WO2021220806A1 - Flexible laminate and display device - Google Patents

Flexible laminate and display device Download PDF

Info

Publication number
WO2021220806A1
WO2021220806A1 PCT/JP2021/015399 JP2021015399W WO2021220806A1 WO 2021220806 A1 WO2021220806 A1 WO 2021220806A1 JP 2021015399 W JP2021015399 W JP 2021015399W WO 2021220806 A1 WO2021220806 A1 WO 2021220806A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
glass plate
touch sensor
thickness
Prior art date
Application number
PCT/JP2021/015399
Other languages
French (fr)
Japanese (ja)
Inventor
承柏 洪
▲ビョン▼▲フン▼ 宋
東輝 金
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202180030819.0A priority Critical patent/CN115485651A/en
Priority to KR1020227031706A priority patent/KR20230002314A/en
Publication of WO2021220806A1 publication Critical patent/WO2021220806A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • B32B17/10045Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets with at least one intermediate layer consisting of a glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/1044Invariable transmission
    • B32B17/10458Polarization selective transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a flexible laminate, and particularly to a flexible laminate having excellent impact resistance and scratch resistance.
  • organic EL displays that use organic EL as a display element are rapidly becoming widespread.
  • the organic EL display integrated with the touch panel is operated by touching the surface of the display device. Depending on the type of operation, the surface may be struck or rubbed.
  • Organic EL displays are generally thin. Therefore, when it is hit, it may be damaged, and when it is rubbed, not only the surface is damaged and the visibility is deteriorated, but also fine cracks and eventually damage may occur.
  • Such a display device is required to have a performance capable of withstanding a force suddenly applied in the vertical direction from the side to be visually recognized and friction with the surface while maintaining flexibility.
  • Patent Document 1 describes a display device with a touch panel in which a touch panel is mounted on the polarizing plate side of a display device in which a polarizing plate is laminated on a display panel via an antireflection layer or an adhesive layer. It has a polarizer and a film having a thickness of 35 ⁇ m or less laminated on the touch panel side of the polarizing element, and the contact angle of the surface of the film on the touch panel side is less than 60 °.
  • a display device with a touch panel is described (claim 1). This display device with a touch panel has a thin polarizing plate, suppresses peeling of the antireflection layer and the adhesive layer, and avoids deterioration of the visibility of the display device (paragraph [0017]).
  • Patent Document 2 describes a polyimide-based film having a hard coat layer on one surface of a polyimide base material and a transparent electrode layer on the other surface.
  • This plastic substrate has excellent light transmission, satisfies high hardness, ITO processability, and flexibility, and when applied to a touch screen panel, functions as a window film and an electrode (). wrap up).
  • the laminate described in Patent Document 1 has only a configuration in which a thin film such as an acrylic resin is sandwiched above and below the polarizing element of the polarizing plate existing in the display device, and the laminate is located at the lower part of the laminate.
  • the impact mitigation effect is poor, and the scratch resistance is not improved.
  • the present invention solves the problem of the conventional laminated body, and an object of the present invention is a lower portion connected to the laminated body such as an organic EL layer while maintaining flexibility. It is an object of the present invention to provide a flexible laminate capable of improving the impact mitigation effect on the structure and improving the scratch resistance of the surface of the laminate.
  • a flexible laminate having a plate is provided.
  • the flexible laminate is 200-500 ⁇ m thick.
  • the flexible laminate is for an organic EL display device.
  • the present invention also provides an organic EL display device having an organic EL layer and any of the above flexible laminated bodies laminated on the visible side of the organic EL layer.
  • the organic EL display device repeats an operation of bending and stretching 180 ° with a bending radius of 3 mm with the first glass plate on the inside with reference to the polarizing plate 100,000 times. In addition, it has bending resistance so that the first glass plate does not crack or break.
  • a flexible laminate in which the impact mitigation effect on the lower structure connected to the laminate and the scratch resistance on the surface of the laminate are improved while maintaining flexibility.
  • FIG. 1 is a cross-sectional view showing an example of the structure of the flexible laminated body 100 of the present invention.
  • the flexible laminated body 100 of FIG. 1 is a touch sensor in which a first glass plate 10 laminated on the entire visible side, a polarizing plate 20, and a second glass plate 40 laminated on at least one of the entire upper portion or the entire lower portion. It has a layer 30 and.
  • the flexible laminate 100 shown in FIG. 1A has a first glass plate 10 laminated on the entire visible side, a polarizing plate 20, and a touch sensor layer 30 on which a second glass plate 40 is laminated on the entire lower portion. Have in this order.
  • the flexible laminate 100 shown in FIG. 1B has a first glass plate 10 laminated on the entire visible side, a polarizing plate 20, and a touch sensor layer 30 on which a second glass plate 40 is laminated on the entire upper portion. Have in this order.
  • the flexible laminate 100 shown in FIG. 1C is a touch sensor layer 30 in which a first glass plate 10 laminated on the entire visible side, a polarizing plate 20, and a second glass plate 40 are laminated on the entire upper portion and the entire lower portion. And in this order.
  • the first glass plate 10, the polarizing plate 20, the touch sensor layer 30, and the second glass plate 40 are an adhesive layer or an adhesive layer described later (hereinafter, both are collectively referred to as an adhesive layer). Is affixed to each other via). The pressure-sensitive adhesive layer and the adhesive layer are not shown for convenience.
  • the flexible laminate 100 of FIGS. 1A to 1C is further connected to the lower structure 50 via an adhesive layer (not shown).
  • the first glass plate 10 of the flexible laminated body 100 is laminated on the entire visible side (FIG. 1). Further, the second glass plate 40 of the flexible laminated body 100 is laminated on at least one of the entire upper portion or the entire lower portion of the touch sensor layer 30 (FIG. 1). Here, the whole means a substantially entire surface covering the bent portion and the touch sensory region of the touch sensor layer 30.
  • the first glass plate 10 and the second glass plate 40 may be formed of the same material or may be formed of different materials.
  • chemically strengthened glass having excellent strength and translucency is preferable, and by using chemically strengthened glass, the impact resistance and impact resistance of the laminated body are maintained while maintaining flexibility. Scratch property can be improved.
  • the second glass plate 40 is preferably laminated at a position as close as possible to the lower structure 50. Moreover, it is preferable that the number of laminated glass plates is as large as possible. By doing so, the impact resistance to the substructure is improved. From this point of view, among the embodiments shown in FIGS. 1A to 1C, the laminates of FIGS. 1A and 1C are preferable, and the laminate shown in FIG. 1C is more preferable.
  • Chemically tempered glass suitable for the above glass plate can be obtained by chemical ion exchange treatment of glass.
  • the strength of the glass surface can be improved by partially substituting the sodium ions and lithium ions on the glass surface with potassium ions having a larger ionic radius by the chemical ion exchange treatment.
  • the formation of a thin compressive stress layer improves the surface strength.
  • the glass used for the chemically strengthened glass include aluminosilicate glass, sodalime glass, borosilicate glass, lead glass, alkaline barium glass, and aluminoborosilicate glass.
  • the chemical ion exchange treatment can be performed by immersing the glass in an ion replacement solution heated to a temperature higher than the melting point or by directly applying a paste-like ion replacement solution to the glass.
  • the ion substitution solution include those based on potassium nitrate, potassium carbonate, potassium hydrogen carbonate, potassium phosphate, potassium sulfate and potassium hydroxide.
  • potassium nitrate 330 ° C. is preferable because it has a melting point lower than the melting point of glass (usually 500 ° C. to 600 ° C.) and is easy to handle.
  • the glass may be thinned by performing an etching treatment before the chemical ion exchange treatment.
  • the etching treatment can also be carried out using hydrofluoric acid or a mixture thereof as an aqueous ammonium fluoride solution and an organic acid such as formic acid, acetic acid, propionic acid and the like as a chemical treatment solution. Using these, etching can be performed by injection, dipping, or the like.
  • the etching treatment may be carried out using an inert gas containing fluorine as the etching gas, for example, He gas or Ar gas containing at least one of CF 4 , C 3 F 8 , C 2 F 6 , XeF 2 and the like. ..
  • the etching can be performed by turning an inert gas containing fluorine diluted with He gas or Ar gas into plasma under atmospheric pressure and releasing fluorine from carbon fluoride.
  • the thickness of the glass plate used for the flexible laminate 100 is, for example, 10 to 100 ⁇ m, preferably 15 to 90 ⁇ m, and more preferably 20 to 80 ⁇ m.
  • the thickness of the glass plate is 10 ⁇ m or more, the impact resistance of the flexible laminate can be enhanced and the glass plate can be less likely to break.
  • the thickness of the glass plate is 100 ⁇ m or less, the flexibility of the flexible laminate can be increased.
  • a functional layer such as a fingerprint resistant layer or a hard coat layer may be formed on the surface of the glass plate.
