WO2021226871A1 - 微流控芯片及其加液方法、微流控*** - Google Patents

微流控芯片及其加液方法、微流控*** Download PDF

Info

Publication number
WO2021226871A1
WO2021226871A1 PCT/CN2020/090005 CN2020090005W WO2021226871A1 WO 2021226871 A1 WO2021226871 A1 WO 2021226871A1 CN 2020090005 W CN2020090005 W CN 2020090005W WO 2021226871 A1 WO2021226871 A1 WO 2021226871A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid
liquid inlet
microfluidic chip
layer
Prior art date
Application number
PCT/CN2020/090005
Other languages
English (en)
French (fr)
Inventor
李月
姚文亮
赵楠
高涌佳
古乐
廖辉
樊博麟
赵莹莹
Original Assignee
京东方科技集团股份有限公司
北京京东方传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方传感技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2020/090005 priority Critical patent/WO2021226871A1/zh
Priority to US17/271,297 priority patent/US20220126287A1/en
Priority to CN202080000724.XA priority patent/CN114126760A/zh
Priority to JP2022514564A priority patent/JP2023524187A/ja
Priority to US17/600,294 priority patent/US20220314217A1/en
Priority to CN202180000102.1A priority patent/CN113939366A/zh
Priority to PCT/CN2021/074457 priority patent/WO2021227567A1/zh
Priority to EP21773435.9A priority patent/EP4112176A4/en
Publication of WO2021226871A1 publication Critical patent/WO2021226871A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0089Chemical or biological characteristics, e.g. layer which makes a surface chemically active
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0642Filling fluids into wells by specific techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0427Electrowetting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/057Micropipets, dropformers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0323Grooves
    • B81B2203/033Trenches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0353Holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/04Electrodes

