WO2021233146A1 - 一种数据调度方法及装置 - Google Patents

一种数据调度方法及装置 Download PDF

Info

Publication number
WO2021233146A1
WO2021233146A1 PCT/CN2021/092470 CN2021092470W WO2021233146A1 WO 2021233146 A1 WO2021233146 A1 WO 2021233146A1 CN 2021092470 W CN2021092470 W CN 2021092470W WO 2021233146 A1 WO2021233146 A1 WO 2021233146A1
Authority
WO
WIPO (PCT)
Prior art keywords
scheduling information
field
communication device
data
indicator
Prior art date
Application number
PCT/CN2021/092470
Other languages
English (en)
French (fr)
Inventor
薛祎凡
张健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021233146A1 publication Critical patent/WO2021233146A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a data scheduling method and device.
  • the network device sends a downlink control information (DCI) to the terminal.
  • the DCI is carried in the physical In the physical downlink control channel (PDCCH)
  • the data channel of the terminal is scheduled through the DCI
  • the physical downlink shared channel (PDSCH) of the terminal is scheduled through the DCI
  • the physical uplink of the terminal is scheduled through the DCI Shared channel (physical uplink shared channel, PUSCH)
  • the DCI can indicate the transmission parameters of the shared channel, such as the time domain resource location of the shared channel, etc.
  • the terminal transmits data at the time domain resource location of the PDSCH/PUSCH according to the indication of the DCI.
  • the scheduling information provides a guarantee for data transmission between the terminal and the network device. Therefore, how to improve the transmission performance of the scheduling information has become an urgent problem to be solved.
  • the embodiments of the present application provide a data scheduling method and device to improve the transmission performance of scheduling information.
  • a data scheduling method which is applied to a first communication device, and the method includes: monitoring first scheduling information sent by a second communication device, and when the first scheduling information is monitored, according to the first scheduling information Send or receive the first data initially transmitted between the first communication device and the second communication device, monitor the second scheduling information sent by the second communication device, and when the second scheduling information is monitored, send or receive the first data according to the second scheduling information For the first data retransmitted between a communication device and a second communication device, the field of the first scheduling information is different from the field of the second scheduling information.
  • the first scheduling information used for initial data transmission between the first communication device and the second communication device can be combined with the first scheduling information used for scheduling retransmission of data between the first communication device and the second communication device.
  • the second scheduling information is designed to include different field fields, and there is no need to set the first scheduling information and the second scheduling information to include the same field field.
  • one of the scheduling information carries fewer field fields, which reduces
  • the load of the scheduling information can realize the function of scheduling data of the scheduling information by transmitting a small number of bits on the resources used for transmission of the scheduling information, thereby improving the transmission reliability and coverage of the scheduling information.
  • the length of the second scheduling information is set to be different from the length of the first scheduling information. For example, the length of the second scheduling information is longer than the first scheduling information.
  • the second scheduling information includes the first field. Field, the first scheduling information does not include the first field; or, the length of the first scheduling information is longer than that of the second scheduling information.
  • the first scheduling information includes the first field, and the second scheduling information does not include the first Field domain.
  • the search space corresponding to the first scheduling information is different from the search space corresponding to the second scheduling information.
  • the monitoring parameters corresponding to the first scheduling information are different from the monitoring parameters corresponding to the second scheduling information.
  • the monitoring parameters include: one or more of the configuration of the search space, the configuration of the control resource set, and the temporary identification of the wireless network; the configuration of the search space Including one or more of the monitoring period of the search space, the format of the downlink control information that needs to be monitored, the number of candidate sets that need to be monitored, and the aggregation level that needs to be monitored.
  • the first communication device needs to set the output length of the decoder to be different when monitoring the scheduling information for decoding processing, blind detection (BD) times consumes the power consumption of the terminal, which ensures that the number of blind inspections of the second communication device will not be too large.
  • monitoring the second scheduling information sent by the second communication device includes: in the first time period after receiving or sending the first data according to the first scheduling information, in the search space corresponding to the second scheduling information , Use the monitoring parameter corresponding to the second scheduling information to monitor the second scheduling information.
  • a time period for monitoring the second scheduling information is set, and only the monitoring parameters corresponding to the second scheduling information are used for monitoring during the time period of the second scheduling information, instead of trying to use the monitoring parameters of the first scheduling information and the second scheduling information.
  • the monitoring parameters of the second scheduling information are monitored blindly, the number of blind monitoring is reduced, and the power consumption of the first communication device for monitoring the second scheduling information is reduced.
  • the length of the first scheduling information is set to be the same as the length of the second scheduling information, that is, the lengths of the scheduling information during the initial transmission and the retransmission are aligned, so as to avoid the need for the first communication device to monitor the scheduling information.
  • Setting the output length of the decoder to multiple different lengths for decoding processing increases the number of blind checks and increases the power consumption of the first communication device.
  • the first field is added to the second scheduling information, and the second field is removed from the first scheduling information, so that the second scheduling information includes the first field but does not include the second field;
  • the first scheduling information includes the second field field but does not include the first field field, and the first field field is different from the second field field.
  • the second field field includes i fields, the total length of the first (i-1) fields in the i fields is less than the length of the first field field, and the total length of the i fields is greater than or equal to the first field.
  • the length of the field when the first field field is included in the second scheduling information, the i field fields included in the second field field can be sequentially removed, until the last field field is removed, and the total of the removed second field field is satisfied.
  • the length is less than or equal to the length of the first field.
  • both parties can include the first field in the second scheduling information and remove the second field from the second scheduling information to align the two scheduling information. Simple and easy.
  • the first scheduling information and the second scheduling information include a hybrid automatic repeat request process number (HARQ processing number, HPN) and a new data indicator (NDI), or the first scheduling information and
  • the second scheduling information includes carrier indicator field (CIF), HPN, and NDI; the position and length of the HPN in the first scheduling information are the same as the position and length of the HPN in the second scheduling information, and the NDI is in the first scheduling
  • the position and length in the information are the same as the position and length of the NDI in the second scheduling information, and the position and length of the CIF in the first scheduling information are the same as the position and length of the CIF in the second scheduling information.
  • HPN and NDI can be carried in the first scheduling information during initial transmission and the second scheduling information during retransmission in carrier aggregation or non-carrier aggregation scenarios, and the specific selection of HPN and NDI
  • the value and the bit position occupied in the scheduling information must be the same to ensure that the initial transmission and retransmission of the same data on the same HARQ process and on the same carrier are identified.
  • the first scheduling information or the second scheduling information includes a third field field and a fourth field field
  • the third field field indicates the type of at least one fourth field field.
  • a field field indicating the type of field field reserved in the scheduling information can be carried in the scheduling information, so that the second communication device can flexibly delete/reserve certain field fields, and delete the field fields.
  • the /reserved field is indicated to the first communication device, which is simple and easy to implement.
  • the first data is uplink data
  • the first field or the second field includes one or more of the following: uplink shared channel indicator UL-SCH indicator, frequency domain resource allocation FDRA, and bandwidth part indicator BWP indicator, antenna port antenna port, sounding reference signal resource indicator, SRS resource indicator, redundancy version RV, time domain resource allocation TDRA, transmission power control TPC command, SRS triggering indicator, channel state information reference signal triggering indicator CSI-RS triggering , Precoding indicator, beta offset indicator, beta_offset indicator, frequency hopping indicator, phase tracking reference signal-demodulation reference signal PTRS-DMRS association indicator, demodulation reference signal initial sequence DMRS sequence initialization, code block group transmission indicator CBGTI .
  • the first data is downlink data
  • the first field or the second field includes one or more of the following: frequency domain resource allocation FDRA, BWP indicator, antenna port, SRS resource indicator, transmission Configuration indicator TCI, virtual resource block to physical resource block mapping relationship VRB-to-PRB mapping, physical resource block bundling size indicator PRB bundling size indicator, rate matching indicator rate matching indicator, redundancy version RV, time domain resource allocation TDRA, TPC command, SRS trigger indicator, CSI-RS trigger indicator, DMRS sequence initialization, CBGTI, code block group clear indicator CBGFI.
  • the present application provides a communication device.
  • the communication device may be the above-mentioned first communication device or a chip or a system on a chip in the first communication device, and may also be the first communication device used to implement the first aspect or the first communication device.
  • the first communication device may implement the functions performed by the first communication device in the foregoing aspects or various possible designs, and the functions may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the first communication device may include: a processing unit, a transceiver unit;
  • a processing unit that monitors the first scheduling information sent by the second communication device
  • the transceiver unit is configured to send or receive the first data initially transmitted between the first communication device and the second communication device according to the first scheduling information when the processing unit monitors the first scheduling information;
  • the processing unit is also used to monitor the second scheduling information sent by the second communication device
  • the transceiver unit is further configured to send or receive the first data retransmitted between the first communication device and the second communication device according to the second scheduling information when the processing unit monitors the second scheduling information, and the field included in the first scheduling information It is different from the field of the second scheduling information.
  • the related execution actions of the processing unit and the transceiving unit, the first scheduling information, and the related description of the second scheduling information can refer to the first aspect or any possible design of the first aspect, and will not be repeated.
  • a communication device may be a first communication device or a chip or a system on a chip in the first communication device.
  • the first communication device may implement the functions performed by the first communication device in the foregoing aspects or various possible designs, and the functions may be implemented by hardware.
  • the first communication device may include: a processor and a communication interface, and the processor may be used to support the first communication device to implement the foregoing first aspect or any one of the possible designs involved in the first aspect
  • the processor is used to monitor the first scheduling information sent by the second communication device. When the first scheduling information is monitored, the communication interface is triggered to send or receive between the first communication device and the second communication device according to the first scheduling information.
  • the first data transmitted initially, and the processor is used to monitor the second scheduling information sent by the second communication device.
  • the communication interface is triggered to send or receive the first communication device and the second communication device according to the second scheduling information.
  • the field of the first scheduling information is different from the field of the second scheduling information.
  • the first communication device may further include a memory, and the memory is configured to store necessary computer-executable instructions and data of the first communication device.
  • the processor executes the computer-executable instructions stored in the memory, so that the first communication device executes the data described in the first aspect or any one of the possible designs of the first aspect. Scheduling method.
  • a computer-readable storage medium may be a readable non-volatile storage medium, and the computer-readable storage medium stores instructions when it runs on a computer. , So that the computer executes the data scheduling method described in the first aspect or any one of the possible designs of the foregoing aspects.
  • a computer program product containing instructions, which when running on a computer, enables the computer to execute the data scheduling method described in the first aspect or any one of the possible designs of the foregoing aspects.
  • a communication device may be a first communication device or a chip or a system on a chip in the first communication device.
  • the first communication device includes one or more processors and one or more memories. .
  • the one or more memories are coupled with the one or more processors, and the one or more memories are used to store computer program codes, and the computer program codes include computer instructions.
  • the first communication device is caused to execute the data scheduling method according to the first aspect or any possible design of the first aspect.
  • the technical effects brought about by any one of the design methods of the third aspect to the sixth aspect may refer to the technical effects brought about by the above-mentioned first aspect or any possible design of the first aspect, and will not be repeated here.
  • an embodiment of the present application further provides a data scheduling method.
  • the method may include: the second communication device sends first scheduling information to the first communication device, and initially transmits the first scheduling information to the first communication device according to the first scheduling information. Data; after the transmission of the first data fails, the second communication device sends second scheduling information to the first communication device, and the field domain included in the second scheduling information is different from the field domain included in the first scheduling information; the second communication device according to the second The scheduling information retransmits the first data to the first communication device.
  • first scheduling information and the second scheduling information For the related description of the first scheduling information and the second scheduling information, reference may be made to the first aspect or any possible design of the first aspect, and details are not repeated.
  • an embodiment of the present application provides a communication system, which may include: the first communication device and the second communication device as described in any one of the second aspect or the third aspect.
  • FIG. 1 is a simplified schematic diagram of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of a communication device provided by an embodiment of this application.
  • FIG. 3 is a flowchart of a data scheduling method provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a blind check scheduling information provided by an embodiment of this application.
  • FIG. 5a is a schematic diagram of monitoring scheduling information provided by an embodiment of this application.
  • FIG. 5b is a schematic diagram of monitoring scheduling information provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of a method for deleting a field provided by an embodiment of this application.
  • FIG. 7 is a flowchart of another data scheduling method provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of the composition of a communication device 80 provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of the composition of a communication system provided by an embodiment of this application.
  • the data transmission between communication devices can be divided into: transmission block (TB)-based transmission, code block group (code block group) , CBG) transmission.
  • TB and CBG are different transmission granularities.
  • a TB can include N CBGs, and the value of N can be ⁇ 2, 4, 6, 8, 16 ⁇ .
  • a TB is 800 bits, and a TB includes 8 CBGs.
  • a CBG may be 100 bits, and the specific value of N may be configured by the network device to the communication device.
  • data transmission between communication devices may also be transmission based on other transmission granularities, which is not limited.
  • the embodiment of this application uses TB-based transmission or CBG-based transmission as an example to illustrate the data transmission between wireless communications.
  • the data scheduling method for transmission based on other transmission granularities is also Refer to the description in this application.
  • a hybrid automatic repeat request (HARQ) mechanism is introduced, and the stop-and-wait protocol (stop-and-wait protocol) is used.
  • the HARQ mechanism includes: after the sender (transmitting device) initially transmits data to the receiving end (receiving device), it stops and waits for the confirmation information fed back by the receiving end.
  • the confirmation information includes an acknowledgement (acknowledgement, ACK) or a non-acknowledgement (NACK) ).
  • the sender If the sender receives the ACK fed back by the receiver, it determines that the current transmission is successful; if the sender receives the NACK feedback from the receiver, it means that the data transmission failed this time, and the sender retransmits the data to the receiver to improve the quality of data transmission.
  • the receiving end can use 1-bit information to confirm the ACK or NACK of the TB. After all the data included in the TB is successfully transmitted, the TB is confirmed by an ACK; the receiving end feeds back the ACK or NACK corresponding to the TB to the transmitting end, and if the transmitting end receives the NACK corresponding to the TB, it will retransmit the TB.
  • the receiving end uses 1 bit of information to confirm the ACK or NACK for each CBG contained in the TB, and confirms the ACK or NACK corresponding to each CGB Feedback to the receiving end; if the receiving end receives a NACK corresponding to a certain CBG, it will retransmit the CBG, while other unaffected CBGs do not need to be retransmitted, reducing the overhead of retransmission.
  • the originating end described in this application may refer to a device that sends data in a communication device that performs data transmission
  • the receiving end may refer to a device that receives data in a communication device that performs data transmission.
  • the communication device for data communication includes a first communication device and a second communication device.
  • the first communication device and the second communication device transmit first data
  • the scheduling information used to schedule the first data to be transmitted is the first
  • the scheduling information and the scheduling information of the first data used for scheduling retransmission are the second scheduling information as an example for description.
  • the transmission described in this application can include initial transmission or retransmission, and initial transmission can also be replaced with the description of new transmission or first transmission or first transmission. It may mean that the first data is sent for the first time, and the retransmission may mean that the first data is sent again after the first data is sent for the first time or the first data is sent again after the first data is retransmitted.
  • the first communication device may be a terminal, and the second communication device may be a network device.
  • the terminal may send the first data to the network device, the network device may also send the first data to the terminal, and the terminal sends the first data to the network device.
  • a piece of data may be referred to as uplink data
  • the first data sent by the network device to the terminal may be referred to as downlink data
  • the scheduling information used to schedule the first data may be downlink control information (DCI).
  • DCI downlink control information
  • the first communication device may be a terminal
  • the second communication device may also be a terminal
  • the first data may be SL data
  • the scheduling information used to schedule the first data may be sidelink control information (sidelink control information). control information, SCI).
  • the first scheduling information used to schedule initial transmission data and the second scheduling information used to schedule retransmission data may be DCI in any of the following formats: DCI format 1-0, DCI format1-1, DCI format1-2, DCI format0-1, DCI format0-1, DCI format0-2.
  • the first scheduling information used to schedule initial transmission data and the second scheduling information used to schedule retransmission data may include one or more of the following field fields (1) to field fields (31). Wherein, the position of each field in the scheduling information, the number of bits occupied by each field, and the meaning of each field value may be predetermined by the protocol or determined according to the configuration of the network device. Let's take some fields as examples to introduce:
  • Modulation and coding scheme (MCS) of the transport block TB1.
  • MCS is used to specify the modulation and coding method used in data transmission.
  • MCS can occupy 5 bits.
  • New data indication new data indication, NDI
  • NDI can be used to determine whether the data is initially transmitted or retransmitted. NDI occupies 1 bit. Judge whether the current data is initially transmitted or retransmitted by whether the NDI is toggled or not: If the NDI in the DCI corresponding to an uplink HARQ process is reversed compared with the last time, it means that the terminal is this time The uplink initial transmission can be performed; if the NDI is the same as the last time, the terminal needs to perform uplink adaptive retransmission.
  • the so-called NDI inversion means that the value of NDI changes from 0 last time to 1 this time or from 1 to 0.
  • RV used to achieve incremental redundancy (incremental redundancy, IR) HARQ transmission, that is, the encoded bits generated by the encoder are divided into several groups, each RV defines a transmission start point, the first transmission and each HARQ retransmission can be separated Use different RVs to realize the gradual accumulation of redundant bits and complete the incremental redundant HARQ operation.
  • IR incremental redundancy
  • TPC Transmission power control
  • the TPC command can be used to adjust the transmit power on the specified timing channel.
  • the TCP command can be fixed to occupy 2 bits.
  • PUCCH Physical uplink control channel
  • the PUCCH resource indicator may be used to indicate the PUCCH resource used by the terminal to send HARQ-ACK feedback, channel state information (channel state information, CSI) feedback and other information. Specifically, it may indicate the position of the time-frequency resource occupied by the PUCCH.
  • Sounding reference signal sounding reference signal, SRS
  • resource indicator resource indicator
  • the SRS resource indicator can be used to indicate the reference signal of the antenna port used when sending the physical uplink shared channel (PUSCH), where SRS is the uplink reference signal.
  • PUSCH physical uplink shared channel
  • the SRS trigger indication can be used to trigger the transmission of aperiodic SRS.
  • Channel state information-reference signal channel state information-reference signal, CSI-RS
  • triggering indicator triggering indicator
  • the CSI-RS trigger indication can be used to trigger aperiodic CSI measurement and feedback.
  • TDRA can be used to indicate the time domain resources used for data transmission, including the time slot used for data transmission, and the symbols used in the time slot.
  • FDRA may be used to indicate frequency domain resources used for data transmission, including physical resource blocks (PRBs) used for data transmission.
  • PRBs physical resource blocks
  • CIF is used in carrier aggregation scenarios and can be used to indicate the index value of the carrier occupied by data.
  • BWP Bandwidth part
  • the BWP indication may be used to indicate the BWP used for data transmission, that is, the active BWP when the terminal receives/sends data.
  • the VRB-to-PRB mapping indication information may be used to indicate the mapping mode used when the VRB is mapped to the PRB, and specifically may be interlaced mapping or non-interlaced mapping.
  • the PRB bundling size indicator may be used to indicate the size of the PRB bundling size, which is used for channel precoding.
  • the rate matching indication may be used to indicate whether rate matching resources exist for the current transmission.
  • Zero power channel state information reference signal (ZP CSI-RS) trigger.
  • the zero-power CSI-RS trigger can be used to indicate whether there is a zero-power channel state information reference signal transmission, and there may be CSI-RS transmission of the neighboring cell on the indicated resource, which is used for the terminal to measure the neighboring cell.
  • DAI Downlink assignment index
  • DAI can be used to indicate the position of feedback information corresponding to the current physical downlink shared channel (PDSCH) in the dynamic HARQ codebook and the length of the dynamic HARQ codebook.
  • PDSCH physical downlink shared channel
  • PDSCH to HARQ feedback timing indication PDSCH-to-HARQ feedback timing indication.
  • the PDSCH-to-HARQ feedback timing indicator may be used to indicate the time slot interval between the PDSCH and the corresponding HARQ feedback.
  • the TCI can be used to indicate the spatial filtering information of the PDSCH, or beam information, which is used by the terminal to select appropriate receiving parameters to receive the PDSCH.
  • Code block group transmission indication (CBG transmission indication, CBGTI).
  • CBGTI can be used to indicate which CBGs in the CBG are scheduled.
  • the number of bits occupied by CBGTI is the same as the number of scheduled CGBs. If N CBGs are scheduled, CBGTI occupies N bits.
  • CBGFI can be used to indicate whether to flush/empty the data that has been received and stored in the cache before.
  • CBGFI occupies 1 bit fixedly.
  • Hybrid automatic repeat request process number (HARQ processing number, HPN).
  • the HPN can be used to indicate the index value of the HARQ process occupied by the data.
  • the antenna port indication can be used to indicate the antenna port used for data transmission.
  • the DMRS sequence initialization may be used to indicate the sequence initialization parameters of the DMRS.
  • the UL-SCH indicator can be used to indicate whether the UL-SCH is carried in the current PUSCH.
  • Frequency hopping indication which occupies 1bit fixedly, can be used to indicate whether frequency hopping.
  • the precoding indication may be used to indicate the precoding matrix used by the current PUSCH.
  • Phase tracking reference signal (PTRS)-DMRS association indication (1) Phase tracking reference signal (PTRS)-DMRS association indication.
  • the PTRS-DMRS association indication may be used to indicate the association information between PTRS and DMRS.
  • the fields contained therein are the same, which may affect the transmission performance of the scheduling information.
  • the scheduling information as DCI as an example
  • the DCI used to schedule the initial data transmission and the DCI used to schedule the retransmission data Both need to carry CBGTI, even for initial transmission, when all CGBs are scheduled by default, CBGTI needs to be carried.
  • Additional bits are added to the scheduling information, which increases the payload of the scheduling information and restricts the transmission distance of the scheduling information. , Resulting in that only the communication devices that are close to each other can accurately receive and analyze the scheduling information, which reduces the coverage of the scheduling information.
  • the present application sets the field field included in the first scheduling information used to schedule the first data to be transmitted to be different from the field field included in the second scheduling information used to schedule the first data to be retransmitted. Reduce the load of the scheduling information by deleting some of the fields originally included in the scheduling information, so as to improve the transmission reliability and coverage of the scheduling information, while retaining the field fields that must be included in the scheduling information, and the field fields that cannot be deleted. To ensure the function of scheduling information and scheduling data.
  • the field that can be deleted in the scheduling information is called the deleted field.
  • the deleted field does not affect the scheduling function of the scheduling information.
  • the deleted field is determined by the deleted field.
  • the indicated content/information can be obtained from other scheduling information before this scheduling or the content/information indicated by the deleted field is a preset default value. The following describes which of the above-mentioned field fields (1) to field fields (31) can be deleted as deductible field fields, and which are non-deletable field fields, which must be carried in the field field of the scheduling information.
  • MCS is a field that can be deleted.
  • the scheduling information of the first data transmission may or may not carry the MCS indication, but the default MCS value (for example, the default MCS is 0).
  • the scheduling information for scheduling retransmission data may or may not carry the MCS indication.
  • the MCS when retransmitting the data is the same as the MCS when the data is initially transmitted by default, that is, the default initial transmission data and retransmission data are defaulted.
  • the modulation and coding format when transmitting data is the same.
  • the scheduling information used to schedule initial transmission data and the scheduling information used to schedule retransmission data must include NDI. According to the value of the NDI included in the two types of scheduling information, the initial transmission or retransmission of the same data can be distinguished.
  • RV is a field that can be deleted.
  • the RV field field may be carried in the scheduling information for scheduling the first transmitted data, or the RV field field may not be carried, but the default RV value (for example, the default RV is 0) is used.
  • the scheduling information for scheduling the retransmitted data may or may not carry the RV field field. If not, the default RV when the data is retransmitted is the same as the RV when the data is initially transmitted.
  • the TPC command is a field that can be deleted.
  • the scheduling information for scheduling the first transmission data may carry the TPC field field, or the TPC named field field may not be carried, but the default transmission power (for example, the default TPC command is 0dB) is used.
  • the scheduling information for scheduling retransmission data may or may not carry the TPC naming field.
  • the TPC command is 0dB).
  • the PUCCH resource indication is a field that can be deleted.
  • the scheduling information for scheduling the first data transmission may carry the PUCCH resource indication field, or it may not carry the PUCCH resource indication field, but the default PUCCH resource (for example, use PUCCH resource 0) .
  • the scheduling information for scheduling retransmission data may or may not carry the PUCCH resource indication field. If it is not carried, the default PUCCH resource indication when retransmitting data is the same as the PUCCH resource indication when initially transmitting data. , The default PUCCH resource (for example, PUCCH resource 0) can also be used.
  • the SRS resource indication is a field that can be deleted.
  • the scheduling information for scheduling the initial data transmission may carry the SRS resource indication field field, or it may not carry the SRS resource indication field field, but the default SRS resource (for example, use SRS resource 0, That is, PUSCH and SRS resource 0 use the same antenna port).
  • the scheduling information for scheduling the retransmitted data may or may not carry the SRS resource indication field. If it is not carried, the default SRS resource indication when the data is retransmitted is the same as the SRS resource indication when the data is initially transmitted. That is, the same antenna port is used for the retransmitted data and the first transmitted data, or the default SRS resource (for example, SRS resource 0, that is, the same antenna port is used for PUSCH and SRS resource 0).
  • the SRS trigger indication is a field that can be deleted.
  • the scheduling information for scheduling the first data transmission may carry the SRS trigger indication field field, or it may not carry the SRS trigger indication field field, but uses the default trigger mode, such as triggering SRS resource 0, Or not trigger SRS transmission.
  • the scheduling information for scheduling the retransmission data may or may not carry the SRS trigger indication field. That is, the same SRS as the initial transmission scheduling DCI is triggered, or the default trigger mode may be used, for example, SRS resource 0 is triggered, or SRS transmission is not triggered.
  • the CSI-RS trigger indication is a field that can be deleted.
  • the scheduling information for scheduling the initial data transmission can carry the CSI-RS trigger indication field field, or it does not need to carry the CSI-RS trigger indication field field, but uses the default trigger mode, such as trigger The CSI-RS corresponding to CSI-RS triggering state 0, or CSI-RS transmission is not triggered.
  • the scheduling information for scheduling retransmission data may or may not carry the CSI-RS trigger indication field. If it is not carried, the CSI-RS that is triggered when the data is retransmitted and the CSI-RS that is triggered when the data is initially transmitted will be triggered by default.
  • the CSI-RS is the same, that is, the same CSI-RS as the initial transmission scheduling DCI is triggered.
  • the default triggering method can also be used, such as triggering the CSI-RS corresponding to CSI-RS triggering state 0, or not triggering CSI-RS transmission.
  • TDRA is a field that can be deleted.
  • the scheduling information for scheduling the first data transmission may carry the TDRA field field, or it may not carry the TDRA field field, and instead uses a predefined/preconfigured time domain resource allocation.
  • the scheduling information for scheduling retransmission data may or may not carry the TDRA field, but the default TDRA when retransmitting the data is the same as the TDRA when initially transmitting the data, that is, when transmitting the data.
  • the domain resources are the same, or pre-defined/pre-configured time domain resource allocation is adopted.
  • (10) FDRA is a field that can be deleted.
  • the scheduling information for scheduling the first data transmission may carry the FDRA field field, or may not carry the FDRA field field, but adopts predefined/preconfigured frequency domain resource allocation.
  • the scheduling information for scheduling retransmission data may or may not carry the FDRA field field, but the default FDRA when retransmitting the data is the same as the FDRA when initially transmitting the data, that is, the frequency of data transmission.
  • the domain resources are the same, or pre-defined/pre-configured frequency domain resource allocation is adopted.
  • CIF is a field that cannot be deleted.
  • the scheduling information for scheduling the first data transmission may carry the CIF.
  • the scheduling information for scheduling retransmission data carries the CIF field. The specific value of CIF during initial transmission and retransmission and the bit position occupied in the scheduling information must be the same to ensure that the initial transmission and retransmission of the same data are recognized. Retransmission.
  • the BWP indicates a field that can be deleted.
  • the scheduling information for scheduling the first data transmission may carry the BWP indication, or may not carry the BWP indication, but the currently activated BWP is used for transmission by default.
  • the scheduling information for scheduling the retransmitted data may or may not carry the BWP indication, but the default BWP when the data is retransmitted is the same as the BWP when the data is initially transmitted, that is, the BWP of the transmitted data is the same.
  • the scheduling information for scheduling the initial data transmission can carry the VRB to PRB mapping relationship field field, or it does not need to carry the VRB to PRB mapping field field, but uses the default mapping method, for example, Interlaced mapping or non-interlaced mapping.
  • the scheduling information for scheduling the retransmission data can carry the VRB to PRB mapping relationship field field, or it does not need to carry the VRB to PRB mapping relationship field field, but the default mapping method when retransmitting data and when initially transmitting data
  • the mapping mode of is the same, or the default mapping mode is adopted, for example, interlaced mapping or non-interlaced mapping.
  • the PRB bundling size is indicated as a field that can be deleted.
  • the scheduling information for scheduling the initial data transmission may carry the PRB bundling size indication field field, or may not carry the PRB bundling size indication field field, but instead use the predefined/preconfigured bundling size.
  • the scheduling information for scheduling the retransmitted data can carry the PRB bundling size indication field, or it does not need to carry the PRB bundling size indication field, but the default bundling size when retransmitting data and the bundling when initially transmitting data The size is the same, or the pre-defined/pre-configured bundle size is used.
  • the rate matching indication is a field that can be deleted.
  • the scheduling information for scheduling the first data transmission may carry a rate matching indication field field, or it may not carry a rate matching indication field field, but there is no rate matching resource by default.
  • the scheduling information for scheduling the retransmitted data can carry the rate matching indication field, or it does not need to carry the rate matching indication field, but the default rate matching resource when retransmitting the data matches the rate when the data is initially transmitted
  • the resources are the same, or there is no rate matching resource by default.
  • ZP CSI-RS trigger is a field that can be deleted.
  • the scheduling information for scheduling the initial data transmission may carry the ZP CSI-RS trigger indication field field, or it may not carry the ZP CSI-RS trigger indication field field, but the default trigger mode is used. For example, ZP CSI-RS corresponding to CSI-RS triggering state 0 is triggered, or ZP CSI-RS is not triggered.
  • the scheduling information for scheduling retransmission data may or may not carry the ZP CSI-RS trigger indication field.
  • the ZP CSI-RS and initial transmission data triggered when the data is retransmitted are defaulted
  • the ZP CSI-RS triggered at time is the same, that is, the same ZP CSI-RS triggered by the initial transmission scheduling DCI is triggered.
  • the default trigger method can also be used, such as triggering the ZP CSI-RS corresponding to CSI-RS triggering state 0, or not triggering ZP CSI-RS transmission.
  • DAI is a field that cannot be deleted.
  • DAI is used in both initial transmission and retransmission to determine the content of the HARQ codebook.
  • the PDSCH to HARQ feedback timing indication is a field that can be deleted.
  • the scheduling information for scheduling the initial data transmission may carry the PDSCH to HARQ feedback timing indication field, or it may not carry the PDSCH to the HARQ feedback timing indication field, but the default value is used. For example, equal to 4.
  • the scheduling information for scheduling retransmission data may carry the PDSCH to HARQ feedback timing indication field, or it may not be carried. If it is not carried, the default timing when retransmitting data is the same as when initially transmitting data. That is, the value of K1 for initial transmission and retransmission is the same, and the default value can also be used, for example, equal to 4.
  • TCI is a field that can be deleted.
  • the scheduling information for scheduling the first data transmission may or may not carry the TCI field, but the same TCI state as the PDCCH is used by default.
  • the scheduling information for scheduling retransmission data may or may not carry the TCI field. If not, the default TCI state when retransmitting data is the same as the TCI state when initially transmitting data, or default Use the same TCI state as PDCCH.
  • CBGTI is a field that can be deleted during initial transmission, and is a field that cannot be deleted during retransmission.
  • this field must be included in the scheduling information for scheduling retransmission data.
  • the scheduling information for scheduling newly transmitted data may not need to carry this field. In this case, all CBGs may be scheduled by default.
  • CBGFI is a field that can be deleted.
  • the CBGFI field can be carried in the scheduling information for the first data transmission or when the data is transmitted for the first time.
  • the cache that stores data is not cleared or cleared by default.
  • the scheduling information for scheduling retransmission data may or may not carry the CBGFI field. If it is not carried, the default retransmission data is the same as the initial transmission data instruction, or the default storage data is not cleared or cleared. ’S cache.
  • HPN is a field that cannot be deleted.
  • the scheduling information for scheduling the initial transmission data and the scheduling information for scheduling retransmission data need to carry the HPN field, and the specific value of the HPN during the initial transmission and retransmission and in the scheduling information
  • the occupied bit positions must be the same to distinguish the initial transmission or retransmission of the same data.
  • the antenna port indicates a field that can be deleted.
  • the scheduling information for scheduling the first data transmission may carry the antenna port indication field field, or it may not carry the antenna port indication field field, and instead use the predefined/preconfigured antenna port.
  • the scheduling information for scheduling retransmission data can carry the antenna port indication field or not, but the antenna port when retransmitting the data is the same as the antenna port when the data is initially transmitted by default. , Or use a pre-defined/pre-configured antenna port.