  • the functional layer can be formed from an organic substance such as an acrylic resin, a silicone resin, a polyester resin, a urethane resin, an amide resin, an epoxy resin, or an inorganic substance such as a metal.
  • the thickness of the functional layer can be 0.01-10 ⁇ m.
  • the polarizing plate 20 of the flexible laminate 100 is bonded to the first glass plate 10 and the touch sensor layer 30 on which the second glass plate 40 is laminated on the entire lower portion via the adhesive layer (FIG. 1A). Or, it is attached to the first glass plate 10 and the touch sensor layer 30 in which the second glass plate 40 is laminated on the entire upper part (FIG. 1B), or the first glass plate 10 and the second glass on the entire upper part and the entire lower part. It is bonded to the touch sensor layer 30 on which the plates 40 are laminated (FIG. 1C).
  • the polarizing plate may be composed of a linear polarizing plate or a circular polarizing plate.
  • the linear polarizing plate include a stretched film or a stretched layer on which a dichroic dye is adsorbed, or a film containing a film obtained by applying and curing a composition containing a dichroic dye and a polymerizable compound as a polarizer. ..
  • the dichroic dye iodine or a dichroic organic dye is used.
  • dichroic organic dyes C.I. I. Includes a dichroic direct dye composed of a disazo compound such as DIRECT RED 39, and a dichroic direct dye composed of a compound such as trisazo and tetrakisazo.
  • the film to which the composition containing the dichroic dye and the polymerizable compound used as a polarizer is applied and cured includes a composition containing a dichroic dye having a liquid crystal property or a dichroic dye and a polymerizable liquid crystal.
  • a composition containing a dichroic dye having a liquid crystal property or a dichroic dye and a polymerizable liquid crystal examples thereof include a film containing a cured product of a polymerizable liquid crystal compound such as a layer obtained by applying and curing the composition containing the above.
  • a film coated with a composition containing a dichroic dye and a polymerizable compound and cured is preferable because there is no limitation in the bending direction as compared with a stretched film or a stretched layer on which a dichroic dye is adsorbed.
  • the linear polarizing plate may be composed of only a polarizing element, or may further include a resin film, a base material, an alignment film, and a protective layer in addition to the polarizing element.
  • the thickness of the linear polarizing plate is, for example, 1 to 100 ⁇ m, preferably 5 to 75 ⁇ m, and more preferably 10 to 50 ⁇ m.
  • a linear polarizing plate having a stretched film having a dichroic dye adsorbed as a polarizer will be described.
  • a stretched film on which a dichroic dye, which is a polarizer, is adsorbed is usually bicolorized by a step of uniaxially stretching the polyvinyl alcohol-based resin film and dyeing the polyvinyl alcohol-based resin film with the bicolor dye.
  • a polarizer may be used as it is as a linear polarizing plate, or a resin film described later may be bonded to one side or both sides thereof and used as a linear polarizing plate.
  • the thickness of the polarizer is, for example, 0.1 to 50 ⁇ m, preferably 0.5 to 25 ⁇ m, and more preferably 1 to 10 ⁇ m.
  • the polyvinyl alcohol-based resin is obtained by saponifying the polyvinyl acetate-based resin.
  • the polyvinyl acetate-based resin in addition to polyvinyl acetate which is a homopolymer of vinyl acetate, a copolymer of vinyl acetate and another monomer copolymerizable therewith is used.
  • examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and (meth) acrylamides having an ammonium group.
  • the degree of saponification of the polyvinyl alcohol-based resin is usually 85 to 100 mol%, preferably 98 mol% or more.
  • the polyvinyl alcohol-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can also be used.
  • the degree of polymerization of the polyvinyl alcohol-based resin is usually 1000 to 10000, preferably 1500 to 5000.
  • the stretched layer on which the dichroic dye, which is a polarizer, is adsorbed is usually a step of applying the coating liquid containing the polyvinyl alcohol-based resin on the base film, a step of uniaxially stretching the obtained laminated film, and uniaxial.
  • a step of dyeing the polyvinyl alcohol-based resin layer of the stretched laminated film with a dichroic dye to adsorb the dichroic dye to form a polarizer, and the film on which the dichroic dye is adsorbed is an aqueous boric acid solution.
  • the base film may be peeled off from the polarizer.
  • the material and thickness of the base film may be the same as the material and thickness of the resin film described later.
  • the polarizing film or the polarizing element which is a stretched layer, may be incorporated into the laminate in a form in which a resin film is bonded to one side or both sides thereof.
  • This resin film can function as a protective film for a polarizer or a retardation layer.
  • the resin film may be a thermoplastic resin film.
  • the resin film is, for example, a polyolefin resin such as a chain polyolefin resin (polypropylene resin or the like), a cyclic polyolefin resin (norbornen resin or the like); a cellulose resin such as triacetyl cellulose; polyethylene terephthalate, polyethylene naphthalate, etc. It can be a film composed of a polyester resin such as polybutylene terephthalate; a polycarbonate resin; a (meth) acrylic resin; or a mixture thereof.
  • the thickness of the resin film is usually 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m, and more preferably 10 to 25 ⁇ m from the viewpoint of enhancing flexibility.
  • the resin film may or may not have a phase difference.
  • the resin film can be attached to the polarizer using, for example, an adhesive layer.
  • Linear polarizing plate having a film coated and cured with a composition containing a dichroic dye and a polymerizable compound as a polarizer
  • a linear polarizing plate having as a polarizer will be described.
  • a film to which a composition containing a dichroic dye and a polymerizable compound used as a polarizer is applied and cured is a composition containing a dichroic dye having a liquid crystal property, or a dichroic dye and a liquid crystal compound. Examples thereof include a film obtained by applying the containing composition to a substrate and curing it.
  • the film may be used as a linear polarizing plate by peeling off the base material or together with the base material, or may be used as a linear polarizing plate in a configuration having a resin film on one side or both sides thereof.
  • the base material may be a resin film.
  • the example and thickness of the base material may be the same as those exemplified in the above description of the resin film.
  • the base material may be a resin film having a hard coat layer, an antireflection layer, or an antistatic layer on at least one surface.
  • the base material may have a hard coat layer, an antireflection layer, an antistatic layer, or the like formed only on the surface on the side where the polarizer is not formed.
  • the base material may have a hard coat layer, an antireflection layer, an antistatic layer, or the like formed only on the surface on the side where the polarizer is formed.
  • the resin film examples include the same stretched film or linear polarizing plate having a stretched layer as a polarizer.
  • the resin film can be attached to the polarizer using, for example, an adhesive or an adhesive.
  • An overcoat layer can also be formed on the polarizer.
  • the overcoat layer is formed by applying a water-based adhesive or an active energy ray-curable adhesive, which will be described later.
  • the thickness of the overcoat layer is, for example, 0.1 to 10 ⁇ m, preferably 1 to 5 ⁇ m.
  • the film to which the composition containing the dichroic dye and the polymerizable compound is applied and cured is thin, but if it is too thin, the strength is lowered and the processability tends to be inferior.
  • the thickness of the film is, for example, 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m, and more preferably 10 to 25 ⁇ m.
  • the film coated with the composition containing the dichroic dye and the polymerizable compound and cured include those described in JP2013-37353A, JP2013-33249, and the like. ..
  • the linear polarizing plate can be a circular polarizing plate further having a retardation layer.
  • the retardation layer can have at least one of a ⁇ / 4 plate, a ⁇ / 2 plate, or a positive C plate.
  • a circularly polarizing plate in which a polarizer and a retardation layer are arranged so that the absorption axis of the linear polarizing plate and the slow axis of the retardation layer are at a predetermined angle is incorporated in a display device to provide an antireflection function and the like. Can be demonstrated.
  • the angle formed by the absorption axis of the linear polarizing plate and the slow axis of the ⁇ / 4 plate can be 45 ° ⁇ 10 °.
  • the linear polarizing plate and the retardation layer may be bonded to each other via an adhesive layer or an adhesive layer.
  • the retardation layer may be formed from the resin film described above, or may be formed from a layer obtained by curing the polymerizable liquid crystal compound.
  • the thickness of the retardation layer can be, for example, 1 to 20 ⁇ m, and can be 1 to 10 ⁇ m.
  • a second glass plate 40 is laminated on at least one of the entire upper portion or the entire lower portion (FIG. 1).
  • the second glass plate 40 and the touch sensor layer 30 are bonded to each other via an adhesive layer.
  • the touch sensor layer 30 may be formed directly on the glass plate 20 without interposing the adhesive layer.
  • the second glass plate 40 is preferably bonded to the touch sensor layer 30 via an ultraviolet curable adhesive layer.
  • the touch sensor layer to which the glass plate is attached is further attached to the polarizing plate 20 via the adhesive layer (not displayed).
  • the touch sensor layer 30 has a transparent conductive layer.
