WO2021226794A1 - 数据传输方法及相关装置 - Google Patents

数据传输方法及相关装置 Download PDF

Info

Publication number
WO2021226794A1
WO2021226794A1 PCT/CN2020/089626 CN2020089626W WO2021226794A1 WO 2021226794 A1 WO2021226794 A1 WO 2021226794A1 CN 2020089626 W CN2020089626 W CN 2020089626W WO 2021226794 A1 WO2021226794 A1 WO 2021226794A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
maximum
terminal
transmission
physical channel
Prior art date
Application number
PCT/CN2020/089626
Other languages
English (en)
French (fr)
Inventor
林亚男
徐婧
梁彬
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/089626 priority Critical patent/WO2021226794A1/zh
Priority to CN202080099708.0A priority patent/CN115380595A/zh
Publication of WO2021226794A1 publication Critical patent/WO2021226794A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of communication technology, and in particular to a data transmission method and related devices.
  • the 17th version of the new wireless NR system communication protocol Rel-17 proposes Dynamic Spectrum Sharing (DSS), which supports the use of secondary carriers to schedule other carriers (including the primary carrier). Further consider using one Downlink Control Information (DCI) to schedule data transmission on multiple carriers.
  • DCI Downlink Control Information
  • One implementation method is that one DCI schedules a physical downlink shared channel PDSCH/physical uplink shared channel PUSCH.
  • the PDSCH/PUSCH occupies resources on multiple carriers for simultaneous transmission.
  • the DCI schedules carrier 1 and carrier 2 at the same time. Transmit signals carried on the PDSCH.
  • TBS Transport Block size
  • the embodiments of the present application provide a data transmission method and related devices, so as to realize that a terminal with existing capabilities can support the use of multiple carriers to transmit physical channels.
  • an embodiment of the present application provides a data transmission method, including:
  • the terminal transmits the first physical channel through multiple carriers, wherein the total amount of frequency domain resources allocated to the first physical channel on the multiple carriers does not exceed the first value and/or the first physical channel carried
  • the transmission block size TBS does not exceed a second value
  • the first value is used to indicate the maximum number of frequency domain resources occupied by the terminal for transmitting a physical channel within a carrier
  • the second value is used to indicate that the terminal is The maximum value of TBS that a physical channel can carry in one carrier.
  • an embodiment of the present application provides a data transmission method, including:
  • the network device transmits the first physical channel through multiple carriers, wherein the total amount of frequency domain resources allocated to the first physical channel on the multiple carriers does not exceed a first value and/or the first physical channel bears
  • the transmission block size TBS does not exceed a second value
  • the first value is used to indicate the maximum number of frequency domain resources occupied by the terminal transmitting a physical channel within a carrier
  • the second value is used to indicate that the terminal is in a
  • an embodiment of the present application provides a data transmission device, which is applied to a terminal, and includes:
  • the transmission unit is configured to transmit the first physical channel through multiple carriers, wherein the total amount of frequency domain resources allocated to the first physical channel on the multiple carriers does not exceed a first value and/or the first physical channel.
  • the transport block size TBS carried by the physical channel does not exceed a second value, where the first value is used to indicate the maximum number of frequency domain resources occupied by the terminal for transmitting one physical channel within a carrier, and the second value is used to indicate The terminal transmits the maximum value of TBS that can be carried by one physical channel in one carrier.
  • an embodiment of the present application provides a data transmission device, which is applied to a network device, and includes:
  • the transmission unit is configured to transmit the first physical channel through multiple carriers, wherein the total amount of frequency domain resources allocated to the first physical channel on the multiple carriers does not exceed a first value and/or the first physical channel.
  • the transport block size TBS carried by the physical channel does not exceed a second value, and the first value is used to indicate the maximum number of frequency domain resources occupied by the terminal transmitting a physical channel in a carrier, and the second value is used to indicate the The terminal transmits the maximum value of TBS that a physical channel can carry in a carrier.
  • an embodiment of the present application provides a terminal, including a processor, a memory, a communication interface, and one or more programs, wherein the one or more programs are stored in the memory and are configured by The processor executes, and the program includes instructions for executing the steps in any method of the first aspect of the embodiments of the present application.
  • an embodiment of the present application provides a network device, including a processor, a memory, a communication interface, and one or more programs, where the one or more programs are stored in the memory and configured by The processor executes, and the program includes instructions for executing the steps in any method in the second aspect of the embodiments of the present application.
  • an embodiment of the present application provides a chip, including a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes the first aspect or the second aspect of the embodiment of the present application.
  • an embodiment of the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute the For example, part or all of the steps described in any method of the first aspect or the second aspect.
  • an embodiment of the present application provides a computer program, wherein the computer program is operable to cause a computer to execute some or all of the steps described in any method of the first aspect or the second aspect of the embodiment of the present application .
  • the computer program may be a software installation package.
  • the first physical channel is transmitted through multiple carriers, where the total amount of frequency domain resources allocated to the first physical channel on the multiple carriers does not exceed the first value and/or the first physical channel.
  • the transmission block size TBS carried by the channel does not exceed the second value.
  • the first value is used to indicate the maximum number of frequency domain resources occupied by the terminal transmitting a physical channel in a carrier
  • the second value is used to instruct the terminal to transmit one physical channel in a carrier.
  • FIG. 1A is a schematic diagram of a multi-carrier transmission physical channel provided by an embodiment of the present application.
  • FIG. 1B is a system architecture diagram of an exemplary communication system provided by an embodiment of the present application.
  • FIG. 2A is a schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • 2B is a schematic diagram of a method for determining the value of the first quantity provided by an embodiment of the present application
  • 2C is a schematic diagram of another method for determining the value of the first quantity provided by an embodiment of the present application.
  • 2D is a schematic diagram of another method for determining the value of the first quantity provided by an embodiment of the present application.
  • 2E is a schematic diagram of another method for determining the value of the first quantity provided by an embodiment of the present application.
  • 2F is a schematic diagram of another method for determining the value of the first quantity according to an embodiment of the present application.
  • 2G is a schematic diagram of another method for determining the value of the first quantity provided by an embodiment of the present application.
  • 2H is a schematic diagram of another method for determining the value of the first quantity provided by an embodiment of the present application.
  • FIG. 2I is a schematic diagram of another method for determining the value of the first quantity provided by an embodiment of the present application.
  • 2J is a schematic diagram of another method for determining the value of the first quantity provided by an embodiment of the present application.
  • 2K is a schematic diagram of another method for determining the value of the first quantity provided by an embodiment of the present application.
  • 2L is a schematic diagram of another method for determining the value of the first quantity provided by an embodiment of the present application.
  • 2M is a schematic diagram of another method for determining the value of the first quantity provided by an embodiment of the present application.
  • Fig. 3 is a block diagram of functional units of a data transmission device provided by an embodiment of the present application.
  • FIG. 4 is a block diagram of the functional unit composition of another data transmission device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a data transmission device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another data transmission device provided by an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to an exemplary communication system 100 as shown in FIG. 1B.
  • the exemplary communication system 100 includes a terminal 110 and a network device 120, and the terminal 110 is in communication connection with the network device 120.
  • the example communication system 100 may be, for example, a global system of mobile communication (GSM) system, a code division multiple access (Code Division Multiple Access, CDMA) system, and a wideband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • New Radio, NR New Radio
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (DC) scenario, and can also be applied to a standalone (SA) deployment.
  • CA Carrier Aggregation
  • DC dual connectivity
  • SA standalone
  • the embodiment of the application does not limit the applied frequency spectrum.
  • the embodiments of this application can be applied to licensed spectrum or unlicensed spectrum.
  • the terminal 110 in the embodiment of the present application may refer to user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or User device.
  • the terminal can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless communication function Handheld devices, computing devices or other processing devices connected to wireless modems, relay devices, in-vehicle devices, wearable devices, terminals in the future 5G network, or public land mobile network (PLMN) that will evolve in the future This is not limited in this embodiment of the application.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PLMN public land mobile network
  • the network device 120 in the embodiment of the present application may be a device used to communicate with a terminal.
  • the network device may be an evolved NodeB (eNB or eNodeB) in an LTE system, or a cloud radio access network (cloud wireless access network).
  • the radio access network (CRAN) scenario of the wireless controller, or the network device can be a relay device, an access point, an in-vehicle device, a wearable device, and a network device in the future 5G network or a network in the future evolved PLMN network Equipment, one or a group of antenna panels (including multiple antenna panels) of the base station in the 5G system, or, it can also be a network node that constitutes a gNB or transmission point, such as a baseband unit (BBU), or distributed A unit (distributed unit, DU), etc., is not limited in the embodiment of the present application.
  • BBU baseband unit
  • DU distributed A unit
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some of the functions of the gNB, and the DU implements some of the functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing the physical layer protocol and real-time services, and realizes the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • AAU realizes some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , Or, sent by DU+AAU.
  • the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), and the CU can also be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the terminal 110 or the network device 120 includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems, or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided in accordance with the embodiments of the application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal, or a functional module in the terminal that can call and execute the program.
  • the associated technologies involved in the embodiments of this application mainly include carrier aggregation and calculation of transmission block size, which are briefly introduced below.
  • Carrier aggregation Carrier Aggregation, CA
  • the carrier aggregation technology can enable the terminal to use multiple component carriers (CC) to send and receive data at the same time, increase the data transmission rate, and improve the efficiency of the system.
  • the fifth-generation mobile communication technology (5th generation mobile networks or 5th generation wireless systems, 5th-Generation, 5G) system supports a larger component carrier bandwidth (for example, a frequency band less than 6GHZ can support a maximum component carrier bandwidth of 80MHz).
  • 3rd Generation Partnership Project 3rd Generation Partnership Project, 3GPP
  • Table 1 shows the maximum carrier bandwidth supported in different frequency bands in some NR systems. For the same band, when using different Subcarrier Spacing (SCS), the indicated maximum bandwidth is different.
  • SCS Subcarrier Spacing
  • Table 2 shows the number of physical resource blocks included when the carrier corresponds to different bandwidths.
  • a physical channel PDSCH/PUSCH in a carrier aggregation system could only be transmitted through one carrier.
  • One downlink control signaling DCI can only schedule one physical channel. That is, if the terminal aggregates N carriers, the terminal will receive N DCIs, and the N DCIs are respectively used to schedule N physical channels simultaneously transmitted on the N carriers.
  • the PDSCH transmitted in the target downlink carrier carries its corresponding DCI for transmission on the target downlink carrier.
  • the PUSCH transmitted in the target uplink carrier carries its corresponding DCI and is transmitted in the downlink carrier paired with the target uplink carrier.
  • the DCI and the corresponding PDSCH are transmitted in different carriers.
  • DCI is not transmitted in the downlink carrier paired with the uplink carrier where the corresponding PUSCH is located.
  • Cross-carrier scheduling is limited to that for one secondary carrier, its DCI can be transmitted on other secondary carriers or primary carriers, but the DCI corresponding to the primary carrier can only be transmitted on the primary carrier. That is, the secondary carrier can be scheduled by other carriers, but the primary carrier cannot be scheduled by other carriers.
  • the method for determining the transport block size TBS carried in a physical channel PDSCH/PUSCH in the 15th version of the NR system Rel-15 is as follows:
  • N RE min(156,N' RE ) ⁇ n PRB
  • n PRB is the number of physical resource blocks allocated for the physical channel.
  • R is the coding rate of the physical channel
  • Q m is the modulation order of the physical channel
  • v is the number of layers of the physical channel.
  • TBS is finally determined according to the intermediate variable N info.
  • FIG. 2A is a schematic flowchart of a data transmission method provided by an embodiment of the present application, which is applied to the exemplary communication system shown in FIG. 1B. As shown in the figure, the method includes:
  • Step 201 The terminal transmits a first physical channel through multiple carriers, where the total amount of frequency domain resources allocated to the first physical channel on the multiple carriers does not exceed a first value and/or the first physical channel.
  • the transmission block size TBS carried by the channel does not exceed a second value, and the first value is used to indicate the maximum number of frequency domain resources occupied by the terminal for transmitting a physical channel within a carrier, and the second value is used to indicate all
  • the terminal transmits the maximum value of TBS that can be carried by a physical channel in a carrier.
  • the first physical channel includes PDSCH or PUSCH.
  • Carriers are also called serving cells in the protocol.
  • the one carrier refers to any one of the multiple carriers.
  • the content transmitted on each of the multiple carriers may be different, that is, instead of transmitting one physical channel through repeated transmission on different carriers, the resources on multiple carriers are used to jointly transmit one physical channel. .
  • the content transmitted on each of the multiple carriers may also be the same.
  • the frequency domain resources occupied by the terminal for transmitting one physical channel in one carrier may be the transmission bandwidth or the number of resource block RBs.
  • the method further includes: the terminal receives first downlink control information DCI from a network device, where the first DCI is used to schedule the first physical channel.
  • the method further includes: the terminal sending capability information, where the capability information includes the maximum transmission bandwidth or maximum transmission bandwidth supported by the terminal for data transmission using at least one subcarrier interval in at least one frequency band.
  • the at least one frequency band may include, for example, NR frequency bands n1, n2, n3, n5, n7, n8, etc.
  • at least one subcarrier interval corresponding to NR frequency band n1 includes 15kHz, 30kHz, 60kHz, and NR frequency band n2
  • the corresponding at least one sub-carrier interval includes 15 kHz, 30 kHz, 60 kHz, etc., that is, at least one frequency band and at least one sub-carrier interval are determined by the configuration of the current system.
  • Step 202 The network device transmits the first physical channel through multiple carriers, wherein the total amount of frequency domain resources allocated to the first physical channel on the multiple carriers does not exceed a first value and/or the first physical channel.
  • the transport block size TBS carried by the physical channel does not exceed a second value, and the first value is used to indicate the maximum number of frequency domain resources occupied by the terminal transmitting a physical channel in a carrier, and the second value is used to indicate the The terminal transmits the maximum value of TBS that a physical channel can carry in a carrier.
  • the network device receives the first signal carried by the first physical channel through multiple carriers. If the network device transmits the second signal carried by the first physical channel through multiple carriers, the terminal receives the second signal carried by the first physical channel through multiple carriers.
  • the method further includes: the network device sends first downlink control information DCI to the terminal, where the first DCI is used to schedule the first physical channel.
  • the method further includes: the network device receives capability information, where the capability information includes the maximum transmission bandwidth supported by the terminal for data transmission using at least one subcarrier interval in at least one frequency band or Maximum number of RBs or maximum TBS.
  • the first physical channel is transmitted through multiple carriers, where the total amount of frequency domain resources allocated to the first physical channel on the multiple carriers does not exceed the first value and/or the first physical channel
  • the bearer transport block size TBS does not exceed the second value.
  • the first value is used to indicate the maximum number of frequency domain resources occupied by the terminal to transmit a physical channel in a carrier
  • the second value is used to instruct the terminal to transmit a physical channel in a carrier.
  • the maximum value of TBS that the channel can carry In this way, it is possible to support the transmission mode of using multiple carriers to transmit one physical channel without the need to enhance the processing capability of the terminal, thereby improving the system efficiency.
  • the first value is determined according to the frequency band of the multiple carriers, the subcarrier spacing, and the capability information of the terminal.
  • the capability information of the terminal may include transmission conditions and the maximum transmission supported by the terminal
  • the mapping relationship between bandwidths, and the transmission condition means that the terminal uses one subcarrier interval of the frequency band for data transmission in a frequency band.
  • the terminal performs the following operation A for each of the multiple carriers to obtain multiple maximum transmission bandwidths corresponding to the multiple carriers: A.
  • the terminal determines the transmission conditions of the currently processed carrier, and queries the capabilities
  • the mapping relationship between the transmission conditions in the information and the maximum transmission bandwidth supported by the terminal is used to obtain the maximum transmission bandwidth of the currently processed carrier; the terminal determines that the maximum transmission bandwidth with the smallest value among the multiple maximum transmission bandwidths is ⁇ Said the first value.
