WO2021226970A1 - 信号接收方法、装置和*** - Google Patents

信号接收方法、装置和*** Download PDF

Info

Publication number
WO2021226970A1
WO2021226970A1 PCT/CN2020/090375 CN2020090375W WO2021226970A1 WO 2021226970 A1 WO2021226970 A1 WO 2021226970A1 CN 2020090375 W CN2020090375 W CN 2020090375W WO 2021226970 A1 WO2021226970 A1 WO 2021226970A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
data signal
pdsch
same
frequency domain
Prior art date
Application number
PCT/CN2020/090375
Other languages
English (en)
French (fr)
Inventor
陈哲
张磊
张健
Original Assignee
富士通株式会社
陈哲
张磊
张健
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 陈哲, 张磊, 张健 filed Critical 富士通株式会社
Priority to PCT/CN2020/090375 priority Critical patent/WO2021226970A1/zh
Publication of WO2021226970A1 publication Critical patent/WO2021226970A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of communications.
  • Rel-16 has enhanced the transmission mechanism of downlink data signals. This enables downlink data signals to be sent through multiple TRPs (transmission and reception points). Specifically, these downlink data signals can be transmitted from different TRPs through time division multiplexing, frequency division multiplexing, and space division multiplexing. This transmission method can enhance the robustness of the downlink data signal, thereby meeting the corresponding reliability requirements.
  • PDSCH Physical Downlink Shared Channel
  • TRP is characterized as TCI state (transmission configuration indication state, transmission configuration indication state).
  • a signal receiving method wherein the method includes:
  • the terminal device receives first indication information; wherein the first indication information indicates at least two transmission configuration indication (TCI) states; and
  • the terminal device receives a data signal and a demodulation reference signal (DM-RS) associated with the data signal;
  • DM-RS demodulation reference signal
  • the data signal is related to the at least two transmission configuration indication (TCI) states
  • one symbol of the DM-RS is the same as the TCI state associated or allocated with one symbol of the data signal
  • the data signal The channel that the one symbol of the DM-RS has experienced on one antenna port can be obtained (is inferred) according to the channel that the one symbol of the DM-RS has experienced on the same antenna port.
  • TCI transmission configuration indication
  • a signal sending method wherein the method includes:
  • the network device generates first indication information, a data signal, and a DM-RS associated with the data signal; wherein the first indication information indicates at least two transmission configuration indication (TCI) states;
  • TCI transmission configuration indication
  • the data signal is related to the at least two TCI states, one symbol of the DM-RS is the same as the TCI state associated or assigned to one symbol of the data signal, and the one symbol of the data signal
  • the channel experienced (conveyed) on one antenna port can be derived (is inferred) according to the channel experienced by the one symbol of the DM-RS on the same antenna port.
  • a signal receiving method wherein the method includes:
  • the terminal device receives first indication information; wherein the first indication information indicates at least two transmission configuration indication (TCI) states; and
  • the terminal device receives a data signal and a demodulation reference signal (DM-RS) associated with the data signal;
  • DM-RS demodulation reference signal
  • the precoding granularity of the data signal is wideband precoding granularity, and the allocated frequency domain resources of the data signal are based on the number of TCI states indicated by the first indication information. Divided into a corresponding number of frequency domain parts, one symbol of the DM-RS corresponds to the same frequency domain part as one symbol of the data signal, and the one symbol of the data signal is located on one antenna port.
  • the channel that is experienced (is conveyed) can be derived (is inferred) according to the channel experienced by the one symbol of the DM-RS on the same antenna port.
  • a signal sending method wherein the method includes:
  • the network device generates first indication information, a data signal, and a DM-RS associated with the data signal, wherein the first indication information indicates at least two transmission configuration indication (TCI) states; and
  • the precoding granularity of the data signal is wideband precoding granularity, and the frequency domain resources allocated to the data signal are divided into corresponding ones according to the number of TCI states indicated by the first indication information
  • the number of frequency domain parts, one symbol of the DM-RS and one symbol of the data signal correspond to the same frequency domain part, and the one symbol of the data signal is experienced on one antenna port (is
  • the conveyed channel can be derived (is inferred) according to the channel experienced by the one symbol of the DM-RS on the same antenna port.
  • a signal receiving device wherein the device includes:
  • a first receiving unit which receives first indication information; wherein the first indication information indicates at least two transmission configuration indication (TCI) states; and
  • a second receiving unit which receives a data signal and a demodulation reference signal (DM-RS) associated with the data signal;
  • DM-RS demodulation reference signal
  • the data signal is related to the at least two transmission configuration indication (TCI) states
  • one symbol of the DM-RS is the same as the TCI state associated or allocated with one symbol of the data signal
  • the data signal The channel that the one symbol of the DM-RS has experienced on one antenna port can be obtained (is inferred) according to the channel that the one symbol of the DM-RS has experienced on the same antenna port.
  • TCI transmission configuration indication
  • a signal sending device wherein the device includes:
  • a generating unit which generates first indication information, a data signal, and a DM-RS associated with the data signal; wherein the first indication information indicates at least two transmission configuration indication (TCI) states;
  • TCI transmission configuration indication
  • a sending unit that sends the first indication information, the data signal, and the DM-RS associated with the data signal to a terminal device;
  • the data signal is related to the at least two TCI states, one symbol of the DM-RS is the same as the TCI state associated or assigned to one symbol of the data signal, and the one symbol of the data signal
  • the channel experienced (conveyed) on one antenna port can be derived (is inferred) according to the channel experienced by the one symbol of the DM-RS on the same antenna port.
  • a signal receiving device wherein the device includes:
  • a first receiving unit which receives first indication information; wherein the first indication information indicates at least two transmission configuration indication (TCI) states; and
  • a second receiving unit which receives a data signal and a demodulation reference signal (DM-RS) associated with the data signal;
  • DM-RS demodulation reference signal
  • the precoding granularity of the data signal is wideband precoding granularity, and the allocated frequency domain resources of the data signal are based on the number of TCI states indicated by the first indication information. Divided into a corresponding number of frequency domain parts, one symbol of the DM-RS corresponds to the same frequency domain part as one symbol of the data signal, and the one symbol of the data signal is located on one antenna port.
  • the channel that is experienced (is conveyed) can be derived (is inferred) according to the channel experienced by the one symbol of the DM-RS on the same antenna port.
  • a signal sending device wherein the device includes:
  • a generating unit that generates first indication information, a data signal, and a DM-RS associated with the data signal, wherein the first indication information indicates at least two transmission configuration indication (TCI) states;
  • a sending unit that sends the first indication information, the data signal, and the DM-RS associated with the data signal to a terminal device;
  • the precoding granularity of the data signal is wideband precoding granularity, and the frequency domain resources allocated to the data signal are divided into corresponding ones according to the number of TCI states indicated by the first indication information
  • the number of frequency domain parts, one symbol of the DM-RS and one symbol of the data signal correspond to the same frequency domain part, and the one symbol of the data signal is experienced on one antenna port (is
  • the conveyed channel can be derived (is inferred) according to the channel experienced by the one symbol of the DM-RS on the same antenna port.
  • One of the beneficial effects of the embodiments of the present application is that according to the embodiments of the present application, it is possible to prevent the terminal device from erroneously combining DM-RSs corresponding to different TRPs when performing channel estimation.
  • Figure 1 is a schematic diagram of the PDSCH time division multiplexing mechanism
  • Figure 2 is a schematic diagram of PDSCH frequency division multiplexing mechanism A
  • Figure 3 is a schematic diagram of PDSCH frequency division multiplexing mechanism B
  • FIG. 4 is a schematic diagram of a signal receiving method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a signal sending method according to an embodiment of the present application.
  • FIG. 6 is another schematic diagram of a signal receiving method according to an embodiment of the present application.
  • FIG. 7 is another schematic diagram of a signal sending method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a signal receiving device according to an embodiment of the present application.
  • FIG. 9 is another schematic diagram of a signal receiving device according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a signal sending device according to an embodiment of the present application.
  • FIG. 11 is another schematic diagram of a signal sending device according to an embodiment of the present application.
  • Fig. 12 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • Fig. 14 is a schematic diagram of a network device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the terms, but they do not indicate the spatial arrangement or chronological order of these elements. These elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising”, “including”, “having” and the like refer to the existence of the stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term "communication network” or “wireless communication network” can refer to a network that meets any of the following communication standards, such as Long Term Evolution (LTE), and Enhanced Long Term Evolution (LTE-A, LTE-A). Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Enhanced Long Term Evolution
  • LTE-A LTE-A
  • Advanced Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to any stage of communication protocol, for example, it can include but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and future 5G, New Radio (NR, New Radio), etc., and/or other communication protocols currently known or to be developed in the future.
  • 1G generation
  • 2G 2.5G
  • 2.75G 3G
  • 4G 4G
  • 4.5G future 5G
  • New Radio NR, New Radio
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • Network equipment may include but not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), etc.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), 5G base station (gNB), etc., and may also include remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay), or low-power node (such as femto, pico, etc.).
  • NodeB Node B
  • eNodeB or eNB evolved Node B
  • gNB 5G base station
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low-power node such as femto, pico, etc.
  • base station can include some or all of their functions, and each base station can provide communication coverage for a specific geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "User Equipment” refers to, for example, a device that accesses a communication network through a network device and receives network services, and may also be referred to as "Terminal Equipment” (TE, Terminal Equipment).
  • Terminal equipment can be fixed or mobile, and can also be called mobile station (MS, Mobile Station), terminal, user, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, etc. Wait.
  • terminal devices may include but are not limited to the following devices: cellular phones (Cellular Phone), personal digital assistants (PDAs, Personal Digital Assistant), wireless modems, wireless communication devices, handheld devices, machine-type communication devices, laptop computers, Cordless phones, smart phones, smart watches, digital cameras, etc.
  • cellular phones Cellular Phone
  • PDAs personal digital assistants
  • wireless modems wireless communication devices
  • handheld devices machine-type communication devices
  • laptop computers Cordless phones
  • smart phones smart watches, digital cameras, etc.
  • a terminal device may also be a machine or device that performs monitoring or measurement.
  • it may include, but is not limited to: Machine Type Communication (MTC) terminals, In-vehicle communication terminals, device to device (D2D, Device to Device) terminals, machine to machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • Figure 1 is a schematic diagram of the PDSCH time division multiplexing mechanism (for example, TDMSchemeA).
  • the PDSCH time division multiplexing mechanism means that in one time slot, the PDSCH can correspond to more than one transmission opportunity (transmission occasion). Among them, each transmission opportunity does not overlap each other in the time domain, and each opportunity corresponds to a different TCI state.
  • the network device is associated with two TRPs, and the two TRPs respectively correspond to different TCI states, which can also be understood as corresponding to different spatial relationships.
  • the terminal device receives the scheduling instruction (the scheduling instruction may be before the time slot n or the time slot n), in the time slot n, at two PDSCH transmission opportunities, it receives the PDSCH.
  • the PDSCH part corresponding to the first transmission opportunity is PDSCH Rep#1, which is transmitted through TRP#1, which corresponds to TRP#1 (that is, corresponding to the first TCI state, TCI#1); the second transmission The PDSCH part corresponding to the opportunity is PDSCH Rep#2, which is transmitted through TRP#2, which corresponds to TRP#2 (that is, the second TCI state, TCI#2).
  • Figure 2 is a schematic diagram of PDSCH frequency division multiplexing scheme A (FDMSchemeA).
  • the PDSCH frequency division multiplexing mechanism A means that in one time slot, the PDSCH can correspond to one transmission opportunity.
  • the transmission opportunity can be divided into more than one non-overlapping parts in the frequency domain. Among them, each part corresponds to a different TCI state.
  • the network device is associated with two TRPs, and the two TRPs respectively correspond to different TCI states, which can also be understood as corresponding to different spatial relationships.
  • the terminal device receives the scheduling instruction (the scheduling instruction may be before the time slot n or the time slot n), and in the time slot n, at a PDSCH transmission opportunity, it receives the PDSCH.
  • the first part of the PDSCH corresponding to the transmission opportunity is PDSCH part#1, which is transmitted through TRP#1, which corresponds to TRP#1 (that is, the first TCI state, TCI#1); the transmission opportunity corresponds to The second part of the PDSCH is PDSCH part#2, which is transmitted through TRP#1, which corresponds to TRP#2 (that is, the second TCI state, TCI#2).
  • Figure 3 is a schematic diagram of PDSCH frequency division multiplexing scheme B (FDMSchemeB).
  • the PDSCH frequency division multiplexing mechanism B means that in one time slot, the PDSCH can correspond to 2 transmission opportunities. The two opportunities do not overlap in the frequency domain. Among them, each part corresponds to a different TCI state.
  • the network device is associated with two TRPs, and the two TRPs respectively correspond to different TCI states, which can also be understood as corresponding to different spatial relationships.
  • the terminal device receives the scheduling instruction (the scheduling instruction may be before the time slot n or the time slot n), and in the time slot n, the PDSCH is received at the indicated two PDSCH transmission opportunities.
  • the PDSCH corresponding to the first transmission opportunity is PDSCH Rep#1, which is transmitted through TRP#1, which corresponds to TRP#1 (that is, the first TCI state, TCI#1); the PDSCH corresponding to the second transmission opportunity It is PDSCH Rep#2, which is transmitted through TRP#1, which corresponds to TRP#2 (that is, the second TCI state, TCI#2).
  • one TCI state may be associated with one or two DL (Downlink, downlink, referred to as downlink) reference signals.
  • each DL reference signal has a corresponding QCL type (quasi-colocation type, quasi-colocation type).
  • QCL types can be divided into typeA, typeB, typeC, and typeD.
  • typeD corresponds to Spatial Rx parameter (spatial receiving parameter).
  • Channel (channel) is derived (infer).
  • the above requirements include: the DM-RS symbol and the PDSCH symbol correspond to the same antenna port, the DM-RS symbol and the PDSCH symbol are in the same time slot, and the DM-RS symbol and the PDSCH symbol belong to the same PRG (Precoding Resource Block Group, precoding resource block group), and the DM-RS symbol and the PDSCH symbol are in the same PDSCH scheduling resource.
  • the terminal device considers that the channel experienced by the DM-RS symbol and the PDSCH symbol is the same, so that the demodulation information contained in the DM-RS symbol is used to demodulate the corresponding data information contained in the PDSCH symbol.
  • the terminal equipment According to this method, the PDSCH may be demodulated incorrectly.
  • PDSCH Rep#1 includes two DM-RSs on two symbols, namely DM-RS#1 and DM-RS#2; PDSCH Rep#2 is in two symbols. Each symbol includes two DM-RSs, namely DM-RS#3 and DM-RS#4.
  • DM-RS#1, DM-RS#2, DM-RS#3, and DM-RS#4 belong to the same PRG.
  • the first symbol of PDSCH Rep#1 and the symbol of DM-RS#3 are in the same time slot, according to the existing method, the first symbol of PDSCH Rep#1 is the same as the symbol of DM-RS#3.
  • the corresponding channels are the same, that is, the qualified data information contained in the first symbol of PDSCHRep#1 can be demodulated according to DM-RS#3.
  • the first symbol of PDSCH Rep#1 and the channel corresponding to DM-RS#3 are not the same, in other words, they come from different TRP/spatial directions. If DM-RS#3 is used, PDSCH Rep#1 may not be demodulated correctly, resulting in system performance degradation.
  • the PRB bundling indication corresponding to the PDSCH is ‘wideband’, that is, PDSCH part#1 and PDSCH part#2 belong to the same PRG.
  • PDSCH part#1 includes two DM-RSs on two symbols, namely DM-RS#1 and DM-RS#2;
  • PDSCH part#2 includes two DM-RSs on two symbols, respectively DM-RS#3 and DM-RS#4.
  • DM-RS#1, DM-RS#2, DM-RS#3, and DM-RS#4 belong to the same time slot.
  • the first symbol of PDSCH part#1 corresponds to the channel where DM-RS#3 is located. It is the same, that is, the qualified data information contained in the first symbol of PDSCH part#1 can be demodulated according to DM-RS#3.
  • the first symbol of PDSCH part#1 and the channel corresponding to DM-RS#3 are not the same, in other words, they come from different TRP/space directions. If DM-RS#3 is used, PDSCH Rep#1 may not be demodulated correctly, resulting in system performance degradation.
  • the PRB bundling indication corresponding to the PDSCH is ‘wideband’, that is, PDSCH Rep#1 and PDSCH Rep#2 belong to the same PRG.
  • PDSCH Rep#1 includes two DM-RSs on two symbols, namely DM-RS#1 and DM-RS#2;
  • PDSCH Rep#2 includes two DM-RSs on two symbols, respectively DM-RS#3 and DM-RS#4.
  • DM-RS#1, DM-RS#2, DM-RS#3, and DM-RS#4 belong to the same time slot.
  • the first symbol of PDSCH Rep#1 corresponds to the channel where DM-RS#3 is located. It is the same, that is, the qualified data information contained in the first symbol of PDSCH Rep#1 can be demodulated according to DM-RS#3.
  • the first symbol of PDSCH Rep#1 and the channel corresponding to DM-RS#3 are not the same, in other words, they come from different TRP/spatial directions. If DM-RS#3 is used, PDSCH Rep#1 may not be demodulated correctly, resulting in system performance degradation.
  • this application proposes corresponding solutions, so that when the terminal device performs channel estimation, it can avoid mistakenly combining DM-RSs corresponding to different TRPs, or can Avoid using wrong DM-RS to demodulate data.
  • FIG. 4 is a schematic diagram of a signal receiving method according to an embodiment of the present application. Please refer to FIG. 4. The method includes:
  • the terminal device receives first indication information, where the first indication information indicates at least two transmission configuration indication (TCI) states; and
  • the terminal device receives a data signal and a demodulation reference signal (DM-RS) associated with the data signal; wherein, the data signal is related to at least two TCI states, and one symbol of the DM-RS is related to The associated or assigned TCI status of one symbol of the data signal is the same, and the channel that the one symbol of the data signal has experienced (conveyed) on one antenna port can be based on the DM- The channel experienced by the one symbol of the RS on the same antenna port is inferred.
  • DM-RS demodulation reference signal
  • the relationship between the DM-RS and the data signal is determined using the TCI state, which enables the corresponding data signal to be demodulated using the correct DM-RS, thereby ensuring the reliability of data transmission. Improved system performance.
  • the data signal is associated with at least two TCI states, which means that different parts of the data signal are associated with different TCI states.
  • the data signal is divided into two parts.
  • One part of the data signal (such as PDSCH Rep#1) is associated with a TCI state (TCI#1)
  • the other part of the data signal (such as PDSCH Rep#2) is associated with a TCI.
  • Status (TCI#2)
  • the data signal is also divided into two parts.
  • TCI#1 TCI state
  • PDSCH part#2 TCI state
  • TCI#2 TCI state
  • TCI#2 TCI state
  • TCI#2 TCI state
  • TCI#2 TCI state
  • TCI#2 TCI state
  • TCI state can be 3 or more.
  • each TCI state is associated with a different part of the data signal.
  • one symbol of the DM-RS and one symbol of the data signal have the same associated or assigned TCI state, which means that one symbol of the DM-RS is the same as the data signal
  • One of the symbols is associated with the same TCI state.
  • PDSCH Rep#1, DM-RS#1 and DM-RS#2 are all associated with TCI#1, then (any) one symbol of PDSCH Rep#1 and DM-RS#1 ( Any) one symbol and (any) symbol of DM-RS#2 are associated with TCI#1; PDSCH Rep#2 is associated with DM-RS#3 and DM-RS#4 are all associated with TCI#2, then PDSCH Rep#2 (Any) a symbol is associated with (any) a symbol of DM-RS#3 and (any) a symbol of DM-RS#4 are associated with TCI#2; taking Figure 2 as an example, PDSCH part#1 and DM-RS# 1 and DM-RS#2 are both associated with TCI#1, then (any) symbol of PDSCH part#1 is associated with (any) symbol of DM-RS#1 and (any) symbol of DM-RS#2 TCI#1; PDSCH part#2, DM-RS#3 and
  • the channel that the one symbol of the data signal has experienced on one antenna port can be based on the channel that the one symbol of the DM-RS has experienced on the same antenna port (Is inferred), that is, the received data signal on one antenna port is demodulated using the DM-RS of the same antenna port with the same TCI state of the data signal, that is, the DM-RS and The TCI status of the data signal is the same as the antenna port.
  • a channel refers to a physical channel.
  • the antenna port numbers of DM-RS#1, DM-RS#2, and PDSCH Rep#1 are all 1000, and DM-RS#1 and DM-RS#2 are used to demodulate PDSCH Rep#1.
  • PDSCH Rep#1 on one symbol for example, the 3rd symbol in slot n
  • DM-RS# on one symbol for example, the 3rd symbol in slot n
  • DM-RS#2 on one symbol for example, the seventh symbol in slot n
  • the PDSCH Rep#1 on one symbol (for example, the 3rd symbol in slot n) can be based on the DM-RS on one symbol (for example, the 3rd symbol in slot n) #1 and DM-RS#2 demodulation on one symbol (for example, the seventh symbol in slot n).
  • the antenna port numbers of DM-RS#3, DM-RS#4, and PDSCH Rep#2 are all 1000, and DM-RS#3 and DM-RS#4 can be used to demodulate PDSCH Rep# 2.
  • PDSCH Rep#2 on one symbol for example, the 10th symbol in slot n
  • DM-RS# on one symbol for example, the 10th symbol in slot n
  • DM-RS#4 on one symbol for example, the 14th symbol in slot n
  • the PDSCH Rep#2 on one symbol (for example, the 10th symbol in slot n) can be based on the DM-RS on one symbol (for example, the 10th symbol in slot n) #3 and DM-RS#4 demodulation on one symbol (for example, the 14th symbol in slot n).
  • the antenna port numbers of DM-RS#1, DM-RS#2, and PDSCH part#1 are all 1000, and DM-RS#1 and DM-RS#2 can be used to demodulate PDSCH part#1 .
  • PDSCH part#1 on one symbol for example, the 6th symbol in slot n
  • DM-RS# on one symbol for example, the 6th symbol in slot n
  • DM-RS#2 on one symbol for example, the 10th symbol in slot n
  • the PDSCH part#1 on one symbol (for example, the 6th symbol in slot n) can be based on the DM-RS on one symbol (for example, the 6th symbol in slot n) #1 and DM-RS#2 demodulation on one symbol (for example, the 10th symbol in slot n).
  • the antenna port numbers of DM-RS#3, DM-RS#4, and PDSCH part#2 are all 1000, and DM-RS#3 and DM-RS#4 can be used to demodulate PDSCH part# 2.
  • PDSCH part#2 on one symbol for example, the 6th symbol in slot n
  • DM-RS# on one symbol for example, the 6th symbol in slot n
  • DM-RS#4 on one symbol for example, the 10th symbol in slot n
  • the PDSCH part#2 on one symbol (for example, the 6th symbol in slot n) can be based on the DM-RS on one symbol (for example, the 6th symbol in slot n) #3 and DM-RS#4 demodulation on one symbol (for example, the 10th symbol in slot n).
  • the antenna port numbers of DM-RS#1, DM-RS#2, and PDSCH Rep#1 are all 1000, and DM-RS#1 and DM-RS#2 can be used to demodulate PDSCH Rep#1 .
  • PDSCH Rep#1 on one symbol for example, the 6th symbol in slot n
  • DM-RS# on one symbol for example, the 6th symbol in slot n
  • DM-RS#2 on one symbol for example, the 10th symbol in slot n
  • the PDSCH Rep#1 on one symbol (for example, the 6th symbol in slot n) can be based on the DM-RS on one symbol (for example, the 6th symbol in slot n) #1 and DM-RS#2 demodulation on one symbol (for example, the 10th symbol in slot n).
  • the antenna port numbers of DM-RS#3, DM-RS#4, and PDSCH Rep#2 are all 1000, and DM-RS#3 and DM-RS#4 can be used to demodulate PDSCH Rep# 2.
  • PDSCH Rep#2 on one symbol for example, the 6th symbol in slot n
  • DM-RS# on one symbol for example, the 6th symbol in slot n
  • DM-RS#4 on one symbol for example, the 10th symbol in slot n
  • the PDSCH Rep#2 on one symbol can be based on the DM-RS on one symbol (for example, the 6th symbol in slot n) #3 and DM-RS#4 demodulation on one symbol (for example, the 10th symbol in slot n).
  • the one symbol of the DM-RS and the one symbol of the data signal are in the same scheduling resource of the data signal.
  • the scheduling resource of the data signal can be understood as the time-frequency resource indicated by the scheduling indication corresponding to the above-mentioned data signal.
  • the scheduling indication can be sent through PDCCH, MAC-CE signaling or RRC signaling, and this application is not limited to this, and the PDCCH is taken as an example below.
  • the PDCCH is used to schedule the PDSCH
  • the PDSCH includes two parts, namely PDSCH Rep#1 and PDSCH Rep#2.
  • PDSCH Rep#1 on one symbol for example, the third symbol in slot n
  • DM-RS#1 on one symbol for example, the third symbol in slot n
  • one symbol for example, DM-RS#2 on the 7th symbol in slot n
  • PDSCH Rep#2 on one symbol for example, the 10th symbol in slot n
  • DM-RS#3 and a symbol (e.g., the 14th symbol in slot n) on DM-RS#4 are in the same data signal scheduling resource .
  • the PDCCH is used to schedule the PDSCH
  • the PDSCH includes two parts, namely PDSCH part#1 and PDSCH part#2.
  • PDSCH part#1 on a symbol for example, the 6th symbol in slot n
  • DM-RS#1 on a symbol for example, the 6th symbol in slot n
  • a symbol for example, DM-RS#2 on the 10th symbol in slot n
  • PDSCH part#2 on one symbol for example, the 6th symbol in slot n
  • DM-RS#3 on a symbol (e.g., the 10th symbol in time slot n) are in the same data signal scheduling resource .
  • the PDCCH is used to schedule the PDSCH
  • the PDSCH includes two parts, namely, PDSCH Rep#1 and PDSCH Rep#2.
  • PDSCH Rep#1 on one symbol for example, the 6th symbol in slot n
  • DM-RS#1 on one symbol for example, the 6th symbol in slot n
  • one symbol for example, DM-RS#2 on the 10th symbol in slot n
  • PDSCH Rep#2 on one symbol for example, the 6th symbol in slot n
  • DM-RS#3 on a symbol e.g., the 10th symbol in time slot n
  • the scheduling resource of the data signal may also correspond to the same TCI state, but the application is not limited to this.
  • the PDCCH is used to schedule the PDSCH, and the PDSCH includes two parts, namely PDSCH Rep#1 and PDSCH Rep#2, where PDSCH Rep#1 is the TCI state corresponding to the first transmission opportunity is TCI# 1.
  • PDSCH Rep#2 that is, the TCI state corresponding to the second transmission opportunity is TCI#2.
  • PDSCH Rep#1 on one symbol for example, the third symbol in slot n
  • DM-RS#1 on one symbol for example, the third symbol in slot n
  • one symbol for example, DM-RS#2 on the 7th symbol in slot n
  • PDSCH Rep#2 on one symbol for example, the 10th symbol in slot n
  • DM-RS#3 on a symbol e.g., the 10th symbol in slot n
  • DM-RS#4 on a symbol e.g., the 14th symbol in slot n
  • the PDCCH is used to schedule the PDSCH
  • the PDSCH includes two parts, namely PDSCH part#1 and PDSCH part#2.
  • PDSCH part#1 on a symbol for example, the 6th symbol in slot n
  • DM-RS#1 on a symbol for example, the 6th symbol in slot n
  • a symbol for example, DM-RS#2 on the 10th symbol in time slot n
  • PDSCH on one symbol (for example, the 6th symbol in time slot n) part#2, DM-RS#3 on one symbol (for example, the 6th symbol in slot n) and DM-RS#4 on one symbol for example, the 10th symbol in slot n
  • the status of the data signal is in the scheduling resource.
  • the PDCCH is used to schedule the PDSCH
  • the PDSCH includes two parts, namely, PDSCH Rep#1 and PDSCH Rep#2.
  • PDSCH Rep#1 on one symbol for example, the 6th symbol in slot n
  • DM-RS#1 on one symbol for example, the 6th symbol in slot n
  • one symbol for example, DM-RS#2 on the 10th symbol in time slot n
  • DM-RS#3 on a symbol for example, the 6th symbol in slot n
  • DM-RS#4 on a symbol for example, the 10th symbol in slot n
  • the status of the data signal is in the scheduling resource.
  • the terminal device can correctly distinguish the DM-RS used to demodulate the data signal according to the scheduling resource corresponding to the data signal and the TCI status of the scheduling resource, thereby avoiding demodulation failure and improving the robustness of the system .
  • the one symbol of the DM-RS and the one symbol of the data signal are in the same frequency domain resource.
  • the above-mentioned one symbol of the DM-RS and the above-mentioned one symbol of the data signal are in the same subcarrier.
  • the foregoing one symbol of the DM-RS and the foregoing one symbol of the data signal are in the same precoding resource block group (PRG).
  • PRG precoding resource block group
  • PDSCH Rep#1 on one symbol for example, the third symbol in slot n
  • DM-RS#1 on one symbol for example, the third symbol in slot n
  • one symbol for example, the frequency domain resources of DM-RS#2 on the 7th symbol in time slot n all belong to PRG#1;
  • PDSCH Rep#2 on one symbol for example, the 10th symbol in time slot n
  • one symbol for example, the frequency domain resources of DM-RS#3 on the 10th symbol in time slot n and DM-RS#4 on one symbol (for example, the 14th symbol in time slot n) belong to PRG#2.
  • PDSCH part#1 on one symbol for example, the 6th symbol in slot n
  • DM-RS#1 on one symbol for example, the 6th symbol in slot n
  • the frequency domain resources of DM-RS#2 on the 10th symbol in slot n all belong to PRG#1
  • PDSCH part#2 on one symbol for example, the 6th symbol in slot n
  • one symbol for example, the frequency domain resources of DM-RS#3 on the 6th symbol in slot n and DM-RS#4 on one symbol (for example, the 10th symbol in slot n) belong to PRG#2.
  • PDSCH Rep#1 on one symbol for example, the 6th symbol in slot n
  • DM-RS#1 on one symbol for example, the 6th symbol in slot n
  • one symbol for example, the frequency domain resources of DM-RS#2 on the 10th symbol in time slot n all belong to PRG#1;
  • PDSCH Rep#2 on one symbol for example, the 6th symbol in time slot n
  • one symbol for example, the frequency domain resources of DM-RS#3 on the 6th symbol in time slot n and DM-RS#4 on one symbol (for example, the 10th symbol in time slot n) belong to PRG#2.
  • the one symbol of the DM-RS and the one symbol of the data signal are in the same time slot.
  • PDSCH Rep#1 on one symbol for example, the third symbol in slot n
  • DM-RS#1 on one symbol for example, the third symbol in slot n
  • one symbol for example, the time domain resources of DM-RS#2 on the 7th symbol in slot n belong to slot n;
  • PDSCH Rep#2 on one symbol for example, the 10th symbol in slot n
  • one symbol for example, the time domain resources of DM-RS#3 on the 10th symbol in slot n and DM-RS#4 on one symbol (for example, the 14th symbol in slot n) belong to slot n.
  • PDSCH part#1 on one symbol for example, the 6th symbol in slot n
  • DM-RS#1 on one symbol for example, the 6th symbol in slot n
  • one symbol for example, the time domain resources of DM-RS#2 on the 10th symbol in slot n belong to slot n;
  • PDSCH part#2 on one symbol for example, the 6th symbol in slot n
  • one symbol for example, the time domain resources of DM-RS#3 on the 6th symbol in slot n and DM-RS#4 on one symbol (for example, the 10th symbol in slot n) belong to slot n.
  • PDSCH Rep#1 on one symbol for example, the 6th symbol in slot n
  • DM-RS#1 on one symbol for example, the 6th symbol in slot n
  • one symbol for example, the time domain resources of DM-RS#2 on the 10th symbol in slot n belong to slot n;
  • PDSCH Rep#2 on one symbol for example, the 6th symbol in slot n
  • one symbol for example, the time domain resources of DM-RS#3 on the 6th symbol in slot n and DM-RS#4 on one symbol (for example, the 10th symbol in slot n) belong to slot n.
  • the one symbol of the DM-RS and the one symbol of the data signal are within the same transmission/reception occasion.
  • the transmission opportunity here refers to the transmission opportunity corresponding to the above-mentioned data signal.