  • the detection method of the touch sensor layer is not particularly limited as long as it can detect the touched position on the surface, and is, for example, a capacitance method, a resistance film method, an optical sensor method, and the like. It can be appropriately selected from the supersonic method, the electromagnetic induction coupling method, the surface acoustic wave method and the like. Above all, the capacitance method is preferable from the viewpoint of low cost, quick response, and thinning.
  • the touch sensor layer is composed of, for example, a base material, a transparent conductive layer for position detection formed on the base material, and a touch position detection circuit.
  • the transparent conductive layer is grounded through the capacitance of the human body at the touched point, and the touch position detection circuit detects the grounding of the transparent conductive layer to detect the touch position.
  • ITO indium tin oxide
  • the transparent conductive layer is preferably formed so as not to be visually recognized when the touch sensor layer is used for the laminated body.
  • the touch sensor layer may have a separation layer.
  • the separation layer can be a layer having a function of facilitating the separation of the transparent conductive layer from the base material in the manufacturing process of the touch sensor layer 30.
  • it is formed on a base material with an inorganic material layer such as a silicone oxide or an organic material layer such as a (meth) acrylic resin composition, an epoxy resin composition, or a polyimide resin composition, and is formed from the base material together with a transparent conductive layer. Can be separated.
  • the touch sensor layer may further include at least one protective layer in addition to or in place of the separation layer.
  • the protective layer can be provided in contact with the transparent conductive layer to support the transparent conductive layer. Like the separation layer, it is formed on the base material and is a layer located between the base material and the transparent conductive layer.
  • the protective layer contains at least one of an organic insulating film and an inorganic insulating film, and these films can be formed by a spin coating method, a sputtering method, a vapor deposition method, or the like.
  • the touch sensor layer can be manufactured by the following method.
  • a separation layer is formed on the base material, and if necessary, a protective layer is further formed on the separation layer.
  • a transparent conductive layer patterned by photolithography is formed on the separation layer or the protective layer, and a peelable protective film is laminated on the transparent conductive layer to separate the base material.
  • a peelable protective film can be laminated on the separation layer in the same manner to obtain a touch sensor layer.
  • the touch sensor layer may be transferred to another resin film and incorporated into the flexible laminate together with the resin film.
  • the touch sensor layer may be incorporated into the flexible laminate in a form that does not have a resin film.
  • the thickness of the touch sensor layer is, for example, 5 to 100 ⁇ m, preferably 5 to 50 ⁇ m, more preferably 6 to 30 ⁇ m, and may be 6 to 15 ⁇ m.
  • the thickness of the touch sensor layer is 5 ⁇ m or more, the impact resistance of the flexible laminate can be enhanced, and when it is 100 ⁇ m or less, the flexibility of the flexible laminate can be enhanced.
  • the adhesive layer is laminated on at least one of the first glass plate 10 laminated on the visible side, the polarizing plate 20, and the entire upper portion or the entire lower portion as described above.
  • the touch sensor layer 30 having the second glass plate 40 is bonded to each other. Further, the adhesive layer can form the display device 200 by laminating the flexible laminate 100 and the lower structure 50 (FIG. 2).
  • the adhesive layer is an adhesive layer or an adhesive layer.
  • the adhesive refers to an adhesive having pressure-sensitive adhesiveness.
  • the adhesive layer is an adhesive layer
  • the adhesive layer is an adhesive containing, for example, a resin such as (meth) acrylic, rubber, urethane, ester, silicone, or polyvinyl ether as a main component. It is composed of an agent composition. Among them, a pressure-sensitive adhesive composition using a (meth) acrylic resin having excellent transparency, weather resistance, heat resistance and the like as a base polymer is preferable.
  • the pressure-sensitive adhesive composition may be an active energy ray-curable type or a thermosetting type.
  • Examples of the (meth) acrylic resin (base polymer) used in the pressure-sensitive adhesive composition include butyl (meth) acrylate, ethyl (meth) acrylate, isooctyl (meth) acrylate, and 2- (meth) acrylate.
  • a polymer or copolymer using one or more of (meth) acrylic acid esters such as ethylhexyl as a monomer is preferably used.
  • the base polymer is preferably copolymerized with polar monomers.
  • Examples of the polar monomer include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, hydroxyethyl (meth) acrylate, (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, and glycidyl ().
  • Examples thereof include monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group and the like, such as meth) acrylate.
  • the pressure-sensitive adhesive composition may consist of the base polymer alone, but usually further contains a cross-linking agent.
  • the cross-linking agent is a divalent or higher metal ion that forms a carboxylic acid metal salt with a carboxyl group; a polyamine compound that forms an amide bond with a carboxyl group; Examples thereof include polyepoxy compounds and polyols that form an ester bond with a carboxyl group; polyisocyanate compounds that form an amide bond with a carboxyl group, and the like. Of these, polyisocyanate compounds are preferable.
  • the active energy ray-curable pressure-sensitive adhesive composition has a property of being cured by being irradiated with active energy rays such as ultraviolet rays and electron beams, and has adhesiveness even before irradiation with active energy rays. It can be brought into close contact with an adherend such as a film. It can be cured by irradiation with active energy rays and the adhesion can be adjusted.
  • the active energy ray-curable pressure-sensitive adhesive composition is preferably an ultraviolet-curable type.
  • the active energy ray-curable pressure-sensitive adhesive composition contains an active energy ray-polymerizable compound in addition to the base polymer and the cross-linking agent as described above. A photopolymerization initiator, a photosensitizer, and the like are also included as appropriate.
  • the pressure-sensitive adhesive composition includes fine particles for imparting light scattering properties, beads (resin beads, glass beads, etc.), glass fibers, resins other than the base polymer, adhesive adhesive-imparting agents, fillers (metal powder and other materials). Additives such as (inorganic powder, etc.), antioxidants, ultraviolet absorbers, dyes, pigments, colorants, antifoaming agents, corrosion inhibitors, photopolymerization initiators, etc. may be further contained.
  • the pressure-sensitive adhesive layer can be formed by applying an organic solvent diluent of the pressure-sensitive adhesive composition on a substrate and drying it.
  • the formed pressure-sensitive adhesive layer can be irradiated with active energy rays to obtain a cured product having a desired degree of curing.
  • the thickness of the pressure-sensitive adhesive layer is, for example, 0.1 to 30 ⁇ m, preferably 0.5 to 20 ⁇ m, and more preferably 1 to 10 ⁇ m.
  • the storage elastic modulus of the pressure-sensitive adhesive layer is, for example, 0.001 to 1 MPa, preferably 0.01 to 0.3 MPa, and more preferably 0.05 to 0.1 MPa at 25 ° C.
  • the storage elastic modulus of the pressure-sensitive adhesive layer can be measured by the method described in Examples described later.
  • the adhesive layer 20 is an adhesive layer
  • the adhesive layer can be formed from, for example, a water-based adhesive or an active energy ray-curable adhesive.
  • water-based adhesive examples include a polyvinyl alcohol-based resin aqueous solution, an aqueous two-component urethane-based emulsion adhesive composition, and the like, and a polyvinyl alcohol-based resin aqueous solution is preferable.
  • the content of the polyvinyl alcohol-based resin is preferably 1 to 10 parts by mass and 1 to 5 parts by mass or less with respect to 100 parts by mass of water. More preferable.
  • a polyhydric aldehyde, a water-soluble epoxy compound, a melamine compound, a zirconia compound, a zinc compound, or the like may be added as an additive to the water-based adhesive.
  • the water-based adhesive preferably contains at least one of a curable component such as a metal salt of glyoxylic acid, glyoxal, and a water-soluble epoxy resin, or a cross-linking agent, in order to improve the adhesiveness.
  • a curable component such as a metal salt of glyoxylic acid, glyoxal, and a water-soluble epoxy resin, or a cross-linking agent, in order to improve the adhesiveness.
  • the metal salt of glyoxylic acid is preferably an alkali metal salt or an alkaline earth metal salt, and examples thereof include sodium glyoxylate, potassium glyoxylate, magnesium glyoxylate, calcium glyoxylate and the like.
  • the water-soluble epoxy resin is a polyamide polyamine epoxy resin obtained by reacting epichlorohydrin with a polyamide amine obtained by reacting a polyalkylene polyamine such as diethylenetriamine or triethylenetetramine with a dicarboxylic acid such as adipic acid. Can be preferably used.
  • the active energy ray-curable adhesive contains an active energy ray-curable compound.
  • the active energy ray-curable compound include a cationically polymerizable compound and a radically polymerizable compound.
  • a cationically polymerizable compound or a radically polymerizable compound is contained, the effect of increasing the hardness of the adhesive layer can be expected.
  • Examples of the cationically polymerizable compound include an oxetane compound and an epoxy compound.
  • the content of the cationically polymerizable compound is preferably 10 to 99 parts by mass, more preferably 40 to 99 parts by mass, based on 100 parts by mass of the active energy ray-curable adhesive composition.
  • the active energy ray-curable adhesive may contain only one type of oxetane compound, or may contain two or more types of oxetane compounds.
