WO2021223734A1 - 一种高强韧和高强塑积汽车钢及其制备方法 - Google Patents

一种高强韧和高强塑积汽车钢及其制备方法 Download PDF

Info

Publication number
WO2021223734A1
WO2021223734A1 PCT/CN2021/092088 CN2021092088W WO2021223734A1 WO 2021223734 A1 WO2021223734 A1 WO 2021223734A1 CN 2021092088 W CN2021092088 W CN 2021092088W WO 2021223734 A1 WO2021223734 A1 WO 2021223734A1
Authority
WO
WIPO (PCT)
Prior art keywords
strength
plastic product
steel
automotive steel
toughness
Prior art date
Application number
PCT/CN2021/092088
Other languages
English (en)
French (fr)
Inventor
曹文全
王存宇
徐海峰
俞峰
许达
翁宇庆
Original Assignee
钢铁研究总院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 钢铁研究总院 filed Critical 钢铁研究总院
Publication of WO2021223734A1 publication Critical patent/WO2021223734A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention belongs to the technical field of manufacturing high-toughness and high-strength plastic product automotive steel, and in particular provides a high-strength and high-strength plastic product automotive steel and a preparation method thereof, namely: a multi-phase, multi-layer and metastable structure regulation and control Low-cost, high-strength and high-strength plastic product automobile steel and preparation method thereof.
  • the strong plastic product of the first generation of automobile steels represented by IF steel, carbon-manganese steel, dual-phase DP steel, TRIP steel and high-strength martensitic steel is only 10-20 GPa%.
  • the plasticity is generally lower than 15%, but the V-notch impact toughness does not exceed 50J, resulting in the forming performance and crash safety of the first-generation high-strength automotive steel not meeting the requirements for lightweight and safety.
  • TWIP steel Mn content generally between 17-30%
  • austenitic stainless steel containing a large amount of Cr, Ni and Mn alloy content generally not less than 20%
  • other second-generation automotive steel strong plastic The product can exceed 50GPa%, but the cost is too high to get mass promotion and application.
  • the third-generation automotive steel with a strong plastic product of no less than 30 GPa% has been studied in the United States, Europe, Japan, South Korea and China.
  • the third-generation automobile steel has low cost and high strength plastic product, but there are still problems in the use process.
  • high-strength automobile steel forming researches on hot forming process and warm forming process of high-strength steel have been launched at home and abroad.
  • the hot forming process using 22MnB5 as the material and its parts have been applied to various vehicles.
  • the 22MnB5 after hot forming has a tensile strength of 1500MPa, but the plasticity generally does not exceed 7%, and the toughness is relatively low.
  • the purpose of the present invention is to provide a low-cost, high-toughness, high-strength plastic product automotive steel and a preparation method thereof.
  • a multi-phase, multi-layer and metastable microstructure is formed, with V-type impact toughness at -40°C not less than 120J, strong plastic
  • the product is not less than 50GPa% and the cost is much lower than that of traditional high manganese steel and the comprehensive mechanical properties are much higher than the low cost and high performance of medium manganese steel. It can be used in the field of automobile body-in-white and transmission parts manufacturing in the form of rods or plates.
  • the chemical composition of the steel of the present invention C: 0.15-0.60wt%, Si: 0-2.0wt%, Ni: 0-2.0wt%; Mn: 3.0-6.0wt% and Al: 2.0-6.0%, the rest being Fe And unavoidable impurity elements.
  • microalloying elements Nb:0-0.10wt%; V:0-0.10wt%; Ti:0-0.10wt% and Mo:0-0.10wt%, Cu :0-0.50wt%, B: 0.0005-0.005wt%.
  • the present invention mainly adopts the alloying design of main components such as 0.15-0.60wt% C, 3.0-6.0wt% Mn, 0-2.0wt% Ni and 2.0-6.0% Al, so that the composition of the steel has the following characteristics:( 1)
  • the main chemical composition design of the ratio of C, Mn, Ni and Al can obtain high-temperature ferrite and austenite dual-phase structure at high temperature, and can realize the transformation of austenite phase into martensite during cooling;
  • microalloying elements such as Nb, V, Ti, and Mo can be added to achieve the purpose of further refinement of the structure and greatly increase the yield strength.
  • the manufacturing process and conditions of the present invention are:
  • Steel smelting and solidification suitable for converter, electric furnace or induction furnace smelting, using continuous casting to produce billets or die casting to produce ingots.
  • Forging or hot rolling heating the cast billet at 1150-1250°C, and hot rolling or forging at a temperature of 1100-1150°C to form plates or bars of different specifications.
  • Reverse phase transformation annealing is carried out at 650-850°C to obtain ultra-fine, layered, multi-phase and metastable austenite multi-phase multi-scale metastable structure to achieve high strength, high toughness and high strength plastic product of steel. Meet the molding requirements and use safety of auto parts.
  • dual-phase zone rolling is mainly used to achieve flattening of austenite and high-temperature ferrite, forming an ultra-fine layered dual-phase structure of austenite and high-temperature ferrite under high temperature conditions and room temperature High-temperature ferrite and martensite dual-phase lamellar structure under the conditions; then through reverse phase transformation heat treatment of the lamellar dual-phase steel at room temperature, high-temperature ferrite and high-temperature tempered martensite at room temperature are obtained Multi-phase, multi-layer and metastable structure with metastable austenite.