  • the PDSCH includes two parts, namely PDSCH Rep#1 and PDSCH Rep#2, and their or their time-frequency resources correspond to the first transmission opportunity and the second transmission opportunity, respectively.
  • DM-RS#1 and DM-RS#2 and PDSCH Rep#1 are all in the first transmission opportunity
  • DM-RS#3, DM-RS#4 and PDSCH Rep#2 are all in the second transmission opportunity Within the transmission opportunity.
  • PDSCH Rep#1 on one symbol for example, the third symbol in slot n
  • DM-RS#1 on one symbol for example, the third symbol in slot n
  • one symbol for example, the time domain resources of DM-RS#2 on the 7th symbol in slot n belong to the first transmission opportunity;
  • PDSCH Rep#2 on one symbol for example, the 10th symbol in slot n
  • the time domain resources of DM-RS#3 on a symbol (for example, the 10th symbol in slot n) and DM-RS#4 on a symbol for example, the 14th symbol in slot n) belong to the second transmission Chance.
  • PDSCH Rep#1 on one symbol for example, the 6th symbol in slot n
  • DM-RS#1 on one symbol for example, the 6th symbol in slot n
  • one symbol for example, the time domain resources of DM-RS#2 on the 10th symbol in slot n belong to the first transmission opportunity;
  • PDSCH Rep#2 on one symbol for example, the 6th symbol in slot n
  • the time domain resources of DM-RS#3 on a symbol (for example, the 6th symbol in slot n) and DM-RS#4 on a symbol for example, the 10th symbol in slot n) belong to the second transmission Chance.
  • the terminal device can correctly distinguish the DM-RS used for demodulating data according to different transmission opportunities of the data signal, thereby avoiding demodulation failure and improving the robustness of the system.
  • the above-mentioned first indication information indicates at least two TCI states, that is, the above-mentioned first indication information is related to the above-mentioned at least two TCI states.
  • the first indication information is associated with at least two TCI states, and this application does not limit the way of indication, which may be indicated by means of mapping, or indicated by other means.
  • the above-mentioned first indication information is indicated by downlink control information (DCI) for scheduling the above-mentioned data signal.
  • DCI downlink control information
  • the first indication information may be indicated by the DCI in the PDCCH shown in FIG. 1 to FIG. 3.
  • the DCI is used to schedule the PDSCH, but the application is not limited to this.
  • the method further includes:
  • the terminal device receives second indication information, the second indication information indicates the repetition mechanism of the data signal, and the repetition mechanism of the data signal is one of the following: a time division multiplexing mechanism (as shown in Figure 1 Show), frequency division multiplexing mechanism A (shown in Figure 2), and frequency division multiplexing mechanism B (shown in Figure 3).
  • a time division multiplexing mechanism as shown in Figure 1 Show
  • frequency division multiplexing mechanism A shown in Figure 2
  • frequency division multiplexing mechanism B shown in Figure 3
  • the above-mentioned second indication information is included in RRC signaling, and the corresponding information element (Information Element, IE) name is, for example, repetition scheme, but the present application is not limited to this.
  • the second indication information may indicate that the repetition mechanism of the data signal is the PDSCH time division multiplexing mechanism, as shown in FIG. 1; it may also indicate that the repetition mechanism of the data signal is the PDSCH frequency division multiplexing mechanism A, as shown in FIG. 2;
  • the repetition mechanism of the indicated data signal is PDSCH frequency division multiplexing mechanism B, as shown in Figure 3. That is, the method in the embodiment of the present application is applicable to both the time division multiplexing mechanism and the frequency division multiplexing mechanism. This application is not limited to the timing and manner of sending the second instruction information.
  • the TCI state is used to determine the relationship between the DM-RS and the data signal, so that the corresponding data signal can be demodulated using the correct DM-RS, thereby ensuring the reliability of data transmission and improving system performance.
  • FIG. 4 only schematically illustrates an embodiment of the present application, but the present application is not limited thereto.
  • the order of execution between operations can be appropriately adjusted, and some other operations can be added or some operations can be reduced.
  • Those skilled in the art can make appropriate modifications based on the foregoing content, and are not limited to the description of the foregoing FIG. 4.
  • PDSCH including PDSCH Rep#1 and PDSCH Rep#1, or PDSCH part#1 and PDSCH part#1
  • DM-RS#1, DM-RS#2, DM-RS#3 The antenna port of DM-RS#4 is set to 1000. This application is not limited to this, and their antenna port numbers can also be 1001, 1002 or others.
  • the network device is associated with two TRPs, and the two TRPs respectively correspond to different TCI states, which can also be understood as corresponding to different spatial relationships.
  • the terminal device receives configuration information (second indication information), which indicates the repetition mechanism of the data signal.
  • the corresponding IE name is for example repetitionscheme.
  • the repetition mechanism of the data signal is indicated as PDSCH.
  • Time division multiplexing mechanism (tdmSchemeA).
  • the terminal device receives the scheduling instruction (first instruction information), and the scheduling instruction may be before the time slot n or the time slot n.
  • the scheduling indication is related to two or more TCI states.
  • the codepoint indicated by the TCI field in the indication information of the scheduling indication is associated with two or more TCI states.
  • the terminal device receives the data signal (used to carry the PDSCH) at two PDSCH transmission opportunities in the time slot n according to the resource allocation instruction in the instruction information of the foregoing scheduling instruction.
  • the PDSCH part corresponding to the first transmission opportunity is PDSCH Rep#1, which corresponds to TRP#1, which is the first TCI state, TCI#1;
  • the PDSCH part corresponding to the second transmission opportunity is PDSCH Rep#2, It corresponds to TRP#2, which is the second TCI state, TCI#2.
  • PDSCH Rep#1 includes two DM-RSs on two symbols, namely DM-RS#1 and DM-RS#2; PDSCH Rep#2 includes two DM-RSs on two symbols, namely DM-RS#3 and DM-RS#4.
  • the scheduled PDSCH (PDSCH Rep#1 and PDSCH Rep#2) are associated with multiple DM-RSs, including DM-RS#1, DM-RS#2, DM-RS#3, and DM-RS#4.
  • PDSCH Rep#1 is associated with DM-RS#1, DM-RS#2 or assigned the same TCI state, or more specifically, DM-RS#1, DM-RS#2 and PDSCH Rep#1 corresponds to the scheduling resource (resource A) in the same TCI state.
  • the physical channel experienced by the PDSCH on the 3rd symbol of time slot n can be based on the DM-RS#1 sent on the 3rd symbol of time slot n
  • the physical channel experienced by DM-RS#2 transmitted on the seventh symbol of time slot n that is to say, the PDSCH transmitted on the third symbol of time slot n can be based on DM-RS#1 sent on the symbol and DM-RS#2 sent on the 7th symbol of slot n are demodulated.
  • DM-RS#3, DM-RS#4, and PDSCH Rep#2 correspond to scheduling resources (resource B) in the same TCI state.
  • resource B corresponding to the same TCI state
  • the physical channel experienced by the PDSCH on the 10th symbol of slot n can be based on the DM-RS#3 sent on the 10th symbol of slot n
  • the physical channel experienced by DM-RS#4 transmitted on the 14th symbol of time slot n can be based on DM-RS#3 sent on the symbol and DM-RS#4 sent on the 14th symbol of slot n are demodulated.
  • resource A or B can be further understood as a transmission opportunity, for example, resource A is the first transmission opportunity, and resource B is the second transmission opportunity.
  • the data signal (for example, PDSCH Rep#1) can be prevented from using DM-RS (for example, DM-RS#3, DM-RS#4) corresponding to different TCI states for demodulation, and the reliability of the system is improved.
  • DM-RS for example, DM-RS#3, DM-RS#4
  • the network device is associated with two TRPs, and the two TRPs respectively correspond to different TCI states, which can also be understood as corresponding to different spatial relationships.
  • the terminal device receives configuration information (second indication information), which indicates the repetition mechanism of the data signal.
  • the corresponding IE name is for example repetitionscheme.
  • the repetition mechanism of the data signal is indicated as PDSCH.
  • Frequency division multiplexing scheme A (fdmSchemeA).
  • the terminal equipment receives the scheduling instruction (first instruction information), and the scheduling instruction may be before the time slot n or the time slot n.
  • the scheduling indication is related to two or more TCI states.
  • the indicated codepoint corresponding to the TCI field in the indication information of the scheduling indication is associated with two or more TCI states.
  • the terminal device receives the data signal (PDSCH) at one PDSCH transmission opportunity in the time slot n according to the resource allocation instruction in the instruction information of the scheduling instruction.
  • the first part of the PDSCH corresponding to this transmission opportunity is PDSCH part#1, which corresponds to TRP#1, which is the first TCI state, TCI#1;
  • the second part of the PDSCH corresponding to this transmission opportunity is PDSCH part#2 , which corresponds to TRP#2, which is the second TCI state, TCI#2.
  • the PRB bundling indication corresponding to the PDSCH is "wideband", that is, PDSCH part#1 and PDSCH part#2 belong to the same PRG.
  • PDSCH part#1 includes two DM-RSs on two symbols, namely DM-RS#1 and DM-RS#2; PDSCH part#2 includes two DM-RSs on two symbols, respectively DM-RS#3 and DM-RS#4.
  • the scheduled PDSCH (PDSCH part#1 and PDSCH part#2) is associated with multiple DM-RSs, including DM-RS#1, DM-RS#2, DM-RS#3, and DM-RS#4.
  • PDSCH part#1 is associated with DM-RS#1, DM-RS#2 or assigned the same TCI state, or more specifically, DM-RS#1, DM-RS#2 and PDSCH part#1 corresponds to the scheduling resource (resource C) in the same TCI state.
  • the physical channel experienced by the PDSCH on the 6th symbol of slot n can be based on the DM-RS#1 sent on the 6th symbol of slot n
  • the physical channel experienced by DM-RS#2 transmitted on the 10th symbol of time slot n that is to say, the PDSCH transmitted on the 6th symbol of time slot n can be based on DM-RS#1 sent on the symbol and DM-RS#2 sent on the 10th symbol of slot n are demodulated.
  • DM-RS#3, DM-RS#4, and PDSCH part#2 correspond to scheduling resources (resource D) in the same TCI state.
  • resource D corresponding to the same TCI state
  • the physical channel experienced by the PDSCH on the 6th symbol of slot n can be based on the DM-RS#3 sent on the 6th symbol of slot n
  • the physical channel experienced by DM-RS#4 transmitted on the 10th symbol of time slot n that is to say, the PDSCH transmitted on the 6th symbol of time slot n can be based on DM-RS#3 sent on the symbol and DM-RS#4 sent on the 10th symbol of slot n are demodulated.
  • resource C or D can be further understood as PRBs corresponding to the same TCI state.
  • the data signal (for example, PDSCH part#1) can be prevented from using DM-RS (for example, DM-RS#3, DM-RS#4) corresponding to different TCI states for demodulation, and the reliability of the system is improved.
  • DM-RS for example, DM-RS#3, DM-RS#4
  • the network device is associated with two TRPs, and the two TRPs respectively correspond to different TCI states, which can also be understood as corresponding to different spatial relationships.
  • the terminal device receives configuration information (second indication information), which indicates the repetition mechanism of the data signal.
  • the corresponding IE name is for example repetitionscheme.
  • the repetition mechanism of the data signal is indicated as PDSCH.
  • Frequency division multiplexing scheme B (fdmSchemeB).
  • the terminal device receives the scheduling instruction (first instruction information), and the scheduling instruction may be before the time slot n or the time slot n.
  • the scheduling indication is related to two or more TCI states.
  • the indicated codepoint corresponding to the TCI field in the indication information of the scheduling indication is associated with two or more TCI states.
  • the terminal device receives the data signal (PDSCH) in the indicated two PDSCH transmission opportunities in the time slot n according to the resource allocation indication in the indication information of the scheduling indication.
  • the PDSCH corresponding to the first transmission opportunity is PDSCH Rep#1, which corresponds to TRP#1, which is the first TCI state, TCI#1;
  • the PDSCH corresponding to the second transmission opportunity is PDSCH Rep#2, which corresponds to TRP #2, which is the second TCI state, TCI#2.
  • the PRB bundling indication corresponding to the PDSCH is "wideband", that is, PDSCH Rep#1 and PDSCH Rep#2 belong to the same PRG.
  • PDSCH Rep#1 includes two DM-RSs on two symbols, namely DM-RS#1 and DM-RS#2; PDSCH Rep#2 includes two DM-RSs on two symbols, namely DM-RS#3 and DM-RS#4.
  • the scheduled PDSCH (PDSCH Rep#1 and PDSCH Rep#2) are associated with multiple DM-RSs, including DM-RS#1, DM-RS#2, DM-RS#3, and DM-RS#4.
  • DM-RS#1 due to PDSCH Rep#1DM-RS#1, DM-RS#2 is associated or assigned the same TCI state, or more specifically, DM-RS#1, DM-RS#2 and PDSCH Rep# 1 corresponds to the scheduling resource (resource E) in the same TCI state.
  • the physical channel experienced by the PDSCH on the 6th symbol of slot n can be based on the DM-RS#1 sent on the 6th symbol of slot n
  • the physical channel experienced by DM-RS#2 transmitted on the 10th symbol of time slot n that is to say, the PDSCH transmitted on the 6th symbol of time slot n can be based on DM-RS#1 sent on the symbol and DM-RS#2 sent on the 10th symbol of slot n are demodulated.
  • DM-RS#3, DM-RS#4, and PDSCH Rep#2 correspond to scheduling resources (resource F) in the same TCI state.
  • resource F resource F (corresponding to the same TCI state)
  • the physical channel experienced by the PDSCH on the 6th symbol of slot n can be based on the DM-RS#3 sent on the 6th symbol of slot n
  • the physical channel experienced by DM-RS#4 transmitted on the 10th symbol of time slot n that is to say, the PDSCH transmitted on the 6th symbol of time slot n can be based on DM-RS#3 sent on the symbol and DM-RS#4 sent on the 10th symbol of slot n are demodulated.
  • resource E or F can be in one PRG.
  • resource E or F can be further understood as PRG/PRBs corresponding to the same TCI state.
  • the data signal (for example, PDSCH part#1) can be prevented from using DM-RS (for example, DM-RS#3, DM-RS#4) corresponding to different TCI states for demodulation, and the reliability of the system is improved.
  • DM-RS for example, DM-RS#3, DM-RS#4
  • the TCI state is used to determine the relationship between the DM-RS and the data signal, which enables the corresponding data signal to be demodulated using the correct DM-RS, thereby ensuring the reliability of data transmission and improving Improve system performance.
  • the embodiment of the present application provides a signal sending method, which is described from the network side. This method is network-side processing corresponding to the method of the embodiment of the first aspect, and the same content as the embodiment of the first aspect will not be repeated.
  • FIG. 5 is a schematic diagram of a signal sending method according to an embodiment of the present application. As shown in FIG. 5, the method includes:
  • a network device generates first indication information, a data signal, and a DM-RS associated with the data signal; wherein the first indication information indicates at least two transmission configuration indication (TCI) states;
  • TCI transmission configuration indication
  • the network device sends the first indication signal, the data signal, and the DM-RS associated with the data signal to a terminal device;
  • the data signal is related to the at least two TCI states, one symbol of the DM-RS is the same as the TCI state associated or assigned to one symbol of the data signal, and the one symbol of the data signal
  • the channel experienced (conveyed) on one antenna port can be derived (is inferred) according to the channel experienced by the one symbol of the DM-RS on the same antenna port.
  • the method further includes:
  • the network device generates second indication information
  • the network device sends the second indication information to the terminal device, the second indication information indicates the repetition mechanism of the data signal, and the repetition mechanism of the data signal is one of the following: time division multiplexing mechanism , Frequency division multiplexing mechanism A, and frequency division multiplexing mechanism B.
  • FIG. 5 above only schematically illustrates an embodiment of the present application, but the present application is not limited thereto.
  • the order of execution between operations can be appropriately adjusted, and some other operations can be added or some operations can be reduced.
  • Those skilled in the art can make appropriate modifications based on the above content, and are not limited to the description of FIG. 5 above.
  • the one symbol of the DM-RS and the one symbol of the data signal are on the same antenna port.
  • the one symbol of the DM-RS and the one symbol of the data signal are in the same scheduling resource of the data signal.
  • the scheduled resources correspond to the same TCI state.
  • the one symbol of the DM-RS and the one symbol of the data signal are in the same frequency domain resource.
  • the frequency domain resource is a precoding resource block group (PRG).
  • the one symbol of the DM-RS and the one symbol of the data signal are in the same time slot.
  • the one symbol of the DM-RS and the one symbol of the data signal are within the same transmission/reception occasion
  • the transmission opportunity refers to the transmission opportunity corresponding to the data signal.
  • the first indication information is indicated by the DCI that schedules the above-mentioned data signal.
  • the network device uses the same channel to send the data signal and the DM-RS associated with the data signal, so that the terminal device demodulates the data signal according to the received DM-RS .
  • the processing on the terminal device side has been described in the embodiment of the first aspect, and will not be repeated here.
  • the network device transmits the above-mentioned data signal and the DM-RS associated with the data signal, reference may be made to related technologies, and the description is omitted here.
  • the TCI state is used to determine the relationship between the DM-RS and the data signal, which enables the corresponding data signal to be demodulated using the correct DM-RS, thereby ensuring the reliability of data transmission and improving Improve system performance.
  • FIG. 6 is a schematic diagram of a signal receiving method according to an embodiment of the present application. As shown in FIG. 6, the method includes:
  • the terminal device receives first indication information; where the first indication information indicates at least two transmission configuration indication (TCI) states; and
  • the terminal device receives a data signal and a demodulation reference signal (DM-RS) associated with the data signal; wherein the precoding granularity of the data signal is wideband precoding granularity,
  • the allocated frequency domain resource of the data signal is divided into a corresponding number of frequency domain parts according to the number of TCI states indicated by the first indication information, and one symbol of the DM-RS is related to the data signal
  • One symbol of the corresponding to the same frequency domain part, and the channel that the one symbol of the data signal has experienced on one antenna port can be on the same antenna according to the one symbol of the DM-RS The channel experienced on the port is inferred.
  • the embodiment of the present application provides a PRB bundling method when the precoding granularity of the data signal is the broadband precoding granularity.
  • frequency domain resources are divided, and the terminal device can use the DM-RS corresponding to the same frequency domain part for PDSCH demodulation, thereby ensuring the correctness of PDSCH demodulation and improving system performance.
  • the frequency domain resources allocated to the data signal are divided into corresponding numbers of frequency domain parts according to the number of TCI states indicated by the first indication information.
  • the first indication information indicates two TCI states.
  • the frequency domain resources allocated to the data signal are divided into two frequency domain parts, and each frequency domain part corresponds to a TCI state; for another example, if the first indication information indicates three TCI states, the frequency domain to which the data signal is allocated
  • the resource is divided into three frequency domain parts, and each frequency domain part corresponds to a TCI state.
  • the aforementioned TCI state corresponds to the aforementioned frequency domain part one-to-one, that is, each TCI state corresponds to a frequency domain part, but the application is not limited to this.
  • one symbol of the DM-RS corresponds to the same frequency domain part as one symbol of the data signal.
  • PDSCH part#1 and DM-RS#1 and DM-RS#2 Correspond to the same frequency domain part, and PDSCH part#2 corresponds to the same frequency domain part as DM-RS#3 and DM-RS#4; taking Figure 3 as an example, PDSCH Rep#1 and DM-RS#1 and DM- RS#2 corresponds to the same frequency domain part, and PDSCH Rep#2 corresponds to the same frequency domain part as DM-RS#3 and DM-RS#4.
  • the channel that the one symbol of the data signal has experienced on one antenna port can be based on the channel that the one symbol of the DM-RS has experienced on the same antenna port It is inferred, that is, the received data signal on one antenna port is demodulated using the DM-RS on the same antenna port in the same frequency domain as the data signal.
  • the antenna port numbers of DM-RS#1, DM-RS#2, and PDSCH Rep#1 are all 1000, and DM-RS#1 and DM-RS#2 are used to demodulate PDSCH Rep#1.
  • the PDSCH Rep#1 on one symbol for example, the 3rd symbol in slot n
  • the DM-RS on one symbol for example, the 3rd symbol in slot n
  • #1 and DM-RS#2 on one symbol for example, the seventh symbol in slot n
  • the PDSCH Rep#1 on one symbol (for example, the 3rd symbol in slot n) can be based on the DM- on one symbol (for example, the 3rd symbol in slot n).
  • RS#1 and DM-RS#2 on one symbol (for example, the seventh symbol in slot n) are demodulated.
  • the antenna port numbers of DM-RS#3, DM-RS#4, and PDSCH Rep#2 are all 1000, and DM-RS#3 and DM-RS#4 can be used to demodulate PDSCH Rep# 2.
  • the PDSCH Rep#2 on one symbol for example, the 10th symbol in slot n
  • the DM-RS on one symbol for example, the 10th symbol in slot n
  • #3 and DM-RS #4 on one symbol for example, the 14th symbol in slot n
  • the PDSCH Rep#2 on one symbol (for example, the 10th symbol in slot n) can be based on the DM- on one symbol (for example, the 10th symbol in slot n).
  • RS#3 and DM-RS#4 on one symbol (for example, the 14th symbol in slot n) are demodulated.
  • the antenna port numbers of DM-RS#1, DM-RS#2, and PDSCH part#1 are all 1000, and DM-RS#1 and DM-RS#2 can be used to demodulate PDSCH part#1 .
  • the PDSCH part#1 on one symbol for example, the 6th symbol in slot n
  • the DM-RS on one symbol for example, the 6th symbol in slot n
  • #1 and DM-RS#2 on one symbol for example, the 10th symbol in slot n
  • the PDSCH part#1 on one symbol (for example, the 6th symbol in slot n) can be based on the DM- on one symbol (for example, the 6th symbol in slot n).
  • RS#1 and DM-RS#2 on one symbol (for example, the 10th symbol in slot n) are demodulated.
  • the antenna port numbers of DM-RS#3, DM-RS#4, and PDSCH part#2 are all 1000, and DM-RS#3 and DM-RS#4 can be used to demodulate PDSCH part# 2.
  • the PDSCH part#2 on one symbol for example, the 6th symbol in slot n
  • the DM-RS on one symbol for example, the 6th symbol in slot n
  • #3 and DM-RS #4 on one symbol for example, the 10th symbol in slot n
  • the PDSCH part#2 on one symbol (for example, the 6th symbol in slot n) can be based on the DM- on one symbol (for example, the 6th symbol in slot n).
  • RS#3 and DM-RS#4 on one symbol (for example, the 10th symbol in slot n) are demodulated.
  • the antenna port numbers of DM-RS#1, DM-RS#2, and PDSCH Rep#1 are all 1000, and DM-RS#1 and DM-RS#2 can be used to demodulate PDSCH Rep#1 .
  • the PDSCH Rep#1 on one symbol for example, the 6th symbol in slot n
  • the DM-RS on one symbol for example, the 6th symbol in slot n
  • #1 and DM-RS#2 on one symbol for example, the 10th symbol in slot n
  • the PDSCH Rep#1 on one symbol (for example, the 6th symbol in slot n) can be based on the DM- on one symbol (for example, the 6th symbol in slot n).
  • RS#1 and DM-RS#2 on one symbol (for example, the 10th symbol in slot n) are demodulated.
  • the antenna port numbers of DM-RS#3, DM-RS#4, and PDSCH Rep#2 are all 1000, and DM-RS#3 and DM-RS#4 can be used to demodulate PDSCH Rep# 2.
  • the PDSCH Rep#2 on one symbol for example, the 6th symbol in slot n
  • the DM-RS on one symbol for example, the 6th symbol in slot n
  • #3 and DM-RS #4 on one symbol for example, the 10th symbol in slot n
  • the PDSCH Rep#2 on one symbol (for example, the 6th symbol in slot n) can be based on the DM- on one symbol (for example, the 6th symbol in slot n).
  • RS#3 and DM-RS#4 on one symbol (for example, the 10th symbol in slot n) are demodulated.
  • the same frequency domain part in the frequency domain resources allocated for the data signal corresponds to the same precoding.
  • the frequency domain resources of PDSCH part#1 correspond to the same precoding
  • the frequency domain resources of PDSCH part#2 correspond to the same precoding
  • the frequency domain resources of PDSCH Rep#1 correspond to the same precoding
  • the frequency domain resources of PDSCH Rep#2 correspond to the same precoding.
  • the above-mentioned frequency domain part is a precoding resource block group (PRG), but the application is not limited thereto.
  • PRG precoding resource block group
  • the first indication information indicates two TCI states.
  • the first indication information indicates two TCI states, the frequency domain resource corresponding to the data signal is divided into two frequency domain parts, and one frequency domain part (such as the frequency domain resource of PDSCH part#1) is associated with one TCI status (TCI#1), another frequency domain part (such as the frequency domain resources of PDSCH part#2) is associated with a TCI status (TCI#2);
  • the first indication information indicates two TCIs State, the frequency domain resource corresponding to the data signal is divided into two frequency domain parts, one frequency domain part (such as the frequency domain resource of PDSCH Rep#1) is associated with one TCI state (TCI#1), and the other frequency domain part (such as The frequency domain resource of PDSCH Rep#2) is associated with a TCI state (TCI#2).
  • the above-mentioned first indication information is indicated by downlink control information (DCI) for scheduling the above-mentioned data signal.
  • the DCI may include a TCI field and an antenna port field.
  • the codepoint indicated by the TCI field corresponds to at least Two TCI states, the DM-RS antenna port indicated by the antenna port field is in a code division multiplexing (CDM, Code Division Multiplexing) group.
  • CDM Code Division Multiplexing
  • the first indication information may be indicated by the DCI in the PDCCH shown in FIG. 2 and FIG. 3.
  • the DCI is used to schedule the PDSCH, but the application is not limited to this.
  • the method further includes:
  • the terminal device receives second indication information, the second indication information indicates the repetition mechanism of the data signal, and the repetition mechanism of the data signal is one of the following: frequency division multiplexing mechanism A (as shown in Figure 2 As shown), and frequency division multiplexing mechanism B (as shown in Figure 3).
  • the above-mentioned second indication information is included in RRC signaling, and the corresponding information element (Information Element, IE) name is, for example, repetition scheme, but the present application is not limited to this.
  • the second indication information may indicate that the repetition mechanism of the data signal is the PDSCH frequency division multiplexing mechanism A, as shown in FIG. 2; it may also indicate that the repetition mechanism of the data signal is the PDSCH frequency division multiplexing mechanism B, as shown in FIG. 3. That is, the method in the embodiment of the present application is applicable to the frequency division multiplexing mechanism. This application is not limited to the timing and manner of sending the second instruction information.
  • the terminal device can use the DM-RS corresponding to the same frequency domain part for PDSCH demodulation, thereby ensuring the correctness of PDSCH demodulation and improving system performance.
  • FIG. 6 above only schematically illustrates an embodiment of the present application, but the present application is not limited thereto.
  • the order of execution between operations can be appropriately adjusted, and some other operations can be added or some operations can be reduced.
  • Those skilled in the art can make appropriate modifications based on the above content, and are not limited to the description of FIG. 6 above.
  • PDSCH including PDSCH Rep#1 and PDSCH Rep#1, or PDSCH part#1 and PDSCH part#1
  • DM-RS#1, DM-RS#2, DM-RS#3 The antenna port of DM-RS#4 is set to 1000. This application is not limited to this, and their antenna port numbers can also be 1001, 1002 or others.
  • the network device is associated with two TRPs, and the two TRPs respectively correspond to different TCI states, which can also be understood as corresponding to different spatial relationships.
  • the terminal device receives the configuration information (second indication information), the IE name corresponding to the configuration information is, for example, repetition scheme, and through the configuration information, the repetition mechanism of the data signal is configured as the PDSCH frequency division multiplexing mechanism A (fdmSchemeA ).
  • the terminal device receives the scheduling instruction (first instruction information), and the scheduling instruction may be before the time slot n or the time slot n.
  • the scheduling indication is related to two or more TCI states, that is, the scheduling indication indicates two or more TCI states.
  • the indicated codepoint corresponding to the TCI field in the indication information of the scheduling indication is associated with two or more TCI states.
  • the terminal device receives the data signal (PDSCH) in a PDSCH transmission opportunity in the time slot n according to the resource allocation instruction in the instruction information of the scheduling instruction.
  • the first part of the PDSCH corresponding to this transmission opportunity is PDSCH part#1, which corresponds to TRP#1, which is the first TCI state, TCI#1;
  • the second part of the PDSCH corresponding to this transmission opportunity is PDSCH part#2 , which corresponds to TRP#2, which is the second TCI state, TCI#2.
  • the PRB bundling indication corresponding to the PDSCH is "wideband".
  • the terminal device considers that PDSCH part#1 and PDSCH part#2 belong to different PRGs.
  • the frequency domain part occupied by PDSCH part#1 belongs to the first PRG
  • the frequency domain part occupied by PDSCH part#2 belongs to the second PRG.
  • the frequency domain resources occupied by the above-mentioned PDSCH are N PRB (physical resource block)
  • the first indication information indicates two TCI states
  • the PDSCH occupies
  • the frequency domain resources are divided into two parts, namely, two PRGs. According to the ascending order of the PRB index (index), the first PRG occupies the first of the above N PRBs.
  • the second PRG occupies the remaining PRB; similarly, if the first indication information indicates three TCI states, the frequency domain resources occupied by the PDSCH are divided into three parts, namely three PRGs, each PRG corresponds to a different TCI state, according to the PRB index In ascending order, the first PRG occupies the first of the above N PRBs PRB, the second PRG occupies the next PRB, the third PRG occupies the remaining PRB. If the first indication information indicates more TCI states, the frequency domain resources occupied by the PDSCH can be divided into more parts, and the TCI state corresponding to each part is different, and the method is similar.
  • the above division method and location of the frequency domain resources occupied by the PDSCH are just examples, and the present application is not limited to this, and other strategies may be combined to divide the frequency domain resources occupied by the PDSCH.
  • the scheduled PDSCH (PDSCH part#1 and PDSCH part#2) are associated with multiple DM-RSs, including DM-RS#1, DM-RS#2, DM-RS#3, DM -RS#4.
  • PDSCH part#1 includes two DM-RSs on two symbols, DM-RS#1 and DM-RS#2;
  • PDSCH part#2 includes two DM-RSs on two symbols, DM-RS RS#3 and DM-RS#4.
  • PDSCH part#1 is associated with DM-RS#1, DM-RS#2 is associated or assigned the same PRG. Therefore, the channel experienced by a PDSCH part#1 can be derived from the channel experienced by the symbols of DM-RS#1 and DM-RS#2. Similarly, the channel experienced by a PDSCH part#2 can be derived from the channels experienced by DM-RS#3 and DM-RS#4.
  • the physical channel experienced by the PDSCH on the 6th symbol of slot n can be based on the DM-RS#1 sent on the 6th symbol of slot n and the The physical channel experienced by DM-RS#2 transmitted on the 10th symbol is derived, that is, the PDSCH transmitted on the 6th symbol of slot n can be based on the data transmitted on the 6th symbol of slot n DM-RS#1 and DM-RS#2 transmitted on the 10th symbol of slot n are demodulated.
  • the physical channel experienced by the PDSCH on the 6th symbol of slot n can be based on the DM-RS#3 sent on the 6th symbol of slot n and the first symbol of slot n.
  • the physical channel experienced by DM-RS#4 transmitted on 10 symbols is derived. That is to say, the PDSCH transmitted on the 6th symbol of slot n can be based on the DM-RS transmitted on the 6th symbol of slot n. -RS#3 and demodulation of DM-RS#4 sent on the 10th symbol of slot n.
  • the data signal (for example, PDSCH part#1) can be prevented from using DM-RS (for example, DM-RS#3, DM-RS#4) corresponding to different PRGs for demodulation, and the reliability of the system is improved.
  • DM-RS for example, DM-RS#3, DM-RS#4
  • the network device is associated with two TRPs, and the two TRPs respectively correspond to different TCI states, which can also be understood as corresponding to different spatial relationships.
  • the terminal device receives the configuration information (second indication information).
  • the IE name corresponding to the configuration information is, for example, repetitionscheme.
