WO2021227395A1 - 一种纳米微孔复合材料的生产工艺 - Google Patents

一种纳米微孔复合材料的生产工艺 Download PDF

Info

Publication number
WO2021227395A1
WO2021227395A1 PCT/CN2020/126834 CN2020126834W WO2021227395A1 WO 2021227395 A1 WO2021227395 A1 WO 2021227395A1 CN 2020126834 W CN2020126834 W CN 2020126834W WO 2021227395 A1 WO2021227395 A1 WO 2021227395A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
nano
production process
composite material
air
Prior art date
Application number
PCT/CN2020/126834
Other languages
English (en)
French (fr)
Inventor
陈德东
魏里来
杜林海
Original Assignee
成都硕屋科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都硕屋科技有限公司 filed Critical 成都硕屋科技有限公司
Publication of WO2021227395A1 publication Critical patent/WO2021227395A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/413Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties containing granules other than absorbent substances
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4234Metal fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials

Definitions

  • the invention belongs to the technical field of thermal insulation materials, and specifically relates to a production process of a nano-microporous composite material.
  • Aerogels and their products have developed rapidly in recent years. Silica aerogels have achieved large-scale production and have been promoted and applied. The current global market for aerogels and their products is 3-4 billion U.S. dollars. It is expected to meet in 2020. Reach 5-6 billion US dollars. Despite the rapid development, it is difficult to promote due to its high price, and its total market size still has a relatively small share in the thermal insulation and energy-saving material market.
  • the current production process of aerogel composite felt mainly comes from ASPEN in the United States.
  • the sol-gel method is used to first dissolve silica in a solvent and immerse it in an alkali-free glass fiber felt or other high-performance fibers through a fluid method.
  • the felt is then gelled in the fiber felt, and after the gel is completed, the aerogel composite felt is obtained by solvent replacement, supercritical drying, solvent removal, and air replacement of the solvent.
  • This process will use a lot of solvents, which is not environmentally friendly.
  • the volume of various fiber felts is very large, but they need to be immersed in a lot of solvents and supercritical drying, which is very unfavorable Cost control.
  • the present invention provides a process for producing nano-microporous composite materials.
  • the process does not require liquid solvents.
  • the resulting composite material is a nano-type microporous composite material with thermal conductivity The coefficient is low.
  • a production process of nano-microporous composite material includes the following steps:
  • the fiber felt is pressed by the pressure roller, so that the inside of the fiber felt is filled with powder material to form a dense and airtight insulation material.
  • the nano-powder material of the present invention is liquid-phase silica powder, aerogel powder, hydrophobic silica powder, fumed silica powder, alumina powder, iron oxide powder and titanium oxide with a nanoporous structure At least one kind of powder.
  • the particle size of the nano powder material is 1-50 microns, and the density is 40-60 kg/m3. Choosing porous nanomaterials with low density and large volume is conducive to the formation of composite materials with low thermal conductivity.
  • the pore size of the nano powder material is less than 1 micron, and the powder with a pore size less than 100 nanometers accounts for 80-95%, and the obtained composite material has a lower thermal conductivity.
  • the composite fiber felt prepared by the invention contains 20-200g of nano powder per square meter, can achieve a good heat preservation effect, and will not leak powder due to excessive powder content.
  • the volume ratio of gas to solid in the fluidization device is 50-100:1.
  • the gas-solid ratio is large to fully fluidize, and at the same time, the powder content in the fiber mat can be well controlled, and the powder material can be used rationally.
  • the hole diameter of the hollow needle is 1-3 mm
  • the fluid pressure in the fluidization device is 0.02-0.2 MPa.
  • the pore size is 1-3mm, so that the nano-powder material can be closely attached to the fiber, and there is a strong interaction with the fiber material, and it will not fall; at the same time, with the fluid pressure of 0.02-0.2MPa, it can reasonably control the powder
  • the injection speed is low, and the equipment load is small; the pressure is too small to form an effective injection effect, and the pressure is too high, the equipment load is large, and the speed control becomes more difficult.
  • the pressure of the pressure roller of the present invention is 20-200 kilograms, which can effectively press the fiber felt, so that the inside of the fiber felt is filled with powder material to form a dense airtight insulation material.
  • the fiber mat of the present invention is an alkali-free glass fiber mat, basalt fiber mat, aluminum-magnesium fiber mat or silica fiber mat.
  • the fluidization equipment of the present invention includes a tank, a fan, and a nozzle.
  • the bottom of the tank is provided with the nozzle
  • the top of the tank is provided with a fluid outlet connected to a powder injection device
  • the inlet end of the nozzle A powder inlet and an air inlet connected to the air compressor are provided.
  • the outlet end of the nozzle faces the tank body.
  • the outer sides of the tank body are respectively provided with a fan.
  • One end of the fan is connected to the air inlet pipe.
  • One end is connected with an air outlet pipe
  • the two sides of the top of the tank body are respectively provided with air outlets connected to the corresponding air outlet pipes
  • the two sides of the bottom of the tank body are respectively provided with air inlets connected to the corresponding air inlet pipes.
  • the powder injection device is arranged side by side above and below the fiber mat, and the powder injection device includes a blocking cylinder, a fixing bracket, and a licker roller arranged on the fiber mat conveying mechanism, and the licker roller corresponds to the fiber
  • the licker roller and the barrier cylinder are both hollow structures with one end open; the outer surface of the licker roller is evenly distributed with a plurality of pinholes, and each pinhole is connected to a hollow needle.
  • the roller is arranged concentrically and is located in the licker roller, one side of the blocking cylinder is provided with an axial opening, the opening side is facing the fiber felt and the edge of the opening side is provided with a sealing strip, the sealing strip and the licker roller
  • the inner side wall abuts; the closed end of the blocking cylinder is set at the closed end of the licker roller, the open end of the blocking cylinder is provided with a feed tube that penetrates the open end of the licker roller, and the outer side wall of the feed tube is connected to
  • a sealing ring is arranged between the inner side walls of the open end of the licker roller, the feeding pipe is connected to the fixing bracket, and the inlet of the feeding pipe is connected to the fluidization device.