  • the DMRS sequence is initialized as a field that can be deleted.
  • the scheduling information for scheduling the initial data transmission may carry the DMRS sequence initialization field field, or it may not carry the DMRS sequence initialization field field, but use a predefined/preconfigured value, for example, 0 or 1.
  • the scheduling information for scheduling the retransmission data can carry the DMRS sequence initialization field field, or not carry the DMRS sequence initialization field field, but the default DMRS sequence initialization indication when the data is retransmitted is the same as when the data is initially transmitted. , Or use a predefined/preconfigured value, such as 0 or 1.
  • UL-SCH indicator is a field that can be deleted.
  • the UL-SCH indicator field can be carried in the scheduling information for scheduling the initial data transmission, or the UL-SCH indicator field can be carried without the UL-SCH indicator field, but a predefined/preconfigured value is used. For example, 0 or 1.
  • the scheduling information for scheduling the retransmission data can carry the UL-SCH indicator field, or not carry the UL-SCH indicator field, but the default UL-SCH indicator when the data is retransmitted and when the data is initially transmitted , Or use a predefined/pre-configured value, such as 0 or 1.
  • the frequency hopping indication is a field that can be deleted.
  • the scheduling information for scheduling the initial data transmission may carry the frequency hopping indication field field, or it may not carry the frequency hopping indication field field, but uses a predefined/pre-configured value, for example, Frequency hopping or no frequency hopping.
  • the scheduling information for scheduling the retransmitted data may or may not carry the frequency hopping indication, but the default frequency hopping mode when retransmitting data is the same as the frequency hopping mode when the data is initially transmitted, or Use pre-defined/pre-configured values, such as frequency hopping or no frequency hopping.
  • the precoding indication is a field that can be deleted.
  • the scheduling information for scheduling the initial data transmission can carry the precoding indication field field, or it may not carry the precoding indication field field, but use the default precoding matrix, for example, the precoding matrix 0.
  • the scheduling information for scheduling the retransmission data can carry the precoding indication field field or not, but the default precoding matrix used when retransmitting the data is the same as that used when the data is initially transmitted. , Or use the default precoding matrix, for example, precoding matrix 0.
  • the PTRS-DMRS association indication is a field that can be deleted.
  • the scheduling information for scheduling the initial data transmission can carry the PTRS-DMRS association indication field field, or it may not carry the PTRS-DMRS association indication field field, but use the predefined/pre-configured association method.
  • the scheduling information for scheduling the retransmission data can carry the PTRS-DMRS association indication field field, or not carry the PTRS-DMRS association indication field field, but the default association method used when retransmitting the data and the initial transmission data Or use the pre-defined/pre-configured association method.
  • the data scheduling method provided in the embodiments of this application can be used in the fourth generation (4G) system, the long term evolution (LTE) system, the fifth generation (5G) system, and the new radio (new radio, Any of the NR) system, the NR-vehicle-to-everything (V2X) system, and the Internet of Things system can also be applied to other next-generation communication systems, etc., without limitation.
  • 4G fourth generation
  • LTE long term evolution
  • 5G fifth generation
  • new radio new radio
  • Any of the NR system, the NR-vehicle-to-everything (V2X) system, and the Internet of Things system can also be applied to other next-generation communication systems, etc., without limitation.
  • the following uses the communication system shown in FIG. 1 as an example to describe the data scheduling method provided in the embodiment of the present application.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include a network device and multiple terminals, such as terminal 1, terminal 2, and terminal 3.
  • the terminal and the network device can transmit data through the Uu port.
  • the network device can send downlink data to the terminal through the Uu port, and the terminal can send uplink data to the network device through the Uu port.
  • Data transmission between the terminal and the terminal can be carried out through the SL.
  • the network equipment and the terminal in Figure 1 can be called communication devices, and the transmission between the terminal and the network equipment, and between the terminal and the terminal can be TB-based transmission or CBG-based transmission.
  • Fig. 1 is an exemplary framework diagram, and the number of nodes included in Fig. 1 is not limited, and in addition to the functional nodes shown in Fig. 1, other nodes, such as core network equipment, gateway equipment, Application servers, etc., are not restricted.
  • the network equipment is mainly used to implement functions such as terminal resource scheduling, wireless resource management, and wireless access control.
  • the network device may be any of a small base station, a wireless access point, a transmission receive point (TRP), a transmission point (TP), and some other access node.
  • the device used to implement the function of the network device may be a network device, or a device capable of supporting the network device to implement the function, such as a chip system (for example, a chip or a processing system composed of multiple chips) Or a modem.
  • a chip system for example, a chip or a processing system composed of multiple chips
  • modem a modem
  • the terminal may be a terminal equipment (terminal equipment) or a user equipment (user equipment, UE) or a mobile station (mobile station, MS) or a mobile terminal (mobile terminal, MT), etc.
  • the terminal can be a mobile phone (mobile phone), a tablet computer, or a computer with wireless transceiver function, it can also be a virtual reality (VR) terminal, an augmented reality (AR) terminal, and wireless in industrial control.
  • Terminals wireless terminals in unmanned driving, wireless terminals in telemedicine, wireless terminals in smart grids, wireless terminals in smart cities, smart homes, vehicle-mounted terminals, etc.
  • the device used to implement the function of the terminal may be a terminal, or a device capable of supporting the terminal to implement the function, such as a chip system (for example, a processing system composed of a chip or multiple chips) or a modem.
  • a chip system for example, a processing system composed of a chip or multiple chips
  • a modem for example, a modem
  • each network element shown in FIG. 1, such as a terminal and a network device may adopt the composition structure shown in FIG. 2 or include the components shown in FIG. 2.
  • 2 is a schematic diagram of the composition of a communication device 200 provided by an embodiment of the application.
  • the communication device 200 may be a terminal or a chip or on-chip in the terminal. system.
  • the communication device 200 may be a network device or a chip or a system on a chip in the network device.
  • the communication device 200 may include a processor 201, a communication line 202 and a communication interface 203. Further, the communication device 200 may further include a memory 204. Among them, the processor 201, the memory 204, and the communication interface 203 may be connected through a communication line 202.
  • the processor 201 may be a central processing unit (CPU), a general-purpose processor network processor (NP), a digital signal processing (DSP), a microprocessor, or a microcontroller. , Programmable logic device (PLD) or any combination of them.
  • the processor 201 may also be other devices with processing functions, such as circuits, devices, or software modules.
  • the communication line 202 is used to transmit information between the components included in the communication device 200.
  • the communication interface 203 is used to communicate with other devices or other communication networks.
  • the other communication network may be Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc.
  • the communication interface 203 may be a radio frequency module, a transceiver, or any device capable of realizing communication.
  • the embodiment of the present application is described by taking the communication interface 203 as a radio frequency module as an example, where the radio frequency module may include an antenna, a radio frequency circuit, etc., and the radio frequency circuit may include a radio frequency integrated chip, a power amplifier, and the like.
  • the memory 204 is used to store instructions. Among them, the instruction may be a computer program.
  • the memory 204 may be a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and/or instructions, or may be a random access memory (RAM) or Other types of dynamic storage devices that store information and/or instructions can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory, CD- ROM) or other optical disc storage, optical disc storage, magnetic disk storage media or other magnetic storage devices.
  • EEPROM electrically erasable programmable read-only memory
  • CD- ROM compact disc read-only memory
  • Optical disc storage includes compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • the memory 204 may exist independently of the processor 201, or may be integrated with the processor 201.
  • the memory 204 may be used to store instructions or program codes or some data.
  • the memory 204 may be located in the communication device 200 or outside the communication device 200 without limitation.
  • the processor 201 is configured to execute instructions stored in the memory 204 to implement the data scheduling method provided in the following embodiments of the present application.
  • the processor 201 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 2.
  • the communication device 200 includes multiple processors, for example, in addition to the processor 201 in FIG. 2, it may also include a processor 207.
  • the communication apparatus 200 further includes an output device 205 and an input device 206.
  • the input device 206 is a keyboard, a mouse, a microphone, or a joystick
  • the output device 205 is a display screen, a speaker, and other devices.
  • the communication device 200 may be a desktop computer, a portable computer, a network server, a mobile phone, a tablet computer, a wireless terminal, an embedded device, a chip system, or a device with a similar structure in FIG. 2.
  • the composition structure shown in FIG. 2 does not constitute a limitation on the communication device.
  • the communication device may include more or less components than those shown in the figure, or combine certain components. , Or different component arrangements.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the following describes the data scheduling method provided by the embodiment of the present application by taking the second communication device sending the first scheduling information and the second scheduling information to the first communication device as an example in conjunction with the communication system shown in FIG. 1.
  • the second communication device may be the network device in FIG. 1 or the functional module or chip system or modem or other functional module in the network device
  • the first communication device may be the terminal in FIG. 1 or the functional module or chip system in the terminal or
  • the modem or other functional modules for example, the second communication device may be the network device in FIG. 1, and the first communication device may be the terminal 1 in FIG. 1.
  • the second communication device may be the terminal in FIG. 1 or the functional module or chip system or modem or other functional modules in the terminal, and the first communication device may be the terminal in FIG.
  • the second communication device may be the terminal 1 in FIG. 1
  • the first communication device may be the terminal 3 in FIG. 1.
  • each device may have the components shown in FIG. 2, and the actions, terms, etc. involved in the embodiments may refer to each other.
  • the names of messages or parameter names in messages that are exchanged between devices in each embodiment are only As an example, other names can also be used in specific implementations, which are not limited.
  • the "including” mentioned in this application can be described as "including” or "carrying" and so on.
  • Figure 3 is a data scheduling method provided by an embodiment of this application.
  • the method supports scheduling information to schedule downlink data.
  • the scheduling information in the method shown in Figure 3 can be referred to as downlink scheduling information.
  • the first scheduling information can be referred to as the first scheduling information.
  • Downlink scheduling information the second scheduling information may be referred to as second downlink scheduling information.
  • the second communication device newly transmits the first data to the first communication device according to the first scheduling information, and the second communication device retransmits the data to the first communication device according to the second scheduling information, and the first data is downlink data.
  • the method may include:
  • Step 301 The second communication device sends the first scheduling information to the first communication device.
  • the first scheduling information may be used to schedule the first data initially transmitted between the first communication device and the second communication device.
  • the first scheduling information may be used to schedule the first data transmitted from the second communication device to the first communication device, that is, to schedule the downlink data to be transmitted initially.
  • the first scheduling information may be the same as the scheduling information specified by the protocol, and includes the field fields specified by the protocol, such as including one or more of the above-mentioned (1) to (31).
  • the scheduling information of the existing scheduling initial transmission data can be deleted without being indicated by the scheduling information. Then the specific value of the field field can be obtained, such as the first field field, the field field that must be indicated to the second communication device through the scheduling information is reserved, and the first scheduling information is obtained, which is the same as the scheduling information of the existing scheduling initial transmission data.
  • the first scheduling information may not include the first field field, the first field field occupies 0 bits in the first scheduling information, or the first field field does not exist in the first scheduling information.
  • the first field field may include one or more field fields that can be deleted.
  • the field field whose specific value can be obtained without the indication of the scheduling information may be referred to as the field field that can be deleted.
  • the deleted field may refer to a field that does not need to be carried in the scheduling information and is indicated to the first communication device.
  • the value of the field that can be deleted during initial transmission may be a default value, and the default value may be pre-configured for the first communication. Device.
  • the first data is downlink data.
  • the first field may include one or more of the following fields that can be deleted: FDRA, BWP indicator, antenna port, SRS resource indicator, TCI, VRB-to-PRB mapping, PRB bundling size indicator, rate matching indicator, RV, TDRA, TPC command, SRS trigger indicator, CSI-RS trigger indicator, DMRS sequence initialization, CBGTI, CBGFI.
  • the second communication device may exclude these field fields from the first scheduling information. After receiving the first scheduling information, the first communication device does not translate the first scheduling information from the first scheduling information. Out of these fields, make sure that the values of these fields are the default values.
  • the default value is all 1, that is, the scheduling information for scheduling the initial transmission data does not include CBGTI, and all CBGs in the initial transmission data will be sent by default.
  • the default value is 0, that is, the scheduling information for scheduling the initial transmission data does not include CBGFI, and the default is that there is no need to clear the buffer in the initial transmission data.
  • the first field is RV
  • the default value is 0, that is, the scheduling information for scheduling the initial transmission data does not include the RV, and the redundancy version 0 is used to transmit the initial transmission data by default.
  • which fields are included in the first field may be pre-defined by the protocol; or, when the first communication device and the second communication device are factory-set, they are pre-configured for the first communication device and the second communication device.
  • the existing scheduling information used for scheduling initial transmission includes MCS, antenna port, SRS resource indication, TDRA, BWP indication, FDRA, RV and other fields.
  • RV can adopt the default value (for example, 0). It is carried in the first scheduling information and is indicated to the first communication device. Therefore, in step 301, the RV field in the scheduling information of the originally scheduled initial transmission data can be deleted to obtain the first scheduling information.
  • Table 1 below shows the fields included in the first scheduling information. As shown in Table 1, the first scheduling information includes MCS, antenna port, SRS resource indicator, TDRA, BWP indicator, and FDRA.
  • the second communication device may use an encoder to encode the first scheduling information, and use a radio network temporary indicator (RNTI) corresponding to the first scheduling information to encode the first scheduling information.
  • RNTI radio network temporary indicator
  • the encoder may be an arithmetic unit with an encoding function in a modem included in the second communication device.
  • the modem may include one or more encoders.
  • multiple information encodings may be performed in parallel, and the output lengths of different encoders may be the same or different.
  • the second communication device may use an encoder whose output length is the same as that of the first scheduling information to perform encoding processing on the first scheduling information.
  • the length of the first scheduling information is equal to the total length of the number of bits occupied by all field fields included in the first scheduling information. If the first scheduling information includes three field fields: the first field, the second field, and the third field, the first field occupies 4 bits, the second field occupies 5 bits, and the third field occupies 4 Number of bits, the length of the first scheduling information is 13 bits.
  • the control channel that carries the first scheduling information may be a physical downlink control channel (PDCCH); if the first scheduling information is SCI, the control channel that carries the first scheduling information
  • the channel may be a physical sidelink control channel (PSCCH).
  • Step 302 The second communication device initially transmits the first data to the first communication device according to the first scheduling information.
  • the first data may be TB-based transmission data or CBG-based transmission data.
  • the second communication device may initially transmit the first data to the first communication device at the time-frequency resource location indicated by the first scheduling information.
  • the second communication device can use the HARQ process to send the first data to the first communication device at the time domain position and on the carrier indicated by the first scheduling information.
  • Step 303 The first communication device monitors the first scheduling information.
  • the first communication device may use the monitoring parameter corresponding to the first scheduling information to monitor the first scheduling information in the search space corresponding to the first scheduling information.
  • the monitoring parameters corresponding to the first scheduling information may include at least search space configuration, control resource set (CORESET) configuration, radio network temporary indicator, and the number of candidate sets to be monitored (candidate) , One or more types of information in the aggregation level that need to be monitored.
  • the search space corresponding to the first scheduling information and the monitoring parameter corresponding to the first scheduling information may be pre-configured to the first communication device, or may be indicated to the first communication device by the second communication device, which is not limited.
  • the second communication device can monitor the first scheduling information in the three search spaces.
  • FIG. 5b if search space 1 and search space 2 of the three search spaces are configured to correspond to the first scheduling information, the second communication device can monitor the first in search space 1 and search space 2. Scheduling information.
  • the second communication device uses the monitoring parameter corresponding to the first scheduling information to monitor the first scheduling information in the search space corresponding to the first scheduling information with reference to FIG. 4.
  • the process may include S1 to S4:
  • the first communication device determines the candidate monitoring position of the control channel according to the CORESET and the search space configuration.
  • the first communication device may determine the frequency band occupied by the control channel monitoring position and the number of occupied orthogonal frequency division multiplexing (OFDM) symbols according to CORESET, and determine the starting point of the control channel monitoring position according to the search space configuration.
  • Information such as the initial OFDM symbol number and the monitoring period of the control channel.
  • the terminal may use a decoder to perform decoding at candidate time-frequency positions of the control channel, where the output length of the decoder is the length of the DCI. If the cyclic redundancy check (CRC) of the decoded information bits is the same as the CRC carried in the control channel, the decoding is considered successful, and the CRC can be scrambled by the RNTI.
  • CRC cyclic redundancy check
  • the decoder may be an arithmetic unit with a decoding function in a modem included in the first communication device.
  • the modem may include one or more decoders, and different decoders have different output lengths.
  • the first communication device may use a decoder whose output length is the same as that of the first scheduling information to decode the first scheduling information.
  • the positions of the CIF, HPN, and NDI in the scheduling information may be specified in the protocol, and may be pre-configured to the second communication device.
  • Step 304 When the first scheduling information is monitored, the first communication device receives the first data according to the first scheduling information.
  • the first communication device may receive the first data on the time-frequency resource indicated by the first scheduling information according to the information indicated by each field included in the first scheduling information.
  • the first communication device successfully receives the first data, it indicates that the first data transmission is successful, and the first communication device feeds back an ACK to the second communication device. On the contrary, if the first communication device fails to receive the first data, then It indicates that the first data transmission fails, and the first communication device feeds back NACK to the second communication device.
  • the method for the first communication device to determine whether the first data is successfully received can be referred to the prior art, and will not be described in detail.
  • the process ends, the transmission of the first data is ended, and the transmission of other data is performed. If the first data transmission fails, the following steps 305 to 308 are executed.
  • Step 305 The first data transmission fails, and the second communication device sends second scheduling information to the first communication device.
  • the first data is downlink data. If the second communication device receives the NACK corresponding to the first data fed back by the first communication device, the second communication device considers that the transmission of the first data has failed, and sends the second communication device to the first communication device. Scheduling information.
  • the second scheduling information may be used to schedule the first data to be retransmitted between the first communication device and the second communication device.
  • the field domain included in the first scheduling information is different from the field domain included in the second scheduling information.
  • the difference between the field domain included in the first scheduling information and the field domain included in the second scheduling information may include: the type of the field domain included in the first scheduling information is the same as the type of the field domain included in the second scheduling information, but the first scheduling information includes The length of the field field of is different from the length of the field field included in the second scheduling information. For example, the same field field occupies 3 bits in the first scheduling information and 5 bits in the second scheduling information; or, The type of the field domain included in the one scheduling information is different from the type of the field domain included in the second scheduling information.
  • the length of the second scheduling information is different from the length of the first scheduling information.
  • the length of the first scheduling information is greater than the length of the second scheduling information, the first scheduling information includes the first field, and the second scheduling information does not include the first A field; or, the length of the first scheduling information is less than the length of the second scheduling information, the first scheduling information does not include the first field, and the second scheduling information includes the first field.
  • the related description of the first field is as described above and will not be repeated.
  • the first scheduling information includes the first field field and the second scheduling information does not include the first field field
  • the second communication device may default to the default value of the first field or the value of the first field is the same as the value of the first field when the first data is initially transmitted.
  • Table 2 shows the field fields included in the second scheduling information. Comparing Table 1 and Table 2, it is found that the second scheduling information does not include the FDRA field field. In this case, the frequency domain position when retransmitting the first data can be defaulted to be The frequency domain position when the first data is first transmitted is the same.
  • the first communication device needs to set the output length of the decoder to a plurality of different lengths for decoding processing when monitoring the scheduling information.
  • the output length is respectively set to the length of the first scheduling information and the length of the second scheduling information for decoding.
  • the number of blind decoding (BD) increases, which consumes the power consumption of the terminal.
  • the first scheduling information The corresponding search space and the search space corresponding to the second scheduling information are set to be different; and/or, the monitoring parameters corresponding to the first scheduling information and the monitoring parameters corresponding to the second scheduling information are set to be different, when the first data is initially transmitted , Using the search space and monitoring parameters corresponding to the first scheduling information to monitor the first scheduling data, and when retransmitting the first data, using the search space and monitoring parameters corresponding to the second scheduling information to monitor the second scheduling information, so that the first communication device
  • the output length of the decoder is set to the length of the first scheduling information for decoding processing
  • the output length of the decoder is set to the length of the second scheduling information for decoding processing
  • the length of the second scheduling information is the same as the length of the first scheduling information.
  • the second scheduling information includes the first field field but does not include the second field field, that is, the second field field occupies 0 bits in the second scheduling information
  • the first scheduling information includes the second field field but does not include the first field field, that is, The first field occupies 0 bits in the first scheduling information. Comparing the first scheduling information with the second scheduling information, it is found that the second scheduling information lacks the second field field included in the first scheduling information, but the first field field not included in the first scheduling information is added.
  • the field field is added to the first scheduling information, and then the first scheduling information after the first field field is added is truncated, such as deleting the second field field in the first scheduling information after adding the first field field, etc. ,
  • the field included in the first scheduling information after the truncation process is carried in the second scheduling information, so that the length of the second scheduling information is the same as the length of the first scheduling information, that is, the scheduling information at the time of initial transmission and the retransmission The length of the scheduling information at the time is aligned.
  • the second field field may include one or more field fields among the field fields that can be deleted, and the relevant description of the field fields that can be deleted can refer to the description in step 301, which will not be repeated.
  • the first field is different from the second field, and the length of the second field is less than or equal to the first field.
  • the method shown in FIG. 6 may be referred to to determine which second field fields to delete. As shown in FIG. 6, the method may include:
  • M(i) in Figure 6 is the length of the i-th field that can be deleted.
  • the embodiments of the present application do not limit the sorting method of the deleted fields, and can be arranged in descending order of the number of bits occupied by the deleted fields, or according to the deleted fields.
  • the number of bits occupied by the domain is arranged in ascending order, and can also be arranged randomly, or the arrangement order can be configured by the network device, etc., which is not limited.
  • the downlink data is scheduled using DCI format 1_1.
  • the first field is CBGTI and CBGFI, that is, CBGTI and CBGFI are not included in the initial DCI. If the number of CBGs configured by the network device for the terminal is N, that is, the bit length of the CBGTI is N bits. The bit length of CBGFI is 1 bit.
  • the deleteable fields included in the second field are SRS request (2bit), BWP indicator (2bit), Antenna port (4bit), RV indicator (2bit), etc., that is, the retransmission DCI may not include SRS request (2bit). ), BWP indicator (2bit), Antenna port (4bit), RV indicator (2bit) and other fields.
  • SRS request (2bit), BWP indicator (2bit), Antenna port (4bit), and RV indication (2bit) for deletion.
  • the values of the SRS request, BWP indicator, and Antenna port indicated in the initial transmission DCI are still used for the retransmitted data.
  • the BWP indicator is 0, the value of BWP0 is indicated, and the value of Antenna port is 0, which indicates the 0th antenna port, that is, the initial transmission data.
  • the PDSCH reception is also accompanied by the transmission of the first group of SRS, the first transmission data is transmitted on BWP0, and the 0th antenna port will be used to receive the PDSCH.
  • the PUSCH of the initial data transmission is also accompanied by the transmission of the first group of SRS, which is also transmitted on BWP0, and the 0th antenna port will be used to receive the PDSCH.
  • N the number of CBGs configured by the network equipment for the terminal
  • the bit length of the CBGTI is 2 bits
  • SRS request and BWP indicator only the following three fields can be deleted according to the method shown in FIG. 6: SRS request and BWP indicator.
  • the value of the SRS request and BWP indicator indicated in the initial transmission DCI is still used for the retransmitted data, and the explanation will not be given here.
  • the method shown in FIG. 6 can be pre-configured for the second communication device and the first communication device, and both parties can use the method shown in FIG. 6 to determine which second field domains to delete.
  • the second scheduling information can be zero-filled, so that the length of the second scheduling information and the first scheduling information Alignment to avoid too many blind inspections. For example, if the length of the first scheduling information is 10 bits and the length of the second scheduling information after subtracting the second field is 9 bits, a zero can be added at the end of the second scheduling information to make the length of the second scheduling information also It is 10bit.
  • the first field is CBGTI and CBGFI
  • the bit length of CBGFI is 1 bit.
  • the deleted fields included in the second field are SRS request (2bit), BWP indicator (2bit), and Antenna port (4bit).
  • the second scheduling information has more CBGTI and CBGFI, less SRS request, BWP indicator, and Antenna port, and is 3 bits less overall. At this time, three zeros can be added to the end/tail of the second scheduling information, so that the length of the second scheduling information is aligned with the length of the first scheduling information.
  • the second communication device can also determine which field fields to delete and which fields to reserve in this application.
  • the method shown in FIG. 6 is used to determine which field fields to delete, and the deleted field fields and/or reserved field fields are indicated to the first communication device, such as the second scheduling information or the first scheduling information. It may include a third field field and a fourth field field.
  • the third field field may be indication information
  • the third field field may be used to indicate the type of at least one fourth field field
  • the fourth field field may include the second field field.
  • the deleted field that is, the reserved field.
  • the sum of the number of bits in the third field, the number of bits in the fourth field, and the number of bits in the first field may be equal to or less than the number of bits in the second field.
  • the sum of the number of bits in the third field, the number of bits in the fourth field, and the number of bits in the first field is less than the number of bits in the second field, two can be added at the end/tail of the second scheduling information Zero, aligns the length of the second scheduling information with the length of the first scheduling information.
  • the correspondence may be configured by the network device, or may be pre-defined by the protocol, and is not limited.
  • the field fields included in the fourth field field that is, the field fields in the second field field that need to be reserved in the second scheduling information may also be configured by the network device, or may be pre-defined by the protocol without limitation.
  • the third field field can carry M Bits, the M bits can be used to indicate the 2 M combinations.
  • the downlink data is scheduled using DCI format 1_1.
  • the first field is CBGTI, that is, CBGTI and CBGFI are not included in the initial DCI. If the number of CBGs configured by the network device for the terminal is N, that is, the bit length of the CBGTI is N bits.
  • the bit length of CBGFI is 1 bit.
  • the deleteable fields included in the second field are SRS request (2bit), BWP indicator (2bit), Antenna port (4bit), RV indicator (2bit), etc., that is, the retransmission DCI may not include SRS request (2bit). ), BWP indicator (2bit), Antenna port (6bit), RV indicator (2bit), etc., that is, a total of 12 bits can be deleted.
  • the bit length of the CBGTI is 4 bits. Only 5 bits out of 12 bits need to be selected for deletion, and the remaining 7 bits are reserved. At this time, 2 of the remaining 7 bits can be used to indicate the content indicated by the remaining 5 bits. As shown in Table 3 below.
  • the 2-bit indication information is 00
  • the information contained in the remaining 5 bits is SRS request (2bit) + BWP indicator (2bit) + padding (1bit), where padding is to fill 1 bit of '0'.
  • the contents of the Antenna port (6bit) and RV indication (2bit) are the same as the initial transmission indication by default. In this way, the network device can more flexibly decide which information to indicate in the second scheduling information, which improves the flexibility of the scheduling information.
  • the format of the first scheduling information is the same as the format of the second scheduling information; or, the format of the first scheduling information is different from the format of the second scheduling information.
  • the first scheduling information may adopt DCI format 0_2/format 1_2
  • the second scheduling information may adopt DCI format 0_1/1_1.
  • Step 306 The second communication device retransmits the second data to the first communication device according to the second scheduling information.
  • the second communication device may retransmit the second data to the first communication device on the time-frequency resource indicated by the second scheduling information.
  • the second communication device can use the HARQ process to resend the second data to the first communication device on the time domain position and the carrier indicated by the second scheduling information.
  • the HARQ process and carrier used when retransmitting the second data are the same as the HARQ process and carrier used in the initial transmission.
  • Step 307 The first communication device monitors the second scheduling information.
  • monitoring the second scheduling information by the first communication device monitoring the second scheduling information may include: in a search space corresponding to the second scheduling information in a first time period after receiving or sending the first data according to the first scheduling information, The monitoring parameters corresponding to the second scheduling information are used to monitor the second scheduling information.
  • the search space corresponding to the second scheduling information of the first communication device the method for monitoring the second scheduling information by using the monitoring parameters corresponding to the second scheduling information is shown in FIG. 4, which will not be repeated.
  • the first data is data sent by the second communication device to the first communication device, and the start time of the first time period is equal to or later than the time when the first communication device sends the NACK corresponding to the first data.
  • the first time period may be controlled by a timer, and the timer may be configured by the second communication device to the first communication device.
  • the first communication device is configured with a total of 3 different search spaces: search space 1, search space 2, and search space 3.
  • search space 1 and search space 2 are configured to correspond to the first scheduling information.
  • the search space 3 corresponds to the second scheduling information.
  • the first communication device When initially transmitting the first data, the first communication device only monitors search space 1 and search space 2. In a first period of time after receiving or sending the first data according to the first scheduling information, the first communication device uses search space 3 to "replace" search space 1 and search space 2, and monitor the second scheduling information in search space 3.
  • a communication device is configured with a total of 3 different search spaces: search space 1, search space 2, and search space 3. In the first time period after the initial transmission of the first data and the subsequent transmission of the first data, the first communication device has been Monitor these three search spaces.
  • Step 308 When the second scheduling information is monitored, the first communication device receives the first data according to the second scheduling information.
  • the first communication device may receive the first data on the time-frequency resource indicated by the second scheduling information.
  • the second communication device may send third scheduling information, use the third scheduling information to schedule the retransmitted first data, and perform the retransmission of the first data again.
  • the third scheduling information may not include the field that was carried in the scheduling information when the first data was first transmitted or the field that was carried in the scheduling information when the first data was retransmitted last time.
  • the current retransmission can be defaulted When transmitting the first data, use the transmission parameter indicated during the initial transmission or the transmission parameter indicated during the upload and retransmission.
  • the BWP used in the second retransmission of the first data may be the same as the BWP used in the initial transmission of the first data, or may be the same as the first data.
  • the BWP used for this retransmission is the same.
  • the field fields included in the scheduling information used to schedule the initial transmission data and the scheduling information used to schedule the retransmission data are set to be different, and there is no need to set the first scheduling information and the second scheduling information to include the same Field field.
  • one of the scheduling information carries fewer field fields, which reduces the field field carried by the scheduling information, reduces the load of the scheduling information, and realizes less transmission on the resources used to transmit the scheduling information
  • the number of bits can realize the function of scheduling data of the scheduling information, and improve the reliability and coverage of scheduling information transmission.
  • the method shown in FIG. 3 above takes the second communication device to newly transmit the first data to the first communication device according to the first scheduling information, and the second communication device to retransmit the data to the first communication device according to the second scheduling information as an example, that is, the following line Data transmission is taken as an example to describe the data scheduling method provided in the embodiment of the present application.
  • the field field included in the scheduling information used to schedule the uplink data for the first transmission can also be set to be different from the field field included in the scheduling information used to schedule the retransmitted uplink data to reduce uplink data.
  • the number of bits included in the scheduling information during data transmission improves the transmission reliability and coverage of the scheduling information during uplink data transmission.
  • the scheduling method during uplink data transmission can be referred to as shown in Figure 7 below.
  • the scheduling information used to schedule the uplink data initially transmitted in the method shown in Figure 7 can be referred to as the first uplink scheduling information, which is used to schedule retransmissions.
  • the scheduling information of the uplink data may be referred to as second uplink scheduling information.
  • FIG. 7 is a flowchart of another data scheduling method provided by an embodiment of the application. As shown in FIG. 7, it may include:
  • Step 701 The second communication device sends first uplink scheduling information to the first communication device.
  • the first uplink scheduling information may be used to schedule the first data initially transmitted between the first communication device and the second communication device.
  • the first data may be referred to as uplink data.
  • the first uplink scheduling information may be used to schedule the uplink data initially transmitted from the first communication device to the second communication device.
  • the first uplink scheduling information described in step 701 may be the same as the uplink scheduling information specified by the protocol, including the field fields specified by the protocol, such as including the above (1) to (31). ) In one or more fields. Or, the first uplink scheduling information may not include the first field. However, the first field when the first data is uplink data is slightly different from the first field when the first data is downlink data in step 301.