  • the repetition mechanism of the data signal is indicated as PDSCH frequency division multiplexing mechanism B (fdmSchemeB) .
  • the terminal device receives the scheduling instruction (first instruction information), and the scheduling instruction may be before the time slot n or the time slot n.
  • the scheduling indication is related to two or more TCI states, that is, the scheduling indication indicates two or more TCI states.
  • the indicated codepoint corresponding to the TCI field in the indication information of the scheduling indication is associated with two or more TCI states.
  • the terminal device receives the data signal (PDSCH) in the indicated two PDSCH transmission opportunities in the time slot n according to the resource allocation indication in the indication information of the scheduling indication.
  • the PDSCH corresponding to the first transmission opportunity is PDSCH Rep#1, which corresponds to TRP#1, which is the first TCI state, TCI#1;
  • the PDSCH corresponding to the second transmission opportunity is PDSCH Rep#2, which corresponds to TRP #2, which is the second TCI state, TCI#2.
  • the PRB bundling indication corresponding to the PDSCH is "wideband".
  • the terminal device considers that PDSCH Rep#1 and PDSCH Rep#2 belong to different PRGs. Among them, the frequency domain part occupied by PDSCH Rep#1 belongs to the first PRG; the frequency domain part occupied by PDSCH Rep#2 belongs to the second PRG.
  • the frequency domain resources occupied by the above-mentioned PDSCH are N PRB (physical resource block)
  • the first indication information indicates two TCI states
  • the PDSCH occupied The frequency domain resources are divided into two parts, for example, two PRGs.
  • the first PRG occupies PRB
  • the second PRG occupies the remaining PRB
  • the frequency domain resources occupied by the PDSCH are divided into three parts, for example, three PRGs, each PRG corresponds to a different TCI state, according to the PRB index
  • the second PRG occupies the next PRB
  • the third PRG occupies the remaining PRB. If the frequency domain resources occupied by the PDSCH are divided into more parts, the TCI state corresponding to each part is different, and the method is similar.
  • the above division method and location of the frequency domain resources occupied by the PDSCH are just examples, and the present application is not limited to this, and other strategies may be combined to divide the frequency domain resources occupied by the PDSCH.
  • the scheduled PDSCH (PDSCH Rep#1 and PDSCH Rep#2) are associated with multiple DM-RSs, including DM-RS#1, DM-RS#2, DM-RS#3, DM -RS#4.
  • PDSCH Rep#1 includes two DM-RSs on two symbols, namely DM-RS#1 and DM-RS#2;
  • PDSCH Rep#2 includes two DM-RSs on two symbols, namely DM-RS#3 and DM-RS#4.
  • PDSCH Rep#1 is associated with DM-RS#1, DM-RS#2 is associated or assigned the same PRG. Therefore, the channel experienced by PDSCH Rep#1 can be derived from the channel experienced by DM-RS#1 and DM-RS#2. Similarly, the channel experienced by PDSCH Rep#2 can be derived from the channel experienced by DM-RS#3 and DM-RS#4.
  • the physical channel experienced by the PDSCH on the 6th symbol of slot n can be based on the DM-RS#1 sent on the 6th symbol of slot n and the The physical channel experienced by DM-RS#2 transmitted on the 10th symbol is derived, that is, the PDSCH transmitted on the 6th symbol of slot n can be based on the data transmitted on the 6th symbol of slot n DM-RS#1 and DM-RS#2 transmitted on the 10th symbol of slot n are demodulated.
  • the physical channel experienced by the PDSCH on the 6th symbol of slot n can be based on the DM-RS#3 sent on the 6th symbol of slot n and in slot n
  • the physical channel experienced by DM-RS#4 transmitted on the 10th symbol of the DM-RS#3 and DM-RS#4 sent on the 10th symbol of slot n are demodulated.
  • the data signal (for example, PDSCH Rep#1) can be prevented from using DM-RS (for example, DM-RS#3, DM-RS#4) corresponding to different PRGs for demodulation, and the reliability of the system is improved.
  • DM-RS for example, DM-RS#3, DM-RS#4
  • the terminal device in the case that the data signal corresponds to the broadband precoding granularity, can use the DM-RS corresponding to the same frequency domain part for PDSCH demodulation, thereby ensuring the correct PDSCH demodulation And improve system performance.
  • the embodiment of the present application provides a signal sending method, which is described from the network side. This method is network-side processing corresponding to the method of the embodiment of the third aspect, and the same content as the embodiment of the third aspect will not be repeated.
  • FIG. 7 is a schematic diagram of a signal sending method according to an embodiment of the present application. As shown in FIG. 7, the method includes:
  • a network device generates first indication information, a data signal, and a DM-RS associated with the data signal, where the first indication information indicates at least two transmission configuration indication (TCI) states;
  • TCI transmission configuration indication
  • the network device sends the first indication information, the data signal, and the DM-RS associated with the data signal to a terminal device; wherein the precoding granularity of the data signal is broadband precoding granularity
  • the frequency domain resources allocated to the data signal are divided into corresponding numbers of frequency domain parts according to the number of TCI states indicated by the first indication information, and a symbol of the DM-RS is One symbol of the data signal corresponds to the same frequency domain part, and the channel that the one symbol of the data signal has experienced (conveyed) on one antenna port can be based on the one symbol of the DM-RS The channel experienced on the same antenna port is inferred.
  • the method further includes:
  • the network device generates second indication information
  • the network device sends the second indication information to the terminal device, where the second indication information indicates the repetition mechanism of the data signal, and the repetition mechanism of the data signal is one of the following: frequency division multiplexing Mechanism A, and frequency division multiplexing mechanism B.
  • FIG. 7 above only schematically illustrates an embodiment of the present application, but the present application is not limited thereto.
  • the order of execution between operations can be appropriately adjusted, and some other operations can be added or some operations can be reduced.
  • Those skilled in the art can make appropriate modifications based on the above content, and are not limited to the description of FIG. 7 above.
  • the same frequency domain part of the frequency domain resources allocated for the data signal corresponds to the same precoding (precoding).
  • the frequency domain part is a precoding resource block group (PRG).
  • PRG precoding resource block group
  • the first indication information indicates two TCI states.
  • the first indication information is indicated by the DCI that schedules the data signal, and the DCI includes a TCI field and an antenna port field, and the TCI field indicates The codepoint corresponds to at least two TCI states, and the DM-RS antenna port indicated by the antenna port field is in a code division multiplexing group.
  • the network device uses the same channel to send the data signal and the DM-RS associated with the data signal, so that the terminal device demodulates the data signal according to the received DM-RS .
  • the processing on the terminal device side has been explained in the embodiment of the third aspect, and will not be repeated here.
  • the network device transmits the above-mentioned data signal and the DM-RS associated with the data signal, reference may be made to related technologies, and the description is omitted here.
  • the terminal device in the case that the data signal corresponds to the broadband precoding granularity, can use the DM-RS corresponding to the same frequency domain part for PDSCH demodulation, thereby ensuring the correct PDSCH demodulation And improve system performance.
  • the embodiment of the fifth aspect of the present application provides a signal receiving apparatus.
  • the apparatus may be a terminal device, for example, or may be some or some components or components configured in the terminal device.
  • FIG. 8 is a schematic diagram of the signal receiving device of the embodiment of the present application. Since the principle of the device to solve the problem is similar to the method of the embodiment of the first aspect, its specific implementation can refer to the implementation of the method of the embodiment of the first aspect , The same content will not be repeated.
  • the signal receiving device 800 of the embodiment of the present application includes: a first receiving unit 801 and a second receiving unit 802.
  • the first receiving unit 801 receives first indication information; wherein the first indication information indicates at least two transmission configuration indication (TCI) states; the second receiving unit 802 receives the data signal and communicates with the A demodulation reference signal (DM-RS) associated with a data signal; wherein the data signal is related to the at least two transmission configuration indication (TCI) states, and one symbol of the DM-RS is related to one of the data signal
  • TCI status associated or allocated by the symbols is the same, and the channel that the one symbol of the data signal has experienced (conveyed) on one antenna port can be on the same antenna port according to the one symbol of the DM-RS The experienced channel is (is inferred).
  • the one symbol of the DM-RS and the one symbol of the data signal are in the same scheduling resource corresponding to the data signal.
  • the scheduled resources correspond to the same TCI state.
  • the one symbol of the DM-RS and the one symbol of the data signal are in the same frequency domain resource.
  • the frequency domain resource is a precoding resource block group (PRG).
  • PRG precoding resource block group
  • the one symbol of the DM-RS and the one symbol of the data signal are in the same time slot.
  • the one symbol of the DM-RS and the one symbol of the data signal are within the same transmission/reception occasion, and the transmission opportunity refers to the location of the data signal. Corresponding transmission opportunities.
  • the first indication information is indicated by downlink control information (DCI) for scheduling the data signal.
  • DCI downlink control information
  • the signal receiving apparatus 800 of the embodiment of the present application further includes:
  • the third receiving unit 803 receives the second indication information, the second indication information indicates the repetition mechanism of the data signal, and the repetition mechanism of the data signal is one of the following: time division multiplexing mechanism, frequency division multiplexing mechanism A, and frequency division multiplexing mechanism B.
  • FIG. 9 is another schematic diagram of the signal receiving device of the embodiment of the present application. Since the principle of the device to solve the problem is similar to the method of the embodiment of the third aspect, the specific implementation can refer to the method of the embodiment of the third aspect Implementation, the same content will not be repeated.
  • the signal receiving device 900 of the embodiment of the present application includes: a first receiving unit 901 and a second receiving unit 902.
  • the first receiving unit 901 receives first indication information; wherein the first indication information indicates at least two transmission configuration indication (TCI) states; the second receiving unit 902 receives the data signal and communicates with the A demodulation reference signal (DM-RS) associated with a data signal; wherein the precoding granularity of the data signal is wideband precoding granularity, and the data signal is allocated frequency domain resources According to the number of TCI states indicated by the first indication information, it is divided into a corresponding number of frequency domain parts, and one symbol of the DM-RS corresponds to the same frequency domain part as one symbol of the data signal.
  • the channel that the one symbol of the data signal has experienced on one antenna port can be obtained (is inferred) according to the channel that the one symbol of the DM-RS has experienced on the same antenna port.
  • the same frequency domain part in the frequency domain resources allocated for the data signal corresponds to the same precoding.
  • the frequency domain part is a precoding resource block group (PRG).
  • PRG precoding resource block group
  • the first indication information indicates two TCI states.
  • the first indication information is indicated by the DCI that schedules the data signal
  • the DCI includes a TCI domain and an antenna port domain
  • the codepoint indicated by the TCI domain corresponds to at least two TCIs.
  • the DM-RS antenna port indicated by the antenna port field is in a code division multiplexing (CDM, Code Division Multiplexing) group.
  • the signal receiving apparatus 900 of the embodiment of the present application further includes:
  • the third receiving unit 903 receives the second indication information, the second indication information indicates the repetition mechanism of the data signal, and the repetition mechanism of the data signal is one of the following: frequency division multiplexing mechanism A, and frequency division Reuse mechanism B.
  • the signal receiving device 800/900 of the embodiment of the present application may further include other components or modules, and for the specific content of these components or modules, reference may be made to related technologies.
  • FIGS. 8 and 9 only exemplarily show the connection relationship or signal direction between the various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the foregoing components or modules may be implemented by hardware facilities such as a processor, a memory, a transmitter, and a receiver; the implementation of this application does not limit this.
  • the reliability of data transmission is ensured, and system performance is improved.
  • the embodiment of the present application provides a signal sending device.
  • the device may be, for example, a network device, or may be some or some components or components configured in the network device.
  • FIG. 10 is a schematic diagram of the signal sending device of this embodiment. Since the principle of the device to solve the problem is similar to the method of the embodiment of the second aspect, its specific implementation can refer to the implementation of the method of the embodiment of the second aspect. The same content will not be repeated.
  • the signal sending device 1000 of the embodiment of the present application includes: a generating unit 1001 and a sending unit 1002.
  • the generating unit 1001 generates first indication information, a data signal, and a DM-RS associated with the data signal; wherein the first indication information indicates at least two transmission configuration indication (TCI) states
  • the sending unit 1002 sends the first indication information, the data signal, and the DM-RS associated with the data signal to the terminal device; wherein, the data signal is related to the at least two TCI states, the One symbol of the DM-RS is the same as the TCI state associated or allocated to one symbol of the data signal, and the channel that the one symbol of the data signal has experienced (conveyed) on one antenna port can be based on the DM -The channel experienced by the one symbol of the RS on the same antenna port is inferred.
  • TCI transmission configuration indication
  • the one symbol of the DM-RS and the one symbol of the data signal are in the same scheduling resource corresponding to the data signal.
  • the scheduled resources correspond to the same TCI state.
  • the one symbol of the DM-RS and the one symbol of the data signal are in the same frequency domain resource.
  • the frequency domain resource is a precoding resource block group (PRG).
  • PRG precoding resource block group
  • the one symbol of the DM-RS and the one symbol of the data signal are in the same time slot.
  • the one symbol of the DM-RS and the one symbol of the data signal are within the same transmission/reception occasion, and the transmission opportunity refers to the location of the data signal. Corresponding transmission opportunities.
  • the first indication information is indicated by the DCI that schedules the data signal.
  • the generating unit 1001 also generates second indication information; the sending unit 1002 also sends the second indication information to the terminal device, and the second indication information includes configuration information.
  • the configuration information indicates the repetition mechanism of the data signal, and the repetition mechanism of the data signal is one of the following: a time division multiplexing mechanism, a frequency division multiplexing mechanism A, and a frequency division multiplexing mechanism B.
  • FIG. 11 is another schematic diagram of the signal sending device of this embodiment. Since the principle of the device to solve the problem is similar to the method of the embodiment of the fourth aspect, its specific implementation can refer to the implementation of the method of the embodiment of the fourth aspect. , The same content will not be repeated.
  • the signal sending device 1100 of the embodiment of the present application includes: a generating unit 1101 and a sending unit 1102.
  • the generating unit 1101 generates first indication information, a data signal, and a DM-RS associated with the data signal, wherein the first indication information indicates at least two transmission configuration indication (TCI) states
  • the sending unit 1102 sends the first indication information, the data signal, and the DM-RS associated with the data signal to the terminal device; wherein the precoding granularity of the data signal is the broadband precoding granularity ( wideband precoding granularity), the frequency domain resources allocated to the data signal are divided into corresponding number of frequency domain parts according to the number of TCI states indicated by the first indication information, and one symbol of the DM-RS is related to the One symbol of the data signal corresponds to the same frequency domain part, and the channel that the one symbol of the data signal has experienced on one antenna port can be in the same frequency domain according to the one symbol of the DM-RS. The channel experienced on the antenna port is inferred.
  • the same frequency domain part in the frequency domain resources allocated for the data signal corresponds to the same precoding.
  • the frequency domain part is a precoding resource block group (PRG).
  • PRG precoding resource block group
  • the first indication information indicates two TCI states.
  • the first indication information is indicated by the DCI that schedules the data signal
  • the DCI includes a TCI domain and an antenna port domain
  • the codepoint indicated by the TCI domain corresponds to at least two TCIs.
  • Status, the DM-RS antenna port indicated by the antenna port field is in a code division multiplexing group.
  • the generating unit 1101 also generates second indication information; the sending unit 1102 also sends the second indication information to the terminal device, the second indication information includes configuration information, and the configuration information indicates data
  • the repetition mechanism of the signal, the repetition mechanism of the data signal is one of the following: frequency division multiplexing mechanism A and frequency division multiplexing mechanism B.
  • the signal sending device 1000/1100 in the embodiment of the present application may further include other components or modules, and for the specific content of these components or modules, reference may be made to related technologies.
  • FIG. 10 and FIG. 11 only exemplarily show the connection relationship or signal direction between the various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the foregoing components or modules may be implemented by hardware facilities such as a processor, a memory, a transmitter, and a receiver; the implementation of this application does not limit this.
  • the reliability of data transmission is ensured, and system performance is improved.
  • FIG. 12 is a schematic diagram of the communication system 1200.
  • the communication system 1200 includes a network device 1201 and a terminal device 1202.
  • FIG. 12 uses only one terminal.
  • the device and a network device are taken as an example for description, but the embodiment of the present application is not limited to this.
  • the network device 1201 and the terminal device 1202 can perform existing service or service transmission that can be implemented in the future.
  • these services may include, but are not limited to: enhanced mobile broadband (eMBB), large-scale machine type communication (mMTC), high-reliability and low-latency communication (URLLC), and Internet of Vehicles (V2X) communication, and so on.
  • eMBB enhanced mobile broadband
  • mMTC large-scale machine type communication
  • URLLC high-reliability and low-latency communication
  • V2X Internet of Vehicles
  • the network device 1201 generates first indication information, a data signal, and a DM-RS associated with the data signal, and sends the first indication information, the data signal, and the terminal device 1202 to the terminal device 1202.
  • the first indication information indicates at least two transmission configuration indication (TCI) states.
  • the data signal is related to the at least two TCI states, one symbol of the DM-RS and one symbol of the data signal are associated or assigned the same TCI state, and the data signal
  • the channel experienced by the one symbol on one antenna port can be derived from the channel experienced by the one symbol of the DM-RS on the same antenna port (is inferred).
  • the network device 1201 generates first indication information, a data signal, and a DM-RS associated with the data signal, and sends the first indication information, the data signal, and the terminal device 1202 to the terminal device 1202.
  • the first indication information indicates at least two transmission configuration indication (TCI) states; the network device 1201.
  • TCI transmission configuration indication
  • the precoding granularity of the data signal is wideband precoding granularity, and the frequency domain resources to which the data signal is allocated are determined according to the TCI status indicated by the first indication information.
  • the number is divided into a corresponding number of frequency domain parts, one symbol of the DM-RS corresponds to the same frequency domain part as one symbol of the data signal, and the one symbol of the data signal is on one antenna port
  • the channel experienced (isconveyed) can be derived (is inferred) according to the channel experienced by the one symbol of the DM-RS on the same antenna port.
  • the embodiment of the present application also provides a terminal device.
  • the terminal device may be, for example, a UE, but the present application is not limited to this, and may also be other devices.
  • FIG. 13 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1300 may include a processor 1301 and a memory 1302; the memory 1302 stores data and programs, and is coupled to the processor 1301. It is worth noting that this figure is exemplary; other types of structures can also be used to supplement or replace this structure to implement telecommunication functions or other functions.
  • the processor 1301 may be configured to execute a program to implement the signal receiving method as described in the embodiment of the first aspect or the third aspect.
  • the terminal device 1300 may further include: a communication module 1303, an input unit 1304, a display 1305, and a power supply 1306.
  • the functions of the above-mentioned components are similar to those of the prior art, and will not be repeated here. It is worth noting that the terminal device 1300 does not necessarily include all the components shown in FIG. 13, and the above-mentioned components are not necessary; in addition, the terminal device 1300 may also include components not shown in FIG. There is technology.
  • the embodiment of the present application also provides a network device.
  • the network device may be, for example, a base station (gNB), but the present application is not limited to this, and may also be other network devices.
  • gNB base station
  • FIG. 14 is a schematic diagram of the structure of a network device according to an embodiment of the present application.
  • the network device 1400 may include: a processor (such as a central processing unit CPU) 1401 and a memory 1402; the memory 1402 is coupled to the processor 1401.
  • the memory 1402 can store various data; in addition, it also stores information processing programs, which are executed under the control of the central processing unit 1401.
  • the processor 1401 may be configured to execute a program to implement the signal sending method according to the embodiment of the second aspect or the fourth aspect.
  • the network device 1400 may further include: a transceiver 1403, an antenna 1404, etc.; wherein the functions of the above-mentioned components are similar to those of the prior art, and will not be repeated here. It is worth noting that the network device 1400 does not necessarily include all the components shown in FIG. 14; in addition, the network device 1400 may also include components not shown in FIG. 14, and the prior art can be referred to.
  • the embodiments of the present application also provide a computer-readable program, wherein when the program is executed in a terminal device, the program causes the computer to execute the method described in the embodiment of the first aspect or the third aspect in the terminal device. Signal receiving method.
  • An embodiment of the present application also provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the signal receiving method described in the embodiment of the first aspect or the third aspect in a terminal device.
  • the embodiments of the present application also provide a computer-readable program, wherein when the program is executed in a network device, the program causes the computer to execute the method described in the embodiment of the second aspect or the fourth aspect in the network device. Signaling method.
  • An embodiment of the present application also provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the signal sending method described in the embodiment of the second invention or the fourth aspect in a network device.
  • the above devices and methods of this application can be implemented by hardware, or can be implemented by hardware combined with software.
  • This application relates to such a computer-readable program, when the program is executed by a logic component, the logic component can realize the above-mentioned device or constituent component, or the logic component can realize the above-mentioned various methods Or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, etc.
  • This application also relates to storage media used to store the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memory, etc.
  • the method/device described in conjunction with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in the figure may correspond to each software module of the computer program flow or each hardware module.
  • These software modules can respectively correspond to the steps shown in the figure.
  • These hardware modules can be implemented by solidifying these software modules by using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • the software module can be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be a component of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the drawings can be implemented as general-purpose processors, digital signal processors (DSPs) for performing the functions described in this application. ), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or any appropriate combination thereof.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, and multiple micro-processing Processor, one or more microprocessors in communication with the DSP, or any other such configuration.
  • a signal receiving method wherein the method includes:
  • the terminal device receives first indication information; wherein the first indication information indicates at least two transmission configuration indication (TCI) states; and
  • the terminal device receives a data signal and a demodulation reference signal (DM-RS) associated with the data signal;
  • DM-RS demodulation reference signal
  • the data signal is related to the at least two transmission configuration indication (TCI) states
  • one symbol of the DM-RS is the same as the TCI state associated or allocated with one symbol of the data signal
  • the data signal The channel that the one symbol of the DM-RS has experienced on one antenna port can be obtained (is inferred) according to the channel that the one symbol of the DM-RS has experienced on the same antenna port.
  • TCI transmission configuration indication
  • the terminal device receives second indication information, where the second indication information indicates the repetition mechanism of the data signal, and the repetition mechanism of the data signal is one of the following: a time division multiplexing mechanism, a frequency division multiplexing mechanism A, and Frequency division multiplexing mechanism B.
  • a signal transmission method wherein the method includes:
  • the network device generates first indication information, a data signal, and a DM-RS associated with the data signal; wherein the first indication information indicates at least two transmission configuration indication (TCI) states;
  • TCI transmission configuration indication
  • the data signal is related to the at least two TCI states, one symbol of the DM-RS is the same as the TCI state associated or assigned to one symbol of the data signal, and the one symbol of the data signal
  • the channel experienced (conveyed) on one antenna port can be derived (is inferred) according to the channel experienced by the one symbol of the DM-RS on the same antenna port.
  • the network device generates second indication information
  • the network device sends the second indication information to the terminal device, the second indication information indicates the repetition mechanism of the data signal, and the repetition mechanism of the data signal is one of the following: time division multiplexing mechanism, frequency Division multiplexing mechanism A, and frequency division multiplexing mechanism B.
  • a signal receiving method wherein the method includes:
  • the terminal device receives first indication information; wherein the first indication information indicates at least two transmission configuration indication (TCI) states; and
  • the terminal device receives a data signal and a demodulation reference signal (DM-RS) associated with the data signal;
  • DM-RS demodulation reference signal
  • the precoding granularity of the data signal is wideband precoding granularity, and the allocated frequency domain resources of the data signal are based on the number of TCI states indicated by the first indication information. Divided into a corresponding number of frequency domain parts, one symbol of the DM-RS corresponds to the same frequency domain part as one symbol of the data signal, and the one symbol of the data signal is located on one antenna port.
  • the channel that is experienced (is conveyed) can be derived (is inferred) according to the channel experienced by the one symbol of the DM-RS on the same antenna port.
  • the first indication information is indicated by a DCI that schedules the data signal
  • the DCI includes a TCI domain and an antenna port domain
  • the code point indicated by the TCI domain The codepoint corresponds to at least two TCI states
  • the DM-RS antenna port indicated by the antenna port field is in a code division multiplexing (CDM, Code Division Multiplexing) group.
  • the terminal device receives second indication information, where the second indication information indicates the repetition mechanism of the data signal, and the repetition mechanism of the data signal is one of the following: frequency division multiplexing mechanism A, and frequency division multiplexing mechanism B.
  • a signal transmission method wherein the method includes:
  • the network device generates first indication information, a data signal, and a DM-RS associated with the data signal, wherein the first indication information indicates at least two transmission configuration indication (TCI) states; and
  • the precoding granularity of the data signal is wideband precoding granularity, and the frequency domain resources allocated to the data signal are divided into corresponding ones according to the number of TCI states indicated by the first indication information
  • the number of frequency domain parts, one symbol of the DM-RS and one symbol of the data signal correspond to the same frequency domain part, and the one symbol of the data signal is experienced on one antenna port (is
  • the conveyed channel can be derived (is inferred) according to the channel experienced by the one symbol of the DM-RS on the same antenna port.
  • the first indication information is indicated by a DCI that schedules the data signal
  • the DCI includes a TCI domain and an antenna port domain
  • the code point indicated by the TCI domain ( codepoint) corresponds to at least two TCI states
  • the DM-RS antenna port indicated by the antenna port field is in a code division multiplexing group.
  • the network device generates second indication information
  • the network device sends the second indication information to the terminal device, the second indication information indicates the repetition mechanism of the data signal, and the repetition mechanism of the data signal is one of the following: frequency division multiplexing mechanism A , And frequency division multiplexing mechanism B.
  • a terminal device comprising a memory and a processor, the memory storing a computer program, and the processor is configured to execute the computer program to implement any one of appendix 1 to 9, 19 to 25 Methods.
  • a network device comprising a memory and a processor, the memory storing a computer program, and the processor is configured to execute the computer program to implement any one of appendix 10 to 18, 26 to 32 Methods.
  • a communication system including terminal equipment and network equipment, wherein:
  • the terminal device is configured to execute the method described in any one of Supplements 1 to 9, and the network device is configured to execute the method described in any one of Supplements 10 to 19; or
  • the terminal device is configured to execute the method described in any one of Supplements 19 to 25, and the network device is configured to execute the method described in any one of Supplements 26 to 32.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种信号接收方法、装置和通信***,该方法包括:终端设备接收第一指示信息,所述第一指示信息指示至少两个传输配置指示(TCI)状态;以及所述终端设备接收数据信号以及与所述数据信号关联的解调参考信号(DM-RS);其中,所述数据信号与至少两个TCI状态相关,所述DM-RS的一个符号与所述数据信号的一个符号所关联或分配的TCI状态相同,所述数据信号的所述一个符号在一个天线端口上所经历的信道能够根据所述DM-RS的所述一个符号在相同的天线端口上所经历的信道得出。

