WO2021229799A1 - Deodorizing catalyst for refrigerator and deodorizing material for refrigerator using this - Google Patents

Deodorizing catalyst for refrigerator and deodorizing material for refrigerator using this Download PDF

Info

Publication number
WO2021229799A1
WO2021229799A1 PCT/JP2020/019454 JP2020019454W WO2021229799A1 WO 2021229799 A1 WO2021229799 A1 WO 2021229799A1 JP 2020019454 W JP2020019454 W JP 2020019454W WO 2021229799 A1 WO2021229799 A1 WO 2021229799A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
refrigerator
deodorizing
deodorizing catalyst
mass
Prior art date
Application number
PCT/JP2020/019454
Other languages
French (fr)
Japanese (ja)
Inventor
健太 竹内
圭亮 斉藤
Original Assignee
日揮ユニバーサル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮ユニバーサル株式会社 filed Critical 日揮ユニバーサル株式会社
Priority to JP2022522474A priority Critical patent/JP7169515B2/en
Priority to CN202080100786.8A priority patent/CN115551634A/en
Priority to PCT/JP2020/019454 priority patent/WO2021229799A1/en
Publication of WO2021229799A1 publication Critical patent/WO2021229799A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y

Definitions

  • This disclosure relates to a refrigerator deodorizing catalyst and a refrigerator deodorizing material using the same.
  • the odor derived from food is generated in the refrigerator.
  • the odor-causing substances are sulfur oxides such as hydrogen sulfide and mercaptan, nitrogen compounds such as ammonia and amines, organic acids and alcohols.
  • sulfur oxides such as hydrogen sulfide and mercaptan
  • nitrogen compounds such as ammonia and amines
  • organic acids and alcohols Various means and methods for adsorbing and removing these substances have been developed so far (see Patent Documents 1 to 3).
  • Japanese Unexamined Patent Publication No. 11-188263 Japanese Unexamined Patent Publication No. 10-137591 Japanese Unexamined Patent Publication No. 8-266866
  • the conventional deodorizing catalyst can reduce the odor by adsorbing the odor-causing substance, there is still room for improvement in reducing the odor caused by the by-products generated by the decomposition of the adsorbed causative substance.
  • dimethyldisulfide is known as a decomposition by-product of methyl mercaptan.
  • Dimethyldisulfide is also a causative agent of odor.
  • the present disclosure provides a deodorizing catalyst for a refrigerator and a deodorizing material for a refrigerator using the deodorizing catalyst for a refrigerator, which has excellent removal performance for methyl mercaptan and can sufficiently suppress the release of dimethyldisulfide which is a decomposition by-product of methyl mercaptan. ..
  • the deodorizing catalyst for a refrigerator contains a Cu—Mn composite oxide and a zeolite having a silica / alumina molar ratio of 100 or more, and the ratio of the mass A of the Cu—Mn composite oxide to the mass B of the zeolite (A). / B) is 0.1 or more and 1.25 or less.
  • the silica / alumina molar ratio of zeolite means a value measured by a fluorescent X-ray analyzer (XRF).
  • the deodorizing catalyst for a refrigerator uses a specific composite oxide and a zeolite satisfying a specific condition in combination, and the mass ratio (A / B) of these is in the range of 0.1 to 1.25. According to such a deodorizing catalyst for a refrigerator, not only a high removal rate of methyl mercaptan can be achieved, but also the release of dimethyl disulfide, which is a decomposition by-product of methyl mercaptan, can be sufficiently suppressed.
  • the zeolite is, for example, powdery. From the viewpoint of catalytic activity, the zeolite preferably has a specific surface area of 300 m 2 / g or more as measured by the BET method.
  • the zeolite preferably has a maximum value in the range of the pore diameter of 0.8 nm or more and 1.2 nm or less in the pore distribution by the MP method obtained from the nitrogen adsorption / desorption isotherm measurement. It can be said that a zeolite having a maximum pore diameter in the above range has a relatively large number of pores having an opening diameter of about 1 nm.
  • the mass ratio (A / B) of both is within the above range, the effect of the present invention can be achieved even more highly.
  • the total acid amount of the above zeolite calculated by the ammonia heated desorption method is 0.3 mmol / g or less.
  • This total acid amount is a value that reflects the acid amount of zeolite.
  • a zeolite having a large silica / alumina molar ratio has a high acid strength and a small total acid amount measured by the above method.
  • a zeolite having a silica / alumina molar ratio of 100 or more and a total acid amount of 0.3 mmol / g or less measured by the above method is used in combination with a Cu—Mn composite oxide, and the mass ratio of both ( When A / B) is within the above range, the effect of the present invention can be achieved even more highly.
  • the Cu—Mn composite oxide is, for example, powdery. From the viewpoint of catalytic activity, the Cu—Mn composite oxide preferably has a specific surface area of 150 m 2 / g or more as measured by the BET method.
  • the Cu—Mn composite oxide has, for example, a Cu content of 10 to 40% by mass in terms of CuO and a Mn content of 60 to 90% by mass in terms of MnO 2.
  • the refrigerator deodorizing material according to the present disclosure includes the above-mentioned refrigerator deodorizing catalyst and a base material having a surface coated with the refrigerator deodorizing catalyst.
  • a refrigerator deodorizing material can be manufactured by forming a refrigerator deodorizing catalyst in a layer on the surface of a base material by a coating technique such as a wash coat.
  • An example of the base material is a honeycomb base material.
  • the deodorizing material for a refrigerator can be used as a deodorizing filter, for example, and is mounted in a refrigerator where cold air flows.
  • a deodorizing catalyst for a refrigerator and a deodorizing material for a refrigerator using the deodorizing catalyst for a refrigerator which has excellent removal performance for methyl mercaptan and can sufficiently suppress the release of dimethyldisulfide which is a decomposition by-product of methyl mercaptan, are described. Provided.
  • FIG. 1 is a graph showing the pore distribution of zeolite used in Examples and Comparative Examples.
  • FIG. 2 is a graph showing a temperature-increasing desorption curve of adsorbed ammonia of zeolite used in Examples and Comparative Examples.
  • FIG. 3 is a graph showing the XRD analysis results of the zeolites used in Examples and Comparative Examples.
  • the deodorizing catalyst according to the present embodiment is mounted on a refrigerator or installed in a refrigerator in a state of being applied to a base material such as a honeycomb base material, for example.
  • This deodorizing catalyst contains a Cu—Mn composite oxide and a zeolite having a silica / alumina molar ratio of 100 or more.
  • the ratio (A / B) of the mass A of the Cu—Mn composite oxide to the mass B of the zeolite is 0.1 or more and 1.25 or less.
  • DMDS dimethyl disulfide
  • the lower limit of the ratio (A / B) is preferably 0.15, and may be 0.2 or 0.25, from the viewpoint of improving the removal rate of methyl mercaptan.
  • the upper limit of the ratio (A / B) is preferably 1.0, and may be 0.9 or 0.8 from the viewpoint of suppressing the release of dimethyldisulfide.
  • the Cu—Mn composite oxide has a deodorizing effect.
  • the Cu—Mn composite oxide is, for example, powdery.
  • the Cu—Mn composite oxide preferably has a specific surface area of 150 m 2 / g or more, more preferably 200 to 300 m 2 / g, as measured by the BET method.
  • the average particle size of the Cu—Mn composite oxide can be measured by the BET method.
  • the Cu-Mn composite oxide has, for example, a Cu content of 10 to 40% by mass (more preferably 15 to 30% by mass) in terms of CuO and a Mn content of 60 to 90% by mass in terms of MnO 2. More preferably, it is 65 to 80% by mass).
  • the Cu—Mn composite oxide may contain components other than Cu and Mn. The content of such a component (based on the mass of the Cu—Mn composite oxide) may be, for example, 20% by mass or less.
  • Hopcalite is an example of a Cu—Mn composite oxide. Hopcalite contains about 1 to 4% by mass of potassium as a component other than Cu and Mn.
  • Zeolites are substances with pores and have the effect of adsorbing odor-causing substances.
  • the silica / alumina molar ratio of the zeolite is 100 or more, and may be 100 to 1000.
  • a zeolite having a silica / alumina molar ratio of 100 or more in combination with a Cu—Mn composite oxide the above-mentioned effect of the present invention can be obtained.
  • the zeolite is, for example, powdery.