  • the mechanical properties of the steel of the present invention are 0.7-1.0GPa, the yield strength is 0.5-0.7GPa, the product of tensile strength and elongation Rm ⁇ A ⁇ 50GPa%, and the V-type impact toughness at -40°C is not less than 120J , And the steel elongation is not less than 60% and the strong plastic product is not less than 50GPa% and other excellent comprehensive properties, reduce the edge cracking of parts and absorb the collision ability, and improve the forming performance of the automobile steel plate and the collision safety during use. sex.
  • the present invention proposes multi-phase, multi-layer and metastable microstructure control ideas to obtain high strength, high plasticity and high toughness; proposes scientific chemical composition design, two-phase zone deformation and two-phase zone reverse phase transformation heat treatment Obtain low-cost, high-strength and high-strength plastic product alloying, microstructure and mechanical properties control ideas of low-cost, high-strength and high-strength plastic product automotive steel with a strong plastic product of not less than 50GPa% and -40°CV-type impact toughness of not less than 120J, realizing light weight Quantification and high safety for the purpose of low-cost, easy-to-shape and high-safety automotive steel design, manufacturing and application.
  • the invention uses Fe-Mn-Al-C as the main alloying element of the alloying design idea and the multiphase, multi-layer and metastable organization control idea, and realizes that the strong plastic product of automobile steel is increased by 200 than that of the first generation of automobile steel.
  • % which is more than 60% higher than the strong plastic product of the third-generation automotive steel, and has excellent impact toughness, basically reaching the comprehensive mechanical properties of the second-generation automotive steel with high alloy content such as strong plastic product and high toughness.
  • the lightweight and high safety of auto parts provide the material basis.
  • the steel of the present invention Compared with TWIP steel, the steel of the present invention has a lower content of alloying elements, and has higher comprehensive mechanical properties than traditional automobile steel and medium manganese steel. It is claimed that the steel of the present invention is suitable for the manufacture of parts such as body-in-white and shaft transmission parts in the field of automobile manufacturing.
  • Figure 1 shows the room temperature engineering stress-strain curves of Invented-3# and Invented-5# after different heat treatments.
  • This embodiment mainly simulates the hot rolling and heat treatment process of high-strength, high-strength and high-strength plastic automobile steel through laboratory steelmaking, hot rolling and heat treatment research.
  • Example 1 Hot rolling and reverse phase change annealing to obtain a new type of automobile plate or bar with low cost, high toughness and high strength plastic product.
  • the steel of the present invention is smelted by a vacuum induction furnace in a laboratory.
  • the ingot type is 50kg round ingots.
  • a total of 10 furnaces of steel are smelted for forging rod-shaped samples.
  • the chemical composition is shown in Table 1.
  • the steel ingot smelted by vacuum induction in the laboratory undergoes 1200°C and 6 hours high temperature homogenization treatment for forging and billeting.
  • the open forging temperature range is 1150°C
  • the initial section size is ⁇ 120mm
  • the forging billet is heated to 1200°C for 2 hours, and then rolled at 1150°C to form a hot-rolled plate with a final thickness of 12mm.
  • the hot-rolled sheet is subjected to reverse phase transformation treatment of different heat treatment processes at a temperature of 650-850°C.
  • the tensile strength of the newly-invented steel is between 800-850MPa, the elongation is between 60-80%, and the strong plastic product Rm ⁇ A ⁇ 50GPa%.
  • the strong plastic product of the steel of the present invention is better than the comparative steel C1 steel (high alloy TWIP) and C2 steel (medium manganese third-generation automotive steel); at the same time, the yield strength of the newly developed steel is much higher than that of the comparative steel C1.
  • the -40°C V-type impact toughness of the newly developed steel is between 120-210J, which is close to TWIP steel C1, but much higher than the 25J of medium manganese steel C2.
  • the newly developed steel is better than the manganese steel in the comparison steel, and the strong plastic product and toughness are also equivalent to high-alloy TWIP steel. Therefore, the steel of the present invention has the characteristics of low cost, high toughness and high strength plastic product, and is a new type of automobile steel with excellent comprehensive performance.
  • Figure 1 shows the room temperature stress-strain curves of Invented-3# and Invented-5#, indicating that the steel has excellent strong plastic product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种高强韧和高强塑积汽车钢及其制备方法,属于高韧性高强塑积汽车钢制造技术领域。钢的化学成分:C:0.15-0.60wt%、Si:0-2.0wt%,Ni:0-2.0wt%;Mn:3.0-6.0wt%和Al:2.0-6.0%,余者为Fe和不可避免的杂质元素。在此基础上可以添加以下一种或多种微合金化元素,Nb:0-0.10wt%;V:0-0.10wt%;Ti:0-0.10wt%和Mo:0-0.10wt%,Cu:0-0.50wt%、B:0.0005-0.005wt%。优点在于通过C、Mn和Al等合金化与双相区轧制和退火,形成多相、多层和亚稳的微观组织结构,具有-40℃下的V-型冲击韧性不低于120J、强塑积不低于50GPa%和成本远低于传统高锰钢与综合力学性能远高于中锰钢的低成本高性能。可以以棒材或板材形式应用于汽车白车身与传动零部件制造领域。