  • the active energy ray-curable adhesive may contain only one type of epoxy compound, or may contain two or more types of epoxy compounds.
  • Examples of the radically polymerizable compound include (meth) acrylic compounds and (meth) acrylamide compounds.
  • Examples of the (meth) acrylic compound include a (meth) acrylate monomer having at least one (meth) acryloyloxy group in the molecule and a (meth) acrylate oligomer having at least two (meth) acryloyloxy groups in the molecule. Can be mentioned. Each of these may be used alone, or two or more thereof may be used in combination.
  • Examples of the (meth) acrylamide compound include N-substituted (meth) acrylamide compounds.
  • the N-substituted (meth) acrylamide compound is a (meth) acrylamide compound having a substituent at the N-position.
  • a typical example of the substituent is an alkyl group.
  • the substituents at the N-position may be bonded to each other to form a ring, and -CH 2- which constitutes this ring may be substituted with an oxygen atom.
  • N-substituted (meth) acrylamide can generally be produced by the reaction of (meth) acrylic acid or its chloride with a primary or secondary amine.
  • the content of the radically polymerizable compound is preferably 1 to 70 parts by mass and more preferably 10 to 60 parts by mass with respect to 100 parts by mass of the active energy ray-curable adhesive.
  • the active energy ray-curable adhesive may contain only one type of radically polymerizable compound, or may contain two or more types.
  • the active energy ray-curable adhesive may further contain a cationic polymerization initiator or a radical polymerization initiator.
  • the active energy ray-curable adhesive may contain only one type of polymerization initiator, or may contain two or more types of polymerization initiators.
  • the first glass plate 10, the polarizing plate 20, the touch sensor layer 30, and the second glass plate 40 are laminated on the side where the first glass plate 10 is visible, and the second glass plate 10 is visible. It can be manufactured by laminating the glass plate 40 on at least one of the entire upper portion or the entire lower portion of the touch sensor layer 30. When these members are bonded, the adhesive layer may be used, and the bonded surface may be easily bonded.
  • the second glass plate 40 and the touch sensor layer 30 are bonded to each other on both sides of the touch sensor layer 30 via an ultraviolet curable adhesive layer.
  • the first glass plate 10, the polarizing plate 20, and the glass plate bonding touch sensor layer are bonded in this order via the adhesive layer.
  • the second glass plate 40 and the touch sensor layer 30 are bonded to each other on one side of the touch sensor layer 30 via the adhesive layer.
  • the first glass plate 10, the polarizing plate 20, and the glass plate bonding touch sensor layer are bonded in this order via the adhesive layer.
  • the surface to which the glass plate-bonded touch sensor layer is bonded may be the glass plate side or the touch sensor layer side.
  • the thickness of the flexible laminate is, for example, 200 to 500 ⁇ m.
  • the thickness of the flexible laminate is preferably 250 to 450 ⁇ m, more preferably 300 to 400 ⁇ m.
  • the flexible laminate can be used as a layer constituting the visible surface side of the display device.
  • Specific examples of the display device include an organic EL display device.
  • the flexible laminated body 100 can manufacture the display device 200 by laminating the lower structure of the display device on the lower part.
  • the exposed surface of the flexible laminate 100 that is not on the visible side and the display surface of the lower structure may be bonded to each other via the adhesive layer.
  • the substructure of the display device include a display structure including an organic EL layer (organic electroluminescence layer), an organic TFT layer (organic thin film transistor layer), a liquid crystal layer, and the like.
  • the display device provided with the flexible laminate preferably has the operation of bending and stretching 180 ° with the first glass plate located on the side to be visually recognized inside and having a bending radius of 3 mm repeated 100,000 times. When it is repeated 200,000 times, the glass plate can have bending resistance without cracking or breaking.
  • the specific method of the bending test follows the method described in Examples described later.
  • the present invention will be described in more detail with reference to Examples.
  • the present invention is not limited to these examples.
  • the unit "part" of the mixing ratio of the substance is based on mass unless otherwise specified.
  • MS-5C contact-type film thickness measuring device
  • OLS3000 laser microscope
  • a photoalignment film was formed on a 25 ⁇ m-thick triacetyl cellulose (TAC) film.
  • a composition containing a dichroic dye and a polymerizable liquid crystal compound was applied onto the photoalignment film, and the mixture was oriented and cured to prepare a polarizer having a thickness of 2 ⁇ m.
  • An acrylic resin composition was further applied onto the polarizer and cured by irradiating with ultraviolet rays to form an overcoat layer having a thickness of 2 ⁇ m.
  • a retardation layer including a layer obtained by polymerizing and curing a liquid crystal compound was laminated via an acrylic pressure-sensitive adhesive layer having a thickness of 5 ⁇ m.
  • the layer structure of the retardation layer is a ⁇ / 4 plate (thickness 2 ⁇ m) consisting of a layer in which the liquid crystal compound is cured and an alignment film / an ultraviolet curable adhesive layer (thickness 2 ⁇ m) / a layer in which the liquid crystal compound is cured and an alignment film. It was a positive C plate (thickness 3 ⁇ m) composed of.
  • the retardation layers were laminated in the order of the ⁇ / 4 plate and the positive C plate from the polarizer side. The angle formed by the slow axis of ⁇ / 4 and the absorption axis of the polarizer was 45 °. In this way, the polarizing plate 20 was produced.
  • the polarizing plate 20 was a circular polarizing plate.
  • a separation layer, a protective layer, and a transparent conductive layer were formed on the glass substrate in this order.
  • the transparent conductive layer was patterned by photolithography.
  • the separation layer is a cured layer of an acrylic resin and has a thickness of 0.5 ⁇ m.
  • the protective layer is a cured layer of an acrylic resin and has a thickness of 3 ⁇ m.
  • the transparent conductive layer has an indium tin oxide (ITO) layer, and its surface is coated with an insulating layer. The thickness of the ITO layer is 0.1 ⁇ m.
  • the insulating layer is a cured product of the photosensitive resin composition described in Example 3 of Japanese Patent Application Laid-Open No. 2016-14877, and has a thickness of 2 ⁇ m.
  • the touch sensor layer 30 composed of the separation layer, the protective layer, and the transparent conductive layer was peeled off from the glass substrate and used for producing a flexible laminate.
  • An acrylic resin was prepared by reacting the following components at 55 ° C. with stirring in a nitrogen atmosphere. Butyl acrylate: 70 parts, Methyl acrylate: 20 parts, Acrylic acid: 1.0 parts, Radical polymerization initiator (2,2'-azobisisobutyronitrile): 0.2 parts, Solvent (ethyl acetate) : 80 copies.
  • a cross-linking agent (“Coronate L” (trade name) manufactured by Tosoh Corporation) and a silane coupling agent (“X-12-981” (trade name) manufactured by Shin-Etsu Chemical Co., Ltd.) ) 0.5 parts were mixed, and ethyl acetate was added so that the total solid content concentration became 10% to obtain a pressure-sensitive adhesive composition.
  • the obtained pressure-sensitive adhesive composition was applied to the release-treated surface of the release-treated polyethylene terephthalate film (release film B, thickness 38 ⁇ m) using an applicator so that the thickness after drying was 25 ⁇ m. ..
  • the coating layer was dried at 100 ° C. for 1 minute to obtain a film having an adhesive layer.
  • release film A thickness 38 ⁇ m
  • release film B another polyethylene terephthalate film that had been released from the mold was attached onto the exposed surface of the pressure-sensitive adhesive layer. Then, it was cured for 7 days under the conditions of a temperature of 23 ° C. and a relative humidity of 50% RH. In this way, a pressure-sensitive adhesive layer composed of the release film A / pressure-sensitive adhesive layer / release film B was produced.
  • the storage elastic modulus of the pressure-sensitive adhesive layer at 25 ° C. was 0.05 MPa.
  • the release film was appropriately peeled off when producing a flexible laminate or the like.
  • a colored polyimide film (thickness 50 ⁇ m) is laminated on one surface of a colored polyimide film (“UPILEX-35S” (trade name) manufactured by Ube Industries, Ltd., thickness 35 ⁇ m) via the adhesive layer (thickness 25 ⁇ m). Then, a lower structure 50 (thickness 110 ⁇ m) connected to the flexible laminate 100 was produced. This was used as a substitute for the display device substructure.
  • UPILEX-35S trademark
  • a transparent base film polyamideimide film, thickness 40 ⁇ m
  • a hard coat layer a transparent base film (polyamideimide film, thickness 40 ⁇ m) prepared according to Example 4 of JP-A-2018-119141
  • the solvent is dried.
  • a window film (thickness 50 ⁇ m) having a hard coat layer having a thickness of 10 ⁇ m formed on one side of the base film was produced.
