WO2021235368A1 - Control device, internal combustion engine system, and diagnostic method - Google Patents

Control device, internal combustion engine system, and diagnostic method Download PDF

Info

Publication number
WO2021235368A1
WO2021235368A1 PCT/JP2021/018497 JP2021018497W WO2021235368A1 WO 2021235368 A1 WO2021235368 A1 WO 2021235368A1 JP 2021018497 W JP2021018497 W JP 2021018497W WO 2021235368 A1 WO2021235368 A1 WO 2021235368A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
average value
control device
predetermined
Prior art date
Application number
PCT/JP2021/018497
Other languages
French (fr)
Japanese (ja)
Inventor
清明 小杉
裕行 荒木
主斗 石川
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN202180028687.8A priority Critical patent/CN115461533B/en
Publication of WO2021235368A1 publication Critical patent/WO2021235368A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • F02D9/06Exhaust brakes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • This disclosure relates to a control device, an internal combustion engine system and a diagnostic method.
  • the exhaust resistance is increased, the load of the internal combustion engine is increased, the fuel injection amount is increased, the exhaust gas is difficult to be discharged, and the exhaust gas is cooled. It makes it difficult to make it difficult and contributes to the rise of the exhaust temperature.
  • the exhaust brake valve increases the exhaust resistance and the rotational resistance of the internal combustion engine by reducing its opening, which contributes to the suppression of the output rotation speed.
  • the exhaust system is equipped with a diesel particulate filter (Diesel Particulate Filter: DPF) that purifies the exhaust gas by collecting PM (Particulate Matter. Particulate matter) in the exhaust gas.
  • DPF Diesel Particulate Filter
  • Patent Document 1 discloses, as a filter regeneration method, a method of supplying fuel to an oxidation catalyst arranged upstream of a filter by in-cylinder post injection or exhaust pipe injection, and using the heat generated thereof to raise the temperature of the exhaust gas. Has been done.
  • the exhaust throttle valve or the exhaust brake valve (hereinafter referred to as the valve) may be closed for regeneration.
  • the valve is abnormal, specifically, if the valve is clogged due to the accumulation of soot, the exhaust pressure rises, the amount of intake air decreases, and in-cylinder post injection or exhaust pipe injection is performed. Therefore, there is a possibility that the exhaust gas temperature rise control will end in a state where the regeneration of the filter is not completed, that is, the combustion removal of PM remains incomplete.
  • An object of the present disclosure is to provide a control device, an internal combustion engine system, and a diagnostic method capable of detecting valve abnormalities early and accurately.
  • control device in the present disclosure is A control device for an internal combustion engine system having an exhaust system having a valve device whose opening degree is controlled.
  • An acquisition unit that acquires a parameter indicating the state of the internal combustion engine system when the exhaust temperature rises due to the control of the opening degree, and
  • a calculation unit that calculates the average value of the plurality of acquired parameters, and When it is determined whether or not the calculated average value or the predetermined value calculated based on the average value exceeds the predetermined threshold value, and the average value or the predetermined value exceeds the predetermined threshold value.
  • the determination unit for determining that the valve device is abnormal and To prepare for.
  • the internal combustion engine system in the present disclosure includes the above control device.
  • the method for diagnosing an internal combustion engine system in the present disclosure is as follows.
  • valve abnormalities can be detected early and accurately.
  • FIG. 1 is a diagram schematically showing an internal combustion engine system according to an embodiment of the present disclosure.
  • FIG. 2A is a diagram showing the relationship between the number of regenerations and the fuel injection amount.
  • FIG. 2B is a diagram showing the relationship between the number of regenerations and the amount of intake air.
  • FIG. 3 is a flowchart showing an example of the operation of the ECU according to the embodiment of the present disclosure.
  • FIG. 1 is a diagram schematically showing an internal combustion engine system 1A according to the present embodiment.
  • the dashed arrow indicates the flow of an electrical signal.
  • the internal combustion engine system 1A shown in FIG. 1 includes an internal combustion engine 1, an exhaust gas purification device 2, and an ECU (Electric Control Unit) 100.
  • the internal combustion engine 1 and the like are mounted on a vehicle, for example.
  • the internal combustion engine 1 is, for example, a diesel engine.
  • the internal combustion engine 1 includes four cylinders 3.
  • Each cylinder 3 is provided with a fuel injection device (injector) 4 for injecting fuel into the cylinder 3.
  • the fuel injection amount, fuel injection timing, and fuel injection pressure of each fuel injection device 4 are controlled by the ECU 100.
  • the ECU 100 calculates the fuel injection amount based on the injection amount map showing the relationship between the load of the internal combustion engine 1 and the rotation speed of the internal combustion engine 1 and the fuel injection amount.
  • the rotation speed of the internal combustion engine 1 is detected by a rotation speed detection sensor (not shown).
  • the load of the internal combustion engine 1 is detected by a torque sensor (not shown) or obtained by calculation based on the fuel injection amount, the number of revolutions, and the like.
  • the internal combustion engine 1 is connected to an intake pipe 5 through which air supplied into the cylinder 3 flows.
  • the air taken in from the air cleaner 6 flows through the intake pipe 5.
  • the intake air amount sensor 7 detects the amount of intake air flowing through the intake pipe 5.
  • the intake air amount sensor 7 outputs a signal indicating the detected intake air amount to the ECU 100.
  • the exhaust pipe 8 through which the exhaust gas generated by the internal combustion engine 1 flows is connected to the internal combustion engine 1.
  • the exhaust brake valve 11, the exhaust purification device 2, and the exhaust throttle valve 12 are arranged in the exhaust pipe 8 in order from the upstream side.
  • the exhaust brake valve 11 opens and closes the exhaust pipe 8.
  • the VSV (vacuum switching valve) 13 is controlled by the ECU 100, and the exhaust brake valve 11 is opened and closed by using the negative pressure of the vacuum tank 15. Specifically, when the exhaust brake switch (not shown) in the driver's seat is turned on, the exhaust brake valve 11 closes when the accelerator is released, thereby blocking the flow of exhaust gas discharged from the internal combustion engine 1. , Raise the exhaust temperature.
  • Figure 1 shows the flow of exhaust gas with hatched arrows.
  • the exhaust brake valve 11 and the exhaust throttle valve 12, which will be described later, are collectively referred to as "valves". The valve corresponds to the "valve device" of the present disclosure.
  • An exhaust pressure sensor 16 that detects the pressure in the exhaust pipe 8 is arranged downstream of the internal combustion engine 1 and upstream of the exhaust brake valve 11.
  • the exhaust pressure sensor 16 outputs a signal indicating the detected pressure to the ECU 100.
  • the exhaust throttle valve 12 opens and closes the exhaust pipe 8.
  • the VSV 17 is controlled by the ECU 100 and uses the negative pressure of the vacuum tank 18 to open and close the exhaust throttle valve 12.
  • the exhaust throttle valve 12 closes to block the flow of the exhaust gas discharged from the internal combustion engine 1. Raise the exhaust temperature.
  • FIG. 1 shows the flow of exhaust gas with arrows.
  • the filter reproduction indicator lamp 26 lights up when the filter reproduction switch 19 is turned on.
  • An exhaust pressure sensor 21 that detects the pressure in the exhaust pipe 8 is arranged downstream of the exhaust purification device 2 and upstream of the exhaust throttle valve 12.
  • the exhaust pressure sensor 21 outputs a signal indicating the detected pressure to the ECU 100.
  • the exhaust gas purification device 2 has a DOC (Diesel Oxidation Catalyst. Oxidation catalyst) 31 and a filter 32.
  • the DOC 31 and the filter 32 are provided in the exhaust pipe 8 in this order.
  • the DOC 31 oxidizes HC and CO contained in the exhaust gas when it is in the active state, and occludes the HC contained in the exhaust gas when it is in the inactive state.
  • the filter 32 collects PM contained in the exhaust gas.
  • the collected PM is deposited on the filter 32.
  • the filter 32 is formed of, for example, a porous ceramic having a fine pore diameter or the like.
  • An exhaust temperature sensor 22 that detects the temperature inside the exhaust pipe 8 is arranged downstream of the exhaust brake valve 11 and upstream of the DOC 31.
  • the exhaust temperature sensor 22 outputs a signal indicating the detected temperature to the ECU 100. It was
  • An exhaust temperature sensor 23 that detects the temperature inside the exhaust pipe 8 is arranged downstream of the DOC 31 and upstream of the filter 32.
  • the exhaust temperature sensor 23 outputs a signal indicating the detected temperature to the ECU 100. It was
  • a silencer 25 for reducing exhaust noise is arranged downstream of the exhaust throttle valve 12.
  • the lambda sensor (excess air rate) 24 detects the oxygen concentration contained in the exhaust gas and outputs the detected oxygen concentration to the ECU 100.
  • the valve exhaust brake valve 11 or exhaust throttle valve 12
  • the valve may be closed for regeneration.
  • soot is accumulated on the valve and the valve is clogged, the exhaust pressure rises, the amount of intake air decreases, and the in-cylinder post injection and the exhaust pipe injection cannot be performed, so that the filter can be regenerated. It may be incomplete.
  • FIG. 2A is a diagram showing the relationship between the fuel injection amount and the number of filter regenerations
  • FIG. 2B is a diagram showing the relationship between the intake air amount and the number of filter regenerations.
  • the vertical axis of each of FIGS. 2A and 2B shows the fuel injection amount per stroke and the intake air amount per unit time
  • the horizontal axis shows the number of filter regenerations.
  • the parameter indicating the state of the internal combustion engine system 1A is monitored during the regeneration of the filter, and the clogging of the valve is predicted.
