in the art to which the present invention pertains, within the scope of not departing from the technical spirit of the present invention, various substitutions, modifications and changes are possible, so the present invention is described in the above-described embodiments and the accompanying drawings. not limited by

Claims (10)

  1. 대기압 플라즈마 발생 장치를 이용한 원통형 피처리물의 표면처리 시스템에 있어서,In the surface treatment system of a cylindrical object to be treated using an atmospheric pressure plasma generator,
    플라즈마가 토출되는 노즐부 및 상기 노즐부가 탈착되는 몸체부를 포함하는 회전형 플라즈마 발생 장치; 및a rotary type plasma generating device including a nozzle part from which plasma is discharged and a body part from which the nozzle part is detachable; and
    상기 노즐부의 회전축을 중심으로 상기 노즐부의 일 측면에 부착되는 플라즈마 빔 가이드 탭을 포함하며,and a plasma beam guide tab attached to one side of the nozzle unit with respect to the rotation axis of the nozzle unit,
    상기 플라즈마 빔 가이드 탭은, 상기 회전형 플라즈마 발생 장치의 회전축이 원통형 피처리물의 중심축과 정렬된 상태에서, 상기 피처리물의 측면 중 적어도 일부에 대해 플라즈마 빔을 토출하도록 구성되는, 표면처리 시스템.The plasma beam guide tab is configured to discharge a plasma beam to at least a portion of a side surface of the object to be processed while a rotation axis of the rotary plasma generating device is aligned with a central axis of the cylindrical object to be processed.
  2. 제1항에 있어서,According to claim 1,
    상기 플라즈마 빔 가이드 탭의 일 단말은, 상기 노즐부 상에서 상기 회전축으로부터 벗어난 위치에 부착되며,One terminal of the plasma beam guide tab is attached to a position deviated from the rotation axis on the nozzle unit,
    상기 플라즈마 빔 가이드 탭의 타 단말은, 상기 회전축을 향하도록 구성되는, 표면처리 시스템.The other terminal of the plasma beam guide tab is configured to face the rotation axis, a surface treatment system.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 플라즈마 빔 가이드 탭의 타 단말은, 상기 원통형 피처리물의 측면으로부터 이격되어 상기 회전형 플라즈마 발생 장치의 상기 회전축을 중심으로 회전하는, 표면처리 시스템.The other terminal of the plasma beam guide tab is spaced apart from a side surface of the cylindrical object to be rotated about the rotation axis of the rotary plasma generating device, a surface treatment system.
  4. 제2항에 있어서,3. The method of claim 2,
    상기 노즐부는, 상기 노즐부의 일 측면에 형성되는 제1 개구를 포함하고,The nozzle unit includes a first opening formed on one side of the nozzle unit,
    상기 제1 개구는, 상기 회전축을 기준으로 사전에 정해진 각도 이상의 일 측면으로 형성되는, 표면처리 시스템.The first opening, the surface treatment system, which is formed in a side surface of a predetermined angle or more with respect to the rotation axis.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 플라즈마 빔 가이드 탭의 일 단말은 상기 제1 개구와 결합되며,One terminal of the plasma beam guide tab is coupled to the first opening,
    상기 노즐부의 내부는 상기 제1 개구의 방향으로 단면의 넓이가 좁아지도록 형성되는, 표면처리 시스템.The inside of the nozzle part is formed to have a narrow cross-section in the direction of the first opening.
  6. 대기압 플라즈마 발생 장치를 이용한 환형 피처리물의 표면처리 시스템에 있어서,In the surface treatment system of an annular target object using an atmospheric pressure plasma generator,
    플라즈마가 토출되는 노즐부 및 상기 노즐부가 탈착되는 몸체부를 포함하는 플라즈마 발생 장치; 및a plasma generating device including a nozzle unit from which plasma is discharged and a body unit from which the nozzle unit is detachable; and
    상기 노즐부와 대향하는 위치에 배치된 진공흡인 장치를 포함하며,and a vacuum suction device disposed at a position opposite to the nozzle unit,
