WO2021227373A1 - 省间交易代理模式下节点的选取方法和***、以及存储介质 - Google Patents

省间交易代理模式下节点的选取方法和***、以及存储介质 Download PDF

Info

Publication number
WO2021227373A1
WO2021227373A1 PCT/CN2020/123681 CN2020123681W WO2021227373A1 WO 2021227373 A1 WO2021227373 A1 WO 2021227373A1 CN 2020123681 W CN2020123681 W CN 2020123681W WO 2021227373 A1 WO2021227373 A1 WO 2021227373A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
inter
provincial
sensitivity
power
Prior art date
Application number
PCT/CN2020/123681
Other languages
English (en)
French (fr)
Inventor
曾丹
杨争林
冯树海
李竹
张显
庞博
郑亚先
薛必克
史新红
王高琴
张旭
程海花
邵平
黄文渊
杨辰星
Original Assignee
中国电力科学研究院有限公司
国网浙江省电力有限公司
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院有限公司, 国网浙江省电力有限公司, 国家电网有限公司 filed Critical 中国电力科学研究院有限公司
Publication of WO2021227373A1 publication Critical patent/WO2021227373A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • G06Q10/06375Prediction of business process outcome or impact based on a proposed change
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • This application relates to the field of power automation, for example, it relates to a node selection method and system under the inter-provincial transaction agency mode, and a storage medium.
  • the deepening design plan of the national unified power market has clearly put forward a framework that aims to optimize the allocation of power resources across the country to the maximum.
  • This framework adopts the idea of "unified market, two-level operation".
  • the inter-provincial market is positioned to implement the national energy strategy, promote clean energy consumption and optimize the allocation of energy resources on a large scale, and establish a resource allocation market.
  • inter-provincial physical network and the intra-provincial network are quite different in terms of voltage level, network composition structure and network topology.
  • the embodiment of the application provides a method and system for selecting nodes in the inter-province transaction agent mode, and a storage medium, which can solve the problem of the voltage level, network composition structure, and network topology of the inter-provincial physical network and the intra-provincial network in related technologies. There is a big difference in such aspects, which leads to the problem of large scale of optimized clearing calculation and low calculation efficiency.
  • This application provides a method for selecting nodes in the inter-provincial transaction agency mode, including: optimizing the inter-provincial power grid model into a network simplified model; selecting nodes in the network simplified model as physical nodes for inter-provincial agents to participate in the market .
  • This application also provides a node selection system in the inter-provincial transaction agency mode, which is applied to the power system, including:
  • the optimization module is configured to optimize the inter-provincial power grid model into a simplified network model
  • the node selection module is configured to select nodes in the network simplified model as physical nodes for inter-provincial agents to participate in the market.
  • the present application also provides a node selection system in the inter-province transaction agent mode, which is applied to a power system.
  • the system includes a processor and a memory coupled with the processor, the memory storing a computer program, and the computer program When executed by the processor, the node selection method under the inter-provincial transaction agent mode as described above is realized.
  • the present application also provides a storage medium storing computer program instructions, and the computer program instructions are used to execute the node selection method in the inter-provincial transaction agent mode as described above.
  • FIG. 1 is a schematic flowchart of a node selection method in an inter-provincial transaction agency mode provided by an embodiment of this application;
  • FIG. 2 is a schematic flowchart of a node selection method in an inter-provincial transaction agency mode according to another embodiment of the application;
  • FIG. 3 is a block diagram of a node selection system in an inter-provincial transaction agency mode provided by an embodiment of this application;
  • Fig. 4 is a block diagram of a node selection system in an inter-provincial transaction agency mode provided by another embodiment of the application.
  • FIG. 1 is a schematic flowchart of a node selection method in an inter-provincial transaction agency mode provided by an embodiment of the application.
  • the node selection method under the inter-provincial transaction agency mode includes:
  • Step 01 Optimize the inter-provincial power grid model into a simplified network model; in one embodiment, the physical network simplified model used for inter-provincial transactions includes three types of data, one is key section information, the other is key node information, and the third is It is the sensitivity of the node to the key section.
  • the key sections retain all inter-provincial DC sections and inter-provincial exchange sections, as well as the key sections where inter-provincial transactions cause congestion in the province.
  • the key nodes include the end points at both ends of the DC link, and the remaining nodes can be determined according to the way market members participate: the power purchase side participates in the inter-provincial market through inter-provincial dealers, so each province can transfer the load outside the DC end point according to the internal exchange rate of the province.
  • the key cross-sections of congestion are aggregated into one or more virtual load nodes; on the power generation side, if the generator directly declares to the national power trading center, the node information of each generator set will be retained. If the inter-provincial dealer participates in the inter-provincial In the market, the power generation outside the DC terminal is aggregated into one or more virtual power generation nodes according to the key cross-sections in the province that are prone to congestion.
  • Step 02 Select nodes in the network simplification model as physical nodes for inter-provincial agents to participate in the market; in one embodiment, the power purchase side participates in the inter-provincial market through inter-provincial dealers, so each province will The load is aggregated into one or more virtual load nodes according to the key cross-sections that are easy to be blocked in the province; on the power generation side, if the generators directly report to the national power trading center, the node information of each generator set will be retained.