  • the specific surface area of the zeolite measured by the BET method is preferably 300 m 2 / g or more, and more preferably 350 to 800 m 2 / g.
  • the zeolite preferably has a maximum value in the range of the pore diameter of 0.8 nm or more and 1.2 nm or less in the pore distribution by the MP method obtained from the nitrogen adsorption / desorption isotherm measurement.
  • the zeolite may have a maximum value even in the range where the pore diameter is 0.4 nm or more and 0.7 nm or less.
  • the average particle size of zeolite can be measured by the BET method.
  • the total acid content of the zeolite calculated by the ammonia temperature desorption method is preferably 0.3 mmol / g or less, and more preferably 0.01 to 0.2 mmol / g.
  • This total acid amount is a value that reflects the acid amount of zeolite.
  • a zeolite having a large silica / alumina molar ratio has a high acid strength and a small total acid amount measured by the above method.
  • a zeolite having a silica / alumina molar ratio of 100 or more and a total acid amount of 0.3 mmol / g or less measured by the above method is used in combination with a Cu—Mn composite oxide, and the mass ratio of both is used.
  • (A / B) is within the above range, the above-mentioned effect of the present invention can be achieved even more highly.
  • Examples of the zeolite type include MFI type, Y type, A type, L type and the like. Of these, it is preferable to use MFI-type zeolite from the viewpoint of deodorizing performance.
  • Examples of the cation species contained in zeolite include sodium ion, hydrogen ion, potassium ion, calcium ion and the like. Of these, from the viewpoint of cost, it is preferable to use zeolite whose cation species is sodium ion.
  • the deodorizing catalyst may contain, for example, a binder as a component other than the above. Since the deodorizing catalyst contains a binder, a catalyst layer can be formed on the surface of the base material by the slurry method.
  • the binder may be an inorganic binder or an organic binder. Examples of the inorganic binder include silica sol and alumina sol. Examples of the organic binder include natural resins such as starch, casein and gelatin; synthetic resins such as cellulose, water-soluble polyamide, quaternary ammonium salt, acrylic resin, urethane resin, vinyl acetate resin, SBR resin, epoxy resin and polyvinyl alcohol resin. Be done. Among these, by using an inorganic binder (for example, silica particles), the effect that the binder has a small inhibitory effect on the deodorizing performance is exhibited.
  • an inorganic binder for example, silica particles
  • the content of the inorganic binder in the deodorizing catalyst is, for example, 5 to 30% by mass, and may be 10 to 20% by mass, based on the total mass of the deodorizing catalyst.
  • the content of the organic binder in the deodorizing catalyst is, for example, 2.5 to 20% by mass, and may be 5 to 15% by mass, based on the total mass of the deodorizing catalyst.
  • the refrigerator deodorizing material includes the refrigerator deodorizing catalyst and a base material having a surface coated with the refrigerator deodorizing catalyst.
  • a refrigerator deodorizing material can be manufactured by forming a refrigerator deodorizing catalyst in a layer on the surface of a base material by a coating technique such as a wash coat.
  • the base material include a honeycomb base material, a pellet-shaped base material, a woven fabric or a non-woven fabric-like base material, and a plate-shaped or block-shaped bulk member.
  • the material of the base material is not particularly limited, and examples thereof include metals, ceramics, glass, plastics, cellulosic materials, and materials combining these (composite materials, laminated materials, etc.).
  • the metal include stainless steel, aluminum, copper, galvanized steel sheet and iron.
  • the ceramics include cordylite, alumina, barium titanate, boron nitride and silicon nitride.
  • the glass include ordinary soda lime glass, borosilicate glass, non-alkali glass, quartz glass and aluminosilicate glass.
  • the plastic include an acrylic resin such as polymethylmethacrylate, an aromatic polycarbonate resin such as polyphenylene carbonate, and an aromatic polyester resin such as polyethylene terephthalate (PET).
  • Cellulosic materials include, for example, cotton, linen, rayon, and cupra.
  • the deodorizing material for a refrigerator can be used as a deodorizing filter, for example, and is mounted in a refrigerator where cold air flows.
  • Example 1 A slurry for forming a deodorizing catalyst layer was prepared using the following components.
  • Example 2 As the zeolite, the following NU-2080 was used instead of NU-1080, and a slurry was obtained in the same manner as in Example 1 except that the blending amount of each component was set to the amount shown in Table 1.
  • Example 3 Slurries according to Examples 3 and 4 were obtained in the same manner as in Example 1 except that the blending amount of each component was set to the amount shown in Table 1.
  • EX-122 Mizuka Sieves EX-122 (hereinafter referred to as "EX-122”) was used instead of NU-1080, and the blending amount of each component was set to the amount shown in Table 2.
  • a slurry was obtained in the same manner as in Example 1.
  • NFK-7-2SC1.0-HWOS As the zeolite, the following NFK-7-2SC1.0-HWOS was used instead of NU-1080, and the blending amount of each component was set to the amount shown in Table 2, in the same manner as in Example 1. A slurry was obtained.
  • Y-420 the following Mizuka Sieves Y-420 (hereinafter referred to as "Y-420”) was used instead of NU-1080, and the blending amount of each component was set to the amount shown in Table 2.
  • a slurry was obtained in the same manner as in Example 1.
  • Comparative Examples 5 to 8 Slurries according to Comparative Examples 5 to 8 were obtained in the same manner as in Example 1 except that the blending amount of each component was set to the amount shown in Table 3.
  • ⁇ Zeolite pore distribution> The pore distribution of the zeolite used in the examples and comparative examples was measured by the MP method obtained from the nitrogen adsorption / desorption isotherm measurement. The results are shown in FIG. It was found that the zeolites (NU-1080 and NU-2080) used in the examples had pores having a diameter of about 1 nm.
  • FIG. 2 shows a temperature-increasing desorption curve of adsorbed ammonia. It was found that the zeolites (NU-1080 and NU-2080) used in the examples had a small amount of ammonia adsorbed and a small amount of acid as a whole. The total amount of acid calculated from the temperature desorption curve was as follows. NU-1080: 0.184 mmol / g NU-2080: 0.083 mmol / g EX122: 1.147 mmol / g Y-420: 2.360 mmol / g
  • FIG. 3 shows the XRD analysis results of the zeolites used in Examples and Comparative Examples.
  • a ceramic honeycomb (cell number 200 / inch 2 , cell opening surface diameter 21 mm, ventilation direction length 7.0 mm, manufactured by Seibu Giken Co., Ltd.) was prepared.
  • a catalyst layer was formed on the surface of this honeycomb base material by a wash coat. That is, after the base material was immersed in each of the slurries according to the examples and the comparative examples, the excess slurry was blown off by an air blow. Then, a deodorizing filter was obtained by putting it in a dryer set at 150 ° C. for 1 hour to dry it. The amount of the slurry applied was adjusted so that the mass of the catalyst layer after drying was 150 g per 1 L of the honeycomb base material.
  • MMP Metal mercaptan distribution test> (1) MMP removal rate Each deodorant (cell opening surface diameter: 21 mm) according to Examples and Comparative Examples was installed in a glass tube. Air at a temperature of 25 ° C. and a humidity of 80% RH was circulated through the deodorizing material at a flow rate of 9.1 L / min for 15 minutes. Methyl mercaptan was introduced into the circulating air so that the concentration of methyl mercaptan was 100 ppm. Ten minutes after the start of introduction of methyl mercaptan, the methyl mercaptan concentration in the air after passing through the deodorizing material was measured. This value was substituted into the following equation to calculate the removal rate.
  • MMP removal rate (%) ⁇ 1- (MMP concentration [ppm] / 100 [ppm]) ⁇ x 100
  • DMDS Dimethyl disulfide
  • a deodorizing catalyst for a refrigerator and a deodorizing material for a refrigerator using the deodorizing catalyst for a refrigerator which has excellent removal performance for methyl mercaptan and can sufficiently suppress the release of dimethyldisulfide which is a decomposition by-product of methyl mercaptan, are described. Provided.