  • the first field may include one or more of the following fields that can be deleted: UL-SCH indicator, FDRA, BWP indicator, antenna port, SRS Resource indicator, RV, TDRA, TPC command, SRS triggering indicator, CSI-RS triggering, precoding indicator, beta_offset indicator, frequency hopping indicator, PTRS-DMRS association indicator, DMRS sequence initialization, CBGTI.
  • step 301 For the relevant description of the first field, refer to the description in step 301, which will not be repeated.
  • the process for the second communication device to send the first uplink scheduling information to the first communication device may refer to the process for the second communication device to send the first scheduling information to the first communication device in step 301, which will not be repeated.
  • Step 702 The first communication device monitors the first uplink scheduling information.
  • step 702 can be referred to as described in step 303, which will not be repeated.
  • Step 703 When the first uplink scheduling information is monitored, the first communication device initially transmits the first data to the second communication device according to the first uplink scheduling information.
  • the first communication device may initially transmit the first data to the second communication device at the time-frequency resource location indicated by the first uplink scheduling information.
  • the first communication device can use the HARQ process to send the first data to the second communication device at the time domain position and the carrier indicated by the first uplink scheduling information.
  • Step 704 The second communication device receives the first data.
  • the second communication apparatus may receive the first data at the time-frequency resource location indicated by the first uplink scheduling information. If the second communication device receives and successfully parses the first data at the time-frequency resource location indicated by the first uplink scheduling information, it indicates that the first data transmission is successful, and the second communication device feeds back the first data corresponding to the first communication device Conversely, if the second communication device does not successfully receive or does not receive the first data sent by the first communication device at the time-frequency resource location indicated by the first uplink scheduling information, it indicates that the first data transmission fails, The second communication device feeds back the NACK corresponding to the first data to the first communication device.
  • the method for the second communication device to determine whether the first data is successfully received can be referred to the prior art, which will not be repeated.
  • the process ends, the transmission of the first data is ended, and the transmission of other data is performed. If the first data transmission fails, the following steps 705 to 708 are executed.
  • Step 705 The first data transmission fails, and the second communication device sends second uplink scheduling information to the first communication device.
  • the first data is uplink data.
  • the second communication device sends the first uplink scheduling information, if the time-frequency resource position indicated by the first uplink scheduling information is not successfully received or the data sent by the first communication device is not received For the first data, it is considered that the transmission of the first data has failed.
  • the second uplink scheduling information may be used to schedule the first data to be retransmitted between the first communication device and the second communication device.
  • the field domain included in the first uplink scheduling information is different from the field domain included in the second uplink scheduling information.
  • the length of the second uplink scheduling information is different from the length of the first uplink scheduling information.
  • the length of the first uplink scheduling information is greater than the length of the second uplink scheduling information, and the first uplink scheduling information includes the first field.
  • Field, the second uplink scheduling information does not include the first field; or, the length of the first uplink scheduling information is less than the length of the second uplink scheduling information, the first uplink scheduling information does not include the first field, and the second uplink scheduling information includes The first field domain.
  • the related description of the first field is as shown in Fig. 3, and will not be repeated.
  • the length of the second uplink scheduling information is the same as the length of the first uplink scheduling information.
  • the second uplink scheduling information includes the first field field but does not include the second field field, that is, the second field field occupies 0 bits in the second uplink scheduling information
  • the first uplink scheduling information includes the second field field but does not include the first field field.
  • the field field that is, the first field occupies 0 bits in the first uplink scheduling information.
  • the first field field can be added to the first uplink scheduling information, and then the first uplink scheduling information after the first field field is added is truncated, such as deleting the first field field after adding the first field field.
  • the second field field in the uplink scheduling information etc., carry the field field included in the truncated first uplink scheduling information in the second uplink scheduling information, so that the length of the second uplink scheduling information is the same as that of the first uplink scheduling information
  • the length of is the same, that is, the length of the uplink scheduling information during the initial transmission is aligned with the length of the uplink scheduling information during the retransmission.
  • the related description of the second field can be referred to as shown in FIG. 3, and the manner of deleting the second field can be referred to as shown in FIG. 6.
  • uplink data is scheduled using DCI format 0_1.
  • the first field is CBGTI, that is, CBGTI is not included in the initial DCI. If the number of CBGs configured by the network device for the terminal is N, that is, the bit length of the CBGTI is N bits.
  • the fields that can be deleted in the second field are UL-SCH indicator (1bit), BWP indicator (2bit), SRS resource indicator (3bit), RV indicator (2bit), etc., that is, the retransmission DCI may not include UL -SCH indicator (1bit), BWP indicator (2bit), SRS resource indicator (3bit), RV indicator (2bit) and other fields.
  • the values of the UL-SCH indicator, BWP indicator, and SRS resource indicator indicated in the initial transmission DCI are still used for the retransmitted data.
  • the UL-SCH indicator in the initial transmission DCI has a value of 1
  • the BWP indicator has a value of 0, indicating BWP0
  • the SRS resource indicator has a value of 0, indicating the 0th group of SRS, that is, the PUSCH of the initial data transmission contains UL -SCH
  • the first transmission data is transmitted on BWP0, and the antenna port corresponding to the 0th group of SRS will be used to transmit the PUSCH.
  • the PUSCH of the initial data transmission also includes the UL-SCH, which is also transmitted on BWP0, and the 0th group of SRS will also be sent.
  • N the number of CBGs configured by the network equipment for the terminal
  • the bit length of the CBGTI is 2 bits
  • only the following three fields can be deleted according to the method shown in FIG. 6: UL-SCH indicator and BWP indicator.
  • the values of the UL-SCH indicator and BWP indicator indicated in the initial transmission DCI are still used for the data to be retransmitted, and no further examples will be explained here.
  • the second uplink scheduling information can be zero-padded processing, so that the second uplink scheduling information is consistent with the first field.
  • the length of one uplink scheduling information is aligned, thereby avoiding too many blind checks. For example, if the length of the first uplink scheduling information is 10 bits, and the length of the second uplink scheduling information after subtracting the second field is 9 bits, you can add a zero at the end of the second uplink scheduling information to make the second uplink scheduling
  • the length of the information is also 10bit.
  • the first field is CBGTI
  • the deleted fields included in the second field are UL-SCH indicator (1bit), BWP indicator (2bit), and SRS resource indicator (3bit).
  • the second uplink scheduling information has more CBGTI, less UL-SCH indicator, BWP indicator, and SRS resource indicator, which is 2 bits less overall. At this time, two zeros can be added to the end/tail of the second uplink scheduling information, so that the length of the second uplink scheduling information is aligned with the length of the first uplink scheduling information.
  • the second communication device can also determine which field fields to delete on its own. , Which field fields are reserved, as shown in Figure 6 is used to determine which field fields are deleted, and the deleted field fields and/or reserved field fields are indicated to the first communication device, such as the second uplink scheduling information or the first communication device.
  • An uplink scheduling information may also include a third field field and a fourth field field, the third field field may be indication information, the third field field may be used to indicate the type of at least one fourth field field, and the fourth field field may include The uncut field in the second field, that is, the reserved field.
  • the sum of the number of bits in the third field, the number of bits in the fourth field, and the number of bits in the first field can be equal to or less than the second field.
  • the number of bits in the field When the sum of the number of bits in the third field, the number of bits in the fourth field, and the number of bits in the first field is less than the number of bits in the second field, you can add two at the end/tail of the second uplink scheduling information. Zeros to align the length of the second uplink scheduling information with the length of the first uplink scheduling information.
  • uplink data is scheduled using DCI format 0_1.
  • the first field is CBGTI, that is, CBGTI is not included in the initial DCI. If the number of CBGs configured by the network device for the terminal is N, that is, the bit length of the CBGTI is N bits.
  • the fields that can be deleted in the second field are UL-SCH indicator (1bit), BWP indicator (2bit), Antenna port (3bit), SRS resource indicator (3bit), RV indicator (2bit), etc., that is, retransmission
  • the DCI may not include UL-SCH indicator (1bit), BWP indicator (2bit), Antenna port (3bit), SRS resource indicator (3bit), RV indicator (2bit), etc., that is, a total of 11 bits can be deleted.
  • the bit length of the CBGTI is 4 bits. Only 4 bits out of 11 bits need to be selected for deletion, and the remaining 7 bits are reserved. At this time, 2 of the remaining 7 bits can be used to indicate the content indicated by the remaining 5 bits. As shown in Table 4 below.
  • the 2-bit indicator information is 00
  • the information contained in the remaining 5 bits is UL-SCH indicator (1bit) + BWP indicator (2bit) + RV indicator (2bit), at this time antenna port (3bit) and SRS resource indicator (3bit) )
  • the content of the default and initial transmission instructions is the same. In this way, the network device can more flexibly decide which information to indicate in the second uplink scheduling information, which improves the flexibility of the uplink scheduling information.
  • the format of the first uplink scheduling information is the same as the format of the second uplink scheduling information; or, the format of the first uplink scheduling information is different from the format of the second uplink scheduling information.
  • the first uplink scheduling information may adopt DCI format 0_2/format 1_2
  • the second uplink scheduling information may adopt DCI format 0_1/1_1.
  • Step 706 The first communication device monitors the second uplink scheduling information.
  • step 706 can refer to the description of step 307, which will not be repeated.
  • the first data is the data sent by the first communication device to the second communication device, and the start time of the first time period is equal to or later than the first communication device according to the first scheduling information. The moment when the network device sends the first data.
  • Step 707 When the second uplink scheduling information is monitored, the first communication device retransmits the second data to the second communication device according to the second uplink scheduling information.
  • the first communication device may retransmit the second data to the second communication device on the time-frequency resource indicated by the second uplink scheduling information.
  • the first communication device can use the HARQ process to resend the first data to the second communication device on the time domain position and the carrier indicated by the first uplink scheduling information.
  • the HARQ process and carrier used when retransmitting the second data are the same as the HARQ process and carrier used in the initial transmission.
  • Step 708 The second communication device receives the retransmitted first data.
  • the second communication device may receive the retransmitted first data on the time-frequency resource indicated by the second uplink scheduling information.
  • the second communication device may send third uplink scheduling information, use the third uplink scheduling information to schedule the retransmitted first data, and retransmit the first data again.
  • the third uplink scheduling information may not include the field fields carried in the uplink scheduling information when the first data was first transmitted or the field fields carried in the uplink scheduling information when the first data was retransmitted last time.
  • the BWP used in the second retransmission of the first data may be the same as the BWP used in the initial transmission of the first data, or may be the same as the first data.
  • the BWP used for this retransmission is the same.
  • the field field included in the uplink scheduling information used for scheduling initial transmission data is set to be different from the uplink scheduling information used for scheduling retransmission data, and there is no need to set the first uplink scheduling information and the second uplink scheduling information.
  • Set to include the same field field, compared with two uplink scheduling information, one of the uplink scheduling information will carry fewer field fields, which reduces the field field carried by the uplink scheduling information, reduces the load of the uplink scheduling information, and realizes that it is used for transmission.
  • the less number of bits transmitted on the resources of the uplink scheduling information can realize the function of the uplink scheduling information scheduling data, and improve the reliability and coverage of the uplink scheduling information transmission.
  • the first communication device is the terminal
  • the terminal is the mobile phone
  • the second communication device is the network device.
  • the network device is the base station.
  • the base station sends a WeChat message to the mobile phone through the HARQ mechanism.
  • the WeChat message has 800 bits and is based on CBG transmission. 100bit is taken as an example to describe the data scheduling method described in the embodiment of the present application.
  • the base station determines to push the WeChat message to the mobile phone based on CBG, and determines that the time resource for sending the WeChat message is OFDM symbol 3 to OFDM symbol 13 in the same time slot as DCI, and the frequency resource is to use all physical resource blocks (PRB) , Using HARQ process 3, the base station sends DCI1 to the mobile phone.
  • the DCI1 contains TDRA, FDRA, and HPN fields, indicating the above content respectively, and sends a PDSCH containing 8 CBGs to the mobile phone.
  • the PDSCH contains the content of the WeChat message.
  • the mobile phone detects DCI1, and uses HARQ process 3 to receive the PDSCH containing WeChat messages in slot 0, carrier 1, according to the instructions of DCI1. If the mobile phone determines that it fails to receive the 7th and 8th CBGs, it will feed back the ACKs corresponding to the first 6 CBGs and the NACKs corresponding to the 7th and 8th CBGs to the base station.
  • the base station receives the NACK corresponding to the 7th CBG and the NACK corresponding to the 8th CBG fed back by the mobile phone, and determines that the 7th CBG and the 8th CBG need to be retransmitted, and then sends DCI2 to the mobile phone and sends the 7th CBG to the mobile phone.
  • CBG and PDSCH of the 8th CBG At this time, DCI2 must carry CBGTI.
  • CBGTI is used to indicate that the scheduled PDSCH includes the 7th CBG and the 8th CBG, excluding the remaining 6 CBGs.
  • set DCI2 to include CBGTI, HPN and TDRA, excluding FDRA.
  • DCI1 and DCI2 can be sent in different search spaces.
  • the mobile phone monitors different search spaces when monitoring DCI1 and DCI2.
  • the lengths of DCI1 and DCI2 can be different; or DCI1 and DCI2 can be in the same
  • the search space is sent, but the lengths of DCI1 and DCI2 are the same using the method described above.
  • the mobile phone detects DCI2 and analyzes that DCI2 carries CBGTI, HPN, and TDRA.
  • the PDSCH that contains the 7th CBG and the 8th CBG by default uses the same frequency resources as the initial transmission, that is, all PRBs are used and the HARQ process is used 3 Receive the PDSCH including the 7th CBG and the 8th CBG.
  • each node such as the first communication device, the second communication device, etc.
  • each node in order to implement the above-mentioned functions, includes hardware structures and/or software modules corresponding to the respective functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide the functional modules of the first communication device, the second communication device, etc. according to the foregoing method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated in In a processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 8 shows a structural diagram of a communication device 80.
  • the communication device 80 may be a first communication device, or a chip in the first communication device, or a system on a chip.
  • the communication device 80 may be used to perform the above-mentioned embodiments.
  • the communication device 80 shown in FIG. 8 includes: a processing unit 801 and a transceiver unit 802;
  • the processing unit 801 monitors the first scheduling information sent by the second communication device; for example, the processing unit 801 may support the communication device 80 to perform step 303 and step 702.
  • the transceiver unit 802 is used to send or receive the first data initially transmitted between the first communication device and the second communication device when the processing unit 801 detects the first scheduling information; for example, the transceiver unit 802 can support The communication device 80 performs step 304 and step 703.
  • the processing unit 801 is also used to monitor the second scheduling information sent by the second communication device; for example, the processing unit 801 may support the communication device 80 to perform step 307 and step 706.
  • the transceiver unit 802 is further configured to send or receive the first data retransmitted between the first communication device and the second communication device according to the first scheduling information when the processing unit 801 monitors the first scheduling information.
  • the first scheduling information includes The field domain is different from the field domain of the second scheduling information.
  • the transceiving unit 802 may support the communication device 80 to perform step 308 and step 707.
  • related descriptions of the related execution actions of the processing unit 801, the first scheduling information, and the second scheduling information can refer to the related descriptions in the method shown in FIG. 3, and will not be repeated.
  • the communication device 80 is used to perform the function of the first communication device in the data scheduling method shown in the method shown in FIG. 3 or FIG. 7, and therefore can achieve the same effect as the above data scheduling method.
  • the communication device 80 shown in FIG. 8 includes: a processing module and a communication module.
  • the processing module is used to control and manage the actions of the communication device 80.
  • the processing module can integrate the functions of the processing unit 801 and can be used to support the communication device 80 to perform steps 303, 307, 702, and 706 as described herein. Other processes of the technology.
  • the communication module can integrate the functions of the transceiver unit 802, and can be used to support the communication device 80 to perform step 304, step 308, step 703, and step 707 to communicate with other network entities, such as the functional module or network entity shown in FIG. Communication.
  • the communication device 80 may also include a storage module for storing program codes and data of the communication device 80.
  • the processing module may be a processor or a controller. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination of computing functions, for example, a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication module can be a transceiver circuit or a communication interface.
  • the storage module may be a memory. When the processing module is a processor, the communication module is a communication interface, and the storage module is a memory, the communication device 80 involved in the embodiment of the present application may be the communication device shown in FIG. 2.
  • FIG. 9 is a structural diagram of a communication system provided by an embodiment of this application.
  • the communication system may include: a first communication device 90 and a second communication device 91.
  • the function of the first communication device 90 is the same as the function of the communication device 80 described above.
  • the second communication device 91 is configured to send first scheduling information to the first communication device 90, and initially transmit the first data to the first communication device 90 according to the first scheduling information;
  • the first communication device 90 is configured to monitor first scheduling information, and when the first scheduling information is monitored, receive the first data according to the first scheduling information;
  • the second communication device 91 is further configured to send second scheduling information to the first communication device 90, and retransmit the first data to the first communication device 90 according to the second scheduling information.
  • the first communication device 90 is configured to monitor the second scheduling information, and when the second scheduling information is monitored, receive the first data according to the second scheduling information.
  • the field domain included in the second scheduling information is different from the field domain included in the first scheduling information; the related description of the first scheduling information and the second scheduling information can refer to the related description and design method in the method shown in FIG. Go into details.
  • the second communication device 91 is used to send the first uplink scheduling information to the first communication device 90; the first communication device 90 is used to monitor the first uplink scheduling information, and when the first uplink scheduling information is monitored , Initially transmitting the first data to the second communication device according to the first uplink scheduling information;
  • the second communication device 91 is further configured to send second uplink scheduling information to the first communication device 90.
  • the first communication device 90 is configured to monitor the second uplink scheduling information, and when the second uplink scheduling information is monitored, retransmit the first data to the second communication device according to the second uplink scheduling information.
  • the field domain included in the second uplink scheduling information is different from the field domain included in the first uplink scheduling information; the related description of the first uplink scheduling information and the second uplink scheduling information can refer to the related description and design in the method shown in FIG. 7 The method will not be repeated.
  • the embodiment of the present application also provides a computer-readable storage medium. All or part of the processes in the foregoing method embodiments may be completed by a computer program instructing relevant hardware.
  • the program may be stored in the foregoing computer-readable storage medium. When the program is executed, it may include processes as in the foregoing method embodiments. .
  • the computer-readable storage medium may be the terminal of any of the foregoing embodiments, such as an internal storage unit including a data sending end and/or a data receiving end, such as a hard disk or memory of the terminal.
  • the above-mentioned computer-readable storage medium may also be an external storage device of the above-mentioned terminal, such as a plug-in hard disk equipped on the above-mentioned terminal, a smart media card (SMC), a secure digital (SD) card, and a flash memory card. (flash card) and so on.
  • the aforementioned computer-readable storage medium may also include both an internal storage unit of the aforementioned terminal and an external storage device.
  • the aforementioned computer-readable storage medium is used to store the aforementioned computer program and other programs and data required by the aforementioned terminal.
  • the aforementioned computer-readable storage medium can also be used to temporarily store data that has been output or will be output.
  • Embodiment 1 A data scheduling method, wherein the method is applied to a first communication device, and the method includes:
  • the first data retransmitted between the first communication device and the second communication device is received or sent according to the second scheduling information, the field included in the second scheduling information and the field included in the first scheduling information The domain is different.
  • Embodiment 2 A data scheduling method, wherein the data scheduling method includes:
  • the second communication device sends the first scheduling information to the first communication device
  • the second communication device initially transmits the first data to the first communication device according to the first scheduling information
  • the second communication device After the first data transmission fails, the second communication device sends second scheduling information to the first communication device, and the field domain included in the second scheduling information is different from the field domain included in the first scheduling information;
  • the second communication device retransmits the first data to the first communication device according to the second scheduling information.
  • Embodiment 3 The method according to embodiment 1 or 2, wherein:
  • the length of the second scheduling information is different from the length of the first scheduling information
  • the second scheduling information includes the first field, and the first scheduling information does not include the first field; or,
  • the first scheduling information includes the first field, and the second scheduling information does not include the first field.
  • Embodiment 4 The method according to any one of embodiment 1 to embodiment 3, wherein the search space corresponding to the first scheduling information is different from the search space corresponding to the second scheduling information.
  • Embodiment 5 The method according to any one of Embodiment 1 to Embodiment 4, wherein the monitoring parameter corresponding to the first scheduling information is different from the monitoring parameter corresponding to the second scheduling information, and the monitoring parameters include: the configuration of the search space, One or more types of information in the control resource set CORESET configuration and the wireless network temporary identification RNTI;
  • the configuration of the search space includes one or more of the monitoring period of the search space, the DCI format of the downlink control information that needs to be monitored, the number of candidate set candidates that need to be monitored, and the aggregation level that needs to be monitored.
  • Embodiment 6 The method according to embodiment 4 or embodiment 5, wherein monitoring the second scheduling information sent by the second communication device includes: a first time period after receiving or sending the first data according to the first scheduling information In the search space corresponding to the second scheduling information, the monitoring parameters corresponding to the second scheduling information are used to monitor the second scheduling information.
  • Embodiment 7 The method according to embodiment 6, wherein:
  • the first data is data sent by the second communication device to the first communication device, and the start time of the first time period is equal to or later than the time when the first communication device sends a negative response, and the negative response is used to indicate that the transmission of the first data fails;
  • the first data is data sent by the first communication device to the second communication device, and the start time of the first time period is equal to or later than the time when the first communication device sends the first data to the second communication device according to the first scheduling information.
  • Embodiment 8 The method according to embodiment 1 or 2, wherein:
  • the length of the first scheduling information is the same as the length of the second scheduling information.
  • Embodiment 9 The method according to embodiment 8, wherein:
  • the second scheduling information includes the first field and does not include the second field
  • the first scheduling information includes the second field, but does not include the first field
  • the first field is different from the second field.
  • Embodiment 10 The method according to embodiment 9, wherein the second field field includes i field fields;
  • the total length of the first (i-1) field fields in the i field fields is less than the length of the first field field, and the total length of the i field fields is greater than or equal to the length of the first field field.
  • Embodiment 11 The method according to embodiment 9 or 10, wherein the first scheduling information and the second scheduling information include the hybrid automatic repeat request process number HPN and the new data indication NDI, or the first scheduling information and the second scheduling information Scheduling information includes carrier indication fields CIF, HPN and NDI;
  • the position and length of the HPN in the first scheduling information are the same as the position and length of the HPN in the second scheduling information, and the position and length of the NDI in the first scheduling information are the same as the position and length of the NDI in the second scheduling information,
  • the position and length of the CIF in the first scheduling information are the same as the position and length of the CIF in the second scheduling information.
  • Embodiment 12 The method according to any one of Embodiment 9 to Embodiment 11, wherein:
  • the first scheduling information or the second scheduling information includes a third field field and a fourth field field, and the third field field indicates the type of at least one fourth field field.
  • Embodiment 13 The method according to any one of Embodiment 9 to Embodiment 12, wherein the first data is uplink data, and the first field field or the second field field includes one or more of the following:
  • UL-SCH indicator FDRA, BWP indicator, antenna port, SRS resource indicator, RV, TDRA, TPC command, SRS triggering indicator, CSI-RS triggering, precoding indicator, beta_offset indicator, frequencyhopping indicator, PTRS-DMRS association indicator, DMRS sequence initialization, CBGTI.
  • Embodiment 14 The method according to any one of Embodiment 9 to Embodiment 12, wherein the first data is downlink data, and the first field or the second field includes one or more of the following:
  • FDRA Downlink Reference Signal
  • BWP indicator Downlink Reference Signal
  • antenna port SRS resource indicator, TCI, VRB-to-PRB mapping, PRB bundling size indicator, rate matching indicator, RV, TDRA, TPC command, SRS trigger indicator, CSI-RS trigger indicator, DMRS sequence initialization , CBGTI, CBGFI.
  • Embodiment 15 A communication device, wherein the communication device includes a processing unit and a transceiver unit;
  • the transceiver unit is configured to receive or send the first data initially transmitted between the first communication device and the second communication device according to the first scheduling information when the processing unit monitors the first scheduling information;
  • the processing unit is also used to monitor the second scheduling information sent by the second communication device
  • the transceiver unit is further configured to receive or send the first data retransmitted between the first communication device and the second communication device according to the second schedule information when the processing unit monitors the second schedule information, and the field included in the second schedule information It is different from the field included in the first scheduling information.
  • Embodiment 16 A communication device, wherein the communication device includes: a processing unit and a transceiver unit;
  • the transceiver unit is configured to send first scheduling information to the first communication device, and initially transmit the first data to the first communication device according to the first scheduling information;
  • the transceiver unit is further configured to send second scheduling information to the first communication device after the first data transmission fails, and to retransmit the first data to the first communication device according to the second scheduling information; the second scheduling information includes the field and The first scheduling information includes different fields.
  • Embodiment 17 The communication device according to embodiment 15 or embodiment 16, wherein:
  • the length of the second scheduling information is different from the length of the first scheduling information
  • the second scheduling information includes the first field, and the first scheduling information does not include the first field; or,
  • the first scheduling information includes the first field, and the second scheduling information does not include the first field.
  • Embodiment 18 The communication device according to any one of Embodiment 15 to Embodiment 17, wherein the search space corresponding to the first scheduling information is different from the search space corresponding to the second scheduling information.
  • Embodiment 19 The communication device according to any one of Embodiment 15 to Embodiment 18, wherein the monitoring parameter corresponding to the first scheduling information is different from the monitoring parameter corresponding to the second scheduling information, and the monitoring parameter includes: the configuration of the search space , Control resource set CORESET configuration, wireless network temporary identification RNTI one or more of information;
  • the configuration of the search space includes one or more of the monitoring period of the search space, the DCI format of the downlink control information that needs to be monitored, the number of candidate set candidates that need to be monitored, and the aggregation level that needs to be monitored.
  • Embodiment 20 The communication device according to embodiment 18 or embodiment 19, wherein the processing unit is specifically configured to: in the first time period after receiving or sending the first data according to the first scheduling information, In the corresponding search space, the monitoring parameters corresponding to the second scheduling information are used to monitor the second scheduling information.
  • Embodiment 21 The communication device according to embodiment 20, wherein:
  • the first data is data sent by the second communication device to the first communication device, and the start time of the first time period is equal to or later than the time when the first communication device sends a negative response, and the negative response is used to indicate that the transmission of the first data fails;
  • the first data is data sent by the first communication device to the second communication device, and the start time of the first time period is equal to or later than the time when the first communication device sends the first data to the second communication device according to the first scheduling information.
  • Embodiment 22 The communication device according to embodiment 15 or embodiment 16, wherein:
  • the length of the first scheduling information is the same as the length of the second scheduling information.
  • Embodiment 23 The communication device according to embodiment 20, wherein:
  • the second scheduling information includes the first field and does not include the second field
  • the first scheduling information includes the second field, but does not include the first field
  • the first field is different from the second field.
  • Embodiment 24 The communication device according to embodiment 23, wherein the second field field includes i field fields;
  • the total length of the first (i-1) field fields in the i field fields is less than the length of the first field field, and the total length of the i field fields is greater than or equal to the length of the first field field.
  • Embodiment 25 The communication device according to embodiment 23 or 24, wherein the first scheduling information and the second scheduling information include a hybrid automatic repeat request process number HPN and a new data indication NDI, or the first scheduling information and the first scheduling information 2.
  • Scheduling information includes carrier indication fields CIF, HPN and NDI;
  • the position and length of the HPN in the first scheduling information are the same as the position and length of the HPN in the second scheduling information, and the position and length of the NDI in the first scheduling information are the same as the position and length of the NDI in the second scheduling information,
  • the position and length of the CIF in the first scheduling information are the same as the position and length of the CIF in the second scheduling information.
  • Embodiment 26 The communication device according to any one of Embodiment 23 to Embodiment 25, wherein:
  • the first scheduling information or the second scheduling information includes a third field field and a fourth field field, and the third field field indicates the type of at least one fourth field field.
  • Embodiment 27 The communication device according to any one of Embodiment 23 to Embodiment 26, wherein the first data is uplink data, and the first field field or the second field field includes one or more of the following:
  • UL-SCH indicator FDRA, BWP indicator, antenna port, SRS resource indicator, RV, TDRA, TPC command, SRS triggering indicator, CSI-RS triggering, precoding indicator, beta_offset indicator, frequencyhopping indicator, PTRS-DMRS association indicator, DMRS sequence initialization, CBGTI.
  • Embodiment 28 The communication device according to any one of Embodiment 23 to Embodiment 26, wherein the first data is downlink data, and the first field or the second field includes one or more of the following:
  • FDRA Downlink Reference Signal
  • BWP indicator Downlink Reference Signal
  • antenna port SRS resource indicator, TCI, VRB-to-PRB mapping, PRB bundling size indicator, rate matching indicator, RV, TDRA, TPC command, SRS trigger indicator, CSI-RS trigger indicator, DMRS sequence initialization , CBGTI, CBGFI.
  • Embodiment 29 A communication system, wherein the communication system includes:
  • the second communication device is configured to send the first scheduling information to the first communication device
  • the first communication device is configured to monitor the first scheduling information, and when the first scheduling information is monitored, send or receive the first data initially transmitted between the first communication device and the second communication device according to the first scheduling information;
  • the second communication device is further configured to send second scheduling information to the first communication device after the first data transmission fails; the field domain included in the second scheduling information is different from the field domain included in the first scheduling information;
  • the first communication device is configured to monitor the second scheduling information, and when the second scheduling information is monitored, send or receive the first data retransmitted between the first communication device and the second communication device according to the second scheduling information.
  • Embodiment 30 a communication device, characterized by comprising: a processor and a memory; the memory is used to store program instructions; the processor is used to call the program instructions in the memory, and executes The data scheduling method described in any one of Example 14.
  • the communication device described in Embodiment 31 and Embodiment 30 is a terminal or a chip applicable to a terminal, or the communication device is a network device or a chip applicable to a network device.
  • Embodiment 32 A communication device, characterized by comprising one or more devices for executing the data scheduling method according to any one of Embodiments 1 to 14.
  • Embodiment 33 A computer-readable storage medium, wherein the computer-readable storage medium includes computer instructions, and when the computer instructions run on a computer, the computer executes the data scheduling method as in any one of Embodiment 1 to Embodiment 14. .
  • Embodiment 34 A computer program product, wherein the computer program product includes computer instructions, and when the computer instructions are executed on the computer, the computer executes the data scheduling method as described in any one of Embodiment 1 to Embodiment 14.
  • At least one (item) refers to one or more
  • “multiple” refers to two or more than two
  • “at least two (item)” refers to two or three And three or more
  • "and/or” is used to describe the association relationship of the associated objects, indicating that there can be three kinds of relationships, for example, "A and/or B” can mean: there is only A, only B and A at the same time And B three cases, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an "or” relationship.
  • At least one item (a) refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, and c can be single or multiple.
  • B corresponding to A means that B is associated with A.
  • B can be determined from A.
  • determining B according to A does not mean that B is determined only according to A, and B can also be determined according to A and/or other information.
  • connection appearing in the embodiments of the present application refers to various connection modes such as direct connection or indirect connection to implement communication between devices, which is not limited in the embodiments of the present application.
  • transmit/transmission appearing in the embodiments of the present application refers to two-way transmission, including sending and/or receiving actions.
  • the “transmission” in the embodiment of the present application includes the sending of data, the receiving of data, or the sending of data and the receiving of data.
  • the data transmission here includes uplink and/or downlink data transmission.
  • Data may include channels and/or signals.
  • Uplink data transmission means uplink channel and/or uplink signal transmission
  • downlink data transmission means downlink channel and/or downlink signal transmission.
  • the "network” and “system” appearing in the embodiments of this application express the same concept, and the communication system is the communication network.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, for example, multiple units or components may be divided. It can be combined or integrated into another device, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate, and the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the existing technology, or all or part of the technical solutions can be embodied in the form of a software product, and the software product is stored in a storage medium. , Including several instructions to enable a device, such as a single-chip microcomputer, a chip, etc., or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开一种数据调度方法及装置。包括第一通信装置监测第二通信装置发送的第一调度信息,当监测到第一调度信息,根据第一调度信息发送或接收第一通信装置与第二通信装置之间初传的第一数据,监测第二通信装置发送的第二调度信息,当监测到第二调度信息,根据第二调度信息发送或接收第一通信装置与第二通信装置之间重传的第一数据,第一调度信息包括的字段域与第二调度信息包括的字段域不同。本申请方案可广泛适用于通信技术领域、人工智能、车联网、智能家居联网等领域。

