WO2021230608A1 - Method for preparing composite heating material by means of metal-coated carbon fibers, and composite heating material prepared by said method - Google Patents

Method for preparing composite heating material by means of metal-coated carbon fibers, and composite heating material prepared by said method Download PDF

Info

Publication number
WO2021230608A1
WO2021230608A1 PCT/KR2021/005853 KR2021005853W WO2021230608A1 WO 2021230608 A1 WO2021230608 A1 WO 2021230608A1 KR 2021005853 W KR2021005853 W KR 2021005853W WO 2021230608 A1 WO2021230608 A1 WO 2021230608A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
carbon fiber
composite material
resin
coated carbon
Prior art date
Application number
PCT/KR2021/005853
Other languages
French (fr)
Korean (ko)
Inventor
이종길
허수형
정용희
한송희
김재환
Original Assignee
주식회사 비에스엠신소재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 비에스엠신소재 filed Critical 주식회사 비에스엠신소재
Publication of WO2021230608A1 publication Critical patent/WO2021230608A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/18Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor the conductor being embedded in an insulating material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters

Definitions

  • the present invention relates to a method for manufacturing a heating composite material using a metal-coated carbon fiber, a heating composite material manufactured by the manufacturing method, a molded body including the heating composite material, and a heating product including the molded body.
  • the heating product-related market can be applied to any product that generates heat such as heating elements for building heating, saunas and steam generators, drying agricultural and marine products, and industrial heating elements. For this reason, the use of heating sheets is on the rise.
  • Heat-generating composite materials are plate-type, assembly-type, film, and sheet, and can be used in various household products such as electronic products, heating products, household products, medical supplies, beauty products, and functional clothing that require a constant temperature. This product is mainly used for industrial thermostats.
  • Heating composite materials are expanding the range of planar heating elements in the building heating field, and their application range is gradually expanding due to their high calorific value compared to the existing linear heating elements and quick heating control.
  • metal heating wires and ITO nanoparticle heating elements are mainly applied at present, but the scope of application is limited due to the heating element structure, high process cost, and temperature restrictions.
  • heating composite materials have the advantage of having sufficient competitiveness compared to other heating elements because they can be applied to various substrates through an inexpensive coating method. have.
  • planar heating elements are partially used for heating products due to the limitation of low-temperature heating temperature, and are forming a domestic market of 20 billion won per year.
  • Heating composite material is manufactured by extruding into a film shape in a state where the material is manufactured to maintain a constant electrical resistance through proper mixing and dispersion using nichrome wire, carbon fiber, carbon nanotube (CNT), ceramic powder, etc. on an existing metal plate.
  • nichrome wire, carbon fiber, carbon nanotube (CNT), ceramic powder, etc. on an existing metal plate.
  • it is manufactured by bonding it in various ways and applying electricity at a certain distance to generate heat.
  • a method of manufacturing a heating film having a multilayer by additionally adhering different materials is mainly used.
  • the present invention is to solve the necessity of the prior art as described above, and an object of the present invention is to provide a heating composite material manufactured by impregnating a metal-plated carbon fiber bundle with a resin and a method for manufacturing the same.
  • the present invention provides a method of manufacturing a heat-generating composite material using a metal-coated carbon fiber, comprising the following steps.
  • step S2 Passing the bundle of carbon fibers prepared in step S1 through a resin impregnation tank to prepare a resin-impregnated metal-coated carbon fiber (S2);
  • step S4 The carbon fiber dried in step S4 is cut to a predetermined length and pelletized to produce a heating composite material (S5).
  • the step S1 is,
  • Electrolytic plating of the carbon fiber electroless-plated in step S1-1 with a second metal (S1-2) may be included.
  • the bundle of carbon fibers in step S2 may include 100 to 50,000 monofilaments.
  • the impregnation in step S2 may be performed in a resin impregnation tank in which the resin is extruded at a pressure of 0.5 to 10 kg/cm 2 .
  • the resin is polyamide (PA), polyethylene (PE), polypropylene (PP), acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polyvinyl chloride (PVC) , polyvinyl alcohol (PVA), polystyrene (PS), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), acrylonitrile-styrene copolymer resin (SAN), At least one thermoplastic resin selected from the group consisting of acrylonitrile-styrene-acrylate copolymer resin (ASA), polyphenylene ether (PPE), polyphenylene sulfide (PPS), and polyether ether ketone (PEEK) may be
  • the heating composite material may include 5 to 40% by weight of metal-coated carbon fiber and 60 to 95% by weight of a resin.
  • the drying in step S4 may be performed through air pressure applied at a pressure of 1 to 10 kg/cm 2 or hot air at 100° C. to 150° C.
  • the pelletization of step S5 may be cutting the dried carbon fibers to a length of 1 to 15 mm.
  • the resin may further include one or more materials selected from the group consisting of metal, carbon nanotubes, and graphene.
  • the present invention provides a heating composite material manufactured by the above manufacturing method.
  • the molded body and an electrode, which provides a heating product.
  • the present invention relates to a method for manufacturing a heating composite material comprising a metal-coated carbon fiber impregnated with a resin, a molded body manufactured through the heating composite material, and a heating product including the molded body, according to the manufacturing method of the present invention , the metal-coated carbon fiber inside the heating composite material is included in a certain arrangement and a certain length, so that the electrical resistance of the heating composite material can be easily controlled.
  • the exothermic composite material of the present invention can be easily commercialized by a molding method through a general injection method, a complex shape can be easily commercialized in one process. It has the advantage of easy product manufacturing.
  • FIG. 1 is a diagram schematically illustrating a method for manufacturing a heating composite material of the present invention, a method for manufacturing a molded body using the heating composite material, and a method for manufacturing a heating product using the molded body.
  • FIG. 2 is a schematic view showing a manufacturing apparatus for manufacturing a heating composite material of the present invention.
  • FIG 3 is a view showing a cross-section of the heating composite material of the present invention.
  • FIG. 4 is a view showing a test piece for measuring the amount of heat generated by connecting an electrode to the molded article of the present invention.
  • FIG. 5 is a result of measuring the heating temperature generated by changing the amount of power input to the test piece of the present invention
  • FIG. 5a is a thermal image result measured by inputting power to 0.5V, 0.89A
  • FIG. 5C is a thermal image result measured by supplying power to 1.5V and 2.6A
  • FIG. 5D is a thermal image measured by supplying electric power to 2.0V and 3.41A
  • Figure 5e is a thermal image result measured by applying power to 2.5V, 3.92A
  • Figure 5f is a thermal image result measured by inputting power to 3.0V, 4.36A
  • Figure 5g is 3.5V
  • 4.63 It is a diagram showing the thermal image result measured by supplying power to A.
  • the present invention is a result of intensive research to produce a heat-generating composite material that is easy to commercialize and has excellent heat-generating performance.
  • a resin is impregnated into a bundle-type metal-coated carbon fiber to produce a pellet-type heat-generating composite material, heat generation performance and a heat-generating composite material having excellent physical properties, and confirmed that it can be easily manufactured into a heat-generating product through the heat-generating composite material, thereby completing the present invention.
  • 1 schematically shows a method for manufacturing a heating composite material of the present invention, injection molding the heating composite material, and printing and assembling electrodes to produce a heating product.
  • the present invention provides a method for manufacturing a heat-generating composite material using a metal-coated carbon fiber, comprising the following steps:
  • step S2 Passing the bundle of carbon fibers prepared in step S1 through a resin impregnation tank to prepare a resin-impregnated metal-coated carbon fiber (S2);
  • step S4 The carbon fiber dried in step S4 is cut to a predetermined length and pelletized to produce a heating composite material (S5).
  • the present invention relates to a method of manufacturing a heat-generating composite material manufactured by pressurizing and impregnating a thermoplastic resin between fiber bundles using a metal coated carbon fiber (MCF), as schematically shown in FIG. 2 .
  • MCF metal coated carbon fiber
  • the metal-coated carbon fiber used in the present invention can be used without limitation as long as it is a carbon fiber coated with a metal through a plating process on the outer diameter of the carbon fiber. And it is preferable to use a carbon fiber coated with a metal doubly through electrolytic plating.
  • the step S1 includes: electroless plating the carbon fiber with a first metal (S1-1); and electrolytically plating the carbon fiber electroless-plated in step S1-1 with a second metal (S1-2).
  • the types of the first metal and the second metal may be the same or different from each other, and preferably, the first metal may be nickel or copper, and the second metal may be nickel.
  • the electroless and electrolytic process of the present invention may be performed through the method disclosed in Korean Patent No. 1427309, but is not limited thereto.
  • the step S1-1 may be plated by passing carbon fibers through an electroless plating solution containing pure water, a first metal salt, a complexing agent, a reducing agent, a stabilizer and a pH adjusting agent, and the S1-2 step is S1 It is performed continuously following step -1 and may be performed by applying a constant voltage (CV) of 5-15 Volts using a second metal salt and a pH buffer, but is not limited to the above method.
  • CV constant voltage
  • step S1-1 and step S1-2 (1) passing the carbon fiber through an aqueous solution containing a surfactant, an organic solvent and a nonionic surfactant to degrease and soften the carbon fiber; (2) the carbon fiber resulting from the step (1) sodium bisulfite (NaHSO 3 ), sulfuric acid (H 2 SO 4 ), ammonium persulfate (ammonium persulfate; (NH 4 ) 2 S 2 O 8 ) and performing an etching process for neutralization, cleaning and conditioning by passing through an aqueous solution containing pure water; (3) passing the carbon fiber resulting from the step (2) through an aqueous solution of PdCl 2 to perform a sensitizing process; and (4) passing the carbon fiber resulting from step (3) through an aqueous solution of sulfuric acid (H 2 SO 4 ) to perform an activating process.
  • Fibers may be used, but are not limited thereto.
  • the thickness of the metal coating produced by the plating may be 50 to 500 nm.
  • the electrical resistance of the metal-coated carbon fiber may be different depending on the thickness of the metal coating, and the preferable electrical resistance may be 0.1 to 10 ⁇ /m, but is not limited thereto.
  • the carbon fiber is characterized in that it is in the form of a bundle.
  • the bundle of carbon fibers includes 100 to 50,000 monofilaments, preferably 1K (1,000 monofilaments), 3K (3,000 monofilaments), 6K (6,000 monofilaments), 12K (12,000 monofilaments). ), a bundle of carbon fibers of 48K (48,000 monofilaments) can be used, and more preferably, a bundle of carbon fibers of 8K (8,000 monofilaments) to 16K (16,000 monofilaments) can be used, and the present invention A 12K carbon fiber bundle may be used as in the embodiment.
  • the metal-coated carbon fiber may be provided in the form of being wound on a bobbin, and transferred to the resin impregnation tank through a fiber guide roller.
  • the fiber guide roller is used to minimize frictional force to reduce peeling of the metal coating layer, and the guide roller may be further provided between the resin impregnation tank and the cooling unit where the resin is cured, as shown in FIG. 2 .
  • Step S2 of the present invention is a step of impregnating the resin in the bundle of carbon fibers.
  • the impregnation may be performed in a resin impregnation tank in which the resin is extruded at a pressure of 0.5 to 10 kg/cm 2 .
  • the resin is a thermoplastic resin, polyamide resin (PA6, PA66, etc.), polyethylene (PE), polypropylene (PP), acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polyvinyl chloride (PVC), Polyvinyl alcohol (PVA), polystyrene (PS), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), acrylonitrile-styrene copolymer resin (SAN), acrylic Ronitrile-styrene-acrylate copolymer resin (ASA), polyphenylene ether (PPE), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), and the like may be used.
  • PA6 PA66, etc. polyamide resin
  • PE polyethylene
  • PP polypropylene
  • ABS acrylonitrile butadiene styrene
  • PC polycarbonate
  • the polyamide has a density of 1.14 g/cm 3 , a melting point of 220 to 255° C., a tensile strength of 83 to 85 MPa, an Izod impact strength of 7.0 to 7.5Kg f ⁇ cm/cm, and a heat deflection temperature of 65 to 85° C. it's not going to be
  • the resin is melted by heating within the range of 100 to 500°C in consideration of the melting point and extruded into the resin impregnation tank through a resin extruder.
  • the resin impregnation amount is adjusted in consideration of the cross-sectional area of the fiber, and the pressure can be adjusted by adjusting the diameter size of the resin extruder.
  • the pressure is more preferably 1 to 3 kg/cm 2 in terms of the cross-sectional area of the bundle of carbon fibers used.
  • the exothermic composite material of the present invention may include 5 to 40% by weight of metal-coated carbon fiber and 60 to 95% by weight of a resin. More preferably, when 25 to 35% by weight of the metal-coated carbon fiber and 75 to 65% by weight of the resin are included, it may be made of a heating composite material having desirable heating performance for use in heating products.
  • the drying in step S4 may be performed by air pressure applied at a pressure of 1 to 10 kg/cm 2 or hot air at 100° C. to 150° C., but the drying method is the type of resin used and the process is performed. It can be freely selected and performed according to the environment and the like.
  • the carbon fiber may be transferred to a pelletizer through a drawing device.
  • the drawing device is a roller-type device that pulls the material in which the fiber and the impregnated resin are combined, and a urethane or rubber roller with high frictional force may be used.
  • the pelletization of step S5 may be performed by cutting the dried carbon fibers to a length of 1 to 15 mm. More preferably, it may be provided in a length of 4 mm to 8 mm, which is a size that is easy to be put into a mold when injection molded.
  • the resin of the present invention may further include one or more materials selected from the group consisting of metals, carbon nanotubes, and graphene according to the characteristics of the heat generating product to be manufactured.
  • the type of the metal is not limited.
  • the present invention provides a heating composite material manufactured by the above manufacturing method.
  • the pelletized heating composite material may be melted and then injected into a mold to be molded into a desired shape to produce a molded body.
  • the molded body may be mixed with different types of pellets to control the color of the product, the flowability of the liquid, and the dispersibility of the fibers.
  • the power input unit can be designed/manufactured, and the design/manufacturing method can be freely selected according to the type, shape, and environment of the heating product to be manufactured. can be designed/manufactured.
  • the electrode is a conductive material, and may be at least one selected from the group consisting of copper, silver (Ag), gold (Au), carbon nanotubes (CNT), and graphene.
  • metal-coated carbon fiber (MCF) was manufactured by the metal-plated carbon fiber manufacturing method according to Patent No. 1427309. By making the metal coating thicknesses different from each other, Sample-1 to Sample-4 shown in Table 1 were prepared.
  • Fiber specific gravity fiber electrical resistance 100 nm 2.13 4 Sample-2 130 nm 2.24 3 Sample-3 190 nm 2.45 2 Sample-4 360 nm 3.0
  • Resins shown in Table 2 below were prepared as resins impregnated into metal-coated carbon fibers.
  • PA6 was selected and used among the resins.
  • the 12,000 strands of MCF fiber of Sample-3 were uniformly impregnated with PA6 resin to make the composite material linear, and the composite material was cut to a length of 6 mm to prepare pellets.
  • the pellets have a resin impregnated between fiber bundles.
  • Example 1 By melting the pellets of Example 1 in an injection molding machine, a plate product (size: 6 mm (T) x 12 mm (W) x 100 mm, volume: 7.2 cm 3 ) was produced.
  • the electrical resistance according to the amount of the resin impregnated was measured, and is shown in Table 3 below.
  • Sample MCF PA 6 electrical resistance ⁇ /cm 3 One 10% 90% 100 to 200 2 20% 80 50 to 100 3 30% 70 15 to 40 4 40% 60 5 to 10
  • Example 3 in order to manufacture a heating product connected to an electrode, a pellet containing 30 wt% of MCF fiber and 70 wt% of a resin is melted and put into a mold, 16 mm (T) x 12 mm (W) x 100 mm to prepare a test piece.
  • copper wires were heat-sealed and inserted at both ends to fabricate the power input part on the manufactured test piece, thereby manufacturing the power input part.
  • a DC power supply device was connected to the test piece, and the exothermic temperature was measured with a thermal imaging camera 10 seconds after power input, as shown in FIGS. 5A to 5G .