  • the power generation outside the DC endpoints will be aggregated into one or more virtual power generation nodes based on the key cross-sections that are prone to congestion in the province.
  • Step 03 Calculate the equivalent sensitivity of the physical node, and calculate the network security flow based on the equivalent sensitivity.
  • a simplified physical network model is provided for inter-provincial transactions, which can greatly improve the efficiency of inter-provincial clearing optimization.
  • This application uses the node selection method and the node equivalent sensitivity calculation method under the inter-provincial transaction agency mode to retain the key equivalent information of the inter-provincial power grid model, eliminate redundant information, and reduce network complexity, which can cover UHV AC/DC hybrid
  • the optimized settlement model of inter-provincial transactions of the power grid provides a dimensionality-reduced physical network model to improve the efficiency of optimized settlement among provinces.
  • the network simplification model includes key section information, key node information, and the sensitivity of physical nodes to key sections.
  • the network simplification model can include the above information and data, etc.
  • the network simplification model includes what kind of data can be carried out according to actual needs. set up.
  • key section information retains all inter-provincial DC sections, inter-provincial exchange sections, and inter-provincial transactions that cause congestion within the province.
  • Key section information can include the above information. What kind of information the key section information includes can be based on actual conditions. Need to be set.
  • the key node information includes: end points at both ends of the DC link, the key node information may include the above information, and what kind of information the key node information includes can be set according to actual conditions.
  • FIG. 2 is a schematic flowchart of a node selection method in an inter-provincial transaction agency mode provided by another embodiment of the application.
  • the physical nodes selected in the network simplified model as inter-provincial agents to participate in the market include:
  • Step 021 The power purchase side participates in the inter-provincial market through inter-provincial dealers;
  • Step 022 According to the key section of congestion in the province, each province aggregates the load outside the DC terminal into at least one virtual load node; Each province aggregates the load outside the DC terminal into one or more virtual load nodes according to the key cross-sections that are easy to be blocked in the province.
  • Step 023 The generator on the power generation side directly declares to the national power trading center, and retains the node information of each generator set; in one embodiment, on the power generation side, if the generator directly declares to the national power trading center, every Information about a generator set node. or
  • Step 024 The generator on the power generation side participates in the inter-provincial market through inter-provincial traders, and aggregates the power generation outside the DC terminal into at least one virtual power generation node according to the key cross-section of congestion in the province.
  • the power generation outside the DC terminal will be aggregated into one or more virtual power generation nodes according to the key cross-sections that are prone to congestion in the province.
  • nodes other than the selected node are selected according to the participation mode of market members.
  • calculating the equivalent sensitivity of a physical node includes: the sensitivity of the calculation node to the DC tie line and the sensitivity of the calculation node to the AC tie line.
  • calculating the sensitivity of the node to the DC link includes: according to the operating characteristics of the DC link, the DC transmission power is only related to the sending end node and the receiving end node connected to the DC link, and the voltage of each node is calculated according to the node voltage.
  • the relationship between the sensitivity matrix formula of the injection power sensitivity matrix and the branch power to each node and the Jacobian matrix formula shows that the sensitivity distribution factor of the sending end node is 1, and the sensitivity distribution factor of the receiving end node is -1 , The other sensitivity distribution factors that are not connected to the DC link are all 0.
  • the node voltage injection power sensitivity matrix S 0 for each node is as shown in formula (2), and the branch power injection power sensitivity matrix T 0 for each node is as shown in formula (3).
  • I the partial derivative of the ij line power flow to the k-node voltage variable.
  • the DC transmission power is only related to the sending end node s and the receiving end node b connected to the DC, and its sensitivity distribution factor They are 1, -1, and the other sensitivity distribution factors that are not connected to it are all 0.
  • the Jacobian matrix formula is obtained by performing the deterministic power flow calculation of the entire network under the reference state of the system according to the Newton method.
  • the sensitivity of the computing node to the AC tie line includes:
  • this paper uses the weighted average method to calculate its value, which is calculated by formula (8).
  • I the sensitivity factor of each bus load v to the power flow of ij line.
  • I the sensitivity factor of each busbar generating node g to the power flow of line ij
  • It is the weight of the influence of each busbar generating node g on the power flow of line ij.
  • the calculation method of node equivalent sensitivity includes:
  • the Newton method is used to calculate the deterministic power flow of the whole network under the reference state of the system, and the Jacobian matrix J 0 is obtained as shown in formula (1).
  • the node voltage injection power sensitivity matrix S 0 for each node is as shown in formula (2), and the branch power injection power sensitivity matrix T 0 for each node is as shown in formula (3).