  • the production process of the present invention pulverizes materials such as silica, aerogel or alumina with nano-microporous structure to form fine powders, which are mixed with air and powder in a fluidization device to fluidize the powder materials, and then pass The airflow is injected into the fiber mat through the hollow needle.
  • the nano-powder material fills the voids in the fiber mat, and then is appropriately pressed to form a dense structure.
  • the powder and the fiber mat adhere to each other under the action of force, thereby preventing the air
  • the flow in the fiber gap avoids the heat transfer caused by air convection.
  • the thermal conductivity of the material is low, and the process does not require solvents, the equipment investment is small, and no solvents and supercritical processes are used.
  • the nano-microporous composite material prepared by the production process of the present invention has low thermal conductivity; good flexibility and resilience, not easy to break, durable, and can be used repeatedly; high temperature resistance, reaching the requirements of non-combustible A1; no asbestos, Prohibited substances such as heavy metals and harmful gases are not harmful to the environment, animals and plants.
  • Figure 1 is a schematic diagram of the structure of the fluidization device.
  • Figure 2 is a schematic diagram of the connection between the fluidization device and the powder injection device.
  • Figure 3 is a schematic diagram of the structure of a powder injection device.
  • Fig. 4 is a schematic cross-sectional structure diagram of a powder injection device.
  • a production process of nano-microporous composite material includes the following steps:
  • the hollow needle Under the action of air flow, the hollow needle is injected into the fiber mat, so that the powder material enters the fiber mat and fills the gaps between the fibers.
  • a production process of nano-microporous composite material includes the following steps:
  • the hollow needle Under the action of air flow, the hollow needle is injected into the fiber mat, so that the powder material enters the fiber mat and fills the gaps between the fibers.
  • the fiber felt is pressed by the pressure roller, so that the inside of the fiber felt is filled with powder material to form a dense airtight insulation material with a thermal conductivity of 0.029W/(m.k).
  • the powder material is nanoporous material with a particle size of 50 microns and a density of 60 kg/m3.
  • the prepared composite fiber felt contains 200 g of nano powder per square meter.
  • the volume ratio of gas and solid in the fluidization equipment is 100:1.
  • the hole diameter of the hollow needle is 3 mm
  • the pressure of the pressure roller is 200 kg
  • the fluid pressure in the fluidization device is 0.2 MPa.
  • the fiber mat is an alkali-free glass fiber mat.
  • the pore diameter of the nano powder material is less than 100 nanometers.
  • a production process of nano-microporous composite material includes the following steps:
  • the hollow needle Under the action of air flow, the hollow needle is injected into the fiber mat, so that the powder material enters the fiber mat and fills the gaps between the fibers.
  • the fiber felt is pressed by a pressure roller, so that the inside of the fiber felt is filled with powder material to form a dense and airtight insulation material with a thermal conductivity of 0.026W/(m.k).
  • the powder material is nanoporous material with a particle size of 1 micron and a density of 40 kg/m3.
  • the prepared composite fiber felt contains 20 g of nano powder per square meter.
  • the volume ratio of gas and solid in the fluidization equipment is 50:1.
  • the hole diameter of the hollow needle is 1 mm
  • the pressure of the pressure roller is 20 kg
  • the fluid pressure in the fluidization device is 0.02 MPa.
  • the fiber mat is basalt fiber mat.
  • the pore diameter of the nano powder material is less than 100 nanometers.
  • a production process of nano-microporous composite material includes the following steps:
  • the hollow needle Under the action of air flow, the hollow needle is injected into the fiber mat, so that the powder material enters the fiber mat and fills the gaps between the fibers.
  • the fiber felt is pressed by a pressure roller, so that the inside of the fiber felt is filled with powder material to form a dense airtight insulation material with a thermal conductivity of 0.027W/(m.k).
  • the powder material is nanoporous material with a particle size of 30 microns and a density of 45 kg/m3.
  • the prepared composite fiber felt contains 100g of nano powder per square meter.
  • the volume ratio of gas and solid in the fluidization equipment is 80:1.
  • the hole diameter of the hollow needle is 2 mm
  • the pressure of the pressure roller is 100 kg
  • the fluid pressure in the fluidization device is 0.03 MPa.
  • the fiber felt is aluminum-magnesium fiber felt.
  • the pore diameter of the nano powder material is less than 100 nanometers.
  • a production process of nano-microporous composite material includes the following steps:
  • the hollow needle Under the action of air flow, the hollow needle is injected into the fiber mat, so that the powder material enters the fiber mat and fills the gaps between the fibers.
  • the fiber felt is pressed by the pressure roller, so that the inside of the fiber felt is filled with powder material to form a dense airtight insulation material with a thermal conductivity of 0.032W/(m.k).
  • the powder material is nanoporous material with a particle size of 25 microns and a density of 50 kg/m3.
  • the prepared composite fiber felt contains 120g of nano powder per square meter.
  • the volume ratio of gas and solid in the fluidization equipment is 60:1.
  • the hole diameter of the hollow needle is 2 mm
  • the pressure of the pressure roller is 80 kg
  • the fluid pressure in the fluidization device is 0.01 MPa.
  • the fiber mat is silica fiber mat.
  • the pore diameter of the nano powder material is less than 100 nanometers.
  • a production process of nano-microporous composite material includes the following steps:
  • the hollow needle Under the action of air flow, the hollow needle is injected into the fiber mat, so that the powder material enters the fiber mat and fills the gaps between the fibers.
  • the fiber felt is pressed by the pressure roller, so that the inside of the fiber felt is filled with powder material to form a dense airtight insulation material with a thermal conductivity of 0.026W/(m.k).
  • the powder material is nanoporous material with a particle size of 25 microns and a density of 50 kg/m3.
  • the prepared composite fiber felt contains 120g of nano powder per square meter.
  • the volume ratio of gas and solid in the fluidization equipment is 60:1.
  • the hole diameter of the hollow needle is 2 mm
  • the pressure of the pressure roller is 80 kg
  • the fluid pressure in the fluidization device is 0.01 MPa.
  • the fiber mat is silica fiber mat.
  • the pore diameter of the nano powder material is less than 100 nanometers.
  • a production process of nano-microporous composite material includes the following steps:
  • the hollow needle Under the action of air flow, the hollow needle is injected into the fiber mat, so that the powder material enters the fiber mat and fills the gaps between the fibers.