Description

一种数据调度方法及装置
本申请要求于2020年5月21日提交国家知识产权局、申请号为202010437349.7、申请名称为“一种数据调度方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种数据调度方法及装置。
背景技术
在第三代移动通信标准化组织(3rd generation partnership project,3GPP)规定的协议版本15(Rel-15)中,两个通信装置之间进行数据传输时,会在数据传输之前发送一个调度信息,根据该调度信息的指示进行数据传输。
例如,以两个通信装置分别为网络设备和终端为例,在网络设备调度终端的数据信道进行数据传输之前,网络设备向终端发送一个下行控制信息(downlink control information,DCI),DCI携带在物理下行控制信道(physical downlink control channel,PDCCH)中,通过该DCI调度终端的数据信道,例如通过DCI调度终端的物理下行共享信道(physical downlink shared channel,PDSCH),或者,通过DCI调度终端的物理上行共享信道(physical uplink shared channel,PUSCH),该DCI可以指示共享信道的传输参数,如:共享信道的时域资源位置等,终端根据DCI的指示,在PDSCH/PUSCH的时域资源位置传输数据。
由上可知,调度信息为终端与网络设备之间的数据传输提供保障,因此,如何提高调度信息的传输性能成为亟待解决的问题。
发明内容
本申请实施例提供一种数据调度方法及装置,提高调度信息的传输性能。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,提供一种数据调度方法,该方法应用于第一通信装置,所述方法包括:监测第二通信装置发送的第一调度信息,当监测到第一调度信息,根据第一调度信息发送或接收第一通信装置与第二通信装置之间初传的第一数据,监测第二通信装置发送的第二调度信息,当监测到第二调度信息,根据第二调度信息发送或接收第一通信装置与第二通信装置之间重传的第一数据,第一调度信息包括的字段域与第二调度信息的字段域不同。
基于第一方面提供的方法,可以将用于第一通信装置与第二通信装置之间初传数据的第一调度信息与用于调度第一通信装置与第二通信装置之间重传数据的第二调度信息设计成包括不同的字段域,无需将第一调度信息与第二调度信息设置为包括相同字段域,两个调度信息相比,其中一个调度信息携带的字段域会比较少,降低该调度信息的负荷,实现在用于传输调度信息的资源上传输较少的比特数即可实现该调度信息调度数据的功能,提高该调度信息的传输可靠性以及覆盖范围。
一种可能的设计中,第二调度信息的长度设置为与第一调度信息的长度不同,如第二调度信息的长度长于第一调度信息,二者相比,第二调度信息包括第一字段域,第一调度信息不包括第一字段域;或者,第一调度信息的长度长于第二调度信息,二者相比,第一 调度信息包括第一字段域,第二调度信息不包括第一字段域。
基于该可能的设计,将第一字段域从第一调度信息中去掉/删减掉,使第一调度信息中携带较少的字段域,或者,将第一字段域从第二调度信息中去掉/删减掉,使第二调度信息中携带较少的字段域,降低第一调度信息或第二调度信息的比特数,提高调度信息传输的可靠性以及覆盖范围。
一种可能的设计中,第一调度信息对应的搜索空间与第二调度信息对应的搜索空间不同。第一调度信息对应的监测参数与第二调度信息对应的监测参数不同,监测参数包括:搜索空间的配置、控制资源集合配置、无线网络临时标识中的一种或者多种信息;搜索空间的配置包括搜索空间的监测周期、需要监测的下行控制信息格式、需要监测的候选集数量、需要监测的聚合等级中的一种或多种信息。
基于该可能的设计,可以避免第一调度信息的长度与第二调度信息的长度不同时,第一通信装置需要在监测调度信息时将解码器的输出长度设置为不同进行解码处理,盲检(blind decoding,BD)次数增加,消耗终端的功耗的问题,保证第二通信装置的盲检次数不会过大。
一种可能的设计中,监测第二通信装置发送的第二调度信息包括:在根据第一调度信息接收或发送第一数据后的第一时间段内,在第二调度信息对应的搜索空间内,利用第二调度信息对应的监测参数监测第二调度信息。基于该可能的设计,设置监测第二调度信息的时间段,在第二调度信息的时间段内仅采用第二调度信息对应的监测参数进行监测,不用尝试利用第一调度信息的监测参数以及第二调度信息的监测参数进行盲目监测,降低盲目监测次数,降低第一通信装置监测第二调度信息的功率消耗。
一种可能的设计中,将第一调度信息的长度设置为与第二调度信息的长度相同,即将初传与重传时的调度信息的长度对齐,避免第一通信装置需要在监测调度信息时将解码器的输出长度设置为多个不同的长度进行解码处理,增加盲检次数,加大第一通信装置的功率消耗的问题。
一种可能的设计中,在第二调度信息中加入第一字段域,将第二字段域从第一调度信息中去掉,使得第二调度信息包括第一字段域,不包括第二字段域;为了使第一调度信息与第二调度信息的长度对齐,第一调度信息包括第二字段域,不包括第一字段域,第一字段域与第二字段域不同。基于该可能的设计,在往调度信息中增加字段域时,可以通过将该调度信息中的其他字段域删除/去掉/删减来保证初传时的调度信息的长度与重传时的调度信息的长度对齐,简单易行。
一种可能的设计中,第二字段域包括i个字段,i个字段中前(i-1)个字段的总长度小于第一字段域的长度,i个字段的总长度大于或等于第一字段域的长度。基于该可能的设计,可以在将第一字段域包括在第二调度信息时,依次去掉第二字段域包括的i个字段域,直至去掉最后一个字段域后满足去掉的第二字段域的总长度小于或等于第一字段域的长度,通信双方可以基于该规则将第一字段域包括在第二调度信息、去掉第二调度信息中的第二字段域,使两个调度信息对齐,实现方式简单易行。
一种可能的设计中,第一调度信息与第二调度信息包括混合自动重传请求进程号(HARQ processing number,HPN)和新数据指示(new data indicator,NDI),或者,第一调度信息与第二调度信息包括载波指示域(carrier indicator field,CIF)、HPN和NDI; HPN在第一调度信息中的位置和长度与HPN在第二调度信息中的位置和长度相同,NDI在第一调度信息中的位置和长度与NDI在第二调度信息中的位置和长度相同,CIF在第一调度信息中的位置和长度与CIF在第二调度信息中的位置和长度相同。
基于该可能的设计,可以在载波聚合场景或非载波聚合场景下,将HPN、NDI携带在初传时的第一调度信息以及重传时的第二调度信息中,且HPN、NDI的具体取值以及在调度信息中占用的比特位置必须相同,以保证识别相同HARQ进程、相同载波上的相同数据的初传和重传。
一种可能的设计中,第一调度信息或者第二调度信息包括第三字段域和第四字段域,第三字段域指示至少一个第四字段域的类型。基于该可能的设计,可以在调度信息中携带用于指示该调度信息中保留的字段域的类型的字段域,方便第二通信装置灵活的删减/保留某些字段域,并将该删减/保留的字段域指示给第一通信装置,简单易行。
一种可能的设计中,第一数据为上行数据,第一字段域或第二字段域包括下述一种或者多种:上行共享信道指示UL-SCH indicator、频域资源分配FDRA、带宽部分指示BWP indicator、天线端口antenna port、探测参考信号资源指示SRS resource indicator、冗余版本RV,时域资源分配TDRA,传输功率控制TPC命令,SRS triggering触发指示、信道状态信息参考信号触发指示CSI-RS triggering,预编码precoding指示,beta偏移指示beta_offset indicator,跳频frequency hopping指示,相位跟踪参考信号-解调参考信号PTRS-DMRS关联指示,解调参考信号初始序列DMRS sequence initialization,码块组传输指示CBGTI。又一种可能的设计中,第一数据为下行数据,第一字段域或第二字段域包括下述一种或者多种:频域资源分配FDRA、BWP indicator、antenna port、SRS resource indicator、传输配置指示TCI、虚拟资源块到物理资源块的映射关系VRB-to-PRB mapping,物理资源块捆绑尺寸指示PRB bundling size indicator,速率匹配指示rate matching indicator,冗余版本RV,时域资源分配TDRA,TPC命令,SRS触发指示,CSI-RS触发指示,DMRS sequence initialization,CBGTI、码块组清除指示CBGFI。
基于该可能的设计,设计多种可删减的字段域,增加删减调度信息的字段域的灵活性。
第二方面,本申请提供一种通信装置,该通信装置可以为上述第一通信装置或者第一通信装置中的芯片或者片上***,还可以为第一通信装置中用于实现第一方面或第一方面的任一可能的设计所述的方法的功能模块。该第一通信装置可以实现上述各方面或者各可能的设计中第一通信装置所执行的功能,所述功能可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。如:该第一通信装置可以包括:处理单元、收发单元;
处理单元,监测第二通信装置发送的第一调度信息;
收发单元,用于当处理单元监测到第一调度信息,根据第一调度信息发送或接收第一通信装置与第二通信装置之间初传的第一数据;
处理单元,还用于监测第二通信装置发送的第二调度信息;
收发单元,还用于当处理单元监测到第二调度信息,根据第二调度信息发送或接收第一通信装置与第二通信装置之间重传的第一数据,第一调度信息包括的字段域与第二调度信息的字段域不同。
具体的,处理单元以及收发单元的相关执行动作、第一调度信息以及第二调度信息的 相关描述可参照第一方面或者第一方面的任一可能的设计中所述,不予赘述。
第三方面,提供了一种通信装置,该通信装置可以为第一通信装置或者第一通信装置中的芯片或者片上***。该第一通信装置可以实现上述各方面或者各可能的设计中第一通信装置所执行的功能,所述功能可以通过硬件实现。一种可能的设计中,该第一通信装置可以包括:处理器和通信接口,处理器可以用于支持第一通信装置实现上述第一方面或者第一方面的任一种可能的设计中所涉及的功能,例如:处理器用于监测第二通信装置发送的第一调度信息,当监测到第一调度信息,触发通信接口根据第一调度信息发送或接收第一通信装置与第二通信装置之间初传的第一数据,以及,处理器用于监测第二通信装置发送的第二调度信息,当监测到第二调度信息,触发通信接口根据第二调度信息发送或接收第一通信装置与第二通信装置之间重传的第一数据,第一调度信息包括的字段域与第二调度信息的字段域不同。在又一种可能的设计中,所述第一通信装置还可以包括存储器,存储器,用于保存第一通信装置必要的计算机执行指令和数据。当该第一通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该第一通信装置执行如上述第一方面或者第一方面的任一种可能的设计所述的数据调度方法。
第四方面,提供了一种计算机可读存储介质,该计算机可读存储介质可以为可读的非易失性存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或者上述方面的任一种可能的设计所述的数据调度方法。
第五方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或者上述方面的任一种可能的设计所述的数据调度方法。
第六方面,提供了一种通信装置,该通信装置可以为第一通信装置或者第一通信装置中的芯片或者片上***,该第一通信装置包括一个或多个处理器、一个或多个存储器。所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,使所述第一通信装置执行如第一方面或者第一方面的任一可能的设计所述的数据调度方法。
其中,第三方面至第六方面中任一种设计方式所带来的技术效果可参见上述第一方面或者第一方面的任一种可能的设计所带来的技术效果,不再赘述。
第七方面,本申请实施例还提供一种数据调度方法,该方法可以包括:第二通信装置向第一通信装置发送第一调度信息,根据第一调度信息向第一通信装置初传第一数据;第一数据传输失败后,第二通信装置向第一通信装置发送第二调度信息,第二调度信息包括的字段域与第一调度信息包括的字段域不同;第二通信装置根据第二调度信息向第一通信装置重传第一数据。
其中,第一调度信息、第二调度信息的相关描述可参照第一方面或者第一方面的任一可能的设计中所述,不予赘述。
第八方面,本申请实施例提供一种通信***,该通信***可以包括:如第二方面或第三方面中任一方面所述的第一通信装置、第二通信装置。
附图说明
图1为本申请实施例提供的一种通信***的简化示意图;
图2为本申请实施例提供的一种通信装置示意图;
图3为本申请实施例提供的一种数据调度方法流程图;
图4为本申请实施例提供的一种盲检调度信息的示意图;
图5a为本申请实施例提供的一种监测调度信息的示意图;
图5b为本申请实施例提供的一种监测调度信息的示意图;
图6为本申请实施例提供的一种删减字段域的方法示意图;
图7为本申请实施例提供的又一种数据调度方法的流程图;
图8为本申请实施例提供的一种通信装置80的组成示意图;
图9为本申请实施例提供的一种通信***的组成示意图。
具体实施方式
通信***中,根据通信装置之间进行数据传输时的传输粒度不同,可以将通信装置之间的数据传输分为:基于传输块(transmission block,TB)的传输、基于码块组(code block group,CBG)的传输。TB和CBG为不同的传输粒度,一个TB中可以包括N个CBG,N的取值可以为{2,4,6,8,16},如以一个TB是800比特,一个TB包括8个CBG为例,一个CBG可以是100比特,N的具体取值可以由网络设备配置给通信装置。除基于TB的传输和基于CBG的传输之外,通信装置之间的数据传输还可以是基于其他传输粒度的传输,不予限制。本申请实施例以无线通信之间的数据传输是基于TB的传输(TB-based transmission)或者基于CBG的传输(CBG-based transmission)为例进行说明,基于其他传输粒度传输时的数据调度方式也可参照本申请所述。
在基于TB或CBG的传输中,为提高通信装置之间的数据传输质量,引入了混合自动重传(hybrid automatic repeat request,HARQ)机制,使用停等协议(stop-and-wait protocol)来进行数据传输。HARQ机制包括:发端(发送设备)向收端(接收设备)初传数据后,停下来等待收端反馈的确认信息,确认信息包括肯定应答(acknowledgement,ACK)或否定应答(non-acknowledgement,NACK)。若发端接收到收端反馈的ACK,则确定本次传输成功;若发端收到收端反馈的NACK,则表示本次数据传输失败,发端向收端重传数据,以此提高数据传输质量。
其中,在基于TB的传输中,收端可以使用1比特的信息对该TB进行ACK或NACK的确认,如若该TB包括的部分或全部数据传输失败时,对该TB进行NACK的确认,若该TB包括的全部数据传输成功后,对该TB进行ACK的确认;收端将TB对应的ACK或NACK反馈给发端,如果发端收到该TB对应的NACK,则会对该TB进行重传。在基于CBG的传输中,收端接收到发端发送的一个TB后,对该TB中包含的每个CBG都用1个比特的信息进行ACK或NACK的确认,并将各个CGB对应的ACK或NACK反馈给收端;若收端接收到某个CBG对应的NACK,则对该CBG进行重传,而其他没有受到影响的CBG无需重传,减小重传的开销。
本申请所述的发端可以指进行数据传输的通信装置中发送数据的装置,收端可以指进行数据传输的通信装置中接收数据的装置。下面以进行数据通信的通信装置包括第一通信装置、第二通信装置,第一通信装置与第二通信装置之间传输第一数据,用于调度初传的第一数据的调度信息为第一调度信息、用于调度重传的第一数据的调度信息为第二调度信息为例进行说明。需要说明的是,本申请所述的传输可以包括初传(initial transmission)或者重传(retransmission),初传还可以替换描述为新传(new transmission)或者首传或 者第一次传输,初传可以指首次发送第一数据,重传可以指在首次发送第一数据之后再次发送第一数据或者在重传第一数据之后再次发送第一数据。
一种示例中,第一通信装置可以为终端、第二通信装置可以为网络设备,终端可以向网络设备发送第一数据,网络设备也可以向终端发送第一数据,终端向网络设备发送的第一数据可以称为上行数据,网络设备向终端发送的第一数据可以称为下行数据,用于调度第一数据的调度信息可以为下行控制信息(downlink control information,DCI)。又一种示例中,第一通信装置可以为终端,第二通信装置也可以为终端,第一数据可以为SL数据,用于调度第一数据的调度信息可以为侧行链路控制信息(sidelink control information,SCI)。
以调度信息为DCI为例,用于调度初传数据的第一调度信息、用于调度重传数据的第二调度信息可以为下述任一格式(format)的DCI:DCI format1-0、DCI format1-1、DCI format1-2、DCI format0-1、DCI format0-1、DCI format0-2。用于调度初传数据的第一调度信息、用于调度重传数据的第二调度信息可以包括下述字段域(1)~字段域(31)中的一种或多种字段域。其中,每个字段域在调度信息中的位置、每个字段域占用的比特数、每个字段域的取值所指示的含义可以是协议预先规定好的或者是根据网络设备配置确定的。下面以一些字段域为例,进行介绍:
(1)传输块TB1的调制和编码方案(modulation and coding scheme,MCS)。
MCS,用于规定数据传输时所使用的调制编码方式,MCS可以占5个比特(bit)。
(2)新数据指示(new data indicate,NDI)。
NDI可以用来判断数据是初传还是重传,NDI占1bit。通过NDI是否发生反转(toggled)来判断当前的数据是初传还是重传:若某个上行HARQ进程对应的DCI中的NDI,与上次的相比发生了反转,则表示终端本次可以进行上行初传;如果NDI与上次的相同,那么终端需要执行上行自适应重传。所谓NDI反转,是指NDI的值从上次的0变成本次的1或者从1变成0。
(3)冗余版本(redundancy version,RV)。
RV,用于实现增量冗余(incremental redundancy,IR)的HARQ传输,即将编码器生成的编码后比特分成若干组,每个RV定义一个传输开始点,首次传送和各次HARQ重传可以分别使用不同的RV,以实现冗余比特的逐步积累,完成增量冗余HARQ操作。
(4)传输功率控制(transmission power control,TPC)命令。
TPC命令可以用来调整指定时序信道上的发送功率,当终端被配置了闭环功率控制时,TCP命令可以固定占2bit。
(5)物理上行控制信道(physical uplink control channel,PUCCH)资源指示。
PUCCH资源指示可以用于指示终端发送HARQ-ACK反馈、信道状态信息(channel state information,CSI)反馈等信息使用的PUCCH资源,具体的,可以指示PUCCH占用的时频资源位置。
(6)探测参考信号(sounding reference signal,SRS)资源指示(resource indicator)。
SRS资源指示可以用于指示物理上行共享信道(physical uplink shared channel,PUSCH)发送的时候使用的天线端口的参考信号,其中SRS是上行的参考信号,
(7)SRS触发指示(triggering indicator)
SRS触发指示可以用于触发非周期SRS的发送。
(8)信道状态信息-参考信号(channel state information-reference signal,CSI-RS)触发指示(triggering indicator)
CSI-RS触发指示可以用于触发非周期CSI测量以及反馈。
(9)时域资源分配(time domain resource assignment,TDRA)。
TDRA可以用于指示用于数据传输的时域资源,包括数据传输使用的时隙,以及在时隙中使用的符号。
(10)频域资源分配(frequency domain resource assignment,FDRA)。
FDRA可以用于指示用于数据传输的频域资源,包括数据传输使用的物理资源块(physical resource block,PRB)是哪些。
(11)载波指示域(carrier indicate field,CIF)。
CIF用于载波聚合场景,可以用于指示数据占用的载波的索引值。
(12)带宽部分(bandwidth part,BWP)指示(indicator)。
BWP指示可以用于指示用于数据传输的BWP,即终端接收/发送数据时的激活(active)BWP。
(13)虚拟资源块(virtual resource block,VRB)到物理资源块(physical resource block,PRB)的映射关系:VRB-to PRB mapping。
VRB-to-PRB mapping指示信息可以用于指示VRB映射到PRB时采用的映射方式,具体的可以为交织映射或非交织映射。
(14)PRB捆绑尺寸指示(bundling size indicator)。
PRB捆绑尺寸指示可以用于指示PRB捆绑尺寸的大小,用于信道预编码。
(16)速率匹配指示(rate matching indicator)。
速率匹配指示可以用于指示当前传输是否存在速率匹配资源。
(17)零功率信道状态信息参考信号(zero power channel state information-reference signal,ZP CSI-RS)触发。
零功率CSI-RS触发可以用于指示是否有零功率信道状态信息参考信号发送,在被指示的资源上可能存在邻区的CSI-RS的发送,用于终端对邻区进行测量。
(20)下行分配索引(downlink assignment index,DAI)。
DAI可以用于指示当前物理下行共享信道(physical downlink shared channel,PDSCH)对应的反馈信息在动态HARQ码本中的位置,以及动态HARQ码本的长度。
(21)PDSCH到HARQ反馈时序指示:PDSCH-to-HARQ反馈时序指示。
PDSCH-to-HARQ反馈时序指示可以用于指示PDSCH与对应的HARQ反馈之间的时隙间隔。
(22)传输配置指示(transmission configuration indicator,TCI)。
TCI可以用于指示PDSCH的空域滤波信息,或者波束信息,用于终端选择合适的接收参数接收PDSCH。
(23)码块组传输指示(CBG transmission indication,CBGTI)。
当终端被配置了采用基于CBG的传输时,调度信息中会包含这个字段域。CBGTI可以用于指示CBG中的哪些CBG被调度了,CBGTI占用的比特个数与被调度的CGB的个 数相同,若有N个CBG被调度,则CBGTI占用N个比特数。
(24)码块组清除指示(CBG flush indication,CBGFI)。
当终端被配置了采用基于CBG的传输时,调度上行数据的调度信息中会包含这个字段域。CBGFI可以用于指示是否删掉(flush)/清空之前已经接收并保存在缓存中的数据,CBGFI固定占用1bit。
(25)混合自动重传请求进程数(HARQ processing number,HPN)。
HPN可以用于指示数据占用的HARQ进程的索引值。
(26)天线端口(antenna port)指示。
antenna port指示可以用于指示用于数据传输时使用的天线端口。
(27)解调参考信号(demodulation reference signal,DMRS)序列初始化(sequence initialization)。
DMRS序列初始化可以用于指示DMRS的序列初始化参数。
(28)上行共享信道指示(uplink shared channel indicator,UL-SCH indicator)。
UL-SCH指示可以用于指示当前PUSCH中是否携带UL-SCH。
(29)跳频(frequency hopping)指示。
跳频指示,固定占用1bit,可以用于指示是否跳频。当该bit值=0时,表示后续的资源分配字段不采用跳频,当该bit值=1时,表示采用跳频。
(30)预编码(precoding)指示(indicator)。
预编码指示可以用于指示当前PUSCH使用的预编码矩阵。
(31)相位跟踪参考信号(phase tracking reference signal,PTRS)-DMRS关联指示。
PTRS-DMRS关联指示可以用于指示PTRS与DMRS之间的关联信息。
在HARQ机制中,无论是调度数据初传的第一调度信息,还是调度数据重传的第二调度信息,其中包含的字段域都相同,这可能会影响调度信息的传输性能。例如,以调度信息为DCI为例,在网络设备与终端进行数据传输时,当终端被配置了采用基于CBG的传输时,用于调度初传数据的DCI、用于调度重传数据的DCI中均需要携带CBGTI,即使是初传,默认全部CGB被调度时,也需要携带CBGTI,在调度信息中增加了额外的比特,加大了调度信息的负荷(payload),使得调度信息传输距离受限,导致只有距离较近的通信装置能够准确接收到并解析出该调度信息,降低了调度信息的覆盖范围。
为解决该技术问题,本申请将用于调度初传的第一数据的第一调度信息包括的字段域与用于调度重传的第一数据的第二调度信息包括的字段域设置为不同,通过删减调度信息中原本包括的一些字段域来降低调度信息的负荷,来提高调度信息的传输可靠性以及覆盖范围,同时保留调度信息中必须包含的字段域,不能被删减的字段域,来保证调度信息调度数据的功能。