  • the capability information of the terminal may include transmission conditions and the maximum number of RBs supported by the terminal The mapping relationship between.
  • the terminal performs the following operation B for each of the multiple carriers to obtain multiple maximum RB numbers corresponding to the multiple carriers: B.
  • the terminal determines the transmission conditions of the currently processed carrier, and queries the capabilities
  • the mapping relationship between the transmission condition in the information and the maximum number of RBs supported by the terminal is used to obtain the maximum number of RBs of the currently processed carrier; the terminal determines that the maximum number of RBs with the smallest value among the plurality of maximum RB numbers is ⁇ Said the first value.
  • the first value can be determined according to the frequency band of the multiple carriers, the subcarrier spacing, and the capability information of the terminal, so that the capability of the terminal can be adapted to the multi-carrier transmission mode, and the system efficiency is improved.
  • the first value is the maximum transmission bandwidth with the smallest value among the plurality of maximum transmission bandwidths, wherein one of the plurality of maximum transmission bandwidths is the maximum transmission bandwidth of the terminal under the first transmission condition
  • the maximum transmission bandwidth supported, the first transmission condition refers to the first subcarrier interval for data transmission in the first frequency band, and one of the multiple carriers belongs to the first frequency band and adopts the first subcarrier interval. Subcarrier spacing.
  • the maximum transmission bandwidth supported by the terminal under the first transmission condition is less than or equal to the maximum transmission bandwidth supported by the system under the first transmission condition.
  • Combining Table 1 and Table 2 can know the specific configuration of the maximum transmission bandwidth supported by the terminal under different transmission conditions, and the specific configuration can be determined by the capability information including the mapping relationship between the transmission conditions and the maximum transmission bandwidth supported by the terminal Make it happen.
  • the terminal can also obtain the configuration of the local device by querying Table 1 and Table 2, which is not uniquely limited here.
  • the terminal is configured with two carriers, namely carrier 1 and carrier 2, and both carrier 1 and carrier 2 belong to NR band n41, and carrier 1 and carrier 2 use subcarrier spacing of 15kHz.
  • the two transmission conditions constrained by carrier 1 and carrier 2 are both in NR band n41 using 15kHz subcarrier spacing for data transmission, and the terminal queries capability information (this capability information includes the transmission conditions and the maximum transmission bandwidth supported by the terminal). It can be seen that the maximum transmission bandwidth supported by the terminal under the two transmission conditions is 50 MHz, so the first value is the 50 MHz bandwidth.
  • the terminal is configured with two carriers, namely carrier 1 and carrier 2, and carrier 1 belongs to NR band n25, and the subcarrier spacing is 15kHz, and carrier 2 belongs to NR band n84.
  • the subcarrier spacing is 15kHz
  • the transmission condition 1 restricted by carrier 1 is to use 15kHz subcarrier spacing in NR band n25 for data transmission
  • the transmission condition 2 restricted by carrier 2 is to use 15kHz subcarrier spacing in NR band n84
  • Table 1 and Table 2 that the maximum transmission bandwidth supported by the terminal under transmission condition 1 is 20 MHz, and the maximum transmission bandwidth supported under transmission condition 2 is 20 MHz, so the first value is 20 MHz bandwidth.
  • the terminal is configured with two carriers, namely carrier 1 and carrier 2, and carrier 1 belongs to NR band n25, and the subcarrier spacing is 15kHz, and carrier 2 belongs to NR band n84.
  • the subcarrier spacing is 15kHz
  • the transmission condition 1 restricted by carrier 1 is to use 15kHz subcarrier spacing in NR band n25 for data transmission
  • the transmission condition 2 restricted by carrier 2 is to use 15kHz subcarrier spacing in NR band n84
  • the terminal queries the capability information (the capability information includes the mapping relationship between the transmission conditions and the maximum transmission bandwidth supported by the terminal). It can be seen that the maximum transmission bandwidth supported by the terminal under transmission condition 1 is 20 MHz, and under transmission condition 2 The maximum transmission bandwidth supported below is 20MHz, so the first value is 20MHz bandwidth.
  • determining the maximum transmission bandwidth has no substantial effect, and can be converted to determining the maximum number of RBs supported by the terminal.
  • the system supports adapting the terminal capability to the multi-carrier transmission mode supported by the system through the maximum transmission bandwidth.
  • the first value is the maximum number of RBs with the smallest value among the plurality of maximum resource block RB numbers, where one of the plurality of maximum RB numbers is the maximum number of RBs in the first transmission of the terminal.
  • the maximum number of RBs supported under the condition, the first transmission condition refers to the first subcarrier interval for data transmission in the first frequency band, and one of the multiple carriers belongs to the first frequency band and adopts the The first subcarrier spacing.
  • the maximum number of RBs supported by the terminal under the first transmission condition is less than or equal to the maximum number of RBs supported by the system under the first transmission condition.
  • the maximum number of RBs supported by the terminal under the first transmission condition is determined according to the maximum transmission bandwidth supported by the terminal under the first transmission condition and the configuration information of the number of RBs of the terminal.
  • the maximum transmission bandwidth supported by the terminal under the first transmission condition is indicated by the capability information of the terminal, and the configuration information of the number of RBs of the terminal includes the terminal supported under the first transmission condition.
  • the specific implementation form of the configuration information of the number of RBs of the terminal may be as shown in Table 3 above.
  • the specific configuration of the maximum number of RBs supported by the terminal under different transmission conditions can be known, and the configuration can be specifically determined by including the transmission conditions and the maximum RB supported by the terminal.
  • the capability information of the quantity mapping relationship is realized.
  • the terminal can also obtain the configuration of the local device by querying Table 1, Table 2, and Table 3, which is not uniquely limited here.
  • the terminal is configured with two carriers, namely carrier 1 and carrier 2, and both carrier 1 and carrier 2 belong to NR band n41, and carrier 1 and carrier 2 use sub-carrier spacing of 15 kHz.
  • the two transmission conditions constrained by carrier 1 and carrier 2 are both in NR band n41 using 15kHz subcarrier spacing for data transmission, and the terminal queries capability information (this capability information includes the mapping between the transmission conditions and the maximum number of RBs supported by the terminal) It can be seen that the maximum number of RBs supported by the terminal under the two transmission conditions are both 270, so the first value is 270.
  • the terminal is configured with two carriers, namely carrier 1 and carrier 2, and carrier 1 belongs to NR band n25, and the subcarrier spacing is 15kHz, and carrier 2 belongs to NR band n84.
  • the carrier interval is 15kHz
  • the transmission condition 1 restricted by carrier 1 is to use 15kHz subcarrier interval for data transmission in NR band n25
  • the transmission condition 2 restricted by carrier 2 is to use 15kHz subcarrier interval for NR band n84.
  • Data transmission as can be seen from Table 1 and Table 2, the maximum transmission bandwidth supported by the terminal under transmission condition 1 is 20MHz, and the maximum transmission bandwidth supported under transmission condition 2 is 20MHz. From Table 3, it can be seen that the terminal under transmission condition 1
  • the maximum number of RBs supported by the terminal is 106
  • the maximum number of RBs supported by the terminal under transmission condition 2 is 106, so the first value is 106.
  • the terminal is configured with two carriers, namely carrier 1 and carrier 2, and carrier 1 belongs to NR band n25, and the sub-carrier spacing is 15kHz, and carrier 2 belongs to NR band n84.
  • the carrier interval is 15kHz
  • the transmission condition 1 restricted by carrier 1 is to use 15kHz subcarrier interval for data transmission in NR band n25
  • the transmission condition 2 restricted by carrier 2 is to use 15kHz subcarrier interval for NR band n84.
  • the terminal queries the capability information (the capability information contains the mapping relationship between the transmission conditions and the maximum number of RBs supported by the terminal). It can be seen that the maximum number of RBs supported by the terminal under transmission condition 1 is 106, and the terminal under transmission condition 2 The maximum number of RBs supported is 106, so the first value is 106.
  • the terminal is configured with two carriers, namely carrier 1 and carrier 2, and carrier 1 belongs to NR band n40, and the subcarrier spacing is 15kHz, and carrier 2 belongs to NR band n40.
  • the carrier interval is 30kHz
  • the transmission condition 1 restricted by carrier 1 is to use 15kHz subcarrier interval for data transmission in NR band n40
  • the transmission condition 2 restricted by carrier 2 is to use 30kHz subcarrier interval for NR band n40.
  • Data transmission as can be seen from Table 1 and Table 2
  • the maximum transmission bandwidth supported by the terminal under transmission condition 1 is 50MHz
  • the maximum transmission bandwidth supported under transmission condition 2 is 80MHz. From Table 3, it can be seen that the terminal under transmission condition 1
  • the maximum number of RBs supported by the terminal is 270
  • the maximum number of RBs supported by the terminal under transmission condition 2 is 217
  • the first value is 217.
  • the terminal is configured with two carriers, namely carrier 1 and carrier 2, and carrier 1 belongs to NR band n40, and the subcarrier spacing is 15kHz, and carrier 2 belongs to NR band n40.
  • the carrier interval is 30kHz
  • the transmission condition 1 restricted by carrier 1 is to use 15kHz subcarrier interval for data transmission in NR band n40
  • the transmission condition 2 restricted by carrier 2 is to use 30kHz subcarrier interval for NR band n40.
  • the terminal queries capability information (the capability information contains the mapping relationship between the transmission conditions and the maximum number of RBs supported by the terminal). It can be seen that the maximum number of RBs supported by the terminal under transmission condition 1 is 270, and the terminal under transmission condition 2 The maximum number of RBs supported is 217, and the first value is 217.
  • the terminal is configured with two carriers, namely carrier 1 and carrier 2, and carrier 1 belongs to NR band n40, and the subcarrier spacing is 15kHz, and carrier 2 belongs to NR band n41, and subcarriers are used.
  • the carrier interval is 30kHz
  • the transmission condition 1 restricted by carrier 1 is to use 15kHz subcarrier interval for data transmission in NR band n40
  • the transmission condition 2 restricted by carrier 2 is to use 30kHz subcarrier interval for NR band n41.
  • the maximum transmission bandwidth supported by the terminal under transmission condition 1 is 50 MHz
  • the maximum transmission bandwidth supported under transmission condition 2 is 100 MHz. From Table 3, it can be seen that the terminal under transmission condition 1
  • the maximum number of RBs supported by the terminal is 270
  • the maximum number of RBs supported by the terminal under transmission condition 2 is 273, and the first value is 270.
  • the terminal is configured with two carriers, namely carrier 1 and carrier 2, and carrier 1 belongs to NR band n40, and the sub-carrier spacing is 15kHz, and carrier 2 belongs to NR band n41.
  • the carrier interval is 30kHz
  • the transmission condition 1 restricted by carrier 1 is to use 15kHz subcarrier interval for data transmission in NR band n40
  • the transmission condition 2 restricted by carrier 2 is to use 30kHz subcarrier interval for NR band n41.
  • the terminal queries capability information (the capability information contains the mapping relationship between the transmission conditions and the maximum number of RBs supported by the terminal). It can be seen that the maximum number of RBs supported by the terminal under transmission condition 1 is 270, and the terminal under transmission condition 2 The maximum number of RBs supported is 273, and the first value is 273.
  • the system supports adapting terminal capabilities to the multi-carrier transmission mode supported by the system through the maximum number of RBs.
  • the second value is determined according to frequency bands of the multiple carriers, subcarrier spacing, and capability information of the terminal.
  • the capability information of the terminal may include a mapping relationship between a transmission condition and the maximum TBS supported by the terminal.
  • the transmission condition means that the terminal uses a subcarrier interval of the frequency band for data transmission in a frequency band.
  • the capability information of the terminal may also include a mapping relationship between transmission conditions and the maximum transmission bandwidth or the maximum number of RBs supported by the terminal.
  • the second value is the largest TBS with the smallest value among the multiple largest TBSs, where one largest TBS in the multiple largest TBSs is the largest supported by the terminal under the first transmission condition.
  • the first transmission condition refers to using a first subcarrier interval for data transmission in a first frequency band, and one of the multiple carriers belongs to the first frequency band and adopts the first subcarrier interval.
  • the terminal performs the following operation C for each of the multiple carriers to obtain multiple maximum TBSs corresponding to the multiple carriers; C.
  • the terminal determines the transmission conditions of the currently processed carrier, and queries the transmission conditions and the transmission conditions in the capability information.
  • the mapping relationship between the maximum TBS supported by the terminal obtains the maximum TBS of the currently processed carrier; the terminal determines that the maximum transmission bandwidth with the smallest value among the plurality of maximum TBSs is the first value.
  • the maximum TBS supported by the terminal under the first transmission condition is determined according to the maximum transmission bandwidth supported by the terminal under the first transmission condition; or, the terminal The maximum TBS supported under the first transmission condition is determined according to the maximum number of RBs supported by the terminal under the first transmission condition.
  • the terminal performs the following operation D for each of the multiple carriers to obtain multiple maximum TBSs corresponding to the multiple carriers; D.
  • the terminal determines the transmission conditions of the currently processed carrier, and queries the transmission conditions and the transmission conditions in the capability information.
  • the terminal determines that the maximum transmission bandwidth with the smallest value among the multiple maximum TBS is the first value.
  • the determining the maximum TBS of the currently processed carrier according to the maximum transmission bandwidth of the currently processed carrier may be: determining the number of resource units RE in a time slot according to the maximum transmission bandwidth of the currently processed carrier , Determining the intermediate variable according to the number of REs, and determining the maximum TBS of the currently processed carrier according to the intermediate variable.
  • the terminal performs the following operation E for each of the multiple carriers to obtain multiple maximum TBSs corresponding to the multiple carriers; E.
  • the terminal determines the transmission conditions of the currently processed carrier, and queries the transmission conditions and the transmission conditions in the capability information.
  • the terminal determines that the maximum transmission bandwidth with the smallest value among the multiple maximum TBS is the first value.
  • the determining the maximum TBS of the currently processed carrier according to the maximum transmission bandwidth of the currently processed carrier may be: determining the number of resource units RE in a time slot according to the maximum number of RBs of the currently processed carrier , Determining the intermediate variable according to the number of REs, and determining the maximum TBS of the currently processed carrier according to the intermediate variable.
  • the system supports adapting the terminal capabilities to the multi-carrier transmission mode supported by the system through the maximum TBS.
  • the second value is determined according to the first value.
  • the second value is determined according to the value of an intermediate variable, and the value of the intermediate variable is determined according to the first value.
  • the value of the intermediate variable is determined according to a third value, and the third value is determined according to the first value.
  • the value of the intermediate variable may be not greater than the third value, or may be greater than the third value, and there is no unique limitation here.
  • the first value is the maximum number of RBs with the smallest value among the multiple maximum numbers of RBs; one of the maximum number of RBs is the maximum number of RBs supported by the terminal under the first transmission condition
  • the first transmission condition refers to the first subcarrier interval for data transmission in the first frequency band, and one of the multiple carriers belongs to the first frequency band and uses the first subcarrier Interval;
  • the third value is the product of the first value and the fourth value, and the value of the fourth value is agreed upon by the protocol or configured by the base station.
  • the fourth value is 156.
  • the intermediate variable is one of the following:
  • N info min(N maxRE ,min(156,N' RE ) ⁇ n PRB ),
  • N info min(156 ⁇ N maxRB ,min(156,N' RE ) ⁇ n PRB ),
  • N info represents the intermediate variable
  • N maxRE represents the third value
  • N maxRB represents the first value, in Is the number of time-domain symbols occupied by the one physical channel, Is the number of time-domain symbols used to transmit demodulation reference signals in this slot, Configured by higher layer signaling or equal to 0,
  • n PRB is the number of physical resource blocks allocated by the physical channel
  • R represents the coding rate of the first physical channel
  • Q m represents the modulation order of the first physical channel
  • v represents the number of physical resource blocks allocated to the physical channel. The number of layers of the first physical channel.
  • the value of the intermediate variable N info is not greater than the third value N maxRE
  • the first value is the maximum number of RBs N maxRB
  • the third value N maxRE is determined according to the first value N maxRB
  • the specific calculation formula may be the following formula :
  • N info min(N maxRE ,min(156,N' RE ) ⁇ n PRB ) or,
  • N info min(156 ⁇ N maxRB ,min(156,N' RE ) ⁇ n PRB )
  • R represents the coding rate of the first physical channel
  • Q m represents the modulation order of the first physical channel
  • v represents the number of layers of the first physical channel.
  • the value of the intermediate variable N info is determined according to the third value N maxRE
  • the third value N maxRE is determined according to the first value N maxRB
  • the specific calculation formula may be the following formula:
  • N maxRE 156 ⁇ N maxRB
  • N RE min(156,N' RE ) ⁇ n PRB
  • N info min(N maxRE ,N RE ) ⁇ R ⁇ Q m ⁇ v or,
  • N RE min(156,N' RE ) ⁇ n PRB
  • N info min(156 ⁇ N maxRB ,N RE ) ⁇ R ⁇ Q m ⁇ v
  • n PRB is the number of physical resource blocks allocated by the physical channel
  • R represents the coding rate of the first physical channel
  • Q m represents the modulation order of the first physical channel
  • v represents the number of physical resource blocks allocated to the physical channel. The number of layers of the first physical channel.
  • the value of the intermediate variable N info is determined according to the third value N maxRE
  • the third value N maxRE is determined according to the first value N maxRB
  • the specific calculation formula may be the following formula:
  • N maxRE min(156,N' RE ) ⁇ N maxRB
  • N info min(N maxRE ,N RE ) ⁇ R ⁇ Q m ⁇ v or,
  • N info min(min(156,N' RE ) ⁇ N maxRB ,N RE ) ⁇ R ⁇ Q m ⁇ v
  • N RE min(156,N' RE ) ⁇ n PRB , in Is the number of time-domain symbols occupied by the one physical channel, Is the number of time-domain symbols used to transmit demodulation reference signals in this slot, Configured by higher layer signaling or equal to 0, n PRB is the number of physical resource blocks allocated by the physical channel, R represents the coding rate of the first physical channel, Q m represents the modulation order of the first physical channel, and v represents the number of physical resource blocks allocated to the physical channel. The number of layers of the first physical channel.