Definitions

  • the present disclosure relates to the field of display technology, in particular, to a display method, a display control method, a display terminal, a server, and a display system.
  • the liquid In order to detect the liquid extracted from organisms, the liquid needs to be placed in a container with a small volume. Due to the surface condition of the container and the liquid infiltration characteristics, it is sometimes difficult to add the liquid to the container with a small volume.
  • the purpose of the present disclosure is to provide a microfluidic chip, a method for adding liquid to the microfluidic chip, and a microfluidic system.
  • a microfluidic chip which includes a first substrate and a second substrate arranged on a box, a liquid containing cavity is formed between the first substrate and the second substrate, and the first substrate A substrate is formed with a liquid inlet hole penetrating the first substrate in the thickness direction, the first substrate includes a first electrode layer and a hydrophobic layer sequentially arranged along the thickness direction of the first substrate, the first electrode The layer is arranged on the surface of the hydrophobic layer facing away from the second substrate;
  • the second substrate includes an adjustment layer and a second electrode layer sequentially arranged along a thickness direction of the second substrate, and the second electrode layer is located on a side of the adjustment layer away from the first substrate;
  • the surface of the adjustment layer facing the first substrate exhibits one of hydrophilicity and hydrophobicity.
  • the electric field of the predetermined strength is removed, the The surface of the adjustment layer facing the first substrate exhibits the other of hydrophilicity and hydrophobicity.
  • a liquid container is formed on the surface of the first substrate facing the second substrate, and the liquid inlet hole penetrates the top wall of the liquid container.
  • the shape of the top wall of the liquid holding tank is a convex polygon
  • the top wall includes at least one non-right-angled internal angle
  • one of the non-right-angled internal angles of the top wall is a liquid inlet angle
  • the liquid inlet hole is arranged at the liquid inlet angle
  • the multiple side walls of the liquid containing tank are respectively arranged at multiple sides of the top wall
  • the side walls are perpendicular to the top wall.
  • the top wall is a convex pentagon
  • the inner corners of the top wall include two right angles, and the two right angles are adjacent, and the liquid inlet angle is opposite to the side between the two adjacent right angles.
  • the first substrate further includes a boss, the boss is arranged on a surface of the first substrate facing away from the second substrate, and the liquid inlet hole penetrates the first substrate and is provided with the The part of the boss.
  • the liquid inlet hole includes a conical hole portion and a cylindrical hole portion that are coaxially arranged, and the conical hole portion is located at an end of the cylindrical hole portion facing away from the second substrate, and is located at an end of the cylindrical hole portion away from the second substrate. In the direction to the second substrate, the diameter of the conical hole portion gradually decreases.
  • the first substrate further includes a first base substrate, and the first electrode layer is disposed on the first base substrate.
  • the material of the hydrophobic layer is the same as the material of the adjustment layer.
  • the second electrode layer includes a plurality of second electrode strips, at least one of the plurality of second electrode strips is disposed opposite to the liquid inlet hole, and two adjacent second electrode strips are insulated Interval settings.
  • an insulating spacer layer is provided between the second electrode layer and the adjustment layer.
  • the thickness of the insulating spacer layer is greater than the thickness of the adjustment layer.
  • the material of the adjustment layer is a fluorine-based material.
  • the thickness of the adjustment layer is 50 nm to 800 nm.
  • the first substrate and the second substrate are hermetically connected by a sealant.
  • the distance from the liquid inlet hole to one end is greater than the distance from the liquid inlet hole to the other end.
  • an air outlet penetrating the first substrate in a thickness direction is provided on the first substrate.
  • a microfluidic chip system which includes a liquid adding device and the above-mentioned microfluidic chip provided in the present disclosure.
  • the liquid outlet of the liquid adding device can be inserted into the liquid inlet middle.
  • a method for controlling a microfluidic chip including:
  • a first reference voltage is provided to the first electrode layer, and a second reference voltage is provided to a portion of the second electrode layer opposite to the liquid inlet hole, so that the adjustment layer is opposite to the liquid inlet hole
  • the part shows lyophilicity
  • control method further includes after the liquid that enters the liquid-containing cavity through the liquid inlet hole contacts a part of the adjustment layer opposite to the liquid inlet hole, removing the liquid applied to the second A second reference voltage on the part of the electrode layer opposite to the liquid inlet hole.
  • Fig. 1 is a schematic diagram of an embodiment of a microfluidic chip provided by the present disclosure
  • Fig. 2 is a schematic diagram of injecting liquid into the microfluidic chip shown in Fig. 1;
  • Fig. 3 is a schematic diagram of another embodiment of the microfluidic chip provided by the present disclosure.
  • FIG. 4 is a schematic diagram of injecting liquid into the microfluidic chip shown in FIG. 3;
  • FIG. 5 is a schematic diagram of the structure of the first substrate
  • Figure 6 is a schematic diagram showing the relative positional relationship between the top wall of the liquid container and the liquid inlet;
  • Figure 7 is a schematic diagram of a microfluidic system provided by the present disclosure.
  • Fig. 8 is a schematic flow chart of a control method of a microfluidic chip provided by the present disclosure.
  • a microfluidic chip As an aspect of the present disclosure, a microfluidic chip is provided, as shown in FIG. 1, the microfluidic chip includes a first substrate 110 and a second substrate 120 arranged in a box. A liquid chamber A is formed between the first substrate 110 and the second substrate 120, and a liquid inlet hole B penetrating the first substrate 110 in the thickness direction (ie, the vertical direction in FIG. 1) is formed on the first substrate 110.
  • the first substrate 110 includes a first electrode layer 113 and a hydrophobic layer 111 sequentially arranged along the thickness direction of the first substrate 110 (ie, the vertical direction shown in FIG. 1).
  • the first electrode layer 113 is arranged on the hydrophobic layer away from the first electrode layer.
  • the second substrate 120 includes an adjustment layer 121 and a second electrode layer 122 sequentially arranged along the thickness direction of the second substrate 120.
  • the adjustment layer 121 is in an electric field of a predetermined strength
  • the surface of the adjustment layer 121 facing the first substrate 110 exhibits one of hydrophilicity and hydrophobicity.
  • the electric field of the predetermined strength is removed, the adjustment layer 121 faces the first substrate 110.
  • the surface of a substrate 110 exhibits the other of hydrophilicity and hydrophobicity.
  • the surface of the hydrophobic layer 111 facing the second substrate 120 ie, the lower surface of the hydrophobic layer 111
  • the surface of the adjustment layer 121 facing the first substrate 110 ie, the upper surface of the adjustment layer 121 are liquid-containing
  • the inner surface of the cavity can directly contact the liquid added to the microfluidic chip.
