WO2021227763A1 - Hplc analysis method for n- (phenylsulfonyl) benzamide compound - Google Patents

Hplc analysis method for n- (phenylsulfonyl) benzamide compound Download PDF

Info

Publication number
WO2021227763A1
WO2021227763A1 PCT/CN2021/087406 CN2021087406W WO2021227763A1 WO 2021227763 A1 WO2021227763 A1 WO 2021227763A1 CN 2021087406 W CN2021087406 W CN 2021087406W WO 2021227763 A1 WO2021227763 A1 WO 2021227763A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
solvent
mobile phase
volume
halogenated hydrocarbon
Prior art date
Application number
PCT/CN2021/087406
Other languages
French (fr)
Inventor
Xianxin ZHANG
Youfeng NI
Zhipeng SUN
Mingyuan CHEN
Xiaoni ZHANG
Original Assignee
Ascentage Pharma (Suzhou) Co., Ltd.
Ascentage Pharma Group Corp Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ascentage Pharma (Suzhou) Co., Ltd., Ascentage Pharma Group Corp Limited filed Critical Ascentage Pharma (Suzhou) Co., Ltd.
Publication of WO2021227763A1 publication Critical patent/WO2021227763A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4747Apoptosis related proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8831Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving peptides or proteins

Definitions

  • the present disclosure belongs to the technical field of pharmaceutical analysis, and specifically relates to an HPLC analysis method for N- (phenylsulfonyl) benzamide compound.
  • Apoptosis is a process of programmed cell death and an essential biological process for tissue homeostasis. In mammals, it has been proved to regulate early embryonic development. In the later stages of life, cell death is a default mechanism by which potentially dangerous cells, for example, cells with cancer defects, are removed.
  • Several apoptosis pathways are known.
  • One of the most important apoptotic pathways involves the Bcl-2 protein family, which is a key regulator of the mitochondrial (also called "intrinsic" ) pathway of apoptosis. See Danial and Korsmeyer, Cell 776: 205-219 (2004) .
  • the structural homology domains BH1, BH2, BH3 and BH4 are the characteristics of Bcl-2 family proteins.
  • the Bcl-2 protein family can be further divided into three sub-families, depending on how many homologous domains each protein contains and its biological activity, that is, whether it has pro-apoptotic or anti-apoptotic functions.
  • the first subgroup of Bcl-2 proteins contains proteins with all four homology domains, namely BH1, BH2, BH3, and BH4. Their general function is to resist apoptosis, that is, to protect cells from starting the cell death process. Proteins for example, Bcl-2, Bcl-w, Bcl-xL, Mcl-1 and Bfl-1/Al are members of this first subgroup.
  • the proteins belonging to the second subgroup of Bcl-2 proteins contain three homologous domains BH1, BH2 and BH3, and have a pro-apoptotic effect.
  • the two main representative proteins of the second subgroup are Bax and Bak.
  • the third subgroup of Bcl-2 proteins consists of proteins containing only the BH3 domain, and members of this subgroup are often referred, and used as "BH3 only proteins" . Their biological effect on cells is to promote cell apoptosis. Bim, Bid, Bad, Bik, Noxa, Hrk, Bmf and Puma are examples of the third protein subfamily.
  • Disregulated apoptotic pathways involve the pathology of many important diseases, for example, neurodegenerative disorders (up-regulated apoptosis) , for example, Alzheimer’s disease; and proliferative diseases (down-regulated apoptosis) , for example, cancers, autoimmunity diseases and pro-thrombotic disorders.
  • neurodegenerative disorders up-regulated apoptosis
  • proliferative diseases down-regulated apoptosis
  • cancers for example, autoimmunity diseases and pro-thrombotic disorders.
  • Down-regulated apoptosis (more specifically, the Bcl-2 protein family) may be involved in the onset of cancerous malignancies.
  • the anti-apoptotic proteins Bcl-2 and Bcl-xL are overexpressed in many cancer cell types. See Zhang, Nature Reviews Drug Discovery. 1: 101 (2002) ; Kirkin et al., Biochimica et Biophysica Acta 1644: 229-249 (2004) ; and Amundson et al., Cancer Research. 60: 6101-6110 (2000) .
  • the effect of this disorder is to change the survival of cells, otherwise the cells will undergo apoptosis under normal conditions.
  • the repetition of these defects associated with unregulated proliferation is considered the starting point of cancer evolution.
  • WO2018/027097A1 discloses N- (phenylsulfonyl) benzamide and related compounds for the treatment of diseases, disorders or conditions (for example, cancers) that are responsive to Bcl-2 protein inhibition, and specifically discloses representative compound: N- ( (4- ( ( (1, 4-dioxan-2-yl) methyl) amino) -3-nitrophenyl) sulfonyl) -2- ( (1H-pyrrolo [2, 3-b] pyridin-5-yl) oxy) -4- (4- ( (6- (4-chlorophenyl) spiro [3.5] non-6-en-7-yl) methyl) piperazin-1-yl) benzamide (hereinafter referred as compound of formula 1) , which structural formula is as follows:
  • the compound contains a chiral center at the aniline and a pair of effective enantiomers.
  • Drugs generally exert their pharmacological activity through recognition and matching with the target. In many cases, there are significant differences in the pharmacological activity, metabolic process, metabolic rate, and toxicity of a pair of enantiomers of chiral compounds in organisms. In addition, there are differences in absorption, distribution and excretion, and there may be mutual conversion between enantiomers. Considering the known efficacy, there may be four different situations:
  • the technical problems to be solved by the present disclosure are to overcome the lack of separation and detection technology for compound represented by formula I in the prior art.
  • the present disclosure provides an HPLC analysis method for N- (phenylsulfonyl) benzamide compound, which can separate isomers and precisely determine the purity of the isomers.
  • the present disclosure provides an HPLC analysis method for substance X; the substance X is a compound represented by formula I-A and/or I-B;
  • the HPLC analysis method comprises the following steps: in a chiral chromatographic column, eluting the substance X with a mobile phase;
  • the mobile phase comprises an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent and an ether solvent,
  • the alkane solvent is 600-800 parts
  • the alcohol solvent is 50-350 parts
  • the halogenated hydrocarbon solvent is 30-100 parts
  • the ether solvent is 50-200 parts.
  • the alkane solvent may be a conventional alkane solvent in the art, and may be a C 5 -C 10 alkane solvent, for example, n-hexane.
  • the alcohol solvent may be a conventional alcohol solvent in the art, and may be a C 1 -C 3 alcohol solvent, for example, ethanol and/or isopropanol, preferably isopropanol.
  • the halogenated hydrocarbon solvent may be a conventional halogenated hydrocarbon solvent in the art, for example, dichloromethane.
  • the ether solvent may be a conventional ether solvent in the art, for example, tetrahydrofuran.
  • the alkane solvent in parts by volume, may be 650-750 parts, for example, 700 parts.
  • the alcohol solvent in parts by volume, may be 60-300 parts, for example, 70 parts, 100 parts, 130 parts or 300 parts, preferably 60-110 parts, for example, 60-80 parts or 90-110 parts.
  • the halogenated hydrocarbon solvent in parts by volume, may be 40-90 parts, for example, 50 parts or 80 parts, preferably 40-60 parts or 70-90 parts.
  • the ether solvent in parts by volume, may be 70-160 parts, for example, 80 parts, 120 parts or 150 parts, preferably 140-160 parts.
  • the mobile phase may further comprise a carboxylic acid solvent.
  • the carboxylic acid solvent may be acetic acid.
  • the carboxylic acid solvent may be 0.5-2.5 parts, and may be 0.5-1.5 parts, for example, 1 part.
  • the mobile phase may further comprise an organic amine.
  • the organic amine may be diethylamine and/or triethylamine, preferably diethylamine.
  • the organic amine may be 0.1-4 parts, and may be 0.1-2.5 parts, for example, 0.2 part, 0.5 part, 1 part, and 2 parts, preferably 0.1-1.5 parts, or 0.1-0.3 part.
  • the volume ratio of the diethylamine and triethylamine may be 1: 0.5-1: 1.5, for example, 1: 1.
  • the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent and an ether solvent.
  • the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent and an ether solvent; in parts by volume, the alkane solvent is 650-750 parts, and the alcohol solvent is 60-300 parts, the halogenated hydrocarbon solvent is 40-90 parts, and the ether solvent is 70-160 parts.
  • the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent and an ether solvent; in parts by volume, the alkane solvent is 650-750 parts, the alcohol solvent is 60-110 parts, the halogenated hydrocarbon solvent is 40-90 parts, the ether solvent is 140-160 parts; the alkane solvent is n-hexane, the alcohol solvent is ethanol and/or isopropanol, the halogenated hydrocarbon solvent is dichloromethane, and the ether solvent is tetrahydrofuran.
  • the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 100 parts of ethanol, 50 parts of dichloromethane, and 150 parts of tetrahydrofuran.
  • the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 70 parts of isopropanol, 80 parts of dichloromethane, and 150 parts of tetrahydrofuran.
  • the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent and a carboxylic acid solvent; in parts by volume, the alkane solvent is 600-800 parts, the alcohol solvent is 50-350 parts, the halogenated hydrocarbon solvent is 30-100 parts, the ether solvent is 50-200 parts, and the carboxylic acid solvent is 0.5-2.5 parts.
  • the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvents and a carboxylic acid solvent; in parts by volume, the alkane solvent is 650-750 parts, the alcohol solvent is 60-300 parts, the halogenated hydrocarbon solvent is 40-90 parts, the ether solvent is 70-160 parts, and the carboxylic acid solvent is 0.5-1.5 parts.
  • the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent and a carboxylic acid solvent; in parts by volume, the alkane solvent is 650-750 parts, the alcohol solvent is 60-80 parts, the halogenated hydrocarbon solvent is 70-90 parts, the ether solvent is 140-160 parts, and the carboxylic acid solvent is 0.5-1.5 parts; the alkane solvent is n-hexane, the alcohol solvent is ethanol and/or isopropanol, the halogenated hydrocarbon solvent is dichloromethane, the ether solvent is tetrahydrofuran, and the carboxylic acid solvent is acetic acid.
  • the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 70 parts of isopropanol, 80 parts of dichloromethane, 150 parts of tetrahydrofuran, and 1 part of acetic acid.
  • the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent and an organic amine; in parts by volume, the alkane solvent is 600-800 parts, the alcohol solvent is 50-350 parts, the halogenated hydrocarbon solvent is 30-100 parts, the ether solvent is 50-200 parts, and the organic amine is 0.1-4 parts.
  • the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent and an organic amine; in parts by volume, the alkane solvent is 650-750 parts, the alcohol solvent is60-300 parts, the halogenated hydrocarbon solvent is 40-90 parts, the ether solvent is 70-160 parts, and the organic amine is 0.1-2.5 parts; the alkane solvent is n-hexane, the alcohol solvent is ethanol and/or isopropanol, the halogenated hydrocarbon solvent is dichloromethane, the ether solvent is tetrahydrofuran, and the organic amine is diethylamine and/or trimethylamine.
  • the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent and an organic amine; in parts by volume, the alkane solvent is 650-750 parts, the alcohol solvent is 90-110 parts, the halogenated hydrocarbon solvent is 40-60 parts, the ether solvent is 140-160 parts, and the organic amine is 0.1-1.5 parts; the alkane solvent is n-hexane, the alcohol solvent is isopropanol, the halogenated hydrocarbon solvent is dichloromethane, the ether solvent is tetrahydrofuran; and the organic amine is diethylamine.
  • the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 130 parts of ethanol, 50 parts of dichloromethane, 120 parts of tetrahydrofuran, 1 part of diethylamine, and 1 part of trimethylamine.
  • the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 100 parts of isopropanol, 50 parts of dichloromethane, 150 parts of tetrahydrofuran, 1 part of diethylamine and 1 part of triethylamine.
  • the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 150 parts of ethanol, 150 parts of isopropanol, 50 parts of dichloromethane, 80 parts of tetrahydrofuran, and 1 part of diethylamine.
  • the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 100 parts of isopropanol, 50 parts of dichloromethane, 150 parts of tetrahydrofuran and 1 part of diethylamine.
  • the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 130 parts of ethanol, 50 parts of dichloromethane, 120 parts of tetrahydrofuran and 2 parts of diethylamine.
  • the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent, a carboxylic acid solvent and an organic amine; in parts by volume, the alkane solvent is 600-800 parts, the alcohol solvent is 50-350 parts, the halogenated hydrocarbon solvent is 30-100 parts, the ether solvent is 50-200 parts, the carboxylic acid solvent is 0.5-2.5 parts, and the organic amine is 0.1-4 parts.
  • the mobile phase is composed of an alkane solvent, alcohol solvent, halogenated hydrocarbon solvent, ether solvent, carboxylic acid solvent and organic amine; in parts by volume, the alkane solvent is 650-750 parts, the alcohol solvent is 60-300 parts, the halogenated hydrocarbon solvent is 40-90 parts, the ether solvent is 70-160 parts, the carboxylic acid solvent is 0.5-1.5 parts, and the organic amine is 0.1-2.5 parts.