  • I the partial derivative of the ij line power flow to the k-node voltage variable.
  • the DC transmission power is only related to the sending end node s and the receiving end node b connected to the DC, and its sensitivity distribution factor They are 1, -1, and the other sensitivity distribution factors that are not connected to it are all 0.
  • this paper uses the weighted average method to calculate its value, which is calculated by formula (8).
  • I the sensitivity factor of each bus load v to the power flow of ij line.
  • I the sensitivity factor of each busbar generating node g to the power flow of line ij
  • It is the weight of the influence of each busbar generating node g on the power flow of line ij.
  • the method of the present application further includes the following steps: calculating the equivalent sensitivity of the physical node, and calculating the network security power flow according to the equivalent sensitivity.
  • the network simplified model includes key section information, key node information, and the sensitivity of the physical node to the key section.
  • the key section information retains all inter-provincial DC sections, inter-provincial AC sections, and inter-provincial transactions that cause congestion in the province.
  • the key node information includes: end points at both ends of the DC link.
  • the selection of nodes in the network simplification model as physical nodes for inter-provincial agents to participate in the market includes: participating in the inter-provincial market through inter-provincial dealers on the power purchase side is equivalent to a number of virtual load nodes According to the key cross-section of congestion in the province, each province aggregates the load outside the DC terminal into at least one virtual bus load node in the power grid model; the generator set on the power generation side directly declares to the national power trading center, and each generator set is reserved Node information; or generators on the power generation side participate in the inter-provincial market through inter-provincial traders, and aggregate the power generation outside the DC terminal into at least one virtual power generation node according to the key section of congestion in the province.
  • the other node case submarket members except for the selected node are selected by participating methods: Load side: all kinds of electricity wholesale users and electricity sales companies in various provinces report to inter-provincial dealers the curve of participation in inter-provincial market transactions Load demand quotation information; aggregated into a bus node.
  • Power generation side Generating units can be divided into two ways to participate in the inter-provincial market. One is to directly declare the curve-based power generation quotation information to the national power trading center and keep it as a separate bus node; the other is to report to inter-provincial dealers The curvilinear power generation quotation information participating in the inter-provincial market transaction is aggregated into a bus node.
  • calculating the equivalent sensitivity of the physical node includes: calculating the sensitivity of the node to the DC tie line and calculating the sensitivity of the node to the AC tie line.
  • the calculation of the sensitivity of the node to the DC tie line includes: the relationship between the power sensitivity matrix formula for each node injection and the branch power injection power sensitivity matrix for each node and the Jacobian matrix formula according to the node voltage ,
  • the sensitivity distribution factor of the sending end node is 1
  • the sensitivity distribution factor of the receiving end node is -1
  • the other sensitivity distribution factors that are not connected to the DC tie line are all 0.
  • the Jacobian matrix formula is obtained by performing deterministic power flow calculation of the entire network under the reference state of the system according to the Newton method.
  • the calculation of the sensitivity of the node to the AC tie line includes: calculating the sensitivity of the two ends of the DC tie line and the generator set nodes directly participating in the transaction to the AC tie line; calculating the virtual load node on the power purchase side to the AC connection Line sensitivity: Calculate the sensitivity of the virtual power generation node on the power generation side to the AC tie line.
  • a node selection system in an inter-provincial transaction agent mode is provided, which is applied to a power system, and includes:
  • the optimization module is configured to optimize the inter-provincial power grid model into a simplified network model
  • the node selection module is configured to select nodes in the network simplified model as physical nodes for inter-provincial agents to participate in the market;
  • the network security power flow calculation module is configured to calculate the equivalent sensitivity of the physical node, and calculate the network security power flow according to the equivalent sensitivity.
  • a node selection system in an inter-provincial transaction agent mode is provided, which is applied to an electric power system.
  • the system includes a processor and a memory coupled with the processor, and the memory stores a computer program , When the computer program is executed by the processor, the method steps of the node selection method under the inter-provincial transaction agency mode are realized.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (which may include disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media which may include disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • the method and system for selecting nodes in the inter-provincial transaction agency mode and storage medium provided by the embodiments of the application are optimized by optimizing the inter-provincial power grid model into a network simplified model; nodes are selected as inter-provincial agents in the network simplified model Calculate the equivalent sensitivity of the physical node, and calculate the network security trend based on the equivalent sensitivity. It solves the problem of large differences in voltage levels, network composition and network topology between the provincial physical network and the intra-provincial network in related technologies, which leads to the large scale of optimized clearing calculation and low calculation efficiency.