  • liquid is added to the microfluidic chip through the liquid inlet B, and after the liquid enters the liquid containing cavity, the liquid contacts the lower surface of the first substrate 110. Since the lower surface of the first substrate 110 is the hydrophobic layer 111 exhibiting hydrophobicity, the liquid is not likely to remain on the lower surface of the hydrophobic layer 111, and it is easier to enter the liquid-containing cavity.
  • the surface of the adjustment layer 121 can be switched between hydrophilicity and hydrophobicity.
  • the first reference voltage may be provided to the first electrode layer 113
  • the second reference voltage may be provided to the portion of the second electrode layer 122 opposite to the liquid inlet hole B, so that the first electrode layer 113 and The predetermined electric field is formed between the portion of the second electrode layer 122 opposite to the liquid inlet hole B, so that the portion of the adjustment layer 121 opposite to the liquid inlet hole B exhibits hydrophilicity.
  • the first reference voltage and the second reference voltage are not specifically limited.
  • the first reference voltage may be a ground voltage
  • the second reference voltage may be a positive voltage of a predetermined magnitude.
  • the first electrode layer 113 can be electrically connected to the negative electrode of the power source, and the part of the second electrode layer 122 opposite to the liquid inlet hole B can be electrically connected to the positive electrode of the power source.
  • the droplet D After the droplet D enters the solution chamber, it may split into sub-droplets, resulting in a decrease in the volume of the liquid that can be detected.
  • a liquid container C is formed on the surface of the first substrate 110 facing the second substrate 120, The liquid inlet B penetrates the top wall of the liquid containing tank C.
  • the liquid in the liquid containing tank contains a certain amount of liquid. Even if the sub-droplets are split on the droplet D, the liquid in the liquid containing tank C can also supplement the remaining main droplets, thus ensuring The volume of the main drop in the liquid chamber is large enough to meet the detection requirements.
  • the specific shape of the liquid containing tank C is not particularly limited.
  • the shape of the top wall of the liquid-containing tank is a convex polygon, and the top wall includes at least one non-right-angled internal angle, and the top wall is non-right-angled.
  • One of the inner angles is the liquid inlet angle, and the liquid inlet hole is arranged at the liquid inlet angle.
  • the liquid containing tank also includes a plurality of side walls, and the plurality of side walls are respectively arranged at each side of the top wall.
  • the two side walls forming the liquid inlet angle are arranged obliquely and intersectingly, which can guide the liquid entering the liquid containing tank and prevent the liquid from remaining in the liquid containing tank.
  • the specific shape of the liquid holding tank is not particularly limited.
  • the top wall of the liquid container is a convex pentagon, the inner corner of the top wall also includes two right angles, and the two right angles are adjacent, and the liquid inlet angle is the same as the two adjacent right angles.
  • the sides are opposite.
  • the five sides of the top wall are respectively side L1, side L2, side L3, side L4, and side L5.
  • the angle between the side L1 and the side L2 is the liquid inlet angle, and the liquid inlet angle is opposite to the side L5.
  • the angle between the side L4 and the side L5 is a right angle, and the angle between the side L3 and the side L5 is a right angle.
  • the length of the side L5 can be between 3mm and 10mm.
  • the length of the side length L5 can be 5mm, and the distance between the vertex of the inlet angle and the side L5 can be between 3mm and 10mm.
  • the distance between the apex of the liquid inlet angle and the side L5 is 5 mm.
  • the depth d of the liquid containing tank is not particularly limited, and the depth d can be determined according to the properties of the liquid and the amount of liquid required for detection.
  • the depth d of the liquid containing tank may be between 100 ⁇ m and 1000 ⁇ m, and optionally, the depth of the liquid containing tank may be 500 ⁇ m.
  • the liquid holding tank and the liquid inlet hole can be formed by micromachining (for example, injection molding, laser engraving, sandblasting, etc.).
  • the first substrate 110 further includes a boss 114, which is disposed on the surface of the first substrate 110 away from the second substrate 120, and the liquid inlet hole B penetrates the boss 114 and the second substrate. A remaining part of the substrate 110.
  • the liquid addition nozzle 210 of the liquid addition nozzle 210 of the liquid addition device 200 cannot be inserted into the liquid containing cavity, which makes the liquid inlet hole also contain a part of the liquid (specifically, The height of the liquid in the liquid inlet is h).
  • the height of the liquid in the liquid inlet is h.
  • the specific shape of the boss 14 is not particularly limited.
  • the boss may be cylindrical, cube-shaped, frustum-shaped, or the like.
  • the portion where the liquid adding device 200 is inserted into the liquid inlet hole should preferably form a seal with the liquid inlet hole.
  • the liquid can be discharged from the liquid addition device 200, and the part of the liquid addition device 200 inserted into the liquid inlet hole should be in a sealed state with the liquid inlet hole to ensure smooth liquid Into the liquid containing cavity.
  • an elastic sealing ring may be provided on the wall of the liquid inlet hole, so that the liquid addition device 200 can be inserted into it. After the liquid hole, a seal is formed between the outer surface of the liquid adding device 200 and the elastic sealing ring.
  • the liquid inlet B may include a conical hole portion B1 and a cylindrical hole portion B2 that are coaxially arranged, and the tapered hole portion B1 is located in the cylindrical hole portion.
  • the end of B2 is away from the second substrate 120, and in the direction from the first substrate 110 to the second substrate 120, the aperture of the conical hole portion B1 gradually decreases.
  • the liquid inlet hole B is a funnel-shaped hole.
  • the specific size of the liquid inlet hole is not particularly limited.
  • the radius of the cylindrical hole portion B2 may be between 0.3 mm and 1 mm.
  • the radius of the cylindrical hole B2 may be 0.5 mm
  • the axial length of the cylindrical hole B2 may be between 1 mm and 5 mm
  • the axial length of the cylindrical hole B2 may be 2 mm.
  • the cone angle of the conical hole B1 can be between 10° and 20°.
  • the cone angle of the conical hole B1 is 15°
  • the axial length of the conical hole B1 can be between 1mm and 5mm.
  • Ground, the axial length of the conical hole B1 may be 2 mm.
  • the liquid inlet nozzle 210 inserted into the liquid inlet of the liquid inlet device 200 is set to be conical or cylindrical. After the insertion is completed, the liquid inlet nozzle 210 and the liquid inlet Self-sealing can be formed between the holes.
  • the first substrate 110 may further include a first base substrate 112, and the first electrode layer 113 is formed on the first base substrate 112.
  • the first substrate 110 is formed with a liquid container C on the surface facing the second substrate 120. Therefore, an initial groove may be formed on the first base substrate 112, and the hydrophobic layer 111 and the first electrode layer 113 fall into A liquid holding tank C is formed after the initial tank.
  • the depth of the liquid containing tank C is not particularly limited.
  • the depth of the liquid containing groove does not exceed half of the thickness of the first substrate 110.
  • the first substrate 110 is preferably a transparent substrate.
  • the first substrate 112 can be made of transparent materials such as glass and transparent resin
  • the first electrode layer 113 can be made of the first transparent electrode material
  • the hydrophobic material can be made of materials such as fluorine-based materials (such as Teflon). ⁇ 111 ⁇ Layer 111.