  • the system supports adapting the terminal capabilities to the multi-carrier transmission mode supported by the system through the maximum TBS.
  • the terminal and the network device include hardware structures and/or software modules corresponding to the respective functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the terminal and the network device into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or in the form of software program modules. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the embodiment of the present application provides a data transmission device, and the data transmission device may be a terminal. Specifically, the data transmission device is used to execute the steps performed by the terminal in the above data transmission method.
  • the data transmission device provided in the embodiment of the present application may include modules corresponding to corresponding steps.
  • the embodiment of the present application may divide the data transmission device into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 3 shows a possible structural schematic diagram of the data transmission device involved in the above-mentioned embodiment.
  • the data transmission device 3 includes a transmission unit 30,
  • the transmission unit 30 is configured to transmit a first physical channel through multiple carriers, wherein the total amount of frequency domain resources allocated to the first physical channel on the multiple carriers does not exceed the first value and/or the first physical channel
  • the transport block size TBS carried by a physical channel does not exceed a second value
  • the first value is used to indicate the maximum number of frequency domain resources occupied by the terminal transmitting a physical channel within a carrier
  • the second value is used for Instruct the terminal to transmit the maximum value of the TBS that can be carried by a physical channel within a carrier.
  • the first value is determined according to the frequency band of the multiple carriers, the subcarrier spacing, and the capability information of the terminal.
  • the first value is the maximum transmission bandwidth with the smallest value among the multiple maximum transmission bandwidths, where:
  • One of the multiple maximum transmission bandwidths is the maximum transmission bandwidth supported by the terminal under a first transmission condition, and the first transmission condition refers to data transmission using a first subcarrier interval in the first frequency band
  • One of the multiple carriers belongs to the first frequency band and adopts the first subcarrier interval.
  • the first value is the maximum number of RBs with the smallest value among the number of maximum resource block RBs, where:
  • One of the plurality of maximum RB numbers is the maximum number of RBs supported by the terminal under a first transmission condition, and the first transmission condition refers to data transmission using a first subcarrier interval in the first frequency band
  • One of the multiple carriers belongs to the first frequency band and adopts the first subcarrier interval.
  • the maximum number of RBs supported by the terminal under the first transmission condition is determined according to the maximum transmission bandwidth supported by the terminal under the first transmission condition and the configuration information of the number of RBs of the terminal.
  • the maximum transmission bandwidth supported by the terminal under the first transmission condition is indicated by the capability information of the terminal, and the configuration information of the number of RBs of the terminal includes the terminal supported under the first transmission condition.
  • the second value is determined according to frequency bands of the multiple carriers, subcarrier spacing, and capability information of the terminal.
  • the second value is the largest TBS with the smallest value among the multiple largest TBSs, where:
  • One of the plurality of maximum TBS is the maximum TBS supported by the terminal under a first transmission condition, and the first transmission condition refers to data transmission using a first subcarrier interval in the first frequency band, and One of the multiple carriers belongs to the first frequency band and adopts the first subcarrier interval.
  • the maximum TBS supported by the terminal under the first transmission condition is determined according to the maximum transmission bandwidth supported by the terminal under the first transmission condition; or,
  • the maximum TBS supported by the terminal under the first transmission condition is determined according to the maximum number of RBs supported by the terminal under the first transmission condition.
  • the second value is determined according to the first value.
  • the second value is determined according to the value of an intermediate variable, and the value of the intermediate variable is determined according to the first value.
  • the value of the intermediate variable is determined according to a third value, and the third value is determined according to the first value.
  • the first value is the maximum number of RBs with the smallest value among the plurality of maximum RB numbers; one of the plurality of maximum RB numbers is supported by the terminal under the first transmission condition
  • the first transmission condition refers to the first subcarrier interval for data transmission in the first frequency band, and one of the multiple carriers belongs to the first frequency band and uses the first subcarrier interval;
  • the third value is a product of the first value and the fourth value, and the value of the fourth value is agreed upon by a protocol or configured by the base station.
  • the fourth value is 156.
  • the intermediate variable is one of the following:
  • N info min(N maxRE ,min(156,N' RE ) ⁇ n PRB ),
  • N info min(156 ⁇ N maxRB ,min(156,N' RE ) ⁇ n PRB ),
  • N info represents the intermediate variable
  • N maxRE represents the third value
  • N maxRB represents the first value, in Is the number of time-domain symbols occupied by the one physical channel, Is the number of time-domain symbols used to transmit demodulation reference signals in this slot, Configured by higher layer signaling or equal to 0,
  • n PRB is the number of physical resource blocks allocated by the physical channel
  • R represents the coding rate of the first physical channel
  • Q m represents the modulation order of the first physical channel
  • v represents the number of physical resource blocks allocated to the physical channel. The number of layers of the first physical channel.
  • the transmission unit is further configured to receive first downlink control information DCI from a network device, and the first DCI is used to schedule the first physical channel.
  • the transmission unit is further configured to send capability information, and the capability information includes the maximum transmission bandwidth or the maximum RB supported by the terminal for data transmission using at least one subcarrier interval in at least one frequency band. Quantity or maximum TBS.
  • the data transmission device 4 includes: a processing module 40 and a communication module 41.
  • the processing module 40 is used to control and manage the actions of the data transmission device and/or to perform other processes of the technology described herein.
  • the communication module 41 is used to support the interaction between the data transmission device and other devices.
  • the data transmission device may further include a storage module 42 for storing program codes and data of the data transmission device.
  • the processing module 40 may be a processor or a controller, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an ASIC, an FPGA, or other programmable processors. Logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication module 41 may be a transceiver, an RF circuit, a communication interface, or the like.
  • the storage module 42 may be a memory.
  • Both the data transmission device 3 and the data transmission device 4 described above can perform the steps performed by the terminal in the data transmission method shown in FIG. 2A.
  • FIG. 5 is a schematic structural diagram of a terminal 500 provided by an embodiment of the present application. As shown in FIG. The processor 510, the memory 520, and the communication bus of the communication interface 530.
  • the memory 520 includes but is not limited to random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM), the memory 520 is used for related instructions and data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • CD-ROM Compact disc read-only memory
  • the communication interface 530 is used to receive and send data.
  • the processor 510 may be one or more central processing units (CPUs). When the processor 510 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 510 in the terminal 500 is configured to read one or more program codes 521 stored in the memory 520, and perform the following operations: call the communication interface 530 to transmit the first physical channel through multiple carriers, where The total amount of frequency domain resources allocated to the first physical channel on the multiple carriers does not exceed a first value and/or the transport block size TBS carried by the first physical channel does not exceed a second value, the first The value is used to indicate the maximum number of frequency domain resources occupied by the terminal for transmitting a physical channel in a carrier, and the second value is used to indicate the maximum number of TBS that the terminal can carry for transmitting a physical channel in a carrier. value.
  • each operation may also correspond to the corresponding description of the method embodiment shown in FIG. 2A, and the terminal 500 may be used to execute the terminal-side method of the foregoing method embodiment of the present application.
  • the embodiment of the present application provides a data transmission device, and the data transmission device may be a network device. Specifically, the data transmission device is used to execute the steps performed by the network device in the above data transmission method.
  • the data transmission device provided in the embodiment of the present application may include modules corresponding to corresponding steps.
  • the embodiment of the present application may divide the data transmission device into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 6 shows a possible schematic diagram of the structure of the data transmission device involved in the foregoing embodiment.
  • the data transmission device 6 includes a transmission unit 60,
  • the transmission unit 60 is configured to transmit the first physical channel through multiple carriers, wherein the total amount of frequency domain resources allocated to the first physical channel on the multiple carriers does not exceed the first value and/or the first physical channel.
  • the transport block size TBS carried by a physical channel does not exceed a second value, and the first value is used to indicate the maximum number of frequency domain resources occupied by a terminal transmitting a physical channel in a carrier, and the second value is used to indicate all
  • the terminal transmits the maximum value of TBS that can be carried by a physical channel in a carrier.
  • the first value is determined according to the frequency band of the multiple carriers, the subcarrier spacing, and the capability information of the terminal.
  • the first value is the maximum transmission bandwidth with the smallest value among the multiple maximum transmission bandwidths, where:
  • One of the multiple maximum transmission bandwidths is the maximum transmission bandwidth supported by the terminal under a first transmission condition, and the first transmission condition refers to data transmission using a first subcarrier interval in the first frequency band
  • One of the multiple carriers belongs to the first frequency band and adopts the first subcarrier interval.
  • the first value is the maximum number of RBs with the smallest value among the number of maximum resource block RBs, where:
  • One of the plurality of maximum RB numbers is the maximum number of RBs supported by the terminal under a first transmission condition, and the first transmission condition refers to data transmission using a first subcarrier interval in the first frequency band
  • One of the multiple carriers belongs to the first frequency band and adopts the first subcarrier interval.
  • the maximum number of RBs supported by the terminal under the first transmission condition is determined according to the maximum transmission bandwidth supported by the terminal under the first transmission condition and the configuration information of the number of RBs of the terminal.
  • the maximum transmission bandwidth supported by the terminal under the first transmission condition is indicated by the capability information of the terminal, and the configuration information of the number of RBs of the terminal includes the terminal supported under the first transmission condition.
  • the second value is determined according to frequency bands of the multiple carriers, subcarrier spacing, and capability information of the terminal.
  • the second value is the largest TBS with the smallest value among the multiple largest TBSs, where:
  • One of the plurality of maximum TBS is the maximum TBS supported by the terminal under a first transmission condition, and the first transmission condition refers to data transmission using a first subcarrier interval in the first frequency band, and One of the multiple carriers belongs to the first frequency band and adopts the first subcarrier interval.
  • the maximum TBS supported by the terminal under the first transmission condition is determined according to the maximum transmission bandwidth supported by the terminal under the first transmission condition; or,
  • the maximum TBS supported by the terminal under the first transmission condition is determined according to the maximum number of RBs supported by the terminal under the first transmission condition.
  • the second value is determined according to the first value.
  • the second value is determined according to the value of an intermediate variable, and the value of the intermediate variable is determined according to the first value.
  • the value of the intermediate variable is determined according to a third value, and the third value is determined according to the first value.
  • the first value is the maximum number of RBs with the smallest value among the plurality of maximum RB numbers; one of the plurality of maximum RB numbers is supported by the terminal under the first transmission condition
  • the first transmission condition refers to the first subcarrier interval for data transmission in the first frequency band, and one of the multiple carriers belongs to the first frequency band and uses the first subcarrier interval;
  • the third value is a product of the first value and the fourth value, and the value of the fourth value is agreed upon by a protocol or configured by the base station.
  • the fourth value is 156.
  • the intermediate variable is one of the following:
  • N info min(N maxRE ,min(156,N' RE ) ⁇ n PRB ),
  • N info min(156 ⁇ N maxRB ,min(156,N' RE ) ⁇ n PRB ),
  • N info represents the intermediate variable
  • N maxRE represents the third value
  • N maxRB represents the first value, in Is the number of time-domain symbols occupied by the one physical channel, Is the number of time-domain symbols used to transmit demodulation reference signals in this slot, Configured by higher layer signaling or equal to 0,
  • n PRB is the number of physical resource blocks allocated by the physical channel
  • R represents the coding rate of the first physical channel
  • Q m represents the modulation order of the first physical channel
  • v represents the number of physical resource blocks allocated to the physical channel. The number of layers of the first physical channel.
  • the transmission unit 60 is further configured to send first downlink control information DCI to the terminal, where the first DCI is used to schedule the first physical channel.
  • the transmission unit 60 is further configured to receive capability information, and the capability information includes the maximum transmission bandwidth or maximum transmission bandwidth supported by the terminal for data transmission using at least one subcarrier interval in at least one frequency band.
  • the data transmission device 7 includes: a processing module 70 and a communication module 71.
  • the processing module 70 is used to control and manage the actions of the data transmission device and/or to perform other processes of the technology described herein.
  • the communication module 71 is used to support the interaction between the data transmission device and other devices.
  • the data transmission device may further include a storage module 72, and the storage module 72 is used to store the program code and data of the data transmission device.
  • the processing module 70 may be a processor or a controller, for example, a CPU, a general-purpose processor, DSP, ASIC, FPGA, or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication module 71 may be a transceiver, an RF circuit, a communication interface, or the like.
  • the storage module 72 may be a memory.
  • Both the data transmission device 6 and the data transmission device 7 described above can perform the steps performed by the network device in the data transmission method shown in FIG. 2A.
  • FIG. 8 is a schematic structural diagram of a network device 800 provided by an embodiment of the present application.
  • the network device 800 includes a processor 810, a memory 820, a communication interface 830, and at least one A communication bus connecting the processor 810, the memory 820, and the communication interface 830.
  • the memory 820 includes but is not limited to random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or A portable read-only memory (compact disc read-only memory, CD-ROM), the memory 820 is used for related instructions and data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • the communication interface 830 is used to receive and send data.
  • the processor 810 may be one or more central processing units (CPUs).
  • CPUs central processing units
  • the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 810 in the terminal 800 is configured to read one or more program codes 821 stored in the memory 820, and perform the following operations: transmit the first physical channel through multiple carriers, where the multiple carriers are allocated The total amount of frequency domain resources for the first physical channel does not exceed a first value and/or the transport block size TBS carried by the first physical channel does not exceed a second value, and the first value is used to indicate that the terminal is in The maximum number of frequency domain resources occupied by transmitting one physical channel in one carrier, and the second value is used to indicate the maximum value of TBS that the terminal can carry in transmitting one physical channel in one carrier.
  • each operation may also correspond to the corresponding description of the method embodiment shown in FIG. 2A, and the network device 800 may be used to execute the method on the network device side of the foregoing method embodiment of the present application.
  • the embodiment of the present application also provides a chip, wherein the chip includes a processor, which is used to call and run a computer program from the memory, so that the device installed with the chip executes the part described in the terminal in the above method embodiment Or all steps.
  • the embodiment of the present application also provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute the terminal in the above method embodiment Some or all of the steps described.
  • the embodiment of the present application also provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute the network in the above-mentioned method embodiment. Part or all of the steps described by the side device.
  • the embodiments of the present application also provide a computer program product, wherein the computer program product includes a computer program, and the computer program is operable to make a computer execute part or all of the steps described in the terminal in the above method embodiment.
  • the computer program product may be a software installation package.
  • the steps of the method or algorithm described in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read Only Memory, ROM), and erasable programmable read-only memory ( Erasable Programmable ROM (EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in an access network device, a target network device, or a core network device.
  • the processor and the storage medium may also exist as discrete components in the access network device, the target network device, or the core network device.
  • the functions described in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (Digital Video Disc, DVD)), or a semiconductor medium (for example, a solid state disk (Solid State Disk, SSD)) )Wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital video disc (Digital Video Disc, DVD)
  • a semiconductor medium for example, a solid state disk (Solid State Disk, SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种数据传输方法及相关装置,方法包括:终端通过多个载波传输第一物理信道,其中,所述多个载波上分配给所述第一物理信道的频域资源的总量不超过第一数值和/或所述第一物理信道承载的传输块大小TBS不超过第二数值,所述第一数值用于指示所述终端在一个载波内传输一个物理信道占用的频域资源的最大数量,所述第二数值用于指示所述终端在一个载波内传输一个物理信道所能承载的TBS的最大值。可见,本申请实现利用现有能力终端即可支持使用多个载波传输物理信道。