Abstract

The present invention provides a method for preparing a composite heating material by means of metal-coated carbon fibers, a composite heating material prepared by the method, a molded body comprising the composite heating material, and a heat-generating product comprising the molded body. The composite heating material of the present invention is prepared by impregnating a resin into a bundle of metal-coated carbon fibers, and exhibits excellent heat generation performance.

Description

금속코팅 탄소섬유를 이용한 발열복합소재의 제조방법 및 상기 제조방법에 의한 발열복합소재Manufacturing method of exothermic composite material using metal-coated carbon fiber and exothermic composite material by the manufacturing method
본 발명은 금속코팅 탄소섬유를 이용한 발열복합소재의 제조방법, 상기 제조방법으로 제조된 발열복합소재, 상기 발열복합소재를 포함하는 성형체, 및 상기 성형체를 포함하는 발열제품에 관한 것이다.The present invention relates to a method for manufacturing a heating composite material using a metal-coated carbon fiber, a heating composite material manufactured by the manufacturing method, a molded body including the heating composite material, and a heating product including the molded body.
발열제품 관련시장은 건축 난방용 발열체, 사우나 및 찜질기용 발열체, 농수산물 건조 및 산업용 발열체 등으로 발열하는 제품 어디에나 적용 가능하고, 최근에는 실내 마루, 원예, 침구, 건강 기구, 축사 등에서는 에너지의 효율적인 사용을 위해 발열시트의 사용이 증가하고 있는 추세이다. The heating product-related market can be applied to any product that generates heat such as heating elements for building heating, saunas and steam generators, drying agricultural and marine products, and industrial heating elements. For this reason, the use of heating sheets is on the rise.
발열복합소재는 판형, 조립형, 필름, 시트로 일정한 온도가 필요한 전자제품, 난방용품, 생활용품, 의료용품, 미용용품, 기능성 의류 등 다양한 생활용품에 사용할 수 있고, 비교적 저온인 150℃ 이하의 산업용 항온유지 장치에 주로 사용되는 제품이다.Heat-generating composite materials are plate-type, assembly-type, film, and sheet, and can be used in various household products such as electronic products, heating products, household products, medical supplies, beauty products, and functional clothing that require a constant temperature. This product is mainly used for industrial thermostats.
발열복합소재는 건축용 난방 분야에서 면상 발열체 범위가 확대되고 있으며 기존의 선상 발열체와 비교할 때 발열량이 높으며 신속한 난방 조절이 가능한 장점으로 인해 적용 범위가 점차 확대되고 있다. 고온 발열체 분야는 현재 금속 열선 및 ITO 나노입자 발열체가 주로 적용되는데 발열체 구조, 높은 공정 비용, 온도 제약 등으로 인해 적용 범위가 제한되고 있다.Heating composite materials are expanding the range of planar heating elements in the building heating field, and their application range is gradually expanding due to their high calorific value compared to the existing linear heating elements and quick heating control. In the field of high-temperature heating elements, metal heating wires and ITO nanoparticle heating elements are mainly applied at present, but the scope of application is limited due to the heating element structure, high process cost, and temperature restrictions.
난방 복합소재는 공기 공조 시스템, 공기 청정 시스템, 보조 난방 기구 등 현재 고온 발열체의 산업적 수요가 증가하고 있으며 저렴한 코팅 방식을 통해 다양한 기판에 적용할 수 있기 때문에 타 발열체에 비해 충분한 경쟁력을 가진다는 장점이 있다.Industrial demand for high-temperature heating elements such as air conditioning systems, air cleaning systems, and auxiliary heating devices is increasing, and heating composite materials have the advantage of having sufficient competitiveness compared to other heating elements because they can be applied to various substrates through an inexpensive coating method. have.
또한, 전기 및 하이브리드 자동차 보급과 함께 향후 이차 전지 사용량이 늘어감에 따라 베터리 효율 향상을 위해 고효율 면상 발열체 시장도 급격히 증가될 것으로 예상되고, 이 밖에도 내충격성, 유연성이 필요한 발열필름, 발열직물, 발열 고무 등 다양한 분야에 기술이 적용되어 활용될 것으로 기대된다.In addition, as the use of secondary batteries increases along with the spread of electric and hybrid vehicles, the market for high-efficiency planar heating elements is expected to rapidly increase to improve battery efficiency. It is expected that the technology will be applied and utilized in various fields such as rubber.
국내의 발열 제품 관련 시장은 수 조원 규모로 추산되고 있고, 특히 건물 및 수송용 난방 제품의 경우 전기 스토브, 전기 장판, 전기 온열기, 전기온풍기 등이 메이져 제품군을 형성하며 연 2~3천억원 규모의 시장을 형성하고 있다.The domestic market for heating products is estimated to be worth several trillion won, and in the case of heating products for buildings and transportation, electric stoves, electric blankets, electric heaters, and electric heaters form major product groups, and the market is worth 2-3 trillion won a year. is forming
현재 면상 발열체의 경우 저온 발열 온도의 제약으로 인해 난방 제품에 부분적으로 활용되고 있으며 연 200억 수준의 국내 시장을 형성하고 있고, 향후 고효율 발열 제품 개발 시 시장 규모를 크게 증가할 것으로 예상된다.Currently, planar heating elements are partially used for heating products due to the limitation of low-temperature heating temperature, and are forming a domestic market of 20 billion won per year.
난방 복합소재는 기존의 금속판에 니크롬선, 탄소 섬유, 탄소나노튜브(CNT), 세라믹 분말 등을 이용해 적당한 혼합과 분산으로 일정한 전기저항을 유지할 수 있도록 소재를 제작한 상태에서 필름 형상으로 압출하여 제조하는 방법 또는 금속이나 플라스틱 지지판에 혼합 물질을 일정하게 분산시키기 위해 여러 가지 방법으로 접착시켜 일정거리에서 전기를 인가하여 발열시키는 방법으로 제작하는 방식으로 제조한다. 여기에서, 발열을 위한 혼합 물질을 보호하기 위해 이종 재질을 추가로 접착하여 다층을 갖는 발열 필름을 제조하는 방법이 주로 사용된다.Heating composite material is manufactured by extruding into a film shape in a state where the material is manufactured to maintain a constant electrical resistance through proper mixing and dispersion using nichrome wire, carbon fiber, carbon nanotube (CNT), ceramic powder, etc. on an existing metal plate. In order to uniformly disperse the mixed material on a metal or plastic support plate, it is manufactured by bonding it in various ways and applying electricity at a certain distance to generate heat. Here, in order to protect the mixed material for heat generation, a method of manufacturing a heating film having a multilayer by additionally adhering different materials is mainly used.
한편, 중국을 비롯한 여러 나라들이 석탄 가격이 오르면서 난방비에 부담이 가중되고 석탄을 이용한 난방은 환경오염 문제까지 대두되고 있기 때문에 발열 필름을 이용한 난방용품의 수요가 증가하고 있으며, 점차 산업이 발달하면서 상기 나열된 분야의 발열필름 수요가 점차 증가하기 때문에 전력소모가 적고 제조비용이 적게드는 발열필름의 중요성이 점점 커질 것으로 전망된다.Meanwhile, in China and other countries, as the price of coal rises, the burden on heating costs increases, and the problem of environmental pollution in heating using coal is also on the rise. As the demand for the heating film in the fields listed above gradually increases, it is expected that the importance of the heating film, which consumes less power and has a low manufacturing cost, will increase.
(선행기술문헌) 대한민국 등록특허 제1754924호(Prior art document) Republic of Korea Patent No. 1754924
본 발명은 전술한 바와 같은 종래 기술상의 필요성을 해소하기 위한 것으로, 금속도금 탄소섬유 다발에 수지를 함침하여 제조된 발열 복합소재와 이의 제조방법을 제공하는 것에 목적이 있다.The present invention is to solve the necessity of the prior art as described above, and an object of the present invention is to provide a heating composite material manufactured by impregnating a metal-plated carbon fiber bundle with a resin and a method for manufacturing the same.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
