WO2021230607A1 - 전력 공급 시스템의 출력 분배 방법 - Google Patents

전력 공급 시스템의 출력 분배 방법 Download PDF

Info

Publication number
WO2021230607A1
WO2021230607A1 PCT/KR2021/005852 KR2021005852W WO2021230607A1 WO 2021230607 A1 WO2021230607 A1 WO 2021230607A1 KR 2021005852 W KR2021005852 W KR 2021005852W WO 2021230607 A1 WO2021230607 A1 WO 2021230607A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
maximum
pcs
reference value
supply system
Prior art date
Application number
PCT/KR2021/005852
Other languages
English (en)
French (fr)
Inventor
김정중
박종형
Original Assignee
효성중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 효성중공업 주식회사 filed Critical 효성중공업 주식회사
Priority to US17/623,143 priority Critical patent/US20220239102A1/en
Priority to AU2021273430A priority patent/AU2021273430B2/en
Priority to EP21803821.4A priority patent/EP4152545A4/en
Publication of WO2021230607A1 publication Critical patent/WO2021230607A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the present invention relates to an output distribution method of a power supply system, and more particularly, a power supply system having a plurality of Power Conditioning Systems (PCS) or a plurality of Power Electronics Building Blocks (PEBBs; hereinafter referred to as “peps”) ( It relates to a method of distributing power with optimal efficiency in the Power Supplying System). That is, the present invention relates to a method for controlling the operation of a plurality of PCS or a plurality of peps in a power supply system according to an operating environment.
  • PCS Power Conditioning Systems
  • PEBBs Power Electronics Building Blocks
  • the smart grid environment forms a hybrid network in which various devices are mixed and wired and wireless are combined.
  • the smart grid communication network construction method uses broadband wireless communication (Wimax) as the main line network and high-speed power line communication (PLC) as the subscriber network. management, electric vehicle, solar power facility monitoring, etc.) are increasing efficiency.
  • Wimax broadband wireless communication
  • PLC high-speed power line communication
  • Korean Patent Laid-Open Publication No. 10-2012-0097551 uses a method of turning on/off a specific device in order to save power in a smart grid system.
  • the existing smart grid system does not present an appropriate method of distributing energy in order to efficiently use the supplied energy.
  • PV system a photovoltaic system
  • a solar cell panel is provided on an upper surface of a flat or curved plate to convert solar energy into electricity.
  • PV system operates in a high-efficiency region at the time of maximum output, but has a disadvantage in that it is operated in a low-efficiency region in a low power generation state, resulting in loss of power generation.
  • ESS Electronicgy Storage System
  • ESS can play a key role in linking to the smart grid after converting renewable energy sources that are being actively developed recently into high-quality electricity.
  • it is a necessary device when linking wind power generation and solar power generation systems with large output fluctuations to the grid.
  • the principle of energy storage is to receive electrical energy from the power system, store it as ionization, kinetic energy, physical compression, and chemical energy, and convert it into electrical energy when necessary and supply it to the power system.
  • Medium-to-large energy storage devices can be classified into various types.
  • Lithium ion batteries are typical secondary batteries.
  • An object of the present invention is to provide an output distribution method of a power supply system capable of improving the efficiency of the entire system by operating the power supply system according to plant characteristics and operating environment of a site where the power supply system is located.
  • Another object of the present invention is to provide an output distribution method of a power supply system capable of increasing the lifespan of a PCS through operation of the power supply system tailored to the plant characteristics and operating environment of a site where the power supply system is located.
  • An output distribution method of a power supply system is an output distribution method of a power supply system including a plurality of PCS, comprising: a required output power comparison step of comparing the required output power of the power supply system with a reference value; a power allocating step of allocating the required output power equally to all PCSs and operating in a first mode when the required output power exceeds the reference value; a power allocating step of a maximum power operation PCS of allocating at least one maximum power operation PCS to be operated with a maximum operation ratio power based on a maximum operation ratio and a minimum operation ratio when the required output power does not exceed the reference value; When the remaining power that is not allocated in the power allocation step of the maximum power operation PCS exceeds the minimum operation ratio power, the remaining power operation PCS to operate the remaining power is allocated and the second operation PCS together with at least one maximum power operation PCS power allocation step of the residual power operation PCS operating in mode; and when the remaining power not allocated in the power allocation step of the maximum power operation PCS does
  • the reference value may be the maximum power * the maximum operation ratio of the power supply system.
  • the maximum operating rate power may be a maximum available power per PCS * a maximum operating rate.
  • the minimum operation ratio power may be the maximum power available per PCS * the minimum operation ratio.
  • the maximum operation ratio and the minimum operation ratio may be set based on a predicted power generation value of the power supply system, a power market trend, and a reference set value.
  • the first mode is used when the required output power is equal to or greater than the upper limit reference value
  • any one of the first mode and the second mode is used when the required output power is equal to or less than the upper limit reference value and greater than or equal to the lower limit reference value
  • any one of the second mode and the third mode may be used.
  • the upper limit reference value and the lower limit reference value may be set based on the predicted power generation value of the power supply system, the electric power market trend, and the reference set value.
  • the maximum operation ratio and the minimum operation ratio may be determined according to the operation mode.
  • the output distribution method of the power supply system is an output distribution method of a power supply system including a PCS made of a plurality of PEBB, and comparing the required output power of the PCS with a reference value.
  • the power allocation step of the maximum power operation PEP allocating at least one maximum power operation PEBB to be operated with the maximum operation ratio power based on the maximum operation ratio and the minimum operation ratio ;
  • the residual power that is not allocated in the power allocation step of the maximum power operation PEBB exceeds the minimum operation ratio power, at least one maximum power operation is performed by allocating the remaining power operation PEBB to operate the remaining power a power allocation step of the remaining power operation PEP operating in the second mode together with the PEBB; and when the remaining power not allocated in the power allocation step of the maximum power operation Pep does not exceed the minimum operation ratio power, the request is made to the maximum power operation Pep allocated in the power allocation step of the maximum power operation Pep (PEBB) It may include; a power reallocation step of the maximum power operation pep operating in the third mode by dividing the output
  • the reference value may be the maximum power of the PCS * the maximum operation ratio.
  • the maximum driving ratio power may be the maximum power available per PEBB * the maximum driving ratio.
  • the minimum driving ratio power may be the maximum power available per PEBB * the lowest driving ratio.
  • the maximum operation ratio and the minimum operation ratio may be set based on a predicted power generation value of the PCS, a power market trend, and a reference set value.
  • the first mode is used when the required output power is equal to or greater than the upper limit reference value
  • any one of the first mode and the second mode is used when the required output power is equal to or less than the upper limit reference value and greater than or equal to the lower limit reference value
  • any one of the second mode and the third mode may be used.
  • the upper limit reference value and the lower limit reference value may be set based on the predicted power generation value of the PCS, the electric power market trend, and the reference set value.
  • the maximum operation ratio and the minimum operation ratio may be determined according to the operation mode.
  • the output distribution method of the power supply system according to the present invention has an advantage in that the efficiency of the entire system can be improved by operating the power supply system according to the plant characteristics and operating environment of the site where the power supply system is located.
  • the output distribution method of the power supply system according to the present invention has the advantage of increasing the lifespan of the PCS through operation of the power supply system tailored to the plant characteristics and operating environment of the site where the power supply system is located.
  • FIG. 1 is a flowchart illustrating an output distribution method of a power supply system according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a detailed operation of the power supply system of FIG. 1 when it operates in the first mode.
  • FIG. 3 is a diagram illustrating a detailed operation of the power supply system of FIG. 1 when it operates in the second mode.
  • FIG. 4 is a diagram illustrating a detailed operation of the power supply system of FIG. 1 when it operates in a third mode.
  • FIG. 5 is a graph illustrating a case in which the power supply system of FIG. 1 operates in a combination of a first mode, a second mode, and a third mode.
  • FIG. 6 is a block diagram illustrating an output distribution apparatus of a power supply system according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating an output distribution method of a power supply system according to another embodiment of the present invention.
  • FIG. 1 is a flowchart illustrating an output distribution method of a power supply system according to an embodiment of the present invention
  • FIGS. 2 to 5 are detailed views and graphs for describing FIG. 1 in detail
  • Figure 6 is a block diagram showing an output distribution device of the power supply system according to an embodiment of the present invention.
  • the output distribution method of the power supply system compares the required output power of the power supply system with a reference value in the control unit 120 ( S110 ), the required output power is If the reference value is exceeded, the operation in the first mode by allocating the required output power equally to all PCS (S120).
  • the maximum operation ratio 131 and the minimum operation ratio 132 Allocating at least one maximum power operation PCS to be operated with the maximum operation ratio power based on (S140)
  • the remaining power operation PCS to operate the remaining power is allocated to at least one maximum power operation PCS and The operation in the second mode together (S150), and the power allocation step of the maximum power operation PCS by comparing the residual power not allocated in the power allocation step (S130) of the maximum power operation PCS (S140) and the minimum operation ratio power (S140)
  • the required output power is equally divided and reallocated to the maximum power operation PCS allocated in the power allocation step (S130) of the maximum operation PCS to the third mode is operated as a step (S160).
  • the reference value may be set as the maximum power * the maximum operation ratio of the power supply system.
  • the maximum operation ratio power can be set as the maximum available power per PCS * the maximum operation ratio.