  • the parameters indicating the state of the internal combustion engine system 1A include the fuel injection amount of the fuel injection device 4, the air amount detected by the intake air amount sensor 7, and the pressure detected by the exhaust pressure sensors 16 and 21.
  • the temperature detected by the exhaust temperature sensors 22 and 23, the oxygen concentration detected by the lambda sensor 24, and the like are included.
  • the parameter indicating the state of the internal combustion engine system 1A is a numerical value calculated by one or more of a plurality of parameters such as the fuel injection amount described above, for example, an air-fuel ratio calculated from the fuel injection amount and the air amount. Is included.
  • the ECU 100 has, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like as hardware.
  • the ECU 100 functions as an acquisition unit 101, an air-fuel ratio calculation unit 102, a determination unit 103, and an output unit 104 by executing a computer program read from the ROM by the CPU on the RAM.
  • the injection amount map may be stored in a ROM, or may be stored in, for example, an EPROM (ErasableROM) or an EEPROM (ElectricallyErasableROM).
  • the CPU has a filter reproduction (specifically, the filter reproduction switch 19 is on), the exhaust throttle valve 12 is closed, and the vehicle speed is 0 (km / h).
  • the filter reproduction switch 19 is on
  • the exhaust throttle valve 12 is closed
  • the vehicle speed is 0 (km / h).
  • the acquisition unit 101 acquires a parameter within a certain time t2 second, which is a parameter after a predetermined time t1 second has elapsed from the start of valve opening control (filter regeneration).
  • the reason for acquiring the parameters after a predetermined time t1 second has elapsed from the start of the filter reproduction is that the numerical values of the parameters are not stable immediately after the start of the filter reproduction. Further, the reason for acquiring the parameters within t2 seconds for a certain period of time is to prevent the numerical values of the parameters from fluctuating without becoming the numerical values of the parameters under the same conditions due to different times.
  • the acquired parameters will be described as the fuel injection amount of the fuel injection device 4 and the intake air amount detected by the intake air amount sensor 7.
  • the air-fuel ratio calculation unit 102 calculates the average value of each of the acquired fuel injection amount and intake air amount. Further, the air-fuel ratio calculation unit 102 calculates the air-fuel ratio (average value) from the average values of the calculated fuel injection amount and the intake air amount.
  • the reason for calculating the average value of the parameters is that the numerical value of the parameter fluctuates, so for example, if it is the maximum value of the parameter, a stable numerical value may not be obtained, but if it is the average value of the parameter, it is compared. This is because a stable numerical value can be obtained.
  • the determination unit 103 determines whether or not the calculated air-fuel ratio (average value) exceeds a predetermined threshold value. Further, the determination unit 103 determines that the valve is abnormal when the number of times when the air-fuel ratio (average value) exceeds a predetermined threshold value exceeds a predetermined number of times.
  • the output unit 104 transmits the determination result of the determination unit 103 (that the valve is abnormal) to the manager of the internal combustion engine 1 (or the vehicle), the user, or the maintenance site (for example, the vehicle dealer). Output via. As a result, it is possible to take measures before the incomplete reproduction of the filter occurs. Specifically, it is possible to perform valve maintenance.
  • the filter Since the filter is not regenerated in the state where soot is accumulated on the valve due to the maintenance of the valve, as shown in FIGS. 2A and 2B, after the introduction of the invention of the present disclosure, the fuel is regenerated according to the number of manual regenerations.
  • the injection amount increases, the intake air amount decreases, and a certain threshold is reached, a warning is issued, and it is possible to know the abnormality before the fuel injection amount reaches the defect occurrence value and the intake air amount reaches the defect occurrence value. This makes it possible to prevent the occurrence of a situation in which the reproduction of the filter does not end suddenly.
  • FIG. 3 is a flowchart showing an example of the operation of the ECU 100 according to the present embodiment.
  • This flow is started with the start of the internal combustion engine 1.
  • the parameters indicating the state of the internal combustion engine system 1A when the filter is regenerated are, for example, the fuel injection amount calculated by the ECU 100 and the intake air amount detected by the intake air amount sensor 7. In the following description, it will be described as a parameter measured by a predetermined sensor.
  • the operation of the ECU 100 is performed by each of the acquisition unit 101, the air-fuel ratio calculation unit 102, the determination unit 103, and the output unit 104 functioning, but here, it will be described as being performed by the CPU.
  • step S100 the CPU sets the initial value and the threshold value of the parameter.
  • step S120 the CPU waits for t1 second.
  • step S130 the predetermined sensor measures the parameter.
  • step S140 the CPU determines whether or not the predetermined sensor can measure the parameter for t2 seconds. If the predetermined sensor can measure the parameter for t2 seconds (step S140: YES), the process proceeds to step S150. If the predetermined sensor cannot measure the parameter for t2 seconds (step S140: NO), the process returns before step S110.
  • the measurement stop condition when the filter reproduction is canceled, when the exhaust throttle valve 12 is opened, or when the vehicle speed is 0 (km / h). ) Is faster, or APS is larger than 0 (%)).
  • step S150 the CPU calculates the average value of the parameters.
  • step S160 the CPU calculates the difference between the average value of the parameters and the initial value of the parameters.
  • step S170 the CPU determines whether or not the calculated difference exceeds the threshold value. If the difference exceeds the threshold (step S170: YES), the process transitions to step S180. If the difference does not exceed the threshold (step S170: NO), processing returns before step S110.
  • step S180 the CPU counts the number of times k when the difference exceeds the threshold value.
  • step S200 the CPU executes control to send a warning that the valve is abnormal.
  • the ECU 100 is an internal combustion engine system 1A having an exhaust system having a valve whose opening degree is controlled, and is an internal combustion engine system 1A when the exhaust temperature rises due to the control of the opening degree.
  • the acquisition unit that acquires the parameter indicating the state of
  • the calculation unit that calculates the average value of the acquired plurality of parameters, and the calculated average value or a predetermined value calculated based on the average value (with the average value). It is determined whether or not the difference from the initial value) exceeds the predetermined threshold value, and if the average value or the predetermined value exceeds the predetermined threshold value more than the predetermined number of times, it is determined that the valve is abnormal. It is provided with a determination unit to be used.
  • whether or not the valve is abnormal is determined not by actually looking at the valve, but based on the parameters indicating the state of the internal combustion engine system, so that the valve abnormality can be determined at an early stage. It becomes possible to detect. Further, it is possible to accurately detect the abnormality of the valve by determining whether or not the valve is abnormal based on the average value of the parameters. Further, when the number of times when the average value of the parameters exceeds a predetermined threshold value exceeds a predetermined number of times, it is determined that the valve is abnormal, so that the valve abnormality can be detected more accurately. As a result, it is possible to know that the valve is abnormal before the sudden filter regeneration is completed.
  • the plurality of parameters acquired by the acquisition unit 101 are parameters after a predetermined time t1 second has elapsed from the start of control of the valve opening degree. As a result, stable numerical values of the parameters can be obtained, and it becomes possible to detect valve abnormalities with higher accuracy.
  • the acquisition unit 101 acquires a parameter within a time t2 seconds. As a result, it is possible to prevent the parameter values from fluctuating without becoming the parameter values under the same conditions due to different times, so that it is possible to detect valve abnormalities more accurately.
  • the output unit 104 outputs the determination result of the determination unit 103.
  • maintenance air and parts replacement
  • the side that accepts the vehicle can prepare parts in advance and can predict the work man-hours, so that the work efficiency can be improved.
  • the CPU determines whether or not the difference between the average value of the parameters and the initial value of the parameter exceeds the threshold value, but the present disclosure is not limited to this, and for example, the absolute value of the parameter is the threshold value. It may be determined whether or not the parameter exceeds the threshold value, and whether or not the rate of change of the parameter exceeds the threshold value.
  • whether or not the valve is abnormal is determined based on the average values of the fuel injection amount, the intake air amount, and the air-fuel ratio, but other than that, the state of the internal combustion engine system 1A. It may be performed based on the average value of the parameters indicating.
  • the opening / closing operation of the exhaust brake valve 11 is performed by the VSV 13
  • the opening / closing operation of the exhaust throttle valve 12 is performed by the VSV 17, but the present disclosure is not limited to this, for example. It may be performed by an existing device such as an electric actuator.
  • the present disclosure is suitably used for an internal combustion engine system provided with a control device that is required to detect a valve abnormality early and accurately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