상기 과제를 해결하기 위하여, 본 발명은 하기 단계를 포함하는, 금속코팅 탄소섬유를 이용한 발열복합소재의 제조방법을 제공한다.In order to solve the above problems, the present invention provides a method of manufacturing a heat-generating composite material using a metal-coated carbon fiber, comprising the following steps.
금속코팅 탄소섬유를 제조하는 단계(S1);Manufacturing a metal-coated carbon fiber (S1);
상기 S1 단계에서 제조된 탄소섬유의 다발을 수지함침조에 통과시켜, 수지가 함침된 금속코팅 탄소섬유를 제조하는 단계(S2);Passing the bundle of carbon fibers prepared in step S1 through a resin impregnation tank to prepare a resin-impregnated metal-coated carbon fiber (S2);
상기 S2 단계에서 제조된 탄소섬유를 냉각하여 함침된 수지를 경화하는 단계(S3);curing the impregnated resin by cooling the carbon fiber prepared in step S2 (S3);
상기 S3 단계에서 경화된 탄소섬유를 건조하는 단계(S4); 및 drying the carbon fiber cured in step S3 (S4); and
상기 S4 단계에서 건조된 탄소섬유를 일정한 길이로 절단하여 펠렛화하여 발열복합소재를 제조하는 단계(S5).The carbon fiber dried in step S4 is cut to a predetermined length and pelletized to produce a heating composite material (S5).
본 발명의 일구현예로, 상기 S1 단계는,In one embodiment of the present invention, the step S1 is,
탄소섬유를 제1금속으로 무전해 도금하는 단계(S1-1); 및Electroless plating the carbon fiber with a first metal (S1-1); and
상기 S1-1단계에서 무전해 도금된 탄소섬유를 제2금속으로 전해 도금하는 단계(S1-2)를 포함하는 것일 수 있다. Electrolytic plating of the carbon fiber electroless-plated in step S1-1 with a second metal (S1-2) may be included.
본 발명의 다른 구현예로, 상기 S2 단계의 탄소섬유의 다발은, 모노필라멘트가 100 내지 50,000가닥 포함되는 것일 수 있다.In another embodiment of the present invention, the bundle of carbon fibers in step S2 may include 100 to 50,000 monofilaments.
본 발명의 또다른 구현예로, 상기 S2 단계의 함침은, 0.5 내지 10 kg/cm2의 압력으로 수지가 압출되는 수지함침조에서 수행되는 것일 수 있다.In another embodiment of the present invention, the impregnation in step S2 may be performed in a resin impregnation tank in which the resin is extruded at a pressure of 0.5 to 10 kg/cm 2 .
본 발명의 또다른 구현예로, 상기 수지는 폴리아마이드(PA), 폴리에틸렌(PE), 폴리프로필렌(PP), 아크릴로니트릴부타디엔스티렌(ABS), 폴리카보네이트(PC), 폴리염화비닐(PVC), 폴리비닐알코올(PVA), 폴리스티렌(PS), 폴리부틸렌테레프탈레이트(PBT), 폴리에틸렌테레프탈레이트(PET), 폴리메틸메타크릴레이트(PMMA), 아크릴로니트릴-스티렌 공중합체 수지(SAN), 아크릴로니트릴-스티렌-아크릴레이트 공중합체 수지(ASA), 폴리페닐렌에테르(PPE), 폴리페닐렌설파이드(PPS), 및 폴리에테르에테르케톤(PEEK) 으로 이루어지는 군으로부터 선택되는 1종 이상의 열가소성 수지인 것일 수 있다.In another embodiment of the present invention, the resin is polyamide (PA), polyethylene (PE), polypropylene (PP), acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polyvinyl chloride (PVC) , polyvinyl alcohol (PVA), polystyrene (PS), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), acrylonitrile-styrene copolymer resin (SAN), At least one thermoplastic resin selected from the group consisting of acrylonitrile-styrene-acrylate copolymer resin (ASA), polyphenylene ether (PPE), polyphenylene sulfide (PPS), and polyether ether ketone (PEEK) may be
본 발명의 또다른 구현예로, 상기 발열복합소재는, 금속코팅 탄소섬유 5 내지 40 중량% 및 수지 60 내지 95 중량%를 포함하는 것일 수 있다.In another embodiment of the present invention, the heating composite material may include 5 to 40% by weight of metal-coated carbon fiber and 60 to 95% by weight of a resin.
본 발명의 또다른 구현예로, 상기 S4 단계의 건조는, 1 내지 10kg/cm2의 압력으로 가해지는 공기압 또는 100℃ 내지 150℃의 열풍을 통해 수행되는 것일 수 있다.In another embodiment of the present invention, the drying in step S4 may be performed through air pressure applied at a pressure of 1 to 10 kg/cm 2 or hot air at 100° C. to 150° C.
본 발명의 또다른 구현예로, 상기 S5 단계의 펠렛화는, 건조된 탄소섬유를 1 내지 15mm의 길이로 절단하는 것일 수 있다.In another embodiment of the present invention, the pelletization of step S5 may be cutting the dried carbon fibers to a length of 1 to 15 mm.
본 발명의 또다른 구현예로, 상기 수지는 금속, 탄소나노튜브 및 그래핀으로 이루어지는 군으로부터 선택되는 1종 이상의 소재를 더 포함하는 것일 수 있다.In another embodiment of the present invention, the resin may further include one or more materials selected from the group consisting of metal, carbon nanotubes, and graphene.
또한, 본 발명은 상기 제조방법에 의해 제조된 발열복합소재를 제공한다.In addition, the present invention provides a heating composite material manufactured by the above manufacturing method.
또한, 상기 발열복합소재를 용융한 후 금형에 투입하여 사출된, 성형체를 제공한다.In addition, there is provided a molded article, which is injected into a mold after melting the exothermic composite material.
아울러, 상기 성형체; 및 전극이 포함되는, 발열 제품을 제공한다.In addition, the molded body; and an electrode, which provides a heating product.
본 발명은 수지가 함침된 금속코팅 탄소섬유를 포함하는 발열복합소재의 제조방법과, 상기 발열복합소재를 통해 제조된 성형체 및 상기 성형체를 포함하는 발열 제품에 관한 것으로, 본 발명의 제조방법에 의하면, 발열복합소재 내부의 금속코팅 탄소섬유가 일정한 배열 및 일정한 길이로 포함되어, 발열 복합소재의 전기저항을 쉽게 제어할 수 있다. The present invention relates to a method for manufacturing a heating composite material comprising a metal-coated carbon fiber impregnated with a resin, a molded body manufactured through the heating composite material, and a heating product including the molded body, according to the manufacturing method of the present invention , the metal-coated carbon fiber inside the heating composite material is included in a certain arrangement and a certain length, so that the electrical resistance of the heating composite material can be easily controlled.
또한, 본 발명의 발열복합소재는 일반적인 사출법을 통한 성형법으로 용이하게 제품화할 수 있기 때문에, 복잡한 형상을 1회의 공정으로 용이하게 제품화할 수 있는 것으로, 사용 용도, 환경, 발열성능, 제품의 내구성 등에 따라 제품제작이 수월한 장점을 갖는다.In addition, since the exothermic composite material of the present invention can be easily commercialized by a molding method through a general injection method, a complex shape can be easily commercialized in one process. It has the advantage of easy product manufacturing.
도 1은 본 발명의 발열복합소재의 제조방법과, 상기 발열복합소재를 이용한 성형체의 제조방법 및 상기 성형체를 이용한 발열제품의 제조방법을 도식화하여 나타낸 도면이다.1 is a diagram schematically illustrating a method for manufacturing a heating composite material of the present invention, a method for manufacturing a molded body using the heating composite material, and a method for manufacturing a heating product using the molded body.
도 2는 본 발명의 발열복합소재를 제조하는 제조장치를 도식화하여 나타낸 도면이다.2 is a schematic view showing a manufacturing apparatus for manufacturing a heating composite material of the present invention.
도 3은 본 발명의 발열복합소재와 이의 단면을 나타낸 도면이다.3 is a view showing a cross-section of the heating composite material of the present invention.
도 4는 본 발명의 성형체에 전극을 연결한 발열량 측정을 위한 시험편을 나타낸 도면이다.4 is a view showing a test piece for measuring the amount of heat generated by connecting an electrode to the molded article of the present invention.
도 5는 본 발명의 시험편에 전력 투입량을 변화시켜 발생하는 발열온도를 측정한 결과로, 도 5a는 0.5V, 0.89A로 전력을 투입하여 측정한 열화상 결과이고, 도 5b는 1.0V, 1.8A로 전력을 투입하여 측정한 열화상 결과이며, 도 5c는 1.5V, 2.6A로 전력을 투입하여 측정한 열화상 결과이고, 도 5d는 2.0V, 3.41A로 전력을 투입하여 측정한 열화상 결과이며, 도 5e는 2.5V, 3.92A로 전력을 투입하여 측정한 열화상 결과이고, 도 5f는 3.0V, 4.36A로 전력을 투입하여 측정한 열화상 결과이며, 도 5g는 3.5V, 4.63A로 전력을 투입하여 측정한 열화상 결과를 나타낸 도면이다.5 is a result of measuring the heating temperature generated by changing the amount of power input to the test piece of the present invention, FIG. 5a is a thermal image result measured by inputting power to 0.5V, 0.89A, FIG. A thermal image result measured by supplying power to A, FIG. 5C is a thermal image result measured by supplying power to 1.5V and 2.6A, and FIG. 5D is a thermal image measured by supplying electric power to 2.0V and 3.41A The results are, Figure 5e is a thermal image result measured by applying power to 2.5V, 3.92A, Figure 5f is a thermal image result measured by inputting power to 3.0V, 4.36A, Figure 5g is 3.5V, 4.63 It is a diagram showing the thermal image result measured by supplying power to A.