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Physics & Mathematics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种省间交易代理模式下节点的选取方法和***、以及存储介质,所述方法包括:将省间电网模型优化成网络化简模型(01);在所述网络化简模型中选取节点作为省间代理商参与市场的物理节点(02)。

Description

省间交易代理模式下节点的选取方法和***、以及存储介质
本公开要求在2020年05月13日提交中国专利局、申请号为202010403599.9的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本申请涉及电力自动化领域,例如涉及一种省间交易代理模式下节点的选取方法和***、以及存储介质。
背景技术
全国统一电力市场深化设计方案已明确提出以电力资源在全国范围内进行最大限度的优化配置为目标的架构,该架构采用“统一市场,两级运作”的思路。省间市场,定位于落实国家能源战略,促进清洁能源消纳和能源资源大范围优化配置,建立资源配置型市场。
然而,省间物理网络与省内网络在电压等级、网络组成结构和网络拓扑等方面存在较大差别,国网公司经营范围内27个省,220kV及以上常规发电机机组约5500台,等值负荷节点约37600个,关键安全断面约10000个。如果在统一平台上对所有发电、负荷进行考虑ATC的优化出清计算,计算规模庞大,计算效率很低。
需解决交直流混联复杂电网下的省间电力市场优化出清的计算规模和计算效率问题。
发明内容
本申请实施例提供了一种省间交易代理模式下节点的选取方法和***、以及存储介质,可以解决了相关技术中由于省间物理网络与省内网络在电压等级、 网络组成结构和网络拓扑等方面存在较大差别,导致优化出清计算规模庞大,计算效率很低的问题。
本申请提供一种省间交易代理模式下节点的选取方法,包括:将省间电网模型优化成网络化简模型;在所述网络化简模型中选取节点作为省间代理商参与市场的物理节点。
本申请还提供一种省间交易代理模式下节点选取***,应用于电力***,包括:
优化模块,被配置为将省间电网模型优化成网络化简模型;
节点选取模块,被配置为在所述网络化简模型中选取节点作为省间代理商参与市场的物理节点。
本申请还提供一种省间交易代理模式下节点选取***,应用于电力***,所述***包括:处理器以及与所述处理器耦合的存储器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时实现如上所述的省间交易代理模式下节点选取方法。
本申请还提供一种存储介质,存储有计算机程序指令,所述计算机程序指令用于执行如上所述的省间交易代理模式下节点选取方法。
附图说明
图1所示为本申请一实施例提供的一种省间交易代理模式下节点选取方法的流程示意图;
图2所示为本申请另一实施例提供的一种省间交易代理模式下节点选取方法的流程示意图;
图3所示为本申请一实施例提供的一种省间交易代理模式下节点选取***的框图;
图4所示为本申请另一实施例提供的一种省间交易代理模式下节点选取***的框图。
具体实施方式
下面将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
以下详细说明均是示例性的说明,旨在对本申请提供进一步的详细说明。除非另有指明,本申请所采用的所有技术术语与本申请所属领域的一般技术人员的通常理解的含义相同。本申请所使用的术语仅是为了描述具体实施方式,而并非意图限制根据本申请的示例性实施方式。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1所示为本申请一实施例提供的一种省间交易代理模式下节点选取方法的流程示意图。
如图1所示,该省间交易代理模式下节点的选取方法包括:
步骤01:将省间电网模型优化成网络化简模型;在一实施例中,用于省间交易的物理网络化简模型包括三类数据,一是关键断面信息,二是关键节点信息,三是节点对关键断面的灵敏度。关键断面保留所有省间直流断面和省间交流断面,以及省间交易造成省内出现阻塞的关键断面。关键节点包括直流联络 线两端端点,余下的节点可以依据市场成员参与方式确定:购电侧通过省间交易商参与省间市场,因此每个省可以将直流端点外的负荷,根据省内易阻塞的关键断面情况,聚合成一个或多个虚拟负荷节点;在发电侧,如果发电机直接向国家级电力交易中心申报,则保留每个发电机组节点信息,如果通过省间交易商参与省间市场,则将直流端点外的发电,根据省内易阻塞的关键断面情况,聚合成一个或多个虚拟发电节点。
步骤02:在网络化简模型中选取节点作为省间代理商参与市场的物理节点;在一实施例中,购电侧通过省间交易商参与省间市场,因此每个省将直流端点外的负荷,根据省内易阻塞的关键断面情况,聚合成一个或多个虚拟负荷节点;在发电侧,如果发电机直接向国家级电力交易中心申报,则保留每个发电机组节点信息,如果通过省间交易商参与省间市场,则将直流端点外的发电,根据省内易阻塞的关键断面情况,聚合成一个或多个虚拟发电节点。在统一电力市场方案中,每个省各类电力批发用户、售电公司可向省间交易商上报参与省间市场交易的带曲线负荷需求报价信息。发电机组可分为两种方式参与省间市场,一种是直接向国家级电力交易中心申报带曲线发电报价信息;另一种是向省间交易商上报参与省间市场交易的带曲线发电报价信息。省间交易商基于发电报价信息与负荷需求报价信息,以及新能源出力与负荷需求预测情况,向国家电力交易中心申报省间发电报价和购电需求。
步骤03:计算物理节点的等效灵敏度,根据等效灵敏度计算网络安全潮流。在一实施例中,通过计算物理节点的等效灵敏度,根据等效灵敏度计算网络安全潮流,为省间交易提供了简化的物理网络模型,能够大大提高省间优化出清效率。
通过将省间电网模型优化成网络化简模型;在网络化简模型中选取节点作 为省间代理商参与市场的物理节点;计算物理节点的等效灵敏度,根据等效灵敏度计算网络安全潮流,解决了相关技术中由于省间物理网络与省内网络在电压等级、网络组成结构和网络拓扑等方面存在较大差别,导致优化出清计算规模庞大,计算效率很低的问题。本申请通过省间交易代理模式下节点选取方法及节点等效灵敏度计算方法,保留省间电网模型的等值关键信息,消去冗余信息,降低网络复杂度,可为涵盖特高压交直流混联电网的省间交易优化出清模型提供降维的物理网络模型,提高省间优化出清效率。