  • Composition for forming a hard coat layer 30 parts of multifunctional acrylate (“MIRAMER M340” (trade name) manufactured by MIWON Specialty Chemical Co., Ltd.), nanosilica sol (particle size 12 nm, solid content 40%) dispersed in propylene glycol monomethyl ether 50 Parts, 17 parts of ethyl acetate, photopolymerization initiator (BASF "I184" (trade name)) 2.7 parts, fluorine-based additive ("KY1203" (trade name) manufactured by Shin-Etsu Chemical Industry Co., Ltd.) 0.3 The parts were prepared by blending using a stirrer and filtering using a filter made of polypropylene (PP) material.
  • MIRAMER M340 trade name
  • nanosilica sol particle size 12 nm, solid content 40%
  • both sides of the second glass plate 40 are subjected to corona treatment (conditions: frequency 20 Hz, output 8.6 kW, processing speed 6.8 m / min), and one of the surfaces and the touch sensor layer 30 are bonded with an ultraviolet curable adhesive. It was bonded via a layer (NT-01UV (trade name) manufactured by Nitto Denko KK, thickness 1.5 ⁇ m).
  • both sides of the polarizing plate 20, the surface of the window film on the polyamide-imide film side, and both sides of the pressure-sensitive adhesive layer are similarly subjected to corona treatment (conditions: frequency 20 Hz, output 8.6 kW, processing speed 6.8 m /). Minutes) was done.
  • the flexible laminated body 100 was produced by laminating and laminating these in the order described below via the pressure-sensitive adhesive layer.
  • Example 1 The flexible laminate 100 was produced by laminating the first glass plate 10, the polarizing plate 20, and the touch sensor layer 30 on which the second glass plate 40 was laminated on the entire lower portion in this order from the side to be visually recognized (). FIG. 1A).
  • Example 2 The first glass plate 10, the polarizing plate 20, and the touch sensor layer 30 on which the second glass plate 40 is laminated on the entire upper portion are laminated in this order from the side to be visually recognized to prepare a flexible laminate 100 (a flexible laminate 100).
  • FIG. 1B The first glass plate 10, the polarizing plate 20, and the touch sensor layer 30 on which the second glass plate 40 is laminated on the entire upper portion are laminated in this order from the side to be visually recognized to prepare a flexible laminate 100 (a flexible laminate 100).
  • FIG. 1B The first glass plate 10, the polarizing plate 20, and the touch sensor layer 30 on which the second glass plate 40 is laminated on the entire upper portion are laminated in this order from the side to be visually recognized to prepare a flexible laminate 100 (a flexible laminate 100).
  • Example 3> The first glass plate 10, the polarizing plate 20, and the touch sensor layer 30 in which the second glass plate 40 is laminated on the entire upper portion and the entire lower portion are laminated in this order from the side to be visually recognized to form the flexible laminate 100. Made (Fig. 1C).
  • ⁇ Comparative example 1> A viewing surface was used as a window film instead of the first glass plate 10, and the polarizing plate 20 and the touch sensor layer 30 were laminated in this order to prepare a laminated body (not shown).
  • a laminate was prepared by stacking a lower structure 50, a pressure-sensitive paper (manufactured by Fuji Image Tech, HS Grade), and a flexible laminate prepared in Examples or Comparative Examples on a surface plate in this order.
  • The bottom pressure of the lower structure 50 is less than 72 MPa
  • The bottom pressure of the lower structure 50 is 72 MPa or more and less than 75 MPa
  • The bottom pressure of the lower structure 50 is 75 MPa or more and less than 80 MPa
  • X The bottom pressure of the lower structure 50 is 80 MPa or more.
  • a pressure-sensitive paper (HS Grade, manufactured by Fuji Image Tech) was scanned using a scanner (“V350” (trade name) manufactured by EPSON) using a program (FPD-8010E).
  • the pressure measurement range of the pressure-sensitive paper of HS Grade is 50 MPa to 130 MPa, and it is suitable for measuring the impact pressure on the laminated body (measurable range: 60 to 100 MPa). The values are based on the highest confirmed value in the circular pressure range. The measurement was performed one day after the laminate was prepared.
  • ⁇ Bending test> The substructure 50 and the flexible laminate were subjected to corona treatment (conditions: frequency 20 Hz, output 8.6 kW, processing speed 6.8 m / min), and then laminated with each other via an adhesive layer to prepare a laminate.
  • a bending test was performed on the obtained laminate. The bending test was performed under the conditions of normal temperature, bending radius of 3 mm, and infold method.
  • the obtained laminated body was installed in a bending tester (“CFT-720C” (product name) manufactured by Covotech) in a flat state (not bent), and the first glass laminated on the entire visible side. It was bent 180 ° so that the plate or window film side was on the inside (in-fold method), and then returned to the original flat state.
  • the bending radius was 3 mm.
  • the operation of bending and returning to flatness was counted as one bending, and this operation was repeated.
  • the bending speed was set to one bending (60 rpm) in 1 second.
  • the number of times of bending when a crack or break occurred in the first glass plate or the window film laminated on the entire side to be visually recognized in the region bent by the bending operation was recorded as the limit number of times of bending, and evaluated according to the following criteria. The results are shown in Table 1.
  • the limit number of bends is 200,000 or more
  • The limit number of bends is 100,000 or more, less than 200,000
  • The limit bending number is 10,000 times or more and less than 100,000 times
  • X The limit bending number is less than 10,000 times.
  • the pressure applied to the bottom surface of the lower structure 50 is small, and the flexible laminate 100 exhibits an excellent impact mitigation effect.
  • the effect was greater when the second glass plate was laminated on the entire upper part and the entire lower part of the touch sensor layer (Example 3).
  • the surface hardness was also improved.
  • the flexible laminate of the present invention has good results of the flexibility test in addition to the results of the impact resistance test and the pencil hardness test.
  • the flexible laminate of the present invention satisfies the performance requirements as a flexible laminate for a display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The purpose of the present invention is to improve the mitigation of impacts to an understructure, such as an organic EL layer, which is connected to a laminate and improve the scratch resistance of the laminate surface while also maintaining flexibility. The present invention provides a flexible laminate comprising: a first glass plate that has a thickness of 10-100 μm; a polarizing plate; a touch sensor layer; and a second glass plate that is laminated on the upper portion or the lower portion of the touch sensor layer and has a thickness of 10-100 μm.

Description

フレキシブル積層体及び表示装置Flexible laminate and display device
 本発明は、フレキシブル積層体に関し、特に優れた耐衝撃性及び耐スクラッチ性を有するフレキシブル積層体に関する。 The present invention relates to a flexible laminate, and particularly to a flexible laminate having excellent impact resistance and scratch resistance.
 近年、有機ELを表示素子として用いる有機ELディスプレイが急速に普及しつつある。有機ELディスプレイの中でも、タッチパネル一体型の有機ELディスプレイは、表示装置の表面をタッチすることで操作される。操作の種類によって、表面は叩かれたり、摩擦されたりする。 In recent years, organic EL displays that use organic EL as a display element are rapidly becoming widespread. Among the organic EL displays, the organic EL display integrated with the touch panel is operated by touching the surface of the display device. Depending on the type of operation, the surface may be struck or rubbed.
 有機ELディスプレイは一般に薄い。それゆえ、叩かれた場合には、破損するおそれがあり、摩擦された場合には、表面が傷ついて視認性が悪くなるばかりでなく、微細なひびからひいては破損に至る場合もある。かかる表示装置は、可撓性(フレキシビリティ)を保ちつつも、視認される側から垂直方向に急激に加えられる力や表面に対する摩擦に耐え得るだけの性能を有することが要求されている。 Organic EL displays are generally thin. Therefore, when it is hit, it may be damaged, and when it is rubbed, not only the surface is damaged and the visibility is deteriorated, but also fine cracks and eventually damage may occur. Such a display device is required to have a performance capable of withstanding a force suddenly applied in the vertical direction from the side to be visually recognized and friction with the surface while maintaining flexibility.
 特許文献1には、表示パネル上に偏光板を積層した表示装置の偏光板側に、反射防止層又は粘着剤層を介してタッチパネルを装着したタッチパネル付き表示装置であって、前記偏光板は、偏光子と、該偏光子のタッチパネル側に積層される、膜厚35μm以下のフィルムとを有しており、該フィルムにおけるタッチパネル側の表面の接触角が、60°未満であることを特徴とするタッチパネル付き表示装置、が記載されている(請求項1)。このタッチパネル付き表示装置は、偏光板が薄型の構成であり、反射防止層や粘着剤層の剥がれを抑え、表示装置の視認性の低下を回避するものである(段落[0017])。 Patent Document 1 describes a display device with a touch panel in which a touch panel is mounted on the polarizing plate side of a display device in which a polarizing plate is laminated on a display panel via an antireflection layer or an adhesive layer. It has a polarizer and a film having a thickness of 35 μm or less laminated on the touch panel side of the polarizing element, and the contact angle of the surface of the film on the touch panel side is less than 60 °. A display device with a touch panel is described (claim 1). This display device with a touch panel has a thin polarizing plate, suppresses peeling of the antireflection layer and the adhesive layer, and avoids deterioration of the visibility of the display device (paragraph [0017]).