이하, 본 발명의 설명은 특정한 실시 형태에 대해 한정되지 않으며, 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있다. 또한, 이하에서 설명하는 내용은 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Hereinafter, the description of the present invention is not limited to specific embodiments, and various transformations may be applied and various embodiments may be provided. In addition, it should be understood that the content described below includes all transformations, equivalents, and substitutes included in the spirit and scope of the present invention.
본 발명에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한, 이하에서 기재되는 "포함하다", "구비하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것으로 해석되어야 하며, 하나 또는 그 이상의 다른 특징들이나, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.As used herein, the singular expression includes the plural expression unless the context clearly dictates otherwise. In addition, terms such as "comprises", "comprises" or "have" described below are intended to designate that the features, numbers, steps, operations, components, parts, or combinations thereof described in the specification exist. It should be construed as not precluding the possibility of the presence or addition of one or more other features, numbers, steps, operations, components, parts, or combinations thereof.
이하, 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail.
본 발명은 우수한 발열 성능과 동시에, 제품화가 용이한 발열복합소재를 제조하기 위해 예의 연구한 결과, 다발형태의 금속코팅 탄소섬유에 수지를 함침시켜 펠렛형태의 발열복합소재를 제조할 경우, 발열 성능 및 물성이 모두 우수한 발열복합소재가 제조되며, 상기 발열복합소재를 통해 발열 제품으로 손쉽게 제조할 수 있다는 것을 확인하여 본 발명을 완성하였다. 본 발명의 발열복합소재의 제조방법과, 상기 발열복합소재를 사출성형하고, 전극을 인쇄 및 조립하여 발열 제품을 제조하는 과정을 도 1에 모식화하여 나타내었다.The present invention is a result of intensive research to produce a heat-generating composite material that is easy to commercialize and has excellent heat-generating performance. As a result, when a resin is impregnated into a bundle-type metal-coated carbon fiber to produce a pellet-type heat-generating composite material, heat generation performance and a heat-generating composite material having excellent physical properties, and confirmed that it can be easily manufactured into a heat-generating product through the heat-generating composite material, thereby completing the present invention. 1 schematically shows a method for manufacturing a heating composite material of the present invention, injection molding the heating composite material, and printing and assembling electrodes to produce a heating product.
즉 본 발명은 하기 단계를 포함하는, 금속코팅 탄소섬유를 이용한 발열복합소재의 제조방법을 제공한다:That is, the present invention provides a method for manufacturing a heat-generating composite material using a metal-coated carbon fiber, comprising the following steps:
금속코팅 탄소섬유를 제조하는 단계(S1);Manufacturing a metal-coated carbon fiber (S1);
상기 S1 단계에서 제조된 탄소섬유의 다발을 수지함침조에 통과시켜, 수지가 함침된 금속코팅 탄소섬유를 제조하는 단계(S2);Passing the bundle of carbon fibers prepared in step S1 through a resin impregnation tank to prepare a resin-impregnated metal-coated carbon fiber (S2);
상기 S2 단계에서 제조된 탄소섬유를 냉각하여 함침된 수지를 경화하는 단계(S3);curing the impregnated resin by cooling the carbon fiber prepared in step S2 (S3);
상기 S3 단계에서 경화된 탄소섬유를 건조하는 단계(S4); 및 drying the carbon fiber cured in step S3 (S4); and
상기 S4 단계에서 건조된 탄소섬유를 일정한 길이로 절단하여 펠렛화하여 발열복합소재를 제조하는 단계(S5).The carbon fiber dried in step S4 is cut to a predetermined length and pelletized to produce a heating composite material (S5).
본 발명은, 도 2에 모식화하여 나타낸 것과 같이, 금속코팅 탄소섬유(Metal Coated Carbon Fiber:MCF)를 이용해 열가소성 수지를 섬유다발 사이에 가압 함침시켜 제조되는 발열복합소재의 제조방법에 관한 것이다. 본 발명에서 사용되는 금속코팅 탄소섬유는, 탄소섬유의 외경에 도금 공정을 통해 금속이 코팅된 탄소섬유라면 제한없이 이용이 가능하나, 본 발명에서 제조하고자 하는 발열 성능을 만족하기 위해서는, 무전해 도금 및 전해 도금을 통해 금속이 2중으로 코팅된 탄소섬유를 사용하는 것이 바람직하다.The present invention relates to a method of manufacturing a heat-generating composite material manufactured by pressurizing and impregnating a thermoplastic resin between fiber bundles using a metal coated carbon fiber (MCF), as schematically shown in FIG. 2 . The metal-coated carbon fiber used in the present invention can be used without limitation as long as it is a carbon fiber coated with a metal through a plating process on the outer diameter of the carbon fiber. And it is preferable to use a carbon fiber coated with a metal doubly through electrolytic plating.
보다 상세하게는, 상기 S1 단계는, 탄소섬유를 제1금속으로 무전해 도금하는 단계(S1-1); 및 상기 S1-1단계에서 무전해 도금된 탄소섬유를 제2금속으로 전해 도금하는 단계(S1-2)를 포함하는 것일 수 있다. 상기 제1금속 및 제2금속의 종류는 서로 같거나 또는 다를 수 있고, 바람직하게는 제1금속은 니켈 또는 구리, 제2금속은 니켈일 수 있다. 본 발명의 무전해 및 전해 공정은 국내등록특허 제1427309호에 제시된 방법을 통해 수행될 수 있으나, 이에 제한되는 것은 아니다. More specifically, the step S1 includes: electroless plating the carbon fiber with a first metal (S1-1); and electrolytically plating the carbon fiber electroless-plated in step S1-1 with a second metal (S1-2). The types of the first metal and the second metal may be the same or different from each other, and preferably, the first metal may be nickel or copper, and the second metal may be nickel. The electroless and electrolytic process of the present invention may be performed through the method disclosed in Korean Patent No. 1427309, but is not limited thereto.
상기 S1-1 단계는 순수(pure water), 제1금속염, 착화제, 환원제, 안정제 및 pH 조절제를 포함하는 무전해 도금액에 탄소 섬유를 통과시켜 도금된 것일 수 있고, 상기 S1-2 단계는 S1-1 단계에 이어 연속적으로 수행되는 것으로 제2금속염 및 pH 완충제를 이용하여 정전압(CV, constant voltage) 5-15 Volt를 가하여 수행될 수 있으나, 상기 방법에 제한되는 것은 아니다.The step S1-1 may be plated by passing carbon fibers through an electroless plating solution containing pure water, a first metal salt, a complexing agent, a reducing agent, a stabilizer and a pH adjusting agent, and the S1-2 step is S1 It is performed continuously following step -1 and may be performed by applying a constant voltage (CV) of 5-15 Volts using a second metal salt and a pH buffer, but is not limited to the above method.