Description

一种高强韧和高强塑积汽车钢及其制备方法
本申请要求于2020年05月08日提交中国专利局、申请号为CN202010385048.4、发明名称为“一种高强韧和高强塑积汽车钢及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于高韧性高强塑积汽车钢制造技术领域,特别是提供了一种高强韧和高强塑积汽车钢及其制备方法,即:一种基于多相、多层和亚稳组织结构调控的低成本、高强韧和高强塑积汽车钢及其制备方法。
背景技术
针对汽车轻量化和高碰撞安全性要求,汽车白车身用钢及传动部件用钢向着更高强度发展。国内外各国进行了大量高强度钢替代低强度钢的钢种开发和高强钢成型技术研究,形成了以淬火配分工艺的Q&P高强塑积汽车钢和以中锰合金化与逆相变相结合的中锰第三代汽车钢。但这些高强塑积汽车钢的强塑积仅仅在30GPa%级水平,同时V-型冲击韧性一般不高于50J,导致复杂汽车零部件的成型困难,需要开发更高强塑积和更高强韧性的新型钢铁材料。
在高强汽车钢开发方面,以IF钢、碳锰钢、双相DP钢、TRIP钢和高强马氏体钢为代表的第一代汽车钢的强塑积仅仅为10-20GPa%,当强度达到1000MPa以上后,不仅塑性一般低于15%,V-型缺口冲击韧性也不超过50J,导致第一代高强汽车钢的成型性能和碰撞安全性无法满足轻量化和安全性要求。以高锰含量的TWIP钢(Mn含量一般在17-30%之间)和含大量Cr、Ni和Mn的奥氏体不锈钢(合金含量一般不低于20%)等第二代汽车钢强塑积可以超过50GPa%,但成本过高无法得到大批量推广应用。为了适应未来汽车用钢向着低成本、高强塑积的方向发展,国际上以美国、欧洲、日本、韩国以及中国的钢铁材料研究进行了强塑积不低于30GPa%级的第三代汽车钢研究,如通过淬火配分技术开发强塑积为25GPa%的Q&P高强塑积汽车钢和提高逆相变技术开发的强塑积不低于30GPa%的中锰汽车钢。
相对于第一代汽车钢和第二代汽车钢,第三代汽车钢具有低成本和高强塑积,但在使用过程中依然存在问题。在高强汽车钢成型方面,国内外掀起了高强钢热成型工艺以及温成形工艺研究。目前以22MnB5为材料的热成型工艺及其制造的零部件已经在各种车辆上得到应用。热成型后的22MnB5具有1500MPa的抗拉强度,但塑性一般不超过7%,韧性也相对比较低。同时为了进一步实现减重目标,国外进行了中碳锰硼钢研发,使得热成型钢的强度达到1800-2000MPa,但塑性进一步恶化,严重降低了汽车零部件的碰撞安全性。
虽然以上两种第三代汽车钢的强塑积比第一代汽车钢高,热成型技术也使得汽车碰撞安全件的强度达到1500MPa以上,但这两个方向研究依然没有解决高强塑积钢的韧性问题。比如第三代汽车钢冲压过程中产生开裂与边裂问题,降低汽车零部件成品率和使用过程中的碰撞安全性。
发明内容
本发明的目的在于提供一种低成本、高韧性、高强塑积汽车钢及其制备方法。通过C、Mn和Al等合金化与双相区轧制和退火,形成多相、多层和亚稳的微观组织结构,具有-40℃下的V-型冲击韧性不低于120J、强塑积不低于50GPa%和成本远低于传统高锰钢与综合力学性能远高于中锰钢的低成本高性能。可以以棒材或板材形式应用于汽车白车身与传动零部件制造领域。