  • the material of the hydrophobic layer 111 is the same as the material of the adjustment layer 121.
  • the specific structure of the second electrode layer 122 is not particularly limited, as long as it can receive a voltage and form a closed loop with the first electrode layer.
  • the second electrode layer 122 may include a plurality of second electrode strips (four second electrode strips are shown in FIG. 1 and FIG. 3, from left to right). They are the electrode strip 122a, the electrode strip 122b, the electrode strip 122c, and the electrode strip 122d).
  • One of the plurality of second electrode strips ie, the electrode strip 122a
  • Strip insulation interval setting is opposite to the liquid inlet B, and two adjacent second electrodes are adjacent to each other.
  • the positive electrode is electrically connected, and the first electrode layer 133 is electrically connected to the negative electrode of the power supply), so that the surface of the part of the adjustment layer 121 above the leftmost second electrode strip 122a is in a hydrophilic state, and is absorbed by the liquid inlet device 200.
  • the droplet C reduces the resistance of the droplet into the liquid chamber.
  • a voltage is supplied to the second second electrode strip 122b from the left, so that the part of the adjustment layer above the second electrode strip 122b is converted to hydrophilicity, so as to absorb liquid droplets and avoid liquid droplets. Reflux to the inlet hole.
  • the second electrode strips can be energized in turn in the direction away from the liquid inlet to make the liquid-containing The droplets flow in the cavity. It should be pointed out that after the next second electrode strip is powered on, the electrical signal on the previous second electrode strip should be removed.
  • an insulating spacer layer 123 is provided between the second electrode layer 122 and the adjustment layer 121.
  • the specific material of the insulating spacer layer 123 is not particularly limited, as long as the adjustment layer 121 can be separated from the second electrode layer 122 to ensure that the adjustment layer 121 is not broken down by voltage.
  • the insulating spacer layer 123 may be made of materials such as inorganic oxides (eg, silicon oxides, silicon nitrides, etc.), resins, and the like.
  • the thickness of the insulating spacer layer 123 is greater than the thickness of the adjustment layer.
  • the specific material of the adjustment layer 121 is not particularly limited.
  • the material of the adjustment layer 121 may be a fluorine-based material, (for example, Teflon), and further optionally, the thickness of the adjustment layer 121 is Between 50 nm and 800 nm, optionally, the thickness of the adjustment layer 121 may be 500 nm.
  • the distance from the liquid inlet hole to one end is greater than the distance from the liquid inlet hole to the other end. In this embodiment, it is only necessary to control the droplets D to flow in the same direction.
  • an air outlet E penetrating the first substrate 110 in the thickness direction is provided on the first substrate 110.
  • a microfluidic chip system is provided, as shown in FIG. 2 and FIG. 4, the microfluidic chip system includes a liquid adding device 200 and the above-mentioned microfluidic chip provided by the present disclosure.
  • the liquid outlet nozzle 210 of the liquid adding device 200 can be detachably inserted into the liquid inlet hole.
  • the liquid inlet may be configured to include a conical hole portion and a cylindrical hole portion arranged coaxially. Accordingly, the outer surface of the liquid outlet nozzle 210 is a conical surface or a cylindrical surface.
  • the specific structure of the liquid adding device 200 is not particularly limited.
  • the liquid adding device 200 may be a pipetting gun.
  • the liquid outlet nozzle 210 is arranged on the gun body 220 and is connected to the gun body 220.
  • the gun body is also provided with a piston. By pulling the piston, the belt transfer liquid can be sucked.
  • the piston can apply pressure to the liquid to discharge it from the liquid outlet 210.
  • control method to a microfluidic chip. As shown in FIG. 8, the control method includes:
  • step S310 a first reference voltage is provided to the first electrode layer, and a second reference voltage is provided to a portion of the second electrode layer opposite to the liquid inlet, so that the adjustment layer is The opposite part of the liquid inlet shows lyophilicity;
  • step S320 after the liquid that enters the liquid chamber through the liquid inlet hole contacts the part of the adjustment layer opposite to the liquid inlet hole, the liquid flows into the second electrode layer and the second electrode layer.
  • the portion adjacent to the portion opposite to the liquid inlet provides a second reference voltage so that the portion on the adjustment layer adjacent to the portion of the adjustment layer opposite to the liquid inlet exhibits lyophilicity.
  • step S310 the part of the control adjustment layer opposite to the liquid inlet is hydrophilic, which helps the liquid drop to enter the liquid chamber smoothly.
  • the first substrate includes a hydrophobic layer, the liquid droplets entering the liquid-containing cavity are not likely to remain on the first substrate, which can further ensure that the liquid droplets enter the liquid-containing cavity smoothly.
  • step S320 after the liquid droplet enters the liquid-containing cavity, the position adjacent to the portion of the adjustment layer opposite to the liquid inlet hole is set to be hydrophilic, so as to prevent the liquid droplet from flowing back to the liquid inlet hole.
  • control method further includes contacting the adjustment layer with the liquid entering the liquid containing cavity through the liquid inlet and opposing the liquid inlet After the part of the second electrode layer, the second reference voltage applied to the part of the second electrode layer opposite to the liquid inlet hole is removed.
  • liquid droplets there is no particular limitation on how to add liquid droplets to the liquid inlet.
  • a pipette can be used to add liquid to the microfluidic chip.
  • the second electrode layer includes a plurality of second electrode strips.
  • the part of the second electrode layer opposite to the liquid inlet is the second electrode strip 122a in Figure 1.
  • the second electrode layer neutralizes and enters the liquid.
  • the portion adjacent to the portion opposite to the opening is the second electrode strip 122b.
  • step S310 and step S320 may be performed periodically.
  • step S320 may be executed after receiving an externally input trigger signal.
  • the trigger signal can be input through an input device.
  • a sensor can be arranged in the liquid-containing cavity, and the trigger signal can be generated when the sensor detects that the liquid drop is in contact with the second electrode strip below the liquid inlet , And sent to the control unit that executes the control method.
  • an electronic device including:
  • a storage device on which an executable program is stored
  • One or more processors when the one or more programs are executed by the one or more processors, the one or more processors implement the above-mentioned control method provided according to the present disclosure.
  • Such software may be distributed on a computer-readable medium, and the computer-readable medium may include a computer storage medium (or a non-transitory medium) and a communication medium (or a transitory medium).
  • the term computer storage medium includes volatile and non-volatile memory implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data). Sexual, removable and non-removable media.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassette, tape, magnetic disk storage or other magnetic storage device, or Any other medium used to store desired information and that can be accessed by a computer.
  • a communication medium usually contains computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