 特許文献2には、ポリイミド基材の一面にハードコート層を有し、他の面に透明電極層を含む、ポリイミド系フィルム、が記載されている。このプラスチック基材は、優れた光透過性を有し、高硬度、ITO加工性、柔軟性を満たし、タッチスクリーンパネルに適用された際に、ウィンドウフィルム及び電極としての機能を果たすものである(要約)。 Patent Document 2 describes a polyimide-based film having a hard coat layer on one surface of a polyimide base material and a transparent electrode layer on the other surface. This plastic substrate has excellent light transmission, satisfies high hardness, ITO processability, and flexibility, and when applied to a touch screen panel, functions as a window film and an electrode (). wrap up).
国際公開2014/038466号International Publication 2014/038466 特表2015-508345号公報Special Table 2015-508345
 しかし、特許文献1に記載の積層体は、表示装置中に存する偏光板の偏光子の上下にアクリル樹脂等の薄いフィルムを挟んだのみの構成であり、積層体の下部に位置する表示パネルへの衝撃緩和効果は乏しく、また耐スクラッチ性は向上しない。 However, the laminate described in Patent Document 1 has only a configuration in which a thin film such as an acrylic resin is sandwiched above and below the polarizing element of the polarizing plate existing in the display device, and the laminate is located at the lower part of the laminate. The impact mitigation effect is poor, and the scratch resistance is not improved.
 また、特許文献2に記載の積層体では、比較的剛直なプラスチック基材が用いられてはいるが、これを表示装置に適用しても、耐スクラッチ性は未だ不十分であり、積層体下部への衝撃緩和効果も十分に得られない。 Further, in the laminate described in Patent Document 2, a relatively rigid plastic base material is used, but even if this is applied to a display device, scratch resistance is still insufficient, and the lower portion of the laminate is used. The impact mitigation effect on the to is not sufficiently obtained.
 本発明は、上記従来の積層体が抱える問題を解決するものであり、その目的とするところは、可撓性(フレキシビリティ)を保ちながらも、有機EL層等の、積層体に接続する下部構造に対する衝撃緩和効果の向上、及び積層体表面の耐スクラッチ性の向上を図ることができるフレキシブル積層体を提供すること、にある。 The present invention solves the problem of the conventional laminated body, and an object of the present invention is a lower portion connected to the laminated body such as an organic EL layer while maintaining flexibility. It is an object of the present invention to provide a flexible laminate capable of improving the impact mitigation effect on the structure and improving the scratch resistance of the surface of the laminate.
 本発明は、厚さが10~100μmである第1ガラス板と、偏光板と、タッチセンサー層と、該タッチセンサー層の上部又は下部に積層された厚さが10~100μmである第2ガラス板とを有する、フレキシブル積層体を提供する。 In the present invention, a first glass plate having a thickness of 10 to 100 μm, a polarizing plate, a touch sensor layer, and a second glass having a thickness of 10 to 100 μm laminated on the upper or lower portion of the touch sensor layer. Provided is a flexible laminate having a plate.
 ある一形態においては、前記フレキシブル積層体は、厚さが200~500μmである。 In one form, the flexible laminate is 200-500 μm thick.
 ある一形態においては、前記フレキシブル積層体は、有機EL表示装置用である。 In one form, the flexible laminate is for an organic EL display device.
 また、本発明は、有機EL層と、該有機EL層の視認される側に積層された前記いずれかのフレキシブル積層体とを有する、有機EL表示装置を提供する。 The present invention also provides an organic EL display device having an organic EL layer and any of the above flexible laminated bodies laminated on the visible side of the organic EL layer.
 ある一形態においては、前記有機EL表示装置は、前記偏光板を基準にして第1ガラス板を内側にして、屈曲半径3mmにて180°屈曲させては伸ばす操作を10万回繰り返し行った場合に、第1ガラス板に割れ又は破断が生じない耐屈曲性を有する。 In one embodiment, the organic EL display device repeats an operation of bending and stretching 180 ° with a bending radius of 3 mm with the first glass plate on the inside with reference to the polarizing plate 100,000 times. In addition, it has bending resistance so that the first glass plate does not crack or break.
 本発明によれば、可撓性(フレキシビリティ)を保ちながらも、積層体に接続する下部構造に対する衝撃緩和効果及び積層体表面の耐スクラッチ性が向上した、フレキシブル積層体が提供される。 According to the present invention, there is provided a flexible laminate in which the impact mitigation effect on the lower structure connected to the laminate and the scratch resistance on the surface of the laminate are improved while maintaining flexibility.
本発明のフレキシブル積層体の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the flexible laminated body of this invention. 本発明のフレキシブル積層体の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the flexible laminated body of this invention. 本発明のフレキシブル積層体の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the flexible laminated body of this invention. 下部構造を更に有する、本発明のフレキシブル積層体の構造の一例を示す断面図である(図1Cのフレキシブル積層体のみ図示)。It is sectional drawing which shows an example of the structure of the flexible laminated body of this invention which further has a lower structure (only the flexible laminated body of FIG. 1C is shown).
 以下、図面を参照しつつ、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
〔フレキシブル積層体〕
 図1は、本発明のフレキシブル積層体100の構造の一例を示す断面図である。図1のフレキシブル積層体100は、視認される側全体に積層された第1ガラス板10と、偏光板20と、上部全体又は下部全体の少なくとも一方に第2ガラス板40が積層されたタッチセンサー層30とを、有する。
[Flexible laminate]
FIG. 1 is a cross-sectional view showing an example of the structure of the flexible laminated body 100 of the present invention. The flexible laminated body 100 of FIG. 1 is a touch sensor in which a first glass plate 10 laminated on the entire visible side, a polarizing plate 20, and a second glass plate 40 laminated on at least one of the entire upper portion or the entire lower portion. It has a layer 30 and.
 図1Aに示すフレキシブル積層体100は、視認される側全体に積層された第1ガラス板10と、偏光板20と、下部全体に第2ガラス板40が積層されたタッチセンサー層30とを、この順に有する。 The flexible laminate 100 shown in FIG. 1A has a first glass plate 10 laminated on the entire visible side, a polarizing plate 20, and a touch sensor layer 30 on which a second glass plate 40 is laminated on the entire lower portion. Have in this order.
 図1Bに示すフレキシブル積層体100は、視認される側全体に積層された第1ガラス板10と、偏光板20と、上部全体に第2ガラス板40が積層されたタッチセンサー層30とを、この順に有する。 The flexible laminate 100 shown in FIG. 1B has a first glass plate 10 laminated on the entire visible side, a polarizing plate 20, and a touch sensor layer 30 on which a second glass plate 40 is laminated on the entire upper portion. Have in this order.
 図1Cに示すフレキシブル積層体100は、視認される側全体に積層された第1ガラス板10と、偏光板20と、上部全体及び下部全体に第2ガラス板40が積層されたタッチセンサー層30とを、この順に有する。 The flexible laminate 100 shown in FIG. 1C is a touch sensor layer 30 in which a first glass plate 10 laminated on the entire visible side, a polarizing plate 20, and a second glass plate 40 are laminated on the entire upper portion and the entire lower portion. And in this order.
 上記第1ガラス板10と、偏光板20と、タッチセンサー層30と、第2ガラス板40とは、後述する粘着剤層又は接着剤層(以下、両者をまとめて粘接着剤層ということがある。)を介して、互いに貼合される。粘着剤層及び接着剤層は簡便のため図示しない。 The first glass plate 10, the polarizing plate 20, the touch sensor layer 30, and the second glass plate 40 are an adhesive layer or an adhesive layer described later (hereinafter, both are collectively referred to as an adhesive layer). Is affixed to each other via). The pressure-sensitive adhesive layer and the adhesive layer are not shown for convenience.
 図1A~図1Cのフレキシブル積層体100は、図2に示す通り、粘接着剤層(非表示)を介して、下部構造50と更に接続する。 As shown in FIG. 2, the flexible laminate 100 of FIGS. 1A to 1C is further connected to the lower structure 50 via an adhesive layer (not shown).
〔ガラス板〕
 フレキシブル積層体100の第1ガラス板10は、視認される側全体に積層されている(図1)。また、フレキシブル積層体100の第2ガラス板40は、タッチセンサー層30の上部全体又は下部全体の少なくとも一方に積層されている(図1)。ここで、全体とは、屈曲部及びタッチセンサー層30のタッチ官能領域をカバーする実質的な表面全体をいう。第1ガラス板10と第2ガラス板40とは、同一の材料で形成されてもよいし、異なる材料で形成されてもよい。使用されるガラス板としては、強度及び透光性に優れる、化学強化ガラスが好ましく、化学強化ガラスを用いることで、可撓性(フレキシビリティ)を保ちながらも、積層体の耐衝撃性及び耐スクラッチ性を向上させることができる。
[Glass plate]
The first glass plate 10 of the flexible laminated body 100 is laminated on the entire visible side (FIG. 1). Further, the second glass plate 40 of the flexible laminated body 100 is laminated on at least one of the entire upper portion or the entire lower portion of the touch sensor layer 30 (FIG. 1). Here, the whole means a substantially entire surface covering the bent portion and the touch sensory region of the touch sensor layer 30. The first glass plate 10 and the second glass plate 40 may be formed of the same material or may be formed of different materials. As the glass plate used, chemically strengthened glass having excellent strength and translucency is preferable, and by using chemically strengthened glass, the impact resistance and impact resistance of the laminated body are maintained while maintaining flexibility. Scratch property can be improved.