本发明钢的化学成分:C:0.15-0.60wt%、Si:0-2.0wt%,Ni:0-2.0wt%;Mn:3.0-6.0wt%和Al:2.0-6.0%,余者为Fe和不可避免的杂质元素。
在此基础上可以添加以下一种或多种微合金化元素,Nb:0-0.10wt%;V:0-0.10wt%;Ti:0-0.10wt%和Mo:0-0.10wt%,Cu:0-0.50wt%、B:0.0005-0.005wt%。
本发明主要是通过0.15-0.60wt%C,3.0-6.0wt%Mn,0-2.0wt%Ni和2.0-6.0%Al等主体成分的合金化设计,使该成分系钢以下几个特点:(1)C、Mn、Ni和Al配比的主体化学成分设计,获得高温下高温铁素体与奥氏体组织双相组织,并能够实现奥氏体相在冷却过程中转变为马氏体;(2)在主体成分的基础上,可以加入Nb、V、Ti和Mo等微合金化元素实现 组织进一步细化和大幅提高屈服强度的目的。
本发明各元素的作用及配比依据如下:
(1)C、Mn、Ni、Al的合理配比以获得高温下的高温铁素体与奥氏体双相组织和室温下的高温铁素体与马氏体双相组织;
(2)Nb、V、Ti和Mo的微合金化可以进一步细化双相组织,同时也不会大幅度提升汽车钢的成本。
本发明的制造工艺及条件为:
(1)钢的冶炼与凝固:适用于转炉、电炉或感应炉冶炼,采用连铸生产铸坯或模铸生产铸锭。
(2)铸坯或铸锭的锻造或热轧和热连轧:
锻造或热轧:将铸坯经1150-1250℃加热,在经过1100-1150℃温度条件下热轧或锻造形成不同规格的板材或棒材。
(3)对锻造和热轧材进行逆相变退火。
在650-850℃进行逆相变退火,获得超细、层状、多相和亚稳奥氏体的多相多尺度亚稳组织结构,以实现钢材的高强度、高韧性和高强塑积,满足汽车零部件成型要求和使用安全性。
在制备工艺上,主要利用双相区轧制实现奥氏体与高温铁素体的扁平化,形成高温条件下的奥氏体相与高温铁素体相的超细层状双相组织和室温条件下的高温铁素体与马氏体双相层片组织;然后通过对室温的层片状双相钢进行逆相变热处理,获得室温条件下的高温铁素体、高温回火马氏体与亚稳奥氏体的多相、多层与亚稳的组织结构。
双相区变形和双相区退火获得多相多层和亚稳组织结构的化学成分设计思路与组织调控设计思路,即层状高温铁素体、高温回火马氏体与逆相变奥氏体组织结构获得高强塑积钢的设计思路。
本发明钢的力学性能:抗拉强度为0.7-1.0GPa,屈服强度为0.5-0.7GPa,抗拉强度与延伸率乘积Rm×A≥50GPa%和-40℃的V型冲击韧性不低于120J,并且钢的延伸率不低于60%和强塑积不低于50GPa%等优异综合性能,减少零部件冲压边裂和吸收碰撞能力,提升汽车钢板的成型性能化和使用过程中的碰撞安全性。
本发明提出了多相、多层和亚稳的微观组织结构控制思路以获得高强 度、高塑性和高韧性;提出了通过科学的化学成分设计、两相区变形及两相区逆相变热处理获得强塑积不低于50GPa%和-40℃V-型冲击韧性不低于120J的低成本、高强韧和高强塑积汽车钢的合金化和微观组织结构与力学性能控制思路,实现以轻量化和高安全性为目的低成本、易成型和具有高安全性汽车钢设计、制造和应用。