Abstract

This deodorizing catalyst for a refrigerator contains a Cu-Mn composite oxide, and zeolite with a silica/alumina molar ratio of at least 100, and the ratio (A/B) of the mass A of the Cu-Mn composite oxide and the mass B of the zeolite is 0.1-1.25. In a pore distribution based on the MP method, calculated with nitrogen adsorption/desorption isotherm measurement, this zeolite preferably has a pore diameter maximum value in the range 0.8-1.2nm. Alternatively, the zeolite preferably has a total acid content of less than or equal to 0.3 mmol/g, calculated by ammonia temperature-programmed desorption.

Description

冷蔵庫用脱臭触媒及びこれを用いた冷蔵庫用脱臭材Deodorizing catalyst for refrigerators and deodorizing materials for refrigerators using this
 本開示は、冷蔵庫用脱臭触媒及びこれを用いた冷蔵庫用脱臭材に関する。 This disclosure relates to a refrigerator deodorizing catalyst and a refrigerator deodorizing material using the same.
 冷蔵庫内では食品に由来する臭いが発生する。臭いの原因物質は、硫化水素、メルカプタン等の硫黄酸化物、アンモニア、アミン類等の窒素化合物、有機酸、アルコール類などである。これらの物質を吸着除去するための種々の手段及び方法がこれまでに開発されている(特許文献1~3参照)。 The odor derived from food is generated in the refrigerator. The odor-causing substances are sulfur oxides such as hydrogen sulfide and mercaptan, nitrogen compounds such as ammonia and amines, organic acids and alcohols. Various means and methods for adsorbing and removing these substances have been developed so far (see Patent Documents 1 to 3).
特開平11-188263号公報Japanese Unexamined Patent Publication No. 11-188263 特開平10-137591号公報Japanese Unexamined Patent Publication No. 10-137591 特開平8-266866号公報Japanese Unexamined Patent Publication No. 8-266866
 従来の脱臭触媒は、臭いの原因物質を吸着することによって臭いを低減できるものの、吸着した原因物質が分解することによって生じる副生成物に起因する臭いを低減する点において未だ改善の余地があった。例えば、メチルメルカプタンの分解副生成物としてジメチルジサルファイドが知られている。ジメチルジサルファイドも臭いの原因物質である。 Although the conventional deodorizing catalyst can reduce the odor by adsorbing the odor-causing substance, there is still room for improvement in reducing the odor caused by the by-products generated by the decomposition of the adsorbed causative substance. .. For example, dimethyldisulfide is known as a decomposition by-product of methyl mercaptan. Dimethyldisulfide is also a causative agent of odor.
 本開示は、メチルメルカプタンに対する優れた除去性能を有するとともに、メチルメルカプタンの分解副生成物であるジメチルジサルファイドの放出を十分に抑制できる冷蔵庫用脱臭触媒及びこれを用いた冷蔵庫用脱臭材を提供する。 The present disclosure provides a deodorizing catalyst for a refrigerator and a deodorizing material for a refrigerator using the deodorizing catalyst for a refrigerator, which has excellent removal performance for methyl mercaptan and can sufficiently suppress the release of dimethyldisulfide which is a decomposition by-product of methyl mercaptan. ..
 本開示に係る冷蔵庫用脱臭触媒は、Cu-Mn複合酸化物と、シリカ/アルミナモル比が100以上のゼオライトとを含み、Cu-Mn複合酸化物の質量Aとゼオライトとの質量Bの比(A/B)が0.1以上1.25以下である。なお、ゼオライトのシリカ/アルミナモル比は蛍光X線分析装置(XRF)により測定される値を意味する。 The deodorizing catalyst for a refrigerator according to the present disclosure contains a Cu—Mn composite oxide and a zeolite having a silica / alumina molar ratio of 100 or more, and the ratio of the mass A of the Cu—Mn composite oxide to the mass B of the zeolite (A). / B) is 0.1 or more and 1.25 or less. The silica / alumina molar ratio of zeolite means a value measured by a fluorescent X-ray analyzer (XRF).
 上記冷蔵庫用脱臭触媒は、特定の複合酸化物と、特定の条件を満たすゼオライトを併用するとともに、これらの質量比(A/B)が0.1~1.25の範囲である。かかる冷蔵庫用脱臭触媒によれば、メチルメルカプタンの高い除去率を達成できるだけでなく、メチルメルカプタンの分解副生成物であるジメチルジサルファイドの放出も十分に抑制できる。 The deodorizing catalyst for a refrigerator uses a specific composite oxide and a zeolite satisfying a specific condition in combination, and the mass ratio (A / B) of these is in the range of 0.1 to 1.25. According to such a deodorizing catalyst for a refrigerator, not only a high removal rate of methyl mercaptan can be achieved, but also the release of dimethyl disulfide, which is a decomposition by-product of methyl mercaptan, can be sufficiently suppressed.
 上記ゼオライトは、例えば、粉状である。上記ゼオライトは、触媒活性の観点から、BET法により測定される比表面積が300m/g以上であることが好ましい。上記ゼオライトは、窒素吸脱着等温線測定から求められるMP法による細孔分布において、細孔径が0.8nm以上1.2nm以下の範囲に極大値を有することが好ましい。細孔径の極大値を上記範囲に有するゼオライトは開口径が1nm程度の細孔を比較的多く有すると言える。このようなゼオライトとCu-Mn複合酸化物とを併用し且つ両者の質量比(A/B)が上記範囲内であることで、より一層高度に本発明の効果が奏される。 The zeolite is, for example, powdery. From the viewpoint of catalytic activity, the zeolite preferably has a specific surface area of 300 m 2 / g or more as measured by the BET method. The zeolite preferably has a maximum value in the range of the pore diameter of 0.8 nm or more and 1.2 nm or less in the pore distribution by the MP method obtained from the nitrogen adsorption / desorption isotherm measurement. It can be said that a zeolite having a maximum pore diameter in the above range has a relatively large number of pores having an opening diameter of about 1 nm. When such a zeolite and a Cu—Mn composite oxide are used in combination and the mass ratio (A / B) of both is within the above range, the effect of the present invention can be achieved even more highly.
 上記ゼオライトは、アンモニア昇温脱離法により算出される全酸量が0.3mmol/g以下であることが好ましい。この全酸量は、ゼオライトの酸量を反映する値である。一般に、シリカ/アルミナモル比が大きいゼオライトは、高い酸強度を有し且つ上記の方法によって測定される全酸量が小さい値であることが知られている。本発明において、シリカ/アルミナモル比が100以上であり、上記の方法によって測定される全酸量が0.3mmol/g以下のゼオライトとCu-Mn複合酸化物とを併用し且つ両者の質量比(A/B)が上記範囲内であることで、より一層高度に本発明の効果が奏される。 It is preferable that the total acid amount of the above zeolite calculated by the ammonia heated desorption method is 0.3 mmol / g or less. This total acid amount is a value that reflects the acid amount of zeolite. In general, it is known that a zeolite having a large silica / alumina molar ratio has a high acid strength and a small total acid amount measured by the above method. In the present invention, a zeolite having a silica / alumina molar ratio of 100 or more and a total acid amount of 0.3 mmol / g or less measured by the above method is used in combination with a Cu—Mn composite oxide, and the mass ratio of both ( When A / B) is within the above range, the effect of the present invention can be achieved even more highly.
 上記Cu-Mn複合酸化物は、例えば、粉状である。上記Cu-Mn複合酸化物は、触媒活性の観点から、BET法により測定される比表面積が150m/g以上であることが好ましい。上記Cu-Mn複合酸化物は、例えば、Cu含有量がCuO換算で10~40質量%であり且つMn含有量がMnO換算で60~90質量%である。 The Cu—Mn composite oxide is, for example, powdery. From the viewpoint of catalytic activity, the Cu—Mn composite oxide preferably has a specific surface area of 150 m 2 / g or more as measured by the BET method. The Cu—Mn composite oxide has, for example, a Cu content of 10 to 40% by mass in terms of CuO and a Mn content of 60 to 90% by mass in terms of MnO 2.
 本開示に係る冷蔵庫用脱臭材は、上記冷蔵庫用脱臭触媒と、冷蔵庫用脱臭触媒が塗布された表面を有する基材とを備える。例えば、ウォッシュコート等の塗工技術によって基材の表面に冷蔵庫用脱臭触媒を層状に形成することによって冷蔵庫用脱臭材を製造することができる。基材の例として、ハニカム基材が挙げられる。冷蔵庫用脱臭材は、例えば、脱臭フィルターとして使用することができ、冷蔵庫内であって、冷えた空気が流れる箇所に搭載される。 The refrigerator deodorizing material according to the present disclosure includes the above-mentioned refrigerator deodorizing catalyst and a base material having a surface coated with the refrigerator deodorizing catalyst. For example, a refrigerator deodorizing material can be manufactured by forming a refrigerator deodorizing catalyst in a layer on the surface of a base material by a coating technique such as a wash coat. An example of the base material is a honeycomb base material. The deodorizing material for a refrigerator can be used as a deodorizing filter, for example, and is mounted in a refrigerator where cold air flows.