Description

数据传输方法及相关装置 技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法及相关装置。
背景技术
新无线NR***通信协议第17版本Rel-17中提出了动态频谱共享(Dynamic Spectrum Sharing,DSS),支持使用辅载波调度其他载波(包括主载波)。进一步的考虑使用一个下行控制信息(Downlink Control Information,DCI)调度多个载波上的数据传输。一种实现方式是一个DCI调度一个物理下行共享信道PDSCH/物理上行共享信道PUSCH,该PDSCH/PUSCH占用多个载波上的资源同时传输,如图1A所示,通过DCI调度载波1和载波2同时传输PDSCH上承载的信号。
***支持图1A所示的传输方式(即使用多个载波传输一个PDSCH/PUSCH)后,若不引入任何约束,则一个PDSCH/PUSCH的占用的最大带宽根据承载的载波数量直接翻番,进一步的一个PDSCH/PUSCH中承载的信息量传输块大小(Transport Block size,TBS)也随之扩大。一个PDSCH/PUSCH中所承载的最大TBS直接影响终端器件及算法实现。例如,终端支持的TBS越大,终端需要采用更多的编、译码器,并行编、译码。若限制只有高能力终端才能支持使用多个载波传输一个PDSCH/PUSCH的传输方式,势必会降低该传输方法的应用,最终影响***效率。
发明内容
本申请实施例提供一种数据传输方法及相关装置,以期实现利用现有能力终端即可支持使用多个载波传输物理信道。
第一方面,本申请实施例提供一种数据传输方法,包括:
终端通过多个载波传输第一物理信道,其中,所述多个载波上分配给所述第一物理信道的频域资源的总量不超过第一数值和/或所述第一物理信道承载的传输块大小TBS不超过第二数值,所述第一数值用于指示所述终端在一个载波内传输一个物理信道占用的频域资源的最大数量,所述第二数值用于指示所述终端在一个载波内传输一个物理信道所能承载的TBS的最大值。
第二方面,本申请实施例提供一种数据传输方法,包括:
网络设备通过多个载波传输第一物理信道,其中,所述多个载波上分配给所述第一物理信道的频域资源的总量不超过第一数值和/或所述第一物理信道承载的传输块大小TBS不超过第二数值,所述第一数值用于指示终端在一个载波内传输一个物理信道占用的频域资源的最大数量,所述第二数值用于指示所述终端在一个载波内传输一个物理信道所能承载的TBS的最大值。
第三方面,本申请实施例提供一种数据传输装置,应用于终端,包括:
传输单元,用于通过多个载波传输第一物理信道,其中,所述多个载波上分配给所述第一物理信道的频域资源的总量不超过第一数值和/或所述第一物理信道承载的传输块大小TBS不超过第二数值,所述第一数值用于指示所述终端在一个载波内传输一个物理信道占用的频域资源的最大数量,所述第二数值用于指示所述终端在一个载波内传输一个物理信道所能承载的TBS的最大值。
第四方面,本申请实施例提供一种数据传输装置,应用于网络设备,包括:
传输单元,用于通过多个载波传输第一物理信道,其中,所述多个载波上分配给所述第一物理信道的频域资源的总量不超过第一数值和/或所述第一物理信道承载的传输块大小TBS不超过第二数值,所述第一数值用于指示终端在一个载波内传输一个物理信道占用的频域资源的最大数量,所述第二数值用于指示所述终端在一个载波内传输一个物理信道所能承载的TBS的最大值。
第五方面,本申请实施例提供一种终端,包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行本申请实施例第一方面任一方法中的步骤的指令。
第六方面,本申请实施例提供一种网络设备,包括处理器、存储器、通信接口以及一个或多个程序, 其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行本申请实施例第二方面任一方法中的步骤的指令。
第七方面,本申请实施例提供了一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如本申请实施例第一方面或第二方面任一方法中所描述的部分或全部步骤。
第八方面,本申请实施例提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如本申请实施例第一方面或第二方面任一方法中所描述的部分或全部步骤。
第九方面,本申请实施例提供了一种计算机程序,其中,所述计算机程序可操作来使计算机执行如本申请实施例第一方面或第二方面任一方法中所描述的部分或全部步骤。该计算机程序可以为一个软件安装包。
可以看出,本申请实施例中,通过多个载波传输第一物理信道,其中,多个载波上分配给第一物理信道的频域资源的总量不超过第一数值和/或第一物理信道承载的传输块大小TBS不超过第二数值,第一数值用于指示终端在一个载波内传输一个物理信道占用的频域资源的最大数量,第二数值用于指示终端在一个载波内传输一个物理信道所能承载的TBS的最大值。如此可以实现在不需要增强终端处理能力的条件下,即可支持使用多个载波传输一个物理信道的传输方式,从而提高***效率。
附图说明
下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1A是本申请实施例提供的一种多载波传输物理信道的示意图;
图1B是本申请实施例提供的一种示例通信***的***架构图;
图2A是本申请实施例提供的一种数据传输方法的流程示意图;
图2B是本申请实施例提供的一种第一数量的数值的确定方式示意图;
图2C是本申请实施例提供的另一种第一数量的数值的确定方式示意图;
图2D是本申请实施例提供的另一种第一数量的数值的确定方式示意图;
图2E是本申请实施例提供的另一种第一数量的数值的确定方式示意图;
图2F是本申请实施例提供的另一种第一数量的数值的确定方式示意图;
图2G是本申请实施例提供的另一种第一数量的数值的确定方式示意图;
图2H是本申请实施例提供的另一种第一数量的数值的确定方式示意图;
图2I是本申请实施例提供的另一种第一数量的数值的确定方式示意图;
图2J是本申请实施例提供的另一种第一数量的数值的确定方式示意图;
图2K是本申请实施例提供的另一种第一数量的数值的确定方式示意图;
图2L是本申请实施例提供的另一种第一数量的数值的确定方式示意图;
图2M是本申请实施例提供的另一种第一数量的数值的确定方式示意图;
图3是本申请实施例提供的一种数据传输装置的功能单元组成框图;
图4是本申请实施例提供的另一种数据传输装置的功能单元组成框图;
图5是本申请实施例提供的一种终端的结构示意图;
图6是本申请实施例提供的一种数据传输装置的结构示意图;
图7是本申请实施例提供的另一种数据传输装置的结构示意图;
图8是本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于如图1B所示的示例通信***100,该示例通信***100包括终端110和网络设备120,终端110与网络设备120通信连接。
该示例通信***100例如可以是:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、先进的长期演进(Advanced long term evolution,LTE-A)***、新无线(New Radio,NR)***、NR***的演进***、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)***、免授权频谱上的NR(NR-based access tounlicensed spectrum,NR-U)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信***或其他通信***等。
通常来说,传统的通信***支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信***将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信***。可选地,本申请实施例中的通信***可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
本申请实施例中的终端110可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、中继设备、车载设备、可穿戴设备,未来5G网络中的终端或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端等,本申请实施例对此并不限定。
本申请实施例中的网络设备120可以是用于与终端通信的设备,该网络设备可以是LTE***中的演进型基站(evoled NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继设备、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备,5G***中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(baseband unit,BBU),或,分布式单元(distributed unit,DU)等,本申请实施例并不限定。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
在本申请实施例中,终端110或网络设备120包括硬件层、运行在硬件层之上的操作***层,以及运行在操作***层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元 (memory management unit,MMU)和内存(也称为主存)等硬件。该操作***可以是任意一种或多种通过进程(process)实现业务处理的计算机操作***,例如,Linux操作***、Unix操作***、Android操作***、iOS操作***或windows操作***等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端,或者,是终端中能够调用程序并执行程序的功能模块。
本申请实施例涉及到的关联技术主要包括载波聚合和传输块大小的计算,下面进行简要介绍。
载波聚合(Carrier Aggregation,CA)
载波聚合技术可以使得终端使用多个成员载波(Component Carrier,CC)同时进行收发数据,提升传输数据的速率,提升***工作效率。第五代移动通信技术(5th generation mobile networks或5th generation wireless systems、5th-Generation,5G)***支持的成员载波的带宽较大(例如,小于6GHZ的频段可以支持最大80MHz的成员载波带宽),第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)协议中,表1给出了部分NR***中不同频段band内所支持的载波最大带宽。对于同一个band,采用不同子载波间隔(Subcarrier Spacing,SCS)时,所指示的最大带宽是不同的。对于一个UE会向基站上报自己的带宽能力,如表2所示。即对于某个band,UE支持的最大带宽小于或等于***支持的最大带宽。表3给出了载波对应不同带宽时包括的物理资源块数量。
表1.每个新无线***频段的信道带宽Channel bandwidths for each NR band
Figure PCTCN2020089626-appb-000001
Figure PCTCN2020089626-appb-000002
Figure PCTCN2020089626-appb-000003
Figure PCTCN2020089626-appb-000004
表2.终端最大信道带宽能力
Figure PCTCN2020089626-appb-000005
Figure PCTCN2020089626-appb-000006
Figure PCTCN2020089626-appb-000007
表3:最大传输带宽配置Maximum transmission bandwidth configuration N RB
Figure PCTCN2020089626-appb-000008
在NR第16版本Rel-16之前,载波聚合***中一个物理信道PDSCH/PUSCH只能通过一个载波传输。一个下行控制信令DCI只能调度一个物理信道。即终端聚合了N个载波,则终端将会接收N个DCI,所述N个DCI分别用于调度在N个载波上同时传输的N个物理信道。
另外支持两种调度方式:本载波调度和跨载波调度。
本载波调度中,对于下行数据传输,在目标下行载波内传输的PDSCH,承载其对应DCI在该目标下行载波上传输。对于上行数据传输,在目标上行载波内传输的PUSCH,承载其对应DCI在与目标上行载波配对的下行载波内传输。跨载波调度时,对于下行数据传输,DCI与对应的PDSCH在不同的载波内传输。对于上行数据传输,DCI不在与对应PUSCH所在的上行载波配对的下行载波内传输。
跨载波调度限制为对于一个辅载波,其DCI可以在其他辅载波或主载波上传输,但是主载波对应的DCI只能在主载波上传输。即辅载波可以被其他载波调度,但主载波不能被其他载波调度。
传输块大小
NR***第15版本Rel-15中一个物理信道PDSCH/PUSCH中承载的传输块大小TBS的确定方式如下:
1、首先,确定一个时隙slot内的资源单元RE数目:
Figure PCTCN2020089626-appb-000009
N RE=min(156,N' RE)·n PRB
其中,
Figure PCTCN2020089626-appb-000010
为一个资源块中包括的子载波数目,
Figure PCTCN2020089626-appb-000011
为该slot中用于传输物理信道的时域符号数量,
Figure PCTCN2020089626-appb-000012
为该slot中用于传输解调参考信号的时域符号数量,
Figure PCTCN2020089626-appb-000013
由高层信令配置(主要考虑除DMRS之外的其他开销)或等于0,n PRB为物理信道分配的物理资源块数量。
2、然后,得到中间变量N info=N RE·R·Q m·υ,
其中,R为所述物理信道的编码速率,Q m为所述物理信道的调制阶数,v为所述物理信道的层(layer)数。
3、最后,根据中间变量N info最终确定TBS。
请参阅图2A,图2A是本申请实施例提供的一种数据传输方法的流程示意图,应用于如图1B所示的示例通信***,如图所示,该方法包括:
步骤201、终端通过多个载波传输第一物理信道,其中,所述多个载波上分配给所述第一物理信道的频域资源的总量不超过第一数值和/或所述第一物理信道承载的传输块大小TBS不超过第二数值,所述第一数值用于指示所述终端在一个载波内传输一个物理信道占用的频域资源的最大数量,所述第二数 值用于指示所述终端在一个载波内传输一个物理信道所能承载的TBS的最大值。
其中,所述第一物理信道包括PDSCH或者PUSCH。载波在协议中又称为服务小区serving cells。所述一个载波是指所述多个载波中的任意一个载波。
其中,所述多个载波中的各载波上传输的内容可以是不同的,即在不同载波上不是通过重复传输的方式传输一个物理信道,而是使用多个载波上的资源联合传输一个物理信道。所述多个载波中的各载波上传输的内容也可以是相同的。
其中,所述终端在一个载波内传输一个物理信道占用的频域资源可以是传输带宽或者资源块RB数量。
在本可能的示例中,所述方法还包括:所述终端接收来自网络设备的第一下行控制信息DCI,所述第一DCI用于调度所述第一物理信道。
在本可能的示例中,所述方法还包括:所述终端发送能力信息,所述能力信息包括所述终端在至少一个频段内采用至少一个子载波间隔进行数据传输所支持的最大传输带宽或最大RB数量或最大TBS。
其中,由表1可知,所述至少一个频段例如可以包括NR频段n1、n2、n3、n5、n7、n8等,NR频段n1对应的至少一个子载波间隔包括15kHz、30kHz、60kHz,NR频段n2对应的至少一个子载波间隔包括15kHz、30kHz、60kHz,等,即至少一个频段和至少一个子载波间隔由当前***的配置进行确定。
步骤202、网络设备通过多个载波传输第一物理信道,其中,所述多个载波上分配给所述第一物理信道的频域资源的总量不超过第一数值和/或所述第一物理信道承载的传输块大小TBS不超过第二数值,所述第一数值用于指示终端在一个载波内传输一个物理信道占用的频域资源的最大数量,所述第二数值用于指示所述终端在一个载波内传输一个物理信道所能承载的TBS的最大值。
具体实现中,若终端通过多个载波发送第一物理信道承载的第一信号,则网络设备通过多个载波接收第一物理信道承载的第一信号。若网络设备通过多个载波发送第一物理信道承载的第二信号,则终端通过多个载波接收第一物理信道承载的第二信号。
在本可能的示例中,所述方法还包括:所述网络设备向所述终端发送第一下行控制信息DCI,所述第一DCI用于调度所述第一物理信道。
在本可能的示例中,所述方法还包括:所述网络设备接收能力信息,所述能力信息包括所述终端在至少一个频段内采用至少一个子载波间隔进行数据传输所支持的最大传输带宽或最大RB数量或最大TBS。
可以看出,本实施例中,通过多个载波传输第一物理信道,其中,多个载波上分配给第一物理信道的频域资源的总量不超过第一数值和/或第一物理信道承载的传输块大小TBS不超过第二数值,第一数值用于指示终端在一个载波内传输一个物理信道占用的频域资源的最大数量,第二数值用于指示终端在一个载波内传输一个物理信道所能承载的TBS的最大值。如此可以实现在不需要增强终端处理能力的条件下,即可支持使用多个载波传输一个物理信道的传输方式,从而提高***效率。
在一个可能的示例中,所述第一数值根据所述多个载波的频段、子载波间隔和所述终端的能力信息确定。
其中,若所述第一数值用于指示所述终端在一个载波内传输一个物理信道占用的传输带宽的最大数量,则所述终端的能力信息可以包括传输条件和所述终端所支持的最大传输带宽之间的映射关系,传输条件是指所述终端在一个频段采用该频段的一个子载波间隔进行数据传输。