상기 S1-1 단계 및 S1-2 단계 이전에, (1) 탄소 섬유를 계면활성제, 유기 용매 및 비이온 계면활성제를 포함하는 수용액에 통과시켜 탄소 섬유를 탈지 및 연화시키는 단계; (2) 상기 단계 (1)의 결과물인 탄소섬유를 아황산수소나트륨(sodium bisulfite; NaHSO3), 황산(H2SO4), 과황산 암모늄(ammonium persulfate; (NH4)2S2O8) 및 순수(pure water)를 포함하는 수용액에 통과시켜 중화, 세정 및 조질(conditioning)작용을 하는 에칭 공정을 실시하는 단계; (3) 상기 단계 (2)의 결과물인 탄소 섬유를 PdCl2 수용액에 통과시켜 센시타이징(sensitizing) 공정을 실시하는 단계; 및 (4) 상기 단계 (3)의 결과물인 탄소 섬유를 황산(H2SO4) 수용액에 통과시켜 활성화(activating) 공정을 실시하는 단계를 포함하는 전처리 단계(S1-0)를 통해 전처리된 탄소섬유를 사용할 수 있으나, 역시 이에 제한되는 것은 아니다.Before step S1-1 and step S1-2, (1) passing the carbon fiber through an aqueous solution containing a surfactant, an organic solvent and a nonionic surfactant to degrease and soften the carbon fiber; (2) the carbon fiber resulting from the step (1) sodium bisulfite (NaHSO 3 ), sulfuric acid (H 2 SO 4 ), ammonium persulfate (ammonium persulfate; (NH 4 ) 2 S 2 O 8 ) and performing an etching process for neutralization, cleaning and conditioning by passing through an aqueous solution containing pure water; (3) passing the carbon fiber resulting from the step (2) through an aqueous solution of PdCl 2 to perform a sensitizing process; and (4) passing the carbon fiber resulting from step (3) through an aqueous solution of sulfuric acid (H 2 SO 4 ) to perform an activating process. Fibers may be used, but are not limited thereto.
상기 도금에 의해 생성된 금속코팅의 두께는 50 내지 500 nm일 수 있다. 상기 금속코팅의 두께에 따라 금속코팅 탄소섬유의 전기저항이 상이하게 나타날 수 있고, 바람직한 전기저항은 0.1 내지 10 Ω/m일 수 있으나, 이에 제한되는 것은 아니다.The thickness of the metal coating produced by the plating may be 50 to 500 nm. The electrical resistance of the metal-coated carbon fiber may be different depending on the thickness of the metal coating, and the preferable electrical resistance may be 0.1 to 10 Ω/m, but is not limited thereto.
본 발명의 S2 단계에서 탄소섬유는 다발형태인 것을 특징으로 한다. 상기 탄소섬유의 다발은 모노필라멘트가 100 내지 50,000가닥 포함되는 것으로, 바람직하게는 1K(모노필라멘트 1,000가닥), 3K(모노필라멘트 3,000가닥), 6K(모노필라멘트 6,000가닥), 12K(모노필라멘트 12,000가닥), 48K(모노필라멘트 48,000가닥)인 탄소섬유의 다발을 사용할 수 있고, 보다 바람직하게는 8K(모노필라멘트 8,000가닥) 내지 16K(모노필라멘트 16,000)인 탄소섬유의 다발을 사용할 수 있으며, 본 발명의 실시예와 같이 12K의 탄소섬유 다발을 사용할 수 있다.In step S2 of the present invention, the carbon fiber is characterized in that it is in the form of a bundle. The bundle of carbon fibers includes 100 to 50,000 monofilaments, preferably 1K (1,000 monofilaments), 3K (3,000 monofilaments), 6K (6,000 monofilaments), 12K (12,000 monofilaments). ), a bundle of carbon fibers of 48K (48,000 monofilaments) can be used, and more preferably, a bundle of carbon fibers of 8K (8,000 monofilaments) to 16K (16,000 monofilaments) can be used, and the present invention A 12K carbon fiber bundle may be used as in the embodiment.
상기 금속코팅 탄소섬유는 보빈에 감긴 형태로 제공될 수 있고, 섬유 가이드롤러를 통해 수지함침조로 이송된다. 상기 섬유 가이드롤러는 금속코팅 층의 박리를 줄이기 위해 마찰력을 최소화한 것으로 사용하며, 상기 가이드롤러는 도 2에 나타낸 것과 같이 수지 함침조 및 수지의 경화가 이루어지는 냉각부의 사이에 더 구비될 수 있다. The metal-coated carbon fiber may be provided in the form of being wound on a bobbin, and transferred to the resin impregnation tank through a fiber guide roller. The fiber guide roller is used to minimize frictional force to reduce peeling of the metal coating layer, and the guide roller may be further provided between the resin impregnation tank and the cooling unit where the resin is cured, as shown in FIG. 2 .
본 발명의 상기 S2 단계는, 상기 탄소섬유의 다발에 수지를 함침시키는 단계이다. 상기 함침은, 0.5 내지 10 kg/cm2의 압력으로 수지가 압출되는 수지함침조에서 수행되는 것일 수 있다. 상기 수지는 열가소성 수지로서, 폴리아마이드 수지(PA6, PA66 등), 폴리에틸렌(PE), 폴리프로필렌(PP), 아크릴로니트릴부타디엔스티렌(ABS), 폴리카보네이트(PC), 폴리염화비닐(PVC), 폴리비닐알코올(PVA), 폴리스티렌(PS), 폴리부틸렌테레프탈레이트(PBT), 폴리에틸렌테레프탈레이트(PET), 폴리메틸메타크릴레이트(PMMA), 아크릴로니트릴-스티렌 공중합체 수지(SAN), 아크릴로니트릴-스티렌-아크릴레이트 공중합체 수지(ASA), 폴리페닐렌에테르(PPE), 폴리페닐렌설파이드(PPS), 폴리에테르에테르케톤(PEEK) 등이 사용될 수 있다. 상기 폴리아마이드는 밀도 1.14 g/cm3, 융점 220~255℃, 인장강도 83~85MPa, Izod 충격강도 7.0~7.5Kgf·cm/cm, 열변형온도 65~85℃인 것을 사용할 수 있으나 이에 제한되는 것은 아니다.Step S2 of the present invention is a step of impregnating the resin in the bundle of carbon fibers. The impregnation may be performed in a resin impregnation tank in which the resin is extruded at a pressure of 0.5 to 10 kg/cm 2 . The resin is a thermoplastic resin, polyamide resin (PA6, PA66, etc.), polyethylene (PE), polypropylene (PP), acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polyvinyl chloride (PVC), Polyvinyl alcohol (PVA), polystyrene (PS), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), acrylonitrile-styrene copolymer resin (SAN), acrylic Ronitrile-styrene-acrylate copolymer resin (ASA), polyphenylene ether (PPE), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), and the like may be used. The polyamide has a density of 1.14 g/cm 3 , a melting point of 220 to 255° C., a tensile strength of 83 to 85 MPa, an Izod impact strength of 7.0 to 7.5Kg f · cm/cm, and a heat deflection temperature of 65 to 85° C. it's not going to be
상기 수지는 녹는점을 고려하여 100 내지 500℃ 범위 내에서 가열하여 용융된 것이 수지압출기를 통해 수지함침조에 압출된다. 상기 수지함침량은 섬유의 단면적을 감안하여 조절되는 것으로, 수지압출기의 직경 크기를 조절하여 압력을 조절할 수 있다. 상기 압력은 1 내지 3kg/cm2인 것이, 사용되는 탄소섬유의 다발의 단면적에 있어 보다 바람직하다.The resin is melted by heating within the range of 100 to 500°C in consideration of the melting point and extruded into the resin impregnation tank through a resin extruder. The resin impregnation amount is adjusted in consideration of the cross-sectional area of the fiber, and the pressure can be adjusted by adjusting the diameter size of the resin extruder. The pressure is more preferably 1 to 3 kg/cm 2 in terms of the cross-sectional area of the bundle of carbon fibers used.
본 발명의 발열복합소재는, 금속코팅 탄소섬유 5 내지 40 중량% 및 수지 60 내지 95 중량%를 포함하는 것일 수 있다. 보다 바람직하게는 금속코팅 탄소섬유 25 내지 35 중량% 및 수지 75 내지 65 중량%를 포함할 때, 발열 제품에 사용되기에 바람직한 발열성능을 갖는 발열복합소재로 제조될 수 있다.The exothermic composite material of the present invention may include 5 to 40% by weight of metal-coated carbon fiber and 60 to 95% by weight of a resin. More preferably, when 25 to 35% by weight of the metal-coated carbon fiber and 75 to 65% by weight of the resin are included, it may be made of a heating composite material having desirable heating performance for use in heating products.
상기 S4 단계의 건조는, 1 내지 10kg/cm2의 압력으로 가해지는 공기압 또는 100℃ 내지 150℃의 열풍을 통해 수행되는 것일 수 있으나, 상기 건조의 방법은 사용된 수지의 종류 및 공정이 수행되는 환경 등에 따라 자유롭게 선택하여 수행될 수 있다. 상기 수지의 건조가 완료되면 탄소섬유는 인발장치를 통해 펠렛타이저로 이송될 수 있다. 상기 인발장치는 섬유와 함침수지가 결합된 소재를 당겨주는 역할의 롤러형태의 장치로서, 마찰력이 높은 우레탄이나 고무롤러를 사용할 수 있다.The drying in step S4 may be performed by air pressure applied at a pressure of 1 to 10 kg/cm 2 or hot air at 100° C. to 150° C., but the drying method is the type of resin used and the process is performed. It can be freely selected and performed according to the environment and the like. When the drying of the resin is completed, the carbon fiber may be transferred to a pelletizer through a drawing device. The drawing device is a roller-type device that pulls the material in which the fiber and the impregnated resin are combined, and a urethane or rubber roller with high frictional force may be used.
상기 S5 단계의 펠렛화는, 건조된 탄소섬유를 1 내지 15mm의 길이로 절단하여 수행될 수 있다. 보다 바람직하게는 사출성형될 때 금형에 투입되는 것이 용이한 크기인 4mm 내지 8mm의 길이로 제공될 수 있다.The pelletization of step S5 may be performed by cutting the dried carbon fibers to a length of 1 to 15 mm. More preferably, it may be provided in a length of 4 mm to 8 mm, which is a size that is easy to be put into a mold when injection molded.