  • the minimum operation ratio power may be set as the maximum power available per PCS * the minimum operation ratio.
  • the maximum operation ratio 131 and the minimum operation ratio 132 may be set based on a predicted power generation value of the power supply system, a power market trend, and a reference set value.
  • the power supply system of the present invention uses the maximum operating ratio 131 and the lowest operating ratio 132 set based on the power supply system's power generation forecast value, power market trend, and reference set value as above for a plurality of PCSs. By distributing the output in the manner of the mode, the second mode, and the third mode, it is possible to make the energy conversion efficiency of the power supply system achieve 98% or more.
  • the maximum operation ratio 131 and the minimum operation ratio 132 are set to a relatively low value, and through this, it is possible to increase the conversion efficiency through mode operation and increase the lifespan of the PCS and PEBB even in the case of an output power requirement that the overall power conversion efficiency of the system is somewhat lower.
  • the maximum operation ratio 131 and the minimum operation ratio 132 are set relatively high, and through this, the power conversion efficiency is high.
  • FIG. 2 is a diagram illustrating a detailed operation of the power supply system of FIG. 1 when it operates in the first mode.
  • the first PCS 111 when the total PCS exceeds the maximum operation ratio, the first PCS 111 , the second PCS 112 , the third PCS 113 , and the N-th PCS 114 ) to allocate power to increase system efficiency.
  • the first mode has an advantage in that overall system efficiency can be increased by operating all PCSs in a region or time zone where the required output power is high.
  • FIG. 3 is a diagram illustrating a detailed operation of the power supply system of FIG. 1 when it operates in the second mode.
  • the first PCS 111 , the second PCS 112 , and the third PCS 113 operate at the maximum operation ratio 131 , and the N-th PCS 114 . ) by allocating the remaining power to operate between the minimum operation ratio 132 and the maximum operation ratio 131 .
  • FIG. 4 is a diagram illustrating a detailed operation of the power supply system of FIG. 1 when it operates in a third mode.
  • the first PCS 111 operating at the maximum operating ratio 131 is not used, but not using the Nth PCS 114 that should operate at the lowest operating ratio 132 or lower.
  • the second PCS 112 , and the third PCS 113 are further divided and allocated the remaining power.
  • the third mode does not use the Nth PCS 114 with low conversion efficiency that operates at the lowest operating ratio 132 or less, overall system efficiency can be increased, and the number of times of use of the Nth PCS 114 can be increased. By reducing it, the lifespan of the Nth PCS 114 may be extended.
  • This third mode has the advantage of increasing overall system efficiency by removing the operation of the PCS with low efficiency in a region or time zone where the required output power is low.
  • FIG. 5 is a graph illustrating a case in which the power supply system of FIG. 1 operates in a combination of a first mode, a second mode, and a third mode.
  • control unit 120 uses the first mode when the requested output is above the upper limit reference value, and uses any one of the first mode and the second mode when it is below the upper limit reference value and above the lower limit reference value, Any one of the second mode and the third mode may be used when it is less than or equal to the lower limit reference value.
  • FIG. 5(a) shows that the amount of sunlight is very high, so when the output power 161 of the power supply system is equal to or greater than the upper limit reference value, FIG. less than and equal to or greater than the lower limit reference value
  • FIG. 5 ( c ) is a graph illustrating a case in which the amount of sunlight is low and the output power 163 of the power supply system is less than or equal to the lower limit reference value.
  • the power supply system of the present invention sets the first maximum operation ratio 141 and the first minimum operation ratio 151 to be high when the power supply system output power 161 is equal to or greater than the upper limit reference value as shown in FIG. to increase power efficiency by operating all PCS, and when the power supply system output power 162 is between the upper limit reference value and the lower limit reference value as shown in FIG. 5(b), the second maximum operation ratio 142 and the second minimum operation ratio ( 152) is set somewhat lower to increase power efficiency by operating in the first mode or the second mode to preferentially use a PCS having a rather high power conversion efficiency, and as shown in FIG.
  • the power supply system output power 163 is the lower limit When it is less than the reference value, the third maximum operation ratio 143 and the third minimum operation ratio 153 are set low to operate in the second mode and the third mode to determine whether the PCS with poor conversion efficiency participates in the power supply system. Increase efficiency and increase lifespan.
  • the upper limit reference value and the lower limit reference value are reference values capable of determining the operation mode of the power supply system according to the required output of the power supply system designed based on the predicted generation value of the power supply system, the power market trend, and the reference set value.
  • the power that all PCS can participate in in the area with high conversion efficiency is set as the upper limit reference value. If the price is high, the power that all PCS can participate in even if the conversion efficiency is low in the power supply system is set as the lower limit reference value.
  • the maximum operation ratio and the minimum operation ratio may be determined according to the operation mode.
  • the first mode may be a case where the predicted value of power generation of the power supply system is high and the price of the power market is low, in which case the first maximum operation ratio 141 and the first minimum operation ratio 151 are set high. This ensures that only PCS with high conversion efficiency participate in power conversion.
  • the second mode may be a case where the predicted power generation value of the power supply system is high and the power market price is high, or the power generation predicted value of the power supply system is low and the power market price is low, in this case, the second maximum operation ratio ( 142) and the second lowest driving ratio 152 are set somewhat lower.
  • the third mode may be a case in which the predicted value of the power generation of the power supply system is low and the price of the power market is high. Even if this is low, it can participate in power conversion.
  • FIG. 6 is a block diagram illustrating an output distribution apparatus of a power supply system according to an embodiment of the present invention.
  • the output distribution device of the power supply system converts DC input power to AC and operates the first PCS to N PCS for supplying to the system, and the required output power supplied to the system at maximum operation. Based on the ratio 131 and the minimum operation ratio 132, the maximum operation ratio power and the remaining power are divided into the first PCS to the Nth PCS, and the maximum power operation PCS and the residual power operation PCS are respectively selected and allocated to the control unit 120 . is done
  • the maximum operation ratio power may be calculated as the maximum available power per PCS * the maximum operation ratio.
  • the lowest operating ratio power may be characterized as the maximum available power per PCS * the lowest operating ratio.
  • the maximum operation ratio 131 and the minimum operation ratio 132 may be set based on a predicted power generation value of the power supply system, a power market trend, and a reference set value.
  • the control unit 120 compares the required output power for the DC input of the power supply system with a reference value, and when the required output power exceeds the reference value, the total PCS The required output power is equally allocated to the PCS, and if the required output power does not exceed the reference value, the PCS to be operated with the maximum operating ratio power and the PCS to be operated with the remaining power are selected and allocated.
  • the controller 120 allocates the residual power not allocated to the maximum power operation PCS to the residual power operation PCS, and when the residual power does not exceed the minimum operation ratio power The remaining power is equally allocated to the maximum power operation PCS.
  • the output distribution device of the power supply system is a plurality of using the maximum operation ratio 131 and the minimum operation ratio 132 set based on the power generation forecast value, the electricity market trend, and the reference set value.
  • FIG. 7 is a flowchart illustrating an output distribution method of a power supply system according to another embodiment of the present invention.
  • the power supply system includes one PCS, and the PCS includes a plurality of Power Electronics Building Blocks (PEBBs; hereinafter referred to as “peps”).
  • PBBs Power Electronics Building Blocks
  • the output distribution method of the power supply system compares the required output power of the PCS 210 with a reference value ( S210 ), when the required output power exceeds the reference value
  • the step of operating in the first mode by allocating the output power equally to all PEBBs (S220), when the required output power does not exceed the reference value, the maximum operation ratio 231 and the minimum operation ratio 232 Allocating at least one maximum power operation PEBB to be operated with the operating ratio power (S230), comparing the remaining power not allocated in the power allocation step (S230) of the maximum power operation PEBB with the lowest operating ratio power ( S240) to allocate the remaining power operation PEBB to operate the remaining power when the remaining power not allocated in the power allocation step (S230) of the maximum power operation Pep exceeds the minimum operation ratio power, and at least one of the maximum power Operating in the second mode together with the driving PEBB (S250), and comparing the remaining power not allocated in the power allocation step (S230) of the maximum power driving PEBB and the lowest
  • the reference value may be set as the maximum power * maximum operation ratio of the PCS 210 .
  • the maximum operating rate power can be set as the maximum available power per PEBB * the maximum operating rate.
  • the lowest driving ratio power may be set as the maximum power available per PEBB * the lowest driving ratio.
  • the maximum operation ratio 131 and the minimum operation ratio 132 may be set based on a predicted generation value of the PCS 210 , a power market trend, and a reference set value.
  • the output distribution method of the power supply system is the maximum operation ratio 231 and the minimum operation ratio 232 set based on the predicted generation value of the PCS 210, the electricity market trend, and the reference set value.
  • the maximum operation ratio 131 and the minimum operation ratio 132 when the required output power is low due to the plant characteristics of the site where the PCS 210 is located, the maximum operation ratio 131 and the minimum The operation ratio 132 is set to a relatively low value, and through this, the overall PEBB can be operated even if the power conversion efficiency is somewhat reduced.
  • the maximum operation ratio 131 and the minimum operation ratio 132 are set relatively slightly higher.
  • the output distribution method and apparatus of the power supply system according to the present invention can improve the efficiency of the entire system by operating the power supply system according to the plant characteristics and operating environment of the site where the power supply system is located, thereby improving the efficiency of the PCS. can increase lifespan.
  • the present invention relates to a method for distributing an output of a power supply system, and can be used in the field of power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