Description

信号接收方法、装置和*** 技术领域
本申请涉及通信领域。
背景技术
为了同时满足URLLC(Ultra Reliable Low Latency Communications,超可靠低时延通信)业务高可靠性的需求,Rel-16(版本16)增强了下行数据信号的传输机制。这使得下行数据信号能够通过多个TRP(transmission and reception point,收发节点)发送。具体地说,这些下行数据信号可以通过时分复用,频分复用,空分复用等方式从不同的TRP传输。这种传输方式可以增强下行数据信号的鲁棒性,从而满足相应的可靠性要求。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
发明人发现,如果通信***应用了PDSCH(Physical Downlink Shared Channel,物理下行共享信道)时分复用机制、PDSCH频分复用机制A以及PDSCH频分复用机制B,现有技术对于PDSCH以及其对应的DM-RS(Demodulation Reference Signal,解调参考信号)的规定是不正确的,这会导致终端设备可能错误地将对应不同TRP的DM-RS用于PDSCH解调,导致PDSCH无法解调,从而导致***的性能下降。
为了解决上述问题的至少一种或其他类似问题,本申请实施例提供了一种信号接收方法、装置和***,使得终端设备在进行信道估计时,能够避免错误地将对应不同TRP的DM-RS进行合并。TRP表征为TCI状态(transmission configuration indication state,传输配置指示状态)。
根据本申请实施例的一方面,提供一种信号接收方法,其中,所述方法包括:
终端设备接收第一指示信息;其中,所述第一指示信息指示至少两个传输配置指示(TCI)状态;以及
所述终端设备接收数据信号以及与所述数据信号关联的解调参考信号(DM-RS);
其中,所述数据信号与所述至少两个传输配置指示(TCI)状态相关,所述DM-RS的一个符号与所述数据信号的一个符号所关联或分配的TCI状态相同,所述数据信号的所述一个符号在一个天线端口上所经历(is conveyed)的信道能够根据所述DM-RS的所述一个符号在相同的天线端口上所经历的信道得出(is inferred)。
根据本申请实施例的另一方面,提供一种信号发送方法,其中,所述方法包括:
网络设备生成第一指示信息、数据信号、以及与所述数据信号关联的DM-RS;其中,所述第一指示信息指示至少两个传输配置指示(TCI)状态;
所述网络设备向终端设备发送所述第一指示信息、所述数据信号、以及与所述数据信号关联的DM-RS;
其中,所述数据信号与所述至少两个TCI状态相关,所述DM-RS的一个符号与所述数据信号的一个符号所关联或分配的TCI状态相同,所述数据信号的所述一个符号在一个天线端口上所经历(is conveyed)的信道能够根据所述DM-RS的所述一个符号在相同的天线端口上所经历的信道得出(is inferred)。
根据本申请实施例的再一方面,提供一种信号接收方法,其中,所述方法包括:
终端设备接收第一指示信息;其中,所述第一指示信息指示至少两个传输配置指示(TCI)状态;以及
所述终端设备接收数据信号以及与所述数据信号关联的解调参考信号(DM-RS);
其中,所述数据信号的预编码颗粒度为宽带预编码颗粒度(wideband precoding granularity),所述数据信号被分配(allocated)的频域资源根据所述第一指示信息指示的TCI状态的个数分为相应个数的频域部分,所述DM-RS的一个符号与所述数据信号的一个符号对应相同的所述频域部分,所述数据信号的所述一个符号在一个天线端口上所经历(is conveyed)的信道能够根据所述DM-RS的所述一个符号在相同的天线端口上所经历的信道得出(is inferred)。
根据本申请实施例的又一方面,提供一种信号发送方法,其中,所述方法包括:
网络设备生成第一指示信息、数据信号、以及与所述数据信号关联的DM-RS,其中,所述第一指示信息指示至少两个传输配置指示(TCI)状态;以及
所述网络设备向终端设备发送所述第一指示信息、所述数据信号、以及与所述数据信号关联的DM-RS;
其中,所述数据信号的预编码颗粒度为宽带预编码颗粒度(wideband precoding granularity),所述数据信号被分配的频域资源根据所述第一指示信息指示的TCI状态的个数分为相应个数的频域部分,所述DM-RS的一个符号与所述数据信号的一个符号对应相同的所述频域部分,所述数据信号的所述一个符号在一个天线端口上所经历(is conveyed)的信道能够根据所述DM-RS的所述一个符号在相同的天线端口上所经历的信道得出(is inferred)。
根据本申请实施例的一方面,提供一种信号接收装置,其中,所述装置包括:
第一接收单元,其接收第一指示信息;其中,所述第一指示信息指示至少两个传输配置指示(TCI)状态;以及
第二接收单元,其接收数据信号以及与所述数据信号关联的解调参考信号(DM-RS);
其中,所述数据信号与所述至少两个传输配置指示(TCI)状态相关,所述DM-RS的一个符号与所述数据信号的一个符号所关联或分配的TCI状态相同,所述数据信号的所述一个符号在一个天线端口上所经历(is conveyed)的信道能够根据所述DM-RS的所述一个符号在相同的天线端口上所经历的信道得出(is inferred)。
根据本申请实施例的另一方面,提供一种信号发送装置,其中,所述装置包括:
生成单元,其生成第一指示信息、数据信号、以及与所述数据信号关联的DM-RS;其中,所述第一指示信息指示至少两个传输配置指示(TCI)状态;
发送单元,其向终端设备发送所述第一指示信息、所述数据信号、以及与所述数据信号关联的DM-RS;
其中,所述数据信号与所述至少两个TCI状态相关,所述DM-RS的一个符号与所述数据信号的一个符号所关联或分配的TCI状态相同,所述数据信号的所述一个符号在一个天线端口上所经历(is conveyed)的信道能够根据所述DM-RS的所述一个符号在相同的天线端口上所经历的信道得出(is inferred)。
根据本申请实施例的再一方面,提供一种信号接收装置,其中,所述装置包括:
第一接收单元,其接收第一指示信息;其中,所述第一指示信息指示至少两个传输配置指示(TCI)状态;以及
第二接收单元,其接收数据信号以及与所述数据信号关联的解调参考信号(DM-RS);
其中,所述数据信号的预编码颗粒度为宽带预编码颗粒度(wideband precoding granularity),所述数据信号被分配(allocated)的频域资源根据所述第一指示信息指示的TCI状态的个数分为相应个数的频域部分,所述DM-RS的一个符号与所述数据信号的一个符号对应相同的所述频域部分,所述数据信号的所述一个符号在一个天线端口上所经历(is conveyed)的信道能够根据所述DM-RS的所述一个符号在相同的天线端口上所经历的信道得出(is inferred)。
根据本申请实施例的又一方面,提供一种信号发送装置,其中,所述装置包括:
生成单元,其生成第一指示信息、数据信号、以及与所述数据信号关联的DM-RS,其中,所述第一指示信息指示至少两个传输配置指示(TCI)状态;以及
发送单元,其向终端设备发送所述第一指示信息、所述数据信号、以及与所述数据信号关联的DM-RS;
其中,所述数据信号的预编码颗粒度为宽带预编码颗粒度(wideband precoding granularity),所述数据信号被分配的频域资源根据所述第一指示信息指示的TCI状态的个数分为相应个数的频域部分,所述DM-RS的一个符号与所述数据信号的一个符号对应相同的所述频域部分,所述数据信号的所述一个符号在一个天线端口上所经历(is conveyed)的信道能够根据所述DM-RS的所述一个符号在相同的天线端口上所经历的信道得出(is inferred)。
本申请实施例的有益效果之一在于:根据本申请实施例,能够避免终端设备在进行信道估计时,错误地将对应不同TRP的DM-RS进行合并。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。在附图中:
图1是PDSCH时分复用机制的一个示意图;
图2是PDSCH频分复用机制A的一个示意图;
图3是PDSCH频分复用机制B的一个示意图;
图4是本申请实施例的信号接收方法的一个示意图;
图5是本申请实施例的信号发送方法的一个示意图;
图6是本申请实施例的信号接收方法的另一个示意图;
图7是本申请实施例的信号发送方法的另一个示意图;
图8是本申请实施例的信号接收装置的一个示意图;
图9是本申请实施例的信号接收装置的另一个示意图;
图10是本申请实施例的信号发送装置的一个示意图;
图11是本申请实施例的信号发送装置的另一个示意图;
图12是本申请实施例的通信***的示意图;
图13是本申请实施例的终端设备的示意图;
图14是本申请实施例的网络设备的示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。 术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信***中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信***中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)例如是指通过网 络设备接入通信网络并接收网络服务的设备,也可以称为“终端设备”(TE,Terminal Equipment)。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
为了使本申请实施例清晰易懂,下面对本申请实施例涉及的一些概念和定义进行说明。
图1是PDSCH时分复用机制(例如,TDMSchemeA)的一个示意图。对于终端设备而言,PDSCH时分复用机制是指,在一个时隙内,PDSCH可以对应一个以上的传输机会(transmission occasion)。其中,每个传输机会在时域上互不重叠,并且每个机会对应不同的TCI状态。
如图1所示,网络设备与两个TRP关联,这两个TRP分别对应不同的TCI状态,也可以理解为对应着不同的空间关系。终端设备收到了调度指示后(该调度指示可以在时隙n或时隙n之前),在时隙n中,在两个PDSCH的传输机会,接收PDSCH。其中,第一个传输机会对应的PDSCH部分为PDSCH Rep#1,它是通过TRP#1传输的,也就是对应TRP#1(也就是对应第一TCI状态,TCI#1);第二个传输机会对应的PDSCH部分为PDSCH Rep#2,它是通过TRP#2传输的,也就是对应TRP#2(也就是第二TCI状态,TCI#2)。
图2是PDSCH频分复用机制A(FDMSchemeA)的一个示意图。对于终端设备而言,PDSCH频分复用机制A是指,在一个时隙内,PDSCH可以对应1个传输机会。该传输机会在频域上可以分为一个以上的不重叠的部分。其中,每个部分对应不同的TCI状态。
如图2所示,网络设备与两个TRP相关联,这两个TRP分别对应不同的TCI状态,也可以理解为对应着不同的空间关系。终端设备收到了调度指示(该调度指示可以在时隙n或时隙n之前),在时隙n中,在一个PDSCH的传输机会,接收PDSCH。其中,该传输机会对应的PDSCH的第一部分为PDSCH part#1,它是通过TRP#1传输的,也就是对应TRP#1(也就是第一TCI状态,TCI#1);该传输机会对应的PDSCH的第二部分为PDSCH part#2,它是通过TRP#1传输的,也就是对应TRP#2(也就是第二TCI状态,TCI#2)。
图3是PDSCH频分复用机制B(FDMSchemeB)的一个示意图。对于终端设备而言,PDSCH频分复用机制B是指,在一个时隙内,PDSCH可以对应2个传输机会。两个机会在频域上不重叠。其中,每个部分对应不同的TCI状态。
如图3所示,网络设备与两个TRP相关联,这两个TRP分别对应不同的TCI状态,也可以理解为对应着不同的空间关系。终端设备收到了调度指示(该调度指示可以在时隙n或时隙n之前),在时隙n中,在指示的两个PDSCH的传输机会,接收PDSCH。其中,第一传输机会对应的PDSCH为PDSCH Rep#1,它是通过TRP#1传输的,也就是对应TRP#1(也就是第一TCI状态,TCI#1);第二传输机会对应的PDSCH为PDSCH Rep#2,它是通过TRP#1传输的,也就是对应TRP#2(也就是第二TCI状态,TCI#2)。
在本申请实施例中,一个TCI状态可以与一个或两个DL(Downlink,下行链路,简称为下行)参考信号关联。其中,每个DL参考信号会有一个对应的QCL类型(quasi-colocation type,准同定位类型)。QCL类型可以分为typeA,typeB,typeC,typeD。具体定义可以参考相关标准。例如,typeD对应Spatial Rx parameter(空间接收参数)。
发明人发现,根据现有的PDSCH接收方法,当一个DM-RS符号与一个PDSCH符号满足下列的要求时,则发送(convey)该PDSCH符号的信道可以根据发送(convey)该DM-RS符号的信道(channel)得出(infer)。上述要求包括:该DM-RS符号与该PDSCH符号对应相同的天线端口,且该DM-RS符号与该PDSCH符号在相同的时隙内,且该DM-RS符号与该PDSCH符号属于相同的PRG(Precoding Resource Block Group,预编码资源块组),且该DM-RS符号与该PDSCH符号在相同的PDSCH调度资源内。
也就是说,终端设备认为该DM-RS符号与该PDSCH符号所经历的信道相同,从而利用该DM-RS符号包含的解调信息对该PDSCH符号包含的对应的数据信息进行解调。但是,当使用图1所示的PDSCH时分复用机制时,或者使用图2所示的PDSCH频分复用机制A时,或者使用图3所示的PDSCH频分复用机制B时,终端设备根据这个方法可能会错误地解调PDSCH。
以图1所示的PDSCH时分复用机制为例,PDSCH Rep#1在两个符号上包括两个DM-RS,分别为DM-RS#1与DM-RS#2;PDSCH Rep#2在两个符号上包括两个DM-RS,分别为DM-RS#3与DM-RS#4。这里,DM-RS#1、DM-RS#2、DM-RS#3以及DM-RS#4属于相同的PRG。并且,由于PDSCH Rep#1的第一个符号与DM-RS#3所在的符号处于相同的时隙,根据现有方法,PDSCH Rep#1的第一个符号与DM-RS#3所在的符号对应的信道是相同的,也就是说,PDSCH Rep#1的第一个符号所包含的符合条件的数据信息可以根据DM-RS#3解调。但是,事实上,PDSCH Rep#1的第一个符号与DM-RS#3所对应的信道并不相同,换句话说,它们分别来自不同的TRP/空间方向。如果使用了DM-RS#3,则会可能使得PDSCH Rep#1无法正确解调,导致***性能下降。
以图2所示的PDSCH频分复用机制A为例,该PDSCH所对应的PRB bundling指示为‘wideband’,也就是说,PDSCH part#1与PDSCH part#2属于相同的PRG。另外,PDSCH part#1在两个符号上包括两个DM-RS,分别为DM-RS#1与DM-RS#2;PDSCH part#2在两个符号上包括两个DM-RS,分别为DM-RS#3与DM-RS#4。这里,DM-RS#1、DM-RS#2、DM-RS#3以及DM-RS#4属于相同的时隙。并且,由于PDSCH part#1的第一个符号与DM-RS#3处于相同的PRG group,根据现有方法,PDSCH part#1的第一个符号与DM-RS#3所在的符号对应的信道是相同的,也就是说,PDSCH part#1的第一个符号所包含的符合条件的数据信息可以根据DM-RS#3解调。但是,事实上,PDSCH part#1的第一个符号与DM-RS#3所对应的信道并不相同,换句话说,它们分别来自不同的TRP/空间方向。如果使用了DM-RS#3,则会可能使得PDSCH Rep#1无法正确解调,导致***性能下降。
以图3所示的PDSCH频分复用机制B为例,该PDSCH所对应的PRB bundling指示为‘wideband’,也就是说,PDSCH Rep#1与PDSCH Rep#2属于相同的PRG。另外,PDSCH Rep#1在两个符号上包括两个DM-RS,分别为DM-RS#1与DM-RS#2; PDSCH Rep#2在两个符号上包括两个DM-RS,分别为DM-RS#3与DM-RS#4。这里,DM-RS#1、DM-RS#2、DM-RS#3以及DM-RS#4属于相同的时隙。并且,由于PDSCH Rep#1的第一个符号与DM-RS#3处于相同的PRG group,根据现有方法,PDSCH Rep#1的第一个符号与DM-RS#3所在的符号对应的信道是相同的,也就是说,PDSCH Rep#1的第一个符号所包含的符合条件的数据信息可以根据DM-RS#3解调。但是,事实上,PDSCH Rep#1的第一个符号与DM-RS#3所对应的信道并不相同,换句话说,它们分别来自不同的TRP/空间方向。如果使用了DM-RS#3,则会可能使得PDSCH Rep#1无法正确解调,导致***性能下降。
为了解决上述问题的至少一种或其它类似的问题,本申请提出了相应的解决办法,使得终端设备在进行信道估计时,能够避免错误地将对应不同TRP的DM-RS进行合并,或者说能够避免使用错误的DM-RS对数据进行信号解调。
下面结合附图对本申请的各种实施方式进行说明。这些实施方式只是示例性的,不是对本申请的限制。
第一方面的实施例
本申请实施例提供一种信号接收方法,从终端设备侧进行说明,本申请实施例的方法适用于PDSCH时分复用机制(图1)、PDSCH频分复用机制A(图2)和PDSCH频分复用机制B(图3)。图4是本申请实施例的信号接收方法的示意图,请参照图4,该方法包括:
401:终端设备接收第一指示信息,所述第一指示信息指示至少两个传输配置指示(TCI)状态;以及
402:所述终端设备接收数据信号以及与所述数据信号关联的解调参考信号(DM-RS);其中,所述数据信号与至少两个TCI状态相关,所述DM-RS的一个符号与所述数据信号的一个符号所关联(associated)或分配的(assigned)TCI状态相同,所述数据信号的所述一个符号在一个天线端口上所经历(is conveyed)的信道能够根据所述DM-RS的所述一个符号在相同天线端口上所经历的信道得出(is inferred)。
根据本申请实施例的上述方法,利用TCI状态确定DM-RS与数据信号之间的关系,这使得相应的数据信号能够利用正确的DM-RS进行解调,从而保证了数据传输的可靠性,提升了***性能。
在本申请实施例中,数据信号与至少两个TCI状态相关,是指,数据信号的不同的部分关联不同的TCI状态。以图1为例,数据信号分成两部分,数据信号的一部分(如PDSCH Rep#1)关联一种TCI状态(TCI#1),数据信号的另一部分(如PDSCH Rep#2)关联一种TCI状态(TCI#2);以图2为例,数据信号也分成两部分,数据信号的一部分(如PDSCH part#1)关联一种TCI状态(TCI#1),数据信号的另一部分(如PDSCH part#2)关联一种TCI状态(TCI#2);以图3为例,数据信号也分成两部分,数据信号的一部分(如PDSCH Rep#1)关联一种TCI状态(TCI#1),数据信号的另一部分(如PDSCH Rep#2)关联一种TCI状态(TCI#2)。这里,TCI状态可以是3个或者更多,类似的,每个TCI状态关联数据信号的不同部分。
在本申请实施例中,所述DM-RS的一个符号与所述数据信号的一个符号所关联(associated)或分配的(assigned)TCI状态相同,是指,DM-RS的一个符号与数据信号的一个符号关联的相同的TCI状态。以图1和图3为例,PDSCH Rep#1与DM-RS#1和DM-RS#2都关联TCI#1,则PDSCH Rep#1的(任何)一个符号与DM-RS#1的(任何)一个符号以及DM-RS#2的(任何)一个符号都关联TCI#1;PDSCH Rep#2与DM-RS#3和DM-RS#4都关联TCI#2,则PDSCH Rep#2的(任何)一个符号与DM-RS#3的(任何)一个符号以及DM-RS#4的(任何)一个符号都关联TCI#2;以图2为例,PDSCH part#1与DM-RS#1和DM-RS#2都关联TCI#1,则PDSCH part#1的(任何)一个符号与DM-RS#1的(任何)一个符号以及DM-RS#2的(任何)一个符号都关联TCI#1;PDSCH part#2与DM-RS#3和DM-RS#4都关联TCI#2,则PDSCH part#2的(任何)一个符号与DM-RS#3的(任何)一个符号以及DM-RS#3的(任何)一个符号都关联TCI#2。
在本申请实施例中,所述数据信号的所述一个符号在一个天线端口上所经历(is conveyed)的信道能够根据所述DM-RS的所述一个符号在相同天线端口上所经历的信道得出(is inferred),也即,在一个天线端口上的接收的数据信号,使用与该数据信号的TCI状态相同的相同天线端口的DM-RS进行解调,也即,该DM-RS与该数据信号的TCI状态和天线端口相同。需要说明的是,在本文中,如无特别说明,信道是指物理信道。
以图1为例,DM-RS#1和DM-RS#2以及PDSCH Rep#1的天线端口号都为1000,DM-RS#1和DM-RS#2用于解调PDSCH Rep#1。换句话说,由于对应的TCI状态 相同,一个符号(例如时隙n中第3个符号)上的PDSCH Rep#1与一个符号(例如时隙n中第3个符号)上的DM-RS#1以及一个符号(例如时隙n中第7个符号)上的DM-RS#2经历了相同的信道。又或者说,由于对应的TCI状态相同,一个符号(例如时隙n中第3个符号)上的PDSCH Rep#1可以根据一个符号(例如时隙n中第3个符号)上的DM-RS#1以及一个符号(例如时隙n中第7个符号)上的DM-RS#2解调。
仍以图1为例,DM-RS#3和DM-RS#4以及PDSCH Rep#2的天线端口号都为1000,DM-RS#3和DM-RS#4可以用于解调PDSCH Rep#2。换句话说,由于对应的TCI状态相同,一个符号(例如时隙n中第10个符号)上的PDSCH Rep#2与一个符号(例如时隙n中第10个符号)上的DM-RS#3以及一个符号(例如时隙n中第14个符号)上的DM-RS#4经历了相同的信道。又或者说,由于对应的TCI状态相同,一个符号(例如时隙n中第10个符号)上的PDSCH Rep#2可以根据一个符号(例如时隙n中第10个符号)上的DM-RS#3以及一个符号(例如时隙n中第14个符号)上的DM-RS#4解调。
以图2为例,DM-RS#1和DM-RS#2以及PDSCH part#1的天线端口号都为1000,DM-RS#1和DM-RS#2可以用于解调PDSCH part#1。换句话说,由于对应的TCI状态相同,一个符号(例如时隙n中第6个符号)上的PDSCH part#1与一个符号(例如时隙n中第6个符号)上的DM-RS#1以及一个符号(例如时隙n中第10个符号)上的DM-RS#2经历了相同的信道。又或者说,由于对应的TCI状态相同,一个符号(例如时隙n中第6个符号)上的PDSCH part#1可以根据一个符号(例如时隙n中第6个符号)上的DM-RS#1以及一个符号(例如时隙n中第10个符号)上的DM-RS#2解调。
仍以图2为例,DM-RS#3和DM-RS#4以及PDSCH part#2的天线端口号都为1000,DM-RS#3和DM-RS#4可以用于解调PDSCH part#2。换句话说,由于对应的TCI状态相同,一个符号(例如时隙n中第6个符号)上的PDSCH part#2与一个符号(例如时隙n中第6个符号)上的DM-RS#3以及一个符号(例如时隙n中第10个符号)上的DM-RS#4经历了相同的信道。又或者说,由于对应的TCI状态相同,一个符号(例如时隙n中第6个符号)上的PDSCH part#2可以根据一个符号(例如时隙n中第6个符号)上的DM-RS#3以及一个符号(例如时隙n中第10个符号) 上的DM-RS#4解调。
以图3为例,DM-RS#1和DM-RS#2以及PDSCH Rep#1的天线端口号都为1000,DM-RS#1和DM-RS#2可以用于解调PDSCH Rep#1。换句话说,由于对应的TCI状态相同,一个符号(例如时隙n中第6个符号)上的PDSCH Rep#1与一个符号(例如时隙n中第6个符号)上的DM-RS#1以及一个符号(例如时隙n中第10个符号)上的DM-RS#2经历了相同的信道。又或者说,由于对应的TCI状态相同,一个符号(例如时隙n中第6个符号)上的PDSCH Rep#1可以根据一个符号(例如时隙n中第6个符号)上的DM-RS#1以及一个符号(例如时隙n中第10个符号)上的DM-RS#2解调。