  • the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent, a carboxylic acid solvent and an organic amine; in parts by volume, the alkane solvent is 650-750 parts, the alcohol solvent is 60-80 parts, the halogenated hydrocarbon solvent is 70-90 parts, and the ether solvent is 140-160 parts, the carboxylic acid solvent is 0.5-1.5 parts, the organic amine is 0.1-1.5 parts; the alkane solvent is n-hexane, the alcohol solvent is ethanol and/or isopropanol, the halogenated hydrocarbon solvent is dichloromethane, the ether solvent is tetrahydrofuran; the carboxylic acid solvent is acetic acid, and the organic amine is diethylamine and/or triethylamine.
  • the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent, a carboxylic acid solvent and an organic amine; in parts by volume, the alkane solvent is 650-750 parts, the alcohol solvent is 60-80 parts, the halogenated hydrocarbon solvent is 70-90 parts, and the ether solvent is 140-160 parts, the carboxylic acid solvent is 0.5-1.5 parts, the organic amine is 0.1-0.3 part; the alkane solvent is n-hexane, the alcohol solvent is isopropanol, the halogenated hydrocarbon solvent is dichloromethane, the ether solvent is tetrahydrofuran; the carboxylic acid solvent is acetic acid, and the organic amine is diethylamine.
  • the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 70 parts of isopropanol, 80 parts of dichloromethane, 150 parts of tetrahydrofuran, 1 part of acetic acid, and 0.2 part of diethylamine.
  • the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 70 parts of isopropanol, 80 parts of dichloromethane, and 150 parts of tetrahydrofuran, 1 part of acetic acid and 0.5 part of diethylamine.
  • the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 70 parts of isopropanol, 80 parts of dichloromethane, 150 parts of tetrahydrofuran, 1 part of acetic acid and 1 part of diethylamine.
  • the substance X may be added to the chiral chromatography column in the form of a solution.
  • the method for preparing the solution of substance X may be method one or method two:
  • the extraction may be carried out by conventional methods in the art.
  • the solvent in the solution may be the same as the mobile phase, or a mixed solvent of a halogenated hydrocarbon solvent and the mobile phase, the volume ratio of the halogenated hydrocarbon solvent to the mobile phase may be 0.5: 1-2: 1, for example, 1: 1.
  • the halogenated hydrocarbon solvent may be dichloromethane.
  • the chiral chromatographic column may be a bonded chiral chromatographic column, and may be a polysaccharide derivative solvent-resistant chiral chromatographic column (the polysaccharide derivatives fixed on silica gel by chemical bonding) , and it may be a solvent-resistant chiral column of sugar derivatives with cellulose-tris (3, 5-dichlorophenyl carbamate) bonded to the surface of silica gel, for example, Daicel Chiralpak IC Chiral columns, such as, Daicel Chiralpak IC (250 mm ⁇ 4.6 mm, 5.0 ⁇ m) .
  • the column temperature of the chiral chromatography column may be a conventional column temperature in the art, which may be 25-35°C, for example, 33°C.
  • the injection volume of the solution of substance X may be a conventional injection volume in the art, which may be 1-30 ⁇ L, and may be 10-20 ⁇ L.
  • the elution may be isocratic elution.
  • the flow rate of elution may be a conventional flow rate in the art, which may be 0.5-3 ml/min, and may be 1-2 ml/min.
  • the detection wavelength of the HPLC analysis method may be a conventional detection wavelength in the art, which may be 200-300 nm, and may be 260-290 nm, for example, 265 nm, 282 nm or 287 nm.
  • the reagents and raw materials used in the present disclosure are all commercially available.
  • the HPLC analysis method for the compound represented by formula I provided by the present disclosure has the advantages of reliable use, good stability, and strong data reproducibility, which can separate isomers well, and precisely determine the purity of isomers.
  • Fig. 1 is an HPLC spectrum of the positioning solution of the compound represented by (R) -formula I in Example 1.
  • Fig. 2 is an HPLC spectrum of the positioning solution of the compound represented by (S) -formula I in Example 1.
  • Fig. 3 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Example 1.
  • Fig. 4 is an HPLC spectrum of the test solution I in Example 1.
  • Fig. 5 is an HPLC spectrum of the positioning solution of the compound represented by (R) -formula I in Example 2.
  • Fig. 6 is an HPLC spectrum of the positioning solution of the compound represented by (S) -formula I in Example 2.
  • Fig. 7 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Example 2.
  • Fig. 8 is an HPLC spectrum of the positioning solution of the compound represented by (R) -formula I in Example 3.
  • Fig. 9 is an HPLC spectrum of the positioning solution of the compound represented by (S) -formula I in Example 3.
  • Fig. 10 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Example 3.
  • Fig. 11 is an HPLC spectrum of the test solution in Example 3.
  • Fig. 12 is an HPLC spectrum of the positioning solution of the compound represented by (R) -formula I in Example 4.
  • Fig. 13 is an HPLC spectrum of the positioning solution of compound represented by (S) -formula I in Example 4.
  • Fig. 14 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Example 4.
  • Fig. 15 is an HPLC spectrum of the positioning solution of the compound represented by (R) -formula I in Example 5.
  • Fig. 16 is an HPLC spectrum of the positioning solution of compound represented by (S) -formula I in Example 5.
  • Fig. 17 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Example 5.
  • Fig. 18 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Example 6.
  • Fig. 19 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Example 7.
  • Fig. 20 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Example 8.
  • Fig. 21 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Example 9.
  • Fig. 22 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Example 10.
  • Fig. 23 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Example 11.
  • Fig. 24 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Comparative Example 1.
  • Fig. 25 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Comparative Example 2.
  • Fig. 26 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Comparative Example 3.
  • Fig. 27 is an HPLC spectrum of the test solution II in Example 1.
  • the compound represented by (R) -formula I is prepared according to CN109311871A.
  • the compound represented by (S) -formula I and the compound represented by formula I are prepared according to the preparation method for the compound represented by (R) -formula I, and the raw materials are replaced.
  • tablets of the compound represented by formula I are prepared by conventional means in the art.
  • Injection volume 20 ⁇ l.
  • Diluent the volume ratio of dichloromethane and mobile phase was 1: 1.
  • Solution preparation about 20 mg of the compound represented by formula I was weighed precisely and placed into a 10 ml measuring flask, and 5 ml of dichloromethane was added, after the sample was dissolved completely, it was diluted to the mark with the mobile phase, shaken well, and used as a test solution I;
  • the analysis method provided by the present disclosure completes methodological verification according to the 2015 edition of the Chinese Pharmacopoeia to verify system applicability, specificity, sensitivity, linearity and range, precision, accuracy, reproducibility, and solution stability experiments. After these verifications, the analysis method provided by the present disclosure is reliable to use and has good stability.
  • Injection volume 20 ⁇ l.
  • Diluent the composition was the same as the mobile phase.
  • Solution preparation about 20 mg of the compound represented by formula I was weighed precisely and placed in a 50 ml measuring flask, and the diluent was added to dissolve, and the mixture was diluted to the mark with the diluent, shaken well, and used as a test solution I;
  • Injection volume 10 ⁇ l.
  • Diluent the volume ratio of dichloromethane to the mobile phase was 1: 1.
  • Solution preparation about 30 mg of the compound represented by formula I was weighed precisely and placed into a 20 ml measuring flask, after it was dissolved with 10 ml of dichloromethane, it was diluted to the mark with the mobile phase, shaken well, and used as a test solution;
  • Injection volume 10 ⁇ l.
  • Diluent the volume ratio of dichloromethane to mobile phase was 1: 1.
  • Solution preparation about 20 mg of the compound represented by formula I was weighed precisely and placed into a 20 ml measuring flask, and 10 ml of dichloromethane was added, after it was dissolved completely, it was diluted to the mark with the mobile phase, shaken well, and used as a test solution;
  • Injection volume 20 ⁇ l.
  • Diluent the volume ratio of dichloromethane to mobile phase was 1: 1.
  • Solution preparation about 30 mg of the compound represented by formula I was weighed precisely and placed into a 20 ml measuring flask, after 10 ml of dichloromethane was added to dissolve, it was diluted to the mark with the mobile phase, shaken well, and used as a test solution;
  • Injection volume 20 ⁇ l.
  • Diluent the volume ratio of dichloromethane to mobile phase was 1: 1.
  • Solution preparation about 20 mg of the compound represented by formula I was weighed precisely and placed into a 10 ml measuring flask, and 5 ml of DCM was added, after it was dissolved completely, it was diluted to the mark with the diluent, shaken well, and used as a test solution;
  • Injection volume 20 ⁇ l.
  • Diluent the volume ratio of dichloromethane to mobile phase was 1: 1.
  • Solution preparation about 20 mg of the compound represented by formula I was weighed precisely and placed into a 10 ml measuring flask, and 5 ml of dichloromethane was added, after it was dissolved completely, it was diluted to the mark with the mobile phase, shaken well, and used as a test solution;
  • Injection volume 10 ⁇ l.
  • Diluent the composition was the same as the mobile phase.
  • Solution preparation about 2 mg of reference substance of the compound represented by (R) -formula I and 20 mg of reference substance of the compound represented by (S) -formula I were weighed respectively and placed into a 20 ml measuring flask, shaken well, and used as a resolution solution.
  • volume ratio of mobile phase: tetrahydrofuran /ethanol /isopropanol /dichloromethane /n-hexane /diethylamine 80 /150 /150 /50 /700 /1.
  • Injection volume 10 ⁇ l.
  • Diluent the composition was the same as the mobile phase.
  • Solution preparation about 20 mg of reference substance of the compound represented by (R) -formula I and about 20 mg of reference substance of the compound represented by (S) -formula I were weighed respectively and placed into a 20 ml measuring flask precisely, and it was diluted to the mark with the diluent, shaken well, and used as a resolution solution;
  • Injection volume 10 ⁇ l.
  • Diluent the composition was the same as the mobile phase.
  • Solution preparation about 20 mg of reference substance of the compound represented by (R) -formula I and about 20 mg of reference substance of the compound represented by (S) -formula I were weighed respectively and placed into a 20 ml measuring flask precisely, and it was shaken well, and used as a resolution solution.
  • volume ratio of mobile phase: tetrahydrofuran /ethanol /dichloromethane /n-hexane /diethylamine 120 /130 /50 /700 /2.
  • Injection volume 10 ⁇ l.
  • Diluent the composition was the same as the mobile phase.
  • Solution preparation about 20 mg of reference substance of the compound represented by (R) -formula I and about 20 mg of reference substance of the compound represented by (S) -formula I were weighed respectively and placed into a 20 ml measuring flask precisely, and it was diluted to the mark with the diluent, shaken well, and used as a resolution solution;
  • Injection volume 10 ⁇ l.
  • Diluent the composition was the same as the mobile phase.
  • Solution preparation about 20 mg of reference substance of the compound represented by (R) -formula I and about 20 mg of reference substance of the compound represented by (S) -formula I were weighed respectively and placed into a 20 ml measuring flask precisely, and it was shaken well, and used as a resolution solution.
  • Injection volume 20 ⁇ l.
  • Diluent the composition was the same as the mobile phase.
  • Solution preparation about 20 mg of reference substance of the compound represented by (R) -formula I and about 20 mg of reference substance of the compound represented by (S) -formula I were weighed respectively and placed into the 50 ml measuring flask precisely, and it was shaken well, and used as a resolution solution.
  • N/A means it has been tested and cannot be calculated due to poor resolution.
  • volume ratio of mobile phase: tetrahydrofuran /ethanol /n-hexane /diethylamine 80 /250 /650 /1.
  • Injection volume 10 ⁇ l.
  • Diluent the composition was same as the mobile phase.
  • Solution preparation about 20 mg of reference substance of the compound represented by (R) -formula I and about 20 mg of reference substance of the compound represented by (S) -formula I were weighed respectively and placed into a 20 ml measuring flask precisely, and it was shaken well, and used as a resolution solution.
  • N/A means it has been tested and cannot be calculated due to poor resolution.