一种微流控芯片,包括对盒设置的第一基板(110)和第二基板(120),第一基板(110)和第二基板(120)之间形成有容液腔A,第一基板(110)上形成有沿厚度方向贯穿第一基板(110)的进液孔B,第一基板(110)包括沿第一基板(110)的厚度方向依次设置的第一电极层(113)和疏水层(111),第一电极层(113)设置在疏水层(111)背离第二基板(120)的表面上;第二基板(120)包括沿第二基板(120)的厚度方向依次设置的调节层(121)和第二电极层(122),第二电极层(122)位于调节层(121)背离第一基板(110)的一侧。一种微流控***和一种微流控芯片的控制方法。

Description

微流控芯片及其加液方法、微流控*** 技术领域
本公开涉及显示技术领域,具体地,涉及一种显示方法、一种显示控制方法、一种显示终端、一种服务器和一种显示***。
背景技术
为了对从生物中提取的液体进行检测,需要将该液体放置在体积较小的容器中,受容器的表面状态、以及液体浸润特性的影响,有时难以将液体添加至体积较小的容器中。
发明内容
本公开的目的在于提供微流控芯片、一种向微流控芯片中加液的方法和一种微流控***。
作为本公开的一个方面,提供一种微流控芯片,包括对盒设置的第一基板和第二基板,所述第一基板和所述第二基板之间形成有容液腔,所述第一基板上形成有沿厚度方向贯穿所述第一基板的进液孔,所述第一基板包括沿所述第一基板的厚度方向依次设置的第一电极层和疏水层,所述第一电极层设置在所述疏水层背离所述第二基板的表面上;
所述第二基板包括沿所述第二基板的厚度方向依次设置的调节层和第二电极层,所述第二电极层位于所述调节层背离所述第一基板的一侧;
当所述调节层处于预定强度的电场中时,所述调节层朝向所述第一基板的表面表现出亲水性和疏水性中的一者,当撤去所述预定强度的电场时,所述调节层朝向所述第一基板的表面表现出亲水性和疏水性中的另一者。
可选地,所述第一基板朝向所述第二基板的表面形成有容液槽,所述进液孔贯穿所述容液槽的顶壁。
可选地,所述容液槽的顶壁的形状为凸多边形,所述顶壁包括至少一个为非直角的内角,且所述顶壁的非直角的内角中的一个为进液角,所述进液孔设置在所述进液角处,所述容液槽的多个侧壁分别设置在所述顶壁的多条 边处,且所述侧壁与所述顶壁垂直。
可选地,所述顶壁为凸五边形,所述顶壁的内角包括两个直角,且该两个直角相邻,所述进液角与相邻两个直角之间的边相对。
可选地,所述第一基板还包括凸台,所述凸台设置在所述第一基板背离所述第二基板的表面上,所述进液孔贯穿所述第一基板上设置所述凸台的部分。
可选地,所述进液孔包括同轴设置的圆锥孔部和圆柱孔部,所述圆锥孔部位于所述圆柱孔部背离所述第二基板的一端,且在从所述第一基板至所述第二基板的方向上,所述圆锥孔部的孔径逐渐减小。
可选地,所述第一基板还包括第一衬底基板,第一电极层设置在所述第一衬底基板上。
可选地,所述疏水层的材料与所述调节层的材料相同。
可选地,所述第二电极层包括多个第二电极条,多个所述第二电极条中的至少一个与所述进液孔相对设置,相邻两个所述第二电极条绝缘间隔设置。
可选地,所述第二电极层和所述调节层之间设置有绝缘间隔层。
可选地,所述绝缘间隔层的厚度大于所述调节层的厚度。
可选地,所述调节层的材料为氟系材料。
可选地,所述调节层的厚度为50nm至800nm。
可选地,所述第一基板和所述第二基板通过封框胶密封连接。
可选地,在沿第一方向上,所述进液孔到一端的距离大于所述进液孔到另一端的距离。
可选地,所述第一基板上设置有沿厚度方向贯穿所述第一基板的出气口。
作为本公开的第二个方面,提供一种微流控芯片***,包括加液装置和本公开所提供的上述微流控芯片,所述加液装置的出液嘴能够***所述进液孔中。
作为本公开的第三个方面,提供一种向微流控芯片的控制方法,包括:
向所述第一电极层提供第一参考电压,并向所述第二电极层中与所述进液孔相对的部分提供第二参考电压,以使得所述调节层与所述进液孔相对的 部分表现出亲液性;
在通过所述进液孔进入所述容液腔内的液体接触所述调节层上与所述进液孔相对的部分后,向和所述第二电极层中与所述进液孔相对的部分相邻的部分提供第二参考电压,以使得所述调节层上和所述调节层与所述进液孔相对的部分相邻的部分表现出亲液性。
可选地,所述控制方法还包括在通过所述进液孔进入所述容液腔内的液体接触所述调节层上与所述进液孔相对的部分后,撤去施加在所述第二电极层中与所述进液孔相对的部分上的第二参考电压。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是本公开所提供的微流控芯片的一种实施方式的示意图;
图2是向图1中所示的微流控芯片中注入液体的示意图;
图3是本公开所提供的微流控芯片的另一种实施方式的示意图;
图4是向图3中所示的微流控芯片中注入液体的示意图;
图5是第一基板的结构示意图;
图6是展示容液槽的顶壁与进液孔之间相对位置关系的示意图;
图7是本公开所提供的微流控***的示意图;
图8是本公开所提供的微流控芯片的控制方法的流程示意图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
作为本公开的一个方面,提供一种微流控芯片,如图1舒适,该微流控芯片包括对盒设置的第一基板110和第二基板120。第一基板110和第二基板120之间形成有容液腔A,第一基板110上形成有沿厚度方向(即,图1中的上下方向)贯穿第一基板110的进液孔B。
第一基板110包括沿第一基板110的厚度方向(即,图1中所示的竖直方向)依次设置的第一电极层113和疏水层111,第一电极层113设置在疏水层背离第二基板120的表面上。
第二基板120包括沿该第二基板120的厚度方向依次设置的调节层121和第二电极层122。当调节层121处于预定强度的电场中时,调节层121朝向第一基板110的表面表现出亲水性和疏水性中的一者,当撤去所述预定强度的电场时,调节层121朝向第一基板110的表面表现出亲水性和疏水性中的另一者。
需要指出的是,疏水层111朝向第二基板120的表面(即,疏水层111的下表面)、以及调节层121朝向第一基板110的表面(即,调节层121的上表面)为容液腔的内表面,可以直接与添加至微流控芯片中的液体接触。
在本公开中,通过进液孔B向所述微流控芯片内添加液体,待液体进入容液腔后,液体接触第一基板110的下表面。由于第一基板110的下表面为表现出疏水性的疏水层111,因此,液体不容易在疏水层111的下表面残留,更容易进入容液腔内部。
通过调整调节层121所处的环境中的电场可以使得调节层121表面在亲水性和疏水性之间切换。
具体地,可以在加液之前,向第一电极层113提供第一参考电压、向第二电极层122中与进液孔B相对的部分提供第二参考电压,以使得第一电极层113和第二电极层122中与进液孔B相对的部分之间形成所述预定电场,进而使得调节层121上与进液孔B相对的部分表现出亲水性。
当需要通过所述进液孔向所述微流控芯片的容液腔内添加液体时,将进液装置200的进液嘴***所述进液孔内,进入容液腔的液滴D接触调节层121上表现出亲水性的部分后被调节层吸附,不回流至进液孔,从而可以可靠地向容液腔A内添加液体。
在本公开中,对第一参考电压和第二参考电压不做特殊的限定。可选地,第一参考电压可以为接地电压,第二参考电压可以为预定大小的正电压。具体地,可以通过将第一电极层113与电源负极电连接、将第二电极层122与 进液孔B相对的一部分与电源正极电连接。
液滴D进入溶液腔后,有可能会***出子液滴,而导致能够被检测的液体体积减小,可选地,第一基板110朝向第二基板120的表面形成有容液槽C,进液孔B贯穿容液槽C的顶壁。在添加液体时,容液槽内液储存由一定量的液体,即便液滴D上***出子液滴,容液槽C内的液体也可以对剩余的主液滴进行液体补充,从而可以确保容液腔内的主液滴的体积足够大、以满足检测要求。
在本公开中,对容液槽C的具体形状不做特殊的限定。为了更好地引导液体进入容液腔,可选地,所述容液槽的顶壁的形状为凸多边形,所述顶壁包括至少一个为非直角的内角,且所述顶壁的非直角的内角中的一个为进液角,所述进液孔设置在所述进液角处。
相应地,容液槽也包括多个侧壁,多个侧壁分别设置在顶壁的各个边处。形成所述进液角的两个侧壁倾斜交叉设置,可以对进入容液槽的液体进行引导,避免液体残留在容液槽中。
在本公开中,对容液槽的具体形状不做特殊的限定。如图5中所示,容液槽的顶壁为凸五边形,所述顶壁的内角还包括两个直角,且该两个直角相邻,所述进液角与相邻两个直角之间的边相对。
具体地,顶壁的五条边分别为边L1、边L2、边L3、边L4和边L5,边L1和边L2之间的角为进液角,该进液角与边L5相对。边L4和边L5之间的角度为直角,边L3和边L5之间的角为直角。
作为一种可选实施方式,边L5的长度可以为在3mm至10mm之间,可选地,边长L5的长度可以为5mm,进液角的顶点与边L5之间的距离为在3mm至10mm之间,可选地,进液角的顶点与边L5之间的距离为5mm。在本公开中,对容液槽的深度d(参见图5)没有特殊限定,可以根据液体性质、以及检测所需要的液体量来确定深度d。可选地,容液槽的深度d可以在100μm至1000μm之间,可选地,容液槽的深度可以为500μm。
在本公开中,可以通过微加工(例如,注塑、激光雕刻、喷砂等)的方式形成容液槽和进液孔。
在图1中所示的实施方式中,第一基板110还包括凸台114,该凸台114设置在第一基板110背离第二基板120的表面上,进液孔B贯穿凸台114和第一基板110上剩余的部分。