본 발명의 수지는, 제조하고자 하는 발열 제품의 특징에 맞추어 금속, 탄소나노튜브 및 그래핀으로 이루어지는 군으로부터 선택되는 1종 이상의 소재를 더 포함할 수 있다. 상기 금속의 종류에는 제한이 없다.The resin of the present invention may further include one or more materials selected from the group consisting of metals, carbon nanotubes, and graphene according to the characteristics of the heat generating product to be manufactured. The type of the metal is not limited.
본 발명은 상기 제조방법에 의해 제조된 발열복합소재를 제공한다. 상기 펠렛화된 발열복합소재는, 용융된 후, 금형에 주입하여 원하는 형태로 성형되어 성형체로 제작될 수 있다. 상기 성형체는 제품의 색상, 액상의 흐름성, 섬유의 분산성을 제어하기 위해 다른 종류의 펠렛을 혼합하여 투입할 수 있다.The present invention provides a heating composite material manufactured by the above manufacturing method. The pelletized heating composite material may be melted and then injected into a mold to be molded into a desired shape to produce a molded body. The molded body may be mixed with different types of pellets to control the color of the product, the flowability of the liquid, and the dispersibility of the fibers.
본 발명은 상기 성형체에 전력을 투입할 수 있도록 전극을 조립하여, 발열 제품을 완성할 수 있다. 이때, 상기 발열복합소재의 전극거리에 대한 전기저항을 고려하여, 전력 투입부를 설계/제작될 수 있으며, 상기 설계/제작방법은 제조하고자 하는 발열 제품의 종류, 형태, 사용되는 환경 등에 따라서 자유롭게 선택하여 설계/제작될 수 있다.In the present invention, by assembling an electrode so that electric power can be applied to the molded body, a heating product can be completed. At this time, in consideration of the electrical resistance of the heating composite material with respect to the electrode distance, the power input unit can be designed/manufactured, and the design/manufacturing method can be freely selected according to the type, shape, and environment of the heating product to be manufactured. can be designed/manufactured.
상기 전극은 도전성 재료로서, 구리, 은(Ag), 금(Au), 탄소나노튜브(CNT), 그래핀으로 이루어지는 군으로부터 선택되는 1종 이상일 수 있다. 상기 성형체에 도전성 재료를 사용하여 인쇄하거나 표면을 가열하여 열융착 방식으로 성형체에 삽입하는 형식으로 전극을 제작한 뒤, 연결 커넥터를 조립하여 발열 제품을 완성할 수 있다.The electrode is a conductive material, and may be at least one selected from the group consisting of copper, silver (Ag), gold (Au), carbon nanotubes (CNT), and graphene. After printing an electrode using a conductive material on the molded body and inserting the electrode into the molded body by thermal fusion by heating the surface, the heating product can be completed by assembling a connecting connector.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples.
[실시예][Example]
실시예 1. 발열복합소재의 제조Example 1. Preparation of exothermic composite material
1.1. 금속코팅 탄소섬유의 코팅두께별 전기저항 확인1.1. Check electrical resistance by coating thickness of metal-coated carbon fiber
12K 탄소섬유를 이용해, 등록특허 제1427309호에 따른 금속도금 탄소섬유 제조방법으로 금속코팅 탄소섬유(MCF)를 제조하였다. 금속코팅 두께를 서로 상이하게 하여, 하기 표 1에 제시된 샘플-1 내지 샘플-4를 준비하였다.Using 12K carbon fiber, metal-coated carbon fiber (MCF) was manufactured by the metal-plated carbon fiber manufacturing method according to Patent No. 1427309. By making the metal coating thicknesses different from each other, Sample-1 to Sample-4 shown in Table 1 were prepared.
금속코팅 두께metal coating thickness 섬유 비중Fiber specific gravity 섬유 전기저항
(Ω/m)
fiber electrical resistance
(Ω/m)
Sample-1Sample-1 100 nm100 nm 2.132.13 44
Sample-2Sample-2 130 nm130 nm 2.242.24 33
Sample-3Sample-3 190 nm190 nm 2.452.45 22
Sample-4Sample-4 360 nm360 nm 3.03.0 1One
표 1에 나타낸 것과 같이 금속코팅의 두께에 따라 다른 섬유 전기저항이 나타났다. 이후 실시예에서는 Sample-3을 사용하였다.As shown in Table 1, different fiber electrical resistance appeared according to the thickness of the metal coating. In subsequent examples, Sample-3 was used.
1. 2. Polyamide 수지의 물성1. 2. Properties of Polyamide Resin
금속코팅 탄소섬유에 함침되는 수지로 하기 표 2에 제시된 수지를 준비하였다.Resins shown in Table 2 below were prepared as resins impregnated into metal-coated carbon fibers.
밀도
(g/cm3)
density
(g/cm 3 )
융점
(℃)
melting point
(℃)
인장강도
(MPa)
tensile strength
(MPa)
Izod 충격강도
(Kgf·cm/cm)
Izod impact strength
(Kg f cm/cm)
열변형온도
(℃)
heat deflection temperature
(℃)
PA6PA6 1.141.14 220220 8383 7.57.5 6565
PA66PA66 1.141.14 255255 8585 7.07.0 8585
이후 실시예에서는 상기 수지 중, PA6를 선택하여 사용하였다.In the following examples, PA6 was selected and used among the resins.
1.3. 발열복합소재의 제조1.3. Manufacturing of exothermic composite materials
도 2에 나타낸 제조장치를 이용하여, 상기 Sample-3의 12,000 가닥의 MCF 섬유에 PA6 수지를 균일하게 함침하여 복합소재를 선형으로 만들고 이를 6mm 길이로 컷팅하여 펠렛을 제조하였다.Using the manufacturing apparatus shown in FIG. 2, the 12,000 strands of MCF fiber of Sample-3 were uniformly impregnated with PA6 resin to make the composite material linear, and the composite material was cut to a length of 6 mm to prepare pellets.
상기 펠렛은 도 3에 나타낸 것과 같이, 섬유 다발 사이에 수지가 함침된 형태를 갖는다.As shown in FIG. 3 , the pellets have a resin impregnated between fiber bundles.
실시예 2. 발열복합소재의 성형체 제조Example 2. Preparation of molded body of exothermic composite material
상기 실시예 1의 펠렛을 사출성형기에 용융시켜, Plate 제품 (크기: 6 mm(T) x 12mm(W) x 100 mm, 부피 : 7.2cm3)을 제작하였다.By melting the pellets of Example 1 in an injection molding machine, a plate product (size: 6 mm (T) x 12 mm (W) x 100 mm, volume: 7.2 cm 3 ) was produced.
상기 수지가 함침되는 함량에 따른 전기저항을 측정하여, 하기 표 3에 나타내었다.The electrical resistance according to the amount of the resin impregnated was measured, and is shown in Table 3 below.
샘플 Sample MCF MCF PA 6 PA 6 전기저항 Ω/cm3 electrical resistance Ω/cm 3
1One 10%10% 90%90% 100 ~ 200100 to 200
22 20%20% 8080 50 ~ 10050 to 100
33 30%30% 7070 15 ~ 4015 to 40
44 40%40% 6060 5 ~ 105 to 10
실시예 3. 전극이 연결된 시험편 제조Example 3. Preparation of a test piece with an electrode connected
본 실시예 3에서는 전극이 연결된 발열제품을 제조하기 위하여, MCF 섬유 30 중량% 및 수지 70 중량%를 포함하는 펠렛을 용융시켜 금형에 투입하여, 16 mm(T) x 12mm(W) x 100 mm로 제작하여 시험편을 제작하였다.In this Example 3, in order to manufacture a heating product connected to an electrode, a pellet containing 30 wt% of MCF fiber and 70 wt% of a resin is melted and put into a mold, 16 mm (T) x 12 mm (W) x 100 mm to prepare a test piece.
도 4에 나타낸 것과 같이, 제작된 시험편에 전력투입부를 제작하기 위해 양쪽 끝단에 구리전선을 열융착하여 삽입하여 전력 투입부를 제작하였다.As shown in FIG. 4 , copper wires were heat-sealed and inserted at both ends to fabricate the power input part on the manufactured test piece, thereby manufacturing the power input part.
상기 시험편에 DC 전력투입기를 연결하여 전력투입 후 10초 후 발열 온도를 열화상카메라로 측정하여, 도 5a 내지 5g에 나타내었다. A DC power supply device was connected to the test piece, and the exothermic temperature was measured with a thermal imaging camera 10 seconds after power input, as shown in FIGS. 5A to 5G .
상기 도 5의 결과를 통해, 전력 투입량에 따라 발열 온도를 용이하게 제어하는 것이 가능하다는 것을 확인하였다.5, it was confirmed that it is possible to easily control the heating temperature according to the amount of power input.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although preferred embodiments of the present invention have been described in detail above, the rights of the present invention are not limited thereto, and various modifications and improvements by those skilled in the art using the basic concept of the present invention as defined in the following claims are also provided. is within the scope of the right.