With this control device, internal combustion engine system, and diagnostic method, it is possible to detect valve abnormalities early and accurately. The control device is a control device for an internal combustion engine system comprising an exhaust line having a valve device of which the opening degree is controlled, said control device comprising: an acquisition unit that acquires a parameter indicating the status of the internal combustion engine system when exhaust temperature increases due to the opening degree being controlled; a calculation unit that calculates the average value of a plurality of the acquired parameters; and a determination unit that determines whether or not the calculated average value or a predetermined value calculated on the basis of the average value exceeds a predetermined threshold value, and determines that the valve device is abnormal when the number of times the average value or the predetermined value exceeds the predetermined threshold value is greater than a predetermined number of times.

Description

制御装置、内燃機関システムおよび診断方法Controls, internal combustion engine systems and diagnostic methods
 本開示は、制御装置、内燃機関システムおよび診断方法に関する。 This disclosure relates to a control device, an internal combustion engine system and a diagnostic method.
 従来、排気系統に開度を変更可能なエキゾーストスロットルバルブやエキゾーストブレーキバルブを備えた内燃機関が知られている。 Conventionally, an internal combustion engine equipped with an exhaust throttle valve or an exhaust brake valve whose opening can be changed in the exhaust system is known.
 エキゾーストスロットルバルブは、その開度を小さくすることで、排気抵抗を上昇させ、内燃機関の負荷を上昇させ、燃料噴射量を増大させて、また、排気ガスの排出を困難とし、排気ガスを冷えに難くさせて、排気温度が上昇することに寄与する。 By reducing the opening of the exhaust throttle valve, the exhaust resistance is increased, the load of the internal combustion engine is increased, the fuel injection amount is increased, the exhaust gas is difficult to be discharged, and the exhaust gas is cooled. It makes it difficult to make it difficult and contributes to the rise of the exhaust temperature.
 また、エキゾーストブレーキバルブは、その開度を小さくすることで、排気抵抗を上昇させ、内燃機関の回転抵抗を上昇させて、出力回転数の抑制に寄与する。 In addition, the exhaust brake valve increases the exhaust resistance and the rotational resistance of the internal combustion engine by reducing its opening, which contributes to the suppression of the output rotation speed.
 排気系統には、排気ガス中のPM(Particulate Matter。粒子状物質)を捕集することで、排気ガスを浄化するディーゼルパティキュレートフィルタ(Diesel Particulate Filter :DPF。フィルタ)が配置されている。 The exhaust system is equipped with a diesel particulate filter (Diesel Particulate Filter: DPF) that purifies the exhaust gas by collecting PM (Particulate Matter. Particulate matter) in the exhaust gas.
 フィルタに捕集されたPMを燃焼除去することでフィルタを再生する方法が知られている。例えば、特許文献1には、フィルタ再生方法として、筒内ポスト噴射や排気管噴射によって、フィルタ上流に配置した酸化触媒に燃料を供給し、その発熱を利用して排気を昇温する方法が開示されている。 A method of regenerating the filter by burning and removing the PM collected by the filter is known. For example, Patent Document 1 discloses, as a filter regeneration method, a method of supplying fuel to an oxidation catalyst arranged upstream of a filter by in-cylinder post injection or exhaust pipe injection, and using the heat generated thereof to raise the temperature of the exhaust gas. Has been done.
日本国特開2013-142362号公報Japanese Patent Application Laid-Open No. 2013-142362
 ところで、フィルタ再生時、エキゾーストスロットルバルブまたはエキゾーストブレーキバルブ(以下、バルブ)を閉じて再生を行う場合がある。このとき、バルブが異常である場合、具体的には、バルブが煤の堆積により詰まっている場合、排気圧力が上がって、吸入空気量が減少し、筒内ポスト噴射や排気管噴射をすることができないため、フィルタの再生が未完了、つまりPMの燃焼除去が不完全なままの状態で排気の昇温制御が終了してしまうおそれがある。 By the way, when the filter is regenerated, the exhaust throttle valve or the exhaust brake valve (hereinafter referred to as the valve) may be closed for regeneration. At this time, if the valve is abnormal, specifically, if the valve is clogged due to the accumulation of soot, the exhaust pressure rises, the amount of intake air decreases, and in-cylinder post injection or exhaust pipe injection is performed. Therefore, there is a possibility that the exhaust gas temperature rise control will end in a state where the regeneration of the filter is not completed, that is, the combustion removal of PM remains incomplete.
 本開示の目的は、バルブの異常を早期にかつ精度よく検出することが可能な制御装置、内燃機関システムおよび診断方法を提供することである。 An object of the present disclosure is to provide a control device, an internal combustion engine system, and a diagnostic method capable of detecting valve abnormalities early and accurately.
 上記の目的を達成するため、本開示における制御装置は、
 開度が制御される弁装置を有する排気系統を備えた内燃機関システムの制御装置であって、
 前記開度が制御されることにより排気温度が上昇する場合における前記内燃機関システムの状態を示すパラメータを取得する取得部と、
 取得された複数個の前記パラメータの平均値を算出する算出部と、
 算出された前記平均値、もしくは前記平均値に基づいて算出された所定の値が所定の閾値を超えるか否かについて判定するとともに、前記平均値もしくは前記所定の値が所定の閾値を超える場合の回数が所定の回数を超える場合、前記弁装置が異常であると判定する判定部と、
 を備える。
In order to achieve the above object, the control device in the present disclosure is
A control device for an internal combustion engine system having an exhaust system having a valve device whose opening degree is controlled.
An acquisition unit that acquires a parameter indicating the state of the internal combustion engine system when the exhaust temperature rises due to the control of the opening degree, and
A calculation unit that calculates the average value of the plurality of acquired parameters, and
When it is determined whether or not the calculated average value or the predetermined value calculated based on the average value exceeds the predetermined threshold value, and the average value or the predetermined value exceeds the predetermined threshold value. When the number of times exceeds a predetermined number of times, the determination unit for determining that the valve device is abnormal, and
To prepare for.
 本開示における内燃機関システムは、上記の制御装置を備える。 The internal combustion engine system in the present disclosure includes the above control device.
 本開示における内燃機関システムの診断方法は、
 開度が制御される弁装置を有する排気系統を備えた内燃機関システムの診断方法であって、
 前記開度が制御されることにより排気温度が上昇する場合における前記内燃機関システムの状態を示すパラメータを取得する取得ステップと、
 前記取得ステップで取得された複数個の前記パラメータの平均値を算出する算出ステップと、
 前記算出ステップで算出された前記平均値、もしくは前記平均値に基づいて算出された所定の値が所定の閾値を超えるか否かについて判定するとともに、前記平均値もしくは前記所定の値が所定の閾値を超える場合の回数が所定の回数を超える場合、前記弁装置が異常であると判定する判定ステップと、
 を備える。
The method for diagnosing an internal combustion engine system in the present disclosure is as follows.
A diagnostic method for an internal combustion engine system equipped with an exhaust system having a valve device whose opening is controlled.
The acquisition step of acquiring the parameter indicating the state of the internal combustion engine system when the exhaust temperature rises due to the control of the opening degree, and the acquisition step.
A calculation step for calculating the average value of a plurality of the parameters acquired in the acquisition step, and
It is determined whether or not the average value calculated in the calculation step or a predetermined value calculated based on the average value exceeds a predetermined threshold value, and the average value or the predetermined value is a predetermined threshold value. If the number of times exceeds a predetermined number of times, the determination step of determining that the valve device is abnormal, and
To prepare for.
 本開示によれば、バルブの異常を早期にかつ精度よく検出することができる。 According to the present disclosure, valve abnormalities can be detected early and accurately.
図1は、本開示の実施の形態に係る内燃機関システムを模式的に示す図である。FIG. 1 is a diagram schematically showing an internal combustion engine system according to an embodiment of the present disclosure. 図2Aは、再生回数と燃料噴射量との関係を示す図である。FIG. 2A is a diagram showing the relationship between the number of regenerations and the fuel injection amount. 図2Bは、再生回数と吸気空気量との関係を示す図である。FIG. 2B is a diagram showing the relationship between the number of regenerations and the amount of intake air. 図3は、本開示の実施の形態に係るECUの動作の一例を示すフローチャートである。FIG. 3 is a flowchart showing an example of the operation of the ECU according to the embodiment of the present disclosure.
 以下、本開示の実施の形態について、図面を参照しながら説明する。図1は、本実施の形態に係る内燃機関システム1Aを模式的に示す図である。図1において、破線の矢印は、電気信号の流れを示している。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. FIG. 1 is a diagram schematically showing an internal combustion engine system 1A according to the present embodiment. In FIG. 1, the dashed arrow indicates the flow of an electrical signal.
 図1に示す内燃機関システム1Aは、内燃機関1、排気浄化装置2およびECU(Electric Control Unit)100を備えている。内燃機関1等は、例えば車両に搭載される。 The internal combustion engine system 1A shown in FIG. 1 includes an internal combustion engine 1, an exhaust gas purification device 2, and an ECU (Electric Control Unit) 100. The internal combustion engine 1 and the like are mounted on a vehicle, for example.
 内燃機関1は、例えばディーゼルエンジンである。内燃機関1は、4つの気筒3を備えている。各気筒3には、気筒3内への燃料の噴射を行う燃料噴射装置(インジェクタ)4が設けられている。各燃料噴射装置4の燃料噴射量、燃料噴射時期、および、燃料噴射圧力は、ECU100によって制御される。 The internal combustion engine 1 is, for example, a diesel engine. The internal combustion engine 1 includes four cylinders 3. Each cylinder 3 is provided with a fuel injection device (injector) 4 for injecting fuel into the cylinder 3. The fuel injection amount, fuel injection timing, and fuel injection pressure of each fuel injection device 4 are controlled by the ECU 100.