본 발명에 따른 전력 공급 시스템의 출력 분배 방법은, 전력 공급 시스템의 요구 출력 전력이 기준값을 초과할 경우 요구 출력 전력을 전체 PCS에 동일하게 할당하고, 요구 출력 전력이 기준값을 초과하지 않을 경우 최대 운전 비율 및 최저 운전 비율을 토대로 최대 운전 비율 전력으로 운영할 적어도 어느 하나의 최대전력 운전 PCS를 할당하며, 최대전력 운전 PCS의 전력 할당단계에서 할당되지 않은 잔여 전력이 최저 운전 비율 전력을 초과할 경우 잔여 전력을 운영할 잔여전력 운전 PCS를 할당하고, 최대전력 운전 PCS의 전력 할당단계에서 할당되지 않은 잔여 전력이 최저 운전 비율 전력을 초과하지 않을 경우 최대전력 운전 PCS의 전력 할당단계에서 할당된 최대전력 운전 PCS에 요구 출력 전력을 동일하게 나누어 재할당하는 단계로 이루어진다.

Description

전력 공급 시스템의 출력 분배 방법
본 발명은 전력 공급 시스템의 출력 분배 방법에 관한 것으로, 상세하게는, 다수의 PCS(Power Conditioning System) 또는 다수의 PEBB(Power Electronics Building Block; 이하 "펩"이라함)를 구비하는 전력 공급 시스템(Power Supplying System)에서 최적 효율로 전력을 분배하는 방법에 관한 것이다. 즉, 본 발명은 전력 공급 시스템 내의 다수의 PCS 또는 다수의 펩의 동작을 운용 환경에 맞추어 제어하는 방법에 관한 것이다.
전력 시설 및 산업 시설, 민간 시설의 효율적인 전력 관리를 통해서 스마트한 전력망을 구성하기 위해 기존 전력망에 IT 기술을 접목한 스마트그리드 기술이 부각되고 있다.
스마트그리드 환경은 다양한 기기가 혼재되고 유선과 무선이 결합된 하이브리드형 네트워크를 구성한다. 예컨대, 스마트그리드 통신망 구축 방법은 간선망으로는 광대역무선통신(Wimax)을 사용하고 가입자망으로는 고속 전력선통신(PLC)을 사용함으로써, 인터넷/전화 서비스를 비롯하여 전력회사의 스마트그리드(통합검침, 에너지 관리, 전기차, 태양광 설비 감시 등) 구축에 효율을 높이고 있다.
그 일례로, 대한민국 특허공개공보 제10-2012-0097551호에서는 스마트 그리드 시스템의 전력 절감을 위하여 특정 디바이스를 온/오프(on/off)시키는 방법을 사용하고 있다. 그러나, 기존 스마트 그리드 시스템은 공급되는 에너지를 효율적으로 사용하기 위하여 에너지를 분배하는 적절한 방식을 제시하지 못하고 있다.
한편, 태양광발전시스템(Photovoltaic System; 이하 "PV 시스템"이라함)은 평면 또는 곡면 형상의 플레이트의 상면에 태양전지패널이 구비되어 태양광 에너지를 전기로 변환하는 시스템이다. 이러한 PV 시스템은 최대 출력 시에는 효율이 높은 영역에서 운전되나, 낮은 발전상태에서는 효율이 낮은 영역에서 운전되어 발전량의 손실이 발생한다는 단점이 있다.
ESS(Energy Storage System)는 최근 활발하게 개발되고 있는 신재생 에너지원을 고품질 전력으로 전환 후 스마트그리드에 연계하는데 핵심적인 역할을 수행할 수 있다. 특히 출력 변동성이 큰 풍력 발전과 태양광 발전 시스템을 계통에 연계할 때 필요한 장치이다.
에너지 저장의 원리는 전력 계통으로부터 전기 에너지를 받아 이온화, 운동 에너지화, 물리적 압축 및 화학적 에너지로 저장하였다가 필요한 시기에 전기 에너지로 변환하여 전력 계통에 공급하는 것이다. 중대형 에너지 저장 장치는 다양한 종류로 분류될 수 있으며, 리튬 이온 전지는 대표적인 이차 전지로서 양극과 음극 사이에 분리막과 전해질이 있어 리튬 이온이 이동하면서 에너지를 저장하고 방전한다.
이러한 리튬 이온 전지는 아직 경제성에 단점이 있으나 출력 특성과 효율이 양호하여 최근 적용 범위가 넓어지고 있다. 특히, 하나의 목적 사이트에 대하여 리튬 이온 전지들로 구성된 배터리 팩을 구비한 단위 PCS들을 다수 개 구비하여 전력 공급 시스템(Power Supplying System)를 구성하는 방식이 많이 사용되고 있다.
그러나, 이러한 경우 전력 공급 시스템이 위치하는 사이트의 플랜트(Plant) 특성 및 운영환경에 대한 고려 없이, 단순히 개별 PCS의 출력 효율이나 현재 충전량에 따른 효율에 따라 개별 PCS에 출력을 분배하는 방식으로 운영되고 있어, 전체 시스템의 효율이 저하되는 문제점이 있다.
본 발명의 목적은, 전력 공급 시스템이 위치하는 사이트의 플랜트 특성 및 운영환경에 맞추어 전력 공급 시스템을 운전함으로써, 전체 시스템의 효율을 향상시킬 수 있는 전력 공급 시스템의 출력 분배 방법을 제공하는 것이다.
본 발명은 전력 공급 시스템이 위치하는 사이트의 플랜트 특성 및 운영환경에 맞춘 전력 공급 시스템의 운전을 통해 PCS의 수명을 증가시킬 수 있는 전력 공급 시스템의 출력 분배 방법을 제공하는데 또 다른 목적이 있다.
본 발명의 일실시예에 따른 전력 공급 시스템의 출력 분배 방법은, 다수의 PCS를 포함하는 전력 공급 시스템의 출력 분배 방법으로서, 전력 공급 시스템의 요구 출력 전력을 기준값과 비교하는 요구 출력 전력 비교단계; 상기 요구 출력 전력이 상기 기준값을 초과할 경우, 상기 요구 출력 전력을 전체 PCS에 동일하게 할당하여 제 1 모드로 운영하는 단위 운전 PCS의 전력 할당단계; 상기 요구 출력 전력이 상기 기준값을 초과하지 않을 경우, 최대 운전 비율 및 최저 운전 비율을 토대로 최대 운전 비율 전력으로 운영할 적어도 어느 하나의 최대전력 운전 PCS를 할당하는 최대전력 운전 PCS의 전력 할당단계; 상기 최대전력 운전 PCS의 전력 할당단계에서 할당되지 않은 잔여 전력이 최저 운전 비율 전력을 초과할 경우, 상기 잔여 전력을 운영할 잔여전력 운전 PCS를 할당하여 적어도 어느 하나의 최대전력 운전 PCS과 함께 제 2 모드로 운영하는 잔여전력 운전 PCS의 전력 할당단계; 및 상기 최대전력 운전 PCS의 전력 할당단계에서 할당되지 않은 잔여 전력이 상기 최저 운전 비율 전력을 초과하지 않을 경우, 상기 최대전력 운전 PCS의 전력 할당단계에서 할당된 상기 최대전력 운전 PCS에 상기 요구 출력 전력을 동일하게 나누어 재할당하여 제 3 모드로 운영하는 최대전력 운전 PCS의 전력 재할당단계;를 포함할 수 있다.
이때, 상기 기준값은, 상기 전력 공급 시스템의 최대 전력 * 최대 운전 비율일 수 있다.
또한, 상기 최대 운전 비율 전력은, PCS 당 가용 최대 전력* 최대 운전 비율일 수 있다.
또한, 상기 최저 운전 비율 전력은, PCS 당 가용 최대 전력 * 최저 운전 비율일 수 있다.
또한, 상기 최대 운전 비율 및 상기 최저 운전 비율은, 상기 전력 공급 시스템의 발전 예측값, 전력시장 동향, 및 기준 설정값을 토대로 설정될 수 있다.
한편, 상기 요구 출력 전력이 상한 기준값 이상일 때 상기 제 1 모드를 사용하고, 상기 요구 출력 전력이 상기 상한 기준값 이하이고 하한 기준값 이상일 때 상기 제 1 모드와 상기 제 2 모드 중 어느 하나를 사용하며, 상기 요구 출력 전력이 상기 하한 기준값 이하일 때 상기 제 2 모드와 상기 제 3 모드 중 어느 하나를 사용할 수 있다.
이때, 상기 상한 기준값 및 상기 하한 기준값은 상기 전력 공급 시스템의 발전 예측값, 전력시장 동향, 및 기준 설정값을 토대로 설정될 수 있다.