仍以图3为例,DM-RS#3和DM-RS#4以及PDSCH Rep#2的天线端口号都为1000,DM-RS#3和DM-RS#4可以用于解调PDSCH Rep#2。换句话说,由于对应的TCI状态相同,一个符号(例如时隙n中第6个符号)上的PDSCH Rep#2与一个符号(例如时隙n中第6个符号)上的DM-RS#3以及一个符号(例如时隙n中第10个符号)上的DM-RS#4经历了相同的信道。又或者说,由于对应的TCI状态相同,一个符号(例如时隙n中第6个符号)上的PDSCH Rep#2可以根据一个符号(例如时隙n中第6个符号)上的DM-RS#3以及一个符号(例如时隙n中第10个符号)上的DM-RS#4解调。
在一些实施例中,上述DM-RS的上述一个符号与上述数据信号的上述一个符号在相同的、上述数据信号的调度资源中。其中,数据信号的调度资源可以理解为,上述数据信号所对应的调度指示所指示的时频资源。这里,调度指示可以通过PDCCH、MAC-CE信令或者RRC信令发送,本申请不以此为限,下面以PDCCH为例。
例如,在图1中,PDCCH用于调度PDSCH,PDSCH包括两个部分,即PDSCH Rep#1以及PDSCH Rep#2。结合前面的描述,一个符号(例如时隙n中第3个符号)上的PDSCH Rep#1、一个符号(例如时隙n中第3个符号)上的DM-RS#1以及一个符号(例如时隙n中第7个符号)上的DM-RS#2都在相同的、数据信号的调度资源中;一个符号(例如时隙n中第10个符号)上的PDSCH Rep#2、一个符号(例如时隙n中第10个符号)上的DM-RS#3以及一个符号(例如时隙n中第14个符号)上的DM-RS#4都在相同的、数据信号的调度资源中。
再例如,在图2中,PDCCH用于调度PDSCH,PDSCH包括两个部分,即PDSCH  part#1以及PDSCH part#2。结合前面的描述,一个符号(例如时隙n中第6个符号)上的PDSCH part#1、一个符号(例如时隙n中第6个符号)上的DM-RS#1以及一个符号(例如时隙n中第10个符号)上的DM-RS#2都在相同的、数据信号的调度资源中;一个符号(例如时隙n中第6个符号)上的PDSCH part#2、一个符号(例如时隙n中第6个符号)上的DM-RS#3以及一个符号(例如时隙n中第10个符号)上的DM-RS#4都在相同的、数据信号的调度资源中。
再例如,在图3中,PDCCH用于调度PDSCH,PDSCH包括两个部分,即PDSCH Rep#1以及PDSCH Rep#2。结合前面的描述,一个符号(例如时隙n中第6个符号)上的PDSCH Rep#1、一个符号(例如时隙n中第6个符号)上的DM-RS#1以及一个符号(例如时隙n中第10个符号)上的DM-RS#2都在相同的、数据信号的调度资源中;一个符号(例如时隙n中第6个符号)上的PDSCH Rep#2、一个符号(例如时隙n中第6个符号)上的DM-RS#3以及一个符号(例如时隙n中第10个符号)上的DM-RS#4都在相同的、数据信号的调度资源中。
在一些实施例中,数据信号的调度资源也可以对应相同的TCI状态,但本申请不限于此。
例如,在图1中,PDCCH用于调度PDSCH,PDSCH包括两个部分,即PDSCH Rep#1以及PDSCH Rep#2,其中,PDSCH Rep#1也就是第一个传输机会对应的TCI状态为TCI#1,PDSCH Rep#2也就是第二个传输机会对应的TCI状态为TCI#2。结合前面的描述,一个符号(例如时隙n中第3个符号)上的PDSCH Rep#1、一个符号(例如时隙n中第3个符号)上的DM-RS#1以及一个符号(例如时隙n中第7个符号)上的DM-RS#2都在对应相同TCI状态的数据信号调度资源中;一个符号(例如时隙n中第10个符号)上的PDSCH Rep#2、一个符号(例如时隙n中第10个符号)上的DM-RS#3以及一个符号(例如时隙n中第14个符号)上的DM-RS#4都在对应相同TCI状态的数据信号调度资源中。
再例如,在图2中,PDCCH用于调度PDSCH,PDSCH包括两个部分,即PDSCH part#1以及PDSCH part#2。结合前面的描述,一个符号(例如时隙n中第6个符号)上的PDSCH part#1、一个符号(例如时隙n中第6个符号)上的DM-RS#1以及一个符号(例如时隙n中第10个符号)上的DM-RS#2都在相同的、数据信号的、对应相同TCI状态的调度资源中;一个符号(例如时隙n中第6个符号)上的PDSCH  part#2、一个符号(例如时隙n中第6个符号)上的DM-RS#3以及一个符号(例如时隙n中第10个符号)上的DM-RS#4都在对应相同TCI状态的数据信号调度资源中。
再例如,在图3中,PDCCH用于调度PDSCH,PDSCH包括两个部分,即PDSCH Rep#1以及PDSCH Rep#2。结合前面的描述,一个符号(例如时隙n中第6个符号)上的PDSCH Rep#1、一个符号(例如时隙n中第6个符号)上的DM-RS#1以及一个符号(例如时隙n中第10个符号)上的DM-RS#2都在相同的、数据信号的、对应相同TCI状态的调度资源中;一个符号(例如时隙n中第6个符号)上的PDSCH Rep#2、一个符号(例如时隙n中第6个符号)上的DM-RS#3以及一个符号(例如时隙n中第10个符号)上的DM-RS#4都在对应相同TCI状态的数据信号调度资源中。
根据上述方法,终端设备能够根据数据信号对应的调度资源以及该调度资源的TCI状态,正确地区分出用于解调该数据信号的DM-RS,从而避免解调失败,提高***的鲁棒性。
在一些实施例中,上述DM-RS的上述一个符号与上述数据信号的上述一个符号在相同的频域资源内。例如,该DM-RS的上述一个符号和该数据信号的上述一个符号在相同的子载波内。再例如,该DM-RS的上述一个符号和该数据信号的上述一个符号在相同的预编码资源块组(Precoding Resource block Group,PRG)内。本申请不以此为限,下面以该DM-RS的上述一个符号和该数据信号的上述一个符号在相同的PRG内为例进行说明。
以图1为例,一个符号(例如时隙n中第3个符号)上的PDSCH Rep#1、一个符号(例如时隙n中第3个符号)上的DM-RS#1以及一个符号(例如时隙n中第7个符号)上的DM-RS#2的频域资源都属于PRG#1;一个符号(例如时隙n中第10个符号)上的PDSCH Rep#2、一个符号(例如时隙n中第10个符号)上的DM-RS#3以及一个符号(例如时隙n中第14个符号)上的DM-RS#4的频域资源都属于PRG#2。
以图2为例,一个符号(例如时隙n中第6个符号)上的PDSCH part#1、一个符号(例如时隙n中第6个符号)上的DM-RS#1以及一个符号(例如时隙n中第10个符号)上的DM-RS#2的频域资源都属于PRG#1;一个符号(例如时隙n中第6个符号)上的PDSCH part#2、一个符号(例如时隙n中第6个符号)上的DM-RS#3 以及一个符号(例如时隙n中第10个符号)上的DM-RS#4的频域资源都属于PRG#2。
以图3为例,一个符号(例如时隙n中第6个符号)上的PDSCH Rep#1、一个符号(例如时隙n中第6个符号)上的DM-RS#1以及一个符号(例如时隙n中第10个符号)上的DM-RS#2的频域资源都属于PRG#1;一个符号(例如时隙n中第6个符号)上的PDSCH Rep#2、一个符号(例如时隙n中第6个符号)上的DM-RS#3以及一个符号(例如时隙n中第10个符号)上的DM-RS#4的频域资源都属于PRG#2。
在一些实施例中,上述DM-RS的上述一个符号与上述数据信号的上述一个符号在相同的时隙内。
以图1为例,一个符号(例如时隙n中第3个符号)上的PDSCH Rep#1、一个符号(例如时隙n中第3个符号)上的DM-RS#1以及一个符号(例如时隙n中第7个符号)上的DM-RS#2的时域资源都属于时隙n;一个符号(例如时隙n中第10个符号)上的PDSCH Rep#2、一个符号(例如时隙n中第10个符号)上的DM-RS#3以及一个符号(例如时隙n中第14个符号)上的DM-RS#4的时域资源都属于时隙n。
以图2为例,一个符号(例如时隙n中第6个符号)上的PDSCH part#1、一个符号(例如时隙n中第6个符号)上的DM-RS#1以及一个符号(例如时隙n中第10个符号)上的DM-RS#2的时域资源都属于时隙n;一个符号(例如时隙n中第6个符号)上的PDSCH part#2、一个符号(例如时隙n中第6个符号)上的DM-RS#3以及一个符号(例如时隙n中第10个符号)上的DM-RS#4的时域资源都属于时隙n。
以图3为例,一个符号(例如时隙n中第6个符号)上的PDSCH Rep#1、一个符号(例如时隙n中第6个符号)上的DM-RS#1以及一个符号(例如时隙n中第10个符号)上的DM-RS#2的时域资源都属于时隙n;一个符号(例如时隙n中第6个符号)上的PDSCH Rep#2、一个符号(例如时隙n中第6个符号)上的DM-RS#3以及一个符号(例如时隙n中第10个符号)上的DM-RS#4的时域资源都属于时隙n。
在一些实施例中,上述DM-RS的上述一个符号与上述数据信号的上述一个符号在相同的传输机会(transmission/reception occasion)内。这里的传输机会是指上述数据信号所对应的传输机会。以图1和图3为例,PDSCH包括两个部分,即PDSCH Rep#1以及PDSCH Rep#2,它们或者说它们的时频资源分别对应第一个传输机会和第二个传输机会。也就是说,DM-RS#1和DM-RS#2与PDSCH Rep#1都在第一个传输机会内,DM-RS#3和DM-RS#4与PDSCH Rep#2都在第二个传输机会内。
以图1为例,一个符号(例如时隙n中第3个符号)上的PDSCH Rep#1、一个符号(例如时隙n中第3个符号)上的DM-RS#1以及一个符号(例如时隙n中第7个符号)上的DM-RS#2的时域资源都属于第一个传输机会;一个符号(例如时隙n中第10个符号)上的PDSCH Rep#2、一个符号(例如时隙n中第10个符号)上的DM-RS#3以及一个符号(例如时隙n中第14个符号)上的DM-RS#4的时域资源都属于第二个传输机会。
以图3为例,一个符号(例如时隙n中第6个符号)上的PDSCH Rep#1、一个符号(例如时隙n中第6个符号)上的DM-RS#1以及一个符号(例如时隙n中第10个符号)上的DM-RS#2的时域资源都属于第一个传输机会;一个符号(例如时隙n中第6个符号)上的PDSCH Rep#2、一个符号(例如时隙n中第6个符号)上的DM-RS#3以及一个符号(例如时隙n中第10个符号)上的DM-RS#4的时域资源都属于第二个传输机会。
根据上述方法,终端设备能够根据数据信号的不同的传输机会,正确地区分出用于解调数据的DM-RS,从而避免解调失败,提高***的鲁棒性。
在一些实施例中,上述第一指示信息指示至少两个TCI状态,也即,上述第一指示信息与上述至少两个TCI状态相关。换句话说,该第一指示信息关联了至少两个TCI状态,本申请对指示的方式不做限制,可以是通过映射的方式指示,也可以通过其他方式指示。
在一些实施例中,上述第一指示信息由调度上述数据信号的下行控制信息(DCI)来指示。例如,该第一指示信息可以通过图1至图3所示的PDCCH中的DCI来指示,该DCI是用来调度PDSCH的,但本申请不限于此。
在本申请实施例中,如图4所示,在一些实施例中,可选的,该方法还包括:
403:所述终端设备接收第二指示信息,所述第二指示信息指示了所述数据信号的重复机制,所述数据信号的重复机制为以下其中之一:时分复用机制(如图1所示),频分复用机制A(如图2所示),以及频分复用机制B(如图3所示)。
在一些实施例中,上述第二指示信息包含于RRC信令,其对应的信息单元(Information Element,IE)名称例如为repetitionscheme,但本申请不限于此。该第二指示信息可以指示数据信号的重复机制为PDSCH时分复用机制,如图1所示;也可以指示数据信号的重复机制为PDSCH频分复用机制A,如图2所示;还可以指示 数据信号的重复机制为PDSCH频分复用机制B,如图3所示。也即,本申请实施例的方法既适用于时分复用机制,也适用于频分复用机制。本申请对该第二指示信息的发送时机和指示方式不以此为限。
根据上述方法,利用TCI状态确定DM-RS与数据信号之间的关系,使得相应的数据信号能够利用正确的DM-RS进行解调,从而保证了数据传输的可靠性,提升了***性能。
值得注意的是,以上图4仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作,或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图4的记载。
下面结合图1至图3的示例,对本申请实施例的方法进行进一步说明。在以下的例子中,PDSCH(包括PDSCH Rep#1和PDSCH Rep#1,或者包括PDSCH part#1和PDSCH part#1),DM-RS#1、DM-RS#2、DM-RS#3、DM-RS#4的天线端口设为1000。本申请不以此为限,它们的天线端口号也可以是1001、1002或者其他。
在图1的示例中,网络设备与两个TRP相关联,这两个TRP分别对应不同的TCI状态,也可以理解为对应着不同的空间关系。
一方面,终端设备收到了配置信息(第二指示信息),该配置信息指示了数据信号的重复机制,对应的IE名称例如为repetitionscheme,通过该配置信息,该数据信号的重复机制被指示为PDSCH时分复用机制(tdmSchemeA)。
另一方面,终端设备收到了调度指示(第一指示信息),该调度指示可以在时隙n或时隙n之前。另外,该调度指示与两个或以上的TCI状态相关。例如,该调度指示的指示信息中的TCI域指示的codepoint关联了两个或以上的TCI状态。
由此,终端设备根据上述调度指示的指示信息中的资源分配指示,在时隙n中,在两个PDSCH的传输机会,接收数据信号(用于承载PDSCH)。其中,第一个传输机会对应的PDSCH部分为PDSCH Rep#1,其对应着TRP#1,也就是第一TCI状态,TCI#1;第二个传输机会对应的PDSCH部分为PDSCH Rep#2,其对应着TRP#2,也就是第二TCI状态,TCI#2。另外,PDSCH Rep#1在两个符号上包括两个DM-RS,分别为DM-RS#1与DM-RS#2;PDSCH Rep#2在两个符号上包括两个DM-RS,分别为DM-RS#3与DM-RS#4。
这里,被调度的PDSCH(PDSCH Rep#1和PDSCH Rep#2)与多个DM-RS关联,包括DM-RS#1,DM-RS#2,DM-RS#3,DM-RS#4。
在这个示例中,由于PDSCH Rep#1与DM-RS#1,DM-RS#2关联或者分配了相同的TCI状态,或者更进一步地说,DM-RS#1,DM-RS#2与PDSCH Rep#1对应相同TCI状态的调度资源(资源A)。例如,由于在时隙n的第3个符号上接收的PDSCH与在时隙n的第3个符号上接收的DM-RS#1以及在时隙n的第7个符号上接收的DM-RS#2都属于资源A(对应相同的TCI状态),则时隙n的第3个符号上的PDSCH所经历的物理信道可以根据时隙n的第3个符号上发送的DM-RS#1以及时隙n的第7个符号上发送的DM-RS#2所经历的物理信道得出,也就是说,时隙n的第3个符号上发送的PDSCH可以根据在时隙n的第3个符号上发送的DM-RS#1以及在时隙n的第7个符号上发送的DM-RS#2解调。
同理,DM-RS#3,DM-RS#4与PDSCH Rep#2对应相同TCI状态的调度资源(资源B)。例如,由于在时隙n的第10个符号上接收的PDSCH与在时隙n的第10个符号上接收的DM-RS#3以及在时隙n的第14个符号上接收的DM-RS#4都属于资源B(对应相同的TCI状态),则时隙n的第10个符号上的PDSCH所经历的物理信道可以根据时隙n的第10个符号上发送的DM-RS#3以及时隙n的第14个符号上发送的DM-RS#4所经历的物理信道得出,也就是说,时隙n的第10个符号上发送的PDSCH可以根据在时隙n的第10个符号上发送的DM-RS#3以及在时隙n的第14个符号上发送的DM-RS#4解调。
在上述方法中,资源A或B可以进一步理解为一个传输机会,例如,资源A为第一个传输机会,资源B为第二个传输机会。
根据上述方法,可以避免数据信号(例如PDSCH Rep#1)使用对应不同TCI状态的DM-RS(例如DM-RS#3,DM-RS#4)进行解调,提升***的可靠性。
在图2的示例中,网络设备与两个TRP相关联,这两个TRP分别对应不同的TCI状态,也可以理解为对应着不同的空间关系。
一方面,终端设备收到了配置信息(第二指示信息),该配置信息指示了数据信号的重复机制,对应的IE名称例如为repetitionscheme,通过该配置信息,该数据信号的重复机制被指示为PDSCH频分复用机制A(fdmSchemeA)。
另一方面,终端设备收到了调度指示(第一指示信息),该调度指示可以在时隙 n或时隙n之前。另外,该调度指示与两个或以上的TCI状态相关。例如,该调度指示的指示信息中的TCI域对应的指示的codepoint关联了两个或以上的TCI状态。
由此,终端设备根据调度指示的指示信息中的资源分配指示,在时隙n中,在一个PDSCH的传输机会,接收数据信号(PDSCH)。其中,该传输机会对应的PDSCH的第一部分为PDSCH part#1,其对应着TRP#1,也就是第一TCI状态,TCI#1;该传输机会对应的PDSCH的第二部分为PDSCH part#2,其对应着TRP#2,也就是第二TCI状态,TCI#2。该PDSCH所对应的PRB bundling指示为“wideband”,也就是说,PDSCH part#1与PDSCH part#2属于相同的PRG。另外,PDSCH part#1在两个符号上包括两个DM-RS,分别为DM-RS#1与DM-RS#2;PDSCH part#2在两个符号上包括两个DM-RS,分别为DM-RS#3与DM-RS#4。
这里,被调度的PDSCH(PDSCH part#1和PDSCH part#2)与多个DM-RS关联,包括DM-RS#1,DM-RS#2,DM-RS#3,DM-RS#4。
在这个示例中,由于PDSCH part#1与DM-RS#1,DM-RS#2关联或者分配了相同的TCI状态,或者更进一步地说,DM-RS#1,DM-RS#2与PDSCH part#1对应相同TCI状态的调度资源(资源C)。例如,由于在时隙n的第6个符号上接收的PDSCH与在时隙n的第6个符号上接收的DM-RS#1以及在时隙n的第10个符号上接收的DM-RS#2都属于资源C(对应相同的TCI状态),则时隙n的第6个符号上的PDSCH所经历的物理信道可以根据时隙n的第6个符号上发送的DM-RS#1以及时隙n的第10个符号上发送的DM-RS#2所经历的物理信道得出,也就是说,时隙n的第6个符号上发送的PDSCH可以根据在时隙n的第6个符号上发送的DM-RS#1以及在时隙n的第10个符号上发送的DM-RS#2解调。
同理,DM-RS#3,DM-RS#4与PDSCH part#2对应相同TCI状态的调度资源(资源D)。例如,由于在时隙n的第6个符号上接收的PDSCH与在时隙n的第6个符号上接收的DM-RS#3以及在时隙n的第10个符号上接收的DM-RS#4都属于资源D(对应相同的TCI状态),则时隙n的第6个符号上的PDSCH所经历的物理信道可以根据时隙n的第6个符号上发送的DM-RS#3以及时隙n的第10个符号上发送的DM-RS#4所经历的物理信道得出,也就是说,时隙n的第6个符号上发送的PDSCH可以根据在时隙n的第6个符号上发送的DM-RS#3以及在时隙n的第10个符号上发送的DM-RS#4解调。
在上述方法中,资源C或D可以进一步理解为对应相同TCI状态的PRBs。
根据上述方法,可以避免数据信号(例如PDSCH part#1)使用对应不同TCI状态的DM-RS(例如DM-RS#3,DM-RS#4)进行解调,提升***的可靠性。
在图3的示例中,网络设备与两个TRP相关联,这两个TRP分别对应不同的TCI状态,也可以理解为对应着不同的空间关系。
一方面,终端设备收到了配置信息(第二指示信息),该配置信息指示了数据信号的重复机制,对应的IE名称例如为repetitionscheme,通过该配置信息,该数据信号的重复机制被指示为PDSCH频分复用机制B(fdmSchemeB)。
另一方面,终端设备收到了调度指示(第一指示信息),该调度指示可以在时隙n或时隙n之前。另外,该调度指示与两个或以上的TCI状态相关。例如,该调度指示的指示信息中的TCI域对应的指示的codepoint关联了两个或以上的TCI状态。
由此,终端设备根据该调度指示的指示信息中的资源分配指示,在时隙n中,在指示的两个PDSCH的传输机会,接收数据信号(PDSCH)。其中,第一传输机会对应的PDSCH为PDSCH Rep#1,其对应着TRP#1,也就是第一TCI状态,TCI#1;第二传输机会对应的PDSCH为PDSCH Rep#2,其对应着TRP#2,也就是第二TCI状态,TCI#2。该PDSCH所对应的PRB bundling指示为“wideband”,也就是说,PDSCH Rep#1与PDSCH Rep#2属于相同的PRG。另外,PDSCH Rep#1在两个符号上包括两个DM-RS,分别为DM-RS#1与DM-RS#2;PDSCH Rep#2在两个符号上包括两个DM-RS,分别为DM-RS#3与DM-RS#4。
这里,被调度的PDSCH(PDSCH Rep#1和PDSCH Rep#2)与多个DM-RS关联,包括DM-RS#1,DM-RS#2,DM-RS#3,DM-RS#4。
在这个示例中,由于PDSCH Rep#1DM-RS#1,DM-RS#2关联或者分配了相同的TCI状态,或者更进一步地说,DM-RS#1,DM-RS#2与PDSCH Rep#1对应相同TCI状态的调度资源(资源E)。例如,由于在时隙n的第6个符号上接收的PDSCH与在时隙n的第6个符号上接收的DM-RS#1以及在时隙n的第10个符号上接收的DM-RS#2都属于资源E(对应相同的TCI状态),则时隙n的第6个符号上的PDSCH所经历的物理信道可以根据时隙n的第6个符号上发送的DM-RS#1以及时隙n的第10个符号上发送的DM-RS#2所经历的物理信道得出,也就是说,时隙n的第6个符号上发送的PDSCH可以根据在时隙n的第6个符号上发送的DM-RS#1以及在时隙 n的第10个符号上发送的DM-RS#2解调。
同理,DM-RS#3,DM-RS#4与PDSCH Rep#2对应相同TCI状态的调度资源(资源F)。例如,由于在时隙n的第6个符号上接收的PDSCH与在时隙n的第6个符号上接收的DM-RS#3以及在时隙n的第10个符号上接收的DM-RS#4都属于资源F(对应相同的TCI状态),则时隙n的第6个符号上的PDSCH所经历的物理信道可以根据时隙n的第6个符号上发送的DM-RS#3以及时隙n的第10个符号上发送的DM-RS#4所经历的物理信道得出,也就是说,时隙n的第6个符号上发送的PDSCH可以根据在时隙n的第6个符号上发送的DM-RS#3以及在时隙n的第10个符号上发送的DM-RS#4解调。
在上述方法中,资源E或F可以在一个PRG内。这里,资源E或F可以进一步理解为对应相同TCI状态的PRG/PRBs。
根据上述方法,可以避免数据信号(例如PDSCH part#1)使用对应不同TCI状态的DM-RS(例如DM-RS#3,DM-RS#4)进行解调,提升***的可靠性。
根据本申请实施例的方法,利用TCI状态确定DM-RS与数据信号之间的关系,这使得相应的数据信号能够利用正确的DM-RS进行解调,从而保证了数据传输的可靠性,提升了***性能。
第二方面的实施例
本申请实施例提供了一种信号发送方法,从网络侧进行说明。该方法是与第一方面的实施例的方法对应的网络侧的处理,其中与第一方面的实施例相同的内容不再重复说明。
图5是本申请实施例的信号发送方法的示意图,如图5所示,该方法包括:
501:网络设备生成第一指示信息、数据信号、以及与所述数据信号关联的DM-RS;其中,所述第一指示信息指示至少两个传输配置指示(TCI)状态;
502:所述网络设备向终端设备发送所述第一指示信号、所述数据信号、以及与所述数据信号关联的DM-RS;
其中,所述数据信号与所述至少两个TCI状态相关,所述DM-RS的一个符号与所述数据信号的一个符号所关联或分配的TCI状态相同,所述数据信号的所述一个符号在一个天线端口上所经历(is conveyed)的信道能够根据所述DM-RS的所述一个 符号在相同的天线端口上所经历的信道得出(is inferred)。
在本申请实施例中,如图5所示,在一些实施例中,可选的,该方法还包括:
503:所述网络设备生成第二指示信息;