 ECU100は、内燃機関1の負荷および内燃機関1の回転数と燃料噴射量との関係を示す噴射量マップに基づいて燃料噴射量を算出する。なお、内燃機関1の回転数は、回転数検出センサ(不図示)により検出される。内燃機関1の負荷は、トルクセンサ(不図示)により検出されるか、燃料噴射量や回転数等に基づき演算により求められる。 The ECU 100 calculates the fuel injection amount based on the injection amount map showing the relationship between the load of the internal combustion engine 1 and the rotation speed of the internal combustion engine 1 and the fuel injection amount. The rotation speed of the internal combustion engine 1 is detected by a rotation speed detection sensor (not shown). The load of the internal combustion engine 1 is detected by a torque sensor (not shown) or obtained by calculation based on the fuel injection amount, the number of revolutions, and the like.
 また、内燃機関1には、気筒3内に供給される空気が流れる吸気管5が接続されている。吸気管5にはエアクリーナー6から取り込まれた空気が流れる。 Further, the internal combustion engine 1 is connected to an intake pipe 5 through which air supplied into the cylinder 3 flows. The air taken in from the air cleaner 6 flows through the intake pipe 5.
 吸入空気量センサ7は、吸気管5に流れる吸入空気量を検出する。吸入空気量センサ7は、検出した吸入空気量を示す信号をECU100へ出力する。 The intake air amount sensor 7 detects the amount of intake air flowing through the intake pipe 5. The intake air amount sensor 7 outputs a signal indicating the detected intake air amount to the ECU 100.
 また、内燃機関1には、内燃機関1で生じた排ガスが流れる排気管8が接続されている。排気管8には、上流側から順に、エキゾーストブレーキバルブ11、排気浄化装置2、および、エキゾーストスロットルバルブ12が配置される。 Further, the exhaust pipe 8 through which the exhaust gas generated by the internal combustion engine 1 flows is connected to the internal combustion engine 1. The exhaust brake valve 11, the exhaust purification device 2, and the exhaust throttle valve 12 are arranged in the exhaust pipe 8 in order from the upstream side.
 エキゾーストブレーキバルブ11は、排気管8を開閉する。VSV(バキュームスイッチングバルブ)13は、ECU100によって制御され、バキュームタンク15の負圧を用いて、エキゾーストブレーキバルブ11を開閉動作させる。具体的には、運転席の排気ブレーキスイッチ(不図示)をオンにした場合、アクセルを離した時に、エキゾーストブレーキバルブ11が閉じることで、内燃機関1から排出された排気ガスの流れを遮断し、排気温度を上昇させる。図1に排ガスの流れをハッチングの矢印で示す。なお、エキゾーストブレーキバルブ11、および、後述するエキゾーストスロットルバルブ12を「バルブ」と総称する。バルブが本開示の「弁装置」に対応する。 The exhaust brake valve 11 opens and closes the exhaust pipe 8. The VSV (vacuum switching valve) 13 is controlled by the ECU 100, and the exhaust brake valve 11 is opened and closed by using the negative pressure of the vacuum tank 15. Specifically, when the exhaust brake switch (not shown) in the driver's seat is turned on, the exhaust brake valve 11 closes when the accelerator is released, thereby blocking the flow of exhaust gas discharged from the internal combustion engine 1. , Raise the exhaust temperature. Figure 1 shows the flow of exhaust gas with hatched arrows. The exhaust brake valve 11 and the exhaust throttle valve 12, which will be described later, are collectively referred to as "valves". The valve corresponds to the "valve device" of the present disclosure.
 内燃機関1の下流であってエキゾーストブレーキバルブ11の上流には、排気管8内の圧力を検出する排気圧力センサ16が配置されている。排気圧力センサ16は、検出した圧力を示す信号をECU100へ出力する。 An exhaust pressure sensor 16 that detects the pressure in the exhaust pipe 8 is arranged downstream of the internal combustion engine 1 and upstream of the exhaust brake valve 11. The exhaust pressure sensor 16 outputs a signal indicating the detected pressure to the ECU 100.
 エキゾーストスロットルバルブ12は、排気管8を開閉する。VSV17は、ECU100によって制御され、バキュームタンク18の負圧を用いて、エキゾーストスロットルバルブ12を開閉動作させる。手動でフィルタ再生を行う場合、具体的には、運転席のフィルタ再生スイッチ19をオンにした場合、エキゾーストスロットルバルブ12が閉じることで、内燃機関1から排出された排気ガスの流れを遮断し、排気温度を上昇させる。図1に排ガスの流れを矢印で示す。フィルタ再生表示灯26は、フィルタ再生スイッチ19がオンされた場合、点灯表示する。 The exhaust throttle valve 12 opens and closes the exhaust pipe 8. The VSV 17 is controlled by the ECU 100 and uses the negative pressure of the vacuum tank 18 to open and close the exhaust throttle valve 12. When manually regenerating the filter, specifically, when the filter regeneration switch 19 in the driver's seat is turned on, the exhaust throttle valve 12 closes to block the flow of the exhaust gas discharged from the internal combustion engine 1. Raise the exhaust temperature. FIG. 1 shows the flow of exhaust gas with arrows. The filter reproduction indicator lamp 26 lights up when the filter reproduction switch 19 is turned on.
 排気浄化装置2の下流であってエキゾーストスロットルバルブ12の上流には、排気管8内の圧力を検出する排気圧力センサ21が配置されている。排気圧力センサ21は、検出した圧力を示す信号をECU100へ出力する。 An exhaust pressure sensor 21 that detects the pressure in the exhaust pipe 8 is arranged downstream of the exhaust purification device 2 and upstream of the exhaust throttle valve 12. The exhaust pressure sensor 21 outputs a signal indicating the detected pressure to the ECU 100.
 排気浄化装置2は、DOC(Diesel Oxidation Catalyst。酸化触媒)31および、フィルタ32を有する。DOC31およびフィルタ32は、この順に排気管8に設けられている。 The exhaust gas purification device 2 has a DOC (Diesel Oxidation Catalyst. Oxidation catalyst) 31 and a filter 32. The DOC 31 and the filter 32 are provided in the exhaust pipe 8 in this order.
 DOC31は、活性状態である場合、排ガスに含まれるHCおよびCOを酸化させ、非活性状態である場合、排ガスに含まれるHCを吸蔵する。 The DOC 31 oxidizes HC and CO contained in the exhaust gas when it is in the active state, and occludes the HC contained in the exhaust gas when it is in the inactive state.
 フィルタ32は、排ガスに含まれるPMを捕集する。捕集されたPMは、フィルタ32に堆積する。フィルタ32は、例えば、微孔径を有する多孔質セラミック等により形成される。 The filter 32 collects PM contained in the exhaust gas. The collected PM is deposited on the filter 32. The filter 32 is formed of, for example, a porous ceramic having a fine pore diameter or the like.
 エキゾーストブレーキバルブ11の下流であってDOC31の上流には、排気管8内の温度を検出する排気温度センサ22が配置されている。排気温度センサ22は、検出した温度を示す信号をECU100へ出力する。  An exhaust temperature sensor 22 that detects the temperature inside the exhaust pipe 8 is arranged downstream of the exhaust brake valve 11 and upstream of the DOC 31. The exhaust temperature sensor 22 outputs a signal indicating the detected temperature to the ECU 100. It was
 DOC31の下流であってフィルタ32の上流には、排気管8内の温度を検出する排気温度センサ23が配置されている。排気温度センサ23は、検出した温度を示す信号をECU100へ出力する。  An exhaust temperature sensor 23 that detects the temperature inside the exhaust pipe 8 is arranged downstream of the DOC 31 and upstream of the filter 32. The exhaust temperature sensor 23 outputs a signal indicating the detected temperature to the ECU 100. It was
 エキゾーストスロットルバルブ12の下流には、排気音を低減するサイレンサー25が配置されている。 A silencer 25 for reducing exhaust noise is arranged downstream of the exhaust throttle valve 12.
 その他、ラムダセンサ(空気過剰率)24は、排気ガスに含まれる酸素濃度を検出し、検出した酸素濃度をECU100へ出力する。 In addition, the lambda sensor (excess air rate) 24 detects the oxygen concentration contained in the exhaust gas and outputs the detected oxygen concentration to the ECU 100.
 ところで、フィルタ再生時、バルブ(エキゾーストブレーキバルブ11またはエキゾーストスロットルバルブ12)を閉じて再生を行う場合がある。このとき、バルブに煤が堆積し、詰まりが発生している場合、排気圧力が上がって、吸入空気量が減少し、筒内ポスト噴射や排気管噴射をすることができないため、フィルタの再生が未完了となるおそれがある。 By the way, at the time of filter regeneration, the valve (exhaust brake valve 11 or exhaust throttle valve 12) may be closed for regeneration. At this time, if soot is accumulated on the valve and the valve is clogged, the exhaust pressure rises, the amount of intake air decreases, and the in-cylinder post injection and the exhaust pipe injection cannot be performed, so that the filter can be regenerated. It may be incomplete.
 図2Aは、燃料噴射量とフィルタ再生回数との関係を、図2Bは吸入空気量とフィルタ再生回数との関係を示す図である。図2Aおよび図2Bそれぞれの縦軸に1ストローク当たりの燃料噴射量および単位時間当たりの吸入空気量を示し、横軸にフィルタ再生回数を示す。 FIG. 2A is a diagram showing the relationship between the fuel injection amount and the number of filter regenerations, and FIG. 2B is a diagram showing the relationship between the intake air amount and the number of filter regenerations. The vertical axis of each of FIGS. 2A and 2B shows the fuel injection amount per stroke and the intake air amount per unit time, and the horizontal axis shows the number of filter regenerations.
 まず、従来の課題について説明する。バルブに煤が堆積した状態で、フィルタ再生を行う場合、図2Aおよび図2Bに示すように、再生回数に応じて燃料噴射量が増加するとともに、吸入空気量が減少し、ある再生回数に達した場合、燃料噴射量が不具合発生値に達し、また、吸入空気量が不具合発生値に達する。これにより、フィルタの再生が未完了に至るという問題があった。 First, I will explain the conventional issues. When filter regeneration is performed with soot accumulated on the valve, as shown in FIGS. 2A and 2B, the fuel injection amount increases according to the number of regenerations, the intake air amount decreases, and a certain number of regenerations is reached. If so, the fuel injection amount reaches the defect occurrence value, and the intake air amount reaches the defect occurrence value. This causes a problem that the reproduction of the filter is not completed.
 本実施の形態においては、フィルタの再生時に内燃機関システム1Aの状態を示すパラメータを監視し、バルブの詰まりを予測する。具体的には、内燃機関システム1Aの状態を示すパラメータには、燃料噴射装置4の燃料噴射量、吸入空気量センサ7により検出される空気量、排気圧力センサ16,21により検出される圧力、排気温度センサ22、23により検出される温度、および、ラムダセンサ24により検出される酸素濃度などが含まれる。また、内燃機関システム1Aの状態を示すパラメータには、上記する燃料噴射量などの複数個のパラメータの一または二以上により算出される数値、例えば、燃料噴射量および空気量から算出される空燃比が含まれる。 In the present embodiment, the parameter indicating the state of the internal combustion engine system 1A is monitored during the regeneration of the filter, and the clogging of the valve is predicted. Specifically, the parameters indicating the state of the internal combustion engine system 1A include the fuel injection amount of the fuel injection device 4, the air amount detected by the intake air amount sensor 7, and the pressure detected by the exhaust pressure sensors 16 and 21. The temperature detected by the exhaust temperature sensors 22 and 23, the oxygen concentration detected by the lambda sensor 24, and the like are included. Further, the parameter indicating the state of the internal combustion engine system 1A is a numerical value calculated by one or more of a plurality of parameters such as the fuel injection amount described above, for example, an air-fuel ratio calculated from the fuel injection amount and the air amount. Is included.