 本開示によれば、メチルメルカプタンに対する優れた除去性能を有するとともに、メチルメルカプタンの分解副生成物であるジメチルジサルファイドの放出を十分に抑制できる冷蔵庫用脱臭触媒及びこれを用いた冷蔵庫用脱臭材が提供される。 According to the present disclosure, a deodorizing catalyst for a refrigerator and a deodorizing material for a refrigerator using the deodorizing catalyst for a refrigerator, which has excellent removal performance for methyl mercaptan and can sufficiently suppress the release of dimethyldisulfide which is a decomposition by-product of methyl mercaptan, are described. Provided.
図1は実施例及び比較例で使用したゼオライトの細孔分布を示すグラフである。FIG. 1 is a graph showing the pore distribution of zeolite used in Examples and Comparative Examples. 図2は実施例及び比較例で使用したゼオライトの吸着アンモニアの昇温脱離曲線を示すグラフである。FIG. 2 is a graph showing a temperature-increasing desorption curve of adsorbed ammonia of zeolite used in Examples and Comparative Examples. 図3は実施例及び比較例で使用したゼオライトのXRD分析結果を示すグラフである。FIG. 3 is a graph showing the XRD analysis results of the zeolites used in Examples and Comparative Examples.
 以下、本開示の実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present disclosure will be described. The present invention is not limited to the following embodiments.
<脱臭触媒>
 本実施形態に係る脱臭触媒は、例えば、ハニカム基材などの基材に塗布された状態で冷蔵庫に搭載又は冷蔵庫内に設置されるものである。この脱臭触媒は、Cu-Mn複合酸化物と、シリカ/アルミナモル比が100以上のゼオライトとを含む。上記Cu-Mn複合酸化物の質量Aと上記ゼオライトとの質量Bの比(A/B)が0.1以上1.25以下である。この脱臭触媒によれば、メチルメルカプタン(MMP)の高い除去率を達成できるだけでなく、メチルメルカプタンの分解副生成物であるジメチルジサルファイド(DMDS)の放出も十分に抑制できる。比(A/B)の下限値は、メチルメルカプタンの除去率向上の観点から、好ましくは0.15であり、0.2又は0.25であってもよい。比(A/B)の上限値は、ジメチルジサルファイドの放出抑制の観点から、好ましくは1.0であり、0.9又は0.8であってもよい。
<Deodorizing catalyst>
The deodorizing catalyst according to the present embodiment is mounted on a refrigerator or installed in a refrigerator in a state of being applied to a base material such as a honeycomb base material, for example. This deodorizing catalyst contains a Cu—Mn composite oxide and a zeolite having a silica / alumina molar ratio of 100 or more. The ratio (A / B) of the mass A of the Cu—Mn composite oxide to the mass B of the zeolite is 0.1 or more and 1.25 or less. According to this deodorizing catalyst, not only a high removal rate of methyl mercaptan (MMP) can be achieved, but also the release of dimethyl disulfide (DMDS), which is a decomposition by-product of methyl mercaptan, can be sufficiently suppressed. The lower limit of the ratio (A / B) is preferably 0.15, and may be 0.2 or 0.25, from the viewpoint of improving the removal rate of methyl mercaptan. The upper limit of the ratio (A / B) is preferably 1.0, and may be 0.9 or 0.8 from the viewpoint of suppressing the release of dimethyldisulfide.
(Cu-Mn複合酸化物)
 Cu-Mn複合酸化物は脱臭の作用を有する。Cu-Mn複合酸化物は、例えば、粉状である。Cu-Mn複合酸化物は、触媒活性の観点から、BET法により測定される比表面積が150m/g以上であることが好ましく、200~300m/gであることがより好ましい。Cu-Mn複合酸化物の平均粒径は、BET法によって測定することができる。
(Cu-Mn composite oxide)
The Cu—Mn composite oxide has a deodorizing effect. The Cu—Mn composite oxide is, for example, powdery. From the viewpoint of catalytic activity, the Cu—Mn composite oxide preferably has a specific surface area of 150 m 2 / g or more, more preferably 200 to 300 m 2 / g, as measured by the BET method. The average particle size of the Cu—Mn composite oxide can be measured by the BET method.
 上記Cu-Mn複合酸化物は、例えば、Cu含有量がCuO換算で10~40質量%(より好ましくは15~30質量%)であり且つMn含有量がMnO換算で60~90質量%(より好ましくは65~80質量%)である。Cu-Mn複合酸化物はCu及びMn以外の成分を含んでいてもよい。かかる成分の含有量(Cu-Mn複合酸化物の質量基準)は、例えば、20質量%以下であればよい。Cu-Mn複合酸化物の例としてホプカライトが挙げられる。ホプカライトは、Cu及びMn以外の成分として、1~4質量%程度のカリウムを含んでいる。 The Cu-Mn composite oxide has, for example, a Cu content of 10 to 40% by mass (more preferably 15 to 30% by mass) in terms of CuO and a Mn content of 60 to 90% by mass in terms of MnO 2. More preferably, it is 65 to 80% by mass). The Cu—Mn composite oxide may contain components other than Cu and Mn. The content of such a component (based on the mass of the Cu—Mn composite oxide) may be, for example, 20% by mass or less. Hopcalite is an example of a Cu—Mn composite oxide. Hopcalite contains about 1 to 4% by mass of potassium as a component other than Cu and Mn.
(ゼオライト)
 ゼオライトは、細孔を有する物質であり、臭いの原因物質を吸着する作用を有する。上記ゼオライトのシリカ/アルミナモル比は100以上であり、100~1000であってもよい。シリカ/アルミナモル比が100以上のゼオライトとCu-Mn複合酸化物とを併用することで、本発明の上記効果が奏される。上記ゼオライトは、例えば、粉状である。上記ゼオライトは、脱臭性能の観点から、BET法により測定される比表面積が300m/g以上であることが好ましく、350~800m/gであることがより好ましい。上記ゼオライトは、窒素吸脱着等温線測定から求められるMP法による細孔分布において、細孔径が0.8nm以上1.2nm以下の範囲に極大値を有することが好ましい。なお、上記ゼオライトは、細孔径が0.4nm以上0.7nm以下の範囲にも極大値を有していてもよい。ゼオライトの平均粒径は、BET法によって測定することができる。
(Zeolite)
Zeolites are substances with pores and have the effect of adsorbing odor-causing substances. The silica / alumina molar ratio of the zeolite is 100 or more, and may be 100 to 1000. By using a zeolite having a silica / alumina molar ratio of 100 or more in combination with a Cu—Mn composite oxide, the above-mentioned effect of the present invention can be obtained. The zeolite is, for example, powdery. From the viewpoint of deodorizing performance, the specific surface area of the zeolite measured by the BET method is preferably 300 m 2 / g or more, and more preferably 350 to 800 m 2 / g. The zeolite preferably has a maximum value in the range of the pore diameter of 0.8 nm or more and 1.2 nm or less in the pore distribution by the MP method obtained from the nitrogen adsorption / desorption isotherm measurement. The zeolite may have a maximum value even in the range where the pore diameter is 0.4 nm or more and 0.7 nm or less. The average particle size of zeolite can be measured by the BET method.
 上記ゼオライトは、アンモニア昇温脱離法により算出される全酸量が0.3mmol/g以下であることが好ましく、0.01~0.2mmol/gであることがより好ましい。この全酸量は、ゼオライトの酸量を反映する値である。一般に、シリカ/アルミナモル比が大きいゼオライトは、高い酸強度を有し且つ上記の方法によって測定される全酸量が小さい値であることが知られている。本実施形態において、シリカ/アルミナモル比が100以上であり、上記の方法によって測定される全酸量が0.3mmol/g以下のゼオライトとCu-Mn複合酸化物とを併用し且つ両者の質量比(A/B)が上記範囲内であることで、より一層高度に本発明の上記効果が奏される。 The total acid content of the zeolite calculated by the ammonia temperature desorption method is preferably 0.3 mmol / g or less, and more preferably 0.01 to 0.2 mmol / g. This total acid amount is a value that reflects the acid amount of zeolite. In general, it is known that a zeolite having a large silica / alumina molar ratio has a high acid strength and a small total acid amount measured by the above method. In the present embodiment, a zeolite having a silica / alumina molar ratio of 100 or more and a total acid amount of 0.3 mmol / g or less measured by the above method is used in combination with a Cu—Mn composite oxide, and the mass ratio of both is used. When (A / B) is within the above range, the above-mentioned effect of the present invention can be achieved even more highly.
 ゼオライトのタイプとして、MFI型、Y型、A型、L型等が挙げられる。これらのうち、脱臭性能の観点から、MFI型ゼオライトを使用することが好ましい。ゼオライトが有するカチオン種は、例えば、ナトリウムイオン、水素イオン、カリウムイオン、カルシウムイオン等が挙げられる。これらのうち、コストの観点から、カチオン種がナトリウムイオンであるゼオライトを使用することが好ましい。 Examples of the zeolite type include MFI type, Y type, A type, L type and the like. Of these, it is preferable to use MFI-type zeolite from the viewpoint of deodorizing performance. Examples of the cation species contained in zeolite include sodium ion, hydrogen ion, potassium ion, calcium ion and the like. Of these, from the viewpoint of cost, it is preferable to use zeolite whose cation species is sodium ion.