Claims (12)

  1. 하기 단계를 포함하는, 금속코팅 탄소섬유를 이용한 발열복합소재의 제조방법:A method for producing a heat-generating composite material using a metal-coated carbon fiber, comprising the following steps:
    금속코팅 탄소섬유를 제조하는 단계(S1);Manufacturing a metal-coated carbon fiber (S1);
    상기 S1 단계에서 제조된 탄소섬유의 다발을 수지함침조에 통과시켜, 수지가 함침된 금속코팅 탄소섬유를 제조하는 단계(S2);Passing the bundle of carbon fibers prepared in step S1 through a resin impregnation tank to prepare a resin-impregnated metal-coated carbon fiber (S2);
    상기 S2 단계에서 제조된 탄소섬유를 냉각하여 함침된 수지를 경화하는 단계(S3);curing the impregnated resin by cooling the carbon fiber prepared in step S2 (S3);
    상기 S3 단계에서 경화된 탄소섬유를 건조하는 단계(S4); 및 drying the carbon fiber cured in step S3 (S4); and
    상기 S4 단계에서 건조된 탄소섬유를 일정한 길이로 절단하여 펠렛화하여 발열복합소재를 제조하는 단계(S5).The carbon fiber dried in step S4 is cut to a predetermined length and pelletized to produce a heating composite material (S5).
  2. 제1항에 있어서,According to claim 1,
    상기 S1 단계는,In step S1,
    탄소섬유를 제1금속으로 무전해 도금하는 단계(S1-1); 및Electroless plating the carbon fiber with a first metal (S1-1); and
    상기 S1-1단계에서 무전해 도금된 탄소섬유를 제2금속으로 전해 도금하는 단계(S1-2)를 포함하는 것인, 금속코팅 탄소섬유를 이용한 발열복합소재의 제조방법.The method of manufacturing a heat-generating composite material using a metal-coated carbon fiber comprising the step (S1-2) of electrolytically plating the carbon fiber electroless-plated in step S1-1 with a second metal.
  3. 제1항에 있어서,According to claim 1,
    상기 S2 단계의 탄소섬유의 다발은, 모노필라멘트가 100 내지 50,000가닥 포함되는 것인, 금속코팅 탄소섬유를 이용한 발열복합소재의 제조방법.The bundle of carbon fibers in step S2 is a method of manufacturing a heat-generating composite material using a metal-coated carbon fiber that contains 100 to 50,000 monofilaments.
  4. 제1항에 있어서,According to claim 1,
    상기 S2 단계의 함침은, 0.5 내지 10 kg/cm2의 압력으로 수지가 압출되는 수지함침조에서 수행되는 것인, 금속코팅 탄소섬유를 이용한 발열복합소재의 제조방법.The impregnation of the step S2 is carried out in a resin impregnation tank in which the resin is extruded at a pressure of 0.5 to 10 kg/cm 2 A method of manufacturing a heat-generating composite material using a metal-coated carbon fiber.
  5. 제1항에 있어서,According to claim 1,
    상기 수지는 폴리아마이드(PA), 폴리에틸렌(PE), 폴리프로필렌(PP), 아크릴로니트릴부타디엔스티렌(ABS), 폴리카보네이트(PC), 폴리염화비닐(PVC), 폴리비닐알코올(PVA), 폴리스티렌(PS), 폴리부틸렌테레프탈레이트(PBT), 폴리에틸렌테레프탈레이트(PET), 폴리메틸메타크릴레이트(PMMA), 아크릴로니트릴-스티렌 공중합체 수지(SAN), 아크릴로니트릴-스티렌-아크릴레이트 공중합체 수지(ASA), 폴리페닐렌에테르(PPE), 폴리페닐렌설파이드(PPS), 및 폴리에테르에테르케톤(PEEK)으로 이루어지는 군으로부터 선택되는 1종 이상의 열가소성 수지인 것인, 금속코팅 탄소섬유를 이용한 발열복합소재의 제조방법.The resin is polyamide (PA), polyethylene (PE), polypropylene (PP), acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polyvinyl chloride (PVC), polyvinyl alcohol (PVA), polystyrene (PS), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), acrylonitrile-styrene copolymer resin (SAN), acrylonitrile-styrene-acrylate copolymer A metal-coated carbon fiber that is at least one thermoplastic resin selected from the group consisting of synthetic resin (ASA), polyphenylene ether (PPE), polyphenylene sulfide (PPS), and polyether ether ketone (PEEK) A method of manufacturing a heat-generating composite material.
  6. 제1항에 있어서,According to claim 1,
    상기 발열복합소재는, 금속코팅 탄소섬유 5 내지 40 중량% 및 수지 60 내지 95 중량%를 포함하는 것인, 금속코팅 탄소섬유를 이용한 발열복합소재의 제조방법.The exothermic composite material, 5 to 40% by weight of the metal-coated carbon fiber and 60 to 95% by weight of the resin, a method of manufacturing a heating composite material using a metal-coated carbon fiber.
  7. 제1항에 있어서,According to claim 1,
    상기 S4 단계의 건조는, 1 내지 10kg/cm2의 압력으로 가해지는 공기압 또는 100℃ 내지 150℃의 열풍을 통해 수행되는 것인, 금속코팅 탄소섬유를 이용한 발열복합소재의 제조방법.The drying of the step S4, 1 to 10 kg / cm 2 The method of manufacturing a heat-generating composite material using a metal-coated carbon fiber, which is performed through air pressure applied at a pressure of 100 ° C. to 150 ° C. hot air.
  8. 제1항에 있어서,According to claim 1,
    상기 S5 단계의 펠렛화는, 건조된 탄소섬유를 1 내지 15mm의 길이로 절단하는 것인, 금속코팅 탄소섬유를 이용한 발열복합소재의 제조방법.The pelletization of step S5 is to cut the dried carbon fibers to a length of 1 to 15 mm, a method for producing a heating composite material using a metal-coated carbon fiber.
  9. 제1항에 있어서,According to claim 1,
    상기 수지는 금속, 탄소나노튜브 및 그래핀으로 이루어지는 군으로부터 선택되는 1종 이상의 소재를 더 포함하는 것인, 금속코팅 탄소섬유를 이용한 발열복합소재의 제조방법.The resin is a method of manufacturing a heat-generating composite material using a metal-coated carbon fiber further comprising one or more materials selected from the group consisting of metal, carbon nanotubes and graphene.
  10. 제1항의 제조방법에 의해 제조된 발열복합소재.A heating composite material manufactured by the manufacturing method of claim 1.
  11. 제10항의 발열복합소재를 용융한 후 금형에 투입하여 사출된, 성형체.A molded body that is injected into a mold after melting the heating composite material of claim 10 and injected.
  12. 제11항의 성형체; 및 전극이 포함되는, 발열 제품.The molded body of claim 11; and an electrode.
PCT/KR2021/005853 2020-05-11 2021-05-11 Method for preparing composite heating material by means of metal-coated carbon fibers, and composite heating material prepared by said method WO2021230608A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0055920 2020-05-11
KR1020200055920A KR102231216B1 (en) 2020-05-11 2020-05-11 Method for producing heat-generating composite material using metal-coated carbon fiber and the heat-generating composite material thereby