 ECU100は、ハードウェアとして、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を有する。ECU100は、CPUがROMから読み出したコンピュータプログラムをRAM上で実行することにより、取得部101、空燃比算出部102、判定部103、および、出力部104として機能する。なお、上記の噴射量マップは、ROMに記憶されてもよく、例えば、EPROM(Erasable ROM)や、EEPROM(Electrically Erasable ROM)に記憶されてもよい。 The ECU 100 has, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like as hardware. The ECU 100 functions as an acquisition unit 101, an air-fuel ratio calculation unit 102, a determination unit 103, and an output unit 104 by executing a computer program read from the ROM by the CPU on the RAM. The injection amount map may be stored in a ROM, or may be stored in, for example, an EPROM (ErasableROM) or an EEPROM (ElectricallyErasableROM).
 取得部101は、CPUは、フィルタ再生(具体的には、フィルタ再生スイッチ19がオン)である場合、かつ、エキゾーストスロットルバルブ12が閉じられている場合、かつ、車速が0(km/h)である場合、かつ、アクセルポジションセンサが0(%)である場合(APS=0%)、以下のパラメータを取得する。 In the acquisition unit 101, the CPU has a filter reproduction (specifically, the filter reproduction switch 19 is on), the exhaust throttle valve 12 is closed, and the vehicle speed is 0 (km / h). When, and when the accelerator position sensor is 0 (%) (APS = 0%), the following parameters are acquired.
 取得部101は、バルブの開度の制御(フィルタ再生)が開始されてから所定の時間t1秒が経過した後のパラメータであって、一定時間t2秒以内のパラメータを取得する。 The acquisition unit 101 acquires a parameter within a certain time t2 second, which is a parameter after a predetermined time t1 second has elapsed from the start of valve opening control (filter regeneration).
 フィルタ再生が開始されてから所定の時間t1秒が経過した後のパラメータを取得する理由は、フィルタ再生の開始直後は、パラメータの数値が安定しないためである。また、一定時間t2秒以内のパラメータを取得する理由は、時間が異なることで同一条件におけるパラメータの数値にならずに、パラメータの数値が変動してしまうことを避けるためである。 The reason for acquiring the parameters after a predetermined time t1 second has elapsed from the start of the filter reproduction is that the numerical values of the parameters are not stable immediately after the start of the filter reproduction. Further, the reason for acquiring the parameters within t2 seconds for a certain period of time is to prevent the numerical values of the parameters from fluctuating without becoming the numerical values of the parameters under the same conditions due to different times.
 なお、以下の説明においては、取得されるパラメータを、燃料噴射装置4の燃料噴射量、および、吸入空気量センサ7により検出される吸入空気量として説明する。 In the following description, the acquired parameters will be described as the fuel injection amount of the fuel injection device 4 and the intake air amount detected by the intake air amount sensor 7.
 空燃比算出部102は、取得された燃料噴射量および吸入空気量それぞれの平均値を算出する。また、空燃比算出部102は、算出した燃料噴射量および吸入空気量それぞれの平均値により空燃比(平均値)を算出する。パラメータの平均値を算出する理由は、パラメータの数値は変動するので、例えば、パラメータの最大値である場合は安定した数値が得られないおそれがある一方で、パラメータの平均値である場合は比較的に安定した数値が得られるためである。 The air-fuel ratio calculation unit 102 calculates the average value of each of the acquired fuel injection amount and intake air amount. Further, the air-fuel ratio calculation unit 102 calculates the air-fuel ratio (average value) from the average values of the calculated fuel injection amount and the intake air amount. The reason for calculating the average value of the parameters is that the numerical value of the parameter fluctuates, so for example, if it is the maximum value of the parameter, a stable numerical value may not be obtained, but if it is the average value of the parameter, it is compared. This is because a stable numerical value can be obtained.
 判定部103は、算出された空燃比(平均値)が所定の閾値を超えるか否かについて判定する。また、判定部103は、空燃比(平均値)が所定の閾値を超える場合の回数が所定の回数を超える場合、バルブが異常であると判定する。 The determination unit 103 determines whether or not the calculated air-fuel ratio (average value) exceeds a predetermined threshold value. Further, the determination unit 103 determines that the valve is abnormal when the number of times when the air-fuel ratio (average value) exceeds a predetermined threshold value exceeds a predetermined number of times.
 出力部104は、判定部103の判定結果(バルブが異常であること)を、内燃機関1(または車両)の管理者や、使用者や、整備場(例えば、車両のディーラー)に通信回線を介して出力する。その結果、フィルタの再生の未完了が発生する前に対策を施すことが可能となる。具体的には、バルブのメンテナンスを行うことが可能となる。 The output unit 104 transmits the determination result of the determination unit 103 (that the valve is abnormal) to the manager of the internal combustion engine 1 (or the vehicle), the user, or the maintenance site (for example, the vehicle dealer). Output via. As a result, it is possible to take measures before the incomplete reproduction of the filter occurs. Specifically, it is possible to perform valve maintenance.
 バルブのメンテナンスを行うことで、バルブに煤が堆積した状態で、フィルタ再生が行われないため、図2Aおよび図2Bに示すように、本開示の発明導入後は、手動再生回数に応じて燃料噴射量が増加、吸入空気量が減少し、ある閾値に達すると警告を発し、燃料噴射量が不具合発生値、また、吸入空気量が不具合発生値に達する前に異常を知ることができる。これにより、突発的に、フィルタの再生が終了しないという事態の発生を防止することが可能となる。 Since the filter is not regenerated in the state where soot is accumulated on the valve due to the maintenance of the valve, as shown in FIGS. 2A and 2B, after the introduction of the invention of the present disclosure, the fuel is regenerated according to the number of manual regenerations. When the injection amount increases, the intake air amount decreases, and a certain threshold is reached, a warning is issued, and it is possible to know the abnormality before the fuel injection amount reaches the defect occurrence value and the intake air amount reaches the defect occurrence value. This makes it possible to prevent the occurrence of a situation in which the reproduction of the filter does not end suddenly.
 次に、本実施の形態にかかるECU100の動作の一例について図3を参照して説明する。図3は、本実施の形態にかかるECU100の動作の一例を示すフローチャートである。本フローは、内燃機関1の始動に伴って開始される。なお、フィルタの再生時に内燃機関システム1Aの状態を示すパラメータは、上述するように、例えば、ECU100により算出される燃料噴射量や、吸入空気量センサ7により検出される吸入空気量であるが、以下の説明では、所定のセンサにより計測されるパラメータとして説明する。また、ECU100の動作は、取得部101、空燃比算出部102、判定部103および出力部104のそれぞれが機能することで行われるが、ここでは、CPUが行うものとして説明する。 Next, an example of the operation of the ECU 100 according to the present embodiment will be described with reference to FIG. FIG. 3 is a flowchart showing an example of the operation of the ECU 100 according to the present embodiment. This flow is started with the start of the internal combustion engine 1. As described above, the parameters indicating the state of the internal combustion engine system 1A when the filter is regenerated are, for example, the fuel injection amount calculated by the ECU 100 and the intake air amount detected by the intake air amount sensor 7. In the following description, it will be described as a parameter measured by a predetermined sensor. Further, the operation of the ECU 100 is performed by each of the acquisition unit 101, the air-fuel ratio calculation unit 102, the determination unit 103, and the output unit 104 functioning, but here, it will be described as being performed by the CPU.
 まず、ステップS100において、CPUは、パラメータの初期値および閾値を設定する。 First, in step S100, the CPU sets the initial value and the threshold value of the parameter.
 次に、ステップS110において、フィルタ再生である場合、かつ、エキゾーストスロットルバルブ12が閉じられている場合、かつ、車速が0(km/h)である場合、かつ、アクセルポジションセンサが0である場合(APS=0)、所定のセンサは、パラメータを計測する。 Next, in step S110, when the filter is regenerated, the exhaust throttle valve 12 is closed, the vehicle speed is 0 (km / h), and the accelerator position sensor is 0. (APS = 0), the predetermined sensor measures the parameters.
 次に、ステップS120において、CPUは、t1秒待機する。 Next, in step S120, the CPU waits for t1 second.
 次に、ステップS130において、所定のセンサは、パラメータを計測する。 Next, in step S130, the predetermined sensor measures the parameter.
 次に、ステップS140において、CPUは、所定のセンサがパラメータをt2秒計測できたかどうかを判定する。所定のセンサがパラメータをt2秒計測できた場合(ステップS140:YES)、処理はステップS150に遷移する。所定のセンサがパラメータをt2秒計測できなかった場合(ステップS140:NO)、処理はステップS110の前に戻る。ここで、所定のセンサがパラメータをt2秒計測できなかった場合とは、計測停止条件(フィルタ再生が解除された場合や、エキゾーストスロットルバルブ12が開かれた場合や、車速が0(km/h)より速い場合や、APSが0(%)より大きい場合)が成立した場合である。 Next, in step S140, the CPU determines whether or not the predetermined sensor can measure the parameter for t2 seconds. If the predetermined sensor can measure the parameter for t2 seconds (step S140: YES), the process proceeds to step S150. If the predetermined sensor cannot measure the parameter for t2 seconds (step S140: NO), the process returns before step S110. Here, when the predetermined sensor cannot measure the parameter for t2 seconds, the measurement stop condition (when the filter reproduction is canceled, when the exhaust throttle valve 12 is opened, or when the vehicle speed is 0 (km / h). ) Is faster, or APS is larger than 0 (%)).
 ステップS150において、CPUは、パラメータの平均値を算出する。 In step S150, the CPU calculates the average value of the parameters.
 次に、ステップS160において、CPUは、パラメータの平均値とパラメータの初期値との差を算出する。 Next, in step S160, the CPU calculates the difference between the average value of the parameters and the initial value of the parameters.