本发明以Fe-Mn-Al-C为主体合金元素的合金化设计思路和多相、多层与亚稳的组织控制思路,实现了汽车钢的强塑积比第一代汽车钢提升了200%以上,比第三代汽车钢强塑积高出60%以上,同时具有优异的冲击韧性,基本达到了高合金含量的第二代汽车钢的强塑积与高韧性等综合力学性能,为汽车零部件的轻量化和高安全性提供了材料基础。
本发明钢具有相对于TWIP钢具有更低的合金元素含量,相对于传统汽车钢和中锰钢具有更高的综合力学性能。要求保护本发明钢适用于汽车制造领域的白车身及轴类传动件等零部件制造领域。
说明书附图
图1为Invented-3#和Invented-5#经过不同热处理后的室温工程应力应变曲线图。
具体实施方式
本实施例主要通过实验室炼钢、热轧和热处理研究,模拟高强韧高强塑积汽车钢的热轧和热处理工艺。
实施例1:热轧和逆相变退火获得低成本、高韧性、高强塑积的新型汽车板或棒材,钢的冶炼与锻造:
本发明钢由试验室真空感应炉冶炼,浇铸锭型为50kg的圆锭,共冶炼10炉钢供锻造棒状样品,化学成分见表1。Invented-1到Invented-8#钢等8炉新发明钢和C1和C2等2种对比钢(C1为高合金TWIP,C2为中锰第三代汽车钢)。实验室真空感应冶炼的钢锭经过1200℃和6小时高温均匀化处理,进行锻造开坯。开锻温度范围为1150℃,初始截面尺寸为φ120mm铸锭锻造成截面尺寸为厚度40mm和宽度100mm锻坯,锻后空冷。将锻坯加热到1200℃保温2小时,然后在1150℃开轧,形成最终 厚度12mm的热轧板。对热轧板在650-850℃的温度下进行不同热处理工艺的逆相变处理。最后对热处理后的钢进行力学性能和冲击韧性试验(拉伸试验:拉伸速率为10 -4/s,延伸率采用A5;冲击试验:冲击样品尺寸为10mm×10mm×55mm的V-型冲击),其结果见表2。
通过表2可以看出,新发明钢的抗拉强度介于800-850MPa,延伸率介于60-80%,强塑积Rm×A≥50GPa%。可以看出,本发明钢的强塑积优于对比钢C1钢(高合金TWIP)和C2钢(中锰第三代汽车钢);同时新研发钢的屈服强度也远远高于对比钢C1和C2两种钢。另外新研发钢的-40℃V型冲击韧性介于120-210J之间,与TWIP钢C1接近,但远远高于中锰钢C2的25J。所以无论从强塑积、冲击韧性、屈服强度钢以及合金含量,新研发钢优于对比钢中锰钢,强塑积和韧性也与高合金TWIP钢相当。所以本发明钢具有低成本、高韧性和高强塑积特点,是一种优异综合性能的新型汽车钢。图1给出了Invented-3#和Invented-5#的室温应力应变曲线,表明该钢具有优异的强塑积。
表1 发明钢与传统高强塑积钢化学成分(wt%)
Figure PCTCN2021092088-appb-000001
表2 发明钢与对比钢的力学和强塑积结果
Figure PCTCN2021092088-appb-000002
Figure PCTCN2021092088-appb-000003
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (15)