可以理解,网络化简模型包括关键断面信息、关键节点信息和物理节点对关键断面的灵敏度,网络化简模型可以包括上述信息和数据等,网络化简模型包括何种数据可以根据实际的需求进行设定。
还可以理解,关键断面信息保留所有省间直流断面、省间交流断面和省间交易造成省内出现阻塞的关键断面,关键断面信息可以包括上述信息,关键断面信息包括何种信息可以根据实际的需求进行设定。
还可以理解,关键节点信息包括:直流联络线两端端点,关键节点信息可以包括上述信息,关键节点信息包括何种信息可以根据实际情况进行设定。
图2所示为本申请另一实施例提供的一种省间交易代理模式下节点选取方法的流程示意图。
如图2所示,在网络化简模型中选取节点作为省间代理商参与市场的物理节点包括:
步骤021:购电侧通过省间交易商参与省间市场;
步骤022:根据省内出现阻塞的关键断面,每个省将直流端点外的负荷聚合成至少一个虚拟负荷节点;在一实施例中,购电侧通过省间交易商参与省间市场,因此每个省将直流端点外的负荷,根据省内易阻塞的关键断面情况,聚 合成一个或多个虚拟负荷节点。
步骤023:发电侧的发电机直接向国家级电力交易中心申报,保留每个发电机组节点信息;在一实施例中,在发电侧,如果发电机直接向国家级电力交易中心申报,则保留每个发电机组节点信息。或
步骤024:发电侧的发电机通过省间交易商参与省间市场,根据省内出现阻塞的关键断面情况,将直流端点外的发电聚合成至少一个虚拟发电节点。在一实施例中,如果通过省间交易商参与省间市场,则将直流端点外的发电,根据省内易阻塞的关键断面情况,聚合成一个或多个虚拟发电节点。
本申请一实施例中,除选取的节点外的其余节点依据市场成员参与方式进行选取。
本申请一实施例中,计算物理节点的等效灵敏度,包括:计算节点对直流联络线灵敏度和计算节点对交流联络线灵敏度。
本申请一实施例中,计算节点对直流联络线灵敏度,包括:根据直流线路运行特性,得出直流输送功率只与直流联络线相连的送出端节点和受电端节点相关,根据节点电压对每个节点注入功率灵敏度矩阵公式和支路功率对每个节点注入功率灵敏度矩阵与雅克比矩阵公式之间的关系,得出送出端节点灵敏度分布因子为1,受电端节点灵敏度分布因子为-1,其余未与直流联络线相连的灵敏度分布因子均为0。
首先,用牛顿法对***进行基准状态下全网络的确定性潮流计算,获取雅克比矩阵J 0如公式(1)所示。
Figure PCTCN2020123681-appb-000001
节点电压对每个节点注入功率灵敏度矩阵S 0如公式(2)所示,支路功率对 每个节点注入功率灵敏度矩阵T 0如公式(3)所示。
S 0=J 0 -1    (2)
Figure PCTCN2020123681-appb-000002
式中,
Figure PCTCN2020123681-appb-000003
为i-j线路潮流对k节点电压变量的偏导数。
每个节点对直流联络线灵敏度:
根据直流线路运行特性可知,直流输送功率只与DC相连的送出端节点s和受电端节点b相关,其灵敏度分布因子
Figure PCTCN2020123681-appb-000004
分别为1、-1,其余未与之相连的灵敏度分布因子均为0。
本申请一实施例中,根据牛顿法对***进行基准状态下全网络的确定性潮流计算获取雅克比矩阵公式。
本申请一实施例中,计算节点对交流联络线灵敏度,包括:
计算直流联络线两端端点及直接参与交易的发电机组节点对交流联络线灵敏度;与直流联络线DC相连的送出端节点s和受电端节点b、以及每个直接参与交易的发电机组n对交流联络线灵敏度
Figure PCTCN2020123681-appb-000005
分别根据公式(3)计算可得,如公式(4)-公式(6)所示:
Figure PCTCN2020123681-appb-000006
Figure PCTCN2020123681-appb-000007
Figure PCTCN2020123681-appb-000008
计算购电侧虚拟负荷节点对交流联络线灵敏度;将购电侧除直流端点外的每个母线负荷聚合成一个虚拟负荷节点,则虚拟负荷节点V对每个线路潮流的 等效灵敏度
Figure PCTCN2020123681-appb-000009
可由公式(7)计算得出。
Figure PCTCN2020123681-appb-000010
式中,
Figure PCTCN2020123681-appb-000011
为每个母线负荷v对线路i-j潮流影响的权值,本文采用加权平均的方式计算其值,由公式(8)计算得出。
Figure PCTCN2020123681-appb-000012
Figure PCTCN2020123681-appb-000013
式中,
Figure PCTCN2020123681-appb-000014
为每个母线负荷v对i-j线路潮流的灵敏度因子。
计算发电侧虚拟发电节点对交流联络线灵敏度,同上所述,将发电侧除直流端点外的每个发电机组聚合成一个虚拟发电节点,则虚拟发电节点G对每个支路潮流的等效灵敏度
Figure PCTCN2020123681-appb-000015
可由公式(10)计算得出。
Figure PCTCN2020123681-appb-000016
Figure PCTCN2020123681-appb-000017
Figure PCTCN2020123681-appb-000018
式中,
Figure PCTCN2020123681-appb-000019
为每个母线发电节点g对i-j线路潮流的灵敏度因子,
Figure PCTCN2020123681-appb-000020
为每个母线发电节点g对线路i-j潮流影响的权值。
本申请一实施例中,节点等效灵敏度的计算方法包括:
用牛顿法对***进行基准状态下全网络的确定性潮流计算,获取雅克比矩阵J 0如公式(1)所示。
Figure PCTCN2020123681-appb-000021
节点电压对每个节点注入功率灵敏度矩阵S 0如公式(2)所示,支路功率对每个节点注入功率灵敏度矩阵T 0如公式(3)所示。
S 0=J 0 -1   (2)
Figure PCTCN2020123681-appb-000022
式中,
Figure PCTCN2020123681-appb-000023
为i-j线路潮流对k节点电压变量的偏导数。
(1)每个节点对直流联络线灵敏度