本申请中,调度信息中可以被删减的字段域称为可删减的字段域,可删减的字段域被删减掉之后不影响调度信息的调度功能,被删减掉的字段域所指示的内容/信息可以从本次调度之前的其他调度信息中获取到或者默认被删减掉的字段域所指示的内容/信息为预先设置的默认值。下面针对上述的字段域(1)~字段域(31)中哪些可以作为可删减的字段域,被删减,哪些是不可删减的字段域,必须携带在调度信息的字段域进行说明。
(1)MCS为可删减的字段域。
在初传数据或者首次传输数据时,初传数据的调度信息中可以携带MCS指示,也可以不携带MCS指示,而是采用默认的MCS取值(例如默认MCS为0)。在重传数据时,调度重传数据的调度信息可以携带MCS指示,也可以不携带MCS指示,而是默认重传数据时的MCS与初传数据时的MCS相同,即默认初传数据和重传数据时的调制编码格式相同。
(2)NDI为不可删减的字段域。
用于调度初传数据的调度信息、以及用于调度重传数据的调度信息中必须包括NDI,根据两类调度信息包括的NDI的取值,以区分相同数据的初传或者重传。
(3)RV为可删减的字段域。
在初传数据或者首次传输数据时,调度初传数据的调度信息中可以携带RV字段域,也可以不用携带RV字段域,而是采用默认的RV取值(例如默认RV为0)。在重传数据时,调度重传数据的调度信息可以携带RV字段域,也可以不携带,若不携带,则默认重传数据时的RV与初传数据时的RV相同。
(4)TPC命令为可删减的字段域。
在初传数据或者首次传输数据时,调度初传数据的调度信息中可以携带TPC字段域,也可以不用携带TPC命名字段域,而是采用默认的发送功率(例如默认TPC命令为0dB)。在重传数据时,调度重传数据的调度信息可以携带TPC命名字段域,也可以不携带,若不携带,则默认重传数据时的发送功率与初传数据时的发送功率相同(即认为TPC命令为0dB)。
(5)PUCCH资源指示为可删减的字段域。
在初传数据或者首次传输数据时,调度初传数据的调度信息中可以携带PUCCH资源指示字段域,也可以不用携带PUCCH资源指示字段域,而是采用默认的PUCCH资源(例如使用PUCCH资源0)。在重传数据时,调度重传数据的调度信息可以携带PUCCH资源指示字段域,也可以不携带,若不携带,则默认重传数据时的PUCCH资源指示与初传数据时的PUCCH资源指示相同,也可以使用默认的PUCCH资源(例如为PUCCH资源0)。
(6)SRS资源指示为可删减的字段域。
在初传数据或者首次传输数据时,调度初传数据的调度信息中可以携带SRS资源指示字段域,也可以不用携带SRS资源指示字段域,而是采用默认的SRS资源(例如使用SRS资源0,即PUSCH与SRS资源0使用相同的天线端口)。在重传数据时,调度重传数据的调度信息可以携带SRS资源指示字段域,也可以不携带,若不携带,则默认重传数据时的SRS资源指示与初传数据时的SRS资源指示相同,即重传数据与初传数据使用相同的天线端口,也可以使用默认的SRS资源(例如为SRS资源0,即PUSCH与SRS资源0使用相同的天线端口)。
(7)SRS触发指示为可删减的字段域。
在初传数据或者首次传输数据时,调度初传数据的调度信息中可以携带SRS触发指示字段域,也可以不用携带SRS触发指示字段域,而是采用默认的触发方式,例如触发SRS资源0,或者不触发SRS发送。在重传数据时,调度重传数据的调度信息可以携带SRS触发指示字段域,也可以不携带,若不携带,则默认重传数据时的触发的SRS与初传数据时触发的SRS相同,即触发与初传调度DCI触发相同的SRS,也可以使用默认的触发方式, 例如触发SRS资源0,或者不触发SRS发送。
(8)CSI-RS触发指示为可删减的字段域。
在初传数据或者首次传输数据时,调度初传数据的调度信息中可以携带CSI-RS触发指示字段域,也可以不用携带CSI-RS触发指示字段域,而是采用默认的触发方式,例如触发CSI-RS triggering state 0对应的CSI-RS,或者不触发CSI-RS发送。在重传数据时,调度重传数据的调度信息可以携带CSI-RS触发指示字段域,也可以不携带,若不携带,则默认重传数据时的触发的CSI-RS与初传数据时触发的CSI-RS相同,即触发与初传调度DCI触发相同的CSI-RS,也可以使用默认的触发方式,例如触发CSI-RS triggering state 0对应的CSI-RS,或者不触发CSI-RS发送。
(9)TDRA为可删减的字段域。
在初传数据或者首次传输数据时,调度初传数据的调度信息中可以携带TDRA字段域,也可以不用携带TDRA字段域,而是采用预定义/预配置的时域资源分配。在重传数据时,调度重传数据的调度信息可以携带TDRA字段域,也可以不携带TDRA字段域,而是默认重传数据时的TDRA与初传数据时的TDRA相同,即传输数据的时域资源相同,或者采用预定义/预配置的时域资源分配。
(10)FDRA为可删减的字段域。
在初传数据或者首次传输数据时,调度初传数据的调度信息中可以携带FDRA字段域,也可以不用携带FDRA字段域,而是采用预定义/预配置的频域资源分配。在重传数据时,调度重传数据的调度信息可以携带FDRA字段域,也可以不携带FDRA字段域,而是默认重传数据时的FDRA与初传数据时的FDRA相同,即传输数据的频域资源相同,或者采用预定义/预配置的频域资源分配。
(11)CIF为不可删减的字段域。
在初传数据或者首次传输数据时,调度初传数据的调度信息中可以携带CIF。在重传数据时,调度重传数据的调度信息携带CIF字段域,初传、重传时CIF的具体取值以及在调度信息中占用的比特位置必须相同,以保证识别相同数据的初传和重传。
(12)BWP指示为可删减的字段域。
在初传数据或者首次传输数据时,调度初传数据的调度信息中可以携带BWP指示,也可以不用携带BWP指示,而是默认使用当前激活的BWP进行传输。在重传数据时,调度重传数据的调度信息可以携带BWP指示,也可以不携带BWP指示,而是默认重传数据时的BWP与初传数据时的BWP相同,即传输数据的BWP相同。
(13)VRB到PRB的映射关系为可删减的字段域。
在初传数据或者首次传输数据时,调度初传数据的调度信息中可以携带VRB到PRB映射关系字段域,也可以不用携带VRB到PRB映射关系字段域,而是采用默认的映射方式,例如为交织映射或为非交织映射。在重传数据时,调度重传数据的调度信息可以携带VRB到PRB映射关系字段域,也可以不用携带VRB到PRB映射关系字段域,而是默认重传数据时的映射方式与初传数据时的映射方式相同,或者采用默认的映射方式,例如为交织映射或为非交织映射。
(14)PRB捆绑尺寸指示为可删减的字段域。
在初传数据或者首次传输数据时,调度初传数据的调度信息中可以携带PRB捆绑尺寸 指示字段域,也可以不用携带PRB捆绑尺寸指示字段域,而是采用预定义/预配置捆绑尺寸。在重传数据时,调度重传数据的调度信息可以携带PRB捆绑尺寸指示字段域,也可以不用携带PRB捆绑尺寸指示字段域,而是默认重传数据时的捆绑尺寸与初传数据时的捆绑尺寸相同,或者采用预定义/预配置捆绑尺寸。
(16)速率匹配指示为可删减的字段域。
在初传数据或者首次传输数据时,调度初传数据的调度信息中可以携带速率匹配指示字段域,也可以不用携带速率匹配指示字段域,而是默认无速率匹配资源。在重传数据时,调度重传数据的调度信息可以携带速率匹配指示字段域,也可以不用携带速率匹配指示字段域,而是默认重传数据时的速率匹配资源与初传数据时的速率匹配资源相同,或者默认无速率匹配资源。
(17)ZP CSI-RS触发为可删减的字段域。
在初传数据或者首次传输数据时,调度初传数据的调度信息中可以携带ZP CSI-RS触发指示字段域,也可以不用携带ZP CSI-RS触发指示字段域,而是采用默认的触发方式,例如触发CSI-RS triggering state 0对应的ZP CSI-RS,或者不触发ZP CSI-RS。在重传数据时,调度重传数据的调度信息可以携带ZP CSI-RS触发指示字段域,也可以不携带,若不携带,则默认重传数据时的触发的ZP CSI-RS与初传数据时触发的ZP CSI-RS相同,即触发与初传调度DCI触发相同的ZP CSI-RS,也可以使用默认的触发方式,例如触发CSI-RS triggering state 0对应的ZP CSI-RS,或者不触发ZP CSI-RS发送。
(20)DAI为不可删减的字段域。
当终端使用动态HARQ码本时,初传和重传中均使用DAI来确定HARQ码本的内容。
(21)PDSCH到HARQ反馈时序指示为可删减的字段域。
在初传数据或者首次传输数据时,调度初传数据的调度信息中可以携带PDSCH到HARQ反馈时序指示字段域,也可以不用携带PDSCH到HARQ反馈时序指示字段域,而是采用默认的取值,例如等于4。在重传数据时,调度重传数据的调度信息可以携带PDSCH到HARQ反馈时序指示字段域,也可以不携带,若不携带,则默认重传数据时的时序与初传数据时的时序相同,即初传与重传的K1取值相同,也可以使用默认的取值,例如等于4。
(22)TCI为可删减的字段域。
在初传数据或者首次传输数据时,调度初传数据的调度信息中可以携带TCI字段域,也可以不用携带TCI字段域,而是默认采用和PDCCH相同的TCI state。在重传数据时,调度重传数据的调度信息可以携带TCI字段域,也可以不携带,若不携带,则默认重传数据时的TCI state与初传数据时的TCI state相同,也可以默认采用和PDCCH相同的TCI state。
(23)CBGTI为初传时可删减的字段域,为重传时不可删减的字段域。
当终端被配置了采用基于CBG的传输时,调度重传数据的调度信息中必须会包含这个字段域。而调度新传数据的调度信息可以不需要携带这个字段域,此时,可以默认所有CBG均被调度。
(24)CBGFI为可删减的字段域。
当终端被配置了采用基于CBG的传输时,下行数据调度中,在初传数据或者首次传输数据时,调度初传数据的调度信息中可以携带CBGFI字段域,也可以不用携带CBGFI字段域,而是默认不清空或者清空存储数据的缓存。在重传数据时,调度重传数据的调度 信息可以携带CBGFI字段域,也可以不携带,若不携带,则默认重传数据与初传数据的指示相同,也可以默认不清空或者清空存储数据的缓存。
(25)HPN为不可删减的字段域。
在初传数据或者首次传输数据时,调度初传数据的调度信息、调度重传数据的调度信息中均需要携带HPN字段域,且初传、重传时HPN的具体取值以及在调度信息中占用的比特位置必须相同,以区分相同数据的初传或者重传。
(26)antenna port指示为可删减的字段域。
在初传数据或者首次传输数据时,调度初传数据的调度信息中可以携带antenna port指示字段域,也可以不用携带antenna port指示字段域,而是使用预定义/预配置的antenna port。在重传数据时,调度重传数据的调度信息可以携带antenna port指示字段域,也可以不携带antenna port指示字段域,而是默认重传数据时的antenna port与初传数据时的antenna port相同,或者使用预定义/预配置的antenna port。
(27)DMRS序列初始化为可删减的字段域。
在初传数据或者首次传输数据时,调度初传数据的调度信息中可以携带DMRS序列初始化字段域,也可以不用携带DMRS序列初始化字段域,而是使用预定义/预配置的取值,例如为0或1。在重传数据时,调度重传数据的调度信息可以携带DMRS序列初始化字段域,也可以不携带DMRS序列初始化字段域,而是默认重传数据时的DMRS序列初始化指示与初传数据时的相同,或者使用预定义/预配置的取值,例如为0或1。
(28)UL-SCH indicator为可删减的字段域。
在初传数据或者首次传输数据时,调度初传数据的调度信息中可以携带UL-SCH indicator字段域,也可以不用携带UL-SCH indicator字段域,而是使用预定义/预配置的取值,例如为0或1。在重传数据时,调度重传数据的调度信息可以携带UL-SCH indicator字段域,也可以不携带UL-SCH indicator字段域,而是默认重传数据时的UL-SCH indicator与初传数据时的相同,或者使用预定义/预配置的取值,例如为0或1。
(29)跳频指示为可删减的字段域。
在初传数据或者首次传输数据时,调度初传数据的调度信息中可以携带跳频指示字段域,也可以不用携带跳频指示字段域,而是使用预定义/预配置的取值,例如为跳频或不跳频。在重传数据时,调度重传数据的调度信息可以携带跳频指示,也可以不携带跳频指示,而是默认重传数据时的跳频方式与初传数据时的跳频方式相同,或者使用预定义/预配置的取值,例如为跳频或不跳频。
(30)预编码指示为可删减的字段域。
在初传数据或者首次传输数据时,调度初传数据的调度信息中可以携带预编码指示字段域,也可以不用携带预编码指示字段域,而是使用默认的预编码矩阵,例如为预编码矩阵0。在重传数据时,调度重传数据的调度信息可以携带预编码指示字段域,也可以不携带预编码指示字段域,而是默认重传数据时使用的预编码矩阵与初传数据时的相同,或者使用默认的预编码矩阵,例如为预编码矩阵0。
(31)PTRS-DMRS关联指示为可删减的字段域。
在初传数据或者首次传输数据时,调度初传数据的调度信息中可以携带PTRS-DMRS关联指示字段域,也可以不用携带PTRS-DMRS关联指示字段域,而是使用预定义/预配置 的关联方法。在重传数据时,调度重传数据的调度信息可以携带PTRS-DMRS关联指示字段域,也可以不携带PTRS-DMRS关联指示字段域,而是默认重传数据时使用的关联方式与初传数据时的相同,或者使用预定义/预配置的关联方法。
下面结合说明书附图,对本申请实施例提供的数据调度方法进行描述。
本申请实施例提供的数据调度方法可用于***(4th generation,4G)***、长期演进(long term evolution,LTE)***、第五代(5th generation,5G)***、新空口(new radio,NR)***、NR-车与任何事物通信(vehicle-to-everything,V2X)***、物联网***中的任一***,还可以适用于其他下一代通信***等,不予限制。下面以图1所示通信***为例,对本申请实施例提供的数据调度方法进行描述。
图1是本申请实施例提供的一种通信***的示意图,如图1所示,该通信***可以包括网络设备以及多个终端,如:终端1、终端2以及终端3。在图1所示***中,终端与网络设备之间可以通过Uu口进行数据传输,如网络设备可以通过Uu口向终端发送下行数据,终端可以通过Uu口向网络设备发送上行数据。终端与终端之间可以通过SL进行数据传输,如上所述,图1中的网络设备、终端均可以称为通信装置,终端与网络设备之间、终端与终端之间可以是基于TB的传输或者基于CBG的传输。需要说明的是,图1为示例性框架图,图1中包括的节点的数量不受限制,且除图1所示功能节点外,还可以包括其他节点,如:核心网设备、网关设备、应用服务器等等,不予限制。
其中,网络设备主要用于实现终端的资源调度、无线资源管理、无线接入控制等功能。具体的,网络设备可以为小型基站、无线接入点、收发点(transmission receive point,TRP)、传输点(transmission point,TP)以及某种其它接入节点中的任一节点。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片***(例如一个芯片,或多个芯片组成的处理***)或者调制解调器(modem)。下面以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的数据调度方法。
终端可以为终端设备(terminal equipment)或者用户设备(user equipment,UE)或者移动台(mobile station,MS)或者移动终端(mobile terminal,MT)等。具体的,终端可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑,还可以是虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智能家居、车载终端等。本申请实施例中,用于实现终端的功能的装置可以是终端,也可以是能够支持终端实现该功能的装置,例如芯片***(例如一个芯片,或多个芯片组成的处理***)或者调制解调器。下面以用于实现终端的功能的装置是终端为例,描述本申请实施例提供的数据调度方法。
在具体实现时,图1所示各网元,如:终端、网络设备可采用图2所示的组成结构或者包括图2所示的部件。图2为本申请实施例提供的一种通信装置200的组成示意图,当该通信装置200具有本申请实施例所述的终端的功能时,该通信装置200可以为终端或者终端中的芯片或者片上***。当通信装置200具有本申请实施例所述的网络设备的功能时,通信装置200可以为网络设备或者网络设备中的芯片或者片上***。
如图2所示,该通信装置200可以包括处理器201,通信线路202以及通信接口203。 进一步的,该通信装置200还可以包括存储器204。其中,处理器201,存储器204以及通信接口203之间可以通过通信线路202连接。
其中,处理器201可以是中央处理器(central processing unit,CPU)、通用处理器网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)或它们的任意组合。处理器201还可以是其它具有处理功能的装置,如电路、器件或软件模块等。
通信线路202,用于在通信装置200所包括的各部件之间传送信息。
通信接口203,用于与其他设备或其它通信网络进行通信。该其它通信网络可以为以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。通信接口203可以是射频模块、收发器或者任何能够实现通信的装置。本申请实施例以通信接口203为射频模块为例进行说明,其中,射频模块可以包括天线、射频电路等,射频电路可以包括射频集成芯片、功率放大器等。
存储器204,用于存储指令。其中,指令可以是计算机程序。
其中,存储器204可以是只读存储器(read-only memory,ROM)或可存储静态信息和/或指令的其他类型的静态存储设备,也可以是随机存取存储器(random access memory,RAM)或者可存储信息和/或指令的其他类型的动态存储设备,还可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储、磁盘存储介质或其他磁存储设备,光碟存储包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等。
需要说明的是,存储器204可以独立于处理器201存在,也可以和处理器201集成在一起。存储器204可以用于存储指令或者程序代码或者一些数据等。存储器204可以位于通信装置200内,也可以位于通信装置200外,不予限制。处理器201,用于执行存储器204中存储的指令,以实现本申请下述实施例提供的数据调度方法。
在一种示例中,处理器201可以包括一个或多个CPU,例如图2中的CPU0和CPU1。
作为一种可选的实现方式,通信装置200包括多个处理器,例如,除图2中的处理器201之外,还可以包括处理器207。
作为一种可选的实现方式,通信装置200还包括输出设备205和输入设备206。输入设备206是键盘、鼠标、麦克风或操作杆等,输出设备205是显示屏、扬声器(speaker)等设备。
需要说明的是,通信装置200可以是台式机、便携式电脑、网络服务器、移动手机、平板电脑、无线终端、嵌入式设备、芯片***或有图2中类似结构的设备。此外,图2中示出的组成结构并不构成对该通信装置的限定,除图2所示部件之外,该通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
本申请实施例中,芯片***可以由芯片构成,也可以包括芯片和其他分立器件。
下面结合图1所示通信***,以第二通信装置向第一通信装置发送第一调度信息、第二调度信息为例,对本申请实施例提供的数据调度方法进行描述。第二通信装置可以为图1中的网络设备或者网络设备中的功能模块或者芯片***或者调制解调器或者其他功能模块,第一通信装置可以为图1中的终端或者终端中的功能模块或者芯片***或者调制解调器或者其他功能模块,如第二通信装置可以为图1中的网络设备,第一通信装置可以为图 1中的终端1。或者,第二通信装置可以为图1中的终端或者终端中的功能模块或者芯片***或者调制解调器或者其他功能模块,第一通信装置可以为图1中的终端或者终端中的功能模块或者芯片***或者调制解调器或者其他功能模块,如第二通信装置可以为图1中的终端1,第一通信装置可以为图1中的终端3。下述实施例中各设备可以具有图2所示部件,且各实施例之间涉及的动作,术语等可以相互参考,各实施例中设备之间交互的消息名称或消息中的参数名称等只是一个示例,具体实现中也可以采用其他的名称,不予限制。例如,本申请所述的“包括”可以替换描述为“包含”或者“携带”等。
图3为本申请实施例提供的一种数据调度方法,该方法支持调度信息调度下行数据,图3所示方法中的调度信息可以称为下行调度信息,如第一调度信息可以称为第一下行调度信息,第二调度信息可以称为第二下行调度信息。第二通信装置根据第一调度信息向第一通信装置新传第一数据、第二通信装置根据第二调度信息向第一通信装置重传数据,第一数据为下行数据。如图3所示,该方法可以包括:
步骤301:第二通信装置向第一通信装置发送第一调度信息。
其中,第一调度信息可以用于调度第一通信装置与第二通信装置之间初传的第一数据。例如第一调度信息可以用于调度第二通信装置向第一通信装置初传的第一数据,即调度初传的下行数据。
一种示例中,第一调度信息可以与协议规定的调度信息相同,包括协议规定的字段域,如包括上述(1)~(31)中的一种或者多种字段域。或者,又一种示例中,为降低初传时第一调度信息的负荷,提高第一调度信息的覆盖范围以及传输性能,可以删减现有调度初传数据的调度信息中无需通过调度信息指示即可获知其具体取值的字段域,如第一字段域,保留必须通过该调度信息指示给第二通信装置的字段域,得到第一调度信息,与现有调度初传数据的调度信息相比,第一调度信息可以不包括第一字段域,第一字段域在第一调度信息中占用0比特(bit)或者第一字段域在第一调度信息中不存在。第一字段域可以包括一个或者多个可删减的字段域,本申请实施例中,可以将不通过调度信息指示即可获知其具体取值的字段域称为可删减的字段域,可删减的字段域可以指无需携带在调度信息中指示给第一通信装置的字段域,初传时可删减的字段域的取值可以为默认值,该默认值可以预先配置给第一通信装置。
第一数据为下行数据,第一字段域可以包括下述可删减的字段域中的一种或者多种字段域:FDRA、BWP indicator、antenna port、SRS resource indicator、TCI、VRB-to-PRB mapping,PRB bundling size indicator,rate matching indicator,RV,TDRA,TPC命令,SRS触发指示,CSI-RS触发指示,DMRS sequence initialization,CBGTI、CBGFI。当这些字段域的取值为默认值时,第二通信装置可以将这些字段域不包括在第一调度信息中,第一通信装置接收到第一调度信息后,从第一调度信息中未翻译出这些字段域,确定这些字段域的取值为默认值。例如,第一字段域为CBGTI时,默认值为全1,即调度初传数据的调度信息中不包括CBGTI,默认在初传数据中所有的CBG都会被发送。再例如,第一字段域为CBGFI时,默认值为0,即调度初传数据的调度信息中不包括CBGFI,默认在初传数据中是不需要清空缓存。在例如,第一字段域为RV时,默认值为0,即调度初传数据的调度信息中不包括RV,默认在初传数据采用冗余版本0来传输。
具体的,第一字段域包括哪些字段域可以由协议预先规定好;或者,在第一通信装置、 第二通信装置出厂设置时,预先配置给第一通信装置、第二通信装置。
例如,假设现有用于调度初传的调度信息包括MCS、antenna port、SRS资源指示、TDRA、BWP指示、FDRA、RV这些字段域,如上所述,RV可以采用默认值(例如为0),无需携带在第一调度信息中指示给第一通信装置,因此,步骤301中,可以删减掉原调度初传数据的调度信息中的RV字段域得到第一调度信息。下表一示出了第一调度信息包括的字段域,如表一,第一调度信息包括MCS、antenna port、SRS资源指示、TDRA、BWP指示、FDRA。
表一
Figure PCTCN2021092470-appb-000001
示例性的,第二通信装置可以利用编码器对第一调度信息进行编码处理,并利用第一调度信息对应的无线网络临时标识(radio network temporary indicator,RNTI)对编码处理后的第一调度信息进行加扰处理,将加扰处理后的第一调度信息携带在/承载在控制信道上发送给第二通信装置。
其中,编码器可以为第二通信装置包括的调制解调器中具备编码功能的运算单元。示例性的,调制解调器中可以包括一个或者多个编码器,当调制解调器中包含多个编码器时,可以并行进行多个信息编码,不同编码器的输出长度可以相同或不同。第二通信装置可以采用输出长度与第一调度信息的长度相同的编码器对第一调度信息进行编码处理。
其中,第一调度信息的长度等于第一调度信息包括的所有字段域占用的比特数的总长度。如若第一调度信息包括第一字段域、第二字段域以及第三字段域三个字段域,第一字段域占用4比特数,第二字段域占用5个比特数,第三字段域占用4个比特数,则第一调度信息的长度为13比特数。
其中,若第一调度信息为DCI,则承载第一调度信息的控制信道可以为物理下行控制信道(physical downlink control channel,PDCCH);若第一调度信息为SCI,则承载第一调度信息的控制信道可以为物理侧行链路控制信道(physical sidelink control channel,PSCCH)。
步骤302:第二通信装置根据第一调度信息向第一通信装置初传第一数据。
其中,第一数据可以为基于TB的传输的数据或者基于CBG的传输的数据。
示例性的,第二通信装置可以在第一调度信息指示的时频资源位置上,向第一通信装置初传第一数据。如第二通信装置可以使用HARQ process在第一调度信息所指示的时域位置以及载波上向第一通信装置发送第一数据。