Abstract

Provided is an HPLC analysis method of N-(phenylsulfonyl)benzamide compound; the N-(phenylsulfonyl)benzamide compound is substance X; the substance X is a compound as represented by formula I-A and/or I-B. The HPLC analysis method comprises the following steps: eluting substance X with a mobile phase comprising an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent and an ether solvent, in parts by volume, the alkane solvent is 600-800 parts, the alcohol solvent is 50-350 parts, the halogenated hydrocarbon solvents is 30-100 parts, and the ether solvents is 50-200 parts. The analysis method can separate isomers and precisely determine the purity of the isomers.

Description

HPLC Analysis Method for N- (phenylsulfonyl) benzamide Compound
The present invention claims the priority of the CN202010406277. X, filed on May 14, 2020, the contents of which are incorporated herein by its entirety.
Field of invention
The present disclosure belongs to the technical field of pharmaceutical analysis, and specifically relates to an HPLC analysis method for N- (phenylsulfonyl) benzamide compound.
Background
Apoptosis is a process of programmed cell death and an essential biological process for tissue homeostasis. In mammals, it has been proved to regulate early embryonic development. In the later stages of life, cell death is a default mechanism by which potentially dangerous cells, for example, cells with cancer defects, are removed. Several apoptosis pathways are known. One of the most important apoptotic pathways involves the Bcl-2 protein family, which is a key regulator of the mitochondrial (also called "intrinsic" ) pathway of apoptosis. See Danial and Korsmeyer, Cell 776: 205-219 (2004) . The structural homology domains BH1, BH2, BH3 and BH4 are the characteristics of Bcl-2 family proteins. The Bcl-2 protein family can be further divided into three sub-families, depending on how many homologous domains each protein contains and its biological activity, that is, whether it has pro-apoptotic or anti-apoptotic functions.
The first subgroup of Bcl-2 proteins contains proteins with all four homology domains, namely BH1, BH2, BH3, and BH4. Their general function is to resist apoptosis, that is, to protect cells from starting the cell death process. Proteins for example, Bcl-2, Bcl-w, Bcl-xL, Mcl-1 and Bfl-1/Al are members of this first subgroup. The proteins belonging to the second subgroup of Bcl-2 proteins contain three homologous domains BH1, BH2 and BH3, and have a pro-apoptotic effect. The two main representative proteins of the second subgroup are Bax and Bak. The third subgroup of Bcl-2 proteins consists of proteins containing only the BH3 domain, and members of this subgroup are often referred, and used as "BH3 only proteins" . Their biological effect on cells is to promote cell apoptosis. Bim, Bid, Bad, Bik, Noxa, Hrk, Bmf and Puma are examples of the third protein subfamily.
Disregulated apoptotic pathways involve the pathology of many important diseases, for example, neurodegenerative disorders (up-regulated apoptosis) , for example, Alzheimer’s disease; and proliferative diseases (down-regulated apoptosis) , for example, cancers, autoimmunity diseases and pro-thrombotic disorders.
Down-regulated apoptosis (more specifically, the Bcl-2 protein family) may be involved in the onset of cancerous malignancies. Studies have shown that, for example, the anti-apoptotic proteins Bcl-2 and Bcl-xL  are overexpressed in many cancer cell types. See Zhang, Nature Reviews Drug Discovery. 1: 101 (2002) ; Kirkin et al., Biochimica et Biophysica Acta 1644: 229-249 (2004) ; and Amundson et al., Cancer Research. 60: 6101-6110 (2000) . The effect of this disorder is to change the survival of cells, otherwise the cells will undergo apoptosis under normal conditions. The repetition of these defects associated with unregulated proliferation is considered the starting point of cancer evolution. These discoveries make possible new strategies for drug discovery targeting cancer.
WO2018/027097A1 discloses N- (phenylsulfonyl) benzamide and related compounds for the treatment of diseases, disorders or conditions (for example, cancers) that are responsive to Bcl-2 protein inhibition, and specifically discloses representative compound: N- ( (4- ( ( (1, 4-dioxan-2-yl) methyl) amino) -3-nitrophenyl) sulfonyl) -2- ( (1H-pyrrolo [2, 3-b] pyridin-5-yl) oxy) -4- (4- ( (6- (4-chlorophenyl) spiro [3.5] non-6-en-7-yl) methyl) piperazin-1-yl) benzamide (hereinafter referred as compound of formula 1) , which structural formula is as follows:
Figure PCTCN2021087406-appb-000001
The compound contains a chiral center at the aniline and a pair of effective enantiomers. Drugs generally exert their pharmacological activity through recognition and matching with the target. In many cases, there are significant differences in the pharmacological activity, metabolic process, metabolic rate, and toxicity of a pair of enantiomers of chiral compounds in organisms. In addition, there are differences in absorption, distribution and excretion, and there may be mutual conversion between enantiomers. Considering the known efficacy, there may be four different situations:
i) Only one enantiomer has the required pharmacological activity, while the other enantiomer has no pharmacological effect, for example: the in vitro activity of the two enantiomers of the β-receptor blocker propranolol differs by 98 times. The (S) -configuration enantiomer of the non-steroidal anti-inflammatory drug naproxen is 35 times stronger than its enantiomer. Another example is the toxicity of natural nicotine is much greater than its unnatural enantiomer.
ii) Both compounds in a pair of enantiomers have the same or nearly the same pharmacological activities;
iii) The two enantiomers have different pharmacological activities;
iv) The pharmacological activity of each enantiomer is the same but not equal.
In order to ensure the development and production quality of the compound represented by formula I, the quality of the active pharmaceutical ingredient and its formulation needs to be controlled. Therefore, research to obtain a detection method for isomer inspection and content determination of the compound represented by formula I is of great significance for controlling the quality of drug production.
Content of the present invention
The technical problems to be solved by the present disclosure are to overcome the lack of separation and detection technology for compound represented by formula I in the prior art. The present disclosure provides an HPLC analysis method for N- (phenylsulfonyl) benzamide compound, which can separate isomers and precisely determine the purity of the isomers.
The present disclosure provides an HPLC analysis method for substance X; the substance X is a compound represented by formula I-A and/or I-B;
Figure PCTCN2021087406-appb-000002
the HPLC analysis method comprises the following steps: in a chiral chromatographic column, eluting the substance X with a mobile phase;
the mobile phase comprises an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent and an ether solvent,
in parts by volume, the alkane solvent is 600-800 parts, the alcohol solvent is 50-350 parts, the halogenated hydrocarbon solvent is 30-100 parts, and the ether solvent is 50-200 parts.
In some embodiments of the present disclosure, the alkane solvent may be a conventional alkane solvent in the art, and may be a C 5-C 10 alkane solvent, for example, n-hexane.
In some embodiments of the present disclosure, the alcohol solvent may be a conventional alcohol solvent in the art, and may be a C 1-C 3 alcohol solvent, for example, ethanol and/or isopropanol, preferably isopropanol.
In some embodiments of the present disclosure, the halogenated hydrocarbon solvent may be a  conventional halogenated hydrocarbon solvent in the art, for example, dichloromethane.
In some embodiments of the present disclosure, the ether solvent may be a conventional ether solvent in the art, for example, tetrahydrofuran.
In some embodiments of the present disclosure, in parts by volume, the alkane solvent may be 650-750 parts, for example, 700 parts.
In some embodiments of the present disclosure, in parts by volume, the alcohol solvent may be 60-300 parts, for example, 70 parts, 100 parts, 130 parts or 300 parts, preferably 60-110 parts, for example, 60-80 parts or 90-110 parts.
In some embodiments of the present disclosure, in parts by volume, the halogenated hydrocarbon solvent may be 40-90 parts, for example, 50 parts or 80 parts, preferably 40-60 parts or 70-90 parts.
In some embodiments of the present disclosure, in parts by volume, the ether solvent may be 70-160 parts, for example, 80 parts, 120 parts or 150 parts, preferably 140-160 parts.
In some embodiments of the present disclosure, the mobile phase may further comprise a carboxylic acid solvent. The carboxylic acid solvent may be acetic acid. In parts by volume, the carboxylic acid solvent may be 0.5-2.5 parts, and may be 0.5-1.5 parts, for example, 1 part.
In some embodiments of the present disclosure, the mobile phase may further comprise an organic amine. The organic amine may be diethylamine and/or triethylamine, preferably diethylamine. In parts by volume, the organic amine may be 0.1-4 parts, and may be 0.1-2.5 parts, for example, 0.2 part, 0.5 part, 1 part, and 2 parts, preferably 0.1-1.5 parts, or 0.1-0.3 part. When the organic amine is a mixture of diethylamine and triethylamine, then the volume ratio of the diethylamine and triethylamine may be 1: 0.5-1: 1.5, for example, 1: 1.
In some embodiments of the present disclosure, the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent and an ether solvent.
In some embodiments of the present disclosure, the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent and an ether solvent; in parts by volume, the alkane solvent is 650-750 parts, and the alcohol solvent is 60-300 parts, the halogenated hydrocarbon solvent is 40-90 parts, and the ether solvent is 70-160 parts.
In some embodiments of the present disclosure, the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent and an ether solvent; in parts by volume, the alkane solvent is 650-750 parts, the alcohol solvent is 60-110 parts, the halogenated hydrocarbon solvent is 40-90 parts, the ether solvent is 140-160 parts; the alkane solvent is n-hexane, the alcohol solvent is ethanol and/or isopropanol, the halogenated hydrocarbon solvent is dichloromethane, and the ether solvent is tetrahydrofuran.
In some embodiments of the present disclosure, the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 100 parts of ethanol, 50 parts of dichloromethane, and  150 parts of tetrahydrofuran.
In some embodiments of the present disclosure, the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 70 parts of isopropanol, 80 parts of dichloromethane, and 150 parts of tetrahydrofuran.
In some embodiments of the present disclosure, the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent and a carboxylic acid solvent; in parts by volume, the alkane solvent is 600-800 parts, the alcohol solvent is 50-350 parts, the halogenated hydrocarbon solvent is 30-100 parts, the ether solvent is 50-200 parts, and the carboxylic acid solvent is 0.5-2.5 parts.
In some embodiments of the present disclosure, the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvents and a carboxylic acid solvent; in parts by volume, the alkane solvent is 650-750 parts, the alcohol solvent is 60-300 parts, the halogenated hydrocarbon solvent is 40-90 parts, the ether solvent is 70-160 parts, and the carboxylic acid solvent is 0.5-1.5 parts.
In some embodiments of the present disclosure, the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent and a carboxylic acid solvent; in parts by volume, the alkane solvent is 650-750 parts, the alcohol solvent is 60-80 parts, the halogenated hydrocarbon solvent is 70-90 parts, the ether solvent is 140-160 parts, and the carboxylic acid solvent is 0.5-1.5 parts; the alkane solvent is n-hexane, the alcohol solvent is ethanol and/or isopropanol, the halogenated hydrocarbon solvent is dichloromethane, the ether solvent is tetrahydrofuran, and the carboxylic acid solvent is acetic acid.
In some embodiments of the present disclosure, the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 70 parts of isopropanol, 80 parts of dichloromethane, 150 parts of tetrahydrofuran, and 1 part of acetic acid.
In some embodiments of the present disclosure, the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent and an organic amine; in parts by volume, the alkane solvent is 600-800 parts, the alcohol solvent is 50-350 parts, the halogenated hydrocarbon solvent is 30-100 parts, the ether solvent is 50-200 parts, and the organic amine is 0.1-4 parts.