또한, 상기 상한 기준값 및 상기 하한 기준값에 따라 운용 모드가 결정되면, 상기 운용 모드에 따라 상기 최대 운전 비율과 상기 최소 운전 비율이 정해질 수 있다.
한편, 본 발명의 다른 실시예에 따른 전력 공급 시스템의 출력 분배 방법은, 다수의 펩(PEBB)으로 이루어진 PCS를 포함하는 전력 공급 시스템의 출력 분배 방법으로서, PCS의 요구 출력 전력을 기준값과 비교하는 요구 출력 전력 비교단계; 상기 요구 출력 전력이 상기 기준값을 초과할 경우 상기 요구 출력 전력을 전체 펩(PEBB)에 동일하게 할당하여 제 1 모드로 운영하는 단위 운전 펩의 전력 할당단계; 상기 요구 출력 전력이 상기 기준값을 초과하지 않을 경우 최대 운전 비율 및 최저 운전 비율을 토대로 최대 운전 비율 전력으로 운영할 적어도 어느 하나의 최대전력 운전 펩(PEBB)을 할당하는 최대전력 운전 펩의 전력 할당단계; 상기 최대전력 운전 펩(PEBB)의 전력 할당단계에서 할당되지 않은 잔여 전력이 최저 운전 비율 전력을 초과할 경우 상기 잔여 전력을 운영할 잔여전력 운전 펩(PEBB)을 할당하여 적어도 어느 하나의 최대전력 운전 펩(PEBB)과 함께 제 2 모드로 운영하는 잔여전력 운전 펩의 전력 할당단계; 및 상기 최대전력 운전 펩의 전력 할당단계에서 할당되지 않은 잔여 전력이 상기 최저 운전 비율 전력을 초과하지 않을 경우 상기 최대전력 운전 펩(PEBB)의 전력 할당단계에서 할당된 상기 최대전력 운전 펩에 상기 요구 출력 전력을 동일하게 나누어 재할당하여 제 3 모드로 운영하는 최대전력 운전 펩의 전력 재할당단계;를 포함할 수 있다.
이때, 상기 기준값은, 상기 PCS의 최대 전력 * 최대 운전 비율일 수 있다.
또한, 상기 최대 운전 비율 전력은, 펩(PEBB) 당 가용 최대 전력* 최대 운전 비율일 수 있다.
또한, 상기 최저 운전 비율 전력은, 펩(PEBB) 당 가용 최대 전력 * 최저 운전 비율일 수 있다.
또한, 상기 최대 운전 비율 및 상기 최저 운전 비율은, 상기 PCS의 발전 예측값, 전력시장 동향, 및 기준 설정값을 토대로 설정될 수 있다.
한편, 상기 요구 출력 전력이 상한 기준값 이상일 때 상기 제 1 모드를 사용하고, 상기 요구 출력 전력이 상기 상한 기준값 이하이고 하한 기준값 이상일 때 상기 제 1 모드와 상기 제 2 모드 중 어느 하나를 사용하며, 상기 요구 출력 전력이 상기 하한 기준값 이하일 때 상기 제 2 모드와 상기 제 3 모드 중 어느 하나를 사용할 수 있다.
또한, 상기 상한 기준값 및 상기 하한 기준값은 상기 PCS의 발전 예측값, 전력시장 동향, 및 기준 설정값을 토대로 설정될 수 있다.
또한, 상기 상한 기준값 및 상기 하한 기준값에 따라 운용 모드가 결정되면, 상기 운용 모드에 따라 상기 최대 운전 비율과 상기 최소 운전 비율이 정해질 수 있다.
본 발명에 의한 전력 공급 시스템의 출력 분배 방법은 전력 공급 시스템이 위치하는 사이트의 플랜트 특성 및 운영환경에 맞추어 전력 공급 시스템을 운전함으로써, 전체 시스템의 효율을 향상시킬 수 있는 장점이 있다.
또한, 본 발명에 의한 전력 공급 시스템의 출력 분배 방법은 전력 공급 시스템이 위치하는 사이트의 플랜트 특성 및 운영환경에 맞춘 전력 공급 시스템의 운전을 통해 PCS의 수명을 증가시킬 수 있는 장점이 있다.
도 1은 본 발명의 일 실시예에 따른 전력 공급 시스템의 출력 분배 방법을 나타낸 순서도이다.
도 2는 도 1의 전력 공급 시스템이 제 1 모드로 동작하는 경우 그 상세 동작을 나타낸 도면이다.
도 3은 도 1의 전력 공급 시스템이 제 2 모드로 동작하는 경우 그 상세 동작을 나타낸 도면이다.
도 4는 도 1의 전력 공급 시스템이 제 3 모드로 동작하는 경우 그 상세 동작을 나타낸 도면이다.
도 5는 도 1의 전력 공급 시스템이 제 1 모드, 제 2 모드, 및 제 3 모드의 조합으로 동작하는 경우를 나타낸 그래프이다.
도 6은 본 발명의 일 실시예에 따른 전력 공급 시스템의 출력 분배 장치를 나타낸 블록도이다.
도 7은 본 발명의 다른 실시예에 따른 전력 공급 시스템의 출력 분배 방법을 나타낸 순서도이다.
본 발명의 실시를 위한 구체적인 실시예를 첨부된 도면들을 참조하여 설명한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 의도는 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 전력 공급 시스템의 출력 분배 방법 및 장치에 대해 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 전력 공급 시스템의 출력 분배 방법을 나타낸 순서도이며, 도 2 내지 도 5는 도 1을 상세히 설명하기 위한 세부 도면 및 그래프이다. 또한, 도 6은 본 발명의 일 실시예에 따른 전력 공급 시스템의 출력 분배 장치를 나타낸 블록도이다.
이하, 도 1 내지 도 5를 참조하여 본 발명의 일 실시예에 따른 전력 공급 시스템의 출력 분배 방법을 설명한다.
먼저, 도 1을 참조하면, 본 발명의 일 실시예에 따른 전력 공급 시스템의 출력 분배 방법은 제어부(120)에서 전력 공급 시스템의 요구 출력 전력을 기준값과 비교하는 단계(S110), 요구 출력 전력이 기준값을 초과할 경우 요구 출력 전력을 전체 PCS에 동일하게 할당하여 제 1 모드로 운영하는 단계(S120), 요구 출력 전력이 기준값을 초과하지 않을 경우 최대 운전 비율(131) 및 최저 운전 비율(132)을 토대로 최대 운전 비율 전력으로 운영할 적어도 어느 하나의 최대전력 운전 PCS를 할당하는 단계(S130), 최대전력 운전 PCS의 전력 할당단계(S130)에서 할당되지 않은 잔여 전력과 최저 운전 비율 전력을 비교하여(S140) 최대전력 운전 PCS의 전력 할당단계(S130)에서 할당되지 않은 잔여 전력이 최저 운전 비율 전력을 초과할 경우 잔여 전력을 운영할 잔여전력 운전 PCS를 할당하여 적어도 어느 하나의 최대전력 운전 PCS과 함께 제 2 모드로 운영하는 단계(S150), 및 최대전력 운전 PCS의 전력 할당단계(S130)에서 할당되지 않은 잔여 전력과 최저 운전 비율 전력을 비교하여(S140) 최대전력 운전 PCS의 전력 할당단계(S130)에서 할당되지 않은 잔여 전력이 최저 운전 비율 전력을 초과하지 않을 경우 최대전력 운전 PCS의 전력 할당단계(S130)에서 할당된 최대전력 운전 PCS에 요구 출력 전력을 동일하게 나누어 재할당하여 제 3 모드로 운영하는 단계(S160)로 이루어진다.
여기서, 기준값은 전력 공급 시스템의 최대 전력 * 최대 운전 비율로 설정할 수 있다.
또한, 최대 운전 비율 전력은 PCS 당 가용 최대 전력 * 최대 운전 비율로 설정할 수 있다.
여기서, 최저 운전 비율 전력은 PCS 당 가용 최대 전력 * 최저 운전 비율로 설정할 수 있다.
또한, 최대 운전 비율(131) 및 최저 운전 비율(132)은 전력 공급 시스템의 발전 예측값, 전력시장 동향, 및 기준 설정값을 토대로 설정할 수 있다.