  • the fiber felt is pressed by the pressure roller, so that the inside of the fiber felt is filled with powder material to form a dense airtight insulation material with a thermal conductivity of 0.024W/(m.k).
  • the powder material is nanoporous material with a particle size of 25 microns and a density of 50 kg/m3.
  • the prepared composite fiber felt contains 120g of nano powder per square meter.
  • the volume ratio of gas and solid in the fluidization equipment is 60:1.
  • the hole diameter of the hollow needle is 2 mm
  • the pressure of the pressure roller is 80 kg
  • the fluid pressure in the fluidization device is 0.01 MPa.
  • the fiber mat is an alkali-free glass fiber mat.
  • the pore diameter of the nano powder material is less than 100 nanometers.
  • the fluidization equipment of the present invention includes a tank 1, a fan 4, and a nozzle 3.
  • the bottom of the tank 1 is provided with the nozzle 3, and the top of the tank 1 is provided with connecting powder.
  • the fluid outlet of the injection device, the inlet end of the nozzle 3 is provided with a powder inlet 32 and an air inlet 31 connected to the air compressor 7, and the outlet end of the nozzle 3 faces the inside of the tank 1, and the outer sides of the tank 1
  • Each fan 4 is provided, one end of the fan 4 is connected to the air inlet pipe 5, and the other end of the fan 4 is connected to the air outlet pipe 6.
  • the two sides of the top of the tank body 1 are respectively provided with air outlets connected to the corresponding air outlet pipe 6;
  • the two sides of the bottom of the tank body 1 are respectively provided with air inlets connected to the corresponding air inlet pipes 5.
  • the feed port of the fluidization equipment is equipped with a nozzle 3, and the air is directly pressurized by an air compressor 7.
  • the compressed air is directly sprayed from the nozzle 3 into the tank body 1 at a high speed. It is directly sucked into the tank 1 from the powder inlet 32; at the same time, there is a certain pressure in the tank 1, and the fluid will automatically enter the powder injection device from the fluid outlet on the top of the tank 1 under the action of the pressure. It can realize automatic inhalation of powder and delivery of powder to the powder injection device, and control the flow rate of the fluid, without the need for a pressure pump, and save energy.
  • a fan 4 is provided on both sides of the outside of the tank 1.
  • the inside of the tank 1 is formed from bottom to top, and the outside of the tank 1 forms a top-to-bottom air circulation, so that the light powder in the tank 1 is in the tank with the air flow. Circulation inside and outside the body, will not settle, it is more conducive to the full mixing of powder and air evenly, ensuring its full fluidization.
  • a powder injection device is arranged side by side above and below the fiber mat 13, and the powder injection device includes a blocking cylinder 56, a fixed bracket 57, and is arranged on the fiber mat conveying mechanism 12.
  • the licker roller 54 is arranged corresponding to the fiber felt 1.
  • the licker roller 54 and the blocking cylinder 56 are both hollow structures with one end open; the outer surface of the licker roller 54 is uniformly distributed with a plurality of pinholes, and Each needle hole is connected to a hollow needle 55.
  • the blocking cylinder 56 is arranged coaxially with the licker roller 54 and is located in the licker roller 54.
  • One side of the blocking cylinder 56 is provided with an axial opening, and the opening side is positive.
  • a sealing strip 59 is provided on the edge of the fiber mat 1 and on the opening side, and the sealing strip 59 abuts against the inner side wall of the licker roller 54;
  • the open end of the cylinder 56 is provided with a feed tube 561 passing through the open end of the licker roller 54.
  • a sealing ring 58 is provided between the outer side wall of the feed tube 561 and the inner side wall of the open end of the licker roller 54.
  • the feed pipe 561 is connected to the fixed bracket 57, and the inlet of the feed pipe 561 is connected to a fluidization device.
  • the licker roller 54 is rolled over the fiber mat 13, and the blocking cylinder 56 is fixedly installed above the fiber mat 1 by a fixed bracket 57, and the opening side of the blocking cylinder 56 is facing the fiber mat 1, and the discharge port of the fluidization device is connected to the blocking
  • the feed tube 561 of the cylinder 56 sends the fluid into the blocking cylinder 56, when the hollow needle 55 on the opening side of the blocking cylinder 56 pierces the fiber mat 13, the powder material of the fluid is fed into the fiber mat 13; the hollow needle 55 leaves the fiber mat 13, that is, away from the opening side of the blocking cylinder 56, and the powder material is blocked by the blocking cylinder 56 and no powder will be discharged.
  • a sealing strip 59 is provided on the edge of the opening side of the barrier cylinder 56 to abut against the inner side wall of the licker roller 54, which can prevent powder materials from entering the gap between the licker roller 54 and the barrier cylinder 56, and prevent the hollow needle 55 from leaking powder after leaving the fiber felt;
  • a sealing ring 58 is provided between the outer side wall of the discharge tube 561 of 56 and the inner side wall of the open end of the licker roller 54, which also plays a role in preventing the powder material from entering the gap between the licker roller 54 and the blocking cylinder 56.
  • the sealing strip 59 and the sealing ring 58 are both PTFE strips.
  • the soft PTFE strip is good for sealing, and at the same time, the friction is small, which is convenient for dynamic sealing.
  • the fiber mat 13 is provided with a backing plate 61 on the other side corresponding to the licker roller 54.
  • the licker roller 54 When the licker roller 54 is rolled, it acts as a force.
  • powder injection device of this embodiment other devices that drive the hollow needle to inject fluidized powder can also be used.
  • a lifting mechanism to achieve the up and down lifting of the hollow needle to achieve injection.
  • Multiple powder injection devices can be arranged on the fiber mat conveying mechanism.
  • the powder injection process of the present invention can be carried out in the sealed room 10 to avoid external leakage of the powder in the environment.
  • the powder in the air is discharged with the air flow from the air outlet of the sealed room through the exhaust fan and introduced into the bag filter
  • the powder material can be recovered and recycled.
  • Example 7 On the basis of Example 7, a powder material with a pore size of 100-1000 nanometers was added to a powder material with a pore size of less than 100 nanometers, and a composite material was prepared using the same ratio and method.
  • the experimental results are as follows:
  • Example 10 on the basis of Example 10, a composite material product obtained by injecting into the alkali-free glass fiber mat using the production process of the present invention with 80% of the pore diameter within 100 nanometers as the powder material; the same raw materials and dosage ,
  • the aerogel composite felt is prepared by the gel method. From the following product performance comparison data, it can be seen that the thermal conductivity is better than the composite felt made by the gel method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