根据直流线路运行特性可知,直流输送功率只与DC相连的送出端节点s和受电端节点b相关,其灵敏度分布因子
Figure PCTCN2020123681-appb-000024
分别为1、-1,其余未与之相连的灵敏度分布因子均为0。
(2)每个节点对交流联络线灵敏度
①直流联络线两端端点及直接参与交易的发电机组节点对交流联络线灵敏度
与直流联络线DC相连的送出端节点s和受电端节点b、以及每个直接参与交易的发电机组n对交流联络线灵敏度
Figure PCTCN2020123681-appb-000025
分别根据公式(3)计算可得,如公式(4)-公式(6)所示。
Figure PCTCN2020123681-appb-000026
Figure PCTCN2020123681-appb-000027
Figure PCTCN2020123681-appb-000028
②购电侧虚拟负荷节点对交流联络线灵敏度
将购电侧除直流端点外的每个母线负荷聚合成一个虚拟负荷节点,则虚拟负荷节点V对每个线路潮流的等效灵敏度
Figure PCTCN2020123681-appb-000029
可由公式(7)计算得出。
Figure PCTCN2020123681-appb-000030
式中,
Figure PCTCN2020123681-appb-000031
为每个母线负荷v对线路i-j潮流影响的权值,本文采用加权平均的方式计算其值,由公式(8)计算得出。
Figure PCTCN2020123681-appb-000032
Figure PCTCN2020123681-appb-000033
式中,
Figure PCTCN2020123681-appb-000034
为每个母线负荷v对i-j线路潮流的灵敏度因子。
③发电侧虚拟发电节点对交流联络线灵敏度
同上所述,将发电侧除直流端点外的每个发电机组聚合成一个虚拟发电节点,则虚拟发电节点G对每个支路潮流的等效灵敏度
Figure PCTCN2020123681-appb-000035
可由公式(10)计算得出。
Figure PCTCN2020123681-appb-000036
Figure PCTCN2020123681-appb-000037
Figure PCTCN2020123681-appb-000038
式中,
Figure PCTCN2020123681-appb-000039
为每个母线发电节点g对i-j线路潮流的灵敏度因子,
Figure PCTCN2020123681-appb-000040
为每个母线发电节点g对线路i-j潮流影响的权值。
在一种实施方式中,本申请的方法还包括以下步骤:计算所述物理节点的 等效灵敏度,根据所述等效灵敏度计算网络安全潮流。
在一种实施方式中,所述网络化简模型包括关键断面信息、关键节点信息和所述物理节点对关键断面的灵敏度。
在一种实施方式中,所述关键断面信息保留所有省间直流断面、省间交流断面和省间交易造成省内出现阻塞的关键断面。
在一种实施方式中,所述关键节点信息包括:直流联络线两端端点。
在一种实施方式中,所述在所述网络化简模型中选取节点作为省间代理商参与市场的物理节点包括:通过省间交易商参与省间市场购电侧等效为若干虚拟负荷节点;根据所述省内出现阻塞的关键断面,各省将直流端点外的负荷聚合成至少一个电网模型中的虚拟母线负荷节点;发电侧的发电机组直接向国家级电力交易中心申报,保留各发电机组节点信息;或发电侧的发电机通过省间交易商参与省间市场,根据省内出现阻塞的关键断面情况,将直流端点外的发电聚合成至少一个虚拟发电节点。
在一种实施方式中,除选取的节点外的其余节点案子市场成员参与方式进行选取:负荷侧:各省各类电力批发用户、售电公司向省间交易商上报参与省间市场交易的带曲线负荷需求报价信息;聚合为一个母线节点。发电侧:发电机组可分为两种方式参与省间市场,一种是直接向国家级电力交易中心申报带曲线发电报价信息,保留为单独的母线节点;另一种是向省间交易商上报参与省间市场交易的带曲线发电报价信息,聚合为一个母线节点。
在一种实施方式中,计算所述物理节点的等效灵敏度,包括:计算节点对直流联络线灵敏度和计算节点对交流联络线灵敏度。
在一种实施方式中,所述计算节点对直流联络线灵敏度,包括:根据节点电压对各节点注入功率灵敏度矩阵公式和支路功率对各节点注入功率灵敏度矩 阵与雅克比矩阵公式之间的关系,得出送出端节点灵敏度分布因子为1,受电端节点灵敏度分布因子为-1,其余未与所述直流联络线相连的灵敏度分布因子均为0。
在一种实施方式中,根据牛顿法对***进行基准状态下全网络的确定性潮流计算获取所述雅克比矩阵公式。
在一种实施方式中,所述计算节点对交流联络线灵敏度,包括:计算直流联络线两端端点及直接参与交易的发电机组节点对交流联络线灵敏度;计算购电侧虚拟负荷节点对交流联络线灵敏度;计算发电侧虚拟发电节点对交流联络线灵敏度。
本申请另一实施例中,提供一种省间交易代理模式下节点选取***,应用于电力***,包括:
优化模块,被配置为将省间电网模型优化成网络化简模型;
节点选取模块,被配置为在所述网络化简模型中选取节点作为省间代理商参与市场的物理节点;
网络安全潮流计算模块,被配置为计算所述物理节点的等效灵敏度,根据所述等效灵敏度计算网络安全潮流。
本申请另一实施例中,提供一种省间交易代理模式下节点选取***,应用于电力***,所述***包括:处理器以及与所述处理器耦合的存储器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时实现所述一种省间交易代理模式下节点选取方法的方法步骤。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结 合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(可以包括磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本申请实施例提供的一种省间交易代理模式下节点的选取方法和***、以及存储介质,通过将省间电网模型优化成网络化简模型;在网络化简模型中选取节点作为省间代理商参与市场的物理节点;计算物理节点的等效灵敏度,根据等效灵敏度计算网络安全潮流。解决了相关技术中由于省间物理网络与省内网络在电压等级、网络组成结构和网络拓扑等方面存在较大差别,导致优化出 清计算规模庞大,计算效率很低的问题。