504:所述网络设备向所述终端设备发送所述第二指示信息,所述第二指示信息指示了数据信号的重复机制,所述数据信号的重复机制为以下其中之一:时分复用机制,频分复用机制A,以及频分复用机制B。
值得注意的是,以上图5仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作,或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图5的记载。
在一些实施例中,如第一方面的实施例所述的,所述DM-RS的所述一个符号和所述数据信号的所述一个符号在相同的天线端口上。
在一些实施例中,如第一方面的实施例所述的,所述DM-RS的所述一个符号与所述数据信号的所述一个符号在相同的、所述数据信号的调度资源中。在一些实施例中,所述调度资源对应相同的TCI状态。
在一些实施例中,如第一方面的实施例所述的,所述DM-RS的所述一个符号与所述数据信号的所述一个符号在相同的频域资源内。在一些实施例中,所述频域资源为预编码资源块组(PRG)。
在一些实施例中,如第一方面的实施例所述的,所述DM-RS的所述一个符号与所述数据信号的所述一个符号在相同的时隙内。
在一些实施例中,如第一方面的实施例所述的,所述DM-RS的所述一个符号与所述数据信号的所述一个符号在相同的传输机会(transmission/reception occasion)内,所述传输机会是指所述数据信号所对应的传输机会。
在一些实施例中,如第一方面的实施例所述的,所述第一指示信息由调度上述数据信号的DCI指示。
在本申请实施例中,在501中,网络设备使用相同的信道发送所述数据信号以及与所述数据信号关联的DM-RS,以便终端设备根据接收到的该DM-RS解调上述数据信号。关于终端设备侧的处理已经在第一方面的实施例中做了说明,此处不在赘述。此外,关于网络设备发送上述数据信号以及与所述数据信号关联的DM-RS的方式, 可以参考相关技术,此处省略说明。
根据本申请实施例的方法,利用TCI状态确定DM-RS与数据信号之间的关系,这使得相应的数据信号能够利用正确的DM-RS进行解调,从而保证了数据传输的可靠性,提升了***性能。
第三方面的实施例
本申请实施例提供一种信号接收方法,从终端设备侧进行说明,本申请实施例的方法适用于PDSCH频分复用机制A(图2)和PDSCH频分复用机制B(图3)。图6是本申请实施例的信号接收方法的示意图,如图6所示,该方法包括:
601:终端设备接收第一指示信息;其中,所述第一指示信息指示至少两个传输配置指示(TCI)状态;以及
602:所述终端设备接收数据信号以及与所述数据信号关联的解调参考信号(DM-RS);其中,所述数据信号的预编码颗粒度为宽带预编码颗粒度(wideband precoding granularity),所述数据信号被分配(allocated)的频域资源根据所述第一指示信息指示的TCI状态的个数分为相应个数的频域部分,所述DM-RS的一个符号与所述数据信号的一个符号对应相同的所述频域部分,所述数据信号的所述一个符号在一个天线端口上所经历(is conveyed)的信道能够根据所述DM-RS的所述一个符号在相同的天线端口上所经历的信道得出(is inferred)。
本申请实施例提供了一种在所述数据信号的预编码颗粒度为宽带预编码颗粒度的情况下PRB bundling的方法。根据本申请实施例的方法,对频域资源进行了划分,终端设备能够使用对应相同的频域部分的DM-RS用于PDSCH解调,从而保证PDSCH解调的正确性,提升***性能。
在本申请实施例中,数据信号被分配的频域资源根据第一指示信息指示的TCI状态的个数分为相应个数的频域部分,例如,第一指示信息指示了两个TCI状态,则数据信号被分配的频域资源分为两个频域部分,每个频域部分对应一种TCI状态;再例如,第一指示信息指示了三个TCI状态,则数据信号被分配的频域资源分为三个频域部分,每个频域部分对应一种TCI状态。在一些实施例中,上述TCI状态与上述频域部分一一对应,也即每个TCI状态对应一个频域部分,但本申请不限于此。
在本申请实施例中,DM-RS的一个符号与数据信号的一个符号对应相同的频域 部分,例如,以图2为例,PDSCH part#1与DM-RS#1和DM-RS#2对应相同的频域部分,而PDSCH part#2与DM-RS#3和DM-RS#4对应相同的频域部分;以图3为例,PDSCH Rep#1与DM-RS#1和DM-RS#2对应相同的频域部分,而PDSCH Rep#2与DM-RS#3和DM-RS#4对应相同的频域部分。
在本申请实施例中,所述数据信号的所述一个符号在一个天线端口上所经历(is conveyed)的信道能够根据所述DM-RS的所述一个符号在相同天线端口上所经历的信道得出(is inferred),也即,在一个天线端口上的接收的数据信号,使用与该数据信号相同频域部分的相同天线端口上的DM-RS进行解调。
以图1为例,DM-RS#1和DM-RS#2以及PDSCH Rep#1的天线端口号都为1000,DM-RS#1和DM-RS#2用于解调PDSCH Rep#1。换句话说,由于对应的频域部分相同,一个符号(例如时隙n中第3个符号)上的PDSCH Rep#1与一个符号(例如时隙n中第3个符号)上的DM-RS#1以及一个符号(例如时隙n中第7个符号)上的DM-RS#2经历了相同的信道。又或者说,由于对应的频域部分相同,一个符号(例如时隙n中第3个符号)上的PDSCH Rep#1可以根据一个符号(例如时隙n中第3个符号)上的DM-RS#1以及一个符号(例如时隙n中第7个符号)上的DM-RS#2解调。
仍以图1为例,DM-RS#3和DM-RS#4以及PDSCH Rep#2的天线端口号都为1000,DM-RS#3和DM-RS#4可以用于解调PDSCH Rep#2。换句话说,由于对应的频域部分相同,一个符号(例如时隙n中第10个符号)上的PDSCH Rep#2与一个符号(例如时隙n中第10个符号)上的DM-RS#3以及一个符号(例如时隙n中第14个符号)上的DM-RS#4经历了相同的信道。又或者说,由于对应的频域部分相同,一个符号(例如时隙n中第10个符号)上的PDSCH Rep#2可以根据一个符号(例如时隙n中第10个符号)上的DM-RS#3以及一个符号(例如时隙n中第14个符号)上的DM-RS#4解调。
以图2为例,DM-RS#1和DM-RS#2以及PDSCH part#1的天线端口号都为1000,DM-RS#1和DM-RS#2可以用于解调PDSCH part#1。换句话说,由于对应的频域部分相同,一个符号(例如时隙n中第6个符号)上的PDSCH part#1与一个符号(例如时隙n中第6个符号)上的DM-RS#1以及一个符号(例如时隙n中第10个符号)上的DM-RS#2经历了相同的信道。又或者说,由于对应的频域部分相同,一个符号 (例如时隙n中第6个符号)上的PDSCH part#1可以根据一个符号(例如时隙n中第6个符号)上的DM-RS#1以及一个符号(例如时隙n中第10个符号)上的DM-RS#2解调。
仍以图2为例,DM-RS#3和DM-RS#4以及PDSCH part#2的天线端口号都为1000,DM-RS#3和DM-RS#4可以用于解调PDSCH part#2。换句话说,由于对应的频域部分相同,一个符号(例如时隙n中第6个符号)上的PDSCH part#2与一个符号(例如时隙n中第6个符号)上的DM-RS#3以及一个符号(例如时隙n中第10个符号)上的DM-RS#4经历了相同的信道。又或者说,由于对应的频域部分相同,一个符号(例如时隙n中第6个符号)上的PDSCH part#2可以根据一个符号(例如时隙n中第6个符号)上的DM-RS#3以及一个符号(例如时隙n中第10个符号)上的DM-RS#4解调。
以图3为例,DM-RS#1和DM-RS#2以及PDSCH Rep#1的天线端口号都为1000,DM-RS#1和DM-RS#2可以用于解调PDSCH Rep#1。换句话说,由于对应的频域部分相同,一个符号(例如时隙n中第6个符号)上的PDSCH Rep#1与一个符号(例如时隙n中第6个符号)上的DM-RS#1以及一个符号(例如时隙n中第10个符号)上的DM-RS#2经历了相同的信道。又或者说,由于对应的频域部分相同,一个符号(例如时隙n中第6个符号)上的PDSCH Rep#1可以根据一个符号(例如时隙n中第6个符号)上的DM-RS#1以及一个符号(例如时隙n中第10个符号)上的DM-RS#2解调。
仍以图3为例,DM-RS#3和DM-RS#4以及PDSCH Rep#2的天线端口号都为1000,DM-RS#3和DM-RS#4可以用于解调PDSCH Rep#2。换句话说,由于对应的频域部分相同,一个符号(例如时隙n中第6个符号)上的PDSCH Rep#2与一个符号(例如时隙n中第6个符号)上的DM-RS#3以及一个符号(例如时隙n中第10个符号)上的DM-RS#4经历了相同的信道。又或者说,由于对应的频域部分相同,一个符号(例如时隙n中第6个符号)上的PDSCH Rep#2可以根据一个符号(例如时隙n中第6个符号)上的DM-RS#3以及一个符号(例如时隙n中第10个符号)上的DM-RS#4解调。
在一些实施例中,为数据信号所分配的频域资源中相同的上述频域部分对应相同的预编码(precoding)。以图2为例,PDSCH part#1的频域资源对应相同的precoding, PDSCH part#2的频域资源对应相同的precoding;以图3为例,PDSCH Rep#1的频域资源对应相同的precoding,PDSCH Rep#2的频域资源对应相同的precoding。
在一些实施例中,不同的上述频域部分之间没有重复的频域资源。以图2为例,PDSCH part#1和PDSCH part#2之间没有重复的频域资源,即PDSCH part#1的频域资源与PDSCH part#2的频域资源不重叠,或者说它们之间没有重叠的PRB;以图3为例,PDSCH Rep#1和PDSCH Rep#2之间没有重复的频域资源,即PDSCH Rep#1的频域资源与PDSCH Rep#2的频域资源不重叠,或者说它们之间没有重叠的PRB。
在一些实施例中,上述频域部分为预编码资源块组(PRG),但本申请不限于此。
在一些实施例中,第一指示信息指示了两个TCI状态。以图2为例,第一指示信息指示了两个TCI状态,则数据信号对应的频域资源分成两个频域部分,一个频域部分(如PDSCH part#1的频域资源)关联一种TCI状态(TCI#1),另一个频域部分(如PDSCH part#2的频域资源)关联一种TCI状态(TCI#2);以图3为例,第一指示信息指示了两个TCI状态,则数据信号对应的频域资源分成两个频域部分,一个频域部分(如PDSCH Rep#1的频域资源)关联一种TCI状态(TCI#1),另一个频域部分(如PDSCH Rep#2的频域资源)关联一种TCI状态(TCI#2)。
在一些实施例中,上述第一指示信息由调度上述数据信号的下行控制信息(DCI)来指示,该DCI可以包括TCI域和天线端口域,该TCI域所指示的码点(codepoint)对应至少两个TCI状态,该天线端口域所指示的DM-RS天线端口在一个码分复用(CDM,Code Division Multiplexing)组中。例如,该第一指示信息可以通过图2和图3所示的PDCCH中的DCI来指示,该DCI是用来调度PDSCH的,但本申请不限于此。
在本申请实施例中,如图6所示,在一些实施例中,可选的,该方法还包括:
603:所述终端设备接收第二指示信息,所述第二指示信息指示了上述数据信号的重复机制,所述数据信号的重复机制为以下其中之一:频分复用机制A(如图2所示),以及频分复用机制B(如图3所示)。
在一些实施例中,上述第二指示信息包含于RRC信令,其对应的信息单元(Information Element,IE)名称例如为repetitionscheme,但本申请不限于此。该第二指示信息可以指示数据信号的重复机制为PDSCH频分复用机制A,如图2所示;也可以指示数据信号的重复机制为PDSCH频分复用机制B,如图3所示。也即,本 申请实施例的方法适用于频分复用机制。本申请对该第二指示信息的发送时机和指示方式不以此为限。
由此,在数据信号对应宽带预编码颗粒度的情况下,终端设备能够使用对应相同的频域部分的DM-RS用于PDSCH解调,从而保证PDSCH解调的正确性,提升***性能。
值得注意的是,以上图6仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作,或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图6的记载。
下面结合图2和图3的示例,对本申请实施例的方法进行进一步说明。在以下的例子中,PDSCH(包括PDSCH Rep#1和PDSCH Rep#1,或者包括PDSCH part#1和PDSCH part#1),DM-RS#1、DM-RS#2、DM-RS#3、DM-RS#4的天线端口设为1000。本申请不以此为限,它们的天线端口号也可以是1001、1002或者其他。
在图2的示例中,网络设备与两个TRP相关联,这两个TRP分别对应不同的TCI状态,也可以理解为对应着不同的空间关系。
一方面,终端设备收到了配置信息(第二指示信息),该配置信息对应的IE名称例如为repetitionscheme,并且通过该配置信息,数据信号的重复机制被配置为PDSCH频分复用机制A(fdmSchemeA)。
另一方面,终端设备收到了调度指示(第一指示信息),该调度指示可以在时隙n或时隙n之前。另外,该调度指示与两个或以上的TCI状态相关,也即,该调度指示指示了两个或以上的TCI状态。例如,该调度指示的指示信息中的TCI域对应的指示的codepoint关联了两个或以上的TCI状态。
由此,终端设备根据该调度指示的指示信息中的资源分配指示,在时隙n中,在一个PDSCH的传输机会,接收数据信号(PDSCH)。其中,该传输机会对应的PDSCH的第一部分为PDSCH part#1,其对应着TRP#1,也就是第一TCI状态,TCI#1;该传输机会对应的PDSCH的第二部分为PDSCH part#2,其对应着TRP#2,也就是第二TCI状态,TCI#2。该PDSCH所对应的PRB bundling指示为“wideband”。这时,终端设备认为PDSCH part#1与PDSCH part#2属于不同的PRG。其中,PDSCH part#1所占用的频域部分属于第一个PRG;PDSCH part#2所占用的频域部分属于第二个 PRG。
例如,如果上述PDSCH(PDSCH part#1和PDSCH part#2)所占用的频域资源为N PRB(physical resource block),则,如果第一指示信息指示了两个TCI状态,则该PDSCH所占用的频域资源被分为两个部分,即两个PRG,根据PRB索引(index)的升序,第一个PRG占用上述N个PRB中的前
Figure PCTCN2020090375-appb-000001
个PRB;第二个PRG占用剩余的
Figure PCTCN2020090375-appb-000002
个PRB;类似地,如果第一指示信息指示了三个TCI状态,则PDSCH所占用的频域资源被分为三个部分,即三个PRG,每个PRG对应不同的TCI状态,根据PRB索引的升序,第一个PRG占用上述N个PRB中的前
Figure PCTCN2020090375-appb-000003
个PRB,第二个PRG占用接下来的
Figure PCTCN2020090375-appb-000004
个PRB,第三个PRG占用剩余的
Figure PCTCN2020090375-appb-000005
个PRB。如果第一指示信息指示了更多个TCI状态,则PDSCH所占用的频域资源可以被分为更多的部分,每个部分对应的TCI状态不同,方法类似。以上对PDSCH所占用的频域资源的划分方式和位置只是举例说明,本申请不限于此,可以结合其他策略对PDSCH所占用的频域资源进行划分。
在图2的示例中,被调度的PDSCH(PDSCH part#1和PDSCH part#2)与多个DM-RS关联,包括DM-RS#1,DM-RS#2,DM-RS#3,DM-RS#4。PDSCH part#1在两个符号上包括两个DM-RS,分别为DM-RS#1与DM-RS#2;PDSCH part#2在两个符号上包括两个DM-RS,分别为DM-RS#3与DM-RS#4。
在图2的示例中,由于PDSCH part#1与DM-RS#1,DM-RS#2关联或者分配了相同的PRG。因此,一个PDSCH part#1所经历的信道可以根据DM-RS#1和DM-RS#2的符号所经历的信道得出。同理,一个PDSCH part#2所经历的信道可以根据DM-RS#3和DM-RS#4所经历的信道得出。
例如,由于在时隙n的第6个符号上接收的PDSCH与在时隙n的第6个符号上接收的DM-RS#1以及在时隙n的第10个符号上接收的DM-RS#2都属于相同的PRG,则时隙n的第6个符号上的PDSCH所经历的物理信道可以根据在时隙n的第6个符号上发送的DM-RS#1以及在时隙n的第10个符号上发送的DM-RS#2所经历的物理信道得出,也就是说,时隙n的第6个符号上发送的PDSCH可以根据在时隙n的第6个符号上发送的DM-RS#1以及在时隙n的第10个符号上发送的DM-RS#2解调。
再例如,由于在时隙n的第6个符号上接收的PDSCH与在时隙n的第6个符号上接收的DM-RS#3以及在时隙n的第10个符号上接收的DM-RS#4都属于相同的 PRG,则时隙n的第6个符号上的PDSCH所经历的物理信道可以根据时隙n的第6个符号上发送的DM-RS#3以及时隙n的第10个符号上发送的DM-RS#4所经历的物理信道得出,也就是说,时隙n的第6个符号上发送的PDSCH可以根据在时隙n的第6个符号上发送的DM-RS#3以及在时隙n的第10个符号上发送的DM-RS#4解调。
根据上述方法,可以避免数据信号(例如PDSCH part#1)使用对应不同PRG的DM-RS(例如DM-RS#3,DM-RS#4)进行解调,提升***的可靠性。
在图3的示例中,网络设备与两个TRP相关联,这两个TRP分别对应不同的TCI状态,也可以理解为对应着不同的空间关系。
一方面,终端设备收到了配置信息(第二指示信息),该配置信息对应的IE名称例如为repetitionscheme,通过该配置信息,数据信号的重复机制被指示为PDSCH频分复用机制B(fdmSchemeB)。
另一方面,终端设备收到了调度指示(第一指示信息),该调度指示可以在时隙n或时隙n之前。另外,该调度指示与两个或以上的TCI状态相关,也即,该调度指示指示了两个或以上的TCI状态。例如,该调度指示的指示信息中的TCI域对应的指示的codepoint关联了两个或以上的TCI状态。
由此,终端设备根据该调度指示的指示信息中的资源分配指示,在时隙n中,在指示的两个PDSCH的传输机会,接收数据信号(PDSCH)。其中,第一传输机会对应的PDSCH为PDSCH Rep#1,其对应着TRP#1,也就是第一TCI状态,TCI#1;第二传输机会对应的PDSCH为PDSCH Rep#2,其对应着TRP#2,也就是第二TCI状态,TCI#2。该PDSCH所对应的PRB bundling指示为“wideband”。这时,终端设备认为PDSCH Rep#1与PDSCH Rep#2属于不同的PRG。其中,PDSCH Rep#1所占用的频域部分属于第一个PRG;PDSCH Rep#2所占用的频域部分属于第二个PRG。
例如,如果上述PDSCH(PDSCH Rep#1和PDSCH Rep#2)所占用的频域资源为N PRB(physical resource block),则,如果第一指示信息指示了两个TCI状态,则PDSCH所占用的频域资源被分为两个部分,例如两个PRG,根据PRB索引的升序,第一个PRG占用前
Figure PCTCN2020090375-appb-000006
个PRB,第二个PRG占用剩余的
Figure PCTCN2020090375-appb-000007
个PRB;类似地,如果第一指示信息指示了三个TCI状态,则PDSCH所占用的频域资源被分为三个部分,例如三个PRG,每个PRG对应不同的TCI状态,根据PRB索引的升序,第一个PRG占用前
Figure PCTCN2020090375-appb-000008
个PRB,第二个PRG占用接下来的
Figure PCTCN2020090375-appb-000009
个PRB,第三个PRG占用剩余的
Figure PCTCN2020090375-appb-000010
个PRB。如果PDSCH所占用的频域资源被分为更多的部分,每个部分对应的TCI状态不同,方法类似。以上对PDSCH所占用的频域资源的划分方式和位置只是举例说明,本申请不限于此,可以结合其他策略对PDSCH所占用的频域资源进行划分。
在图3的示例中,被调度的PDSCH(PDSCH Rep#1和PDSCH Rep#2)与多个DM-RS关联,包括DM-RS#1,DM-RS#2,DM-RS#3,DM-RS#4。另外,PDSCH Rep#1在两个符号上包括两个DM-RS,分别为DM-RS#1与DM-RS#2;PDSCH Rep#2在两个符号上包括两个DM-RS,分别为DM-RS#3与DM-RS#4。
在图3的示例中,由于PDSCH Rep#1与DM-RS#1,DM-RS#2关联或者分配了相同的PRG。因此,PDSCH Rep#1所经历的信道可以根据DM-RS#1和DM-RS#2所经历的信道得出。同理,PDSCH Rep#2所经历的信道可以根据DM-RS#3和DM-RS#4所经历的信道得出。
例如,由于在时隙n的第6个符号上接收的PDSCH与在时隙n的第6个符号上接收的DM-RS#1以及在时隙n的第10个符号上接收的DM-RS#2都属于相同的PRG,则时隙n的第6个符号上的PDSCH所经历的物理信道可以根据在时隙n的第6个符号上发送的DM-RS#1以及在时隙n的第10个符号上发送的DM-RS#2所经历的物理信道得出,也就是说,时隙n的第6个符号上发送的PDSCH可以根据在时隙n的第6个符号上发送的DM-RS#1以及在时隙n的第10个符号上发送的DM-RS#2解调。
再例如,由于在时隙n的第6个符号上接收的PDSCH与在时隙n的第6个符号上接收的DM-RS#3以及在时隙n的第10个符号上接收的DM-RS#4都属于相同的PRG,则时隙n的第6个符号上的PDSCH所经历的物理信道可以根据在时隙n的第6个符号上发送的DM-RS#3以及在时隙n的第10个符号上发送的DM-RS#4所经历的物理信道得出,也就是说,时隙n的第6个符号上发送的PDSCH可以根据在时隙n的第6个符号上发送的DM-RS#3以及在时隙n的第10个符号上发送的DM-RS#4解调。
根据上述方法,可以避免数据信号(例如PDSCH Rep#1)使用对应不同PRG的DM-RS(例如DM-RS#3,DM-RS#4)进行解调,提升***的可靠性。
根据本申请实施例的方法,在所述数据信号对应宽带预编码颗粒度的情况下,终端设备能够使用对应相同的频域部分的DM-RS用于PDSCH解调,从而保证PDSCH 解调的正确性,提升***性能。
第四方面的实施例
本申请实施例提供一种信号发送方法,从网络侧进行说明。该方法是与第三方面的实施例的方法对应的网络侧的处理,其中与第三方面的实施例相同的内容不再重复说明。
图7是本申请实施例的信号发送方法的示意图,如图7所示,该方法包括:
701:网络设备生成第一指示信息、数据信号、以及与所述数据信号关联的DM-RS,其中,所述第一指示信息指示至少两个传输配置指示(TCI)状态;
702:所述网络设备向终端设备发送所述第一指示信息、所述数据信号、以及与所述数据信号关联的DM-RS;其中,所述数据信号的预编码颗粒度为宽带预编码颗粒度(wideband precoding granularity),所述数据信号被分配的频域资源根据所述第一指示信息指示的TCI状态的个数分为相应个数的频域部分,所述DM-RS的一个符号与所述数据信号的一个符号对应相同的所述频域部分,所述数据信号的所述一个符号在一个天线端口上所经历(is conveyed)的信道能够根据所述DM-RS的所述一个符号在相同的天线端口上所经历的信道得出(is inferred)。
在本申请实施例中,如图7所示,在一些实施例中,可选的,该方法还包括:
703:所述网络设备生成第二指示信息;
704:所述网络设备向所述终端设备发送所述第二指示信息,所述第二指示信息指示了数据信号的重复机制,所述数据信号的重复机制为以下其中之一:频分复用机制A,以及频分复用机制B。
值得注意的是,以上图7仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作,或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图7的记载。