(その他の成分)
 脱臭触媒は、上記以外の成分として、例えば、バインダーを含んでもよい。脱臭触媒がバインダーを含むことで、スラリー法によって基材の表面に触媒層を形成することができる。バインダーは、無機バインダーであっても有機バインダーであってもよい。無機バインダーとして、シリカゾル、アルミナゾルが挙げられる。有機バインダーとして、でんぷん、カゼイン、ゼラチン等の天然樹脂;セルロース、水溶性ポリアミド、四級アンモニウム塩、アクリル樹脂、ウレタン樹脂、酢酸ビニル樹脂、SBR樹脂、エポキシ樹脂、ポリビニルアルコール樹脂等の合成樹脂が挙げられる。これらのうち、無機バインダー(例えば、シリカ粒子)を使用することで、バインダーによる脱臭性能の阻害効果が小さいという効果が奏される。
(Other ingredients)
The deodorizing catalyst may contain, for example, a binder as a component other than the above. Since the deodorizing catalyst contains a binder, a catalyst layer can be formed on the surface of the base material by the slurry method. The binder may be an inorganic binder or an organic binder. Examples of the inorganic binder include silica sol and alumina sol. Examples of the organic binder include natural resins such as starch, casein and gelatin; synthetic resins such as cellulose, water-soluble polyamide, quaternary ammonium salt, acrylic resin, urethane resin, vinyl acetate resin, SBR resin, epoxy resin and polyvinyl alcohol resin. Be done. Among these, by using an inorganic binder (for example, silica particles), the effect that the binder has a small inhibitory effect on the deodorizing performance is exhibited.
 脱臭触媒における無機バインダーの含有量は、脱臭触媒の全質量を基準として、例えば、5~30質量%であり、10~20質量%であってもよい。脱臭触媒における有機バインダーの含有量は、脱臭触媒の全質量を基準として、例えば、2.5~20質量%であり、5~15質量%であってもよい。脱臭触媒が適度な量のバインダーを含んでいることで、基材表面に対する優れた密着性と高い触媒活性を両立し得る。 The content of the inorganic binder in the deodorizing catalyst is, for example, 5 to 30% by mass, and may be 10 to 20% by mass, based on the total mass of the deodorizing catalyst. The content of the organic binder in the deodorizing catalyst is, for example, 2.5 to 20% by mass, and may be 5 to 15% by mass, based on the total mass of the deodorizing catalyst. When the deodorizing catalyst contains an appropriate amount of binder, both excellent adhesion to the surface of the substrate and high catalytic activity can be achieved.
<冷蔵庫用脱臭材>
 本実施形態に係る冷蔵庫用脱臭材は、上記冷蔵庫用脱臭触媒と、冷蔵庫用脱臭触媒が塗布された表面を有する基材とを備える。例えば、ウォッシュコート等の塗工技術によって基材の表面に冷蔵庫用脱臭触媒を層状に形成することによって冷蔵庫用脱臭材を製造することができる。基材の例として、ハニカム基材、ペレット状の基材、織布や不織布状の基材、板状やブロック状のバルク部材が挙げられる。基材の材質としては、特に限定されるものではないが、例えば、金属、セラミックス、ガラス、プラスチック、セルロース系材料、及びこれらを組合せた材料(複合材料、積層材料等)が挙げられる。金属としては、例えば、ステンレス、アルミ、銅、亜鉛めっき鋼板及び鉄が挙げられる。セラミックスとしては、例えば、コージライト、アルミナ、チタン酸バリウム、窒化ホウ素及び窒化珪素が挙げられる。ガラスとしては、例えば、通常のソーダライムガラス、ホウ珪酸ガラス、無アルカリガラス、石英ガラス及びアルミノシリケートガラスが挙げられる。プラスチックとしては、例えば、ポリメチルメタクリレート等のアクリル系樹脂、ポリフェニレンカーボネート等の芳香族ポリカーボネート系樹脂、及び、ポリエチレンテレフタレート(PET)等の芳香族ポリエステル系樹脂が挙げられる。セルロース系材料としては、例えば綿、麻、レーヨン、及びキュプラが挙げられる。冷蔵庫用脱臭材は、例えば、脱臭フィルターとして使用することができ、冷蔵庫内であって、冷えた空気が流れる箇所に搭載される。
<Deodorant for refrigerator>
The refrigerator deodorizing material according to the present embodiment includes the refrigerator deodorizing catalyst and a base material having a surface coated with the refrigerator deodorizing catalyst. For example, a refrigerator deodorizing material can be manufactured by forming a refrigerator deodorizing catalyst in a layer on the surface of a base material by a coating technique such as a wash coat. Examples of the base material include a honeycomb base material, a pellet-shaped base material, a woven fabric or a non-woven fabric-like base material, and a plate-shaped or block-shaped bulk member. The material of the base material is not particularly limited, and examples thereof include metals, ceramics, glass, plastics, cellulosic materials, and materials combining these (composite materials, laminated materials, etc.). Examples of the metal include stainless steel, aluminum, copper, galvanized steel sheet and iron. Examples of the ceramics include cordylite, alumina, barium titanate, boron nitride and silicon nitride. Examples of the glass include ordinary soda lime glass, borosilicate glass, non-alkali glass, quartz glass and aluminosilicate glass. Examples of the plastic include an acrylic resin such as polymethylmethacrylate, an aromatic polycarbonate resin such as polyphenylene carbonate, and an aromatic polyester resin such as polyethylene terephthalate (PET). Cellulosic materials include, for example, cotton, linen, rayon, and cupra. The deodorizing material for a refrigerator can be used as a deodorizing filter, for example, and is mounted in a refrigerator where cold air flows.
 以下、本開示の実施例及び比較例について説明する。なお、本発明は以下の実施例に限定されるものではない。 Hereinafter, examples and comparative examples of the present disclosure will be described. The present invention is not limited to the following examples.
<スラリーの調製>
(実施例1)
 以下の成分を使用して脱臭触媒層を形成するためのスラリーを調製した。
・N-840P(Cu-Mn複合酸化物、比表面積:240m/g、平均粒子径=6.6μm、固形分濃度88.0%、クラリアント触媒株式会社製):33.0g
・NU-1080(MFI型ゼオライト、シリカ/アルミナモル比=400、カチオン種=ナトリウムイオン、比表面積:370m/g、平均粒子径=7.3μm、固形分濃度98.5%、UOP製):67.0g
・スノーテックスC(シリカバインダー、固形分濃度20%、日産化学株式会社製):100.0g
・イオン交換水:67.0g
 プロペラ撹拌機を用いてイオン交換水を撹拌しながら、イオン交換水に上記の各成分を添加した。添加後30分間攪拌することによってスラリーを得た。
<Preparation of slurry>
(Example 1)
A slurry for forming a deodorizing catalyst layer was prepared using the following components.
N-840P (Cu-Mn composite oxide, specific surface area: 240 m 2 / g, average particle size = 6.6 μm, solid content concentration 88.0%, manufactured by Clariant Catalyst Co., Ltd.): 33.0 g
NU-1080 (MFI type zeolite, silica / alumina molar ratio = 400, cation species = sodium ion, specific surface area: 370 m 2 / g, average particle size = 7.3 μm, solid content concentration 98.5%, manufactured by UOP): 67.0g
-Snowtex C (silica binder, solid content concentration 20%, manufactured by Nissan Chemical Industries, Ltd.): 100.0 g
-Ion-exchanged water: 67.0 g
While stirring the ion-exchanged water using a propeller stirrer, each of the above components was added to the ion-exchanged water. A slurry was obtained by stirring for 30 minutes after the addition.
(実施例2)
 ゼオライトとして、NU-1080の代わりに以下のNU-2080を使用するとともに、各成分の配合量を表1に示す量としたことの他は、実施例1と同様にしてスラリーを得た。
・NU-2080(MFI型ゼオライト、シリカ/アルミナモル比=400、カチオン種=水素イオン、比表面積:390m/g、平均粒子径=3.2μm、固形分濃度96.2%、UOP製)
(Example 2)
As the zeolite, the following NU-2080 was used instead of NU-1080, and a slurry was obtained in the same manner as in Example 1 except that the blending amount of each component was set to the amount shown in Table 1.
NU-2080 (MFI type zeolite, silica / alumina molar ratio = 400, cation species = hydrogen ion, specific surface area: 390 m 2 / g, average particle size = 3.2 μm, solid content concentration 96.2%, manufactured by UOP)
(実施例3,4)
 各成分の配合量を表1に示す量としたことの他は、実施例1と同様にして実施例3,4に係るスラリーをそれぞれ得た。
(Examples 3 and 4)
Slurries according to Examples 3 and 4 were obtained in the same manner as in Example 1 except that the blending amount of each component was set to the amount shown in Table 1.
(比較例1)
 ゼオライトとして、NU-1080の代わりに以下のNFK-5D-25HXを使用するとともに、各成分の配合量を表2に示す量としたことの他は、実施例1と同様にしてスラリーを得た。
・NFK-5D-25HX(MFI型ゼオライト、シリカ/アルミナモル比=28、カチオン種=水素イオン、比表面積:370m/g、平均粒子径=4.4μm、固形分濃度93.4%、Nankai University Catalyst製)
(Comparative Example 1)
As the zeolite, the following NFK-5D-25HX was used instead of NU-1080, and the slurry was obtained in the same manner as in Example 1 except that the blending amount of each component was set to the amount shown in Table 2. ..