 第2ガラス板40は、下部構造50にできるだけ近い位置に積層することが好ましい。
また、積層されるガラス板の数はできるだけ多いことが好ましい。そうすることで、下部構造に対する耐衝撃性が向上する。かかる観点から、図1A~図1Cに示した実施形態の中では、図1A及び図1Cの積層体が好ましく、図1Cに示した積層体がより好ましい。
The second glass plate 40 is preferably laminated at a position as close as possible to the lower structure 50.
Moreover, it is preferable that the number of laminated glass plates is as large as possible. By doing so, the impact resistance to the substructure is improved. From this point of view, among the embodiments shown in FIGS. 1A to 1C, the laminates of FIGS. 1A and 1C are preferable, and the laminate shown in FIG. 1C is more preferable.
 上記ガラス板に好適な化学強化ガラスは、ガラスの化学的イオン交換処理により得ることができる。化学的イオン交換処理により、ガラス表面のナトリウムイオンやリチウムイオンを、イオン半径のより大きなカリウムイオンに部分的に置換することで、ガラス表面の強度を向上させることができる。薄い圧縮応力層の形成により、表面強度が向上する。
化学強化ガラスに使用されるガラスとしては、例えば、アルミノシリケートガラス、ソ一ダライムガラス、ボロシリケートガラス、鉛ガラス、アルカリバリウムガラス、及びアルミノボロシリケ一卜ガラス等が挙げられる。
Chemically tempered glass suitable for the above glass plate can be obtained by chemical ion exchange treatment of glass. The strength of the glass surface can be improved by partially substituting the sodium ions and lithium ions on the glass surface with potassium ions having a larger ionic radius by the chemical ion exchange treatment. The formation of a thin compressive stress layer improves the surface strength.
Examples of the glass used for the chemically strengthened glass include aluminosilicate glass, sodalime glass, borosilicate glass, lead glass, alkaline barium glass, and aluminoborosilicate glass.
 化学的イオン交換処理は、上記ガラスを融点以上に加熱したイオン置換溶液に浸漬又はペースト状のイオン置換溶液をガラスに直接塗布することで行うことができる。イオン置換溶液としては、硝酸カリウム、炭酸カリウム、炭酸水素カリウム、リン酸カリウム、硫酸カリウム及び水酸化カリウムベースのもの等が挙げられる。中でも、硝酸カリウム(330℃)は、ガラスの融点(通常500℃~600℃)よりも融点が低く、取り扱いが容易であることから好適である。 The chemical ion exchange treatment can be performed by immersing the glass in an ion replacement solution heated to a temperature higher than the melting point or by directly applying a paste-like ion replacement solution to the glass. Examples of the ion substitution solution include those based on potassium nitrate, potassium carbonate, potassium hydrogen carbonate, potassium phosphate, potassium sulfate and potassium hydroxide. Among them, potassium nitrate (330 ° C.) is preferable because it has a melting point lower than the melting point of glass (usually 500 ° C. to 600 ° C.) and is easy to handle.
 化学的イオン交換処理の前にエッチング処理を行い、ガラスの薄膜化を行ってもよい。
エッチング処理は、化学処理溶液としてフッ酸又はこれとフッ化アンモニウム水溶液及び有機酸、例えば、ギ酸、酢酸、プロピオン酸等とを混合したものを用いて行うこともできる。これらを使用して、噴射、ディッピング等によりエッチングを行うことができる。エッチング処理は、エッチングガスとしてフッ素を含んだ不活性ガス、例えば、CF、C、C、XeF等を少なくとも1種含むHeガス又はArガスを用いて行ってもよい。具体的には、Heガス又はArガスで希釈したフッ素を含む不活性ガスを大気圧下でプラズマ化し、フッ化炭素からフッ素を遊離させることでエッチングを行うことができる。
The glass may be thinned by performing an etching treatment before the chemical ion exchange treatment.
The etching treatment can also be carried out using hydrofluoric acid or a mixture thereof as an aqueous ammonium fluoride solution and an organic acid such as formic acid, acetic acid, propionic acid and the like as a chemical treatment solution. Using these, etching can be performed by injection, dipping, or the like. The etching treatment may be carried out using an inert gas containing fluorine as the etching gas, for example, He gas or Ar gas containing at least one of CF 4 , C 3 F 8 , C 2 F 6 , XeF 2 and the like. .. Specifically, the etching can be performed by turning an inert gas containing fluorine diluted with He gas or Ar gas into plasma under atmospheric pressure and releasing fluorine from carbon fluoride.
 フレキシブル積層体100に使用されるガラス板の厚さは、例えば、10~100μmであり、好ましくは15~90μmであり、より好ましくは20~80μmである。ガラス板の厚さが10μm以上である場合には、フレキシブル積層体の耐衝撃性を高めるとともに、ガラス板の破断を生じにくくすることができる。ガラス板の厚さが100μm以下である場合には、フレキシブル積層体の可撓性(フレキシビリティ)を高めることができる。 The thickness of the glass plate used for the flexible laminate 100 is, for example, 10 to 100 μm, preferably 15 to 90 μm, and more preferably 20 to 80 μm. When the thickness of the glass plate is 10 μm or more, the impact resistance of the flexible laminate can be enhanced and the glass plate can be less likely to break. When the thickness of the glass plate is 100 μm or less, the flexibility of the flexible laminate can be increased.
 ガラス板の表面には、耐指紋層、ハードコート層等の機能層を形成してもよい。機能層は、アクリル系樹脂、シリコーン系樹脂、ポリエステル系樹脂、ウレタン系樹脂、アミド系樹脂、エポキシ系樹脂等の有機物、又は金属等の無機物から形成することができる。機能層の厚さは、0.01~10μmであることができる。 A functional layer such as a fingerprint resistant layer or a hard coat layer may be formed on the surface of the glass plate. The functional layer can be formed from an organic substance such as an acrylic resin, a silicone resin, a polyester resin, a urethane resin, an amide resin, an epoxy resin, or an inorganic substance such as a metal. The thickness of the functional layer can be 0.01-10 μm.
〔偏光板〕
 フレキシブル積層体100の偏光板20は、粘接着剤層を介して、第1ガラス板10と下部全体に第2ガラス板40が積層されたタッチセンサー層30とに貼合され(図1A)、又は第1ガラス板10と上部全体に第2ガラス板40が積層されたタッチセンサー層30とに貼合され(図1B)、又は第1ガラス板10と上部全体及び下部全体に第2ガラス板40が積層されたタッチセンサー層30とに、貼合される(図1C)。
〔Polarizer〕
The polarizing plate 20 of the flexible laminate 100 is bonded to the first glass plate 10 and the touch sensor layer 30 on which the second glass plate 40 is laminated on the entire lower portion via the adhesive layer (FIG. 1A). Or, it is attached to the first glass plate 10 and the touch sensor layer 30 in which the second glass plate 40 is laminated on the entire upper part (FIG. 1B), or the first glass plate 10 and the second glass on the entire upper part and the entire lower part. It is bonded to the touch sensor layer 30 on which the plates 40 are laminated (FIG. 1C).
 偏光板は、直線偏光板から構成されてもよく、円偏光板から構成されてもよい。直線偏光板としては、二色性色素を吸着させた延伸フィルム又は延伸層、又は二色性色素及び重合性化合物を含む組成物を塗布し硬化させたフィルムを偏光子として含むフィルム等が挙げられる。二色性色素としては、具体的には、ヨウ素や二色性の有機染料が用いられる。
二色性有機染料には、C.I.DIRECT RED 39等のジスアゾ化合物からなる二色性直接染料、トリスアゾ、テトラキスアゾ等の化合物からなる二色性直接染料が含まれる。
The polarizing plate may be composed of a linear polarizing plate or a circular polarizing plate. Examples of the linear polarizing plate include a stretched film or a stretched layer on which a dichroic dye is adsorbed, or a film containing a film obtained by applying and curing a composition containing a dichroic dye and a polymerizable compound as a polarizer. .. Specifically, as the dichroic dye, iodine or a dichroic organic dye is used.
For dichroic organic dyes, C.I. I. Includes a dichroic direct dye composed of a disazo compound such as DIRECT RED 39, and a dichroic direct dye composed of a compound such as trisazo and tetrakisazo.