如图2所示,由于设置了凸台114,加液装置200的加液嘴210的加液嘴210无法***容液腔内部,这就使得进液孔中也容纳有一部分液体(具体地,进液孔中的液体高度为h)。当液滴D上***出子液滴时,储液槽中存储的液体以及进液孔中存储的液体都会对液滴进行补充。
当然,本公开并不限于此。在图3中所示的实施方式中,第一基板110上未设置凸台(即,第一基板110背离第二基板的表面为平面),如图4中所示,进液孔中仅容纳有少量液体。
在本公开中,对凸台14的具体形状也不做特殊的限定,例如,凸台可以是圆柱形,也可以是立方体形、锥台形等形状。
为了确保加液装置200可以将液体添加至所述容液腔内,加液装置200***进液孔的部分应当与进液孔之间优选形成密封。通过加液装置200向其内部的液体施加压力,可以使得液体从加液装置200中排出,并且加液装置200***进液孔的部分应当与进液孔之间处于密封状态,可以确保液体顺利进入所述容液腔内。
在本公开中,对如何实现加液装置200与进液孔之间的密封不做特殊的限定,例如,可以在进液孔的孔壁上设置弹性密封圈,从而使得加液装置200***进液孔后,加液装置200的外表面与弹性密封圈之间形成密封。
为了降低对加工精度的要求,可选地,如图1和图3中所示,进液孔B可以包括同轴设置的圆锥孔部B1和圆柱孔部B2,圆锥孔部B1位于圆柱孔部B2背离第二基板120的一端,且在从第一基板110至第二基板120的方向上,圆锥孔部B1的孔径逐渐减小。换言之,进液孔B是一种类似漏斗形的孔。
在本公开中,对进液孔的具体尺寸不做特殊限定。例如,进液孔中,圆柱孔部B2的半径可以为在0.3mm至1mm之间。可选地,圆柱孔部B2的半径可以为0.5mm,圆柱孔部B2的轴向长度可以为在1mm至5mm之间,可选地,圆柱孔部B2的轴向长度可以为2mm。圆锥孔部B1的圆锥角可以在10 °至20°之间,可选地,圆锥孔部B1的圆锥角为15°,圆锥孔部B1的轴向长度可以在1mm至5mm之间,可选地,圆锥孔部B1的轴向长度可以为2mm。
相应地,将如图2和图4中所示,将进液装置200上***进液孔的进液嘴210设置为圆锥形或者圆柱形,插接完成后,可以进液嘴210和进液孔之间可以形成自密封。
为了便于设置第一电极层113和疏水层111,可选地,第一基板110还可以包括第一衬底基板112,第一电极层113形成在第一衬底基板112上。
如上文中所述,第一基板110朝向第二基板120的表面上形成有容液槽C,因此,第一衬底基板112上可以形成有初始槽,疏水层111和第一电极层113落入初始槽中后形成容液槽C。
在本公开中,对容液槽C的深度不做特殊的限定。可选地,容液槽的深度不超过第一基板110的厚度的一半。
需要指出的时,对于某些生物测试而言,需要观察液滴在容液腔内的变化(例如,颜色变化),因此,第一基板110优选为透明基板。相应地,可以利用玻璃、透明树脂等透明材料制成第一衬底基,112,利用第一透明电极材料制成第一电极层113,并利用诸如氟系材料(如Teflon)材料制成疏水层111。
为了便于制造,作为一种可选实施方式,疏水层111的材料与调节层121的材料相同。
在本公开中,对第二电极层122的具体结构不做特殊的限定,只要能够接收电压、并与第一电极层形成闭环回路即可。作为一种可选实施方式,如图1中所示,第二电极层122可以包括多个第二电极条(在图1和图3中示出了四个第二电极条,从左至右分别为电极条122a、电极条122b、电极条122c和电极条122d),多个第二电极条中的一者(即,电极条122a)与进液孔B相对,相邻两个第二电极条绝缘间隔设置。
在向容液腔内注入液体之前,首先向最左侧的第二电极条122a提供第二参考电压、向第一电极层113提供第一参考电压(换言之,将第二电极条122a与电源的正极电连接、将第一电极层133与电源的负极电连接),以使得调 节层121位于最左侧的第二电极条122a上方的部分的表面处于亲水状态,吸附通过进液装置200注入的液滴C,减小液滴进入容液腔的阻力。撤出进液装置200后,向左数第二个第二电极条122b提供电压,以使得该第二电极条122b上方的调节层的部分转换为亲水性,以吸附液滴,避免液滴回流至进液孔中。
如果希望液滴进一步向远离进液孔、并进一步向容液腔内添加液体,可选地,可以沿远离进液孔的方向上、轮流地向各个第二电极条加电,以使得容液腔内的液滴流动。需要指出的是,在向下一个第二电极条加电后,应当撤去前一个第二电极条上的电信号。
为了避免因电压击穿调节层而导致调节层121无法在亲水性和疏水性之间转换,可选地,第二电极层122和调节层121之间设置有绝缘间隔层123。在本公开中,对绝缘间隔层123的具体材料并不做特殊的限定,只要能够将调节层121与第二电极层122隔开、以确保调节层121不被电压击穿即可。可选地,可以利用无机氧化物(如,硅的氧化物、硅的氮化物等)、树脂等材料制成绝缘间隔层123。
为了更好地实现保护调节层121的功能,可选地,绝缘间隔层123的厚度大于所述调节层的厚度。
在本公开中,对调节层121的具体材料不做特殊的限定,可选地,调节层121的材料可以为氟系材料,(如,Teflon),进一步可选地,调节层121的厚度为50nm至800nm之间,可选地,调节层121的厚度可以为500nm。
为了便于控制进入容液腔内在溶液腔内流动、并且不会形成过多分散液滴,可选地,在沿第一方向(图1和图3中从左至右的方向为第一方向)上,所述进液孔到一端的距离大于所述进液孔到另一端的距离。在这种实施方式中,只需要控制液滴D朝向同一个方向流动即可。
为了便于液滴进入容液腔内,可选地,第一基板110上设置有沿厚度方向贯穿第一基板110的出气口E。
作为本公开的第二个方面,提供一种微流控芯片***,如图2和图4所示,该微流控芯片***包括加液装置200和本公开所提供的上述微流控芯片。 加液装置200的出液嘴210能够可拆卸地***所述进液孔中。
如上文中所述,为了保证密封性,可以将所述进液孔设置为包括同轴设置的圆锥孔部和圆柱孔部,相应地,出液嘴210的外表面为圆锥面或者圆柱面。
在本公开中,对加液装置200的具体结构不做特殊的限定。可选地,加液装置200可以为移液枪,出液嘴210设置在枪体220上,且与枪体220连通,枪体内还设置有活塞,通过拉动活塞可以吸取带转移液体,通过推动活塞可以向液体施加压力使其从出液嘴210排出。
作为本公开的第三个方面,提供一种向微流控芯片的控制方法,如图8所示,所述控制方法包括:
在步骤S310中,向所述第一电极层提供第一参考电压,并向所述第二电极层中与所述进液孔相对的部分提供第二参考电压,以使得所述调节层与所述进液孔相对的部分表现出亲液性;
在步骤S320中,在通过所述进液孔进入所述容液腔内的液体接触所述调节层上与所述进液孔相对的部分后,向和所述第二电极层中与所述进液孔相对的部分相邻的部分提供第二参考电压,以使得所述调节层上和所述调节层与所述进液孔相对的部分相邻的部分表现出亲液性。
如上文中所述,在步骤S310中,控制调节层上与进液孔相对的部分表现为亲水性有助于液滴顺畅的进入容液腔内。除此之外,由于第一基板包括疏水层,进入容液腔内的液滴不容易在第一基板上残留,从而可以进一步确保液滴顺畅地进入容液腔内。
在步骤S320中,液滴进入容液腔后,将调节层上与进液孔相对的部分相邻的位置处设置为亲水性,从而可以避免液滴回流至进液孔。
为了进一步避免液滴回流至进液孔,可选地,所述控制方法还包括在通过所述进液孔进入所述容液腔内的液体接触所述调节层上与所述进液孔相对的部分后,撤去施加在所述第二电极层中与所述进液孔相对的部分上的第二参考电压。
在本公开中,对如何将液滴添加至进液孔中并不做特殊的限定,可选地, 可以利用移液枪将液体添加至微流控芯片中。
如上文中所述,第二电极层包括多个第二电极条,第二电极层中与进液口相对的部分,就是图1中的第二电极条122a,第二电极层中和与进液口相对的部分相邻的部分为第二电极条122b。
为了实现多次向微流控芯片内添加液体,可选地,可以周期性地执行步骤S310和步骤S320。
在本公开中,对如何确定执行步骤S320的时机并不做特殊限定。例如,可以在接收到外接输入的触发信号后执行步骤S320。
在本公开中,对如何生成所述触发信号也不做特殊的限定。例如,可以通过输入设备输入所述触发信号,可选地,也可以在容液腔内设置传感器,在传感器检测到液滴与进液孔下方的第二电极条接触时,生成所述触发信号,并发送至执行所述控制方法的控制单元。
作为本公开的第四个方面,提供一种电子设备,包括:
存储装置,其上存储有可执行程序;
一个或多个处理器,当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现根据本公开所提供的上述控制方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、***、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其它数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、 ROM、EEPROM、闪存或其它存储器技术、CD-ROM、数字多功能盘(DVD)或其它光盘存储、磁盒、磁带、磁盘存储或其它磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其它的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其它传输机制之类的调制数据信号中的其它数据,并且可包括任何信息递送介质。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (20)