一种纳米微孔复合材料的生产工艺,将纳米粉体材料与空气在流化设备中充分混和搅拌,形成均匀的流体;然后通过气流经中空针(55)注入纤维毡(13)中,纳米粉体材料把纤维毡(13)中的空隙给填充满,然后适当压制形成致密的结构,限制空气在材料中的流动,从而形成低导热系数的保温材料。

Description

一种纳米微孔复合材料的生产工艺 技术领域
本发明属于保温材料技术领域,具体涉及一种纳米微孔复合材料的生产工艺。
背景技术
气凝胶及其制品近几年发展迅速,氧化硅气凝胶实现了规模化生产并得到推广应用,目前全球的气凝胶及其制品市场规模为30-40亿美元,预计到2020年会到达50-60亿美元。尽管发展迅速,但由于其高昂的价格,推广比较困难,其总的市场规模在绝热节能材料市场的占有份额还是比较小的。
另外,目前气凝胶复合毡的生产工艺主要来自于美国ASPEN,采用溶胶凝胶法,先把二氧化硅溶解在溶剂中,通过流体的方式浸入到无碱玻璃纤维毡中或其他高性能纤维毡中,然后在纤维毡中凝胶,凝胶完成后再通过溶剂置换,超临界干燥,脱去溶剂,用空气置换溶剂而得到气凝胶复合毡。该过程会使用到大量的溶剂,非常不环保;另一方面,在生产复合毡的过程中,各种纤维毡的体积都很大,却要浸入许多的溶剂和进行超临界干燥,非常不利于成本的控制。
发明内容
为了解决现有复合毡制备中的上述问题,本发明提供了一种纳米微孔复合材料的生产工艺,该工艺不需液体溶剂,制得的复合材料是一种纳米型微孔复合材料,导热系数低。
本发明为了实现上述发明目的,采用以下技术方案:
一种纳米微孔复合材料的生产工艺,包括以下步骤:
A、将纳米粉体材料与空气在流化设备中充分混和搅拌,形成均匀的流体;
B、在气流的作用下,经中空针注入纤维毡中,使粉体材料进入纤维毡内部, 填充纤维之间的空隙。
C、通过压力辊压制纤维毡,使纤维毡内部被粉体材料填充,形成致密的不透气的绝热材料。
本发明所述的纳米粉体材料为具有纳米微孔结构的液相二氧化硅粉末、气凝胶粉末、疏水二氧化硅粉末、气相二氧化硅粉末、氧化铝粉末、氧化铁粉末和氧化钛粉末中的至少一种。
优选地,所述纳米粉体材料的粒径为1-50微米,密度为40-60公斤/立方米。选用多孔的纳米材料,密度小,体积大,有利于形成导热系数低的复合材料。
进一步优选地,所述纳米粉体材料的孔径小于1微米,其中孔径小于100纳米的粉体占比80-95%,得到的复合材料导热系数更低。
本发明制得的复合纤维毡每平方米含20-200g纳米粉体,能起到很好的保温效果,又不会因为粉体含量过多而漏粉。
优选地,流化设备内的气体和固体的体积比为50-100:1。气固比大,才能充分流化,同时能很好地控制纤维毡中的粉体含量,合理利用粉体材料。
进一步优选地,中空针的孔径为1-3mm,所述流化设备内的流体压力为0.02-0.2MPa。孔径为1-3mm,使纳米粉体材料能细密地附着在纤维上,和纤维材料间有很强的相互作用,不会掉下来;同时配合0.02-0.2MPa的流体压力,合理控制粉体的注入速度,并且设备负荷小;压力过小,不能形成有效的注入效果,压力过大,设备负荷大,速度控制难度变大。
本发明所述压力辊的压力为20-200公斤,能有效地压制纤维毡,使纤维毡内部被粉体材料填充,形成致密的不透气的绝热材料。
本发明所述纤维毡为无碱玻璃纤维毡、玄武岩纤维毡、铝镁质纤维毡或者 氧化硅纤维毡。
本发明所述流化设备包括罐体、风机和喷嘴,所述罐体的底部设置有所述喷嘴,所述罐体的顶部设置有连接粉体注入装置的流体出口,所述喷嘴的进口端设置有粉体进口和连接空压机的空气进口,喷嘴的出口端朝向罐体内,所述罐体的外部两侧分别设置有一个所述风机,所述风机的一端连接进气管,风机的另一端连接出气管,所述罐体顶部两侧分别设置有连接对应出气管的出气口,所述罐体底部两侧分别设置有连接对应进气管的进气口。
优选地,纤维毡的上方和下方分别并排设有所述粉体注入装置,所述粉体注入装置包括阻挡筒、固定支架和设置于纤维毡传送机构上的刺辊,所述刺辊对应纤维毡设置,所述刺辊和阻挡筒均为一端开口的中空结构;所述刺辊的外表面均布有多个针孔,且各个针孔均连接一根中空针,所述阻挡筒与刺辊同轴心设置且位于刺辊内,所述阻挡筒的一侧设置有轴向的开口,该开口侧正对纤维毡且开口侧的边沿设置有密封条,所述密封条与刺辊的内侧壁抵接;所述阻挡筒的封闭端设置于刺辊的封闭端,所述阻挡筒的开口端设置有穿出所述刺辊开口端的进料管,所述进料管的外侧壁与所述刺辊开口端内侧壁之间设置有密封圈,所述进料管连接所述固定支架,进料管的进口连接所述流化设备。
本发明的有益效果在于:
1、本发明生产工艺粉碎具有纳米微孔结构的二氧化硅,气凝胶或氧化铝等材料形成微细粉末,在流化设备中用空气和粉体混合,使粉体材料流体化,然后通过气流经中空针注入纤维毡中,纳米粉体材料把纤维毡中的空隙给填充满,然后适当压制形成致密的结构,粉料就和纤维毡在力的作用下粘附在一起,从而阻止空气在纤维间隙中流动,避免了因为空气对流而形成的热量传递,材料的导热系数低,且工艺无需溶剂,设备投资小,不使用溶剂及超临界工艺。
2、本发明生产工艺制得的纳米微孔复合材料,导热系数低;柔韧性和回弹性好,不易断裂,经久耐用,可反复使用;耐高温,达到不燃A1级的要求;不含石棉、重金属、有害气体等违禁物质,对环境和动植物没有危害。
附图说明
图1为流态化装置的结构示意图。
图2为流态化装置和粉体注入装置的连接示意图。
图3为粉体注入装置的结构示意图。
图4为粉体注入装置的剖面结构示意图。
附图标记:1、罐体;2、粉体罐;3、喷嘴;4、风机;5、进气管;6、出气管;7、空压机;8、空气储罐;9、输送管道;10、密闭房;11、压力辊;12、传送带;13、纤维毡;31、空气进口;32、粉体进口;54、刺辊;55、中空针;56、阻挡筒;57、固定支架;58、密封圈;59、密封条;561、进料管;60、轴承;61、垫板。
具体实施方式
为了更加清楚、详细地说明本发明的目的技术方案,下面通过相关实施例对本发明进行进一步描述。以下实施例仅为具体说明本发明的实施方法,并不限定本发明的保护范围。
实施例1
一种纳米微孔复合材料的生产工艺,包括以下步骤:
A、将气凝胶粉末与空气在流化设备中充分混和搅拌,形成均匀的流体;
B、在气流的作用下,经中空针注入纤维毡中,使粉体材料进入纤维毡内部,填充纤维之间的空隙。
C、通过压力辊压制纤维毡,使纤维毡内部被粉体材料填充,形成致密的不 透气的绝热材料,导热系数0.030W/(m.k)。
实施例2
一种纳米微孔复合材料的生产工艺,包括以下步骤:
A、将疏水二氧化硅粉末与空气在流化设备中充分混和搅拌,形成均匀的流体;
B、在气流的作用下,经中空针注入纤维毡中,使粉体材料进入纤维毡内部,填充纤维之间的空隙。
C、通过压力辊压制纤维毡,使纤维毡内部被粉体材料填充,形成致密的不透气的绝热材料,导热系数0.029W/(m.k)。
其中的粉体材料为纳米微孔材料,粒径为50微米,密度为60公斤/立方米。
制得的复合纤维毡每平方米含200g纳米粉体。
流化设备内的气体和固体的体积比为100:1。
所述中空针的孔径为3mm,所述压力辊的压力为200公斤,所述流化设备内的流体压力为0.2MPa。
所述纤维毡为无碱玻璃纤维毡。
所述纳米粉体材料的孔径小于100纳米。
实施例3
一种纳米微孔复合材料的生产工艺,包括以下步骤:
A、将气凝胶粉末和气相二氧化硅粉末以1:1的比例与空气在流化设备中充分混和搅拌,形成均匀的流体;
B、在气流的作用下,经中空针注入纤维毡中,使粉体材料进入纤维毡内部,填充纤维之间的空隙。
C、通过压力辊压制纤维毡,使纤维毡内部被粉体材料填充,形成致密的不 透气的绝热材料,导热系数0.026W/(m.k)。
其中的粉体材料为纳米微孔材料,粒径为1微米,密度为40公斤/立方米。
制得的复合纤维毡每平方米含20g纳米粉体。
流化设备内的气体和固体的体积比为50:1。
所述中空针的孔径为1mm,所述压力辊的压力为20公斤,所述流化设备内的流体压力为0.02MPa。