In some embodiments of the present disclosure, the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent and an organic amine; in parts by volume, the alkane solvent is 650-750 parts, the alcohol solvent is60-300 parts, the halogenated hydrocarbon solvent is 40-90 parts, the ether solvent is 70-160 parts, and the organic amine is 0.1-2.5 parts; the alkane solvent is n-hexane, the alcohol solvent is ethanol and/or isopropanol, the halogenated hydrocarbon solvent is dichloromethane, the ether solvent is tetrahydrofuran, and the organic amine is diethylamine and/or trimethylamine.
In some embodiments of the present disclosure, the mobile phase is composed of an alkane solvent, an  alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent and an organic amine; in parts by volume, the alkane solvent is 650-750 parts, the alcohol solvent is 90-110 parts, the halogenated hydrocarbon solvent is 40-60 parts, the ether solvent is 140-160 parts, and the organic amine is 0.1-1.5 parts; the alkane solvent is n-hexane, the alcohol solvent is isopropanol, the halogenated hydrocarbon solvent is dichloromethane, the ether solvent is tetrahydrofuran; and the organic amine is diethylamine.
In some embodiments of the present disclosure, the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 130 parts of ethanol, 50 parts of dichloromethane, 120 parts of tetrahydrofuran, 1 part of diethylamine, and 1 part of trimethylamine.
In some embodiments of the present disclosure, the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 100 parts of isopropanol, 50 parts of dichloromethane, 150 parts of tetrahydrofuran, 1 part of diethylamine and 1 part of triethylamine.
In some embodiments of the present disclosure, the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 150 parts of ethanol, 150 parts of isopropanol, 50 parts of dichloromethane, 80 parts of tetrahydrofuran, and 1 part of diethylamine.
In some embodiments of the present disclosure, the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 100 parts of isopropanol, 50 parts of dichloromethane, 150 parts of tetrahydrofuran and 1 part of diethylamine.
In some embodiments of the present disclosure, the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 130 parts of ethanol, 50 parts of dichloromethane, 120 parts of tetrahydrofuran and 2 parts of diethylamine.
In some embodiments of the present disclosure, the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent, a carboxylic acid solvent and an organic amine; in parts by volume, the alkane solvent is 600-800 parts, the alcohol solvent is 50-350 parts, the halogenated hydrocarbon solvent is 30-100 parts, the ether solvent is 50-200 parts, the carboxylic acid solvent is 0.5-2.5 parts, and the organic amine is 0.1-4 parts.
In some embodiments of the present disclosure, the mobile phase is composed of an alkane solvent, alcohol solvent, halogenated hydrocarbon solvent, ether solvent, carboxylic acid solvent and organic amine; in parts by volume, the alkane solvent is 650-750 parts, the alcohol solvent is 60-300 parts, the halogenated hydrocarbon solvent is 40-90 parts, the ether solvent is 70-160 parts, the carboxylic acid solvent is 0.5-1.5 parts, and the organic amine is 0.1-2.5 parts.
In some embodiments of the present disclosure, the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent, a carboxylic acid solvent and an organic amine; in parts by volume, the alkane solvent is 650-750 parts, the alcohol solvent is 60-80 parts, the halogenated hydrocarbon solvent is 70-90 parts, and the ether solvent is 140-160 parts, the carboxylic acid  solvent is 0.5-1.5 parts, the organic amine is 0.1-1.5 parts; the alkane solvent is n-hexane, the alcohol solvent is ethanol and/or isopropanol, the halogenated hydrocarbon solvent is dichloromethane, the ether solvent is tetrahydrofuran; the carboxylic acid solvent is acetic acid, and the organic amine is diethylamine and/or triethylamine.
In some embodiments of the present disclosure, the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent, a carboxylic acid solvent and an organic amine; in parts by volume, the alkane solvent is 650-750 parts, the alcohol solvent is 60-80 parts, the halogenated hydrocarbon solvent is 70-90 parts, and the ether solvent is 140-160 parts, the carboxylic acid solvent is 0.5-1.5 parts, the organic amine is 0.1-0.3 part; the alkane solvent is n-hexane, the alcohol solvent is isopropanol, the halogenated hydrocarbon solvent is dichloromethane, the ether solvent is tetrahydrofuran; the carboxylic acid solvent is acetic acid, and the organic amine is diethylamine.
In some embodiments of the present disclosure, the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 70 parts of isopropanol, 80 parts of dichloromethane, 150 parts of tetrahydrofuran, 1 part of acetic acid, and 0.2 part of diethylamine.
In some embodiments of the present disclosure, the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 70 parts of isopropanol, 80 parts of dichloromethane, and 150 parts of tetrahydrofuran, 1 part of acetic acid and 0.5 part of diethylamine.
In some embodiments of the present disclosure, the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 70 parts of isopropanol, 80 parts of dichloromethane, 150 parts of tetrahydrofuran, 1 part of acetic acid and 1 part of diethylamine.
In some embodiments of the present disclosure, the substance X may be added to the chiral chromatography column in the form of a solution. The method for preparing the solution of substance X may be method one or method two:
method one: dissolving substance X in a solvent;
method two: extracting the formulation containing substance X.
The extraction may be carried out by conventional methods in the art.
The solvent in the solution may be the same as the mobile phase, or a mixed solvent of a halogenated hydrocarbon solvent and the mobile phase, the volume ratio of the halogenated hydrocarbon solvent to the mobile phase may be 0.5: 1-2: 1, for example, 1: 1. The halogenated hydrocarbon solvent may be dichloromethane.
In some embodiments of the present disclosure, the chiral chromatographic column may be a bonded chiral chromatographic column, and may be a polysaccharide derivative solvent-resistant chiral chromatographic column (the polysaccharide derivatives fixed on silica gel by chemical bonding) , and it may be a solvent-resistant chiral column of sugar derivatives with cellulose-tris (3, 5-dichlorophenyl carbamate)  bonded to the surface of silica gel, for example, Daicel Chiralpak IC Chiral columns, such as, Daicel Chiralpak IC (250 mm×4.6 mm, 5.0 μm) .
In some embodiments of the present disclosure, the column temperature of the chiral chromatography column may be a conventional column temperature in the art, which may be 25-35℃, for example, 33℃.
In some embodiments of the present disclosure, the injection volume of the solution of substance X may be a conventional injection volume in the art, which may be 1-30 μL, and may be 10-20 μL.
In certain embodiments of the present disclosure, the elution may be isocratic elution.
In some embodiments of the present disclosure, the flow rate of elution may be a conventional flow rate in the art, which may be 0.5-3 ml/min, and may be 1-2 ml/min.
In some embodiments of the present disclosure, the detection wavelength of the HPLC analysis method may be a conventional detection wavelength in the art, which may be 200-300 nm, and may be 260-290 nm, for example, 265 nm, 282 nm or 287 nm.
On the basis of common knowledge in the art, the above-mentioned preferred conditions can be combined arbitrarily to obtain preferred embodiments of the present disclosure.
The reagents and raw materials used in the present disclosure are all commercially available.
The positive and progressive effects of the present disclosure are: the HPLC analysis method for the compound represented by formula I provided by the present disclosure has the advantages of reliable use, good stability, and strong data reproducibility, which can separate isomers well, and precisely determine the purity of isomers.
Brief description of the drawings
Fig. 1 is an HPLC spectrum of the positioning solution of the compound represented by (R) -formula I in Example 1.
Fig. 2 is an HPLC spectrum of the positioning solution of the compound represented by (S) -formula I in Example 1.
Fig. 3 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Example 1.
Fig. 4 is an HPLC spectrum of the test solution I in Example 1.
Fig. 5 is an HPLC spectrum of the positioning solution of the compound represented by (R) -formula I in Example 2.
Fig. 6 is an HPLC spectrum of the positioning solution of the compound represented by (S) -formula I in Example 2.
Fig. 7 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Example 2.
Fig. 8 is an HPLC spectrum of the positioning solution of the compound represented by (R) -formula I in Example 3.
Fig. 9 is an HPLC spectrum of the positioning solution of the compound represented by (S) -formula I in Example 3.
Fig. 10 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Example 3.
Fig. 11 is an HPLC spectrum of the test solution in Example 3.
Fig. 12 is an HPLC spectrum of the positioning solution of the compound represented by (R) -formula I in Example 4.
Fig. 13 is an HPLC spectrum of the positioning solution of compound represented by (S) -formula I in Example 4.
Fig. 14 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Example 4.
Fig. 15 is an HPLC spectrum of the positioning solution of the compound represented by (R) -formula I in Example 5.
Fig. 16 is an HPLC spectrum of the positioning solution of compound represented by (S) -formula I in Example 5.
Fig. 17 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Example 5.
Fig. 18 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Example 6.
Fig. 19 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Example 7.
Fig. 20 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Example 8.
Fig. 21 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Example 9.
Fig. 22 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Example 10.
Fig. 23 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Example 11.
Fig. 24 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Comparative Example 1.
Fig. 25 is an HPLC spectrum of the resolution solution of the compound represented by formula I in  Comparative Example 2.
Fig. 26 is an HPLC spectrum of the resolution solution of the compound represented by formula I in Comparative Example 3.
Fig. 27 is an HPLC spectrum of the test solution II in Example 1.
Detailed description of the preferred embodiment
The present disclosure will be further explained by way of embodiments below, but the present disclosure is not limited to the scope of the described embodiments. In the following embodiments, the experimental methods without specific conditions are selected according to conventional methods and conditions, or according to the product specification.
In the following embodiments, the compound represented by (R) -formula I is prepared according to CN109311871A. The compound represented by (S) -formula I and the compound represented by formula I (amixture of R and S configuration) are prepared according to the preparation method for the compound represented by (R) -formula I, and the raw materials are replaced. In the present disclosure, tablets of the compound represented by formula I are prepared by conventional means in the art.
Column: Daicel Chiralpak IC (250 mm×4.6 mm, 5.0 μm) , purchased from Jiangsu Mingjie Scientific Instrument Co., Ltd.; manufacturer: Daicel.
Example 1: determination of chiral purity of compound represented by formula I
HPLC conditions:
Column: Daicel Chiralpak IC (250 mm×4.6 mm, 5.0 μm) .
Volume ratio of the mobile phase: n-hexane /isopropanol /dichloromethane /tetrahydrofuran /acetic acid /diethylamine=700 /70 /80 /150 /1 /0.2.
Detection wavelength: 282 nm.
Flow rate: 2.0 ml/min.
Column temperature: 33℃.
Injection volume: 20 μl.
Diluent: the volume ratio of dichloromethane and mobile phase was 1: 1.
Experimental steps
Solution preparation: about 20 mg of the compound represented by formula I was weighed precisely and placed into a 10 ml measuring flask, and 5 ml of dichloromethane was added, after the sample was dissolved completely, it was diluted to the mark with the mobile phase, shaken well, and used as a test solution I;
1 tablet of the compound represented by formula I was grinded into fine powder and transferred to a 10 ml volumetric flask, and 5 ml of dichloromethane was added, and it was dissolved with ultrasound for 5min, diluted to the mark with the mobile phase, filtered through an organic filter membrane, and the filtrate was  taken as a test solution II;
about 20mg of the reference substance of compound represented by (S) -formula I was weighed and placed in a 100 ml measuring flask, and 50 ml of dichloromethane was added, after it was completely dissolved, it was diluted to the mark with the mobile phase, shaken well, and then 1 ml of this solution was measured precisely and placed in a 100 ml measuring flask, then it was diluted to the mark with the diluent, shaken well, and used as a positioning solution of compound represented by (S) -formula I;