具体实现中,所述终端针对所述多个载波中每个载波执行如下操作A,得到多个载波对应的多个最大传输带宽:A、所述终端确定当前处理的载波的传输条件,查询能力信息中传输条件和所述终端所支持的最大传输带宽之间的映射关系,获取当前处理的载波的最大传输带宽;所述终端确定所述多个最大传输带宽中数值最小的最大传输带宽为所述第一数值。
其中,若所述第一数值用于指示所述终端在一个载波内传输一个物理信道占用的RB的最大数量,则所述终端的能力信息可以包括传输条件和所述终端所支持的最大RB数量之间的映射关系。
具体实现中,所述终端针对所述多个载波中每个载波执行如下操作B,得到多个载波对应的多个最大RB数量:B、所述终端确定当前处理的载波的传输条件,查询能力信息中传输条件和所述终端所支持 的最大RB数量之间的映射关系,获取当前处理的载波的最大RB数量;所述终端确定所述多个最大RB数量中数值最小的最大RB数量为所述第一数值。
可见,本示例中,第一数值能够根据所述多个载波的频段、子载波间隔和所述终端的能力信息进行确定,从而终端的能力能够与多载波传输方式相适配,提高***效率。
在一个可能的示例中,所述第一数值为多个最大传输带宽中数值最小的最大传输带宽,其中,所述多个最大传输带宽中一个最大传输带宽为所述终端在第一传输条件下所支持的最大传输带宽,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔。
其中,所述终端在第一传输条件下所支持的最大传输带宽小于或等于***在所述第一传输条件下所支持的最大传输带宽。结合表1和表2可知终端在不同传输条件下所支持的最大传输带宽的具体配置情况,且该配置情况具体可以通过包含传输条件和所述终端所支持的最大传输带宽的映射关系的能力信息进行实现。当然在没有该能力信息直接指示的情况下,终端也可以通过查询表1和表2获取本端设备的配置情况,此处不做唯一限定。
举例来说,如图2B所示,假设终端配置了2个载波,即载波1和载波2,且载波1和载波2均属于NR band n41,载波1和载波2采用子载波间隔均为15kHz,则载波1和载波2所约束的2个传输条件均为在NR band n41采用15kHz的子载波间隔进行数据传输,由表1和表2可知,终端在该2个传输条件下所支持的最大传输带宽均为50MHz,因此第一数值为50MHz带宽。
又举例来说,如图2C所示,假设终端配置了2个载波,即载波1和载波2,且载波1和载波2均属于NR band n41,载波1和载波2采用子载波间隔均为15kHz,则载波1和载波2所约束的2个传输条件均为在NR band n41采用15kHz的子载波间隔进行数据传输,终端查询能力信息(该能力信息包含传输条件和终端支持的最大传输带宽之间的映射关系)可知,终端在该2个传输条件下所支持的最大传输带宽均为50MHz,因此第一数值为50MHz带宽。
又举例来说,如图2D所示,假设终端配置了2个载波,即载波1和载波2,且载波1属于NR band n25,采用子载波间隔均为15kHz,载波2属于NR band n84,采用子载波间隔均为15kHz,则载波1所约束的传输条件1为在NR band n25采用15kHz的子载波间隔进行数据传输,载波2所约束的传输条件2为在NR band n84采用15kHz的子载波间隔进行数据传输,由表1和表2可知,终端在传输条件1下所支持的最大传输带宽为20MHz,在传输条件2下所支持的最大传输带宽为20MHz,因此第一数值为20MHz带宽。
又举例来说,如图2E所示,假设终端配置了2个载波,即载波1和载波2,且载波1属于NR band n25,采用子载波间隔均为15kHz,载波2属于NR band n84,采用子载波间隔均为15kHz,则载波1所约束的传输条件1为在NR band n25采用15kHz的子载波间隔进行数据传输,载波2所约束的传输条件2为在NR band n84采用15kHz的子载波间隔进行数据传输,终端查询能力信息(该能力信息包含传输条件和终端支持的最大传输带宽之间的映射关系)可知,终端在传输条件1下所支持的最大传输带宽均为20MHz,在传输条件2下所支持的最大传输带宽均为20MHz,因此第一数值为20MHz带宽。
对于多个载波的子载波间隔不同的情况,由于传输带宽小时对应的RB数量可能大,因此此种情况下确定最大传输带宽没有实质性作用,可以转为确定终端所支持的最大RB数量。
可见,本示例中,***支持通过最大传输带宽将终端能力与***支持的多载波传输方式适配。
在一个可能的示例中,所述第一数值为多个最大资源块RB数量中数值最小的最大RB数量,其中,所述多个最大RB数量中一个最大RB数量为所述终端在第一传输条件下所支持的最大RB数量,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔。
其中,所述终端在第一传输条件下所支持的最大RB数量小于或等于***在所述第一传输条件下所支持的最大RB数量。
在本可能的示例中,所述终端在第一传输条件下所支持的最大RB数量根据所述终端在所述第一传输条件下所支持的最大传输带宽和所述终端的RB数量配置信息确定,所述终端在所述第一传输条件下所支持的最大传输带宽由所述终端的能力信息指示,所述终端的RB数量配置信息包括所述终端在所述 第一传输条件下所支持的最大传输带宽与所述终端所支持的最大RB数量之间的映射关系。
其中,所述终端的RB数量配置信息的具体实现形式可以是上述表3所示。
具体实现中,结合表1、表2、表3可知终端在不同传输条件下所支持的最大RB数量的具体配置情况,且该配置情况具体可以通过包含传输条件和所述终端所支持的最大RB数量的映射关系的能力信息进行实现。当然在没有该能力信息直接指示的情况下,终端也可以通过查询表1、表2和表3获取本端设备的配置情况,此处不做唯一限定。
举例来说,如图2F所示,假设终端配置了2个载波,即载波1和载波2,且载波1和载波2均属于NR band n41,载波1和载波2采用子载波间隔均为15kHz,则由表1和表2可知,终端所支持的最大传输带宽均为50MHz,由表3可知,终端所支持的最大RB数量均为270,因此第一数值为270。
举例来说,如图2G所示,假设终端配置了2个载波,即载波1和载波2,且载波1和载波2均属于NR band n41,载波1和载波2采用子载波间隔均为15kHz,载波1和载波2所约束的2个传输条件均为在NR band n41采用15kHz的子载波间隔进行数据传输,终端查询能力信息(该能力信息包含传输条件和终端支持的最大RB数量之间的映射关系)可知,终端在该2个传输条件下所支持的最大RB数量均为270,因此第一数值为270。
举例来说,如图2H所示,假设终端配置了2个载波,即载波1和载波2,且载波1属于NR band n25,采用子载波间隔均为15kHz,载波2属于NR band n84,采用子载波间隔均为15kHz,则载波1所约束的传输条件1为在NR band n25采用15kHz的子载波间隔进行数据传输,载波2所约束的传输条件2为在NR band n84采用15kHz的子载波间隔进行数据传输,由表1和表2可知,终端在传输条件1下所支持的最大传输带宽为20MHz,在传输条件2下所支持的最大传输带宽为20MHz,由表3可知,终端在传输条件1下所支持的最大RB数量为106,终端在传输条件2下所支持的最大RB数量为106,因此第一数值为106。
举例来说,如图2I所示,假设终端配置了2个载波,即载波1和载波2,且载波1属于NR band n25,采用子载波间隔均为15kHz,载波2属于NR band n84,采用子载波间隔均为15kHz,则载波1所约束的传输条件1为在NR band n25采用15kHz的子载波间隔进行数据传输,载波2所约束的传输条件2为在NR band n84采用15kHz的子载波间隔进行数据传输,终端查询能力信息(该能力信息包含传输条件和终端支持的最大RB数量之间的映射关系)可知,终端在传输条件1下所支持的最大RB数量为106,终端在传输条件2下所支持的最大RB数量为106,因此第一数值为106。
举例来说,如图2J所示,假设终端配置了2个载波,即载波1和载波2,且载波1属于NR band n40,采用子载波间隔均为15kHz,载波2属于NR band n40,采用子载波间隔均为30kHz,则载波1所约束的传输条件1为在NR band n40采用15kHz的子载波间隔进行数据传输,载波2所约束的传输条件2为在NR band n40采用30kHz的子载波间隔进行数据传输,由表1和表2可知,终端在传输条件1下所支持的最大传输带宽为50MHz,在传输条件2下所支持的最大传输带宽为80MHz,由表3可知,终端在传输条件1下所支持的最大RB数量为270,终端在传输条件2下所支持的最大RB数量为217,则第一数值为217。
举例来说,如图2K所示,假设终端配置了2个载波,即载波1和载波2,且载波1属于NR band n40,采用子载波间隔均为15kHz,载波2属于NR band n40,采用子载波间隔均为30kHz,则载波1所约束的传输条件1为在NR band n40采用15kHz的子载波间隔进行数据传输,载波2所约束的传输条件2为在NR band n40采用30kHz的子载波间隔进行数据传输,终端查询能力信息(该能力信息包含传输条件和终端支持的最大RB数量之间的映射关系)可知,终端在传输条件1下所支持的最大RB数量为270,终端在传输条件2下所支持的最大RB数量为217,则第一数值为217。
举例来说,如图2L所示,假设终端配置了2个载波,即载波1和载波2,且载波1属于NR band n40,采用子载波间隔均为15kHz,载波2属于NR band n41,采用子载波间隔均为30kHz,则载波1所约束的传输条件1为在NR band n40采用15kHz的子载波间隔进行数据传输,载波2所约束的传输条件2为在NR band n41采用30kHz的子载波间隔进行数据传输,由表1和表2可知,终端在传输条件1下所支持的最大传输带宽为50MHz,在传输条件2下所支持的最大传输带宽为100MHz,由表3可知,终端在传输条件1下所支持的最大RB数量为270,终端在传输条件2下所支持的最大RB数量为273,则第一数值为270。
举例来说,如图2M所示,假设终端配置了2个载波,即载波1和载波2,且载波1属于NR band n40, 采用子载波间隔均为15kHz,载波2属于NR band n41,采用子载波间隔均为30kHz,则载波1所约束的传输条件1为在NR band n40采用15kHz的子载波间隔进行数据传输,载波2所约束的传输条件2为在NR band n41采用30kHz的子载波间隔进行数据传输,终端查询能力信息(该能力信息包含传输条件和终端支持的最大RB数量之间的映射关系)可知,终端在传输条件1下所支持的最大RB数量为270,终端在传输条件2下所支持的最大RB数量为273,则第一数值为273。
可见,本示例中,***支持通过最大RB数量将终端能力与***支持的多载波传输方式适配。
在一个可能的示例中,所述第二数值是根据所述多个载波的频段、子载波间隔和所述终端的能力信息确定。
其中,所述终端的能力信息可以包括传输条件和所述终端所支持的最大TBS之间的映射关系,传输条件是指所述终端在一个频段采用该频段的一个子载波间隔进行数据传输。所述终端的能力信息也可以包括传输条件和所述终端所支持的最大传输带宽或者最大RB数量之间的映射关系。
在本可能的示例中,所述第二数值为多个最大TBS中数值最小的最大TBS,其中,所述多个最大TBS中一个最大TBS为所述终端在第一传输条件下所支持的最大TBS,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔。
具体实现中,终端针对多个载波中每个载波执行如下操作C,得到多个载波对应的多个最大TBS;C、所述终端确定当前处理的载波的传输条件,查询能力信息中传输条件和所述终端所支持的最大TBS之间的映射关系,获取当前处理的载波的最大TBS;所述终端确定所述多个最大TBS中数值最小的最大传输带宽为所述第一数值。
在本可能的示例中,所述终端的在所述第一传输条件下所支持的最大TBS是根据所述终端在所述第一传输条件下所支持的最大传输带宽确定;或,所述终端在所述第一传输条件下所支持的最大TBS是根据所述终端在所述第一传输条件下所支持的最大RB数量确定。
具体实现中,终端针对多个载波中每个载波执行如下操作D,得到多个载波对应的多个最大TBS;D、所述终端确定当前处理的载波的传输条件,查询能力信息中传输条件和所述终端所支持的最大传输带宽之间的映射关系,获取当前处理的载波的最大传输带宽,以及根据所述当前处理的载波的最大传输带宽确定所述当前处理的载波的最大TBS;所述终端确定所述多个最大TBS中数值最小的最大传输带宽为所述第一数值。
其中,所述根据所述当前处理的载波的最大传输带宽确定所述当前处理的载波的最大TBS可以是:根据所述当前处理的载波的最大传输带宽确定一个时隙slot内的资源单元RE数目,根据RE数目确定中间变量,根据中间变量确定所述当前处理的载波的最大TBS。
具体实现中,终端针对多个载波中每个载波执行如下操作E,得到多个载波对应的多个最大TBS;E、所述终端确定当前处理的载波的传输条件,查询能力信息中传输条件和所述终端所支持的最大RB数量之间的映射关系,获取当前处理的载波的最大RB数量,以及根据所述当前处理的载波的最大RB数量确定所述当前处理的载波的最大TBS;所述终端确定所述多个最大TBS中数值最小的最大传输带宽为所述第一数值。
其中,所述根据所述当前处理的载波的最大传输带宽确定所述当前处理的载波的最大TBS可以是:根据所述当前处理的载波的最大RB数量确定一个时隙slot内的资源单元RE数目,根据RE数目确定中间变量,根据中间变量确定所述当前处理的载波的最大TBS。
可见,本示例中,***支持通过最大TBS将终端能力与***支持的多载波传输方式适配。
在一个可能的示例中,所述第二数值根据所述第一数值确定。
在一个可能的示例中,所述第二数值根据中间变量的取值确定,所述中间变量的取值根据所述第一数值确定。
在本可能的示例中,所述中间变量的取值根据第三数值确定,所述第三数值根据所述第一数值确定。
其中,在不同的实现方式中,所述中间变量的取值可以是不大于第三数值的,也可以是大于第三数值的,此处不做唯一限定。
在本可能的示例中,所述第一数值为多个最大RB数量中数值最小的最大RB数量;所述多个最大RB数量中一个最大RB数量为所述终端在第一传输条件下所支持的最大RB数量,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔;所述第三数值为所述第一数值与第四数值的乘积,所述第四数值的取值由协议约定或由基站配置。
在本可能的示例中,所述第四数值为156。
在本可能的示例中,所述中间变量是如下之一:
N info=min(N maxRE,min(156,N' RE)·n PRB),
N info=min(156·N maxRB,min(156,N' RE)·n PRB),
N info=min(N maxRE,N RE)·R·Q m·v,其中N RE=min(156,N' RE)·n PRB,以及
N info=min(156·N maxRB,N RE)·R·Q m·v,其中N RE=min(156,N' RE)·n PRB
其中,N info表示所述中间变量,N maxRE表示所述第三数值,N maxRB表示所述第一数值,
Figure PCTCN2020089626-appb-000014
其中
Figure PCTCN2020089626-appb-000015
为所述一个物理信道占用的时域符号数量,
Figure PCTCN2020089626-appb-000016
为该slot中用于传输解调参考信号的时域符号数量,
Figure PCTCN2020089626-appb-000017
由高层信令配置或等于0,n PRB为物理信道分配的物理资源块数量,R表示所述第一物理信道的编码速率,Q m表示所述第一物理信道的调制阶数,v表示所述第一物理信道的层数。
举例来说,中间变量N info的取值不大于第三数值N maxRE,第一数值为最大RB数量N maxRB,第三数值N maxRE根据第一数值N maxRB确定,则具体计算公式可以是如下公式:
N maxRE=156·N maxRB
N info=min(N maxRE,min(156,N' RE)·n PRB)或者,
N info=min(156·N maxRB,min(156,N' RE)·n PRB)
其中,
Figure PCTCN2020089626-appb-000018
其中
Figure PCTCN2020089626-appb-000019
为所述一个物理信道占用的时域符号数量,
Figure PCTCN2020089626-appb-000020
由高层信令配置或等于0,R表示所述第一物理信道的编码速率,Q m表示所述第一物理信道的调制阶数,v表示所述第一物理信道的层数。
又举例来说,中间变量N info的取值根据第三数值N maxRE确定,第三数值N maxRE根据第一数值N maxRB确定,则具体计算公式可以是如下公式:
N maxRE=156·N maxRB
N RE=min(156,N' RE)·n PRB
N info=min(N maxRE,N RE)·R·Q m·v或者,
N RE=min(156,N' RE)·n PRB
N info=min(156·N maxRB,N RE)·R·Q m·v,
其中,
Figure PCTCN2020089626-appb-000021
其中
Figure PCTCN2020089626-appb-000022
为所述一个物理信道占用的时域符号数量,,
Figure PCTCN2020089626-appb-000023
为该slot中用于传输解调参考信号的时域符号数量,
Figure PCTCN2020089626-appb-000024
由高层信令配置或等于0,n PRB为物理信道分配的物理资源块数量,R表示所述第一物理信道的编码速率,Q m表示所述第一物理信道的调制阶数,v表示所述第一物理信道的层数。
本示例中,算法上较为简单,且N maxRE=156·N maxRB时,两个公式的最大TBS的取值相同。
又举例来说,中间变量N info的取值根据第三数值N maxRE确定,第三数值N maxRE根据第一数值N maxRB确定,则具体计算公式可以是如下公式:
N maxRE=min(156,N' RE)·N maxRB
N info=min(N maxRE,N RE)·R·Q m·v或者,