  1. 一种微流控芯片,包括对盒设置的第一基板和第二基板,所述第一基板和所述第二基板之间形成有容液腔,所述第一基板上形成有沿厚度方向贯穿所述第一基板的进液孔,所述第一基板包括沿所述第一基板的厚度方向依次设置的第一电极层和疏水层,所述第一电极层设置在所述疏水层背离所述第二基板的表面上;
    所述第二基板包括沿所述第二基板的厚度方向依次设置的调节层和第二电极层,所述第二电极层位于所述调节层背离所述第一基板的一侧;
    当所述调节层处于预定强度的电场中时,所述调节层朝向所述第一基板的表面表现出亲水性和疏水性中的一者,当撤去所述预定强度的电场时,所述调节层朝向所述第一基板的表面表现出亲水性和疏水性中的另一者。
  2. 根据权利要求1所述的微流控芯片,其中,所述第一基板朝向所述第二基板的表面形成有容液槽,所述进液孔贯穿所述容液槽的顶壁。
  3. 根据权利要求2所述的微流控芯片,其中,所述容液槽的顶壁的形状为凸多边形,所述顶壁包括至少一个为非直角的内角,且所述顶壁的非直角的内角中的一个为进液角,所述进液孔设置在所述进液角处,所述容液槽的多个侧壁分别设置在所述顶壁的多条边处,且所述侧壁与所述顶壁垂直。
  4. 根据权利要求3所述的微流控芯片,其中,所述顶壁为凸五边形,所述顶壁的内角包括两个直角,且该两个直角相邻,所述进液角与相邻两个直角之间的边相对。
  5. 根据权利要求1所述的微流控芯片,其中,所述第一基板还包括凸台,所述凸台设置在所述第一基板背离所述第二基板的表面上,所述进液孔贯穿所述第一基板上设置所述凸台的部分。
  6. 根据权利要求1所述的微流控芯片,其中,所述进液孔包括同轴设置的圆锥孔部和圆柱孔部,所述圆锥孔部位于所述圆柱孔部背离所述第二基板的一端,且在从所述第一基板至所述第二基板的方向上,所述圆锥孔部的孔径逐渐减小。
  7. 根据权利要求1至6中任意一项所述的微流控芯片,其中,所述第一基板还包括第一衬底基板,第一电极层设置在所述第一衬底基板上。
  8. 根据权利要求1至6中任意一项所述的微流控芯片,其中,所述疏水层的材料与所述调节层的材料相同。
  9. 根据权利要求1至6中所述的微流控芯片,其中,所述第二电极层包括多个第二电极条,多个所述第二电极条中的至少一个与所述进液孔相对设置,相邻两个所述第二电极条绝缘间隔设置。
  10. 根据权利要求9所述的微流控芯片,其中,所述第二电极层和所述调节层之间设置有绝缘间隔层。
  11. 根据权利要求9所述的微流控芯片,其中,所述绝缘间隔层的厚度大于所述调节层的厚度。
  12. 根据权利要求1至6中任意一项所述的微流控芯片,其中,所述调节层的材料为氟系材料。
  13. 根据权利要求1至6中任意一项所述的微流控芯片,其中,所述调节层的厚度为在50nm至800nm之间。
  14. 根据权利要求1至6中任意一项所述的微流控芯片,其中,所述第 一基板和所述第二基板通过封框胶密封连接。
  15. 根据权利要求1至6中任意一项所述的微流控芯片,其中,在沿第一方向上,所述进液孔到一端的距离大于所述进液孔到另一端的距离。
  16. 根据权利要求1至6中任意一项所述的微流控芯片,其中,所述第一基板上设置有沿厚度方向贯穿所述第一基板的出气口。
  17. 一种微流控芯片***,包括加液装置和权利要求1至17中任意一项所述的微流控芯片,所述加液装置的出液嘴能够***所述进液孔中。
  18. 一种权利要求1至17中任意一项所述的微流控芯片的控制方法,包括:
    向所述第一电极层提供第一参考电压,并向所述第二电极层中与所述进液孔相对的部分提供第二参考电压,以使得所述调节层与所述进液孔相对的部分表现出亲液性;
    在通过所述进液孔进入所述容液腔内的液体接触所述调节层上与所述进液孔相对的部分后,向和所述第二电极层中与所述进液孔相对的部分相邻的部分提供第二参考电压,以使得所述调节层上和所述调节层与所述进液孔相对的部分相邻的部分表现出亲液性。
  19. 根据权利要求19所述的控制方法,其中,所述控制方法还包括在通过所述进液孔进入所述容液腔内的液体接触所述调节层上与所述进液孔相对的部分后,撤去施加在所述第二电极层中与所述进液孔相对的部分上的第二参考电压。
  20. 一种电子设备,包括:
    存储装置,其上存储有可执行程序;
    一个或多个处理器,当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现根据权利要求19或20所述的控制方法。
PCT/CN2020/090005 2020-05-13 2020-05-13 微流控芯片及其加液方法、微流控*** WO2021226871A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/CN2020/090005 WO2021226871A1 (zh) 2020-05-13 2020-05-13 微流控芯片及其加液方法、微流控***
US17/271,297 US20220126287A1 (en) 2020-05-13 2020-05-13 Micro-fluidic chip, liquid loading method thereof and micro-fluidic system
CN202080000724.XA CN114126760A (zh) 2020-05-13 2020-05-13 微流控芯片及其加液方法、微流控***
JP2022514564A JP2023524187A (ja) 2020-05-13 2021-01-29 マイクロ流体チップ
US17/600,294 US20220314217A1 (en) 2020-05-13 2021-01-29 Microfluidic chip
CN202180000102.1A CN113939366A (zh) 2020-05-13 2021-01-29 微流控芯片
PCT/CN2021/074457 WO2021227567A1 (zh) 2020-05-13 2021-01-29 微流控芯片
EP21773435.9A EP4112176A4 (en) 2020-05-13 2021-01-29 MICROFLUIDIC CHIP