 次に、ステップS170において、CPUは、算出した差が閾値を超えるかどうかを判定する。差が閾値を超える場合(ステップS170:YES)、処理はステップS180に遷移する。差が閾値を超えない場合(ステップS170:NO)、処理はステップS110の前に戻る。 Next, in step S170, the CPU determines whether or not the calculated difference exceeds the threshold value. If the difference exceeds the threshold (step S170: YES), the process transitions to step S180. If the difference does not exceed the threshold (step S170: NO), processing returns before step S110.
 ステップS180において、CPUは、差が閾値を超える場合の回数kをカウントする。 In step S180, the CPU counts the number of times k when the difference exceeds the threshold value.
 次に、ステップS190において、CPUは、回数kが所定回数n(n=2以上の自然数)であるかどうかを判定する。回数kが所定回数nである場合(ステップS190:YES)、処理はステップS200に遷移する。回数kが所定回数nでない場合(ステップS190:NO)、処理はステップS110の前に戻る。 Next, in step S190, the CPU determines whether or not the number of times k is a predetermined number of times n (n = 2 or more natural numbers). When the number of times k is a predetermined number of times n (step S190: YES), the process proceeds to step S200. If the number of times k is not the predetermined number of times n (step S190: NO), the process returns to before step S110.
 ステップS200において、CPUは、バルブが異常である旨の警告を発信する制御を実行する。 In step S200, the CPU executes control to send a warning that the valve is abnormal.
 上記実施の形態にかかるECU100は、開度が制御されるバルブを有する排気系統を備えた内燃機関システム1Aであって、開度が制御されることにより排気温度が上昇する場合における内燃機関システム1Aの状態を示すパラメータを取得する取得部と、取得された複数個のパラメータの平均値を算出する算出部と、算出された平均値もしくは平均値に基づいて算出された所定の値(平均値と初期値との差)が所定の閾値を超えるか否かについて判定するとともに、平均値もしくは所定の値が所定の閾値を超える場合の回数が所定の回数を超える場合、バルブが異常であると判定する判定部と、を備える。 The ECU 100 according to the above embodiment is an internal combustion engine system 1A having an exhaust system having a valve whose opening degree is controlled, and is an internal combustion engine system 1A when the exhaust temperature rises due to the control of the opening degree. The acquisition unit that acquires the parameter indicating the state of, the calculation unit that calculates the average value of the acquired plurality of parameters, and the calculated average value or a predetermined value calculated based on the average value (with the average value). It is determined whether or not the difference from the initial value) exceeds the predetermined threshold value, and if the average value or the predetermined value exceeds the predetermined threshold value more than the predetermined number of times, it is determined that the valve is abnormal. It is provided with a determination unit to be used.
 上記構成により、バルブが異常であるか否かの判定は、バルブを実際に見ることで行われるのではなく、内燃機関システムの状態を示すパラメータに基づいて行われるため、バルブの異常を早期に検出することが可能となる。また、バルブが異常であるか否かの判定がパラメータの平均値に基づいて行われ、バルブの異常を精度よく検出することが可能となる。さらに、パラメータの平均値が所定の閾値を超える場合の回数が所定の回数を超える場合、バルブの異常であると判定するため、バルブの異常をさらに精度よく検出することが可能となる。その結果、突発的なフィルタ再生が未完了に至る前にバルブが異常であることを知ることができる。 With the above configuration, whether or not the valve is abnormal is determined not by actually looking at the valve, but based on the parameters indicating the state of the internal combustion engine system, so that the valve abnormality can be determined at an early stage. It becomes possible to detect. Further, it is possible to accurately detect the abnormality of the valve by determining whether or not the valve is abnormal based on the average value of the parameters. Further, when the number of times when the average value of the parameters exceeds a predetermined threshold value exceeds a predetermined number of times, it is determined that the valve is abnormal, so that the valve abnormality can be detected more accurately. As a result, it is possible to know that the valve is abnormal before the sudden filter regeneration is completed.
 また、上記実施の形態にかかるECU100においては、取得部101により取得される複数個のパラメータは、バルブの開度の制御が開始されてから所定の時間t1秒が経過した後のパラメータである。これにより、パラメータの安定した数値が得られるため、バルブの異常をさらに精度よく検出することが可能となる。 Further, in the ECU 100 according to the above embodiment, the plurality of parameters acquired by the acquisition unit 101 are parameters after a predetermined time t1 second has elapsed from the start of control of the valve opening degree. As a result, stable numerical values of the parameters can be obtained, and it becomes possible to detect valve abnormalities with higher accuracy.
 また、上記実施の形態かかるECU100においては、取得部101は、時間t2秒以内のパラメータを取得する。これにより、時間が異なることで同一条件におけるパラメータの数値にならずに、パラメータの数値が変動してしまうことを避けることができるため、バルブの異常をさらに精度よく検出することが可能となる。 Further, in the ECU 100 according to the above embodiment, the acquisition unit 101 acquires a parameter within a time t2 seconds. As a result, it is possible to prevent the parameter values from fluctuating without becoming the parameter values under the same conditions due to different times, so that it is possible to detect valve abnormalities more accurately.
 また、上記実施の形態かかるECU100では、出力部104は、判定部103の判定結果を出力する。これにより、出力された判定結果により、事前にメンテナンス(修理や部品交換)を行うことができるため、突発的なフィルタ再生の未完了を防止することが可能となる。その結果、例えば、車両の路上故障を防止することが可能となる。また、車両を受け入れる側(販売店や整備工場)では、あらかじめ部品の用意ができることや、作業工数を予測できるため、作業効率を上げることが可能となる。 Further, in the ECU 100 according to the above embodiment, the output unit 104 outputs the determination result of the determination unit 103. As a result, maintenance (repair and parts replacement) can be performed in advance based on the output determination result, so that it is possible to prevent sudden incompleteness of filter regeneration. As a result, for example, it becomes possible to prevent a vehicle from breaking down on the road. In addition, the side that accepts the vehicle (dealer or maintenance shop) can prepare parts in advance and can predict the work man-hours, so that the work efficiency can be improved.
 なお、上記実施の形態では、CPUは、パラメータの平均値とパラメータの初期値との差が閾値を超えるかどうかを判定するが、本開示はこれに限らず、例えば、パラメータの絶対値が閾値を超えるかどうかを判定してもよく、また、パラメータの変化率が閾値を超えるかどうかを判定してもよい。 In the above embodiment, the CPU determines whether or not the difference between the average value of the parameters and the initial value of the parameter exceeds the threshold value, but the present disclosure is not limited to this, and for example, the absolute value of the parameter is the threshold value. It may be determined whether or not the parameter exceeds the threshold value, and whether or not the rate of change of the parameter exceeds the threshold value.
 また、上記実施の形態では、バルブが異常であるかどうかの判定を、燃料噴射量、吸入空気量、空燃比それぞれの平均値に基づいて行ったが、それ以外の、内燃機関システム1Aの状態を示すパラメータの平均値に基づいて行ってもよい。 Further, in the above embodiment, whether or not the valve is abnormal is determined based on the average values of the fuel injection amount, the intake air amount, and the air-fuel ratio, but other than that, the state of the internal combustion engine system 1A. It may be performed based on the average value of the parameters indicating.
 また、上記実施の形態では、高地、高気温、低気温等の特殊環境時においては(気圧や気温が許容値を超える場合)、パラメータの平均値に基づいてバルブが異常であるかどうかを判定しなくてもよい。 Further, in the above embodiment, in a special environment such as high altitude, high temperature, and low temperature (when the atmospheric pressure or temperature exceeds the permissible value), it is determined whether the valve is abnormal based on the average value of the parameters. You don't have to.
 また、上記実施の形態では、エキゾーストブレーキバルブ11の開閉動作を、VSV13により行い、また、エキゾーストスロットルバルブ12の開閉動作を、VSV17により行うようにしたが、本開示はこれに限らず、例えば、電動アクチュエータ等の既存の装置により行うようにしてもよい。 Further, in the above embodiment, the opening / closing operation of the exhaust brake valve 11 is performed by the VSV 13, and the opening / closing operation of the exhaust throttle valve 12 is performed by the VSV 17, but the present disclosure is not limited to this, for example. It may be performed by an existing device such as an electric actuator.
 その他、上記実施の形態は、何れも本開示の実施をするにあたっての具体化の一例を示したものに過ぎず、これらによって本開示の技術的範囲が限定的に解釈されてはならないものである。すなわち、本開示はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。 In addition, the above embodiments are merely examples of the embodiment of the present disclosure, and the technical scope of the present disclosure should not be construed in a limited manner by these. .. That is, the present disclosure can be implemented in various forms without departing from its gist or its main characteristics.
 本出願は、2020年05月19日付けで出願された日本国特許出願(特願2020-087500)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2020-087500) filed on May 19, 2020, the contents of which are incorporated herein by reference.
 本開示は、バルブの異常を早期にかつ精度よく検出することが要求される制御装置を備えた内燃機関システムに好適に利用される。 The present disclosure is suitably used for an internal combustion engine system provided with a control device that is required to detect a valve abnormality early and accurately.
 1 内燃機関
 1A 内燃機関システム
 2 排気浄化装置
 3 気筒
 4 燃料噴射装置
 5 吸気管
 6 エアクリーナー
 7 吸入空気量センサ
 8 排気管  
 11 エキゾーストブレーキバルブ
 12 エキゾーストスロットルバルブ
 13,17 VSV
 15,18 バキュームタンク
 16,21 排気圧力センサ
 19 フィルタ再生スイッチ
 22,23 排気温度センサ
 24 ラムダセンサ
 25 サイレンサー
 26 フィルタ再生表示灯
 31 DOC
 32 フィルタ
 100 ECU
 101 取得部
 102 空燃比算出部
 103 判定部
 104 出力部
1 Internal combustion engine 1A Internal combustion engine system 2 Exhaust purification device 3 Cylinder 4 Fuel injection device 5 Intake pipe 6 Air cleaner 7 Intake air amount sensor 8 Exhaust pipe
11 Exhaust brake valve 12 Exhaust throttle valve 13,17 VSV
15,18 Vacuum tank 16,21 Exhaust pressure sensor 19 Filter regeneration switch 22,23 Exhaust temperature sensor 24 Lambda sensor 25 Silencer 26 Filter regeneration indicator 31 DOC
32 filter 100 ECU
101 Acquisition unit 102 Air-fuel ratio calculation unit 103 Judgment unit 104 Output unit