본 발명의 전력 공급 시스템은 전력 공급 시스템의 발전 예측값, 전력시장 동향, 및 기준 설정값을 토대로 설정된 최대 운전 비율(131) 및 최저 운전 비율(132)을 사용해 다수의 PCS에 대해 상기와 같은 제 1 모드, 제 2 모드, 및 제 3 모드의 방식으로 출력을 분배함으로써, 전력 공급 시스템의 에너지 변환 효율이 98% 이상을 달성할 수 있도록 할 수 있다.
예를 들어, 최대 운전 비율(131) 및 최저 운전 비율(132)을 설정함에 있어서, 전력 공급 시스템이 위치한 사이트의 플랜트 특성 상 일조량이 낮아 요구 출력 전력이 낮을 때는 최대 운전 비율(131) 및 최저 운전 비율(132)을 상대적으로 낮은 값으로 설정하게 되며, 이를 통해 시스템 전체 전력 변환 효율이 다소 떨어지는 출력 전력 요구에도, 모드 운전을 통해 변환 효율을 높일 수 있으며 PCS 및 펩(PEBB)의 수명을 증가시킬 수 있다.
반면, 전력 공급 시스템이 위치한 사이트의 플랜트 특성 상 일조량이 높아 요구 출력 전력이 높을 때는 최대 운전 비율(131) 및 최저 운전 비율(132)을 상대적으로 조금 높게 설정하게 되며, 이를 통해 전력 변환 효율이 높은 영역에서 모든 PCS를 전력 변환에 참여할 수 있게 함으로써, 전력 공급 시스템의 전력 변환 효율을 높이고 전력 공급 시스템의 수명을 증가시킬 수 있다.
도 2는 도 1의 전력 공급 시스템이 제 1 모드로 동작하는 경우 그 상세 동작을 나타낸 도면이다.
도 2에서 볼 수 있는 바와 같이, 제 1 모드에서는 전체 PCS이 최대 운전 비율을 초과하는 경우 제 1 PCS(111), 제 2 PCS(112), 제 3 PCS(113), 및 제 N PCS(114)에 전력을 모두 할당하여 시스템 효율을 높일 수 있도록 한다.
즉, 제 1 모드는 요구 출력 전력이 높은 지역 또는 시간 대에 모든 PCS를 동작 시킴으로써, 전반적인 시스템 효율을 높일 수 있는 장점이 있다.
도 3은 도 1의 전력 공급 시스템이 제 2 모드로 동작하는 경우 그 상세 동작을 나타낸 도면이다.
도 3에서 알 수 있는 바와 같이, 제 2 모드에서는 제 1 PCS(111), 제 2 PCS(112), 및 제 3 PCS(113)는 최대 운전 비율(131)로 운영하고, 제 N PCS(114)에 잔여 전력을 할당하여 최저 운전 비율(132)과 최대 운전 비율(131) 사이에서 동작하도록 한다.
즉, 제 2 모드는 최대 운전 비율(131)로 운영하는 제 1 PCS(111), 제 2 PCS(112), 및 제 3 PCS(113)에는 추가 전력을 할당하지 않아 변환 효율을 높이면서 과부하가 걸리지 않도록 함으로써, 전반적인 시스템 효율을 높일 수 있고 PCS의 수명을 연장할 수 있는 장점이 있다.
도 4는 도 1의 전력 공급 시스템이 제 3 모드로 동작하는 경우 그 상세 동작을 나타낸 도면이다.
도 4에서 볼 수 있는 바와 같이, 제 3 모드에서는 최저 운전 비율(132) 이하로 동작하여야 하는 제 N PCS(114)를 사용하지 않고, 최대 운전 비율(131)로 운영하고 있는 제 1 PCS(111), 제 2 PCS(112), 및 제 3 PCS(113)에 잔여 전력을 추가로 나누어 할당한다.
즉, 제 3 모드는 최저 운전 비율(132) 이하로 동작하게 되는 낮은 변환 효율의 제 N PCS(114)를 사용하지 않으므로 전반적인 시스템 효율을 높일 수 있고, 또한 제 N PCS(114)의 사용 회수를 줄임으로써 제 N PCS(114)의 수명을 연장할 수 있다.
이러한 제 3 모드는, 요구 출력 전력이 낮은 지역 또는 시간 대에서 효율이 낮은 PCS의 동작을 제거함으로써, 전반적인 시스템 효율을 높일 수 있는 장점이 있다.
도 5는 도 1의 전력 공급 시스템이 제 1 모드, 제 2 모드, 및 제 3 모드의 조합으로 동작시키는 경우를 나타낸 그래프이다.
도 5에서 알 수 있는 바와 같이, 제어부(120)는 요구 출력이 상한 기준값 이상일 때 제 1 모드를 사용하고, 상한 기준값 이하이고 하한 기준값 이상일 때 제 1 모드와 제 2 모드 중 어느 하나를 사용하고, 하한 기준값 이하일 때 제 2 모드와 제 3 모드 중 어느 하나를 사용할 수 있다.
여기서, 도 5(a)는 일조량이 매우 높아 전력 공급 시스템의 출력 전력(161)이 상한 기준값 이상인 경우, 도 5(b)는 일조량이 중간 정도로서, 전력 공급 시스템의 출력 전력(162)이 상한 기준값 이하이고 하한 기준값 이상일 경우, 도 5(c)는 일조량이 낮아 전력 공급 시스템의 출력 전력(163)이 하한 기준값 이하일 경우를 나타낸 그래프이다.
즉, 본 발명의 전력 공급 시스템은, 도 5(a)와 같이 전력 공급 시스템 출력 전력(161)이 상한 기준값 이상인 경우 제 1 최대 운전 비율(141) 및 제 1 최저 운전 비율(151)을 높게 설정하여 모든 PCS를 운용하여 전력 효율을 높이고, 도 5(b)와 같이 전력 공급 시스템 출력 전력(162)이 상한 기준값과 하한 기준값 사이일 경우 제 2 최대 운전 비율(142) 및 제 2 최저 운전 비율(152)을 다소 낮게 설정하여 전력 변환 효율이 다소 높은 PCS를 우선 사용하도록 제 1 모드 또는 제 2 모드로 운용하여 전력 효율을 높이고, 도 5(c)와 같이 전력 공급 시스템 출력 전력(163)이 하한 기준값 이하일 경우 제 3 최대 운전 비율(143) 및 제 3 최저 운전 비율(153)을 낮게 설정하여 변환 효율이 좋지 않은 PCS의 참여 여부를 결정하도록 제 2 모드 및 제 3 모드로 운용하여 전력 공급 시스템의 효율을 높이고 수명을 증가시킨다.
여기서, 상한 기준값과 하한 기준값은 전력 공급 시스템의 발전 예측값, 전력시장 동향, 및 기준 설정값을 토대로 설계된 전력 공급 시스템의 요구 출력에 따라 전력 공급 시스템의 운용 모드를 결정지을 수 있는 기준값이다.
예를 들어, 전력 공급 시스템의 발전 예측값이 높고 전력시장의 가격이 낮을 경우 모든 PCS가 변환 효율이 높은 영역에서 참여할 수 있는 전력을 상한 기준값으로 설정하며, 전력 공급 시스템의 발전 예측값이 낮으나 전력시장의 가격이 높은 경우 전력 공급 시스템에서 변환 효율이 낮더라도 모든 PCS가 참여할 수 있는 전력을 하한 기준값으로 설정한다.
한편, 상한 기준값 및 하한 기준값에 따라 운용 모드가 결정되면 운용 모드에 따라 최대 운전 비율과 최소 운전 비율을 정할 수 있다.
예를 들어, 제 1 모드는, 전력 공급 시스템의 발전 예측값이 높고 전력시장의 가격이 낮은 경우가 될 수 있으며, 이때 제 1 최대 운전 비율(141) 및 제 1 최저 운전 비율(151)이 높게 설정되어 변환 효율이 높은 PCS만 전력 변환에 참여하도록 한다. 또한, 제 2 모드는 전력 공급 시스템의 발전 예측값이 높고 전력 시장의 가격도 높거나, 또는 전력 공급 시스템의 발전 예측값이 낮고 전력 시장의 가격도 낮은 경우가 될 수 있으며, 이때는 제 2 최대 운전 비율(142) 및 제 2 최저 운전 비율(152)이 다소 낮게 설정된다. 그리고, 제 3 모드는 전력 공급 시스템의 발전 예측값이 낮고 전력시장의 가격이 높을 경우가 될 수 있으며, 이때는 제 3 최대 운전 비율(143) 및 제 3 최저 운전 비율(153)이 낮게 설정되어 변환 효율이 낮아도 전력 변환에 참여할 수 있도록 한다.
도 6은 본 발명의 일 실시예에 따른 전력 공급 시스템의 출력 분배 장치를 나타낸 블록도이다.