所述纤维毡为玄武岩纤维毡。
所述纳米粉体材料的孔径小于100纳米。
实施例4
一种纳米微孔复合材料的生产工艺,包括以下步骤:
A、将气凝胶粉末、液相二氧化硅粉末以1:1的比例与空气在流化设备中充分混和搅拌,形成均匀的流体;
B、在气流的作用下,经中空针注入纤维毡中,使粉体材料进入纤维毡内部,填充纤维之间的空隙。
C、通过压力辊压制纤维毡,使纤维毡内部被粉体材料填充,形成致密的不透气的绝热材料,导热系数0.027W/(m.k)。
其中的粉体材料为纳米微孔材料,粒径为30微米,密度为45公斤/立方米。
制得的复合纤维毡每平方米含100g纳米粉体。
流化设备内的气体和固体的体积比为80:1。
所述中空针的孔径为2mm,所述压力辊的压力为100公斤,所述流化设备内的流体压力为0.03MPa。
所述纤维毡为铝镁质纤维毡。
所述纳米粉体材料的孔径小于100纳米。
实施例5
一种纳米微孔复合材料的生产工艺,包括以下步骤:
A、将氧化铝粉末和氧化铁粉末以1:1的比例与空气在流化设备中充分混和搅拌,形成均匀的流体;
B、在气流的作用下,经中空针注入纤维毡中,使粉体材料进入纤维毡内部,填充纤维之间的空隙。
C、通过压力辊压制纤维毡,使纤维毡内部被粉体材料填充,形成致密的不透气的绝热材料,导热系数0.032W/(m.k)。
其中的粉体材料为纳米微孔材料,粒径为25微米,密度为50公斤/立方米。
制得的复合纤维毡每平方米含120g纳米粉体。
流化设备内的气体和固体的体积比为60:1。
所述中空针的孔径为2mm,所述压力辊的压力为80公斤,所述流化设备内的流体压力为0.01MPa。
所述纤维毡为氧化硅纤维毡。
所述纳米粉体材料的孔径小于100纳米。
实施例6
一种纳米微孔复合材料的生产工艺,包括以下步骤:
A、将疏水二氧化硅粉末、氧化铝粉末、氧化铁粉末和氧化钛粉末以5:1:1:1的比例与空气在流化设备中充分混和搅拌,形成均匀的流体;
B、在气流的作用下,经中空针注入纤维毡中,使粉体材料进入纤维毡内部,填充纤维之间的空隙。
C、通过压力辊压制纤维毡,使纤维毡内部被粉体材料填充,形成致密的不透气的绝热材料,导热系数0.026W/(m.k)。
其中的粉体材料为纳米微孔材料,粒径为25微米,密度为50公斤/立方米。
制得的复合纤维毡每平方米含120g纳米粉体。
流化设备内的气体和固体的体积比为60:1。
所述中空针的孔径为2mm,所述压力辊的压力为80公斤,所述流化设备内的流体压力为0.01MPa。
所述纤维毡为氧化硅纤维毡。
所述纳米粉体材料的孔径小于100纳米。
实施例7
一种纳米微孔复合材料的生产工艺,包括以下步骤:
A、将疏水二氧化硅粉末、气凝胶粉末、氧化铝粉末和氧化铁粉末以4:2:1:1的比例与空气在流化设备中充分混和搅拌,形成均匀的流体;
B、在气流的作用下,经中空针注入纤维毡中,使粉体材料进入纤维毡内部,填充纤维之间的空隙。
C、通过压力辊压制纤维毡,使纤维毡内部被粉体材料填充,形成致密的不透气的绝热材料,导热系数0.024W/(m.k)。
其中的粉体材料为纳米微孔材料,粒径为25微米,密度为50公斤/立方米。
制得的复合纤维毡每平方米含120g纳米粉体。
流化设备内的气体和固体的体积比为60:1。
所述中空针的孔径为2mm,所述压力辊的压力为80公斤,所述流化设备内的流体压力为0.01MPa。
所述纤维毡为无碱玻璃纤维毡。
所述纳米粉体材料的孔径小于100纳米。
实施例8
如图1所示,本发明所述流化设备包括罐体1、风机4和喷嘴3,所述罐体1的底部设置有所述喷嘴3,所述罐体1的顶部设置有连接粉体注入装置的流体出口,所述喷嘴3的进口端设置有粉体进口32和连接空压机7的空气进口31,喷嘴3的出口端朝向罐体1内,所述罐体1的外部两侧分别设置有一个所述风机4,所述风机4的一端连接进气管5,风机4的另一端连接出气管6,所述罐体1顶部两侧分别设置有连接对应出气管6的出气口,所述罐体1底部两侧分别设置有连接对应进气管5的进气口。
流化设备的进料口设置喷嘴3,通过空压机7直接对空气加压,带压力的空气直接从喷嘴3高速喷入罐体1,会在喷嘴3四周形成负压,把粉体材料直接从粉体进口32吸入罐体1;同时罐体1内带有一定压力,流体会在压力作用下自动从罐体1顶部的流体出口进入粉体注入装置,通过调节空压机的压力即可实现自动吸入粉体和向粉体注入装置输送粉体,并控制流体流速,无需压力泵,节约能源。
罐体1的外部两侧分别设置一个风机4,罐体1内形成从下至上,罐体1外形成从上至下的气流循环,使罐体1内的轻质粉体随气流一起在罐体内外循环,不会沉降,更利于粉体与空气的充分混合均匀,保证其充分的流态化。
实施例9
如图2-4所示,本发明在纤维毡13的上方和下方分别并排设有粉体注入装置,所述粉体注入装置包括阻挡筒56、固定支架57和设置于纤维毡传送机构12上的刺辊54,所述刺辊54对应纤维毡1设置,所述刺辊54和阻挡筒56均为一端开口的中空结构;所述刺辊54的外表面均布有多个针孔,且各个针孔均连接一根中空针55,所述阻挡筒56与刺辊54同轴心设置且位于刺辊54内,所述阻挡筒56的一侧设置有轴向的开口,该开口侧正对纤维毡1且开口侧的边沿 设置有密封条59,所述密封条59与刺辊54的内侧壁抵接;所述阻挡筒56的封闭端设置于刺辊54的封闭端,所述阻挡筒56的开口端设置有穿出所述刺辊54开口端的进料管561,所述进料管561的外侧壁与所述刺辊54开口端内侧壁之间设置有密封圈58,所述进料管561连接所述固定支架57,进料管561的进口连接流化设备。
刺辊54在纤维毡13的上方辊压,阻挡筒56通过固定支架57固定安装在纤维毡1的上方,且阻挡筒56的开口侧正对纤维毡1,流化设备的出料口连接阻挡筒56的进料管561,将流体送入阻挡筒56内,当阻挡筒56开口侧的中空针55刺入纤维毡13中,将流体的粉体材料送入纤维毡13内部;当中空针55离开纤维毡13即离开阻挡筒56的开口侧,粉体材料被阻挡筒56阻挡不会出粉。
阻挡筒56开口侧的边沿设置密封条59抵接刺辊54的内侧壁,能避免粉体材料进入刺辊54与阻挡筒56间的空隙,防止中空针55离开纤维毡后漏粉;阻挡筒56的出料管561的外侧壁与刺辊54开口端内侧壁之间设置密封圈58,同样起到避免粉体材料进入刺辊54与阻挡筒56间空隙的作用。
所述密封条59和密封圈58均为四氟条。四氟条质软有利于密封,同时摩擦小,便于动态密封。
所述纤维毡13在对应刺辊54的另一面设置有垫板61。在刺辊54滚压时起到了受力的作用。
除了本实施例的粉体注入装置,还可采用其它驱动中空针注射流态化粉体的装置,如采用升降机构实现中空针的上下升降来实现注射也是可行的。在纤维毡的传送机构上可设置多个粉体注入装置。
本发明的粉体注入过程可在密封房10中进行,避免环境中的粉体外泄,通过抽风机从密封房的排风口将空气中的粉体随气流排出,并引入到布袋除尘器 等常规的粉体回收装置,即可回收粉体材料实现循环利用。
实施例10
本实施例在实施例7的基础上,在原小于100纳米的粉体材料中加入了100-1000纳米孔径的粉体材料,采用同样配比和方法制得复合材料,实验结果如下:
Figure PCTCN2020126834-appb-000001
由上表可见,当100纳米以内的粉体材料占比为80-95%时,材料的导热系数更低。
实施例11
本实施例在实施例10的基础上,以100纳米以内孔径占比为80%作为粉体材料,采用本发明的生产工艺注入到无碱玻璃纤维毡得到的复合材料产品;同样的原料和用量,采用凝胶法制得气凝胶复合毡,从以下的产品性能对比数据可见,导热系数优于凝胶法制得的复合毡。
  本发明产品 无碱玻璃纤维毡 凝胶法产品
导热系数 0.020W/(m.k) 0.045W/(m.k) 0.023W/(m.k)
压缩回弹率 95% 50% 95%
以上所述实施例仅表达了本发明的具体实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (10)