Claims (7)

  1.  開度が制御される弁装置を有する排気系統を備えた内燃機関システムの制御装置であって、
     前記開度が制御されることにより排気温度が上昇する場合における前記内燃機関システムの状態を示すパラメータを取得する取得部と、
     取得された複数個の前記パラメータの平均値を算出する算出部と、
     算出された前記平均値、もしくは前記平均値に基づいて算出された所定の値が所定の閾値を超えるか否かについて判定するとともに、前記平均値もしくは前記所定の値が前記所定の閾値を超える場合の回数が所定の回数を超える場合、前記弁装置が異常であると判定する判定部と、
     を備える、制御装置。
    A control device for an internal combustion engine system having an exhaust system having a valve device whose opening degree is controlled.
    An acquisition unit that acquires a parameter indicating the state of the internal combustion engine system when the exhaust temperature rises due to the control of the opening degree, and
    A calculation unit that calculates the average value of the plurality of acquired parameters, and
    When it is determined whether or not the calculated average value or the predetermined value calculated based on the average value exceeds the predetermined threshold value, and the average value or the predetermined value exceeds the predetermined threshold value. When the number of times exceeds a predetermined number of times, the determination unit for determining that the valve device is abnormal, and
    A control device.
  2.  前記取得される前記複数個のパラメータは、前記開度の制御が開始されてから所定の時間が経過した後のパラメータである、
     請求項1に記載の制御装置。
    The plurality of acquired parameters are parameters after a predetermined time has elapsed from the start of the control of the opening degree.
    The control device according to claim 1.
  3.  前記取得される前記複数個のパラメータは、一定時間以内のパラメータである、
     請求項2に記載の制御装置。
    The plurality of acquired parameters are parameters within a certain period of time.
    The control device according to claim 2.
  4.  前記取得される前記複数個のパラメータは、燃料噴射量および吸入空気量を含む、
     請求項1から3のいずれか一項に記載の制御装置。
    The plurality of parameters obtained include a fuel injection amount and an intake air amount.
    The control device according to any one of claims 1 to 3.
  5.  前記判定部の判定結果を出力する出力部を備える、
     請求項1から4のいずれか一項に記載の制御装置。
    An output unit for outputting the determination result of the determination unit is provided.
    The control device according to any one of claims 1 to 4.
  6.  請求項1から5のいずれか一項に記載の制御装置を備える、内燃機関システム。 An internal combustion engine system including the control device according to any one of claims 1 to 5.
  7.  開度が制御される弁装置を有する排気系統を備えた内燃機関システムの診断方法であって、
     前記開度が制御されることにより排気温度が上昇する場合における前記内燃機関システムの状態を示すパラメータを取得する取得ステップと、
     前記取得ステップで取得された複数個の前記パラメータの平均値を算出する算出ステップと、
     前記算出ステップで算出された前記平均値、もしくは前記平均値に基づいて算出された所定の値が所定の閾値を超えるか否かについて判定するとともに、前記平均値もしくは前記所定の値が前記所定の閾値を超える場合の回数が所定の回数を超える場合、前記弁装置が異常であると判定する判定ステップと、
     を備える、診断方法。
    A diagnostic method for an internal combustion engine system equipped with an exhaust system having a valve device whose opening is controlled.
    The acquisition step of acquiring the parameter indicating the state of the internal combustion engine system when the exhaust temperature rises due to the control of the opening degree, and the acquisition step.
    A calculation step for calculating the average value of a plurality of the parameters acquired in the acquisition step, and
    It is determined whether or not the average value calculated in the calculation step or a predetermined value calculated based on the average value exceeds a predetermined threshold value, and the average value or the predetermined value is the predetermined value. When the number of times when the threshold value is exceeded exceeds a predetermined number of times, the determination step of determining that the valve device is abnormal, and
    A diagnostic method.
PCT/JP2021/018497 2020-05-19 2021-05-14 Control device, internal combustion engine system, and diagnostic method WO2021235368A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180028687.8A CN115461533B (en) 2020-05-19 2021-05-14 Control device, internal combustion engine system, and diagnostic method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-087500 2020-05-19
JP2020087500A JP7375674B2 (en) 2020-05-19 2020-05-19 Control devices, internal combustion engine systems and diagnostic methods