Publications (1)

Publication Number Publication Date
WO2021230608A1 true WO2021230608A1 (en) 2021-11-18

Family

ID=75223637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/005853 WO2021230608A1 (en) 2020-05-11 2021-05-11 Method for preparing composite heating material by means of metal-coated carbon fibers, and composite heating material prepared by said method

Country Status (2)

Country Link
KR (1) KR102231216B1 (en)
WO (1) WO2021230608A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102231216B1 (en) * 2020-05-11 2021-03-23 (주)비에스엠신소재 Method for producing heat-generating composite material using metal-coated carbon fiber and the heat-generating composite material thereby

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120017760A (en) * 2010-08-19 2012-02-29 김경중 Heating element
KR20120129297A (en) * 2011-05-19 2012-11-28 삼성전자주식회사 Heating composite, and heating apparatus and fusing apparatus including the same
KR101427309B1 (en) * 2013-03-25 2014-08-06 주식회사 불스원신소재 Method for Preparing of High Conductivity Carbon Fiber Using Continuous Process of Electroless and Electrolysis Plating
JP2017057246A (en) * 2015-09-14 2017-03-23 リンテック株式会社 Flexible sheet, heat-conductive member, conductive member, antistatic member, heat generator, electromagnetic wave shielding body, and method for producing flexible sheet
KR20180029451A (en) * 2016-09-12 2018-03-21 삼성전자주식회사 Heating element and method of manufacturing the same and apparatus comprising heating element
KR101963256B1 (en) * 2018-10-19 2019-03-29 (주)비에스엠신소재 Method for manufacturing heat generating film using metal coated carbon fiber
KR20190057008A (en) * 2017-11-17 2019-05-27 김성호 Heating sheet with strong radiant heat using carbon fiber
KR102231216B1 (en) * 2020-05-11 2021-03-23 (주)비에스엠신소재 Method for producing heat-generating composite material using metal-coated carbon fiber and the heat-generating composite material thereby

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101754924B1 (en) 2016-04-11 2017-08-09 주식회사 이에스에너지 A methode for flexible carbon heating-pad

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120017760A (en) * 2010-08-19 2012-02-29 김경중 Heating element
KR20120129297A (en) * 2011-05-19 2012-11-28 삼성전자주식회사 Heating composite, and heating apparatus and fusing apparatus including the same
KR101427309B1 (en) * 2013-03-25 2014-08-06 주식회사 불스원신소재 Method for Preparing of High Conductivity Carbon Fiber Using Continuous Process of Electroless and Electrolysis Plating
JP2017057246A (en) * 2015-09-14 2017-03-23 リンテック株式会社 Flexible sheet, heat-conductive member, conductive member, antistatic member, heat generator, electromagnetic wave shielding body, and method for producing flexible sheet
KR20180029451A (en) * 2016-09-12 2018-03-21 삼성전자주식회사 Heating element and method of manufacturing the same and apparatus comprising heating element
KR20190057008A (en) * 2017-11-17 2019-05-27 김성호 Heating sheet with strong radiant heat using carbon fiber
KR101963256B1 (en) * 2018-10-19 2019-03-29 (주)비에스엠신소재 Method for manufacturing heat generating film using metal coated carbon fiber
KR102231216B1 (en) * 2020-05-11 2021-03-23 (주)비에스엠신소재 Method for producing heat-generating composite material using metal-coated carbon fiber and the heat-generating composite material thereby

Also Published As

Publication number Publication date
KR102231216B1 (en) 2021-03-23

Similar Documents

Publication Publication Date Title
WO2021230608A1 (en) Method for preparing composite heating material by means of metal-coated carbon fibers, and composite heating material prepared by said method
CN101407637B (en) Fiber reinforced composite material and preparation thereof
CN103269528A (en) Macromolecule composite electric heating material, preparation method thereof and application thereof
CN101411020A (en) Separator for fuel cell and process for producing the same
WO2018199534A1 (en) 4d printing device
CN107974165B (en) Heating cable
Hu et al. Design and construction of deformable heaters: Materials, structure, and applications
WO2014181927A1 (en) Optothermal fibre sheet
WO2016003031A1 (en) Planar heating cloth and method for manufacturing same
CN105898981A (en) Stretchable electrode based on conductive fabric and preparation method thereof
KR101143051B1 (en) A heating polymer manufacturing process, heating-yarn manufacturing process and that heating-yarn
JP2014201843A (en) Method of producing conductive material, method of producing conductive composite, conductive material, conductive composite, conductive plastic material and conductive cloth
US20130156992A1 (en) Antistatic polyester resin molded body
Wang et al. Multifunctional electronic textiles by direct 3d printing of stretchable conductive fibers
CN209388796U (en) A kind of insulated compound film and electric component
WO2015178569A1 (en) Method for manufacturing conductive/heat-generating polymer for manufacturing heat-generating yarn
KR101270391B1 (en) Manufacturing Method for Flexible Film Heater
WO2022107904A1 (en) Aerogel blanket insulating material, and functional composite material using same
KR102481070B1 (en) heating cable
CN108909057A (en) A kind of carbon nanotube conducting cloth and preparation method thereof
Erkmen et al. Improvement in mechanical, electrical, and shape memory properties of the polystyrene‐based carbon fiber‐reinforced polymer composites containing carbon nanotubes
KR101963256B1 (en) Method for manufacturing heat generating film using metal coated carbon fiber
CN204919184U (en) Flexible wire, conductive fabric , fabric generates heat
KR20120017760A (en) Heating element
WO2015178662A1 (en) Continuous fiber reinforced composite and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803183

Country of ref document: EP

Kind code of ref document: A1