步骤303:第一通信装置监测第一调度信息。
示例性的,第一通信装置可以在第一调度信息对应的搜索空间内,利用第一调度信息对应的监测参数监测第一调度信息。
其中,第一调度信息对应的监测参数至少可以包括搜索空间的配置、控制资源集合(control resource set,CORESET)配置、无线网络临时标识(radio network temporary indicator)、需要监测的候选集(candidate)数量、需要监测的聚合等级中的一种或者多种信息。第一调度信息对应的搜索空间、第一调度信息对应的监测参数可以预先配置给第一 通信装置,或者,由第二通信装置指示给第一通信装置,不予限制。例如,如图5a所示,为第一调度信息配置三个搜索空间,第二通信装置可以在这三个搜索空间内监测第一调度信息。又例如,如图5b所示,将三个搜索空间中的搜索空间1以及搜索空间2配置为与第一调度信息对应,则第二通信装置可以在搜索空间1、搜索空间2内监测第一调度信息。
具体的,第二通信装置在第一调度信息对应的搜索空间,利用第一调度信息对应的监测参数监测第一调度信息的过程可以参照图4所示。如图4所示,该过程可以包括S1~S4:
S1、第一通信装置根据CORESET和搜索空间配置,确定控制信道的候选监测位置。
其中,第一通信装置可以根据CORESET确定控制信道监测位置占用的频段和占用的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号数等信息,根据搜索空间配置确定控制信道监测位置的起始OFDM符号编号、控制信道的监测周期等信息。
S2、在每个候选监测位置上接收控制信道。
S3、对每个候选监测位置上接收到的控制信道进行解码。
具体的,终端可以在控制信道的候选时频位置,利用解码器进行解码,其中,解码器的输出长度为DCI的长度。如果解码后的信息比特的循环冗余校验码(cyclic redundancy check,CRC)与控制信道携带的CRC相同,则认为解码成功,其中CRC可以通过RNTI加扰。
其中,解码器可以为第一通信装置包括的调制解调器中具备解码功能的运算单元。示例性的,调制解调器可以包括一个或者多个解码器,不同解码器的输出长度不同。第一通信装置可以采用输出长度与第一调度信息的长度相同的解码器对第一调度信息进行解码。
S4、对解码后的第一调度信息进行解析/翻译,确定第一调度信息包括的每个字段域所指示的信息。
其中,需要注意的是,对解码后的第一调度信息进行解析/翻译时,首先需要翻译调度信息中携带的下述字段域:CIF、HPN以及NDI,根据CIF、HPN以及NDI确定出是哪个载波上的哪个HARQ进程的数据进行初传或者重传后,再翻译第一调度信息包括的其他字段域。本申请中,CIF、HPN以及NDI在调度信息中的位置可以是协议规定好,可以预先配置给第二通信装置。
步骤304:当监测到第一调度信息,第一通信装置根据第一调度信息接收第一数据。
示例性的,第一通信装置可以根据第一调度信息包括的每个字段域所指示的信息,在第一调度信息所指示的时频资源上接收第一数据。
进一步的,若第一通信装置成功接收第一数据,则预示着第一数据传输成功,第一通信装置向第二通信装置反馈ACK,反之,若第一通信装置未成功接收第一数据,则预示着第一数据传输失败,第一通信装置向第二通信装置反馈NACK。其中,第一通信装置判断是否成功接收第一数据的方法可参照现有技术,不予赘述。
进一步的,若第一数据传输成功,则流程结束,结束第一数据的传输,进行其他数据的传输。若第一数据传输失败,则执行下述步骤305~步骤308。
步骤305:第一数据传输失败,第二通信装置向第一通信装置发送第二调度信息。
其中,第一数据为下行数据,若第二通信装置接收到第一通信装置反馈的第一数据对应的NACK,则第二通信装置认为该第一数据传输失败,向第一通信装置发送第二调度信息。
其中,第二调度信息可以用于调度第一通信装置与第二通信装置之间重传的第一数据。第一调度信息包括的字段域与第二调度信息包括的字段域不同。第一调度信息包括的字段域与第二调度信息包括的字段域不同可以包括:第一调度信息包括的字段域的类型与第二调度信息包括的字段域的类型相同,但第一调度信息包括的字段域的长度与第二调度信息包括的字段域的长度不同,如同一字段域,该字段域在第一调度信息中占用3个bit,而在第二调度信息中占用5bit;或者,第一调度信息包括的字段域的类型与第二调度信息包括的字段域的类型不同。
示例一,第二调度信息的长度与第一调度信息的长度不同,如第一调度信息的长度大于第二调度信息的长度,第一调度信息包括第一字段域,第二调度信息不包括第一字段域;或者,第一调度信息的长度小于第二调度信息的长度,第一调度信息不包括第一字段域、第二调度信息包括第一字段域。其中,第一字段域的相关描述如上所述,不予赘述。
需要说明的是,在第一调度信息包括第一字段域、第二调度信息不包括第一字段域的情况下,若在重传第一数据时,需要根据第一字段域的具体取值调度重传的第一数据,则第二通信装置可以默认第一字段域的取值为默认值或者第一字段域的取值与初传第一数据时第一字段域的取值相同。例如,如下表二示出了第二调度信息包括的字段域,比较表一和表二,发现第二调度信息不包括FDRA字段域,此时可以默认重传第一数据时的频域位置与初传第一数据时的频域位置相同。
表二
Figure PCTCN2021092470-appb-000002
为了避免第一调度信息的长度与第二调度信息的长度不同,导致第一通信装置需要在监测调度信息时将解码器的输出长度设置为多个不同的长度进行解码处理,如将解码器的输出长度分别设置为第一调度信息的长度、第二调度信息的长度进行解码处理,盲检(blind decoding,BD)次数增加,消耗终端的功耗的问题,示例一中,将第一调度信息对应的搜索空间与第二调度信息对应的搜索空间设置为不同;和/或,将第一调度信息对应的监测参数与第二调度信息对应的监测参数设置为不同,在初传第一数据时,采用第一调度信息对应的搜索空间以及监测参数监测第一调度数据,在重传第一数据时,采用第二调度信息对应的搜索空间以及监测参数监测第二调度信息,使第一通信装置在监测第一调度信息时将解码器的输出长度设置为第一调度信息的长度进行解码处理,在监测第二调度信息时将解码器的输出长度设置为第二调度信息的长度进行解码处理,保证第一通信装置盲检次数不会过大,降低第一通信装置盲检调度信息带来的功率消耗。
示例二,第二调度信息的长度与第一调度信息的长度相同。第二调度信息包括第一字段域,不包括第二字段域,即第二字段域在第二调度信息中占用0比特,第一调度信息包括第二字段域,不包括第一字段域,即第一字段在第一调度信息中占用0bit。比较第一调度信息与第二调度信息发现,第二调度信息中缺少第一调度信息包括的第二字段域,但是增加了第一调度信息未包括的第一字段域,可以理解为将第一字段域添加到第一调度信息中,再将添加第一字段域后的第一调度信息进行截短处理,如删减掉添加第一字段域后的第一调度信息中的第二字段域等,将截短处理后的第一调度信息所包括的字段域携带在第 二调度信息中,使第二调度信息的长度与第一调度信息的长度相同,即初传时的调度信息与重传时的调度信息的长度对齐。
其中,第二字段域可以包括可删减的字段域中的一种或者多种字段域,可删减的字段域的相关描述可参照步骤301中所述,不予赘述。第一字段域与第二字段域不同,第二字段域的长度小于或者等于第一字段域。具体的,可以参照图6所示方式确定删减哪些第二字段域,如图6所示,该方式可以包括:
将可删减的字段域进行排序,设置第一调度信息的长度为L1,添加了第一字段域后的第一调度信息的长度(可称为第二调度信息的初始长度)为L2(0);设置i=0,i=i+1,将可删减的字段域中的第1个字段域从第二调度信息中删除,若删减第1个字段域后的第二调度信息长度L2(1)大于L1,则执行i+1,将可删减的字段域中的第2个字段域从第二调度信息中删除,以此类推,直至删减了第i个字段域之后,第二调度信息长度L2(i)小于或等于第一字段域,流程结束。其中,图6中M(i)为第i个可删减的字段域的长度。
需要说明的是,本申请实施例不限制对可删减的字段域的排序方式,可以按照可删减的字段域占用的比特数从大到小的顺序排列,也可以按照可删减的字段域占用的比特数从小到大的顺序排列,还可以随机排列,或者可以由网络设备配置排列顺序等,不予限制。
例如,下行数据采用DCI format 1_1来调度。第一字段域为CBGTI和CBGFI,即初传DCI中不包括CBGTI和CBGFI。若网络设备给终端配置CBG的个数为N,即CBGTI的比特长度为N比特。CBGFI的比特长度为1比特。第二字段域中包括的可删减字段域为SRS request(2bit),BWP indicator(2bit),Antenna port(4bit),RV指示(2bit)等,即重传DCI中可以不包括SRS request(2bit),BWP indicator(2bit),Antenna port(4bit),RV指示(2bit)等字段域。为了让重传DCI与初传DCI长度对齐,需要从SRS request(2bit),BWP indicator(2bit),Antenna port(4bit),RV指示(2bit)中选择N+1比特的长度进行删减。假设这些可删减字段域的排序为:SRS request(2bit)>BWP indicator(2bit)>Antenna port(4bit)>RV指示(2bit)。若网络设备给终端配置CBG的个数为N=4,即CBGTI的比特长度为4比特,则按照图6所示方式可以删减下述3个字段:SRS request,BWP indicator,Antenna port。此时数据重传时,可以认为初传DCI中指示的SRS request,BWP indicator,Antenna port的取值仍然用于重传的数据。例如,如果初传DCI中指示SRS request取值为1,指示触发第一组SRS,BWP indicator取值为0,指示BWP0,Antenna port取值为0,指示第0天线端口,即初传数据的PDSCH接收还伴随着第1组SRS的发送,初传数据在BWP0上传输,并且会使用第0天线端口接收PDSCH。在数据重传时,初传数据的PUSCH中也伴随着第1组SRS的发送,也在BWP0上传输,并且会使用第0天线端口接收PDSCH。若网络设备给终端配置的CBG的个数为N=2,即CBGTI的比特长度为2比特,则按照图6所示方式可以仅删减下述3个字段:SRS request,BWP indicator。同样,可以认为初传DCI中指示的SRS request,BWP indicator的取值仍然用于重传的数据,在此不再举例解释。
需要说明的是,图6所示方式可以预先配置给第二通信装置以及第一通信装置,双方可以采用图6所示方式确定删减哪些第二字段域。此外,在第二字段域的长度大于第一字段域的长度时,删减第二字段域后,可以对第二调度信息进行补零处理,以使得第二调度信息与第一调度信息的长度对齐,从而避免盲检次数过多。例如,若第一调度信息的长度 为10bit,第二调度信息删减第二字段域后的长度为9bit,则可以在第二调度信息的结尾补上一个零,使第二调度信息的长度也为10bit。又例如,第一字段域为CBGTI和CBGFI,网络设备给终端配置的CBG的个数为N=4,即CBGTI的比特长度为4比特。CBGFI的比特长度为1比特。第二字段域中包括的可删减字段域为SRS request(2bit),BWP indicator(2bit),Antenna port(4bit)。则第二调度信息与第一调度信息相比,多了CBGTI和CBGFI,少了SRS request,BWP indicator,Antenna port,整体少了3bit。此时可以在第二调度信息的结尾/尾部补上三个零,使第二调度信息的长度与第一调度信息的长度对齐。
除第一通信装置、第二通信装置双方采用上述图6所示方式确定删减哪些第二字段域之外,本申请中还可以由第二通信装置自行确定删减哪些字段域,保留哪些字段域,如采用图6所示方式确定删减哪些字段域,并将删减后的字段域和/或保留的字段域指示给第一通信装置,如第二调度信息或者第一调度信息中还可以包括第三字段域和第四字段域,第三字段域可以为指示信息,第三字段域可以用于指示至少一个第四字段域的类型,第四字段域可以包括第二字段域中未删减的字段域,即保留下来的字段域,第三字段域的比特数、第四字段域的比特数以及第一字段域的比特数之和可以等于或者小于第二字段域的比特数。当第三字段域的比特数、第四字段域的比特数以及第一字段域的比特数之和小于第二字段域的比特数时,可以在第二调度信息的结尾/尾部补上两个零,使第二调度信息的长度与第一调度信息的长度对齐。
其中,本申请中,第三字段域与至少一个第四字段域的类型之间存在对应关系,该对应关系可以由网络设备配置,也可以由协议预先规定好,不予限制。第四字段域包括的字段域,即第二字段域中需要保留在第二调度信息中的字段域也可以由网络设备配置,也可以由协议预先规定好,不予限制。示例性的,若第二字段域中需要保留在第二调度信息中的字段域存在2 M个不同组合,即存在2 M个组合形式的第四字段域,则第三字段域可以携带M个比特,该M个比特可以用于指示该2 M个组合。
例如,下行数据采用DCI format 1_1来调度。第一字段域为CBGTI,即初传DCI中不包括CBGTI和CBGFI。若网络设备给终端配置CBG的个数为N,即CBGTI的比特长度为N比特。CBGFI的比特长度为1比特。第二字段域中包括的可删减字段域为SRS request(2bit),BWP indicator(2bit),Antenna port(4bit),RV指示(2bit)等,即重传DCI中可以不包括SRS request(2bit),BWP indicator(2bit),Antenna port(6bit),RV指示(2bit)等,即共有12个比特可以删减。若网络设备给终端配置CBG的个数为N=4,即CBGTI的比特长度为4比特。则仅需要从12个比特中挑选5个比特进行删减,保留剩余的7个比特。此时,可以使用剩余的7个比特中的2个比特,用来指示其余的5个比特指示的内容。如下表三所示。当2比特指示信息为00时,剩余5个比特包含的信息为SRS request(2bit)+BWP indicator(2bit)+padding(1bit),其中padding即填充1个‘0’比特。此时Antenna port(6bit)和RV指示(2bit)默认和初传指示的内容相同。通过这种方式,网络设备可以更灵活的决定在第二调度信息中指示哪些信息,提高调度信息的灵活性。
表三
Figure PCTCN2021092470-appb-000003
Figure PCTCN2021092470-appb-000004
需要说明的是,在本申请各实施例中,第一调度信息的格式与第二调度信息的格式相同;或者,第一调度信息的格式与第二调度信息的格式不同。示例性的,本实施例中,第一调度信息可以采用DCI format 0_2/format 1_2,第二调度信息可以采用DCI format 0_1/1_1。
步骤306:第二通信装置根据第二调度信息向第一通信装置重传第二数据。
示例性的,第二通信装置可以在第二调度信息指示的时频资源上,向第一通信装置重传第二数据。如第二通信装置可以使用HARQ process进行在第二调度信息指示的时域位置和载波上向第一通信装置重新发送第二数据。其中,重传第二数据时使用的HARQ process、载波与初传时使用的HARQ process、载波相同。
步骤307:第一通信装置监测第二调度信息。
其中,第一通信装置监测第二调度信息监测第二调度信息可以包括:在根据第一调度信息接收或发送第一数据后的第一时间段内,在第二调度信息对应的搜索空间内,利用第二调度信息对应的监测参数监测第二调度信息。第一通信装置第二调度信息对应的搜索空间内,利用第二调度信息对应的监测参数监测第二调度信息的方法参照图4所示,不予赘述。
第一数据为第二通信装置发送给第一通信装置的数据,第一时间段的起始时刻等于或晚于第一通信装置发送第一数据对应的NACK的时刻。第一时间段可以通过定时器来控制,该定时器可以由第二通信装置配置给第一通信装置。
如上所述,当第二调度信息的长度与第一调度信息的长度不同时,第二调度信息对应的搜索空间以及监测参数与第一调度信息对应的搜索空间以及监测参数不同。如图5b所示,第一通信装置总共被配置3个不同的搜索空间:搜索空间1、搜索空间2,搜索空间3,其中,搜索空间1以及搜索空间2被配置为与第一调度信息对应,搜索空间3与第二调度信息对应。开始初传第一数据时,第一通信装置仅监测搜索空间1和搜索空间2。第一通 信装置根据第一调度信息接收或发送第一数据后的第一段时间内,使用搜索空间3“替换”搜索空间1和搜索空间2,在搜索空间3内监测第二调度信息。
当第二调度信息的长度与第一调度信息的长度相同时,第二调度信息对应的搜索空间、监测参数与第一调度信息对应的搜索空间、监测参数可以相同,如图5a所示,第一通信装置总共被配置3个不同的搜索空间:搜索空间1、搜索空间2,搜索空间3,开始初传第一数据以及后续传输第一数据之后的第一时间段内,第一通信装置一直监测这三个搜索空间。
步骤308:当监测到第二调度信息,第一通信装置根据第二调度信息接收第一数据。
示例性的,第一通信装置可以在第二调度信息指示的时频资源上接收第一数据。
进一步的,若重传第一数据失败,则第二通信装置可以发送第三调度信息,用第三调度信息调度重传的第一数据,再次进行第一数据的重传。其中,第三调度信息中可以不包括之前初传第一数据时调度信息携带过的字段域或上次重传第一数据时调度信息携带过的字段域,此时,可以默认本次重传的第一数据传输时,使用初传时指示的传输参数或者上传重传时指示的传输参数。例如,第二次重传时DCI中不包括BWP indicator,则第一数据的第二次重传使用的BWP可以与第一数据的初传使用的BWP相同,或者可以与第一数据的第一次重传使用的BWP相同。
应用图3所示方法,将用于调度初传数据的调度信息包括的字段域与用于调度重传数据的调度信息设置为不同,无需将第一调度信息与第二调度信息设置为包括相同字段域,两个调度信息相比,其中一个调度信息携带的字段域会比较少,降低该调度信息携带的字段域,减少调度信息的负荷,实现在用于传输调度信息的资源上传输较少的比特数即可实现该调度信息调度数据的功能,提高调度信息传输的可靠性以及覆盖范围。
上述图3所示方法以第二通信装置根据第一调度信息向第一通信装置新传第一数据、第二通信装置根据第二调度信息向第一通信装置重传数据为例,即以下行数据传输为例对本申请实施例提供的数据调度方法进行描述。类似的,在上行数据传输时,也可以将用于调度初传的上行数据的调度信息包括的字段域设置为与用于调度重传的上行数据的调度信息包括的字段域不同,以降低上行数据传输时调度信息包括的比特数,提高上行数据传输时调度信息的传输可靠性以及覆盖范围。具体的,上行数据传输时的调度方式可参照下述图7所示,图7所示方法中用于调度初传的上行数据的调度信息可以称为第一上行调度信息,用于调度重传的上行数据的调度信息可以称为第二上行调度信息。
图7为本申请实施例提供的又一种数据调度方法的流程图,如图7所示,可以包括:
步骤701:第二通信装置向第一通信装置发送第一上行调度信息。
其中,第一上行调度信息可以用于调度第一通信装置与第二通信装置之间初传的第一数据。图7中,第一数据可以称为上行数据,例如第一上行调度信息可以用于调度第一通信装置向第二通信装置初传的上行数据。
与步骤301中所述的第一调度信息类似,步骤701中所述的第一上行调度信息可以与协议规定的上行调度信息相同,包括协议规定的字段域,如包括上述(1)~(31)中的一种或者多种字段域。或者,第一上行调度信息可以不包括第一字段域。只不过,第一数据为上行数据时的第一字段域与步骤301中第一数据为下行数据时的第一字段域稍微有所不同。示例性的,第一数据为上行数据时,第一字段域可以包括下述可删减的字段域中的一种或者多种字段域:UL-SCH indicator、FDRA、BWP indicator、antenna port、SRS resource  indicator、RV,TDRA,TPC命令,SRS triggering指示、CSI-RS triggering,precoding指示,beta_offset indicator,frequency hopping指示,PTRS-DMRS关联指示,DMRS sequence initialization,CBGTI。
具体的,有关第一字段域的相关描述可参照步骤301中所述,不予赘述。
示例性的,第二通信装置向第一通信装置发送第一上行调度信息的过程可参照步骤301中第二通信装置向第一通信装置发送第一调度信息的过程,不予赘述。
步骤702:第一通信装置监测第一上行调度信息。
具体的,步骤702可参照步骤303所述,不予赘述。
步骤703:当监测到第一上行调度信息,第一通信装置根据第一上行调度信息向第二通信装置初传第一数据。
示例性的,第一通信装置可以在第一上行调度信息指示的时频资源位置上,向第二通信装置初传第一数据。如第一通信装置可以使用HARQ process在第一上行调度信息所指示的时域位置以及载波上向第二通信装置发送第一数据。
步骤704:第二通信装置接收第一数据。
示例性的,第二通信装置可以在第一上行调度信息指示的时频资源位置上接收第一数据。若第二通信装置在第一上行调度信息指示的时频资源位置上接收并成功解析出第一数据,则预示着第一数据传输成功,第二通信装置向第一通信装置反馈第一数据对应的ACK,反之,若第二通信装置在第一上行调度信息指示的时频资源位置上未成功接收到或未接收到第一通信装置发送的第一数据,则预示着第一数据传输失败,第二通信装置向第一通信装置反馈第一数据对应的NACK。其中,第二通信装置判断是否成功接收第一数据的方法可参照现有技术,不予赘述。
进一步的,若第一数据传输成功,则流程结束,结束第一数据的传输,进行其他数据的传输。若第一数据传输失败,则执行下述步骤705~步骤708。
步骤705:第一数据传输失败,第二通信装置向第一通信装置发送第二上行调度信息。
其中,第一数据为上行数据,第二通信装置在发送第一上行调度信息后,若在第一上行调度信息指示的时频资源位置上未成功接收到或未接收到第一通信装置发送的第一数据,则认为第一数据传输失败。
其中,第二上行调度信息可以用于调度第一通信装置与第二通信装置之间重传的第一数据。第一上行调度信息包括的字段域与第二上行调度信息包括的字段域不同。例如,一种示例中,第二上行调度信息的长度与第一上行调度信息的长度不同,如第一上行调度信息的长度大于第二上行调度信息的长度,第一上行调度信息包括第一字段域,第二上行调度信息不包括第一字段域;或者,第一上行调度信息的长度小于第二上行调度信息的长度,第一上行调度信息不包括第一字段域、第二上行调度信息包括第一字段域。其中,第一字段域的相关描述如图3中所述,不予赘述。
又一种示例中,第二上行调度信息的长度与第一上行调度信息的长度相同。如第二上行调度信息包括第一字段域,不包括第二字段域,即第二字段域在第二上行调度信息中占用0比特,第一上行调度信息包括第二字段域,不包括第一字段域,即第一字段在第一上行调度信息中占用0bit。具体的,可以将第一字段域添加到第一上行调度信息中,再将添加第一字段域后的第一上行调度信息进行截短处理,如删减掉添加第一字段域后的第一上 行调度信息中的第二字段域等,将截短处理后的第一上行调度信息所包括的字段域携带在第二上行调度信息中,使第二上行调度信息的长度与第一上行调度信息的长度相同,即初传时的上行调度信息与重传时的上行调度信息的长度对齐。具体的,第二字段域的相关描述可参照图3中所示,删减第二字段域的方式可参照图6所述。
例如,上行数据采用DCI format 0_1来调度。第一字段域为CBGTI,即初传DCI中不包括CBGTI。若网络设备给终端配置CBG的个数为N,即CBGTI的比特长度为N比特。第二字段域中包括的可删减字段域为UL-SCH indicator(1bit),BWP indicator(2bit),SRS resource indicator(3bit),RV指示(2bit)等,即重传DCI中可以不包括UL-SCH indicator(1bit),BWP indicator(2bit),SRS resource indicator(3bit),RV指示(2bit)等字段域。为了让重传DCI与初传DCI长度对齐,需要从UL-SCH indicator(1bit),BWP indicator(2bit),SRS resource indicator(3bit),RV指示(2bit)中选择N-bit的长度进行删减。假设这些可删减字段域的排序为:UL-SCH indicator(1bit)>BWP indicator(2bit)>SRS resource indicator(3bit)>RV指示(2bit)。若网络设备给终端配置CBG的个数为N=4,即CBGTI的比特长度为4比特,则按照图6所示方式可以删减下述3个字段:UL-SCH indicator,BWP indicator,SRS resource indicator。此时数据重传时,可以认为初传DCI中指示的UL-SCH indicator,BWP indicator,SRS resource indicator的取值仍然用于重传的数据。例如,如果初传DCI中指示UL-SCH indicator取值为1,BWP indicator取值为0,指示BWP0,SRS resource indicator取值为0,指示第0组SRS,即初传数据的PUSCH中包含UL-SCH,初传数据在BWP0上传输,并且会使用第0组SRS对应的天线端口发送PUSCH。在数据重传时,初传数据的PUSCH中也包含UL-SCH,也在BWP0上传输,并且会也发送第0组SRS。若网络设备给终端配置的CBG的个数为N=2,即CBGTI的比特长度为2比特,则按照图6所示方式可以仅删减下述3个字段:UL-SCH indicator,BWP indicator。同样,可以认为初传DCI中指示的UL-SCH indicator,BWP indicator的取值仍然用于重传的数据,在此不再举例解释。