    상기 진공흡인 장치는, 상기 플라즈마 발생 장치의 상기 노즐부로부터 상기 환형 피처리물의 일 단말에 대해 플라즈마 빔이 발생될 때, 상기 환형 피처리물의 타 단말에 대해 진공흡인을 실행하도록 구성되는, 표면처리 시스템.wherein the vacuum suction device is configured to perform vacuum suction on the other terminal of the annular target object when a plasma beam is generated from the nozzle portion of the plasma generating device to one terminal of the annular target object. system.
  7. 제6항에 있어서,7. The method of claim 6,
    상기 노즐부 및 상기 진공흡인 장치는 상기 환형 피처리물의 내부 크기를 측정하는 측정기를 포함하는, 표면처리 시스템.The nozzle unit and the vacuum suction device include a measuring device for measuring the inner size of the annular target object, the surface treatment system.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 측정기에 의해 측정된 상기 환형 피처리물의 내부 크기에 기초하여 상기 플라즈마 발생 장치 및 상기 진공흡인 장치 중 적어도 하나의 구동 여부를 제어하는 제어기를 더 포함하는, 표면처리 시스템.The surface treatment system further comprising a controller for controlling whether at least one of the plasma generating device and the vacuum suction device is driven based on the internal size of the annular to-be-processed object measured by the measuring device.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 제어기는 상기 플라즈마 발생 장치 및 상기 진공흡인 장치 중 적어도 하나의 위치를 제어하는, 표면처리 시스템.The controller controls a position of at least one of the plasma generating device and the vacuum suction device.
  10. 제6항에 있어서,7. The method of claim 6,
    상기 노즐부는 상기 환형 피처리물 방향으로의 일 면에 형성되는 제2 개구를 포함하고,The nozzle part includes a second opening formed on one surface in the direction of the annular to-be-processed object,
    상기 제2 개구의 단면의 넓이는 상기 환형 피처리물의 일 단말에 형성되는 제3 개구의 단면의 넓이보다 작은, 표면처리 시스템.and an area of a cross-section of the second opening is smaller than an area of a cross-section of a third opening formed in one terminal of the annular to-be-processed object.
PCT/KR2021/006452 2020-05-22 2021-05-24 Surface processing system and method for cylindrical and annular objects to be processed, using atmospheric plasma generation device WO2021235912A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21794450.3A EP3952619A4 (en) 2020-05-22 2021-05-24 Surface processing system and method for cylindrical and annular objects to be processed, using atmospheric plasma generation device
JP2021564859A JP2022538202A (en) 2020-05-22 2021-05-24 Surface treatment system and method for cylindrical and annular objects to be treated using atmospheric pressure plasma generator
US17/519,519 US20220061146A1 (en) 2020-05-22 2021-11-04 System and method for plasma-surface-treatment of cylindric and annular workpieces using atmospheric-pressure plasma generator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200061332 2020-05-22
KR10-2020-0061332 2020-05-22
KR10-2021-0066020 2021-05-24
KR1020210066020A KR20210144602A (en) 2020-05-22 2021-05-24 System and method for plasma-surface-treatment of cylindric and annular workpieces using atmospheric-pressure plasma generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/519,519 Continuation US20220061146A1 (en) 2020-05-22 2021-11-04 System and method for plasma-surface-treatment of cylindric and annular workpieces using atmospheric-pressure plasma generator