  1. 一种高强韧和高强塑积汽车钢,其特征在于,化学成分为:C:0.15-0.60wt%、Mn:3.0-6.0wt%、Ni:0-2.0wt%、Al:2.0-6.0wt%、Si:0.15-2.0wt%,余量为Fe及不可避免的杂质。
  2. 根据权利要求1所述的高强韧和高强塑积汽车钢,其特征在于,化学成分为:C:0.15-0.60wt%、Mn:3.0-6.0wt%、Ni:0-2.0wt%、Al:3.0-6.0wt%、Si:0.25-2.0wt%,余量为Fe及不可避免的杂质。
  3. 根据权利要求1所述的高强韧和高强塑积汽车钢,其特征在于,化学成分为:C:0.20-0.50wt%、Mn:4.0-5.0wt%、Ni:0-2.0wt%、Al:3.5-5.5wt%、Si:0.30-1.0wt%,余量为Fe及不可避免的杂质。
  4. 根据权利要求1所述的高强韧和高强塑积汽车钢,其特征在于,化学成分为:C:0.15wt%、Mn:5.0wt%、Al:2.0wt%、Si:1.0wt%,余量为Fe及不可避免的杂质;
    或者化学成分为:C:0.15wt%、Mn:3.0wt%、Ni:2.0wt%、Al:3.0wt%、Si:0.3wt%,余量为Fe及不可避免的杂质;
    或者化学成分为:C:0.20wt%、Mn:5.0wt%、Al:3.5wt%、Si:0.3wt%,余量为Fe及不可避免的杂质;
    或者化学成分为:C:0.35wt%、Mn:5.0wt%、Al:4.0wt%、Si:0.25wt%,余量为Fe及不可避免的杂质。
  5. 根据权利要求1~4任一项所述的高强韧和高强塑积汽车钢,其特征在于,还添加以下一种或多种微合金化元素:Nb:0.03-0.20wt%、Mo:0.03-0.20wt%、V:0.03-0.20wt%、Re:0.001-0.05wt%、B:0.001-0.05wt%。
  6. 根据权利要求5所述的高强韧和高强塑积汽车钢,其特征在于,化学成分为:C:0.25wt%、Mn:8.0wt%、Al:4.5wt%、Si:2.0wt%、V0.03wt%,余量为Fe及不可避免的杂质。
  7. 根据权利要求5所述的高强韧和高强塑积汽车钢,其特征在于,还添加Ti:0-0.10wt%。
  8. 根据权利要求5所述的高强韧和高强塑积汽车钢,其特征在于,还添加Cu:0-0.50wt%。
  9. 根据权利要求1所述的高强韧和高强塑积汽车钢,其特征在于,双相区变形和双相区退火获得多相、多层和亚稳组织结构,即层状高温铁素体、高温回火马氏体与逆相变奥氏体组织结构。
  10. 根据权利要求1或9所述的高强韧和高强塑积汽车钢,其特征在于,所述高强韧和高强塑积汽车钢的抗拉强度与延伸率乘积Rm×A≥50GPa%且-40℃下V-型冲击韧性Akv≥120J。
  11. 权利要求1~10任一项所述高强韧和高强塑积汽车钢的制备方法,步骤如下:
    (1)钢的冶炼与凝固:采用转炉、电炉或感应炉冶炼,采用连铸生产铸坯或模铸生产铸锭;
    (2)铸坯或铸锭的锻造或热轧和热连轧:将铸坯经1150-1250℃加热,在经过1100-1150℃温度条件下热轧或锻造形成不同规格的板材或棒材。
  12. 根据权利要求11所述的制备方法,其特征在于,得到所述板材或棒材后,还包括:将所述板材或棒材在650-850℃进行逆相变退火,得到高强韧和高强塑积汽车钢。
  13. 根据权利要求12所述的制备方法,其特征在于,所述逆相变退火的温度为750~800℃,保温时间为5~360min。
  14. 根据权利要求11所述的制备方法,其特征在于,得到所述铸坯或铸锭后,还包括:将所述铸坯或铸锭经过1200℃和6小时高温均匀化处理。
  15. 根据权利要求11所述的制备方法,其特征在于,步骤(2)所述铸坯的加热温度为1200℃,保温时间为2h。
PCT/CN2021/092088 2020-05-08 2021-05-07 一种高强韧和高强塑积汽车钢及其制备方法 WO2021223734A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010385048.4 2020-05-08
CN202010385048.4A CN111575580B (zh) 2020-05-08 2020-05-08 一种高强韧和高强塑积汽车钢及其制备方法