在一些实施例中,如第三方面的实施例所述的,为所述数据信号分配的频域资源中相同所述频域部分对应相同的预编码(precoding)。
在一些实施例中,如第三方面的实施例所述的,不同的所述频域部分之间没有重复的频域资源。
在一些实施例中,如第三方面的实施例所述的,所述频域部分为预编码资源块组(PRG)。
在一些实施例中,如第三方面的实施例所述的,所述第一指示信息指示两个TCI状态。
在一些实施例中,如第三方面的实施例所述的,所述第一指示信息由调度所述数据信号的DCI指示,所述DCI包括TCI域和天线端口域,所述TCI域所指示的码点(codepoint)对应至少两个TCI状态,所述天线端口域所指示的DM-RS天线端口在一个码分复用组中。
在本申请实施例中,在701中,网络设备使用相同的信道发送所述数据信号以及与所述数据信号关联的DM-RS,以便终端设备根据接收到的该DM-RS解调上述数据信号。关于终端设备侧的处理已经在第三方面的实施例中做了说明,此处不在赘述。此外,关于网络设备发送上述数据信号以及与所述数据信号关联的DM-RS的方式,可以参考相关技术,此处省略说明。
根据本申请实施例的方法,在所述数据信号对应宽带预编码颗粒度的情况下,终端设备能够使用对应相同的频域部分的DM-RS用于PDSCH解调,从而保证PDSCH解调的正确性,提升***性能。
第五方面的实施例
本申请第五方面的实施例提供了一种信号接收装置,该装置例如可以是终端设备,也可以是配置于终端设备的某个或某些部件或者组件。
图8是本申请实施例的信号接收装置的一个示意图,由于该装置解决问题的原理与第一方面的实施例的方法类似,因此其具体的实施可以参照第一方面的实施例的方法的实施,内容相同之处不再重复说明。如图8所示,本申请实施例的信号接收装置800包括:第一接收单元801和第二接收单元802。
在本申请实施例中,第一接收单元801接收第一指示信息;其中,所述第一指示信息指示至少两个传输配置指示(TCI)状态;第二接收单元802接收数据信号以及与所述数据信号关联的解调参考信号(DM-RS);其中,所述数据信号与所述至少两个传输配置指示(TCI)状态相关,所述DM-RS的一个符号与所述数据信号的一个符号所关联或分配的TCI状态相同,所述数据信号的所述一个符号在一个天线端口上 所经历(is conveyed)的信道能够根据所述DM-RS的所述一个符号在相同的天线端口上所经历的信道得出(is inferred)。
在一些实施例中,所述DM-RS的所述一个符号与所述数据信号的所述一个符号在相同的、所述数据信号所对应的调度资源中。
在一些实施例中,所述调度资源对应相同的TCI状态。
在一些实施例中,所述DM-RS的所述一个符号与所述数据信号的所述一个符号在相同的频域资源内。
在一些实施例中,所述频域资源为预编码资源块组(PRG)。
在一些实施例中,所述DM-RS的所述一个符号与所述数据信号的所述一个符号在相同的时隙内。
在一些实施例中,所述DM-RS的所述一个符号与所述数据信号的所述一个符号在相同的传输机会(transmission/reception occasion)内,所述传输机会是指所述数据信号所对应的传输机会。
在一些实施例中,所述第一指示信息由调度所述数据信号的下行控制信息(DCI)指示。
在一些实施例中,如图8所示,本申请实施例的信号接收装置800还包括:
第三接收单元803,其接收第二指示信息,所述第二指示信息指示了数据信号的重复机制,所述数据信号的重复机制为以下其中之一:时分复用机制,频分复用机制A,以及频分复用机制B。
图9是本申请实施例的信号接收装置的另一个示意图,由于该装置解决问题的原理与第三方面的实施例的方法类似,因此其具体的实施可以参照第三方面的实施例的方法的实施,内容相同之处不再重复说明。如图9所示,本申请实施例的信号接收装置900包括:第一接收单元901和第二接收单元902。
在本申请实施例中,第一接收单元901接收第一指示信息;其中,所述第一指示信息指示至少两个传输配置指示(TCI)状态;第二接收单元902接收数据信号以及与所述数据信号关联的解调参考信号(DM-RS);其中,所述数据信号的预编码颗粒度为宽带预编码颗粒度(wideband precoding granularity),所述数据信号被分配(allocated)的频域资源根据所述第一指示信息指示的TCI状态的个数分为相应个数的频域部分,所述DM-RS的一个符号与所述数据信号的一个符号对应相同的所述频 域部分,所述数据信号的所述一个符号在一个天线端口上所经历(is conveyed)的信道能够根据所述DM-RS的所述一个符号在相同的天线端口上所经历的信道得出(is inferred)。
在一些实施例中,为所述数据信号分配的频域资源中相同的所述频域部分对应相同的预编码(precoding)。
在一些实施例中,不同的所述频域部分之间没有重复的频域资源。
在一些实施例中,所述频域部分为预编码资源块组(PRG)。
在一些实施例中,所述第一指示信息指示两个TCI状态。
在一些实施例中,所述第一指示信息由调度所述数据信号的DCI指示,所述DCI包括TCI域和天线端口域,所述TCI域所指示的码点(codepoint)对应至少两个TCI状态,所述天线端口域所指示的DM-RS天线端口在一个码分复用(CDM,Code Division Multiplexing)组中。
在一些实施例中,如图9所示,本申请实施例的信号接收装置900还包括:
第三接收单元903,其接收第二指示信息,所述第二指示信息指示了数据信号的重复机制,所述数据信号的重复机制为以下其中之一:频分复用机制A,以及频分复用机制B。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。本申请实施例的信号接收装置800/900还可以包括其它部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图8和图9中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
根据本申请实施例,保证了数据传输的可靠性,提升了***性能。
第六方面的实施例
本申请实施例提供了一种信号发送装置,该装置例如可以是网络设备,也可以是配置于网络设备的某个或某些部件或者组件。
图10是本实施例的信号发送装置的一个示意图,由于该装置解决问题的原理与 第二方面的实施例的方法类似,因此其具体的实施可以参照第二方面的实施例的方法的实施,内容相同之处不再重复说明。如图10所示,本申请实施例的信号发送装置1000包括:生成单元1001和发送单元1002。
在本申请实施例中,生成单元1001生成第一指示信息、数据信号、以及与所述数据信号关联的DM-RS;其中,所述第一指示信息指示至少两个传输配置指示(TCI)状态;发送单元1002向终端设备发送所述第一指示信息、所述数据信号、以及与所述数据信号关联的DM-RS;其中,所述数据信号与所述至少两个TCI状态相关,所述DM-RS的一个符号与所述数据信号的一个符号所关联或分配的TCI状态相同,所述数据信号的所述一个符号在一个天线端口上所经历(is conveyed)的信道能够根据所述DM-RS的所述一个符号在相同的天线端口上所经历的信道得出(is inferred)。
在一些实施例中,所述DM-RS的所述一个符号与所述数据信号的所述一个符号在相同的、所述数据信号所对应的调度资源中。
在一些实施例中,所述调度资源对应相同的TCI状态。
在一些实施例中,所述DM-RS的所述一个符号与所述数据信号的所述一个符号在相同的频域资源内。
在一些实施例中,所述频域资源为预编码资源块组(PRG)。
在一些实施例中,所述DM-RS的所述一个符号与所述数据信号的所述一个符号在相同的时隙内。
在一些实施例中,所述DM-RS的所述一个符号与所述数据信号的所述一个符号在相同的传输机会(transmission/reception occasion)内,所述传输机会是指所述数据信号所对应的传输机会。
在一些实施例中,所述第一指示信息由调度所述数据信号的DCI指示。
在一些实施例中,如图10所示,生成单元1001还生成第二指示信息;发送单元1002还向所述终端设备发送所述第二指示信息,所述第二指示信息包含配置信息,所述配置信息指示了数据信号的重复机制,所述数据信号的重复机制为以下其中之一:时分复用机制,频分复用机制A,以及频分复用机制B。
图11是本实施例的信号发送装置的另一个示意图,由于该装置解决问题的原理与第四方面的实施例的方法类似,因此其具体的实施可以参照第四方面的实施例的方法的实施,内容相同之处不再重复说明。如图11所示,本申请实施例的信号发送装 置1100包括:生成单元1101和发送单元1102。
在本申请实施例中,生成单元1101生成第一指示信息、数据信号、以及与所述数据信号关联的DM-RS,其中,所述第一指示信息指示至少两个传输配置指示(TCI)状态;发送单元1102向终端设备发送所述第一指示信息、所述数据信号、以及与所述数据信号关联的DM-RS;其中,所述数据信号的预编码颗粒度为宽带预编码颗粒度(wideband precoding granularity),所述数据信号被分配的频域资源根据所述第一指示信息指示的TCI状态的个数分为相应个数的频域部分,所述DM-RS的一个符号与所述数据信号的一个符号对应相同的所述频域部分,所述数据信号的所述一个符号在一个天线端口上所经历(is conveyed)的信道能够根据所述DM-RS的所述一个符号在相同的天线端口上所经历的信道得出(is inferred)。
在一些实施例中,为所述数据信号分配的频域资源中相同的所述频域部分对应相同的预编码(precoding)。
在一些实施例中,不同的所述频域部分之间没有重复的频域资源。
在一些实施例中,所述频域部分为预编码资源块组(PRG)。
在一些实施例中,所述第一指示信息指示两个TCI状态。
在一些实施例中,所述第一指示信息由调度所述数据信号的DCI指示,所述DCI包括TCI域和天线端口域,所述TCI域所指示的码点(codepoint)对应至少两个TCI状态,所述天线端口域所指示的DM-RS天线端口在一个码分复用组中。
在一些实施例中,生成单元1101还生成第二指示信息;发送单元1102还向所述终端设备发送所述第二指示信息,所述第二指示信息包含配置信息,所述配置信息指示了数据信号的重复机制,所述数据信号的重复机制为以下其中之一:频分复用机制A,以及频分复用机制B。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。本申请实施例的信号发送装置1000/1100还可以包括其它部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图10和图11中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
根据本申请实施例,保证了数据传输的可靠性,提升了***性能。
第七方面的实施例
本申请实施例提供了一种通信***,图12是该通信***1200的示意图,如图12所示,该通信***1200包括网络设备1201和终端设备1202,为简单起见,图12仅以一个终端设备和一个网络设备为例进行说明,但本申请实施例不限于此。
在本申请实施例中,网络设备1201和终端设备1202之间可以进行现有的业务或者未来可实施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB)、大规模机器类型通信(mMTC)、高可靠低时延通信(URLLC)和车联网(V2X)通信,等等。
在一些实施例中,网络设备1201生成第一指示信息、数据信号、以及与所述数据信号关联的DM-RS,并向终端设备1202发送所述第一指示信息、所述数据信号、以及与所述数据信号关联的DM-RS;终端设备1202接收上述第一指示信息、数据信号以及与该数据信号关联的DM-RS。在该实施例中,所述第一指示信息指示至少两个传输配置指示(TCI)状态。在该实施例中,所述数据信号与所述至少两个TCI状态相关,所述DM-RS的一个符号与所述数据信号的一个符号所关联或分配的TCI状态相同,所述数据信号的所述一个符号在一个天线端口上所经历(is conveyed)的信道能够根据所述DM-RS的所述一个符号在相同的天线端口上所经历的信道得出(is inferred)。
在一些实施例中,网络设备1201生成第一指示信息、数据信号、以及与所述数据信号关联的DM-RS,并向终端设备1202发送所述第一指示信息、所述数据信号、以及与所述数据信号关联的DM-RS;终端设备1202接收上述第一指示信息、所述数据信号、以及与所述数据信号关联的DM-RS。在该实施例中,所述第一指示信息指示至少两个传输配置指示(TCI)状态;网络设备1201。在该实施例中,所述数据信号的预编码颗粒度为宽带预编码颗粒度(wideband precoding granularity),所述数据信号被分配的频域资源根据所述第一指示信息指示的TCI状态的个数分为相应个数的频域部分,所述DM-RS的一个符号与所述数据信号的一个符号对应相同的所述频域部分,所述数据信号的所述一个符号在一个天线端口上所经历(is conveyed)的信道能够根据所述DM-RS的所述一个符号在相同的天线端口上所经历的信道得出(is  inferred)。
本申请实施例还提供一种终端设备,该终端设备例如可以是UE,但本申请不限于此,还可以是其它的设备。
图13是本申请实施例的终端设备的示意图。如图13所示,该终端设备1300可以包括处理器1301和存储器1302;存储器1302存储有数据和程序,并耦合到处理器1301。值得注意的是,该图是示例性的;还可以使用其它类型的结构,来补充或代替该结构,以实现电信功能或其它功能。
例如,处理器1301可以被配置为执行程序而实现如第一方面或第三方面的实施例所述的信号接收方法。
如图13所示,该终端设备1300还可以包括:通信模块1303、输入单元1304、显示器1305、电源1306。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备1300也并不是必须要包括图13中所示的所有部件,上述部件并不是必需的;此外,终端设备1300还可以包括图13中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种网络设备,该网络设备例如可以是基站(gNB),但本申请不限于此,还可以是其它的网络设备。
图14是本申请实施例的网络设备的一个构成示意图。如图14所示,网络设备1400可以包括:处理器(例如中央处理器CPU)1401和存储器1402;存储器1402耦合到处理器1401。其中该存储器1402可存储各种数据;此外还存储信息处理的程序,并且在中央处理器1401的控制下执行该程序。
例如,处理器1401可以被配置为执行程序而实现如第二方面或第四方面的实施例所述的信号发送方法。
此外,如图14所示,网络设备1400还可以包括:收发机1403和天线1404等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1400也并不是必须要包括图14中所示的所有部件;此外,网络设备1400还可以包括图14中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机可读程序,其中当在终端设备中执行所述程序时,所述程序使得计算机在所述终端设备中执行第一方面或第三方面的实施例所述的信号接收方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在终端设备中执行第一方面或第三方面的实施例所述的信号接收方法。
本申请实施例还提供一种计算机可读程序,其中当在网络设备中执行所述程序时,所述程序使得计算机在所述网络设备中执行第二方面或第四方面的实施例所述的信号发送方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在网络设备中执行第二发明或第四方面的实施例所述的信号发送方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。逻辑部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可***移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专 用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于本实施例公开的上述实施方式,还公开了如下的附记:
1、一种信号接收方法,其中,所述方法包括:
终端设备接收第一指示信息;其中,所述第一指示信息指示至少两个传输配置指示(TCI)状态;以及
所述终端设备接收数据信号以及与所述数据信号关联的解调参考信号(DM-RS);
其中,所述数据信号与所述至少两个传输配置指示(TCI)状态相关,所述DM-RS的一个符号与所述数据信号的一个符号所关联或分配的TCI状态相同,所述数据信号的所述一个符号在一个天线端口上所经历(is conveyed)的信道能够根据所述DM-RS的所述一个符号在相同的天线端口上所经历的信道得出(is inferred)。
2、根据附记1所述的方法,其中,所述DM-RS的所述一个符号与所述数据信号的所述一个符号在相同的、所述数据信号的调度资源中。
3、根据附记2所述的方法,其中,所述调度资源对应相同的TCI状态。
4、根据附记1所述的方法,其中,所述DM-RS的所述一个符号与所述数据信号的所述一个符号在相同的频域资源内。
5、根据附记4所述的方法,其中,所述频域资源为预编码资源块组(PRG)。
6、根据附记1所述的方法,其中,所述DM-RS的所述一个符号与所述数据信号的所述一个符号在相同的时隙内。
7、根据附记1所述的方法,其中,所述DM-RS的所述一个符号与所述数据信号的所述一个符号在相同的传输机会(transmission/reception occasion)内,所述传输机会是指所述数据信号所对应的传输机会。
8、根据附记1所述的方法,其中,所述第一指示信息由调度所述数据信号的下行控制信息(DCI)指示。
9、根据附记1所述的方法,其中,所述方法还包括:
所述终端设备接收第二指示信息,所述第二指示信息指示了数据信号的重复机制,所述数据信号的重复机制为以下其中之一:时分复用机制,频分复用机制A,以及频分复用机制B。
10、一种信号发送方法,其中,所述方法包括:
网络设备生成第一指示信息、数据信号、以及与所述数据信号关联的DM-RS;其中,所述第一指示信息指示至少两个传输配置指示(TCI)状态;
所述网络设备向终端设备发送所述第一指示信息、所述数据信号、以及与所述数据信号关联的DM-RS;
其中,所述数据信号与所述至少两个TCI状态相关,所述DM-RS的一个符号与所述数据信号的一个符号所关联或分配的TCI状态相同,所述数据信号的所述一个符号在一个天线端口上所经历(is conveyed)的信道能够根据所述DM-RS的所述一个符号在相同的天线端口上所经历的信道得出(is inferred)。
11、根据附记10所述的方法,其中,所述DM-RS的所述一个符号与所述数据信号的所述一个符号在相同的、所述数据信号的调度资源中。
12、根据附记11所述的方法,其中,所述调度资源对应相同的TCI状态。
13、根据附记10所述的方法,其中,所述DM-RS的所述一个符号与所述数据信号的所述一个符号在相同的频域资源内。
14、根据附记13所述的方法,其中,所述频域资源为预编码资源块组(PRG)。
15、根据附记10所述的方法,其中,所述DM-RS的所述一个符号与所述数据信号的所述一个符号在相同的时隙内。
16、根据附记10所述的方法,其中,所述DM-RS的所述一个符号与所述数据信号的所述一个符号在相同的传输机会(transmission/reception occasion)内,所述传输机会是指所述数据信号所对应的传输机会。
17、根据附记10所述的方法,其中,所述第一指示信息由调度所述数据信号的DCI指示。
18、根据附记10所述的方法,其中,所述方法还包括:
所述网络设备生成第二指示信息;
所述网络设备向所述终端设备发送所述第二指示信息,所述第二指示信息指示了数据信号的重复机制,所述数据信号的重复机制为以下其中之一:时分复用机制,频分复用机制A,以及频分复用机制B。
19、一种信号接收方法,其中,所述方法包括:
终端设备接收第一指示信息;其中,所述第一指示信息指示至少两个传输配置指示(TCI)状态;以及
所述终端设备接收数据信号以及与所述数据信号关联的解调参考信号(DM-RS);
其中,所述数据信号的预编码颗粒度为宽带预编码颗粒度(wideband precoding granularity),所述数据信号被分配(allocated)的频域资源根据所述第一指示信息指示的TCI状态的个数分为相应个数的频域部分,所述DM-RS的一个符号与所述数据信号的一个符号对应相同的所述频域部分,所述数据信号的所述一个符号在一个天线端口上所经历(is conveyed)的信道能够根据所述DM-RS的所述一个符号在相同的天线端口上所经历的信道得出(is inferred)。
20、根据附记19所述的方法,其中,为所述数据信号分配的频域资源中相同的所述频域部分对应相同的预编码(precoding)。
21、根据附记19所述的方法,其中,不同的所述频域部分之间没有重复的频域资源。
22、根据附记19至21任一项所述的方法,其中,所述频域部分为预编码资源块组(PRG)。
23、根据附记19所述的方法,其中,所述第一指示信息指示两个TCI状态。
24、根据附记19所述的方法,其中,所述第一指示信息由调度所述数据信号的DCI指示,所述DCI包括TCI域和天线端口域,所述TCI域所指示的码点(codepoint)对应至少两个TCI状态,所述天线端口域所指示的DM-RS天线端口在一个码分复用(CDM,Code Division Multiplexing)组中。
25、根据附记19所述的方法,其中,所述方法还包括:
所述终端设备接收第二指示信息,所述第二指示信息指示了数据信号的重复机制,所述数据信号的重复机制为以下其中之一:频分复用机制A,以及频分复用机制B。
26、一种信号发送方法,其中,所述方法包括:
网络设备生成第一指示信息、数据信号、以及与所述数据信号关联的DM-RS,其中,所述第一指示信息指示至少两个传输配置指示(TCI)状态;以及
所述网络设备向终端设备发送所述第一指示信息、所述数据信号、以及与所述数据信号关联的DM-RS;
其中,所述数据信号的预编码颗粒度为宽带预编码颗粒度(wideband precoding granularity),所述数据信号被分配的频域资源根据所述第一指示信息指示的TCI状态的个数分为相应个数的频域部分,所述DM-RS的一个符号与所述数据信号的一个符号对应相同的所述频域部分,所述数据信号的所述一个符号在一个天线端口上所经历(is conveyed)的信道能够根据所述DM-RS的所述一个符号在相同的天线端口上所经历的信道得出(is inferred)。
27、根据附记26所述的方法,其中,为所述数据信号分配的频域资源中相同的所述频域部分对应相同的预编码(precoding)。
28、根据附记26所述的方法,其中,不同的所述频域部分之间没有重复的频域资源。
29、根据附记26至28任一项所述的方法,其中,所述频域部分为预编码资源块组(PRG)。
30、根据附记26所述的方法,其中,所述第一指示信息指示两个TCI状态。
31、根据附记26所述的方法,其中,所述第一指示信息由调度所述数据信号的DCI指示,所述DCI包括TCI域和天线端口域,所述TCI域所指示的码点(codepoint)对应至少两个TCI状态,所述天线端口域所指示的DM-RS天线端口在一个码分复用组中。
32、根据附记26所述的方法,其中,所述方法还包括:
所述网络设备生成第二指示信息;
所述网络设备向所述终端设备发送所述第二指示信息,所述第二指示信息指示了数据信号的重复机制,所述数据信号的重复机制为以下其中之一:频分复用机制A,以及频分复用机制B。
33、一种终端设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至9、19至25任一项所述的方法。
34、一种网络设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记10至18、26至32任一项所述的方法。
35、一种通信***,包括终端设备和网络设备,其中,
所述终端设备被配置为执行附记1至9任一项所述的方法,所述网络设备被配置为执行附记10至19任一项所述的方法;或者
所述终端设备被配置为执行附记19至25任一项所述的方法,所述网络设备被配置为执行附记26至32任一项所述的方法。