about 20mg of the reference substance of compound represented by (R) -formula I was weighed and placed in a 100 ml measuring flask, and 50 ml of dichloromethane was added to dissolve, and it was diluted to the mark with the mobile phase, shaken well, then 1 ml of this solution was measured precisely and placed in 100 ml measuring flask, and the diluent was added to the mark, and it was shaken well, and used as a positioning solution of compound represented by (R) -formula I;
about 20 mg of reference substance compound represented by (S) -formula I and about 1 mg of reference substance compound represented by (R) -formula I were weighed respectively and placed into a 10 ml measuring flask, then 5 ml of dichloromethane was added to dissolve, it was diluted to the mark with the mobile phase, shaken well, and used as a resolution solution.
Each 20 μl of positioning solution of the compound represented by (S) -formula I, positioning solution of the compound represented by (R) -formula I, resolution solution, and test solution were measured precisely and injected into the liquid chromatograph, and the liquid chromatogram was recorded and calculated by the area normalization method (see Table 1) .
Table 1 System suitability test results
Figure PCTCN2021087406-appb-000003
According to Table 1, Figures 1-4 and Figure 27, it can be seen that the compound represented by (R) -formula I and the compound represented by (S) -formula I can be effectively separated, with a resolution of 1.9, a good peak shape, and a good peak purity, which meets the standard.
The analysis method provided by the present disclosure completes methodological verification according to the 2015 edition of the Chinese Pharmacopoeia to verify system applicability, specificity, sensitivity, linearity and range, precision, accuracy, reproducibility, and solution stability experiments. After these verifications, the analysis method provided by the present disclosure is reliable to use and has good stability.
Example 2: determination of chiral purity of compound represented by formula I
Column: Daicel Chiralpak IC (250 mm×4.6 mm, 5.0 μm) .
Volume ratio of mobile phase: diethylamine /triethylamine /tetrahydrofuran /ethanol /dichloromethane /n-hexane=1 /1 /120 /130 /50 /700.
Detection wavelength: 287 nm.
Flow rate: 1.0 ml/min.
Column temperature: 33℃.
Injection volume: 20 μl.
Diluent: the composition was the same as the mobile phase.
Experimental steps
Solution preparation: about 20 mg of the compound represented by formula I was weighed precisely and placed in a 50 ml measuring flask, and the diluent was added to dissolve, and the mixture was diluted to the mark with the diluent, shaken well, and used as a test solution I;
about 20 mg of the reference substance of compound represented by (S) -formula I was weighed precisely and placed in a 50 ml measuring flask, after it was dissolved with the diluent and was diluted to the mark with the diluent and shaken well, and then 1 ml of this solution was measured precisely and placed in a 20 ml measuring flask, then it was diluted to the mark with the diluent and shaken well. Then 1 ml of this solution was measured precisely and placed in a 20 ml measuring flask, then it was diluted to the mark with the diluent and shaken well, and used as a positioning solution of compound represented by (S) -formula I;
about 20 mg of the reference substance of compound represented by (R) -formula I was weighed precisely and placed in a 50 ml measuring flask, then it was dissolved with the diluent and diluted to the mark with the diluent and shaken well. Then 1ml of this solution was measured precisely and placed in a 20 ml measuring flask, then it was diluted to the mark with the diluent and shaken well. And then 1 ml of this solution was measured precisely and placed in a 20 ml measuring flask, then it was diluted to the mark with the diluent, shaken well, and used as a positioning solution of compound represented by (R) -formula I;
about 20 mg of the reference substance of compound represented by (S) -formula I was weighed precisely and placed in a 50 ml measuring flask, and 1 ml of the positioning solution of compound represented by (R) - formula I was measured, after it was dissolved with the diluent and diluted to the mark with the diluent, shaken well, and used as resolution solution. Each 20 μl of the positioning solution of the compound represented by (S) -formula I, the positioning solution of the compound represented by (R) -formula I and the resolution solution were measured precisely and injected into the liquid chromatograph, and the liquid chromatogram was recorded and calculated by the area normalization method (see Table 2) .
Table 2 System suitability test results
Figure PCTCN2021087406-appb-000004
According to Table 2 and Figures 5-7, it can be seen that the compound represented by (R) -formula I and the compound represented by (S) -formula I can be separated with a resolution of 1.0 and a good peak purity.
Example 3: determination of chiral purity of compound represented by formula I
Column: Daicel Chiralpak IC (250 mm×4.6 mm, 5.0 μm) .
Volume ratio of mobile phase: tetrahydrofuran /ethanol /dichloromethane /n-hexane=150 /100 /50 /700.
Detection wavelength: 282 nm.
Flow rate: 1.0 ml/min.
Column temperature: 33℃.
Injection volume: 10 μl.
Diluent: the volume ratio of dichloromethane to the mobile phase was 1: 1.
Experimental steps
Solution preparation: about 30 mg of the compound represented by formula I was weighed precisely and placed into a 20 ml measuring flask, after it was dissolved with 10 ml of dichloromethane, it was diluted to the mark with the mobile phase, shaken well, and used as a test solution;
about 30 mg of the reference substance of compound represented by (S) -formula I was weighed precisely and placed in a 100 ml measuring flask, after it was dissolved with 10 ml of dichloromethane, it was diluted  to the mark with the mobile phase, shaken well, and then 1 ml of this solution was measured precisely and placed in a 50 ml measuring flask, then it was diluted to the mark with the diluent and shaken well, and then 1 ml of the solution was measured precisely and placed in a 20 ml measuring flask, then it was diluted to the mark with the diluent and shaken well, and used as a positioning solution of compound represented by (S) -formula I;
about 30 mg of the reference substance of compound represented by (R) -formula I was weighed precisely and placed in a 20 ml measuring flask, after it was dissolved with 10 ml of DCM, it was diluted to the mark with the mobile phase, and shaken well, and then 1 ml of the solution was measured precisely and placed in a 50 ml measuring flask, then it was diluted to the mark with the diluent and shaken well, and then 1 ml of the solution was measured precisely and placed in a 20 ml measuring flask, then it was diluted to the mark with the diluent and shaken well, and used as a positioning solution of compound represented by (R) -formula I;
about 30 mg of reference substance compound represented by (S) -formula I and placed into the 20 ml measuring flask, then about 2 ml of reference substance compound represented by (R) -formula I were measured, and 10 ml of dichloromethane was added to dissolve, and it was diluted to the mark with the mobile phase, shaken well, and used as a resolution solution. Each 10 μl of the positioning solution of the compound represented by (S) -formula I, the positioning solution of the compound represented by (R) -formula I, the resolution solution, and the test solution were measured precisely and injected into the liquid chromatograph, and the liquid chromatogram was recorded and calculated by the area normalization method (see Table 3) .
Table 3 System suitability test results
Figure PCTCN2021087406-appb-000005
According to Table 3 and Figures 8-11, it can be seen that the compound represented by (R) -formula I and the compound represented by (S) -formula I can be effectively separated with a resolution of 1.7 and a  good peak purity, which meets the standard.
Example 4: determination of chiral purity of compound represented by formula I
Column: Daicel Chiralpak IC (250 mm×4.6 mm, 5.0 μm) .
Volume ratio of mobile phase: n-hexane /isopropanol /dichloromethane /tetrahydrofuran=700 /70 /80 /150.
Detection wavelength: 282 nm.
Flow rate: 2.0 ml/min.
Column temperature: 33℃.
Injection volume: 10 μl.
Diluent: the volume ratio of dichloromethane to mobile phase was 1: 1.
Experimental steps
Solution preparation: about 20 mg of the compound represented by formula I was weighed precisely and placed into a 20 ml measuring flask, and 10 ml of dichloromethane was added, after it was dissolved completely, it was diluted to the mark with the mobile phase, shaken well, and used as a test solution;
about 20 mg of the compound represented by (S) -formula I was weighed precisely and placed in a 20 ml measuring flask, and 10 ml of dichloromethane was added, after it was dissolved completely, it was diluted to the mark with the mobile phase, shaken well, and then 1 ml of this solution was measured precisely and placed in a 50 ml measuring flask. Then it was diluted to the mark with the diluent, shaken well, and then 1 ml of the solution was measured precisely and placed in a 20 ml measuring flask, then it was diluted to the mark with the diluent, shaken well, and used as a positioning solution of compound represented by (S) -formula I;
about 20 mg of the compound represented by (R) -formula I was weighed precisely and placed in a 20 ml measuring flask, and 10 ml of dichloromethane was added, after it was dissolved completely, it was diluted to the mark with the mobile phase, shaken well, and then 2 ml of this solution was measured precisely and placed in a 10 ml measuring flask, then it was diluted to the mark with the diluent, shaken well, and used as a positioning solution of compound represented by (R) -formula I;
about 20 mg of the compound represented by (S) -formula I was weighed and placed into a 20 ml measuring flask and about 0.5 ml of the positioning solution of compound represented by (R) -formula I was measured, and 10 ml of dichloromethane was added to dissolve, then it was diluted to the mark with the mobile phase, shaken well, and used as a resolution solution. Each 10 μl of the positioning solution of the compound represented by (S) -formula I, the positioning solution of the compound represented by (R) -formula I and the resolution solution were measured precisely and injected into the liquid chromatograph, and the liquid chromatogram was recorded and calculated by the area normalization method (see Table 4) .
Table 4 System suitability test results
Figure PCTCN2021087406-appb-000006
Figure PCTCN2021087406-appb-000007
According to Table 4 and Figures 12-14, it can be seen that the compound represented by (R) -formula I and the compound represented by (S) -formula I can be separated with a resolution of 1.8, a good peak shape and a good peak purity, which meets the standard.
Example 5: determination of chiral purity of compound represented by formula I
Column: Daicel Chiralpak IC (250 mm×4.6 mm, 5.0 μm) .
Volume ratio of mobile phase: n-hexane /isopropanol /dichloromethane /tetrahydrofuran /acetic acid=700 /70 /80 /150 /1.
Detection wavelength: 282 nm.
Flow rate: 2.0 ml/min.
Column temperature: 33℃.
Injection volume: 20 μl.
Diluent: the volume ratio of dichloromethane to mobile phase was 1: 1.
Experimental steps
Solution preparation: about 30 mg of the compound represented by formula I was weighed precisely and placed into a 20 ml measuring flask, after 10 ml of dichloromethane was added to dissolve, it was diluted to the mark with the mobile phase, shaken well, and used as a test solution;
about 30 mg of the compound represented by (S) -formula I was weighed precisely and placed in a 20 ml measuring flask, after 10 ml of dichloromethane was added to dissolve, it was diluted to the mark with the mobile phase, shaken well, and then 1 ml of this solution was measured precisely and placed in a 50 ml measuring flask, then it was diluted to the mark with the diluent and shaken well. Then 1 ml of this solution was measured precisely and placed in a 20 ml measuring flask, then it was diluted to the mark with the diluent and shaken well, and used as a positioning solution of compound represented by (S) -formula I;
about 30 mg of the compound represented by (R) -formula I was weighed precisely and placed in a 20 ml measuring flask, after 10 ml of dichloromethane was added to dissolve, it was diluted to the mark with the  mobile phase, shaken well, and then 1 ml of this solution was measured precisely and placed in a 50 ml measuring flask, then it was diluted to the mark with the diluent and shaken well. Then 1 ml of the solution was measured precisely and placed in a 20 ml measuring flask, then it was diluted to the mark with the diluent, shaken well, and used as a positioning solution of compound represented by (R) -formula I;