도 6에서 볼 수 있는 바와 같이, 전력 공급 시스템의 출력 분배 장치는 DC로 입력된 전력을 AC로 변환하여 계통에 공급하는 제 1 PCS 내지 제 N PCS, 및 계통에 공급하는 요구 출력 전력을 최대 운전 비율(131) 및 최저 운전 비율(132)을 토대로 최대 운전 비율 전력과 잔여 전력으로 나누고 제 1 PCS 내지 제 N PCS 중 최대전력 운전 PCS 및 잔여전력 운전 PCS를 각각 선정하여 할당하는 제어부(120)로 이루어진다.
여기서, 최대 운전 비율 전력은 PCS 당 가용 최대 전력 * 최대 운전 비율로 산출할 수 있다.
여기서, 최저 운전 비율 전력은 PCS 당 가용 최대 전력 * 최저 운전 비율인 것을 특징으로 할 수 있다.
또한, 최대 운전 비율(131) 및 최저 운전 비율(132)은 전력 공급 시스템의 발전 예측값, 전력시장 동향, 및 기준 설정값을 토대로 설정할 수 있다.
본 발명의 일 실시예에 따른 전력 공급 시스템의 출력 분배 장치에서, 제어부(120)는 전력 공급 시스템의 DC 입력에 대한 요구 출력 전력을 기준값과 비교하여, 요구 출력 전력이 기준값을 초과할 경우 전체 PCS에 요구 출력 전력을 동일하게 할당하고, 요구 출력 전력이 기준값을 초과하지 않을 경우에는 최대 운전 비율 전력으로 운영할 PCS 및 잔여 전력으로 운영할 PCS를 선정하여 할당한다.
이때, 잔여 전력이 최저 운전 비율 전력을 초과할 경우, 제어부(120)는 최대전력 운전 PCS에 할당되지 않은 잔여 전력을 잔여전력 운전 PCS에 할당하고, 잔여 전력이 최저 운전 비율 전력을 초과하지 않을 경우에는 잔여 전력을 최대전력 운전 PCS에 동일하게 추가 할당한다.
이와 같이, 본 발명의 일 실시예에 따른 전력 공급 시스템의 출력 분배 장치는 발전 예측값, 전력시장 동향, 및 기준 설정값을 토대로 설정된 최대 운전 비율(131) 및 최저 운전 비율(132)을 사용해 다수의 PCS에 대해 출력을 분배함으로써, 전력 공급 시스템의 에너지 변환 효율을 높일 수 있으며 전력 공급 시스템 내의 PCS 운영을 제어하여 PCS의 수명을 증가시킬 수 있다.
한편, 최대 운전 비율(131) 및 최저 운전 비율(132)을 토대로 다수의 PCS에 대해 출력을 분배하는 상세한 방법은 상술한 바가 있으므로, 이에 대한 설명은 생략한다.
도 7은 본 발명의 다른 실시예에 따른 전력 공급 시스템의 출력 분배 방법을 나타낸 순서도이다.
이하의 다른 실시예는 전력 공급 시스템이 하나의 PCS를 구비하고, 해당 PCS가 다수의 PEBB(Power Electronics Building Block; 이하 "펩"이라함)으로 이루어진 구성을 상정한 것이다.
이하, 도 7을 참조하여 본 발명의 다른 실시예에 따른 전력 공급 시스템의 출력 분배 방법을 설명한다.
도 7을 참조하면, 본 발명의 다른 실시예에 따른 전력 공급 시스템의 출력 분배 방법은 PCS(210)의 요구 출력 전력을 기준값과 비교하는 단계(S210), 요구 출력 전력이 기준값을 초과할 경우 요구 출력 전력을 전체 펩(PEBB)에 동일하게 할당하여 제 1 모드로 운영하는 단계(S220), 요구 출력 전력이 기준값을 초과하지 않을 경우 최대 운전 비율(231) 및 최저 운전 비율(232)을 토대로 최대 운전 비율 전력으로 운영할 적어도 어느 하나의 최대전력 운전 펩(PEBB)을 할당하는 단계(S230), 최대전력 운전 펩의 전력 할당단계(S230)에서 할당되지 않은 잔여 전력과 최저 운전 비율 전력을 비교(S240)하여 최대전력 운전 펩의 전력 할당단계(S230)에서 할당되지 않은 잔여 전력이 최저 운전 비율 전력을 초과할 경우 잔여 전력을 운영할 잔여전력 운전 펩(PEBB)을 할당하여 적어도 어느 하나의 최대전력 운전 펩(PEBB)과 함께 제 2 모드로 운영하는 단계(S250), 및 최대전력 운전 펩의 전력 할당단계(S230)에서 할당되지 않은 잔여 전력과 최저 운전 비율 전력을 비교(S240)하여 최대전력 운전 펩(PEBB)의 전력 할당단계(S230)에서 할당되지 않은 잔여 전력이 최저 운전 비율 전력을 초과하지 않을 경우 최대전력 운전 펩(PEBB)의 전력 할당단계(S230)에서 할당된 최대전력 운전 펩(PEBB)에 요구 출력 전력을 동일하게 나누어 재할당하여 제 3 모드로 운영하는 단계(S260)로 이루어진다.
여기서, 기준값은 PCS(210)의 최대 전력 * 최대 운전 비율로 설정할 수 있다.
또한, 최대 운전 비율 전력은 펩(PEBB) 당 가용 최대 전력 * 최대 운전 비율로 설정할 수 있다.
여기서, 최저 운전 비율 전력은 펩(PEBB) 당 가용 최대 전력 * 최저 운전 비율로 설정할 수 있다.
또한, 최대 운전 비율(131) 및 최저 운전 비율(132)은 PCS(210)의 발전 예측값, 전력시장 동향, 및 기준 설정값을 토대로 설정할 수 있다.
즉, 본 발명의 다른 실시예에 따른 전력 공급 시스템의 출력 분배 방법은 PCS(210)의 발전 예측값, 전력시장 동향, 및 기준 설정값을 토대로 설정된 최대 운전 비율(231) 및 최저 운전 비율(232)을 사용해 다수의 펩(PEBB)에 대해 상기와 같은 제 1 모드, 제 2 모드, 및 제 3 모드의 방식으로 출력을 분배함으로써, 전력 공급 시스템의 에너지 변환 효율을 향상시킬 수 있다.
예를 들어, 최대 운전 비율(131) 및 최저 운전 비율(132)을 설정함에 있어서, PCS(210)가 위치한 사이트의 플랜트 특성 상 일조량이 낮아 요구 출력 전력이 낮을 때는 최대 운전 비율(131) 및 최저 운전 비율(132)을 상대적으로 낮은 값으로 설정하게 되며, 이를 통해 전력 변환 효율이 다소 떨어지더라도 전반적인 펩(PEBB)을 운용할 수 있도록 한다.
반면, PCS(210)이 위치한 사이트의 플랜트 특성 상 일조량이 높아 요구 출력 전력이 높을 때는 최대 운전 비율(131) 및 최저 운전 비율(132)을 상대적으로 조금 높게 설정하게 되며, 이를 통해 전력 변환 효율이 높은 영역에서 모든 펩(PEBB)를 전력 변환에 참여할 수 있게 함으로써, PCS(210)의 전력 변환 효율을 높이고 PCS(210)의 수명을 증가시킬 수 있다.
한편, 각 모드에서의 펩(PEBB)의 구체적인 동작 방법은, 다수의 펩(PEBB)에 대해 적용되는 것이라는 점을 제외하면, 상술한 다수의 PCS에 대한 출력 분배 방법과 동일하므로 이에 대한 상세한 설명은 생략한다.
이상과 같이 본 발명에 따른 전력 공급 시스템의 출력 분배 방법 및 장치는 전력 공급 시스템이 위치하는 사이트의 플랜트 특성 및 운영환경에 맞추어 전력 공급 시스템을 운전함으로써, 전체 시스템의 효율을 향상시킬 수 있으며 PCS의 수명을 증가시킬 수 있다.
상술한 것은 하나 이상의 실시예의 실례를 포함한다. 물론, 상술한 실시예들을 설명할 목적으로 컴포넌트들 또는 방법들의 가능한 모든 조합을 기술할 수 있는 것이 아니라, 당업자들은 다양한 실시예의 많은 추가 조합 및 치환할 수 있음을 인식할 수 있다. 따라서 설명한 실시예들은 첨부된 청구범위의 진의 및 범위 내에 있는 모든 대안, 변형 및 개조를 포함하는 것이다.
본 발명은 전력 공급 시스템의 출력 분배 방법에 관한 것으로서, 전력 분야에 이용 가능하다.