Publications (1)

Publication Number Publication Date
WO2021223734A1 true WO2021223734A1 (zh) 2021-11-11

Family

ID=72117320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092088 WO2021223734A1 (zh) 2020-05-08 2021-05-07 一种高强韧和高强塑积汽车钢及其制备方法

Country Status (2)

Country Link
CN (1) CN111575580B (zh)
WO (1) WO2021223734A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114214563A (zh) * 2021-12-07 2022-03-22 武汉科技大学 用薄板坯轧制Rm≥1500MPa高韧性热冲压钢及生产方法
CN114262778A (zh) * 2021-12-27 2022-04-01 中国科学院金属研究所 一种中锰钢板及其制备方法
CN114875221A (zh) * 2022-04-15 2022-08-09 山东建筑大学 一种随炉升温ia-q&p工艺提升中锰钢强度的方法
CN114941110A (zh) * 2022-04-11 2022-08-26 钢铁研究总院有限公司 汽车车身结构件一体式成形用中锰钢和方法
CN115341130A (zh) * 2022-09-06 2022-11-15 广西科技大学 制备高强塑积热轧冷成型汽车结构钢的方法
CN116121658A (zh) * 2023-01-30 2023-05-16 河钢股份有限公司 一种低密度Fe-Mn-Al-Ni-C钢板及制备方法
CN116752048A (zh) * 2023-06-12 2023-09-15 北京科技大学 一种强塑积大于90GPa%的超高强韧中锰钢及制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112195402B (zh) * 2020-09-28 2022-08-05 首钢集团有限公司 一种析出强化型高强韧中锰钢板及其制备方法
CN114717478A (zh) * 2022-04-06 2022-07-08 攀钢集团攀枝花钢铁研究院有限公司 轻质高强钢及其生产方法
CN114672739B (zh) * 2022-04-20 2023-08-29 攀钢集团攀枝花钢铁研究院有限公司 一种逆相变钒微合金化轻质高强钢及其生产方法
CN114855078A (zh) * 2022-04-20 2022-08-05 攀钢集团攀枝花钢铁研究院有限公司 一种逆相变复合微合金化轻质高强钢及其生产方法
CN115323135B (zh) * 2022-08-12 2023-05-23 华北理工大学 一种强塑积不低于45GPa%的超高强塑积中锰钢的制备方法
CN115896642B (zh) * 2022-12-05 2024-03-19 襄阳金耐特机械股份有限公司 一种奥氏体耐热不锈钢的制备方法
CN116516261B (zh) * 2023-04-28 2024-03-29 四川大学 一种纤维状铁素体增韧2.0GPa超高强度双相钢及制备方法
CN116987974B (zh) * 2023-08-14 2024-04-09 东北大学 一种高强度高韧性的低磁导率中锰钢及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090098408A1 (en) * 2007-10-10 2009-04-16 Nucor Corporation Complex metallographic structured steel and method of manufacturing same
CN101638749A (zh) * 2009-08-12 2010-02-03 钢铁研究总院 一种低成本高强塑积汽车用钢及其制备方法
CN102758133A (zh) * 2012-07-26 2012-10-31 宝山钢铁股份有限公司 一种1000MPa级别的高强塑积汽车用钢及其制造方法
US20160222494A1 (en) * 2015-01-30 2016-08-04 China Steel Corporation Method for manufacturing high-strength and high-ductility steel
CN106498278A (zh) * 2016-09-29 2017-03-15 北京科技大学 一种高强度高延伸率低密度的中厚板及其制备方法
CN110343970A (zh) * 2019-07-26 2019-10-18 首钢集团有限公司 一种具较低Mn含量的热轧高强塑积中锰钢及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104988391A (zh) * 2015-07-07 2015-10-21 河北钢铁股份有限公司 一种1200MPa级冷轧Q&P钢及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090098408A1 (en) * 2007-10-10 2009-04-16 Nucor Corporation Complex metallographic structured steel and method of manufacturing same
CN101638749A (zh) * 2009-08-12 2010-02-03 钢铁研究总院 一种低成本高强塑积汽车用钢及其制备方法
CN102758133A (zh) * 2012-07-26 2012-10-31 宝山钢铁股份有限公司 一种1000MPa级别的高强塑积汽车用钢及其制造方法
US20160222494A1 (en) * 2015-01-30 2016-08-04 China Steel Corporation Method for manufacturing high-strength and high-ductility steel
CN106498278A (zh) * 2016-09-29 2017-03-15 北京科技大学 一种高强度高延伸率低密度的中厚板及其制备方法
CN110343970A (zh) * 2019-07-26 2019-10-18 首钢集团有限公司 一种具较低Mn含量的热轧高强塑积中锰钢及其制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114214563A (zh) * 2021-12-07 2022-03-22 武汉科技大学 用薄板坯轧制Rm≥1500MPa高韧性热冲压钢及生产方法
CN114262778A (zh) * 2021-12-27 2022-04-01 中国科学院金属研究所 一种中锰钢板及其制备方法
CN114262778B (zh) * 2021-12-27 2023-01-06 中国科学院金属研究所 一种中锰钢板及其制备方法
CN114941110A (zh) * 2022-04-11 2022-08-26 钢铁研究总院有限公司 汽车车身结构件一体式成形用中锰钢和方法
CN114875221A (zh) * 2022-04-15 2022-08-09 山东建筑大学 一种随炉升温ia-q&p工艺提升中锰钢强度的方法
CN114875221B (zh) * 2022-04-15 2023-07-18 山东建筑大学 一种随炉升温ia-q&p工艺提升中锰钢强度的方法
CN115341130A (zh) * 2022-09-06 2022-11-15 广西科技大学 制备高强塑积热轧冷成型汽车结构钢的方法
CN115341130B (zh) * 2022-09-06 2023-08-11 广西科技大学 制备高强塑积热轧冷成型汽车结构钢的方法
CN116121658A (zh) * 2023-01-30 2023-05-16 河钢股份有限公司 一种低密度Fe-Mn-Al-Ni-C钢板及制备方法
CN116752048A (zh) * 2023-06-12 2023-09-15 北京科技大学 一种强塑积大于90GPa%的超高强韧中锰钢及制备方法