about 30 mg of the compound represented by (S) -formula I was weighed and placed into a 20 ml measuring flask and about 2 ml of the positioning solution of compound represented by (R) -formula I was measured, and 10 ml of dichloromethane was added to dissolve, and it was diluted to the mark with the mobile phase, shaken well, and used as a resolution solution. Each 10 μl of the positioning solution of the compound represented by (S) -formula I, the positioning solution of the compound represented by (R) -formula I and the resolution solution were measured precisely and injected into the liquid chromatograph, and the liquid chromatogram was recorded and calculated by the area normalization method (see Table 5) .
Table 5 System suitability test results
Figure PCTCN2021087406-appb-000008
According to Table 5 and Figures 15-17, it can be seen that the compound represented by (R) -formula I and the compound represented by (S) -formula I can be effectively separated with a resolution of 2.1, a good peak shape and a good peak purity, which meets the standard.
Example 6: determination of chiral purity of compound represented by formula I
Column: Daicel Chiralpak IC (250 mm×4.6 mm, 5.0 μm) .
Volume ratio of mobile phase: n-hexane /isopropanol /dichloromethane /tetrahydrofuran /acetic acid /diethylamine=700 /70 /80 /150 /1 /1.0.
Detection wavelength: 282 nm.
Flow rate: 2.0 ml/min.
Column temperature: 33℃.
Injection volume: 20 μl.
Diluent: the volume ratio of dichloromethane to mobile phase was 1: 1.
Experimental steps
Solution preparation: about 20 mg of the compound represented by formula I was weighed precisely and placed into a 10 ml measuring flask, and 5 ml of DCM was added, after it was dissolved completely, it was diluted to the mark with the diluent, shaken well, and used as a test solution;
about 20 mg of reference substance of the compound represented by (S) -formula I and 1 mg of reference substance of the compound represented by (R) -formula I were weighed respectively and placed into a 10 ml measuring flask. After 5 ml of DCM was added to dissolve, it was diluted to the mark with the mobile phase, shaken well, and used as a resolution solution. 20 μl of the resolution solution was measured precisely and injected into the liquid chromatograph, and the liquid chromatogram was recorded and calculated by the area normalization method (see Table 6) .
Table 6 System suitability test results
Figure PCTCN2021087406-appb-000009
According to Table 6 and Figure 18, it can be seen that the compound represented by (R) -formula I and the compound represented by (S) -formula I can be effectively separated, with a resolution of 1.6, a good peak shape and a good peak purity, which meets the standard.
Example 7: determination of chiral purity of compound represented by formula I
Column: Daicel Chiralpak IC (250 mm×4.6 mm, 5.0 μm) .
Volume ratio of mobile phase: n-hexane /isopropanol /dichloromethane /tetrahydrofuran /acetic acid /diethylamine=700 /70 /80 /150 /1 /0.5.
Detection wavelength: 282 nm.
Flow rate: 2.0 ml/min.
Column temperature: 33℃.
Injection volume: 20 μl.
Diluent: the volume ratio of dichloromethane to mobile phase was 1: 1.
Experimental steps
Solution preparation: about 20 mg of the compound represented by formula I was weighed precisely and placed into a 10 ml measuring flask, and 5 ml of dichloromethane was added, after it was dissolved completely, it was diluted to the mark with the mobile phase, shaken well, and used as a test solution;
about 20 mg of reference substance of the compound represented by (S) -formula I and 1 mg of reference  substance of the compound represented by (R) -formula I were weighed respectively and placed into a 10 ml measuring flask. After 5 ml of dichloromethane was added to dissolve, it was diluted to the mark with the mobile phase, shaken well, and used as a resolution solution. 20 μl of the resolution solution was measured precisely and injected into the liquid chromatograph, and the liquid chromatogram was recorded and calculated by the area normalization method (see Table 7) .
Table 7 System suitability test results
Figure PCTCN2021087406-appb-000010
According to Table 7 and Figure 19, it can be seen that the compound represented by (R) -formula I and the compound represented by (S) -formula I can be effectively separated, with a resolution of 1.8, a good peak shape and a good peak purity, which meets the standard.
Example 8: determination of chiral purity of compound represented by formula I
Column: Daicel Chiralpak IC (250 mm×4.6 mm, 5.0 μm) .
Volume ratio of mobile phase: tetrahydrofuran /isopropanol /dichloromethane /n-hexane /diethylamine /triethylamine=150 /100 /50 /700 /1 /1.
Detection wavelength: 265 nm.
Flow rate: 1.0 ml/min.
Column temperature: 33℃.
Injection volume: 10 μl.
Diluent: the composition was the same as the mobile phase.
Experimental steps
Solution preparation: about 2 mg of reference substance of the compound represented by (R) -formula I and 20 mg of reference substance of the compound represented by (S) -formula I were weighed respectively and placed into a 20 ml measuring flask, shaken well, and used as a resolution solution.
10 μl of the resolution solution was measured precisely and injected into the liquid chromatograph, and the liquid chromatogram was recorded and calculated by the area normalization method (see Table 8) .
Table 8 System suitability test results
Figure PCTCN2021087406-appb-000011
Figure PCTCN2021087406-appb-000012
According to Table 8 and Figure 20, it can be seen that the compound represented by (R) -formula I and the compound represented by (S) -formula I can be separated with a resolution of 1.1.
Example 9: determination of chiral purity of compound represented by formula I
Column: Daicel Chiralpak IC (250 mm×4.6 mm, 5.0 μm) .
Volume ratio of mobile phase: tetrahydrofuran /ethanol /isopropanol /dichloromethane /n-hexane /diethylamine=80 /150 /150 /50 /700 /1.
Detection wavelength: 265 nm.
Flow rate: 1.0 ml/min.
Column temperature: 33℃.
Injection volume: 10 μl.
Diluent: the composition was the same as the mobile phase.
Experimental steps
Solution preparation: about 20 mg of reference substance of the compound represented by (R) -formula I and about 20 mg of reference substance of the compound represented by (S) -formula I were weighed respectively and placed into a 20 ml measuring flask precisely, and it was diluted to the mark with the diluent, shaken well, and used as a resolution solution;
10 μl of resolution solution was measured precisely and injected into the liquid chromatograph, and the liquid chromatogram was recorded and calculated by the area normalization method (see Table 9) .
Table 9 System suitability test results
Figure PCTCN2021087406-appb-000013
According to Table 9 and Figure 21, it can be seen that the compound represented by (R) -formula I and the compound represented by (S) -formula I can be separated with a resolution of 1.3.
Example 10: determination of chiral purity of compound represented by formula I
Column: Daicel Chiralpak IC (250 mm×4.6 mm, 5.0 μm) .
Volume ratio of mobile phase: tetrahydrofuran /isopropanol /dichloromethane /n-hexane /diethylamine=150 /100 /50 /700 /1.
Detection wavelength: 265 nm.
Flow rate: 1.0 ml/min.
Column temperature: 33 ℃.
Injection volume: 10 μl.
Diluent: the composition was the same as the mobile phase.
Experimental steps
Solution preparation: about 20 mg of reference substance of the compound represented by (R) -formula I and about 20 mg of reference substance of the compound represented by (S) -formula I were weighed respectively and placed into a 20 ml measuring flask precisely, and it was shaken well, and used as a resolution solution.
10 μl of the resolution solution was measured precisely and injected into the liquid chromatograph, and the liquid chromatogram was recorded and calculated by the area normalization method (see Table 10) .
Table 10 System suitability test results
Figure PCTCN2021087406-appb-000014
According to Table 10 and Figure 22, it can be seen that the compound represented by (R) -formula I and the compound represented by (S) -formula I can be separated very well with a resolution of 2.0.
Example 11: determination of chiral purity of compound represented by formula I
Column: Daicel Chiralpak IC (250 mm×4.6 mm, 5.0 μm) .
Volume ratio of mobile phase: tetrahydrofuran /ethanol /dichloromethane /n-hexane /diethylamine=120 /130 /50 /700 /2.
Detection wavelength: 265 nm.
Flow rate: 1.0 ml/min.
Column temperature: 33℃.
Injection volume: 10 μl.
Diluent: the composition was the same as the mobile phase.
Experimental steps
Solution preparation: about 20 mg of reference substance of the compound represented by (R) -formula I and about 20 mg of reference substance of the compound represented by (S) -formula I were weighed respectively and placed into a 20 ml measuring flask precisely, and it was diluted to the mark with the diluent, shaken well, and used as a resolution solution;
10 μl of the resolution solution was measured precisely and injected into the liquid chromatograph, and the liquid chromatogram was recorded and calculated by the area normalization method (see Table 11) .
Table 11 System suitability test results
Figure PCTCN2021087406-appb-000015
According to Table 11 and Figure 23, it can be seen that the compound represented by (R) -formula I and the compound represented by (S) -formula I can be separated with a resolution of 1.5.
Comparative example 1: determination of chiral purity of compound represented by formula I
Column: Daicel Chiralpak IC (250 mm×4.6 mm, 5.0 μm) .
Volume ratio of mobile phase: ethanol/n-hexane/diethylamine=300/700/1.
Detection wavelength: 265 nm.
Flow rate: 1.0 ml/min.
Column temperature: 33℃.
Injection volume: 10 μl.
Diluent: the composition was the same as the mobile phase.
Experimental steps
Solution preparation: about 20 mg of reference substance of the compound represented by (R) -formula I and about 20 mg of reference substance of the compound represented by (S) -formula I were weighed respectively and placed into a 20 ml measuring flask precisely, and it was shaken well, and used as a resolution solution.
10 μl of the resolution solution was measured precisely and injected into the liquid chromatograph, and the liquid chromatogram was recorded and calculated by the area normalization method.
According to Figure 24, it can be seen that the compound represented by (R) -formula I and the compound represented by (S) -formula I did not show peaks for 120 minutes under this condition, which is not suitable.
Comparative example 2: determination of chiral purity of compound represented by formula I
Column: Daicel Chiralpak IC (250 mm×4.6 mm, 5.0 μm) .
Volume ratio of mobile phase: n-hexane /ethanol /dichloromethane /diethylamine=600 /200 /200 /1.
Detection wavelength: 265 nm.
Flow rate: 1.0 ml/min.
Column temperature: 33℃.
Injection volume: 20 μl.
Diluent: the composition was the same as the mobile phase.
Experimental steps
Solution preparation: about 20 mg of reference substance of the compound represented by (R) -formula I and about 20 mg of reference substance of the compound represented by (S) -formula I were weighed respectively and placed into the 50 ml measuring flask precisely, and it was shaken well, and used as a resolution solution.
20 μl of the resolution solution was measured precisely and injected into the liquid chromatograph, and the liquid chromatogram was recorded and calculated by the area normalization method (see Table 12) .
Table 12 System suitability test results
Figure PCTCN2021087406-appb-000016
N/A means it has been tested and cannot be calculated due to poor resolution.
According to Table 12 and Figure 25, it can be seen that the separation of the compound represented by (R) -formula I and the compound represented by (S) -formula I is poor.
Comparative example 3: determination of chiral purity of compound represented by formula I
Column: Daicel Chiralpak IC (250 mm×4.6 mm, 5.0 μm) .
Volume ratio of mobile phase: tetrahydrofuran /ethanol /n-hexane /diethylamine=80 /250 /650 /1.
Detection wavelength: 265 nm.
Flow rate: 1.0 ml/min.
Column temperature: 33℃.
Injection volume: 10 μl.
Diluent: the composition was same as the mobile phase.
Experimental steps
Solution preparation: about 20 mg of reference substance of the compound represented by (R) -formula I and about 20 mg of reference substance of the compound represented by (S) -formula I were weighed respectively and placed into a 20 ml measuring flask precisely, and it was shaken well, and used as a resolution solution.
10 μl of the resolution solution was measured precisely and injected into the liquid chromatograph, and the liquid chromatogram was recorded and calculated by the area normalization method (see Table 13) .
Table 13 System suitability test results
Figure PCTCN2021087406-appb-000017
Figure PCTCN2021087406-appb-000018
N/A means it has been tested and cannot be calculated due to poor resolution.
According to Table 13 and Figure 26, it can be seen that the separation of the compound represented by (R) -formula I and the compound represented by (S) -formula I is poor.