Claims (16)

  1. 다수의 PCS를 포함하는 전력 공급 시스템의 출력 분배 방법으로서,
    전력 공급 시스템의 요구 출력 전력을 기준값과 비교하는 요구 출력 전력 비교단계;
    상기 요구 출력 전력이 상기 기준값을 초과할 경우, 상기 요구 출력 전력을 전체 PCS에 동일하게 할당하여 제 1 모드로 운영하는 단위 운전 PCS의 전력 할당단계;
    상기 요구 출력 전력이 상기 기준값을 초과하지 않을 경우, 최대 운전 비율 및 최저 운전 비율을 토대로 최대 운전 비율 전력으로 운영할 적어도 어느 하나의 최대전력 운전 PCS를 할당하는 최대전력 운전 PCS의 전력 할당단계;
    상기 최대전력 운전 PCS의 전력 할당단계에서 할당되지 않은 잔여 전력이 최저 운전 비율 전력을 초과할 경우, 상기 잔여 전력을 운영할 잔여전력 운전 PCS를 할당하여 적어도 어느 하나의 최대전력 운전 PCS과 함께 제 2 모드로 운영하는 잔여전력 운전 PCS의 전력 할당단계; 및
    상기 최대전력 운전 PCS의 전력 할당단계에서 할당되지 않은 잔여 전력이 상기 최저 운전 비율 전력을 초과하지 않을 경우, 상기 최대전력 운전 PCS의 전력 할당단계에서 할당된 상기 최대전력 운전 PCS에 상기 요구 출력 전력을 동일하게 나누어 재할당하여 제 3 모드로 운영하는 최대전력 운전 PCS의 전력 재할당단계;를 포함하는 전력 공급 시스템의 출력 분배 방법.
  2. 제 1항에 있어서,
    상기 기준값은, 상기 전력 공급 시스템의 최대 전력 * 최대 운전 비율인 것을 특징으로 하는 전력 공급 시스템의 출력 분배 방법.
  3. 제 1항에 있어서,
    상기 최대 운전 비율 전력은, PCS 당 가용 최대 전력* 최대 운전 비율인 것을 특징으로 하는 전력 공급 시스템의 출력 분배 방법.
  4. 제 1항에 있어서,
    상기 최저 운전 비율 전력은, PCS 당 가용 최대 전력 * 최저 운전 비율인 것을 특징으로 하는 전력 공급 시스템의 출력 분배 방법.
  5. 제 1항에 있어서,
    상기 최대 운전 비율 및 상기 최저 운전 비율은, 상기 전력 공급 시스템의 발전 예측값, 전력시장 동향, 및 기준 설정값을 토대로 설정되는 것을 특징으로 하는 전력 공급 시스템의 출력 분배 방법.
  6. 제 1항에 있어서,
    상기 요구 출력 전력이 상한 기준값 이상일 때 상기 제 1 모드를 사용하고, 상기 요구 출력 전력이 상기 상한 기준값 이하이고 하한 기준값 이상일 때 상기 제 1 모드와 상기 제 2 모드 중 어느 하나를 사용하며, 상기 요구 출력 전력이 상기 하한 기준값 이하일 때 상기 제 2 모드와 상기 제 3 모드 중 어느 하나를 사용하는 것을 특징으로 하는 전력 공급 시스템의 출력 분배 방법.
  7. 제 6항에 있어서,
    상기 상한 기준값 및 상기 하한 기준값은 상기 전력 공급 시스템의 발전 예측값, 전력시장 동향, 및 기준 설정값을 토대로 설정되는 것을 특징으로 하는 전력 공급 시스템의 출력 분배 방법.
  8. 제 6항에 있어서,
    상기 상한 기준값 및 상기 하한 기준값에 따라 운용 모드가 결정되면, 상기 운용 모드에 따라 상기 최대 운전 비율과 상기 최소 운전 비율이 정해지는 것을 특징으로 하는 전력 공급 시스템의 출력 분배 방법.
  9. 다수의 펩(PEBB)으로 이루어진 PCS를 포함하는 전력 공급 시스템의 출력 분배 방법으로서,
    PCS의 요구 출력 전력을 기준값과 비교하는 요구 출력 전력 비교단계;
    상기 요구 출력 전력이 상기 기준값을 초과할 경우 상기 요구 출력 전력을 전체 펩(PEBB)에 동일하게 할당하여 제 1 모드로 운영하는 단위 운전 펩의 전력 할당단계;
    상기 요구 출력 전력이 상기 기준값을 초과하지 않을 경우 최대 운전 비율 및 최저 운전 비율을 토대로 최대 운전 비율 전력으로 운영할 적어도 어느 하나의 최대전력 운전 펩(PEBB)을 할당하는 최대전력 운전 펩의 전력 할당단계;
    상기 최대전력 운전 펩(PEBB)의 전력 할당단계에서 할당되지 않은 잔여 전력이 최저 운전 비율 전력을 초과할 경우 상기 잔여 전력을 운영할 잔여전력 운전 펩(PEBB)을 할당하여 적어도 어느 하나의 최대전력 운전 펩(PEBB)과 함께 제 2 모드로 운영하는 잔여전력 운전 펩의 전력 할당단계; 및
    상기 최대전력 운전 펩의 전력 할당단계에서 할당되지 않은 잔여 전력이 상기 최저 운전 비율 전력을 초과하지 않을 경우 상기 최대전력 운전 펩(PEBB)의 전력 할당단계에서 할당된 상기 최대전력 운전 펩에 상기 요구 출력 전력을 동일하게 나누어 재할당하여 제 3 모드로 운영하는 최대전력 운전 펩의 전력 재할당단계;를 포함하는 전력 공급 시스템의 출력 분배 방법.
  10. 제 9항에 있어서,
    상기 기준값은, 상기 PCS의 최대 전력 * 최대 운전 비율인 것을 특징으로 하는 전력 공급 시스템의 출력 분배 방법.
  11. 제 9항에 있어서,
    상기 최대 운전 비율 전력은, 펩(PEBB) 당 가용 최대 전력* 최대 운전 비율인 것을 특징으로 하는 전력 공급 시스템의 출력 분배 방법.
  12. 제 9항에 있어서,
    상기 최저 운전 비율 전력은, 펩(PEBB) 당 가용 최대 전력 * 최저 운전 비율인 것을 특징으로 하는 전력 공급 시스템의 출력 분배 방법.
  13. 제 9항에 있어서,
    상기 최대 운전 비율 및 상기 최저 운전 비율은, 상기 PCS의 발전 예측값, 전력시장 동향, 및 기준 설정값을 토대로 설정되는 것을 특징으로 하는 전력 공급 시스템의 출력 분배 방법.
  14. 제 9항에 있어서,
    상기 요구 출력 전력이 상한 기준값 이상일 때 상기 제 1 모드를 사용하고, 상기 요구 출력 전력이 상기 상한 기준값 이하이고 하한 기준값 이상일 때 상기 제 1 모드와 상기 제 2 모드 중 어느 하나를 사용하며, 상기 요구 출력 전력이 상기 하한 기준값 이하일 때 상기 제 2 모드와 상기 제 3 모드 중 어느 하나를 사용하는 것을 특징으로 하는 전력 공급 시스템의 출력 분배 방법.
  15. 제 14항에 있어서,
    상기 상한 기준값 및 상기 하한 기준값은 상기 PCS의 발전 예측값, 전력시장 동향, 및 기준 설정값을 토대로 설정되는 것을 특징으로 하는 전력 공급 시스템의 출력 분배 방법.
  16. 제 14항에 있어서,
    상기 상한 기준값 및 상기 하한 기준값에 따라 운용 모드가 결정되면, 상기 운용 모드에 따라 상기 최대 운전 비율과 상기 최소 운전 비율이 정해지는 것을 특징으로 하는 전력 공급 시스템의 출력 분배 방법.
PCT/KR2021/005852 2020-05-14 2021-05-11 전력 공급 시스템의 출력 분배 방법 WO2021230607A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/623,143 US20220239102A1 (en) 2020-05-14 2021-05-11 Output distribution method of power supply system
AU2021273430A AU2021273430B2 (en) 2020-05-14 2021-05-11 Output distribution method of power supply system
EP21803821.4A EP4152545A4 (en) 2020-05-14 2021-05-11 METHOD FOR DISTRIBUTING THE OUTPUT OF A POWER SUPPLY SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200057752A KR102450205B1 (ko) 2020-05-14 2020-05-14 전력 공급 시스템의 출력 분배 방법
KR10-2020-0057752 2020-05-14