NFK-5D-25HX (MFI type zeolite, silica / alumina molar ratio = 28, cation species = hydrogen ion, specific surface area: 370 m 2 / g, average particle size = 4.4 μm, solid content concentration 93.4%, Nankai University Made by Catalyst)
(比較例2)
 ゼオライトとして、NU-1080の代わりに以下のミズカシーブスEX-122(以下、「EX-122」と表記する。)を使用するとともに、各成分の配合量を表2に示す量としたことの他は、実施例1と同様にしてスラリーを得た。
・EX-122(MFI型ゼオライト、シリカ/アルミナモル比=29、カチオン種=ナトリウムイオン、比表面積:320m/g、平均粒子径=3.7μm、固形分濃度95.2%、水澤化学工業株式会社製)
(Comparative Example 2)
As the zeolite, the following Mizuka Sieves EX-122 (hereinafter referred to as "EX-122") was used instead of NU-1080, and the blending amount of each component was set to the amount shown in Table 2. , A slurry was obtained in the same manner as in Example 1.
-EX-122 (MFI type zeolite, silica / alumina molar ratio = 29, cation species = sodium ion, specific surface area: 320 m 2 / g, average particle size = 3.7 μm, solid content concentration 95.2%, Mizusawa Industrial Chemicals Co., Ltd. Made by the company)
(比較例3)
 ゼオライトとして、NU-1080の代わりに以下のNFK-7-2SC1.0-HWOSを使用するとともに、各成分の配合量を表2に示す量としたことの他は、実施例1と同様にしてスラリーを得た。
・NFK-7-2SC1.0-HWOS(Y型ゼオライト、シリカ/アルミナモル比=6、カチオン種=水素イオン、比表面積:650m/g、平均粒子径=3.6μm、固形分濃度86.3%、Nankai University Catalyst製)
(Comparative Example 3)
As the zeolite, the following NFK-7-2SC1.0-HWOS was used instead of NU-1080, and the blending amount of each component was set to the amount shown in Table 2, in the same manner as in Example 1. A slurry was obtained.
NFK-7-2SC1.0-HWOS (Y-type zeolite, silica / alumina molar ratio = 6, cation species = hydrogen ion, specific surface area: 650 m 2 / g, average particle size = 3.6 μm, solid content concentration 86.3 %, Made by Nankai University Catalyst)
(比較例4)
 ゼオライトとして、NU-1080の代わりに以下のミズカシーブスY-420(以下、「Y-420」と表記する。)を使用するとともに、各成分の配合量を表2に示す量としたことの他は、実施例1と同様にしてスラリーを得た。
・Y-420(Y型ゼオライト、シリカ/アルミナモル比=4、カチオン種=水素イオン、比表面積:430m/g、平均粒子径=14.2μm、固形分濃度98.6%、水澤化学工業株式会社製)
(Comparative Example 4)
As the zeolite, the following Mizuka Sieves Y-420 (hereinafter referred to as "Y-420") was used instead of NU-1080, and the blending amount of each component was set to the amount shown in Table 2. , A slurry was obtained in the same manner as in Example 1.
-Y-420 (Y-type zeolite, silica / alumina molar ratio = 4, cation species = hydrogen ion, specific surface area: 430 m 2 / g, average particle size = 14.2 μm, solid content concentration 98.6%, Mizusawa Industrial Chemicals Co., Ltd. Made by the company)
(比較例5~8)
 各成分の配合量を表3に示す量としたことの他は、実施例1と同様にして比較例5~8に係るスラリーをそれぞれ得た。
(Comparative Examples 5 to 8)
Slurries according to Comparative Examples 5 to 8 were obtained in the same manner as in Example 1 except that the blending amount of each component was set to the amount shown in Table 3.
<ゼオライトの細孔分布>
 実施例及び比較例で使用したゼオライトの細孔分布を、窒素吸脱着等温線測定から求められるMP法によって測定した。図1に結果を示す。実施例で使用したゼオライト(NU-1080及びNU-2080)は径が1nm程度の細孔を有することが分かった。
<Zeolite pore distribution>
The pore distribution of the zeolite used in the examples and comparative examples was measured by the MP method obtained from the nitrogen adsorption / desorption isotherm measurement. The results are shown in FIG. It was found that the zeolites (NU-1080 and NU-2080) used in the examples had pores having a diameter of about 1 nm.
<ゼオライトの全酸量>
 実施例及び比較例で使用したゼオライトの酸性質を、アンモニア昇温脱離法によって調べた。図2に吸着アンモニアの昇温脱離曲線を示す。実施例で使用したゼオライト(NU-1080及びNU-2080)は全体的にアンモニアの吸着量が少なく、酸量が少ないことが分かった。昇温脱離曲線から算出される全酸量は以下のとおりであった。
・NU-1080:0.184mmol/g
・NU-2080:0.083mmol/g
・EX122:1.147mmol/g
・Y-420:2.360mmol/g
<Total acid content of zeolite>
The acid properties of the zeolites used in the examples and comparative examples were investigated by the ammonia heated desorption method. FIG. 2 shows a temperature-increasing desorption curve of adsorbed ammonia. It was found that the zeolites (NU-1080 and NU-2080) used in the examples had a small amount of ammonia adsorbed and a small amount of acid as a whole. The total amount of acid calculated from the temperature desorption curve was as follows.
NU-1080: 0.184 mmol / g
NU-2080: 0.083 mmol / g
EX122: 1.147 mmol / g
Y-420: 2.360 mmol / g
<ゼオライトのXRD分析>
 図3に実施例及び比較例で使用したゼオライトのXRD分析結果を示す。
<XRD analysis of zeolite>
FIG. 3 shows the XRD analysis results of the zeolites used in Examples and Comparative Examples.
<脱臭材の作製>
 脱臭材用の基材として、セラミックハニカム(セル数200/inch、セル開口面直径21mm、通気方向長さ7.0mm、西部技研製)を準備した。このハニカム基材の表面にウォッシュコートによって触媒層を形成した。すなわち、実施例及び比較例に係る各スラリーに基材を浸漬した後、余剰のスラリーをエアブローにより吹き飛ばした。その後、150℃に設定した乾燥機に1時間入れて乾燥させる脱臭フィルターを得た。なお、乾燥後における触媒層の質量がハニカム基材1L当たり150gとなるようにスラリーの塗布量を調整した。
<Making deodorant material>
As a base material for the deodorizing material, a ceramic honeycomb (cell number 200 / inch 2 , cell opening surface diameter 21 mm, ventilation direction length 7.0 mm, manufactured by Seibu Giken Co., Ltd.) was prepared. A catalyst layer was formed on the surface of this honeycomb base material by a wash coat. That is, after the base material was immersed in each of the slurries according to the examples and the comparative examples, the excess slurry was blown off by an air blow. Then, a deodorizing filter was obtained by putting it in a dryer set at 150 ° C. for 1 hour to dry it. The amount of the slurry applied was adjusted so that the mass of the catalyst layer after drying was 150 g per 1 L of the honeycomb base material.
<メチルメルカプタン(MMP)流通試験>
(1)MMP除去率
 実施例及び比較例に係る各脱臭材(セル開口面直径:21mm)をガラス管に設置した。温度25℃、湿度80%RHの空気を、9.1L/minの流量で脱臭材に15分間流通させた。メチルメルカプタン濃度が100ppmになるように、流通空気にメチルメルカプタンを導入した。メチルメルカプタンの導入開始から10分後に、脱臭材を通過後の空気のメチルメルカプタン濃度を測定した。この値を次式に代入して除去率を算出した。
 MMP除去率(%)={1-(MMP濃度[ppm]/100[ppm])}×100
(2)ジメチルジサルファイド(DMDS)濃度
 メチルメルカプタンの導入開始から10分後に、脱臭材を通過後の空気のジメチルジサルファイド濃度を測定した。
<Methyl mercaptan (MMP) distribution test>
(1) MMP removal rate Each deodorant (cell opening surface diameter: 21 mm) according to Examples and Comparative Examples was installed in a glass tube. Air at a temperature of 25 ° C. and a humidity of 80% RH was circulated through the deodorizing material at a flow rate of 9.1 L / min for 15 minutes. Methyl mercaptan was introduced into the circulating air so that the concentration of methyl mercaptan was 100 ppm. Ten minutes after the start of introduction of methyl mercaptan, the methyl mercaptan concentration in the air after passing through the deodorizing material was measured. This value was substituted into the following equation to calculate the removal rate.
MMP removal rate (%) = {1- (MMP concentration [ppm] / 100 [ppm])} x 100
(2) Dimethyl disulfide (DMDS) concentration 10 minutes after the start of introduction of methyl mercaptan, the dimethyl disulfide concentration of the air after passing through the deodorizing material was measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本開示によれば、メチルメルカプタンに対する優れた除去性能を有するとともに、メチルメルカプタンの分解副生成物であるジメチルジサルファイドの放出を十分に抑制できる冷蔵庫用脱臭触媒及びこれを用いた冷蔵庫用脱臭材が提供される。 According to the present disclosure, a deodorizing catalyst for a refrigerator and a deodorizing material for a refrigerator using the deodorizing catalyst for a refrigerator, which has excellent removal performance for methyl mercaptan and can sufficiently suppress the release of dimethyldisulfide which is a decomposition by-product of methyl mercaptan, are described. Provided.