Publications (1)

Publication Number Publication Date
WO2021235912A1 true WO2021235912A1 (en) 2021-11-25

Family

ID=78707982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/006452 WO2021235912A1 (en) 2020-05-22 2021-05-24 Surface processing system and method for cylindrical and annular objects to be processed, using atmospheric plasma generation device

Country Status (3)

Country Link
US (1) US20220061146A1 (en)
JP (1) JP2022538202A (en)
WO (1) WO2021235912A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424508A (en) * 1994-01-06 1995-06-13 Xerox Corporation Laser ablation system
KR20110013284A (en) * 2009-07-30 2011-02-09 닛테츠 스미킨 요우세츠 고교 가부시키가이샤 Insert-chip, plasma torch and plasma processing device
WO2011095245A1 (en) * 2010-02-04 2011-08-11 Laser-Laboratorium Göttingen E. V. Hollow funnel-shaped plasma generator
KR101833144B1 (en) * 2016-10-31 2018-04-13 이창훈 Rotary-type plasma head for treatment of organic or inorganic substance
US10555411B2 (en) * 2015-12-07 2020-02-04 Plasmatreat Gmbh Device for generating an atmospheric plasma beam, and method for treating the surface of a workpiece

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29911974U1 (en) * 1999-07-09 2000-11-23 Agrodyn Hochspannungstechnik G Plasma nozzle
DE102008051801A1 (en) * 2008-04-18 2009-10-22 Plasma Treat Gmbh Apparatus for treating an inner surface of a workpiece
DE102012206081A1 (en) * 2012-04-13 2013-10-17 Krones Ag Coating of containers with plasma nozzles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424508A (en) * 1994-01-06 1995-06-13 Xerox Corporation Laser ablation system
KR20110013284A (en) * 2009-07-30 2011-02-09 닛테츠 스미킨 요우세츠 고교 가부시키가이샤 Insert-chip, plasma torch and plasma processing device
WO2011095245A1 (en) * 2010-02-04 2011-08-11 Laser-Laboratorium Göttingen E. V. Hollow funnel-shaped plasma generator
US10555411B2 (en) * 2015-12-07 2020-02-04 Plasmatreat Gmbh Device for generating an atmospheric plasma beam, and method for treating the surface of a workpiece
KR101833144B1 (en) * 2016-10-31 2018-04-13 이창훈 Rotary-type plasma head for treatment of organic or inorganic substance

Also Published As

Publication number Publication date
US20220061146A1 (en) 2022-02-24
JP2022538202A (en) 2022-09-01

Similar Documents

Publication Publication Date Title
WO2021235912A1 (en) Surface processing system and method for cylindrical and annular objects to be processed, using atmospheric plasma generation device
WO2021162447A2 (en) Substrate processing device
US20080223523A1 (en) Substrate processing apparatus and electrode structure
KR100554697B1 (en) Method for measuring amount of electron beam and electron beam irradiation apparatus
WO2013055056A1 (en) Plasma apparatus and substrate-processing apparatus
CN1846337A (en) Ionizer
KR950012614A (en) Plasma processing equipment
KR960032593A (en) Apparatus and method for rotational alignment and degassing a semiconductor circuit board in a single vacuum chamber
WO2022114721A1 (en) Static electricity eliminating apparatus using excimer lamp
WO2016186302A1 (en) Rapid heat treatment apparatus
KR20210144602A (en) System and method for plasma-surface-treatment of cylindric and annular workpieces using atmospheric-pressure plasma generator
WO2020101337A1 (en) Nitrogen oxide gas generating apparatus and controlling method therefor
WO2014077563A1 (en) Vapour-deposition device having mobile vapour-deposition source
WO2022240022A1 (en) Ultrasound generation apparatus having adjustable ultrasound focus depth
WO2023121169A1 (en) Rotating body inspection device for electrification component
WO2009131325A2 (en) Power supply device, panel driving device and power supply control method for display device
AU2018283473B2 (en) Vacuum cleaner
WO2022014939A1 (en) Oil splash prevention system and method for rotary plasma head
WO2020055138A1 (en) Seven axis transport robot
WO2022114246A2 (en) Food processing system and method using atmospheric-pressure plasma generator
WO2023008805A1 (en) Substrate processing apparatus
WO2023043015A1 (en) Magnetic field generation device and sputtering device comprising same
WO2018043870A1 (en) Radiation-shielded x-ray ionizer
WO2022181857A1 (en) Microwave heating apparatus, and method for manufacturing aluminum nitride by using same
WO2023177258A1 (en) Flexible vacuum ultraviolet ionizer for vacuum chamber

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021564859

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021794450

Country of ref document: EP

Effective date: 20211104

NENP Non-entry into the national phase

Ref country code: DE