Publications (1)

Publication Number Publication Date
WO2021230607A1 true WO2021230607A1 (ko) 2021-11-18

Family

ID=78524512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/005852 WO2021230607A1 (ko) 2020-05-14 2021-05-11 전력 공급 시스템의 출력 분배 방법

Country Status (5)

Country Link
US (1) US20220239102A1 (ko)
EP (1) EP4152545A4 (ko)
KR (1) KR102450205B1 (ko)
AU (1) AU2021273430B2 (ko)
WO (1) WO2021230607A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2032999B1 (en) * 2022-09-09 2024-03-21 Legrand France Power delivery system and method for delivering power

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120097551A (ko) 2011-02-25 2012-09-05 컨스핀 주식회사 인터넷과 연동하는 스마트그리드 제어장치 및 방법
KR20170057648A (ko) * 2015-11-17 2017-05-25 주식회사 엘지화학 에너지 저장 시스템의 사양 설계 장치 및 방법
KR20180066766A (ko) * 2016-12-09 2018-06-19 주식회사 효성 Ess 최적 효율 운영방법
KR20190107794A (ko) * 2018-03-13 2019-09-23 두산중공업 주식회사 하이브리드 배터리에 연결된 전력 변환 시스템을 제어하기 위한 방법 및 시스템
KR20190143341A (ko) * 2018-06-20 2019-12-30 기가 바이트 테크놀러지 컴퍼니 리미티드 예비 전력 공급 장치의 제어 방법
JP2020072637A (ja) * 2018-10-26 2020-05-07 株式会社九電工 再生可能エネルギーを用いた電力供給設備

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101274632B1 (ko) * 2011-06-08 2013-06-13 한밭대학교 산학협력단 태양광 발전 시스템에서 인버터의 전력 할당 방법
KR101822824B1 (ko) * 2012-09-21 2018-01-29 한국전력공사 전력저장시스템의 충방전 분배장치 및 그 방법
JP6157880B2 (ja) * 2013-03-04 2017-07-05 株式会社東芝 複数電池を有する二次電池システム及び充放電電力等の配分方法
US20150145336A1 (en) * 2013-11-27 2015-05-28 Solantro Semiconductor Corp. Modular power conversion system and method
KR101792395B1 (ko) * 2016-02-15 2017-11-01 두산중공업 주식회사 에너지 저장 시스템 및 시스템 운용 방법
JP6711516B2 (ja) * 2016-03-29 2020-06-17 日本電気株式会社 出力制御装置、パワーコンディショナー、出力制御方法及びプログラム
JP6266187B1 (ja) * 2016-09-16 2018-01-24 三菱電機株式会社 電力変換装置
KR20190093034A (ko) * 2018-01-31 2019-08-08 효성중공업 주식회사 Ess 출력 분배 방법 및 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120097551A (ko) 2011-02-25 2012-09-05 컨스핀 주식회사 인터넷과 연동하는 스마트그리드 제어장치 및 방법
KR20170057648A (ko) * 2015-11-17 2017-05-25 주식회사 엘지화학 에너지 저장 시스템의 사양 설계 장치 및 방법
KR20180066766A (ko) * 2016-12-09 2018-06-19 주식회사 효성 Ess 최적 효율 운영방법
KR20190107794A (ko) * 2018-03-13 2019-09-23 두산중공업 주식회사 하이브리드 배터리에 연결된 전력 변환 시스템을 제어하기 위한 방법 및 시스템
KR20190143341A (ko) * 2018-06-20 2019-12-30 기가 바이트 테크놀러지 컴퍼니 리미티드 예비 전력 공급 장치의 제어 방법
JP2020072637A (ja) * 2018-10-26 2020-05-07 株式会社九電工 再生可能エネルギーを用いた電力供給設備

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4152545A4

Also Published As

Publication number Publication date
EP4152545A4 (en) 2024-07-03
US20220239102A1 (en) 2022-07-28
KR102450205B1 (ko) 2022-10-04
KR102450205B9 (ko) 2023-04-12
AU2021273430B2 (en) 2022-11-17
KR20210140938A (ko) 2021-11-23
AU2021273430A1 (en) 2022-02-03
EP4152545A1 (en) 2023-03-22

Similar Documents

Publication Publication Date Title
WO2013036034A2 (ko) 배터리 팩의 멀티 슬레이브에 대한 식별자 할당 방법 및 시스템
WO2017142218A1 (ko) 에너지 저장 시스템 및 시스템 운용 방법
WO2012033254A1 (en) Energy storage system and controlling method of the same
WO2012165858A2 (ko) 전력 저장 장치, 이를 이용한 전력 저장 시스템 및 전력 저장 시스템의 구성 방법
WO2020040350A1 (ko) 신재생 에너지 하이브리드 발전 시스템 및 이를 위한 발전 방법
WO2015102396A1 (ko) 에너지 저장 시스템에서 전력 분배 방법 및 장치
CN112519620B (zh) 一种电动汽车柔性充电***及控制方法
WO2017179795A1 (ko) 레독스 흐름전지
WO2020149494A1 (ko) 직류 마이크로 그리드 내의 수용가 상호간 직류 자율배전 제어시스템 및 그 운용방법
WO2020122419A1 (ko) 연료전지 제어 시스템
WO2013133592A1 (ko) 주파수 제어 시스템 및 방법
JP2023044636A (ja) 充電パイルクラスタの電力共有制御方法、電力共有制御システム及び電力共有制御装置
WO2021230607A1 (ko) 전력 공급 시스템의 출력 분배 방법
WO2020013614A1 (ko) Ess 충방전 운전 방법
WO2019151656A1 (ko) Ess 출력 분배 방법 및 장치
WO2015102398A1 (ko) 풍력 발전기용 에너지 저장 시스템 및 방법
WO2013180404A1 (en) Demand controller, charger, and remote charging control system control method using the same
CN105322604A (zh) 串联并联转换电力装置
CN112467769A (zh) 一种模块化预安装储能***
CN112803480A (zh) 一种光储***及其控制方法
WO2015096751A1 (zh) 一种网络化的分布式动态均衡供电方法
WO2022146059A1 (ko) Soc 밸런싱 장치를 포함한 고전압형 레독스 흐름전지
WO2022114464A1 (ko) 직류/직류 컨버터 및 이의 제어 방법
CN108711875A (zh) 一种分布式储能单元协调控制***及控制方法
WO2024034761A1 (ko) 하이브리드 전기차 충전 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021273430

Country of ref document: AU

Date of ref document: 20210511

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021803821

Country of ref document: EP

Effective date: 20221214