Claims (7)

  1.  Cu-Mn複合酸化物と、
     シリカ/アルミナモル比が100以上のゼオライトと、
    を含み、
     前記Cu-Mn複合酸化物の質量Aと前記ゼオライトとの質量Bの比(A/B)が0.1以上1.25以下である、冷蔵庫用脱臭触媒。
    Cu-Mn composite oxide and
    Zeolites with a silica / alumina molar ratio of 100 or more,
    Including
    A deodorizing catalyst for a refrigerator in which the ratio (A / B) of the mass A of the Cu—Mn composite oxide to the mass B of the zeolite is 0.1 or more and 1.25 or less.
  2.  前記ゼオライトは、BET法により測定される比表面積が300m/g以上である、請求項1に記載の冷蔵庫用脱臭触媒。 The deodorizing catalyst for a refrigerator according to claim 1, wherein the zeolite has a specific surface area of 300 m 2 / g or more as measured by the BET method.
  3.  前記ゼオライトは、窒素吸脱着等温線測定から求められるMP法による細孔分布において、細孔径が0.8nm以上1.2nm以下の範囲に極大値を有する、請求項1又は2に記載の冷蔵庫用脱臭触媒。 The refrigerator according to claim 1 or 2, wherein the zeolite has a maximum value in the range of 0.8 nm or more and 1.2 nm or less in the pore distribution by the MP method obtained from the nitrogen adsorption / desorption isotherm measurement. Deodorizing catalyst.
  4.  前記ゼオライトは、アンモニア昇温脱離法により算出される全酸量が0.3mmol/g以下である、請求項1~3のいずれか一項に記載の冷蔵庫用脱臭触媒。 The deodorizing catalyst for a refrigerator according to any one of claims 1 to 3, wherein the zeolite has a total acid amount of 0.3 mmol / g or less calculated by the ammonia temperature-heating deodorization method.
  5.  前記Cu-Mn複合酸化物は、BET法により測定される比表面積が150m/g以上である、請求項1~4のいずれか一項に記載の冷蔵庫用脱臭触媒。 The deodorizing catalyst for a refrigerator according to any one of claims 1 to 4, wherein the Cu—Mn composite oxide has a specific surface area of 150 m 2 / g or more as measured by the BET method.
  6.  前記Cu-Mn複合酸化物は、Cu含有量がCuO換算で10~40質量%であり且つMn含有量がMnO換算で60~90質量%である、請求項1~5のいずれか一項に記載の冷蔵庫用脱臭触媒。 The Cu-Mn composite oxide has a Cu content of 10 to 40% by mass in terms of CuO and a Mn content of 60 to 90% by mass in terms of MnO 2, any one of claims 1 to 5. Deodorizing catalyst for refrigerators described in.
  7.  請求項1~6のいずれか一項に記載の冷蔵庫用脱臭触媒と、
     前記冷蔵庫用脱臭触媒が塗布された表面を有する基材と、
    を備える、冷蔵庫用脱臭材。
    The deodorizing catalyst for a refrigerator according to any one of claims 1 to 6.
    A base material having a surface coated with the deodorizing catalyst for a refrigerator,
    Deodorant for refrigerators.
PCT/JP2020/019454 2020-05-15 2020-05-15 Deodorizing catalyst for refrigerator and deodorizing material for refrigerator using this WO2021229799A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022522474A JP7169515B2 (en) 2020-05-15 2020-05-15 Deodorizing catalyst for refrigerator and deodorizing material for refrigerator using the same
CN202080100786.8A CN115551634A (en) 2020-05-15 2020-05-15 Deodorizing catalyst for refrigerator and deodorizing material for refrigerator using the same
PCT/JP2020/019454 WO2021229799A1 (en) 2020-05-15 2020-05-15 Deodorizing catalyst for refrigerator and deodorizing material for refrigerator using this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/019454 WO2021229799A1 (en) 2020-05-15 2020-05-15 Deodorizing catalyst for refrigerator and deodorizing material for refrigerator using this