N info=min(min(156,N' RE)·N maxRB,N RE)·R·Q m·v
其中,N RE=min(156,N' RE)·n PRB
Figure PCTCN2020089626-appb-000025
其中
Figure PCTCN2020089626-appb-000026
为所述一个物理信道占用的时域符号数量,,
Figure PCTCN2020089626-appb-000027
为该slot中用于传输解调参考信号的时域符号数量,
Figure PCTCN2020089626-appb-000028
由高层信令配置或等于0,n PRB为物理信道分配的物理资源块数量,R表示所述第一物理信道的编码速率,Q m表示所述第一物理信道的调制阶数,v表示所述第一物理信道的层数。
本示例中,在未达到最大TBS时,中间变量N info的取值相对更精确,且在N maxRE=N' RE·N maxRB时,N' RE能够适配终端一个物理信道中实际可用的RE数量。
可见,本示例中,***支持通过最大TBS将终端能力与***支持的多载波传输方式适配。
上述主要从方法侧各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,终端和网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端和网络设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
本申请实施例提供一种数据传输装置,该数据传输装置可以为终端。具体的,数据传输装置用于执行以上数据传输方法中终端所执行的步骤。本申请实施例提供的数据传输装置可以包括相应步骤所对应的模块。
本申请实施例可以根据上述方法示例对数据传输装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图3示出上述实施例中所涉及的数据传输装置的一种可能的结构示意图。如图3所示,数据传输装置3包括传输单元30,
传输单元30,用于通过多个载波传输第一物理信道,其中,所述多个载波上分配给所述第一物理信道的频域资源的总量不超过第一数值和/或所述第一物理信道承载的传输块大小TBS不超过第二数值,所述第一数值用于指示所述终端在一个载波内传输一个物理信道占用的频域资源的最大数量,所述第二数值用于指示所述终端在一个载波内传输一个物理信道所能承载的TBS的最大值。
在一个可能的示例中,所述第一数值根据所述多个载波的频段、子载波间隔和所述终端的能力信息确定。
在一个可能的示例中,所述第一数值为多个最大传输带宽中数值最小的最大传输带宽,其中,
所述多个最大传输带宽中一个最大传输带宽为所述终端在第一传输条件下所支持的最大传输带宽,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔。
在一个可能的示例中,所述第一数值为多个最大资源块RB数量中数值最小的最大RB数量,其中,
所述多个最大RB数量中一个最大RB数量为所述终端在第一传输条件下所支持的最大RB数量,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔。
在一个可能的示例中,所述终端在第一传输条件下所支持的最大RB数量根据所述终端在所述第一传输条件下所支持的最大传输带宽和所述终端的RB数量配置信息确定,所述终端在所述第一传输条件下所支持的最大传输带宽由所述终端的能力信息指示,所述终端的RB数量配置信息包括所述终端在所述第一传输条件下所支持的最大传输带宽与所述终端所支持的最大RB数量之间的映射关系。
在一个可能的示例中,所述第二数值是根据所述多个载波的频段、子载波间隔和所述终端的能力信息确定。
在一个可能的示例中,所述第二数值为多个最大TBS中数值最小的最大TBS,其中,
所述多个最大TBS中一个最大TBS为所述终端在第一传输条件下所支持的最大TBS,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔。
在一个可能的示例中,所述终端的在所述第一传输条件下所支持的最大TBS是根据所述终端在所述第一传输条件下所支持的最大传输带宽确定;或,
所述终端在所述第一传输条件下所支持的最大TBS是根据所述终端在所述第一传输条件下所支持的最大RB数量确定。
在一个可能的示例中,所述第二数值根据所述第一数值确定。
在一个可能的示例中,所述第二数值根据中间变量的取值确定,所述中间变量的取值根据所述第一数值确定。
在一个可能的示例中,所述中间变量的取值根据第三数值确定,所述第三数值根据所述第一数值确定。
在一个可能的示例中,所述第一数值为多个最大RB数量中数值最小的最大RB数量;所述多个最大RB数量中一个最大RB数量为所述终端在第一传输条件下所支持的最大RB数量,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔;
所述第三数值为所述第一数值与第四数值的乘积,所述第四数值的取值由协议约定或由基站配置。
在一个可能的示例中,所述第四数值为156。
在一个可能的示例中,所述中间变量是如下之一:
N info=min(N maxRE,min(156,N' RE)·n PRB),
N info=min(156·N maxRB,min(156,N' RE)·n PRB),
N info=min(N maxRE,N RE)·R·Q m·v,其中N RE=min(156,N' RE)·n PRB,以及,
N info=min(156·N maxRB,N RE)·R·Q m·v,其中N RE=min(156,N' RE)·n PRB
其中,N info表示所述中间变量,N maxRE表示所述第三数值,N maxRB表示所述第一数值,
Figure PCTCN2020089626-appb-000029
其中
Figure PCTCN2020089626-appb-000030
为所述一个物理信道占用的时域符号数量,
Figure PCTCN2020089626-appb-000031
为该slot中用于传输解调参考信号的时域符号数量,
Figure PCTCN2020089626-appb-000032
由高层信令配置或等于0,n PRB为物理信道分配的物理资源块数量,R表示所述第一物理信道的编码速率,Q m表示所述第一物理信道的调制阶数,v表示所述第一物理信道的层数。
在一个可能的示例中,所述传输单元,还用于接收来自网络设备的第一下行控制信息DCI,所述第一DCI用于调度所述第一物理信道。
在一个可能的示例中,所述传输单元,还用于发送能力信息,所述能力信息包括所述终端在至少一个频段内采用至少一个子载波间隔进行数据传输所支持的最大传输带宽或最大RB数量或最大TBS。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,本申请实施例提供的数据传输装置的结构示意图如图4所示。在图4中,数据传输装置4包括:处理模块40和通信模块41。处理模块40用于对数据传输装置的动作进行控制管理和/或用于执行本文所描述的技术的其它过程。通信模块41用于支持数据传输装置与其他设备之间的交互。如图4所示,数据传输装置还可以包括存储模块42,存储模块42用于存储数据传输装置的程序代码和数据。
其中,处理模块40可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块41可以是收发器、RF电路或通信接口等。存储模块42可以是存储器。
其中,上述方法实施例涉及的各场景的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。上述数据传输装置3和数据传输装置4均可执行上述图2A所示的数据传输方法中终端所执行的步骤。
请参阅图5,图5是本申请实施例提供的一种终端500的结构示意图,如图5所示,所述终端500包括处理器510、存储器520、通信接口530和至少一个用于连接所述处理器510、所述存储器520、所述通信接口530的通信总线。
存储器520包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器520用于相关指令及数据。
通信接口530用于接收和发送数据。
处理器510可以是一个或多个中央处理器(central processing unit,CPU),在处理器510是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该终端500中的处理器510用于读取所述存储器520中存储的一个或多个程序代码521,执行以下操作:调用所述通信接口530通过多个载波传输第一物理信道,其中,所述多个载波上分配给所述第一物理信道的频域资源的总量不超过第一数值和/或所述第一物理信道承载的传输块大小TBS不超过第二数值,所述第一数值用于指示所述终端在一个载波内传输一个物理信道占用的频域资源的最大数量,所述第二数值用于指示所述终端在一个载波内传输一个物理信道所能承载的TBS的最大值。
需要说明的是,各个操作的实现还可以对应参照图2A所示的方法实施例的相应描述,该终端500可以用于执行本申请前述方法实施例的终端侧的方法。
本申请实施例提供一种数据传输装置,该数据传输装置可以为网络设备。具体的,数据传输装置用于执行以上数据传输方法中网络设备所执行的步骤。本申请实施例提供的数据传输装置可以包括相应步骤所对应的模块。
本申请实施例可以根据上述方法示例对数据传输装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以 采用硬件的形式实现,也可以采用软件功能模块的形式实现。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图6示出上述实施例中所涉及的数据传输装置的一种可能的结构示意图。如图6所示,数据传输装置6包括传输单元60,
传输单元60,用于通过多个载波传输第一物理信道,其中,所述多个载波上分配给所述第一物理信道的频域资源的总量不超过第一数值和/或所述第一物理信道承载的传输块大小TBS不超过第二数值,所述第一数值用于指示终端在一个载波内传输一个物理信道占用的频域资源的最大数量,所述第二数值用于指示所述终端在一个载波内传输一个物理信道所能承载的TBS的最大值。
在一个可能的示例中,所述第一数值根据所述多个载波的频段、子载波间隔和所述终端的能力信息确定。
在一个可能的示例中,所述第一数值为多个最大传输带宽中数值最小的最大传输带宽,其中,
所述多个最大传输带宽中一个最大传输带宽为所述终端在第一传输条件下所支持的最大传输带宽,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔。
在一个可能的示例中,所述第一数值为多个最大资源块RB数量中数值最小的最大RB数量,其中,
所述多个最大RB数量中一个最大RB数量为所述终端在第一传输条件下所支持的最大RB数量,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔。
在一个可能的示例中,所述终端在第一传输条件下所支持的最大RB数量根据所述终端在所述第一传输条件下所支持的最大传输带宽和所述终端的RB数量配置信息确定,所述终端在所述第一传输条件下所支持的最大传输带宽由所述终端的能力信息指示,所述终端的RB数量配置信息包括所述终端在所述第一传输条件下所支持的最大传输带宽与所述终端所支持的最大RB数量之间的映射关系。
在一个可能的示例中,所述第二数值是根据所述多个载波的频段、子载波间隔和所述终端的能力信息确定。
在一个可能的示例中,所述第二数值为多个最大TBS中数值最小的最大TBS,其中,
所述多个最大TBS中一个最大TBS为所述终端在第一传输条件下所支持的最大TBS,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔。
在一个可能的示例中,所述终端的在所述第一传输条件下所支持的最大TBS是根据所述终端在所述第一传输条件下所支持的最大传输带宽确定;或,
所述终端在所述第一传输条件下所支持的最大TBS是根据所述终端在所述第一传输条件下所支持的最大RB数量确定。
在一个可能的示例中,所述第二数值根据所述第一数值确定。
在一个可能的示例中,所述第二数值根据中间变量的取值确定,所述中间变量的取值根据所述第一数值确定。
在一个可能的示例中,所述中间变量的取值根据第三数值确定,所述第三数值根据所述第一数值确定。
在一个可能的示例中,所述第一数值为多个最大RB数量中数值最小的最大RB数量;所述多个最大RB数量中一个最大RB数量为所述终端在第一传输条件下所支持的最大RB数量,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔;
所述第三数值为所述第一数值与第四数值的乘积,所述第四数值的取值由协议约定或由基站配置。
在一个可能的示例中,所述第四数值为156。
在一个可能的示例中,所述中间变量是如下之一:
N info=min(N maxRE,min(156,N' RE)·n PRB),
N info=min(156·N maxRB,min(156,N' RE)·n PRB),
N info=min(N maxRE,N RE)·R·Q m·v,其中N RE=min(156,N' RE)·n PRB,以及,
N info=min(156·N maxRB,N RE)·R·Q m·v,其中N RE=min(156,N' RE)·n PRB
其中,N info表示所述中间变量,N maxRE表示所述第三数值,N maxRB表示所述第一数值,
Figure PCTCN2020089626-appb-000033
其中
Figure PCTCN2020089626-appb-000034
为所述一个物理信道占用的时域符号数量,
Figure PCTCN2020089626-appb-000035
为该slot中用于传输解调参考信号的时域符号数量,
Figure PCTCN2020089626-appb-000036
由高层信令配置或等于0,n PRB为物理信道分配的物理资源块数量,R表示所述第一物理信道的编码速率,Q m表示所述第一物理信道的调制阶数,v表示所述第一物理信道的层数。
在一个可能的示例中,所述传输单元60,还用于向所述终端发送第一下行控制信息DCI,所述第一DCI用于调度所述第一物理信道。
在一个可能的示例中,所述传输单元60,还用于接收能力信息,所述能力信息包括所述终端在至少一个频段内采用至少一个子载波间隔进行数据传输所支持的最大传输带宽或最大RB数量或最大TBS。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,本申请实施例提供的数据传输装置的结构示意图如图7所示。在图7中,数据传输装置7包括:处理模块70和通信模块71。处理模块70用于对数据传输装置的动作进行控制管理和/或用于执行本文所描述的技术的其它过程。通信模块71用于支持数据传输装置与其他设备之间的交互。如图7所示,数据传输装置还可以包括存储模块72,存储模块72用于存储数据传输装置的程序代码和数据。
其中,处理模块70可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块71可以是收发器、RF电路或通信接口等。存储模块72可以是存储器。
其中,上述方法实施例涉及的各场景的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。上述数据传输装置6和数据传输装置7均可执行上述图2A所示的数据传输方法中网络设备所执行的步骤。
请参阅图8,图8是本申请实施例提供的一种网络设备800的结构示意图,如图8所示,所述网络设备800包括处理器810、存储器820、通信接口830和至少一个用于连接所述处理器810、所述存储器820、所述通信接口830的通信总线。
存储器820包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器820用于相关指令及数据。
通信接口830用于接收和发送数据。
处理器810可以是一个或多个中央处理器(central processing unit,CPU),在处理器810是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该终端800中的处理器810用于读取所述存储器820中存储的一个或多个程序代码821,执行以下操作:通过多个载波传输第一物理信道,其中,所述多个载波上分配给所述第一物理信道的频域资源的总量不超过第一数值和/或所述第一物理信道承载的传输块大小TBS不超过第二数值,所述第一数值用于指示终端在一个载波内传输一个物理信道占用的频域资源的最大数量,所述第二数值用于指示所述终端在一个载波内传输一个物理信道所能承载的TBS的最大值。
需要说明的是,各个操作的实现还可以对应参照图2A所示的方法实施例的相应描述,该网络设备 800可以用于执行本申请前述方法实施例的网络设备侧的方法。
本申请实施例还提供了一种芯片,其中,该芯片包括处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述方法实施例中终端所描述的部分或全部步骤。
本申请实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述方法实施例中终端所描述的部分或全部步骤。
本申请实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述方法实施例中网络侧设备所描述的部分或全部步骤。
本申请实施例还提供了一种计算机程序产品,其中,所述计算机程序产品包括计算机程序,所述计算机程序可操作来使计算机执行如上述方法实施例中终端所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
本申请实施例所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入网设备、目标网络设备或核心网设备中。当然,处理器和存储介质也可以作为分立组件存在于接入网设备、目标网络设备或核心网设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (69)