Also Published As

Publication number Publication date
CN111575580B (zh) 2022-02-25
CN111575580A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2021223734A1 (zh) 一种高强韧和高强塑积汽车钢及其制备方法
CN110066964B (zh) 一种超高强度中锰钢及其温轧制备方法
CN107794357B (zh) 超快速加热工艺生产超高强度马氏体冷轧钢板的方法
CN110093552B (zh) 一种焊接性能优异的高强塑积q&p钢板及其制备方法
CN113106338B (zh) 一种超高强度高塑性热冲压成形钢的制备方法
CN104328360B (zh) 双相孪生诱导塑性超高强度汽车钢板及其制备工艺
CN102400036B (zh) 一种高延伸率和高扩孔率的孪晶诱发塑性钢及其制造方法
EP3235913B1 (en) High-strength and high-toughness steel plate with 800 mpa grade tensile strength and method for manufacturing the same
CN101928876B (zh) 加工性优良的trip/twip高强塑性汽车钢及其制备方法
CN103556048A (zh) 一种低屈强比、高强度汽车用双相钢板及生产方法
CN103215516A (zh) 一种700MPa级高强度热轧Q&P钢及其制造方法
CN101942616A (zh) 一种高延伸率高强度低碳贝氏体钢板及其生产方法
JP2019523827A (ja) 降伏強度に優れた超高強度高延性鋼板及びその製造方法
CN102758133A (zh) 一种1000MPa级别的高强塑积汽车用钢及其制造方法
CN108754319A (zh) 采用ESP产线生产的抗拉强度≥1800MPa级热成形钢及方法
CN103255341A (zh) 一种高强度高韧性热轧耐磨钢及其制造方法
CN103805869A (zh) 一种高强度热轧q&p钢及其制造方法
CN103233161A (zh) 一种低屈强比高强度热轧q&p钢及其制造方法
CN110408861B (zh) 一种具较低Mn含量的冷轧高强塑积中锰钢及其制备方法
CN101363099A (zh) 一种抗拉强度1000MPa级冷轧双相钢板及制备方法
JP2004232022A (ja) 伸びおよび伸びフランジ性に優れた二相型高張力鋼板およびその製造方法
CN102691018A (zh) 一种低压缩比超高强度海洋工程用钢板及其生产方法
CN110229999A (zh) 一种900MPa级纳米析出强化高韧性钢板及其制造方法
CN110343970B (zh) 一种具较低Mn含量的热轧高强塑积中锰钢及其制备方法
JP4983082B2 (ja) 高強度鋼材及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21800711

Country of ref document: EP

Kind code of ref document: A1