Claims (15)

  1. 一种省间交易代理模式下节点选取方法,包括:
    将省间电网模型优化成网络化简模型;
    在所述网络化简模型中选取节点作为省间代理商参与市场的物理节点。
  2. 根据权利要求1所述的省间交易代理模式下节点选取方法,还包括以下步骤:
    计算所述物理节点的等效灵敏度。
  3. 根据权利要求1所述的省间交易代理模式下节点选取方法,其中,所述网络化简模型包括关键断面信息、关键节点信息和所述物理节点对关键断面的灵敏度。
  4. 根据权利要求3所述的省间交易代理模式下节点选取方法,其中,所述关键断面信息保留所有省间直流断面、省间交流断面和省间交易造成省内出现阻塞的关键断面。
  5. 根据权利要求3所述的省间交易代理模式下节点选取方法,其中,所述关键节点信息包括:直流联络线两端端点。
  6. 根据权利要求4所述的省间交易代理模式下节点选取方法,其中,所述在所述网络化简模型中选取节点作为省间代理商参与市场的物理节点包括:
    将通过省间交易商参与省间市场的购电侧等效为虚拟负荷节点;
    根据所述省内出现阻塞的关键断面,每个省将直流端点外的负荷聚合成至少一个电网模型中的虚拟母线负荷节点;
    发电侧的发电机组向国家级电力交易中心申报,保留每个发电机组节点信息。
  7. 根据权利要求4所述的省间交易代理模式下节点选取方法,其中,所述在所述网络化简模型中选取节点作为省间代理商参与市场的物理节点包括:
    将通过省间交易商参与省间市场的购电侧等效为虚拟负荷节点;
    根据所述省内出现阻塞的关键断面,每个省将直流端点外的负荷聚合成至少一个电网模型中的虚拟母线负荷节点;
    发电侧的发电机通过省间交易商参与省间市场,根据省内出现阻塞的关键断面情况,将直流端点外的发电聚合成至少一个虚拟发电节点。
  8. 根据权利要求6或7所述的省间交易代理模式下节点选取方法,其中,除选取的节点外的其余节点按照市场成员参与方式进行选取。
  9. 根据权利要求2中所述的省间交易代理模式下节点选取方法,其中,计算所述物理节点的等效灵敏度,包括:计算节点对直流联络线灵敏度和计算节点对交流联络线灵敏度。
  10. 根据权利要求9中所述的省间交易代理模式下节点选取方法,其中,所述计算节点对直流联络线灵敏度,包括:
    根据节点电压对每个节点注入功率灵敏度矩阵公式和支路功率对每个节点注入功率灵敏度矩阵与雅克比矩阵公式之间的关系,得出送出端节点灵敏度分布因子为1,受电端节点灵敏度分布因子为-1,其余未与所述直流联络线相连的灵敏度分布因子均为0。
  11. 根据权利要求9中所述的省间交易代理模式下节点选取方法,其中,所述计算节点对交流联络线灵敏度,包括:
    计算直流联络线两端端点及直接参与交易的发电机组节点对交流联络线灵敏度;
    计算购电侧虚拟负荷节点对交流联络线灵敏度;
    计算发电侧虚拟发电节点对交流联络线灵敏度。
  12. 一种省间交易代理模式下节点选取***,应用于电力***,包括:
    优化模块,被配置为将省间电网模型优化成网络化简模型;
    节点选取模块,被配置为在所述网络化简模型中选取节点作为省间代理商参与市场的物理节点。
  13. 根据权利要求12所述的一种省间交易代理模式下节点选取***,还包括:
    网络安全潮流计算模块,被配置为计算所述物理节点的等效灵敏度,根据所述等效灵敏度计算网络安全潮流。
  14. 一种省间交易代理模式下节点选取***,应用于电力***,所述***包括:处理器以及与所述处理器耦合的存储器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时实现权利要求1-11中任一项所述的省间交易代理模式下节点选取方法。
  15. 一种存储介质,存储有计算机程序指令,所述计算机程序指令用于执行如权利要求1-11任一所述的省间交易代理模式下节点选取方法。
PCT/CN2020/123681 2020-05-13 2020-10-26 省间交易代理模式下节点的选取方法和***、以及存储介质 WO2021227373A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010403599.9A CN111523827B (zh) 2020-05-13 2020-05-13 一种省间交易代理模式下节点的选取方法及***
CN202010403599.9 2020-05-13

Publications (1)

Publication Number Publication Date
WO2021227373A1 true WO2021227373A1 (zh) 2021-11-18

Family

ID=71904957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123681 WO2021227373A1 (zh) 2020-05-13 2020-10-26 省间交易代理模式下节点的选取方法和***、以及存储介质

Country Status (2)