  1. 一种数据传输方法,其特征在于,包括:
    终端通过多个载波传输第一物理信道,其中,所述多个载波上分配给所述第一物理信道的频域资源的总量不超过第一数值和/或所述第一物理信道承载的传输块大小TBS不超过第二数值,所述第一数值用于指示所述终端在一个载波内传输一个物理信道占用的频域资源的最大数量,所述第二数值用于指示所述终端在一个载波内传输一个物理信道所能承载的TBS的最大值。
  2. 根据权利要求1所述的方法,其特征在于,所述第一数值根据所述多个载波的频段、子载波间隔和所述终端的能力信息确定。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一数值为多个最大传输带宽中数值最小的最大传输带宽,其中,
    所述多个最大传输带宽中一个最大传输带宽为所述终端在第一传输条件下所支持的最大传输带宽,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔。
  4. 根据权利要求1或2所述的任一项方法,其特征在于,所述第一数值为多个最大资源块RB数量中数值最小的最大RB数量,其中,
    所述多个最大RB数量中一个最大RB数量为所述终端在第一传输条件下所支持的最大RB数量,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔。
  5. 根据权利要求4所述的方法,其特征在于,所述终端在第一传输条件下所支持的最大RB数量根据所述终端在所述第一传输条件下所支持的最大传输带宽和所述终端的RB数量配置信息确定,所述终端在所述第一传输条件下所支持的最大传输带宽由所述终端的能力信息指示,所述终端的RB数量配置信息包括所述终端在所述第一传输条件下所支持的最大传输带宽与所述终端所支持的最大RB数量之间的映射关系。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,所述第二数值是根据所述多个载波的频段、子载波间隔和所述终端的能力信息确定。
  7. 根据权利要求6所述的方法,其特征在于,所述第二数值为多个最大TBS中数值最小的最大TBS,其中,
    所述多个最大TBS中一个最大TBS为所述终端在第一传输条件下所支持的最大TBS,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔。
  8. 根据权利要求7所述的方法,其特征在于,
    所述终端的在所述第一传输条件下所支持的最大TBS是根据所述终端在所述第一传输条件下所支持的最大传输带宽确定;或,
    所述终端在所述第一传输条件下所支持的最大TBS是根据所述终端在所述第一传输条件下所支持的最大RB数量确定。
  9. 根据权利要求1~5任一项所述的方法,其特征在于,所述第二数值根据所述第一数值确定。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述第二数值根据中间变量的取值确定,所述中间变量的取值根据所述第一数值确定。
  11. 根据权利要求10所述的方法,其特征在于,所述中间变量的取值根据第三数值确定,所述第三数值根据所述第一数值确定。
  12. 根据权利要求11所述方法,其特征在于,所述第一数值为多个最大RB数量中数值最小的最大RB数量;所述多个最大RB数量中一个最大RB数量为所述终端在第一传输条件下所支持的最大RB数量,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔;
    所述第三数值为所述第一数值与第四数值的乘积,所述第四数值的取值由协议约定或由基站配置。
  13. 根据权利要求12所述的方法,其特征在于,所述第四数值为156。
  14. 根据权利要求13所述的方法,其特征在于,所述中间变量是如下之一:
    N inf o=min(N max RE,min(156,N' RE)·n PRB),
    N inf o=min(156·N max RB,min(156,N' RE)·n PRB),
    N inf o=min(N max RE,N RE)·R·Q m·v,其中N RE=min(156,N' RE)·n PRB,以及,
    N inf o=min(156·N max RB,N RE)·R·Q m·v,其中N RE=min(156,N' RE)·n PRB
    其中,N inf o表示所述中间变量,N max RE表示所述第三数值,N max RB表示所述第一数值,
    Figure PCTCN2020089626-appb-100001
    其中
    Figure PCTCN2020089626-appb-100002
    为所述一个物理信道占用的时域符号数量,
    Figure PCTCN2020089626-appb-100003
    为该slot中用于传输解调参考信号的时域符号数量,
    Figure PCTCN2020089626-appb-100004
    由高层信令配置或等于0,n PRB为物理信道分配的物理资源块数量,R表示所述第一物理信道的编码速率,Q m表示所述第一物理信道的调制阶数,v表示所述第一物理信道的层数。
  15. 根据权利要求1-14任一项所述的方法,其特征在于,所述方法还包括:
    所述终端接收来自网络设备的第一下行控制信息DCI,所述第一DCI用于调度所述第一物理信道。
  16. 根据权利要求1~15所述的方法,其特征在于,所述方法还包括:
    所述终端发送能力信息,所述能力信息包括所述终端在至少一个频段内采用至少一个子载波间隔进行数据传输所支持的最大传输带宽或最大RB数量或最大TBS。
  17. 一种数据传输方法,其特征在于,包括:
    网络设备通过多个载波传输第一物理信道,其中,所述多个载波上分配给所述第一物理信道的频域资源的总量不超过第一数值和/或所述第一物理信道承载的传输块大小TBS不超过第二数值,所述第一数值用于指示终端在一个载波内传输一个物理信道占用的频域资源的最大数量,所述第二数值用于指示所述终端在一个载波内传输一个物理信道所能承载的TBS的最大值。
  18. 根据权利要求17所述的方法,其特征在于,所述第一数值根据所述多个载波的频段、子载波间隔和所述终端的能力信息确定。
  19. 根据权利要求17或18所述的方法,其特征在于,所述第一数值为多个最大传输带宽中数值最小的最大传输带宽,其中,
    所述多个最大传输带宽中一个最大传输带宽为所述终端在第一传输条件下所支持的最大传输带宽,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔。
  20. 根据权利要求17或18所述的方法,其特征在于,所述第一数值为多个最大资源块RB数量中数值最小的最大RB数量,其中,
    所述多个最大RB数量中一个最大RB数量为所述终端在第一传输条件下所支持的最大RB数量,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔。
  21. 根据权利要求20所述的方法,其特征在于,所述终端在第一传输条件下所支持的最大RB数量根据所述终端在所述第一传输条件下所支持的最大传输带宽和所述终端的RB数量配置信息确定,所述终端在所述第一传输条件下所支持的最大传输带宽由所述终端的能力信息指示,所述终端的RB数量配置信息包括所述终端在所述第一传输条件下所支持的最大传输带宽与所述终端所支持的最大RB数量之间的映射关系。
  22. 根据权利要求17-21任一项所述的方法,其特征在于,所述第二数值是根据所述多个载波的频段、子载波间隔和所述终端的能力信息确定。
  23. 根据权利要求22所述的方法,其特征在于,所述第二数值为多个最大TBS中数值最小的最大TBS, 其中,
    所述多个最大TBS中一个最大TBS为所述终端在第一传输条件下所支持的最大TBS,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔。
  24. 根据权利要求23所述的方法,其特征在于,所述终端的在所述第一传输条件下所支持的最大TBS是根据所述终端在所述第一传输条件下所支持的最大传输带宽确定;或,
    所述终端在所述第一传输条件下所支持的最大TBS是根据所述终端在所述第一传输条件下所支持的最大RB数量确定。
  25. 根据权利要求17-21任一项所述的方法,其特征在于,所述第二数值根据所述第一数值确定。
  26. 根据权利要求17-25任一项所述的方法,其特征在于,所述第二数值根据中间变量的取值确定,所述中间变量的取值根据所述第一数值确定。
  27. 根据权利要求26所述的方法,其特征在于,所述中间变量的取值根据第三数值确定,所述第三数值根据所述第一数值确定。
  28. 根据权利要求27所述的方法,其特征在于,所述第一数值为多个最大RB数量中数值最小的最大RB数量;所述多个最大RB数量中一个最大RB数量为所述终端在第一传输条件下所支持的最大RB数量,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔;
    所述第三数值为所述第一数值与第四数值的乘积,所述第四数值的取值由协议约定或由基站配置。
  29. 根据权利要求28所述的方法,其特征在于,所述第四数值为156。
  30. 根据权利要求29所述的方法,其特征在于,所述中间变量是如下之一:
    N inf o=min(N max RE,min(156,N' RE)·n PRB),
    N inf o=min(156·N max RB,min(156,N' RE)·n PRB),
    N inf o=min(N max RE,N RE)·R·Q m·v,其中N RE=min(156,N' RE)·n PRB,以及,
    N inf o=min(156·N max  RB,N RE)·R·Q m·v,其中N RE=min(156,N' RE)·n PRB
    其中,N inf o表示所述中间变量,N max RE表示所述第三数值,N max RB表示所述第一数值,
    Figure PCTCN2020089626-appb-100005
    其中
    Figure PCTCN2020089626-appb-100006
    为所述一个物理信道占用的时域符号数量,
    Figure PCTCN2020089626-appb-100007
    为该slot中用于传输解调参考信号的时域符号数量,
    Figure PCTCN2020089626-appb-100008
    由高层信令配置或等于0,n PRB为物理信道分配的物理资源块数量,R表示所述第一物理信道的编码速率,Q m表示所述第一物理信道的调制阶数,v表示所述第一物理信道的层数。
  31. 根据权利要求17-30任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端发送第一下行控制信息DCI,所述第一DCI用于调度所述第一物理信道。
  32. 根据权利要求17-31任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收能力信息,所述能力信息包括所述终端在至少一个频段内采用至少一个子载波间隔进行数据传输所支持的最大传输带宽或最大RB数量或最大TBS。
  33. 一种数据传输装置,其特征在于,应用于终端,包括:
    传输单元,用于通过多个载波传输第一物理信道,其中,所述多个载波上分配给所述第一物理信道的频域资源的总量不超过第一数值和/或所述第一物理信道承载的传输块大小TBS不超过第二数值,所述第一数值用于指示所述终端在一个载波内传输一个物理信道占用的频域资源的最大数量,所述第二数值用于指示所述终端在一个载波内传输一个物理信道所能承载的TBS的最大值。
  34. 根据权利要求33所述的装置,其特征在于,所述第一数值根据所述多个载波的频段、子载波间隔和所述终端的能力信息确定。
  35. 根据权利要求33或34所述的装置,其特征在于,所述第一数值为多个最大传输带宽中数值最小的最大传输带宽,其中,
    所述多个最大传输带宽中一个最大传输带宽为所述终端在第一传输条件下所支持的最大传输带宽,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔。
  36. 根据权利要求33或34所述的装置,其特征在于,所述第一数值为多个最大资源块RB数量中数值最小的最大RB数量,其中,
    所述多个最大RB数量中一个最大RB数量为所述终端在第一传输条件下所支持的最大RB数量,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔。
  37. 根据权利要求36所述的装置,其特征在于,所述终端在第一传输条件下所支持的最大RB数量根据所述终端在所述第一传输条件下所支持的最大传输带宽和所述终端的RB数量配置信息确定,所述终端在所述第一传输条件下所支持的最大传输带宽由所述终端的能力信息指示,所述终端的RB数量配置信息包括所述终端在所述第一传输条件下所支持的最大传输带宽与所述终端所支持的最大RB数量之间的映射关系。
  38. 根据权利要求33-37任一项所述的装置,其特征在于,所述第二数值是根据所述多个载波的频段、子载波间隔和所述终端的能力信息确定。
  39. 根据权利要求38所述的装置,其特征在于,所述第二数值为多个最大TBS中数值最小的最大TBS,其中,
    所述多个最大TBS中一个最大TBS为所述终端在第一传输条件下所支持的最大TBS,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔。
  40. 根据权利要求39所述的装置,其特征在于,所述终端的在所述第一传输条件下所支持的最大TBS是根据所述终端在所述第一传输条件下所支持的最大传输带宽确定;或,
    所述终端在所述第一传输条件下所支持的最大TBS是根据所述终端在所述第一传输条件下所支持的最大RB数量确定。
  41. 根据权利要求33-37任一项所述的装置,其特征在于,所述第二数值根据所述第一数值确定。
  42. 根据权利要求33-41任一项所述的装置,其特征在于,所述第二数值根据中间变量的取值确定,所述中间变量的取值根据所述第一数值确定。
  43. 根据权利要求42所述的装置,其特征在于,所述中间变量的取值根据第三数值确定,所述第三数值根据所述第一数值确定。
  44. 根据权利要求43所述的装置,其特征在于,所述第一数值为多个最大RB数量中数值最小的最大RB数量;所述多个最大RB数量中一个最大RB数量为所述终端在第一传输条件下所支持的最大RB数量,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔;
    所述第三数值为所述第一数值与第四数值的乘积,所述第四数值的取值由协议约定或由基站配置。
  45. 根据权利要求44所述的装置,其特征在于,所述第四数值为156。
  46. 根据权利要求45所述的装置,其特征在于,所述中间变量是如下之一:
    N inf o=min(N max RE,min(156,N' RE)·n PRB),
    N inf o=min(156·N max RB,min(156,N' RE)·n PRB),
    N inf o=min(N max RE,N RE)·R·Q m·v,其中N RE=min(156,N' RE)·n PRB,以及,
    N inf o=min(156·N max RB,N RE)·R·Q m·v,其中N RE=min(156,N' RE)·n PRB
    其中,N inf o表示所述中间变量,N max RE表示所述第三数值,N max RB表示所述第一数值,
    Figure PCTCN2020089626-appb-100009
    其中
    Figure PCTCN2020089626-appb-100010
    为所述一个物理信道占用的时域符号数量,
    Figure PCTCN2020089626-appb-100011
    为该slot中用于传输解调参考信号的时域符号数量,
    Figure PCTCN2020089626-appb-100012
    由高层信令配置或等于0,n PRB为物理信道分配的物理资源块数量,R表示所述第一物理信道的编码速率,Q m表示所述第一物理信道的调制阶数,v表示所述第一物理信道的层数。
  47. 根据权利要求33-46任一项所述的装置,其特征在于,所述传输单元,还用于接收来自网络设备的第一下行控制信息DCI,所述第一DCI用于调度所述第一物理信道。
  48. 根据权利要求33-47任一项所述的装置,其特征在于,所述传输单元,还用于发送能力信息,所述能力信息包括所述终端在至少一个频段内采用至少一个子载波间隔进行数据传输所支持的最大传输带宽或最大RB数量或最大TBS。
  49. 一种数据传输装置,其特征在于,应用于网络设备,包括:
    传输单元,用于通过多个载波传输第一物理信道,其中,所述多个载波上分配给所述第一物理信道的频域资源的总量不超过第一数值和/或所述第一物理信道承载的传输块大小TBS不超过第二数值,所述第一数值用于指示终端在一个载波内传输一个物理信道占用的频域资源的最大数量,所述第二数值用于指示所述终端在一个载波内传输一个物理信道所能承载的TBS的最大值。
  50. 根据权利要求49所述的装置,其特征在于,所述第一数值根据所述多个载波的频段、子载波间隔和所述终端的能力信息确定。
  51. 根据权利要求49或50所述的装置,其特征在于,所述第一数值为多个最大传输带宽中数值最小的最大传输带宽,其中,
    所述多个最大传输带宽中一个最大传输带宽为所述终端在第一传输条件下所支持的最大传输带宽,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔。
  52. 根据权利要求49或50所述的装置,其特征在于,所述第一数值为多个最大资源块RB数量中数值最小的最大RB数量,其中,
    所述多个最大RB数量中一个最大RB数量为所述终端在第一传输条件下所支持的最大RB数量,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔。
  53. 根据权利要求50所述的装置,其特征在于,所述终端在第一传输条件下所支持的最大RB数量根据所述终端在所述第一传输条件下所支持的最大传输带宽和所述终端的RB数量配置信息确定,所述终端在所述第一传输条件下所支持的最大传输带宽由所述终端的能力信息指示,所述终端的RB数量配置信息包括所述终端在所述第一传输条件下所支持的最大传输带宽与所述终端所支持的最大RB数量之间的映射关系。
  54. 根据权利要求49-53任一项所述的装置,其特征在于,所述第二数值是根据所述多个载波的频段、子载波间隔和所述终端的能力信息确定。
  55. 根据权利要求54所述的装置,其特征在于,所述第二数值为多个最大TBS中数值最小的最大TBS,其中,
    所述多个最大TBS中一个最大TBS为所述终端在第一传输条件下所支持的最大TBS,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔。
  56. 根据权利要求55所述的装置,其特征在于,所述终端的在所述第一传输条件下所支持的最大TBS是根据所述终端在所述第一传输条件下所支持的最大传输带宽确定;或,
    所述终端在所述第一传输条件下所支持的最大TBS是根据所述终端在所述第一传输条件下所支持的最大RB数量确定。
  57. 根据权利要求49-53任一项所述的装置,其特征在于,所述第二数值根据所述第一数值确定。
  58. 根据权利要求49-57任一项所述的装置,其特征在于,所述第二数值根据中间变量的取值确定,所述中间变量的取值根据所述第一数值确定。
  59. 根据权利要求58所述的装置,其特征在于,所述中间变量的取值根据第三数值确定,所述第三数值根据所述第一数值确定。
  60. 根据权利要求59所述的装置,其特征在于,所述第一数值为多个最大RB数量中数值最小的最大RB数量;所述多个最大RB数量中一个最大RB数量为所述终端在第一传输条件下所支持的最大RB数量,所述第一传输条件是指在第一频段采用第一子载波间隔进行数据传输,所述多个载波中的一个载波属于所述第一频段且采用所述第一子载波间隔;
    所述第三数值为所述第一数值与第四数值的乘积,所述第四数值的取值由协议约定或由基站配置。
  61. 根据权利要求60所述的装置,其特征在于,所述第四数值为156。
  62. 根据权利要求61所述的装置,其特征在于,所述中间变量是如下之一:
    N inf o=min(N max RE,min(156,N' RE)·n PRB),
    N inf o=min(156·N max RB,min(156,N' RE)·n PRB),
    N info=min(N max RE,N RE)·R·Q m·v,其中N RE=min(156,N' RE)·n PRB,以及,
    N inf o=min(156·N max RB,N RE)·R·Q m·v,其中N RE=min(156,N' RE)·n PRB
    其中,N inf o表示所述中间变量,N max RE表示所述第三数值,N max RB表示所述第一数值,
    Figure PCTCN2020089626-appb-100013
    其中
    Figure PCTCN2020089626-appb-100014
    为所述一个物理信道占用的时域符号数量,
    Figure PCTCN2020089626-appb-100015
    为该slot中用于传输解调参考信号的时域符号数量,
    Figure PCTCN2020089626-appb-100016
    由高层信令配置或等于0,n PRB为物理信道分配的物理资源块数量,R表示所述第一物理信道的编码速率,Q m表示所述第一物理信道的调制阶数,v表示所述第一物理信道的层数。
  63. 根据权利要求49-62任一项所述的装置,其特征在于,所述传输单元,还用于向所述终端发送第一下行控制信息DCI,所述第一DCI用于调度所述第一物理信道。
  64. 根据权利要求49-63任一项所述的装置,其特征在于,所述传输单元,还用于接收能力信息,所述能力信息包括所述终端在至少一个频段内采用至少一个子载波间隔进行数据传输所支持的最大传输带宽或最大RB数量或最大TBS。
  65. 一种终端,其特征在于,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求1-16任一项所述的方法中的步骤的指令。
  66. 一种网络设备,其特征在于,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求17-32任一项所述的方法中的步骤的指令。
  67. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1-32中任一项所述的方法。
  68. 一种计算机可读存储介质,其特征在于,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-32中任一项所述的方法。
  69. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1-32中任一项所述的方法。
PCT/CN2020/089626 2020-05-11 2020-05-11 数据传输方法及相关装置 WO2021226794A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/089626 WO2021226794A1 (zh) 2020-05-11 2020-05-11 数据传输方法及相关装置
CN202080099708.0A CN115380595A (zh) 2020-05-11 2020-05-11 数据传输方法及相关装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089626 WO2021226794A1 (zh) 2020-05-11 2020-05-11 数据传输方法及相关装置