Claims (10)

  1. An HPLC analysis method for substance X; the substance X is a compound as represented by formula I-A and/or I-B;
    Figure PCTCN2021087406-appb-100001
    the HPLC analysis method comprises the following steps: in a chiral chromatographic column, eluting the substance X with a mobile phase;
    the mobile phase comprises an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent and an ether solvent,
    in parts by volume, the alkane solvent is 600-800 parts, the alcohol solvent is 50-350 parts, the halogenated hydrocarbon solvent is 30-100 parts, and the ether solvent is 50-200 parts.
  2. The HPLC analysis method for substance X as defined in claim 1, wherein,
    the alkane solvent is a C 5-C 10 alkane solvent;
    and/or, the alcohol solvent is a C 1-C 3 alcohol solvent;
    and/or, the halogenated hydrocarbon solvent is dichloromethane;
    and/or, the ether solvent is tetrahydrofuran;
    and/or, in parts by volume, the alkane solvent is 650-750 parts;
    and/or, in parts by volume, the alcohol solvent is 60-300 parts;
    and/or, in parts by volume, the halogenated hydrocarbon solvent is 40-90 parts;
    and/or, in parts by volume, the ether solvent is 70-160 parts;
    and/or, the chiral chromatographic column is a bonded chiral chromatographic column;
    and/or, the column temperature of the chiral chromatography column is 25-35℃;
    and/or, the elution is isocratic elution;
    and/or, the flow rate of elution is 0.5-3 ml/min;
    and/or, the detection wavelength of the HPLC analysis method is 200-300 nm.
  3. The HPLC analysis method for substance X as defined in claim 2, wherein,
    the alkane solvent is n-hexane;
    and/or, the alcohol solvent is ethanol and/or isopropanol, preferably isopropanol;
    and/or, in parts by volume, the alcohol solvent is 60-110 parts, for example, 60-80 parts or 90-110 parts;
    and/or, in parts by volume, the halogenated hydrocarbon solvent is 40-60 parts or 70-90 parts;
    and/or, in parts by volume, the ether solvent is 140-160 parts;
    and/or, the chiral chromatographic column is a polysaccharide derivative solvent-resistant chiral chromatographic column, may be a solvent-resistant chiral column of sugar derivatives with cellulose-tris (3, 5-dichlorophenyl carbamate) bonded to the surface of silica gel, for example, Daicel Chiralpak IC chiral chromatographic column, and for for example, Daicel Chiralpak IC (250 mm×4.6 mm, 5.0 μm) ;
    and/or, the flow rate of elution is 1-2 ml/min;
    and/or, the detection wavelength of the HPLC analysis method is 260-290 nm.
  4. The HPLC analysis method for substance X as defined in claim 1, wherein,
    the mobile phase comprises a carboxylic acid solvent;
    and/or, the mobile phase comprises an organic amine.
  5. The HPLC analysis method for substance X as defined in claim 4, wherein,
    when the mobile phase comprises a carboxylic acid solvent, the carboxylic acid solvent is acetic acid;
    and/or, when the mobile phase comprises a carboxylic acid solvent, in parts by volume, the carboxylic acid solvent is 0.5-2.5 parts;
    and/or, when the mobile phase comprises an organic amine, the organic amine is diethylamine and/or triethylamine;
    and/or, when the mobile phase comprises an organic amine, in parts by volume, the organic amine is 0.1-4 parts.
  6. The HPLC analysis method for substance X as defined in claim 5, wherein,
    when the mobile phase comprises a carboxylic acid solvent, in parts by volume, the carboxylic acid solvent is 0.5-1.5 parts;
    and/or, when the mobile phase comprises an organic amine, the organic amine is diethylamine;
    and/or, when the mobile phase comprises an organic amine, in parts by volume, the organic amine is 0.1-2.5 parts, preferably 0.1-1.5 parts, and may be 0.1-0.3 part.
  7. The HPLC analysis method for substance X as defined in any one of claims 1 to 6, wherein, the mobile phase is any one of the following schemes;
    scheme 1:
    the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent and an ether solvent;
    scheme 2:
    the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent and an ether solvent; in parts by volume, the alkane solvent is 650-750 parts, and the alcohol solvent is 60-300 parts, the halogenated hydrocarbon solvent is 40-90 parts, and the ether solvent is70-160 parts;
    scheme 3:
    the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent and an ether solvent; in parts by volume, the alkane solvent is 650-750 parts, the alcohol solvent is 60-110 parts, the halogenated hydrocarbon solvent is 40-90 parts, the ether solvent is140-160 parts; the alkane solvent is n-hexane, the alcohol solvent is ethanol and/or isopropanol, the halogenated hydrocarbon solvent is dichloromethane, and the ether solvent is tetrahydrofuran;
    scheme 4:
    the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent and a carboxylic acid solvent; in parts by volume, the alkane solvent is 600-800 parts, the alcohol solvent is 50-350 parts, the halogenated hydrocarbon solvent is 30-100 parts, the ether solvent is 50-200 parts, and the carboxylic acid solvent is 0.5-2.5 parts;
    scheme 5:
    the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent and a carboxylic acid solvent; in parts by volume, the alkane solvent is 650-750 parts, the alcohol solvent is 60-300 parts, the halogenated hydrocarbon solvent is 40-90 parts, the ether solvent is 70-160 parts, and the carboxylic acid solvent is 0.5-1.5 parts;
    scheme 6:
    the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent and a carboxylic acid solvent; in parts by volume, the alkane solvent is 650-750 parts, the alcohol solvent is 60-80 parts, the halogenated hydrocarbon solvent is 70-90 parts, the ether solvent is 140-160 parts, and the carboxylic acid solvent is 0.5-1.5 parts; the alkane solvent is n-hexane, the alcohol solvent is ethanol and/or isopropanol, the halogenated hydrocarbon solvent is dichloromethane, the ether solvent is tetrahydrofuran, and the carboxylic acid solvent is acetic acid;
    scheme 7:
    the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent and an organic amine; in parts by volume, the alkane solvent is 600-800 parts, the alcohol solvent is 50-350 parts, the halogenated hydrocarbon solvent is 30-100 parts, the ether solvent is 50-200 parts, and the organic amine is 0.1-4 parts;
    scheme 8:
    the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent and an organic amine; in parts by volume, the alkane solvent is 650-750 parts, the alcohol  solvent is 60-300 parts, the halogenated hydrocarbon solvent is 40-90 parts, the ether solvent is 70-160 parts, and the organic amine is 0.1-2.5 parts; the alkane solvent is n-hexane, the alcohol solvent is ethanol and/or isopropanol, the halogenated hydrocarbon solvent is dichloromethane, the ether solvent is tetrahydrofuran, and the organic amine is diethylamine and/or trimethylamine;
    scheme 9:
    the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent and an organic amine; in parts by volume, the alkane solvent is 650-750 parts, the alcohol solvent is 90-110 parts, the halogenated hydrocarbon solvent is 40-60 parts, the ether solvent is 140-160 parts, and the organic amine is 0.1-1.5 parts; the alkane solvent is n-hexane, the alcohol solvent is isopropanol, the halogenated hydrocarbon solvent is dichloromethane, the ether solvent is tetrahydrofuran; and the organic amine is diethylamine;
    scheme 10:
    the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent, a carboxylic acid solvent and an organic amine; in parts by volume, the alkane solvent is 600-800 parts, the alcohol solvent is 50-350 parts, the halogenated hydrocarbon solvent is 30-100 parts, the ether solvent is 50-200 parts, the carboxylic acid solvent is 0.5-2.5 parts, and the organic amine is 0.1-4 parts;
    scheme 11:
    the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvents, a carboxylic acid solvent and an organic amine; in parts by volume, the alkane solvent is 650-750 parts, the alcohol solvent is 60-300 parts, the halogenated hydrocarbon solvent is 40-90 parts, the ether solvent is 70-160 parts, the carboxylic acid solvent is 0.5-1.5 parts, and the organic amine is 0.1-2.5 parts;
    scheme 12:
    the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent, a carboxylic acid solvent and an organic amine; in parts by volume, the alkane solvent is 650-750 parts, the alcohol solvent is 60-80 parts, the halogenated hydrocarbon solvent is 70-90 parts, and the ether solvent is 140-160 parts, the carboxylic acid solvent is 0.5-1.5 parts, the organic amine is 0.1-1.5 parts; the alkane solvent is n-hexane, the alcohol solvent is ethanol and/or isopropanol, the halogenated hydrocarbon solvent is dichloromethane, the ether solvent is tetrahydrofuran; the carboxylic acid solvent is acetic acid, and the organic amine is diethylamine and/or triethylamine;
    scheme 13:
    the mobile phase is composed of an alkane solvent, an alcohol solvent, a halogenated hydrocarbon solvent, an ether solvent, a carboxylic acid solvent and an organic amine; in parts by volume, the alkane solvent is 650-750 parts, the alcohol solvent is 60-80 parts, the halogenated hydrocarbon solvent is 70-90 parts, and the ether solvent is 140-160 parts, the carboxylic acid solvent is 0.5-1.5 parts, the organic amine is 0.1-0.3 part; the  alkane solvent is n-hexane, the alcohol solvent is isopropanol, the halogenated hydrocarbon solvent is dichloromethane, the ether solvent is tetrahydrofuran; the carboxylic acid solvent is acetic acid, and the organic amine is diethylamine.
  8. The HPLC analysis method for substance X as defined in claim 7, wherein, the mobile phase is any one of the following schemes;
    the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 100 parts of ethanol, 50 parts of dichloromethane, and 150 parts of tetrahydrofuran;
    or,
    the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 70 parts of isopropanol, 80 parts of dichloromethane, and 150 parts of tetrahydrofuran;
    or,
    the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 70 parts of isopropanol, 80 parts of dichloromethane, 150 parts of tetrahydrofuran, and 1 part of acetic acid;
    or,
    the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 130 parts of ethanol, 50 parts of dichloromethane, 120 parts of tetrahydrofuran, 1 part of diethylamine, and 1 part of trimethylamine;
    or,
    the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 100 parts of isopropanol, 50 parts of dichloromethane, 150 parts of tetrahydrofuran, 1 part of diethylamine and 1 part of triethylamine;
    or,
    the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 150 parts of ethanol, 150 parts of isopropanol, 50 parts of dichloromethane, 80 parts of tetrahydrofuran, and 1 part of diethylamine;
    or,
    the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 100 parts of isopropanol, 50 parts of dichloromethane, 150 parts of tetrahydrofuran and 1 part of diethylamine;
    or,
    the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 130 parts of ethanol, 50 parts of dichloromethane, 120 parts of tetrahydrofuran and 2 parts of diethylamine;
    or,
    the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 70 parts of isopropanol, 80 parts of dichloromethane, 150 parts of tetrahydrofuran, 1 part of acetic acid, and  0.2 part of diethylamine;
    or,
    the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 70 parts of isopropanol, 80 parts of dichloromethane, and 150 parts of tetrahydrofuran, 1 part of acetic acid and 0.5 part of diethylamine;
    or,
    the mobile phase is composed of the following components; in parts by volume, 700 parts of n-hexane, 70 parts of isopropanol, 80 parts of dichloromethane, 150 parts of tetrahydrofuran, 1 part of acetic acid and 1 part of diethylamine.
  9. The HPLC analysis method for substance X as defined in claim 1, wherein,
    the substance X is added to the chiral chromatography column in the form of a solution, the method for preparing the solution of substance X is method one or method two:
    method one: dissolving substance X in a solvent;
    method two: extracting the formulation containing substance X.
  10. The HPLC analysis method for substance X as defined in claim 9, wherein,
    the solvent in the solution is same as the mobile phase as defined in any one of claims 1 to 8, or a mixed solvent of a halogenated hydrocarbon solvent and the mobile phase as defined in any one of claims 1 to 8; the volume ratio of the halogenated hydrocarbon solvent to the mobile phase may be 0.5: 1-2: 1; the halogenated hydrocarbon solvents may be dichloromethane;
    and/or, the injection volume of the solution of substance X is 1-30 μL, may be 10-20 μL.
PCT/CN2021/087406 2020-05-14 2021-04-15 Hplc analysis method for n- (phenylsulfonyl) benzamide compound WO2021227763A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010406277.X 2020-05-14
CN202010406277 2020-05-14