需要说明的是,在第二字段域的长度大于第一字段域的长度时,删减第二字段域后,可以对第二上行调度信息进行补零处理,以使得第二上行调度信息与第一上行调度信息的长度对齐,从而避免盲检次数过多。例如,若第一上行调度信息的长度为10bit,第二上行调度信息删减第二字段域后的长度为9bit,则可以在第二上行调度信息的结尾补上一个零,使第二上行调度信息的长度也为10bit。又例如,第一字段域为CBGTI,网络设备给终端配置的CBG的个数为N=4,即CBGTI的比特长度为4比特。第二字段域中包括的可删减字段域为UL-SCH indicator(1bit),BWP indicator(2bit),SRS resource indicator(3bit)。则第二上行调度信息与第一上行调度信息相比,多了CBGTI,少了UL-SCH indicator,BWP indicator,SRS resource indicator,整体少了2bit。此时可以在第二上行调度信息的结尾/尾部补上两个零,使第二上行调度信息的长度与第一上行调度信息的长度对齐。
除第一通信装置、第二通信装置双方采用上述图6所示方式确定删减哪些第二字段域之外,图7所示方法中,还可以由第二通信装置自行确定删减哪些字段域,保留哪些字段域,如采用图6所示方式确定删减哪些字段域,并将删减后的字段域和/或保留的字段域指示给第一通信装置,如第二上行调度信息或者第一上行调度信息中还可以包括第三字段域和第四字段域,第三字段域可以为指示信息,第三字段域可以用于指示至少一个第四字段 域的类型,第四字段域可以包括第二字段域中未删减的字段域,即保留下来的字段域,第三字段域的比特数、第四字段域的比特数以及第一字段域的比特数之和可以等于或者小于第二字段域的比特数。当第三字段域的比特数、第四字段域的比特数以及第一字段域的比特数之和小于第二字段域的比特数时,可以在第二上行调度信息的结尾/尾部补上两个零,使第二上行调度信息的长度与第一上行调度信息的长度对齐。
例如,上行数据采用DCI format 0_1来调度。第一字段域为CBGTI,即初传DCI中不包括CBGTI。若网络设备给终端配置CBG的个数为N,即CBGTI的比特长度为N比特。第二字段域中包括的可删减字段域为UL-SCH indicator(1bit),BWP indicator(2bit),Antenna port(3bit),SRS resource indicator(3bit),RV指示(2bit)等,即重传DCI中可以不包括UL-SCH indicator(1bit),BWP indicator(2bit),Antenna port(3bit),SRS resource indicator(3bit),RV指示(2bit)等,即共有11个比特可以删减。若网络设备给终端配置CBG的个数为N=4,即CBGTI的比特长度为4比特。则仅需要从11个比特中挑选4个比特进行删减,保留剩余的7个比特。此时,可以使用剩余的7个比特中的2个比特,用来指示其余的5个比特指示的内容。如下表四所示。当2比特指示信息为00时,剩余5个比特包含的信息为UL-SCH indicator(1bit)+BWP indicator(2bit)+RV指示(2bit),此时antenna port(3bit)和SRS resource indicator(3bit)默认和初传指示的内容相同。通过该方式,网络设备可以更灵活的决定在第二上行调度信息中指示哪些信息,提高上行调度信息的灵活性。
表四
Figure PCTCN2021092470-appb-000005
需要说明的是,在本申请各实施例中,第一上行调度信息的格式与第二上行调度信息的格式相同;或者,第一上行调度信息的格式与第二上行调度信息的格式不同。示例性的,本实施例中,第一上行调度信息可以采用DCI format 0_2/format 1_2,第二上行调度信息可以采用DCI format 0_1/1_1。
步骤706:第一通信装置监测第二上行调度信息。
其中,步骤706可参照步骤307所述,不予赘述。与步骤307不同的是,图7中,第一数据为第一通信装置发送给第二通信装置的数据,第一时间段的起始时刻等于或晚于第一通信装置根据第一调度信息向网络设备发送第一数据的时刻。
步骤707:当监测到第二上行调度信息,第一通信装置根据第二上行调度信息向第二通信装置重传第二数据。
示例性的,第一通信装置可以在第二上行调度信息指示的时频资源上向第二通信装置重传第二数据。如第一通信装置可以使用HARQ process在第一上行调度信息所指示的时域位置以及载波上向第二通信装置重新发送第一数据。其中,重传第二数据时使用的HARQ process、载波与初传时使用的HARQ process、载波相同。
步骤708:第二通信装置接收重传的第一数据。
示例性的,第二通信装置可以在第二上行调度信息指示的时频资源上接收重传的第一数据。
进一步的,若重传第一数据失败,则第二通信装置可以发送第三上行调度信息,用第三上行调度信息调度重传的第一数据,再次进行第一数据的重传。其中,第三上行调度信息中可以不包括之前初传第一数据时上行调度信息携带过的字段域或上次重传第一数据时上行调度信息携带过的字段域,此时,可以默认本次重传的第一数据传输时,使用初传时指示的传输参数或者上传重传时指示的传输参数。例如,第二次重传时DCI中不包括BWP indicator,则第一数据的第二次重传使用的BWP可以与第一数据的初传使用的BWP相同,或者可以与第一数据的第一次重传使用的BWP相同。
应用图7所示方法,将用于调度初传数据的上行调度信息包括的字段域与用于调度重传数据的上行调度信息设置为不同,无需将第一上行调度信息与第二上行调度信息设置为包括相同字段域,两个上行调度信息相比,其中一个上行调度信息携带的字段域会比较少,降低该上行调度信息携带的字段域,减少上行调度信息的负荷,实现在用于传输上行调度信息的资源上传输较少的比特数即可实现该上行调度信息调度数据的功能,提高上行调度信息传输的可靠性以及覆盖范围。
下面以第一通信装置为终端,终端为手机,第二通信装置为网络设备,该网络设备为基站,基站通过HARQ机制向该手机发送微信消息,微信消息有800bit,基于CBG传输,一个CBG为100bit为例,对本申请实施例所述的数据调度方法进行描述。
基站确定基于CBG向手机推送微信消息,并确定发送该微信消息的时间资源为与DCI相同时隙中的OFDM符号3至OFDM符号13,频率资源为使用所有物理资源块(physical resource block,PRB),使用HARQ进程3,则基站向手机发送DCI1,DCI1内包含TDRA、FDRA以及HPN字段域,分别指示上述内容,并向手机发送包含8个CBG的PDSCH,该PDSCH包含微信消息的内容。
***测到DCI1,根据DCI1的指示在时隙0、载波1,使用HARQ进程3接收包含微信消息的PDSCH。若手机确定接收第7、第8个CBG失败,则向基站反馈前6个CBG对应的ACK以及第7个和8个CBG对应的NACK。
基站接收到手机反馈的第7个CBG对应的NACK以及第8个CBG对应的NACK,确定需要重传第7个CBG以及第8个CBG,则向手机发送DCI2,并向手机发送携带第7个CBG以及第8个CBG的PDSCH。此时,DCI2必须携带CBGTI,CBGTI用于指示本 次调度的PDSCH中包含第7个CBG以及第8个CBG,不包含其余6个CBG,为了降低DCI2的比特数,将DCI2设置为包含CBGTI、HPN和TDRA,不包含FDRA。为了避免手机盲检次数过多,DCI1与DCI2可以在不同的搜索空间发送,手机在监测DCI1和DCI2时监测不同的搜索空间,此时DCI1与DCI2的长度可以不同;或者DCI1与DCI2可以在相同的搜索空间发送,但是采用前面所述的方式保证DCI1与DCI2的长度相同。
***测到DCI2,并解析到DCI2携带有CBGTI、HPN和TDRA,则默认包含第7个CBG以及第8个CBG的PDSCH使用的频率资源与初传相同,即为使用所有PRB,并使用HARQ进程3接收包含第7个CBG以及第8个CBG的PDSCH。
上述主要从各个节点之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个节点,例如第一通信装置、第二通信装置等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对第一通信装置、第二通信装置等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图8示出了一种通信装置80的结构图,该通信装置80可以为第一通信装置,或者第一通信装置中的芯片,或者片上***,该通信装置80可以用于执行上述实施例中涉及的第一通信装置的功能。作为一种可实现方式,图8所示通信装置80包括:处理单元801、收发单元802;
一种示例中,处理单元801,监测第二通信装置发送的第一调度信息;例如,处理单元801可以支持通信装置80执行步骤303、步骤702。
收发单元802,用于当处理单元801监测到第一调度信息,根据第一调度信息发送或接收第一通信装置与第二通信装置之间初传的第一数据;例如,收发单元802可以支持通信装置80执行步骤304、步骤703。
处理单元801,还用于监测第二通信装置发送的第二调度信息;例如,处理单元801可以支持通信装置80执行步骤307、步骤706。
收发单元802,还用于当处理单元801监测到第一调度信息,根据第一调度信息发送或接收第一通信装置与第二通信装置之间重传的第一数据,第一调度信息包括的字段域与第二调度信息的字段域不同。例如,收发单元802可以支持通信装置80执行步骤308、步骤707。
具体的,处理单元801的相关执行动作、第一调度信息以及第二调度信息的相关描述可参照图3所示方法中的相关描述,不予赘述。
具体的,上述图3或图7所示方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。通信装置80用于执行图3或图7所示方法所 示数据调度方法中第一通信装置的功能,因此可以达到与上述数据调度方法相同的效果。
作为又一种可实现方式,图8所示通信装置80包括:处理模块和通信模块。处理模块用于对通信装置80的动作进行控制管理,例如,处理模块可以集成处理单元801的功能,可以用于支持该通信装置80执行步骤303、步骤307、步骤702以及步骤706及本文所描述的技术的其它过程。通信模块可以集成收发单元802的功能,可以用于支持通信装置80执行步骤304、步骤308、步骤703、步骤707与其他网络实体的通信,例如与图1示出的功能模块或网络实体之间的通信。该通信装置80还可以包括存储模块,用于存储通信装置80的程序代码和数据。
其中,处理模块可以是处理器或控制器。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块可以是收发电路或通信接口等。存储模块可以是存储器。当处理模块为处理器,通信模块为通信接口,存储模块为存储器时,本申请实施例所涉及的通信装置80可以为图2所示通信装置。
图9为本申请实施例提供的一种通信***的结构图,如图9所示,该通信***可以包括:第一通信装置90、第二通信装置91。第一通信装置90的功能与上述通信装置80的功能相同。
一种示例中,第二通信装置91,用于向第一通信装置90发送第一调度信息,根据第一调度信息向第一通信装置90初传第一数据;
第一通信装置90,用于监测第一调度信息,当监测到第一调度信息,根据第一调度信息接收第一数据;
第一数据传输失败后,第二通信装置91,还用于向第一通信装置90发送第二调度信息,根据第二调度信息向第一通信装置90重传第一数据。
第一通信装置90,用于监测第二调度信息,当监测到第二调度信息,根据第二调度信息接收第一数据。
其中,第二调度信息包括的字段域与第一调度信息包括的字段域不同;第一调度信息以及第二调度信息的相关描述可参照图3所示方法中的相关描述以及设计方式,不予赘述。
又一种示例中,第二通信装置91,用于向第一通信装置90发送第一上行调度信息;第一通信装置90,用于监测第一上行调度信息,当监测到第一上行调度信息,根据第一上行调度信息向第二通信装置初传第一数据;
第一数据传输失败后,第二通信装置91,还用于向第一通信装置90发送第二上行调度信息。第一通信装置90,用于监测第二上行调度信息,当监测到第二上行调度信息,根据第二上行调度信息向第二通信装置重传第一数据。
其中,第二上行调度信息包括的字段域与第一上行调度信息包括的字段域不同;第一上行调度信息以及第二上行调度信息的相关描述可参照图7所示方法中的相关描述以及设计方式,不予赘述。
本申请实施例还提供了一种计算机可读存储介质。上述方法实施例中的全部或者部分流程可以由计算机程序来指令相关的硬件完成,该程序可存储于上述计算机可读存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。计算机可读存储介质可以是前述任一实施例的终端,如:包括数据发送端和/或数据接收端的内部存储单元,例如终端的 硬盘或内存。上述计算机可读存储介质也可以是上述终端的外部存储设备,例如上述终端上配备的插接式硬盘,智能存储卡(smart media card,SMC),安全数字(secure digital,SD)卡,闪存卡(flash card)等。进一步地,上述计算机可读存储介质还可以既包括上述终端的内部存储单元也包括外部存储设备。上述计算机可读存储介质用于存储上述计算机程序以及上述终端所需的其他程序和数据。上述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
结合以上,本申请还提供如下实施例:
实施例1、一种数据调度方法,其中,所述方法应用于第一通信装置,所述方法包括:
监测第二通信装置发送的第一调度信息;
当监测到第一调度信息,根据第一调度信息接收或发送第一通信装置和第二通信装置之间初传的第一数据;
监测第二通信装置发送的第二调度信息;
当监测到第二调度信息,根据第二调度信息接收或发送第一通信装置和第二通信装置之间重传的第一数据,第二调度信息包括的字段域与第一调度信息包括的字段域不同。
实施例2、一种数据调度方法,其中,所述数据调度方法包括:
第二通信装置向第一通信装置发送第一调度信息;
第二通信装置根据第一调度信息,向第一通信装置初传第一数据;
第一数据传输失败后,第二通信装置向第一通信装置发送第二调度信息,第二调度信息包括的字段域与第一调度信息包括的字段域不同;
第二通信装置根据第二调度信息,向第一通信装置重传第一数据。
实施例3、根据实施例1或实施例2所述的方法,其中,
第二调度信息的长度与第一调度信息的长度不同;
第二调度信息包括第一字段域,第一调度信息不包括第一字段域;或者,
第一调度信息包括第一字段域,第二调度信息不包括第一字段域。
实施例4、根据实施例1-实施例3任一项所述的方法,其中,第一调度信息对应的搜索空间与第二调度信息对应的搜索空间不同。
实施例5、根据实施例1-实施例4任一项所述的方法,其中,第一调度信息对应的监测参数与第二调度信息对应的监测参数不同,监测参数包括:搜索空间的配置、控制资源集合CORESET配置、无线网络临时标识RNTI中的一种或者多种信息;
搜索空间的配置包括搜索空间的监测周期、需要监测的下行控制信息DCI格式、需要监测的候选集candidate数量、需要监测的聚合等级中的一种或多种信息。
实施例6、根据实施例4或实施例5所述的方法,其中,监测第二通信装置发送的第二调度信息包括:在根据第一调度信息接收或发送第一数据后的第一时间段内,在第二调度信息对应的搜索空间内,利用第二调度信息对应的监测参数监测第二调度信息。
实施例7、根据实施例6所述的方法,其中,
第一数据为第二通信装置发送给第一通信装置的数据,第一时间段的起始时刻等于或晚于第一通信装置发送否定应答的时刻,否定应答用于指示第一数据传输失败;
第一数据为第一通信装置发送给第二通信装置的数据,第一时间段的起始时刻等于或晚于第一通信装置根据第一调度信息向第二通信装置发送第一数据的时刻。
实施例8、根据实施例1或实施例2所述的方法,其中,
第一调度信息的长度与第二调度信息的长度相同。
实施例9、根据实施例8所述的方法,其中,
第二调度信息包括第一字段域,不包括第二字段域;
第一调度信息包括第二字段域,不包括第一字段域;
其中,第一字段域与第二字段域不同。
实施例10、根据实施例9所述的方法,其中,第二字段域包括i个字段域;
i个字段域中前(i-1)个字段域的总长度小于第一字段域的长度,i个字段域的总长度大于或等于第一字段域的长度。
实施例11、根据实施例9或10所述的方法,其中,第一调度信息与第二调度信息包括混合自动重传请求进程号HPN和新数据指示NDI,或者,第一调度信息与第二调度信息包括载波指示域CIF、HPN和NDI;
HPN在第一调度信息中的位置和长度与HPN在第二调度信息中的位置和长度相同,NDI在第一调度信息中的位置和长度与NDI在第二调度信息中的位置和长度相同,CIF在第一调度信息中的位置和长度与CIF在第二调度信息中的位置和长度相同。
实施例12、根据实施例9-实施例11任一项所述的方法,其中,
第一调度信息或者第二调度信息包括第三字段域和第四字段域,第三字段域指示至少一个第四字段域的类型。
实施例13、根据实施例9-实施例12任一项所述的方法,其中,第一数据为上行数据,第一字段域或第二字段域包括下述一种或者多种:
UL-SCH indicator、FDRA、BWP indicator、antenna port、SRS resource indicator、RV,TDRA,TPC命令,SRS triggering触发指示、CSI-RS triggering,precoding指示,beta_offset indicator,frequency hopping指示,PTRS-DMRS关联指示,DMRS sequence initialization,CBGTI。
实施例14、根据实施例9-实施例12任一项所述的方法,其中,第一数据为下行数据,第一字段域或第二字段域包括下述一种或者多种:
FDRA、BWP indicator、antenna port、SRS resource indicator、TCI、VRB-to-PRB mapping,PRB bundling size indicator,rate matching indicator,RV,TDRA,TPC命令,SRS触发指示,CSI-RS触发指示,DMRS sequence initialization,CBGTI、CBGFI。
实施例15、一种通信装置,其中,所述通信装置包括处理单元、收发单元;
处理单元,用于监测第二通信装置发送的第一调度信息;
收发单元,用于当处理单元监测到第一调度信息,根据第一调度信息接收或发送第一通信装置和第二通信装置之间初传的第一数据;
处理单元,还用于监测第二通信装置发送的第二调度信息;
收发单元,还用于当处理单元监测到第二调度信息,根据第二调度信息接收或发送第一通信装置和第二通信装置之间重传的第一数据,第二调度信息包括的字段域与第一调度信息包括的字段域不同。
实施例16、一种通信装置,其中,所述通信装置包括:处理单元、收发单元;
收发单元,用于向第一通信装置发送第一调度信息,根据第一调度信息,向第一通信 装置初传第一数据;
收发单元,还用于第一数据传输失败后,向第一通信装置发送第二调度信息,根据第二调度信息,向第一通信装置重传第一数据;第二调度信息包括的字段域与第一调度信息包括的字段域不同。
实施例17、根据实施例15或实施例16所述的通信装置,其中,
第二调度信息的长度与第一调度信息的长度不同;
第二调度信息包括第一字段域,第一调度信息不包括第一字段域;或者,
第一调度信息包括第一字段域,第二调度信息不包括第一字段域。
实施例18、根据实施例15-实施例17任一项所述的通信装置,其中,第一调度信息对应的搜索空间与第二调度信息对应的搜索空间不同。
实施例19、根据实施例15-实施例18任一项所述的通信装置,其中,第一调度信息对应的监测参数与第二调度信息对应的监测参数不同,监测参数包括:搜索空间的配置、控制资源集合CORESET配置、无线网络临时标识RNTI中的一种或者多种信息;
搜索空间的配置包括搜索空间的监测周期、需要监测的下行控制信息DCI格式、需要监测的候选集candidate数量、需要监测的聚合等级中的一种或多种信息。
实施例20、根据实施例18或实施例19所述的通信装置,其中,处理单元具体用于在根据第一调度信息接收或发送第一数据后的第一时间段内,在第二调度信息对应的搜索空间内,利用第二调度信息对应的监测参数监测第二调度信息。
实施例21、根据实施例20所述的通信装置,其中,
第一数据为第二通信装置发送给第一通信装置的数据,第一时间段的起始时刻等于或晚于第一通信装置发送否定应答的时刻,否定应答用于指示第一数据传输失败;
第一数据为第一通信装置发送给第二通信装置的数据,第一时间段的起始时刻等于或晚于第一通信装置根据第一调度信息向第二通信装置发送第一数据的时刻。
实施例22、根据实施例15或实施例16所述的通信装置,其中,
第一调度信息的长度与第二调度信息的长度相同。
实施例23、根据实施例20所述的通信装置,其中,
第二调度信息包括第一字段域,不包括第二字段域;
第一调度信息包括第二字段域,不包括第一字段域;
其中,第一字段域与第二字段域不同。
实施例24、根据实施例23所述的通信装置,其中,第二字段域包括i个字段域;
i个字段域中前(i-1)个字段域的总长度小于第一字段域的长度,i个字段域的总长度大于或等于第一字段域的长度。
实施例25、根据实施例23或24所述的通信装置,其中,第一调度信息与第二调度信息包括混合自动重传请求进程号HPN和新数据指示NDI,或者,第一调度信息与第二调度信息包括载波指示域CIF、HPN和NDI;
HPN在第一调度信息中的位置和长度与HPN在第二调度信息中的位置和长度相同,NDI在第一调度信息中的位置和长度与NDI在第二调度信息中的位置和长度相同,CIF在第一调度信息中的位置和长度与CIF在第二调度信息中的位置和长度相同。
实施例26、根据实施例23-实施例25任一项所述的通信装置,其中,
第一调度信息或者第二调度信息包括第三字段域和第四字段域,第三字段域指示至少一个第四字段域的类型。
实施例27、根据实施例23-实施例26任一项所述的通信装置,其中,第一数据为上行数据,第一字段域或第二字段域包括下述一种或者多种:
UL-SCH indicator、FDRA、BWP indicator、antenna port、SRS resource indicator、RV,TDRA,TPC命令,SRS triggering触发指示、CSI-RS triggering,precoding指示,beta_offset indicator,frequency hopping指示,PTRS-DMRS关联指示,DMRS sequence initialization,CBGTI。
实施例28、根据实施例23-实施例26任一项所述的通信装置,其中,第一数据为下行数据,第一字段域或第二字段域包括下述一种或者多种:
FDRA、BWP indicator、antenna port、SRS resource indicator、TCI、VRB-to-PRB mapping,PRB bundling size indicator,rate matching indicator,RV,TDRA,TPC命令,SRS触发指示,CSI-RS触发指示,DMRS sequence initialization,CBGTI、CBGFI。
实施例29、一种通信***,其中,该通信***包括:
第二通信装置,用于向第一通信装置发送第一调度信息;
第一通信装置,用于监测第一调度信息,当监测到第一调度信息,根据第一调度信息发送或接收第一通信装置与第二通信装置之间初传的第一数据;
第二通信装置,还用于第一数据传输失败后,向第一通信装置发送第二调度信息;第二调度信息包括的字段域与第一调度信息包括的字段域不同;
第一通信装置,用于监测第二调度信息,当监测到第二调度信息,根据第二调度信息发送或接收第一通信装置与第二通信装置之间重传的第一数据。
实施例30、一种通信装置,其特征在于,包括:处理器和存储器;所述存储器用于存储程序指令;所述处理器用于调用所述存储器中的程序指令,执行如实施例1至实施例14任一项所述的数据调度方法。
实施例31、实施例30所述的通信装置为终端或可应用于终端的芯片,或者所述通信装置为网络设备或可应用于网络设备的芯片。
实施例32、一种通信装置,其特征在于,包括用以执行如实施例1至14任一项所述的数据调度方法的一个或多个装置。
实施例33、一种计算机可读存储介质,其中,计算机可读存储介质包括计算机指令,当计算机指令在计算机上运行时,使得计算机执行如实施例1-实施例14任一项的数据调度方法。
实施例34、一种计算机程序产品,其中,计算机程序产品包括计算机指令,当计算机指令在计算机上运行时,使得计算机执行如实施例1-实施例14任一项的数据调度方法。
需要说明的是,本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两 个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请实施例中,“与A对应的B”表示B与A相关联。例如,可以根据A可以确定B。还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。此外,本申请实施例中出现的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,本申请实施例对此不做任何限定。
本申请实施例中出现的“传输”(transmit/transmission)如无特别说明,是指双向传输,包含发送和/或接收的动作。具体地,本申请实施例中的“传输”包含数据的发送,数据的接收,或者数据的发送和数据的接收。或者说,这里的数据传输包括上行和/或下行数据传输。数据可以包括信道和/或信号,上行数据传输即上行信道和/或上行信号传输,下行数据传输即下行信道和/或下行信号传输。本申请实施例中出现的“网络”与“***”表达的是同一概念,通信***即为通信网络。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备,如:可以是单片机,芯片等,或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储 程序代码的介质。