  1. 一种纳米微孔复合材料的生产工艺,其特征在于:包括以下步骤:
    A、将纳米粉体材料与空气在流化设备中充分混和搅拌,形成均匀的流体;
    B、在气流的作用下,经中空针注入纤维毡中,使粉体材料进入纤维毡内部,填充纤维之间的空隙。
    C、通过压力辊压制纤维毡,使纤维毡内部被粉体材料填充,形成致密的不透气的绝热材料。
  2. 根据权利要求1所述纳米微孔复合材料的生产工艺,其特征在于:所述的纳米粉体材料为具有纳米微孔结构的液相二氧化硅粉末、气凝胶粉末、疏水二氧化硅粉末、气相二氧化硅粉末、氧化铝粉末、氧化铁粉末和氧化钛粉末中的至少一种。
  3. 根据权利要求2所述纳米微孔复合材料的生产工艺,其特征在于:所述纳米粉体材料的粒径为1-50微米,密度为40-60公斤/立方米。
  4. 根据权利要求3所述纳米微孔复合材料的生产工艺,其特征在于:所述纳米粉体材料的孔径小于1微米,其中孔径小于100纳米的粉体占比80-95%。
  5. 根据权利要求1所述纳米微孔复合材料的生产工艺,其特征在于:制得的复合纤维毡每平方米含20-200g纳米粉体。
  6. 根据权利要求5所述纳米微孔复合材料的生产工艺,其特征在于:流化设备内的气体和固体的体积比为50-100:1。
  7. 根据权利要求6所述纳米微孔复合材料的生产工艺,其特征在于:所述流化设备内的流体压力为0.02-0.2MPa,中空针的孔径为1-3mm。
  8. 根据权利要求1所述纳米微孔复合材料的生产工艺,其特征在于:所述压力辊的压力为20-200公斤。
  9. 根据权利要求1所述纳米微孔复合材料的生产工艺,其特征在于:所述 流化设备包括罐体、风机和喷嘴,所述罐体的底部设置有所述喷嘴,所述罐体的顶部设置有连接粉体注入装置的流体出口,所述喷嘴的进口端设置有粉体进口和连接空压机的空气进口,喷嘴的出口端朝向罐体内,所述罐体的外部两侧分别设置有一个所述风机,所述风机的一端连接进气管,风机的另一端连接出气管,所述罐体顶部两侧分别设置有连接对应出气管的出气口,所述罐体底部两侧分别设置有连接对应进气管的进气口。
  10. 根据权利要求9所述纳米微孔复合材料的生产工艺,其特征在于:纤维毡的上方和下方分别并排设有所述粉体注入装置,所述粉体注入装置包括阻挡筒、固定支架和设置于纤维毡传送机构上的刺辊,所述刺辊对应纤维毡设置,所述刺辊和阻挡筒均为一端开口的中空结构;所述刺辊的外表面均布有多个针孔,且各个针孔均连接一根中空针,所述阻挡筒与刺辊同轴心设置且位于刺辊内,所述阻挡筒的一侧设置有轴向的开口,该开口侧正对纤维毡且开口侧的边沿设置有密封条,所述密封条与刺辊的内侧壁抵接;所述阻挡筒的封闭端设置于刺辊的封闭端,所述阻挡筒的开口端设置有穿出所述刺辊开口端的进料管,所述进料管的外侧壁与所述刺辊开口端内侧壁之间设置有密封圈,所述进料管连接所述固定支架,进料管的进口连接所述流化设备。
PCT/CN2020/126834 2020-05-15 2020-11-05 一种纳米微孔复合材料的生产工艺 WO2021227395A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010411928.4 2020-05-15
CN202010411928.4A CN111534921B (zh) 2020-05-15 2020-05-15 一种纳米微孔复合材料的生产工艺