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/090005 WO2021226871A1 (zh) 2020-05-13 2020-05-13 微流控芯片及其加液方法、微流控***

Publications (1)

Publication Number Publication Date
WO2021226871A1 true WO2021226871A1 (zh) 2021-11-18

Family

ID=78526147

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/090005 WO2021226871A1 (zh) 2020-05-13 2020-05-13 微流控芯片及其加液方法、微流控***
PCT/CN2021/074457 WO2021227567A1 (zh) 2020-05-13 2021-01-29 微流控芯片

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074457 WO2021227567A1 (zh) 2020-05-13 2021-01-29 微流控芯片

Country Status (5)

Country Link
US (2) US20220126287A1 (zh)
EP (1) EP4112176A4 (zh)
JP (1) JP2023524187A (zh)
CN (2) CN114126760A (zh)
WO (2) WO2021226871A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170297029A1 (en) * 2016-04-15 2017-10-19 University Of Maryland Integrated thermoplastic chip for rapid pcr and hrma
CN107971049A (zh) * 2017-09-29 2018-05-01 京东方科技集团股份有限公司 微流控芯片及其驱动方法、微流控器件和生物传感器
CN108465491A (zh) * 2018-03-12 2018-08-31 京东方科技集团股份有限公司 微流控芯片、生物检测装置和方法
CN109248722A (zh) * 2018-11-20 2019-01-22 京东方科技集团股份有限公司 一种盖板结构、微流控装置及盖板结构的制备方法
CN109603939A (zh) * 2019-01-04 2019-04-12 京东方科技集团股份有限公司 极板及微流控芯片
CN109759153A (zh) * 2019-02-28 2019-05-17 南京理工大学 一种用于毛细作用微流控芯片的电润湿阀门及其控制方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058031A (ja) * 2004-08-17 2006-03-02 Hitachi High-Technologies Corp 化学分析装置
TWI262309B (en) * 2004-12-31 2006-09-21 Ind Tech Res Inst Droplet controlling apparatus, manufacturing method, controlling method and digital flow inspection apparatus
WO2008042482A2 (en) * 2006-06-19 2008-04-10 The Regents Of The University Of California Disposable, high pressure microfluidic chips
MX2010007034A (es) * 2007-12-23 2010-09-14 Advanced Liquid Logic Inc Configuraciones para eyector de gotas y metodos para realizar operaciones de gota.
WO2009137415A2 (en) * 2008-05-03 2009-11-12 Advanced Liquid Logic, Inc. Reagent and sample preparation, loading, and storage
KR101882018B1 (ko) * 2012-04-17 2018-08-24 리쿠아비스타 비.브이. 전기 습윤 장치
EP3033599A4 (en) * 2013-08-13 2017-03-22 Advanced Liquid Logic, Inc. Methods of improving accuracy and precision of droplet metering using an on-actuator reservoir as the fluid input
WO2015077412A1 (en) * 2013-11-22 2015-05-28 Rheonix, Inc. Channel-less pump, methods, and applications thereof
KR20150106493A (ko) * 2014-03-11 2015-09-22 포항공과대학교 산학협력단 표준물첨가법을 이용한 흐름셀을 갖는 미세유체칩과 이를 포함하는 흡광 검출 장치
US10137450B2 (en) * 2014-07-18 2018-11-27 Tecan Trading Ag Microfluidics cartridge with pipetting guide
CN104492508B (zh) * 2014-11-13 2016-08-24 浙江大学 一种基于液体残留的超微量液滴操控装置及方法
US10866404B2 (en) * 2016-03-24 2020-12-15 Sharp Kabushiki Kaisha Electrowetting device and method of manufacturing electrowetting device
CN106622414A (zh) * 2017-01-23 2017-05-10 广东顺德工业设计研究院(广东顺德创新设计研究院) 微流控芯片
WO2018190336A1 (ja) * 2017-04-10 2018-10-18 古河電気工業株式会社 送液デバイス及び送液方法
CN107118955B (zh) * 2017-05-12 2020-03-10 京东方科技集团股份有限公司 基因测序芯片及基因测序方法
US11740255B2 (en) * 2017-11-14 2023-08-29 Illumina, Inc. Droplet dispensing
WO2019099304A1 (en) * 2017-11-14 2019-05-23 Illumina, Inc. Digital fludic cartridge with inlet gap height larger than outlet gap height
CN109772480B (zh) * 2017-11-15 2020-11-10 中国科学院青岛生物能源与过程研究所 单个微粒包裹液滴在微流控芯片中形成并分别导出的方法
CN108393105B (zh) * 2018-04-20 2023-08-25 华南师范大学 一种微流控芯片及其控制***、控制方法
CN108405004B (zh) * 2018-04-23 2024-03-26 深圳市国华光电科技有限公司 一种液滴生成控制方法及其***
CN109765178B (zh) * 2018-05-30 2020-04-21 京东方科技集团股份有限公司 一种微流控器件、驱动方法及微流控检测***
CN109261233B (zh) * 2018-11-19 2020-11-10 京东方科技集团股份有限公司 微流控芯片
CN109557149A (zh) * 2019-01-14 2019-04-02 大连大学 基于pcb板的数字微流控芯片及病原体免疫检测方法
JP7120063B2 (ja) * 2019-02-08 2022-08-17 株式会社島津製作所 マイクロチップ電気泳動装置及びマイクロチップ電気泳動方法
CN109894167B (zh) * 2019-03-25 2021-09-28 上海天马微电子有限公司 微流控芯片
US11442264B2 (en) * 2019-03-27 2022-09-13 Sharp Kabushiki Kaisha Electrowetting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170297029A1 (en) * 2016-04-15 2017-10-19 University Of Maryland Integrated thermoplastic chip for rapid pcr and hrma
CN107971049A (zh) * 2017-09-29 2018-05-01 京东方科技集团股份有限公司 微流控芯片及其驱动方法、微流控器件和生物传感器
CN108465491A (zh) * 2018-03-12 2018-08-31 京东方科技集团股份有限公司 微流控芯片、生物检测装置和方法
CN109248722A (zh) * 2018-11-20 2019-01-22 京东方科技集团股份有限公司 一种盖板结构、微流控装置及盖板结构的制备方法
CN109603939A (zh) * 2019-01-04 2019-04-12 京东方科技集团股份有限公司 极板及微流控芯片
CN109759153A (zh) * 2019-02-28 2019-05-17 南京理工大学 一种用于毛细作用微流控芯片的电润湿阀门及其控制方法

Also Published As

Publication number Publication date
CN114126760A (zh) 2022-03-01
JP2023524187A (ja) 2023-06-09
US20220314217A1 (en) 2022-10-06
CN113939366A (zh) 2022-01-14
US20220126287A1 (en) 2022-04-28
EP4112176A1 (en) 2023-01-04
EP4112176A4 (en) 2023-10-18
WO2021227567A1 (zh) 2021-11-18

Similar Documents

Publication Publication Date Title
US8851103B2 (en) Microfluidic valve systems and methods
US20150231536A1 (en) Filter device
US7960183B2 (en) Biochip manufacturing method and biochip manufacturing device
JP2019025476A (ja) 注入時に液滴を予備帯電する微小流体装置
US20210262973A1 (en) Retaining Cap
CN111065521B (zh) 液滴分配
WO2017164253A1 (ja) エレクトロウェッティング装置及びエレクトロウェッティング装置の製造方法
JP6636686B2 (ja) 流体取扱装置の取扱方法
WO2021226871A1 (zh) 微流控芯片及其加液方法、微流控***
JP2009285966A (ja) 液体収容体
KR100240460B1 (ko) 레지스트 도포장치
JPWO2008078403A6 (ja) 電気泳動チップ及びその使用方法
US11442264B2 (en) Electrowetting device
US20190120867A1 (en) Fluid handling device
CN117860941A (zh) 香水保持器构件以及香味提供装置
US9839938B2 (en) Device for carrying out a deposit of particles on a substrate and deposition method using such a device
JP2016129127A (ja) 液体補充装置
JP2016177915A (ja) 試料収容セル
US20120147097A1 (en) Micro-ejector and method of manufacturing the same
JP2023177785A (ja) 液体収容容器の製造方法
JP6216689B2 (ja) 比較電極
US11764514B2 (en) Method for sealing a plug pin in a housing, and housing device
CN215603187U (zh) 雾化装置
EP4109073A1 (en) Particle analysis device
WO2011102804A1 (en) An electro-fluidic interface to a multi-well plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935327

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 11.01.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20935327

Country of ref document: EP

Kind code of ref document: A1