Claims (18)

  1. 一种数据调度方法,其特征在于,所述方法应用于第一通信装置,所述方法包括:
    监测第二通信装置发送的第一调度信息;
    当监测到所述第一调度信息,根据所述第一调度信息发送或接收所述第一通信装置和所述第二通信装置之间初传的第一数据;
    监测所述第二通信装置发送的第二调度信息;
    当监测到所述第二调度信息,根据所述第二调度信息发送或接收所述第一通信装置和所述第二通信装置之间重传的所述第一数据,所述第二调度信息包括的字段域与所述第一调度信息包括的字段域不同。
  2. 一种数据调度方法,其特征在于,所述数据调度方法包括:
    第二通信装置向第一通信装置发送第一调度信息;
    所述第二通信装置根据所述第一调度信息,向所述第一通信装置初传第一数据;
    所述第一数据传输失败后,所述第二通信装置向所述第一通信装置发送第二调度信息,所述第二调度信息包括的字段域与所述第一调度信息包括的字段域不同;
    所述第二通信装置根据所述第二调度信息,向所述第一通信装置重传所述第一数据。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第二调度信息的长度与所述第一调度信息的长度不同;
    所述第二调度信息包括第一字段域,所述第一调度信息不包括所述第一字段域;或者,
    所述第一调度信息包括所述第一字段域,所述第二调度信息不包括所述第一字段域。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一调度信息对应的搜索空间与所述第二调度信息对应的搜索空间不同。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一调度信息对应的监测参数与所述第二调度信息对应的监测参数不同,所述监测参数包括:搜索空间的配置、控制资源集合CORESET配置、无线网络临时标识RNTI中的一种或者多种信息;
    所述搜索空间的配置包括所述搜索空间的监测周期、需要监测的下行控制信息DCI格式、需要监测的候选集candidate数量、需要监测的聚合等级中的一种或多种信息。
  6. 根据权利要求4或5所述的方法,其特征在于,所述监测所述第二通信装置发送的第二调度信息包括:在根据所述第一调度信息接收或发送所述第一数据后的第一时间段内,在所述第二调度信息对应的搜索空间内,利用所述第二调度信息对应的监测参数监测所述第二调度信息。
  7. 根据权利要求6所述的方法,其特征在于,
    所述第一数据为所述第二通信装置发送给所述第一通信装置的数据,所述第一时间段的起始时刻等于或晚于所述第一通信装置发送否定应答的时刻,所述否定应答用于指示所述第一数据传输失败;
    所述第一数据为所述第一通信装置发送给所述第二通信装置的数据,所述第一时间段的起始时刻等于或晚于所述第一通信装置根据所述第一调度信息向所述第二通信装置发送所述第一数据的时刻。
  8. 根据权利要求1或2所述的方法,其特征在于,
    所述第一调度信息的长度与所述第二调度信息的长度相同。
  9. 根据权利要求8所述的方法,其特征在于,
    所述第二调度信息包括第一字段域,不包括第二字段域;
    所述第一调度信息包括所述第二字段域,不包括所述第一字段域;
    其中,所述第一字段域与所述第二字段域不同。
  10. 根据权利要求9所述的方法,其特征在于,所述第二字段域包括i个字段域;
    所述i个字段域中前(i-1)个字段域的总长度小于所述第一字段域的长度,所述i个字段域的总长度大于或等于所述第一字段域的长度。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一调度信息与所述第二调度信息包括混合自动重传请求进程号HPN和新数据指示NDI,或者,所述第一调度信息与所述第二调度信息包括载波指示域CIF、HPN和NDI;
    所述HPN在所述第一调度信息中的位置和长度与所述HPN在所述第二调度信息中的位置和长度相同,所述NDI在所述第一调度信息中的位置和长度与所述NDI在所述第二调度信息中的位置和长度相同,所述CIF在所述第一调度信息中的位置和长度与所述CIF在所述第二调度信息中的位置和长度相同。
  12. 根据权利要求9-11任一项所述的方法,其特征在于,
    所述第一调度信息或者所述第二调度信息包括第三字段域和第四字段域,所述第三字段域指示至少一个第四字段域的类型。
  13. 根据权利要求9-12任一项所述的方法,其特征在于,所述第一数据为上行数据,所述第一字段域或所述第二字段域包括下述一种或者多种:
    上行共享信道指示UL-SCH indicator、频域资源分配FDRA、带宽部分指示BWP indicator、天线端口antenna port、探测参考信号资源指示SRS resource indicator、冗余版本RV,时域资源分配TDRA,传输功率控制TPC命令,SRS triggering触发指示、信道状态信息参考信号触发指示CSI-RS triggering,预编码precoding指示,beta偏移指示beta_offset indicator,跳频frequency hopping指示,相位跟踪参考信号-解调参考信号PTRS-DMRS关联指示,解调参考信号初始序列DMRS sequence initialization,码块组传输指示CBGTI。
  14. 根据权利要求9-12任一项所述的方法,其特征在于,所述第一数据为下行数据,所述第一字段域或所述第二字段域包括下述一种或者多种:
    频域资源分配FDRA、BWP indicator、antenna port、SRS resource indicator、传输配置指示TCI、虚拟资源块到物理资源块的映射关系VRB-to-PRB mapping,物理资源块捆绑尺寸指示PRB bundling size indicator,速率匹配指示rate matching indicator,冗余版本RV,时域资源分配TDRA,TPC命令,SRS触发指示,CSI-RS触发指示,DMRS sequence initialization,CBGTI、码块组清除指示CBGFI。
  15. 一种通信***,其特征在于,所述通信***包括第一通信装置以及第二通信装置;
    所述第二通信装置,用于向第一通信装置发送第一调度信息;
    所述第一通信装置,用于监测所述第一调度信息,当监测到所述第一调度信息,根据所述第一调度信息发送或接收所述第一通信装置与所述第二通信装置之间初传的第一数据;
    所述第二通信装置,还用于所述第一数据传输失败后,向所述第一通信装置发送第二调度信息;所述第二调度信息包括的字段域与所述第一调度信息包括的字段域不同;
    所述第一通信装置,用于监测所述第二调度信息,当监测到所述第二调度信息,根据所述第二调度信息发送或接收所述第一通信装置与所述第二通信装置之间重传的所述第一数据。
  16. 一种通信装置,其特征在于,所述通信装置包括一个或者多个处理器、通信接口,所述一个或者多个处理以及所述通信接口用于支持所述通信装置执行如权利要求1-14任一项所述的数据调度方法。
  17. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求1-14任一项所述的数据调度方法。
  18. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求1-14任一项所述的数据调度方法。
PCT/CN2021/092470 2020-05-21 2021-05-08 一种数据调度方法及装置 WO2021233146A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010437349.7A CN113708900A (zh) 2020-05-21 2020-05-21 一种数据调度方法及装置
CN202010437349.7 2020-05-21

Publications (1)

Publication Number Publication Date
WO2021233146A1 true WO2021233146A1 (zh) 2021-11-25

Family

ID=78645925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092470 WO2021233146A1 (zh) 2020-05-21 2021-05-08 一种数据调度方法及装置

Country Status (2)

Country Link
CN (1) CN113708900A (zh)
WO (1) WO2021233146A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068279A1 (en) * 2012-11-02 2014-05-08 Sony Corporation Telecommunications apparatus and methods
US20150016432A1 (en) * 2012-02-21 2015-01-15 Telefonaktiebolaget L M Ericsson (Publ) Retransmission Protocol Feedback Handling with Multiple Feedback Times
CN108633070A (zh) * 2017-03-24 2018-10-09 北京三星通信技术研究有限公司 半静态资源调度方法、功率控制方法及相应用户设备
CN108811148A (zh) * 2017-05-05 2018-11-13 北京展讯高科通信技术有限公司 Urllc业务的上行传输方法、装置、基站及用户设备
CN108988995A (zh) * 2017-06-02 2018-12-11 华为技术有限公司 一种数据传输的方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108390741B (zh) * 2017-02-03 2021-11-19 华为技术有限公司 数据传输方法和设备
CN109392152B (zh) * 2017-08-11 2023-06-09 华为技术有限公司 通信方法和通信装置
CN110719645B (zh) * 2018-07-13 2021-12-14 维沃移动通信有限公司 一种信道检测指示方法、终端及网络设备
CN111148125B (zh) * 2018-11-02 2023-10-27 维沃移动通信有限公司 下行信息的监听方法、配置方法、终端及网络设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150016432A1 (en) * 2012-02-21 2015-01-15 Telefonaktiebolaget L M Ericsson (Publ) Retransmission Protocol Feedback Handling with Multiple Feedback Times
WO2014068279A1 (en) * 2012-11-02 2014-05-08 Sony Corporation Telecommunications apparatus and methods
CN108633070A (zh) * 2017-03-24 2018-10-09 北京三星通信技术研究有限公司 半静态资源调度方法、功率控制方法及相应用户设备
CN108811148A (zh) * 2017-05-05 2018-11-13 北京展讯高科通信技术有限公司 Urllc业务的上行传输方法、装置、基站及用户设备
CN108988995A (zh) * 2017-06-02 2018-12-11 华为技术有限公司 一种数据传输的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE, SANECHIPS: "Discussion on scheduling and HARQ for NR-U", 3GPP DRAFT; R1-1903875 DISCUSSION ON SCHEDULING AND HARQ FOR NR-U_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 7 April 2019 (2019-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051699311 *

Also Published As

Publication number Publication date
CN113708900A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
RU2746224C1 (ru) Способ и оборудование для передачи и приема сигнала в системе мобильной связи
US11219049B2 (en) Method and apparatus for transmitting and receiving signal in mobile communication system
WO2019072074A1 (zh) Harq-ack反馈码本的发送方法、装置及设备
WO2019029727A1 (zh) 一种反馈信息确定的方法及终端设备、网络设备
US20220248436A1 (en) Method and device for transmitting harq-ack
JP2020506610A (ja) フィードバック方法、デバイス、及びシステム
US11057923B2 (en) Transmission method, terminal device and base station
WO2017045138A1 (zh) 控制信息的发送方法和通信设备
US20220224452A1 (en) Feedback Information Transmission Method and Apparatus
JP2018515004A (ja) 制御情報を送信するための方法、ユーザ機器、及び基地局
JP7305726B2 (ja) 通信方法、ネットワークデバイス、および端末
EP2683104B1 (en) Data transmission method, evolved nodeb and user equipment
WO2019157669A1 (zh) 通信方法及装置
CN110291737A (zh) 无线通信***中的ack/nack捆绑
TWI759507B (zh) 回饋應答訊息的傳輸方法、裝置及系統
WO2019047676A1 (zh) 数据反馈、发送、接收方法及装置,接收设备,发送设备
WO2022040964A1 (zh) 生成混合自动重复请求harq码本的方法和装置
WO2021233146A1 (zh) 一种数据调度方法及装置
JP7462749B2 (ja) アップリンクデータ伝送方法及びアップリンクデータ伝送装置
WO2017024528A1 (zh) 一种传输反馈信息的方法、用户设备和接入设备
CN111431675A (zh) 数据传输方法及装置
WO2023079980A1 (en) Joint operation of deferred sps harq-ack and repetitions
WO2022236752A1 (zh) 无线通信方法、第一设备和第二设备
JP2019146258A (ja) 制御情報を送信するための方法、ユーザ機器、及び基地局
CN117999753A (zh) 方法、通信设备和基础设施设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21809876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21809876

Country of ref document: EP

Kind code of ref document: A1