Publications (1)

Publication Number Publication Date
WO2021227395A1 true WO2021227395A1 (zh) 2021-11-18

Family

ID=71973800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126834 WO2021227395A1 (zh) 2020-05-15 2020-11-05 一种纳米微孔复合材料的生产工艺

Country Status (2)

Country Link
CN (1) CN111534921B (zh)
WO (1) WO2021227395A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114622346A (zh) * 2022-04-20 2022-06-14 巩义市泛锐熠辉复合材料有限公司 一种立式卷绕制备气凝胶毡的装置及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111534921B (zh) * 2020-05-15 2020-11-20 成都硕屋科技有限公司 一种纳米微孔复合材料的生产工艺
CN112046024A (zh) * 2020-09-10 2020-12-08 山东新朗华科技有限公司 一种用于气凝胶隔热毡的注射成型方法及设备
CN112611201A (zh) * 2020-12-24 2021-04-06 安徽天鹏新材料科技有限公司 一种活性碳纤维毡的脱水处理装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333092A (ja) * 2001-05-09 2002-11-22 Kanegafuchi Chem Ind Co Ltd 繊維・微粒子複合断熱材
JP2006002310A (ja) * 2004-06-21 2006-01-05 Alcare Co Ltd 複合繊維構造体、その製造方法及びこの複合繊維構造体からなる吸液体
CN102514294A (zh) * 2011-11-24 2012-06-27 天津霖田冶金科技有限公司 多层反射隔热复合板及其制造方法
CN102557577A (zh) * 2011-11-01 2012-07-11 厦门纳美特新材料科技有限公司 一种二氧化硅气凝胶复合材料的制备及方法
CN103600521A (zh) * 2013-11-15 2014-02-26 无锡中科光远生物材料有限公司 一种性能可控的胶原纳米纤维无纺布制备方法
CN103723995A (zh) * 2013-07-23 2014-04-16 太仓派欧技术咨询服务有限公司 一种玻璃棉毡与二氧化硅气凝胶混合制毡的方法
CN104370516A (zh) * 2013-08-12 2015-02-25 苏州维艾普新材料股份有限公司 一种玻璃纤维与二氧化硅气凝胶混杂的芯材及其制备方法
CN106824628A (zh) * 2017-04-05 2017-06-13 天津天盈新型建材有限公司 一种用于制备气凝胶纤维毡的喷涂设备
CN108905912A (zh) * 2018-08-01 2018-11-30 纳诺科技有限公司 气凝胶复合材料的制备方法
CN109534781A (zh) * 2019-01-17 2019-03-29 苏州宏久航空防热材料科技有限公司 一种耐高温玻璃纤维增强气凝胶复合毡及其制备方法
CN110152904A (zh) * 2019-06-12 2019-08-23 薛德刚 一种喷射气凝胶、纤维与粘结剂混合料的***装置及方法
CN111487944A (zh) * 2020-05-15 2020-08-04 成都硕屋科技有限公司 一种纳米微孔复合材料的生产***及方法
CN111534921A (zh) * 2020-05-15 2020-08-14 成都硕屋科技有限公司 一种纳米微孔复合材料的生产工艺