Publications (1)

Publication Number Publication Date
WO2021226794A1 true WO2021226794A1 (zh) 2021-11-18

Family

ID=78526071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089626 WO2021226794A1 (zh) 2020-05-11 2020-05-11 数据传输方法及相关装置

Country Status (2)

Country Link
CN (1) CN115380595A (zh)
WO (1) WO2021226794A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116390171A (zh) * 2023-06-07 2023-07-04 浙江省公众信息产业有限公司 一种峰值数据速率的控制方法、装置、设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016122756A1 (en) * 2015-01-29 2016-08-04 Intel IP Corporation Device and method for effective use of unlicensed spectrum
CN109152072A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 一种调度信息传输方法及装置
CN110972186A (zh) * 2018-09-28 2020-04-07 维沃移动通信有限公司 功率余量上报方法及终端设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3565344A4 (en) * 2017-01-25 2020-01-01 Huawei Technologies Co., Ltd. RESOURCE CONFIGURATION METHOD AND DEVICE FOR IMPROVING COVERAGE
WO2018137697A1 (zh) * 2017-01-26 2018-08-02 华为技术有限公司 一种资源分配方法、相关设备及***
US11153866B2 (en) * 2017-05-05 2021-10-19 Qualcomm Incorporated Shortened transmission time interval configuration based on user equipment capabilities
CN109089319B (zh) * 2018-09-17 2021-04-02 Oppo广东移动通信有限公司 终端载波聚合信息力上报方法、装置、终端及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016122756A1 (en) * 2015-01-29 2016-08-04 Intel IP Corporation Device and method for effective use of unlicensed spectrum
CN109152072A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 一种调度信息传输方法及装置
CN110972186A (zh) * 2018-09-28 2020-04-07 维沃移动通信有限公司 功率余量上报方法及终端设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116390171A (zh) * 2023-06-07 2023-07-04 浙江省公众信息产业有限公司 一种峰值数据速率的控制方法、装置、设备及介质
CN116390171B (zh) * 2023-06-07 2023-08-25 浙江省公众信息产业有限公司 一种峰值数据速率的控制方法、装置、设备及介质

Also Published As

Publication number Publication date
CN115380595A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2019096235A1 (zh) 接收参考信号的方法和发送参考信号的方法
US11924141B2 (en) Communication method, network device, and terminal device
US20230083882A1 (en) Method for identifying downlink control information and device
EP3565159B1 (en) Data processing method and apparatus
WO2020020289A1 (zh) 信号传输方法、装置、终端设备、网络设备及***
WO2021163938A1 (zh) 天线切换方法、终端设备和通信设备
WO2021233217A1 (zh) 能力信息上报方法及其装置
WO2019191912A1 (zh) 数据传输的方法、终端设备和网络设备
WO2020237489A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2019214523A1 (zh) 一种通信方法及装置
TW202008827A (zh) 資源配置的方法、終端設備和網路設備
WO2021146867A1 (zh) 一种跳频方法、电子设备及存储介质
WO2021226794A1 (zh) 数据传输方法及相关装置
WO2018107457A1 (zh) 数据复用装置、方法以及通信***
WO2021062802A1 (zh) 一种***信息的传输方法和通信装置
WO2021031018A1 (zh) 一种通信方法及装置
WO2019223558A1 (zh) 一种通信方法、装置及***
WO2019191963A1 (zh) 发送上行信道、接收上行信道的方法和设备
WO2019192003A1 (zh) 资源分配的方法和装置
WO2021030996A1 (zh) 一种信道处理方法、终端设备及存储介质
WO2020024250A1 (zh) 无线通信的方法、终端设备和网络设备
CN112996114A (zh) 资源调度方法、装置、设备及存储介质
WO2023143011A1 (zh) 一种通信方法和装置
WO2022036527A1 (zh) 上行控制信息的传输方法、通信装置及相关设备
WO2022242474A1 (zh) 一种资源指示方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935281

Country of ref document: EP

Kind code of ref document: A1