Publications (1)

Publication Number Publication Date
WO2021227763A1 true WO2021227763A1 (en) 2021-11-18

Family

ID=78526352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087406 WO2021227763A1 (en) 2020-05-14 2021-04-15 Hplc analysis method for n- (phenylsulfonyl) benzamide compound

Country Status (1)

Country Link
WO (1) WO2021227763A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114965742A (en) * 2022-04-21 2022-08-30 广西铭磊维生制药有限公司 Method for determining vitamin K1 drop-related substances

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018027097A1 (en) * 2016-08-05 2018-02-08 The Regents Of The University Of Michigan N-(phenylsulfonyl)benzamides and related compounds as bcl-2 inhibitors
CN111537654A (en) * 2020-07-07 2020-08-14 上海亚盛医药科技有限公司 HPLC analysis method of N- (phenylsulfonyl) benzamide compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018027097A1 (en) * 2016-08-05 2018-02-08 The Regents Of The University Of Michigan N-(phenylsulfonyl)benzamides and related compounds as bcl-2 inhibitors
CN111537654A (en) * 2020-07-07 2020-08-14 上海亚盛医药科技有限公司 HPLC analysis method of N- (phenylsulfonyl) benzamide compound

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUN TING-TING;SU DAN;CHEN JING;ZHAO LONG-SHAN;GUO XING-JIE: "Enantioseparation of six racemic β-blockers byhigh performance liquid chromatographyon immobilized cellulose chiral stationary phase", JOURNAL OF SHENYANG PHARMACEUTICAL UNIVERSITY, vol. 33, no. 3, 20 March 2016 (2016-03-20), pages 220 - 225, XP055866255, ISSN: 1006-2858, DOI: 10.14066/j.cnki.cn21-1349/r.2016.03.008 *
WEN XIAOLI;SHI XINRU;HAI QINGMEI;ZHOU BINGJIE;LIU YANG;GUO XINGJIE: "Enantioseparation of four basic drugs by Chiralpak IC column", JOURNAL OF SHENYANG PHARMACEUTICAL UNIVERSITY, vol. 35, no. 7, 20 July 2018 (2018-07-20), pages 563 - 567, XP055866252, ISSN: 1006-2858, DOI: 10.14066/j.cnki.cn21-1349/r.2018.07.009 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114965742A (en) * 2022-04-21 2022-08-30 广西铭磊维生制药有限公司 Method for determining vitamin K1 drop-related substances
CN114965742B (en) * 2022-04-21 2023-08-18 广西铭磊维生制药有限公司 Method for measuring related substances of vitamin K1 drops

Similar Documents

Publication Publication Date Title
Neumann et al. DYRK1A inhibition and cognitive rescue in a Down syndrome mouse model are induced by new fluoro-DANDY derivatives
Naas et al. Palladium-catalyzed oxidative direct C3-and C7-alkenylations of indazoles: Application to the synthesis of Gamendazole
CN111537654B (en) HPLC analysis method of N- (phenylsulfonyl) benzamide compound
Qiu et al. Identification of new shikonin derivatives as antitumor agents targeting STAT3 SH2 domain
Pellati et al. Determination of ephedrine alkaloids in Ephedra natural products using HPLC on a pentafluorophenylpropyl stationary phase
WO2021227763A1 (en) Hplc analysis method for n- (phenylsulfonyl) benzamide compound
Covington et al. Atropoisomerism in biflavones: the absolute configuration of (−)-agathisflavone via chiroptical spectroscopy
Srivastava et al. Fluorinated benzylidene indanone exhibits antiproliferative activity through modulation of microtubule dynamics and antiangiogenic activity
EP3858830B1 (en) Crystal form of morpholino quinazoline compound, preparation method therefor and use thereof
WO2019056163A1 (en) N-formyl palbociclib and preparation method therefor and use thereof, and palbociclib preparation and quality control method therefor
US20220088006A1 (en) Analogs of deutetrabenazine, their preparation and use
Lu et al. A hydrogen peroxide responsive prodrug of Keap1-Nrf2 inhibitor for improving oral absorption and selective activation in inflammatory conditions
Xia et al. Simultaneous determination of brazilin and protosappanin B in Caesalpinia sappan by ionic-liquid dispersive liquid-phase microextraction method combined with HPLC
Dong et al. Antitumor Agents. 289. Design, Synthesis, and Anti-Breast Cancer Activity in Vivo of 4-Amino-2 H-benzo [h] chromen-2-one and 4-Amino-7, 8, 9, 10-tetrahydro-2 H-benzo [h] chromen-2-one Analogues with Improved Water Solubility
CN110256468B (en) Bisindole alkaloid compound or pharmaceutically acceptable salt thereof, and preparation method and application thereof
CN116925054B (en) Lignan compound in syringa oblata, and preparation method and application thereof
Sabarees et al. Isolation, Functionalization, In Silico Investigation, and Synthesis of 1, 8-Cineole Analog as Antitubercular Agent Targeting InhA
WO2019056211A1 (en) N-formyl vortioxetine and preparation method therefor and solid preparation of vortioxetine
Gowda et al. Validation of reverse phase-HPLC method for the quantitative estimation of norfloxacin in pure and pharmaceutical formulation
Hanna NMR regulatory analysis: determination and characterization of Chinese-herb aristolochic acids
TWI706934B (en) A derivative of sodium phenylaminopropionate, a process for its preparation and use of the same
KR102660247B1 (en) Crystal form, salt form and method for preparing the same of 4-(naphthalen-1-yl)-4H-1, 2, 4-triazole compound
Zhang et al. Design, Synthesis of (±)‐Millpuline A, and Biological Evaluation for the Lung Cell Protective Effects through SRC
WO2021175321A1 (en) Crystalline forms or amorphous forms of n- (phenyl sulfonyl) benzamide compounds or its salts or solvates
Jiao et al. Synthesis and in vitro Anti‐Inflammatory Activity of Novel Dendrobine Amide/Sulfonamide Derivatives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803983

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21803983

Country of ref document: EP

Kind code of ref document: A1