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2330692C (en) * 1999-02-26 2005-08-02 Nagoya Oilchemical Co., Ltd. A heat sensitive adhesive sheet
CN1428468A (zh) * 2001-12-27 2003-07-09 王筱韫 一种蛭石隔热织物
US20050140066A1 (en) * 2003-12-29 2005-06-30 Mark Oliver Particulate core preforming process
CN105226218B (zh) * 2015-09-11 2017-04-05 江西师范大学 PI‑PTEF‑Al2O3三元纳米复合多曲孔膜材料及其制备方法和应用
CN106592106A (zh) * 2015-10-20 2017-04-26 天津工业大学 一种可增加粒子嵌入率的熔喷非织造布生产***
JP7343189B2 (ja) * 2018-07-09 2023-09-12 井前工業株式会社 高温用断熱材及びその三次元成形体の製造方法
CN108679370B (zh) * 2018-08-20 2023-09-15 成都硕屋科技有限公司 一种玻璃纤维保温毡及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333092A (ja) * 2001-05-09 2002-11-22 Kanegafuchi Chem Ind Co Ltd 繊維・微粒子複合断熱材
JP2006002310A (ja) * 2004-06-21 2006-01-05 Alcare Co Ltd 複合繊維構造体、その製造方法及びこの複合繊維構造体からなる吸液体
CN102557577A (zh) * 2011-11-01 2012-07-11 厦门纳美特新材料科技有限公司 一种二氧化硅气凝胶复合材料的制备及方法
CN102514294A (zh) * 2011-11-24 2012-06-27 天津霖田冶金科技有限公司 多层反射隔热复合板及其制造方法
CN103723995A (zh) * 2013-07-23 2014-04-16 太仓派欧技术咨询服务有限公司 一种玻璃棉毡与二氧化硅气凝胶混合制毡的方法
CN104370516A (zh) * 2013-08-12 2015-02-25 苏州维艾普新材料股份有限公司 一种玻璃纤维与二氧化硅气凝胶混杂的芯材及其制备方法
CN103600521A (zh) * 2013-11-15 2014-02-26 无锡中科光远生物材料有限公司 一种性能可控的胶原纳米纤维无纺布制备方法
CN106824628A (zh) * 2017-04-05 2017-06-13 天津天盈新型建材有限公司 一种用于制备气凝胶纤维毡的喷涂设备
CN108905912A (zh) * 2018-08-01 2018-11-30 纳诺科技有限公司 气凝胶复合材料的制备方法
CN109534781A (zh) * 2019-01-17 2019-03-29 苏州宏久航空防热材料科技有限公司 一种耐高温玻璃纤维增强气凝胶复合毡及其制备方法
CN110152904A (zh) * 2019-06-12 2019-08-23 薛德刚 一种喷射气凝胶、纤维与粘结剂混合料的***装置及方法
CN111487944A (zh) * 2020-05-15 2020-08-04 成都硕屋科技有限公司 一种纳米微孔复合材料的生产***及方法
CN111534921A (zh) * 2020-05-15 2020-08-14 成都硕屋科技有限公司 一种纳米微孔复合材料的生产工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114622346A (zh) * 2022-04-20 2022-06-14 巩义市泛锐熠辉复合材料有限公司 一种立式卷绕制备气凝胶毡的装置及方法
CN114622346B (zh) * 2022-04-20 2023-06-06 巩义市泛锐熠辉复合材料有限公司 一种立式卷绕制备气凝胶毡的装置及方法

Also Published As

Publication number Publication date
CN111534921A (zh) 2020-08-14
CN111534921B (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
WO2021227395A1 (zh) 一种纳米微孔复合材料的生产工艺
CN110282958B (zh) 一种耐高温异形纳米晶气凝胶材料及其制备方法
CN103450761A (zh) 一种具有净化空气功能的隔热保温水性涂料
CN115385606B (zh) 一种轻质防火的纳米建筑材料及其制备方法
CN110285289A (zh) 一种真空绝热板芯材及其制备方法以及一种真空绝热板
CN102607247B (zh) 喷雾干燥机
CN210292568U (zh) 一种高温高压放爆快速膨胀干燥器
WO2021022777A1 (zh) 具有红外吸收功能的纳米复合薄膜及其制作方法和应用
CN111487944A (zh) 一种纳米微孔复合材料的生产***及方法
CN209952751U (zh) 一种碳酸钙粉末表面改性装置
CN106862552B (zh) 球形超细铝粉表面改性方法及其改性设备
CN206082384U (zh) 利用加热型碳纳米管预混搅拌机构生产高粘度浆料的装置
CN107543383A (zh) 一种节能型中药材烘干机
CN104587792B (zh) 一种纳米纤维泡沫基油气捕集装置及其制备方法
CN211669541U (zh) 一种纳米微孔复合材料的生产***
CN206103659U (zh) 用于制备碳纳米管的废气处理设备
CN213761442U (zh) 一种用于石墨烯涂料加工的循环式搅拌装置
CN214266370U (zh) 一种epp珠粒二次发泡罐
CN207745536U (zh) 一种可气体重利用的压力式喷雾干燥机
CN207271224U (zh) 一种气凝胶生产线废气回收***
CN208031940U (zh) 一种acr喷雾干燥塔喷雾装置
CN207221886U (zh) 一种气凝胶生产线冷热循环***
CN206463869U (zh) 一种适用于高粘度碳纳米管浆料的搅拌釜
CN205747280U (zh) 一种移动式水循环***用水箱
CN206689420U (zh) 球形超细铝粉表面改性设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935316

Country of ref document: EP

Kind code of ref document: A1