Publications (1)

Publication Number Publication Date
WO2021229799A1 true WO2021229799A1 (en) 2021-11-18

Family

ID=78525596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019454 WO2021229799A1 (en) 2020-05-15 2020-05-15 Deodorizing catalyst for refrigerator and deodorizing material for refrigerator using this

Country Status (3)

Country Link
JP (1) JP7169515B2 (en)
CN (1) CN115551634A (en)
WO (1) WO2021229799A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116253364A (en) * 2023-01-30 2023-06-13 昆明理工大学 Application of birnessite type manganese dioxide in low-temperature catalytic decomposition of methyl mercaptan

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08243383A (en) * 1995-03-10 1996-09-24 Nikki Universal Co Ltd Hydrphobic deodorant and method for regenerating same
JPH08266866A (en) * 1995-03-29 1996-10-15 Nichias Corp Deodorizing filter
JPH0956799A (en) * 1995-08-24 1997-03-04 Kuraray Chem Corp Self-regenerative adsorbent
JPH09215736A (en) * 1996-02-14 1997-08-19 Kobe Steel Ltd Deodorant and deodorizing member
JPH09299461A (en) * 1996-05-16 1997-11-25 Matsushita Electric Ind Co Ltd Deodorant
JPH10137591A (en) * 1996-11-15 1998-05-26 Nippon Chem Ind Co Ltd Oxidizing decomposition and deodorization catalyst
JPH10155882A (en) * 1996-12-04 1998-06-16 Matsushita Electric Ind Co Ltd Deodorant
JP2003250872A (en) * 2002-03-01 2003-09-09 Matsushita Refrig Co Ltd Deodorizing device and deodorizer using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU643908B1 (en) * 1990-12-17 1993-11-25 Uop Modified zeolite omega and methods for preparing and for using same
JPH07155611A (en) * 1993-12-09 1995-06-20 Toyo C C I Kk Catalyst and method for removing malodorous substance
JP3722866B2 (en) * 1995-03-27 2005-11-30 日揮ユニバーサル株式会社 Hydrophobic deodorizing material and method for regenerating the same
JP2004008515A (en) * 2002-06-07 2004-01-15 Kao Corp Deodorant
KR100727549B1 (en) * 2005-02-02 2007-06-14 임순옥 Deodorant
CN104998289B (en) * 2015-08-06 2017-11-17 苏州工业园区安泽汶环保技术有限公司 Deodorant for refregerator material and preparation method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08243383A (en) * 1995-03-10 1996-09-24 Nikki Universal Co Ltd Hydrphobic deodorant and method for regenerating same
JPH08266866A (en) * 1995-03-29 1996-10-15 Nichias Corp Deodorizing filter
JPH0956799A (en) * 1995-08-24 1997-03-04 Kuraray Chem Corp Self-regenerative adsorbent
JPH09215736A (en) * 1996-02-14 1997-08-19 Kobe Steel Ltd Deodorant and deodorizing member
JPH09299461A (en) * 1996-05-16 1997-11-25 Matsushita Electric Ind Co Ltd Deodorant
JPH10137591A (en) * 1996-11-15 1998-05-26 Nippon Chem Ind Co Ltd Oxidizing decomposition and deodorization catalyst
JPH10155882A (en) * 1996-12-04 1998-06-16 Matsushita Electric Ind Co Ltd Deodorant
JP2003250872A (en) * 2002-03-01 2003-09-09 Matsushita Refrig Co Ltd Deodorizing device and deodorizer using the same

Also Published As

Publication number Publication date
JPWO2021229799A1 (en) 2021-11-18
JP7169515B2 (en) 2022-11-11
CN115551634A (en) 2022-12-30

Similar Documents

Publication Publication Date Title
US5212131A (en) Low pressure drop filter
JP2022045928A (en) Surface-modified carbon and sorbents for improved efficiency in removal of gaseous contaminants
KR101454099B1 (en) Zeolite containing wash coats for adsorber heat exchangers and temperature controlled adsorbers
WO2007074816A1 (en) Purifier for aldehyde-containing air and process for production of the same
US5477014A (en) Muffler device for internal combustion engines
US11612857B2 (en) Honeycomb matrix comprising macroporous desiccant, process and use thereof
JP2006240956A (en) Amorphous aluminum silicate, adsorbent having the same, dehumidifying rotor and air conditioner
JP6761999B2 (en) A water vapor adsorbent in which a hygroscopic salt is supported on an amorphous aluminum silicate granule.
WO2021229799A1 (en) Deodorizing catalyst for refrigerator and deodorizing material for refrigerator using this
JP3227373B2 (en) Air purification paint using photocatalyst
JP2011255331A (en) High performance water vapor adsorbent having alminosilicate compound material as base material
JP2014108370A (en) Nitrogen oxide remover
JP2008093504A (en) Adsorption decomposition element, its manufacturing method, and air-conditioner using it
WO2021130927A1 (en) Deodorizing catalyst, slurry for forming deodorizing catalyst, deodorizing catalyst structure, method for producing deodorizing catalyst structure and deodorization method
JP3316413B2 (en) Method for manufacturing element for deodorization
JP2002079045A (en) Dehumidifying material and method for manufacturing the same
JP6373173B2 (en) Modified Y-type zeolite dehumidifier
WO2000048734A1 (en) Deodorization catalyst for air-conditioner
JP2008238077A (en) Dehumidification element, manufacturing method of dehumidification element and dehumidifier
JP2022139825A (en) Deodorization catalyst composition and deodorization catalyst
JP2003305330A (en) Porous moisture absorbent
JP2007216110A (en) Adsorbing element and humidity conditioning air conditioner
JP2023142932A (en) Deodorizing fiber structure, air filter medium, and air filter
JPH08299720A (en) Deodorizing filter
JPH07328388A (en) Deodorizing catalyst device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022522474

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935351

Country of ref document: EP

Kind code of ref document: A1