Country Link
CN (1) CN111523827B (zh)
WO (1) WO2021227373A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115034587A (zh) * 2022-05-25 2022-09-09 国网浙江省电力有限公司经济技术研究院 一种计及风险的省间省内电量互动方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111523827B (zh) * 2020-05-13 2022-02-11 中国电力科学研究院有限公司 一种省间交易代理模式下节点的选取方法及***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103036245A (zh) * 2012-11-30 2013-04-10 中国南方电网有限责任公司 一种互联电网新型交直流协同降低网损的方法及***
CN103345712A (zh) * 2013-06-19 2013-10-09 国家电网公司 一种中长期跨区跨省交易优化与模式评估方法
US20150134132A1 (en) * 2013-11-14 2015-05-14 Abb Technology Ag Method and Apparatus for Security Constrained Economic Dispatch in Hybrid Power Systems
CN109638838A (zh) * 2019-01-21 2019-04-16 广东电网有限责任公司 电网关键断面识别方法、装置及电子设备
CN111523827A (zh) * 2020-05-13 2020-08-11 中国电力科学研究院有限公司 一种省间交易代理模式下节点的选取方法及***

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106786533B (zh) * 2016-12-26 2019-09-06 国网山东省电力公司泰安供电公司 电力调度计划数据的获取方法及装置
CN109002945A (zh) * 2018-10-12 2018-12-14 华中科技大学 一种分时电价下省际电网水电多目标购电优化方法及***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103036245A (zh) * 2012-11-30 2013-04-10 中国南方电网有限责任公司 一种互联电网新型交直流协同降低网损的方法及***
CN103345712A (zh) * 2013-06-19 2013-10-09 国家电网公司 一种中长期跨区跨省交易优化与模式评估方法
US20150134132A1 (en) * 2013-11-14 2015-05-14 Abb Technology Ag Method and Apparatus for Security Constrained Economic Dispatch in Hybrid Power Systems
CN109638838A (zh) * 2019-01-21 2019-04-16 广东电网有限责任公司 电网关键断面识别方法、装置及电子设备
CN111523827A (zh) * 2020-05-13 2020-08-11 中国电力科学研究院有限公司 一种省间交易代理模式下节点的选取方法及***

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZENG DAN, ZHENGLIN YANG, SHUHAI FENG, BO PANG, FEI SHI: "Inter-provincial Power Exchange Optimization Modeling Considering ATC Constrains of Hybrid AC/DC Power System", POWER SYSTEM TECHNOLOGY, SHUILI-DIANLIBU DIANLI KEXUE YANJIUYUAN, BEIJING, CN, vol. 44, no. 10, 14 August 2020 (2020-08-14), CN , pages 3893 - 3899, XP055866013, ISSN: 1000-3673, DOI: 10.13335/j.1000-3673.pst.2020.0111 *
ZHENG YAXIAN, CHENG HAIHUA;YANG ZHENGLIN;GENG JIAN: "Path-optimized Modeling and Algorithm for Trans-regional and Trans-provincial Electricity Trading Considering Clean Energy", AUTOMATION OF ELECTRIC POWER SYSTEM, vol. 41, no. 24, 25 December 2017 (2017-12-25), pages 112 - 119, XP055866016, DOI: 10.7500/AEPS20170615010 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115034587A (zh) * 2022-05-25 2022-09-09 国网浙江省电力有限公司经济技术研究院 一种计及风险的省间省内电量互动方法

Also Published As

Publication number Publication date
CN111523827A (zh) 2020-08-11
CN111523827B (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
Baran et al. A transaction assessment method for allocation of transmission services
Maghouli et al. A scenario-based multi-objective model for multi-stage transmission expansion planning
Molina et al. Transmission network cost allocation based on circuit theory and the Aumann-Shapley method
CN106877397B (zh) 一种考虑需求侧响应的基于博弈论的主动配电网孤岛恢复方法
CN107316113B (zh) 一种输电网规划方法及***
WO2021227373A1 (zh) 省间交易代理模式下节点的选取方法和***、以及存储介质
CN106844916A (zh) 一种基于调峰辅助服务市场的发电和用电组织方法及装置
Li et al. A cascading failure model based on AC optimal power flow: Case study
CN108493998B (zh) 考虑需求响应与n-1预想故障的鲁棒输电网规划方法
Ramasubramanian et al. Optimal location of FACTS devices by evolutionary programming based OPF in deregulated power systems
CN111049196A (zh) 现货环境下调峰辅助服务的出清方法、***、装置及介质
CN102522744B (zh) 一种过网网损分摊方法
CN105305488A (zh) 一种考虑新能源并网对输电网利用率影响的评价方法
CN114757699B (zh) 电力调峰辅助服务市场分级出清方法、装置、设备及介质
Jayawardene et al. A graph theory-based clustering method for power system networks
CN112926762B (zh) 一种基于安全约束机组组合模型的出清方法及装置
CN105162143A (zh) 一种大区电网间最优交易容量的确定方法
Gebrekiros et al. Assessment of PTDF based power system aggregation schemes
Yu et al. Optimization of an offshore oilfield multi-platform interconnected power system structure
CN108988336B (zh) 具有嵌套式微电网的充电桩***的优化规划方法
CN110350524A (zh) 一种基于节点重要度的直流潮流优化方法
CN112365193B (zh) 考虑线路传输安全的电力市场集中式出清方法及装置
CN113139271B (zh) 聚合资源建模方法及装置、电子设备及存储介质
CN111027829B (zh) 一种基于效益的电网规划***
Ramesh et al. Optimal allocation of TCSC and DG unit for congestion management in deregulated power systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20935930

Country of ref document: EP

Kind code of ref document: A1