Claims (20)

  1. 一种信号接收装置,其中,所述装置包括:
    第一接收单元,其接收第一指示信息;其中,所述第一指示信息指示至少两个传输配置指示状态;以及
    第二接收单元,其接收数据信号以及与所述数据信号关联的解调参考信号;
    其中,所述数据信号与所述至少两个传输配置指示状态相关,所述解调参考信号的一个符号与所述数据信号的一个符号所关联或分配的传输配置指示状态相同,所述数据信号的所述一个符号在一个天线端口上所经历的信道能够根据所述解调参考信号的所述一个符号在相同的天线端口上所经历的信道得出。
  2. 根据权利要求1所述的装置,其中,所述解调参考信号的所述一个符号与所述数据信号的所述一个符号在相同的、所述数据信号的调度资源中。
  3. 根据权利要求2所述的装置,其中,所述调度资源对应相同的传输配置指示状态。
  4. 根据权利要求1所述的装置,其中,所述解调参考信号的所述一个符号与所述数据信号的所述一个符号在相同的频域资源内。
  5. 根据权利要求4所述的装置,其中,所述频域资源为预编码资源块组。
  6. 根据权利要求1所述的装置,其中,所述解调参考信号的所述一个符号与所述数据信号的所述一个符号在相同的时隙内。
  7. 根据权利要求1所述的装置,其中,所述解调参考信号的所述一个符号与所述数据信号的所述一个符号在相同的传输机会内,所述传输机会是指所述数据信号所对应的传输机会。
  8. 一种信号发送装置,其中,所述装置包括:
    生成单元,其生成第一指示信息、数据信号、以及与所述数据信号关联的解调参考信号;其中,所述第一指示信息指示至少两个传输配置指示状态;
    发送单元,其向终端设备发送所述第一指示信息、所述数据信号、以及与所述数据信号关联的解调参考信号;
    其中,所述数据信号与所述至少两个传输配置指示状态相关,所述解调参考信号的一个符号与所述数据信号的一个符号所关联或分配的传输配置指示状态相同,所述 数据信号的所述一个符号在一个天线端口上所经历的信道能够根据所述解调参考信号的所述一个符号在相同的天线端口上所经历的信道得出。
  9. 根据权利要求8所述的装置,其中,所述解调参考信号的所述一个符号与所述数据信号的所述一个符号在相同的、所述数据信号的调度资源中。
  10. 根据权利要求9所述的装置,其中,所述调度资源对应相同的传输配置指示状态。
  11. 根据权利要求8所述的装置,其中,所述解调参考信号的所述一个符号与所述数据信号的所述一个符号在相同的频域资源内。
  12. 根据权利要求11所述的装置,其中,所述频域资源为预编码资源块组。
  13. 根据权利要求8所述的装置,其中,所述解调参考信号的所述一个符号与所述数据信号的所述一个符号在相同的时隙内。
  14. 一种信号接收装置,其中,所述装置包括:
    第一接收单元,其接收第一指示信息;其中,所述第一指示信息指示至少两个传输配置指示状态;以及
    第二接收单元,其接收数据信号以及与所述数据信号关联的解调参考信号;
    其中,所述数据信号的预编码颗粒度为宽带预编码颗粒度,所述数据信号被分配的频域资源根据所述第一指示信息指示的传输配置指示状态的个数分为相应个数的频域部分,所述解调参考信号的一个符号与所述数据信号的一个符号对应相同的所述频域部分,所述数据信号的所述一个符号在一个天线端口上所经历的信道能够根据所述解调参考信号的所述一个符号在相同的天线端口上所经历的信道得出。
  15. 根据权利要求14所述的装置,其中,为所述数据信号分配的频域资源中相同的所述频域部分对应相同的预编码。
  16. 根据权利要求14所述的装置,其中,不同的所述频域部分之间没有重复的频域资源。
  17. 根据权利要求14所述的装置,其中,所述频域部分为预编码资源块组。
  18. 根据权利要求14所述的装置,其中,所述第一指示信息指示两个传输配置指示状态。
  19. 根据权利要求14所述的装置,其中,所述第一指示信息由调度所述数据信号的DCI指示,所述DCI包括传输配置指示域和天线端口域,所述传输配置指示域 所指示的码点对应至少两个传输配置指示状态,所述天线端口域所指示的解调参考信号天线端口在一个码分复用组中。
  20. 根据权利要求14所述的装置,其中,所述装置还包括:
    第三接收单元,其接收第二指示信息,所述第二指示信息指示了数据信号的重复机制,所述数据信号的重复机制为以下其中之一:频分复用机制A,以及频分复用机制B。
PCT/CN2020/090375 2020-05-14 2020-05-14 信号接收方法、装置和*** WO2021226970A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/090375 WO2021226970A1 (zh) 2020-05-14 2020-05-14 信号接收方法、装置和***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/090375 WO2021226970A1 (zh) 2020-05-14 2020-05-14 信号接收方法、装置和***

Publications (1)

Publication Number Publication Date
WO2021226970A1 true WO2021226970A1 (zh) 2021-11-18

Family

ID=78525930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090375 WO2021226970A1 (zh) 2020-05-14 2020-05-14 信号接收方法、装置和***

Country Status (1)

Country Link
WO (1) WO2021226970A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190297603A1 (en) * 2018-03-23 2019-09-26 Samsung Electronics Co., Ltd. Method and apparatus for beam management for multi-stream transmission
US20200112411A1 (en) * 2018-10-03 2020-04-09 Qualcomm Incorporated Multi-transmit receive point demodulation reference signal port identification
US20200145159A1 (en) * 2018-11-02 2020-05-07 FG Innovation Company Limited Method and apparatus for multiple transmit/receive point (trp) operations
WO2020089865A1 (en) * 2018-11-02 2020-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for signaling pdsch diversity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190297603A1 (en) * 2018-03-23 2019-09-26 Samsung Electronics Co., Ltd. Method and apparatus for beam management for multi-stream transmission
US20200112411A1 (en) * 2018-10-03 2020-04-09 Qualcomm Incorporated Multi-transmit receive point demodulation reference signal port identification
US20200145159A1 (en) * 2018-11-02 2020-05-07 FG Innovation Company Limited Method and apparatus for multiple transmit/receive point (trp) operations
WO2020089865A1 (en) * 2018-11-02 2020-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for signaling pdsch diversity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On Multi-TRP and Multi-panel", 3GPP DRAFT; R1-1907697 ON MULTI-TRP AND MULTI-PANEL, vol. RAN WG1, 13 May 2019 (2019-05-13), Reno, US, pages 1 - 24, XP051729002 *

Similar Documents

Publication Publication Date Title
US11122555B2 (en) Data transmission method, terminal device, and base station system
WO2018196550A1 (zh) 传输反馈信息的方法和装置
CN108990103B (zh) 处理调度请求的装置及方法
WO2018171667A1 (zh) 一种信道传输方法及网络设备
EP3863347A1 (en) Resource configuration method and device
WO2018129987A1 (zh) 免授权传输的方法、终端设备和网络设备
US11277223B2 (en) Control channel design for category-A devices
CN112314034B (zh) 信息发送和接收方法以及装置
US20190273600A1 (en) Transmission Apparatus and Method of Suppressing Interference Information and Communication System
WO2018137700A1 (zh) 一种通信方法,装置及***
WO2017113077A1 (zh) 一种上行紧急业务传输方法、基站、用户设备及***
CN111867038A (zh) 一种通信方法及装置
WO2021087922A1 (zh) 无线通信方法、装置和***
WO2020233370A1 (zh) 一种通信方法及设备
US20240015740A1 (en) Method and apparatus for downlink transmission in physical downlink control channel
WO2018141091A1 (zh) 发送信息的方法、接收信息的方法和装置
JP7111171B2 (ja) リソーススケジューリング方法、データ送信方法及びその装置、通信システム
WO2020029299A1 (zh) 数据中断指示方法及其装置、通信***
WO2021226970A1 (zh) 信号接收方法、装置和***
WO2017193395A1 (zh) 传输上行数据的方法、终端设备和网络侧设备
WO2021159381A1 (zh) 上行信号处理方法、装置和***
US20220303073A1 (en) Technologies for Reliable Physical Data Channel Reception in Wireless Communications
US11206652B2 (en) Downlink channel transmitting method, downlink channel receiving method, devices thereof, base station and terminal
US11882429B2 (en) Uplink resource determination apparatus, method and computer program
EP3618340B1 (en) Wireless communication method, apparatus and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935966

Country of ref document: EP

Kind code of ref document: A1