Publications (1)

Publication Number Publication Date
WO2021235368A1 true WO2021235368A1 (en) 2021-11-25

Family

ID=78606175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018497 WO2021235368A1 (en) 2020-05-19 2021-05-14 Control device, internal combustion engine system, and diagnostic method

Country Status (3)

Country Link
JP (1) JP7375674B2 (en)
CN (1) CN115461533B (en)
WO (1) WO2021235368A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215168A (en) * 2007-03-02 2008-09-18 Isuzu Motors Ltd Exhaust throttle valve diagnosis device and method
CN107524528A (en) * 2017-09-07 2017-12-29 潍柴动力股份有限公司 A kind of exhaust brake butterfly valve abatement detecting method and device
JP2019138196A (en) * 2018-02-08 2019-08-22 いすゞ自動車株式会社 Operation determination device of exhaust brake valve, vehicle having the operation determination device and operation determination method of exhaust brake valve

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018131918A (en) * 2017-02-13 2018-08-23 トヨタ自動車株式会社 Abnormality diagnostic device of internal combustion engine
US10710575B2 (en) * 2017-12-13 2020-07-14 Ford Global Technologies, Llc Methods and systems for exhaust tuning valve diagnostics
JP2019190368A (en) * 2018-04-25 2019-10-31 株式会社豊田自動織機 Abnormality determination system for particulate collection filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215168A (en) * 2007-03-02 2008-09-18 Isuzu Motors Ltd Exhaust throttle valve diagnosis device and method
CN107524528A (en) * 2017-09-07 2017-12-29 潍柴动力股份有限公司 A kind of exhaust brake butterfly valve abatement detecting method and device
JP2019138196A (en) * 2018-02-08 2019-08-22 いすゞ自動車株式会社 Operation determination device of exhaust brake valve, vehicle having the operation determination device and operation determination method of exhaust brake valve

Also Published As

Publication number Publication date
CN115461533A (en) 2022-12-09
JP2021181768A (en) 2021-11-25
CN115461533B (en) 2024-02-27
JP7375674B2 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
KR101147588B1 (en) Apparatus for diagnosis of abnormality in exhaust gas purification system
US8281576B2 (en) Diesel particulate filter control
EP1766205B1 (en) Method of determining abnormality in particulate filter
CN107208512B (en) Internal combustion engine and method for estimating amount of component of exhaust gas
US7578123B2 (en) Exhaust cleaning device of diesel engine
US8146352B2 (en) Diesel particulate filter control
EP1582714B1 (en) Regeneration system and method for regenerating particulate filter
US7404291B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP5545503B2 (en) Inspection method
US7934372B2 (en) Exhaust gas purification method and exhaust gas purification system
US8459005B2 (en) Method and device for diagnosing a particle filter
WO2011033603A1 (en) Particulate matter sensor and exhaust gas purification device
US20090056316A1 (en) Exhaust Gas Purification Method and Exhaust Gas Purification System
WO2016114111A1 (en) Abnormality diagnosis device
EP1903200B1 (en) Exhaust gas purification system of internal combustion engine
CN110578576A (en) Remedial measures for ineffective particulate filter soot
JP5413248B2 (en) Exhaust gas purification system for internal combustion engine
WO2021235368A1 (en) Control device, internal combustion engine system, and diagnostic method
JP4241465B2 (en) Particulate filter regeneration processing device inspection system
JP2013160208A (en) Exhaust emission control apparatus and exhaust emission control method
JP6287896B2 (en) Catalyst deterioration diagnosis device
JP2020051405A (en) Diagnostic apparatus for internal combustion engine
JP6365319B2 (en) PM sensor abnormality diagnosis device
JP2019214952A (en) Filer removal detection device
JP2019116876A (en) Sensor diagnostic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21809765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21809765

Country of ref document: EP

Kind code of ref document: A1