 偏光子として用いられる、二色性色素及び重合性化合物を含む組成物を塗布し硬化させたフィルムとしては、液晶性を有する二色性色素を含む組成物又は二色性色素と重合性液晶とを含む組成物を塗布し硬化させて得られる層等の重合性液晶化合物の硬化物を含むフィルム等が挙げられる。二色性色素及び重合性化合物を含む組成物を塗布し硬化させたフィルムは、二色性色素を吸着させた延伸フィルム又は延伸層に比べて、屈曲方向に制限がないため好ましい。 The film to which the composition containing the dichroic dye and the polymerizable compound used as a polarizer is applied and cured includes a composition containing a dichroic dye having a liquid crystal property or a dichroic dye and a polymerizable liquid crystal. Examples thereof include a film containing a cured product of a polymerizable liquid crystal compound such as a layer obtained by applying and curing the composition containing the above. A film coated with a composition containing a dichroic dye and a polymerizable compound and cured is preferable because there is no limitation in the bending direction as compared with a stretched film or a stretched layer on which a dichroic dye is adsorbed.
 直線偏光板は、偏光子のみから構成されてもよいし、偏光子に加えて、樹脂フィルム、基材、配向膜、保護層をさらに含んでいてもよい。直線偏光板の厚さは、例えば、1~100μm、好ましくは5~75μm、より好ましくは10~50μmである。 The linear polarizing plate may be composed of only a polarizing element, or may further include a resin film, a base material, an alignment film, and a protective layer in addition to the polarizing element. The thickness of the linear polarizing plate is, for example, 1 to 100 μm, preferably 5 to 75 μm, and more preferably 10 to 50 μm.
 (1)延伸フィルム又は延伸層を偏光子として有する直線偏光板
 二色性色素を吸着させた延伸フィルムを偏光子として有する直線偏光板について説明する。偏光子である、二色性色素を吸着させた延伸フィルムは、通常、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムを二色性色素で染色することにより、その二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程、及びホウ酸水溶液による処理後に水洗する工程を経て製造することができる。かかる偏光子をそのまま直線偏光板として用いてもよく、その片面又は両面に後述する樹脂フィルムを貼合したものを直線偏光板として用いてもよい。
(1) Linear Polarizing Plate Having a Stretched Film or a Stretched Layer as a Polarizer A linear polarizing plate having a stretched film having a dichroic dye adsorbed as a polarizer will be described. A stretched film on which a dichroic dye, which is a polarizer, is adsorbed is usually bicolorized by a step of uniaxially stretching the polyvinyl alcohol-based resin film and dyeing the polyvinyl alcohol-based resin film with the bicolor dye. It can be produced through a step of adsorbing a dye, a step of treating a polyvinyl alcohol-based resin film on which a bicolor dye is adsorbed with an aqueous boric acid solution, and a step of washing with water after the treatment with the aqueous boric acid solution. Such a polarizer may be used as it is as a linear polarizing plate, or a resin film described later may be bonded to one side or both sides thereof and used as a linear polarizing plate.
 偏光子の厚さは、例えば、0.1~50μm、好ましくは0.5~25μm、より好ましくは1~10μmである。 The thickness of the polarizer is, for example, 0.1 to 50 μm, preferably 0.5 to 25 μm, and more preferably 1 to 10 μm.
 ポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することにより得られる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとそれに共重合可能な他の単量体との共重合体が用いられる。酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有する(メタ)アクリルアミド類等が挙げられる。 The polyvinyl alcohol-based resin is obtained by saponifying the polyvinyl acetate-based resin. As the polyvinyl acetate-based resin, in addition to polyvinyl acetate which is a homopolymer of vinyl acetate, a copolymer of vinyl acetate and another monomer copolymerizable therewith is used. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and (meth) acrylamides having an ammonium group.
 ポリビニルアルコール系樹脂のケン化度は、通常85~100モル%であり、好ましくは98モル%以上である。ポリビニルアルコール系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマールやポリビニルアセタールも使用することができる。ポリビニルアルコール系樹脂の重合度は、通常1000~10000であり、好ましくは1500~5000である。 The degree of saponification of the polyvinyl alcohol-based resin is usually 85 to 100 mol%, preferably 98 mol% or more. The polyvinyl alcohol-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can also be used. The degree of polymerization of the polyvinyl alcohol-based resin is usually 1000 to 10000, preferably 1500 to 5000.
 次に、二色性色素を吸着させた延伸層を偏光子として有する直線偏光板について説明する。偏光子である、二色性色素を吸着させた延伸層は、通常、上記ポリビニルアルコール系樹脂を含む塗布液を基材フィルム上に塗布する工程、得られた積層フィルムを一軸延伸する工程、一軸延伸された積層フィルムのポリビニルアルコール系樹脂層を二色性色素で染色することにより、その二色性色素を吸着させて偏光子とする工程、二色性色素が吸着されたフィルムをホウ酸水溶液で処理する工程、及びホウ酸水溶液による処理後に水洗する工程を経て製造することができる。要すれば、基材フィルムを偏光子から剥離除去してもよい。基材フィルムの材料及び厚さは、後述する樹脂フィルムの材料及び厚さと同様であってよい。 Next, a linear polarizing plate having a stretched layer on which a dichroic dye is adsorbed as a polarizer will be described. The stretched layer on which the dichroic dye, which is a polarizer, is adsorbed is usually a step of applying the coating liquid containing the polyvinyl alcohol-based resin on the base film, a step of uniaxially stretching the obtained laminated film, and uniaxial. A step of dyeing the polyvinyl alcohol-based resin layer of the stretched laminated film with a dichroic dye to adsorb the dichroic dye to form a polarizer, and the film on which the dichroic dye is adsorbed is an aqueous boric acid solution. It can be produced through a step of treating with water and a step of washing with water after treatment with an aqueous boric acid solution. If necessary, the base film may be peeled off from the polarizer. The material and thickness of the base film may be the same as the material and thickness of the resin film described later.
 延伸フィルム又は延伸層である偏光子は、その片面又は両面に樹脂フィルムが貼合されている形態で積層体に組み込まれてもよい。この樹脂フィルムは、偏光子用の保護フィルム、又は位相差層として機能し得る。樹脂フィルムは、熱可塑性樹脂フィルムであってよい。樹脂フィルムは、例えば、鎖状ポリオレフィン系樹脂(ポリプロピレン系樹脂等)、環状ポリオレフィン系樹脂(ノルボルネン系樹脂等)等のポリオレフィン系樹脂;トリアセチルセルロース等のセルロース系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂;ポリカーボネート系樹脂;(メタ)アクリル系樹脂;又はこれらの混合物等からなるフィルムであることができる。 The polarizing film or the polarizing element, which is a stretched layer, may be incorporated into the laminate in a form in which a resin film is bonded to one side or both sides thereof. This resin film can function as a protective film for a polarizer or a retardation layer. The resin film may be a thermoplastic resin film. The resin film is, for example, a polyolefin resin such as a chain polyolefin resin (polypropylene resin or the like), a cyclic polyolefin resin (norbornen resin or the like); a cellulose resin such as triacetyl cellulose; polyethylene terephthalate, polyethylene naphthalate, etc. It can be a film composed of a polyester resin such as polybutylene terephthalate; a polycarbonate resin; a (meth) acrylic resin; or a mixture thereof.
 樹脂フィルムの厚さは、屈曲性を高める観点から、通常1~100μmであり、好ましくは5~50μmであり、より好ましくは10~25μmである。樹脂フィルムは位相差を有していても、有していなくてもよい。樹脂フィルムは、例えば、接着剤層を用いて偏光子に貼合することができる。 The thickness of the resin film is usually 1 to 100 μm, preferably 5 to 50 μm, and more preferably 10 to 25 μm from the viewpoint of enhancing flexibility. The resin film may or may not have a phase difference. The resin film can be attached to the polarizer using, for example, an adhesive layer.
 (2)二色性色素及び重合性化合物を含む組成物を塗布し硬化させたフィルムを偏光子として有する直線偏光板
 二色性色素及び重合性化合物を含む組成物を塗布し硬化させたフィルムを偏光子として有する直線偏光板について説明する。偏光子として用いられる、二色性色素及び重合性化合物を含む組成物を塗布し硬化させたフィルムは、液晶性を有する二色性色素を含む組成物、又は二色性色素と液晶化合物とを含む組成物を基材に塗布し硬化して得られるフィルム等が挙げられる。フィルムは、基材を剥離して又は基材とともに直線偏光板として用いてもよく、又はその片面又は両面に樹脂フィルムを有する構成で直線偏光板として用いてもよい。
(2) Linear polarizing plate having a film coated and cured with a composition containing a dichroic dye and a polymerizable compound as a polarizer A film coated with a composition containing a dichroic dye and a polymerizable compound and cured. A linear polarizing plate having as a polarizer will be described. A film to which a composition containing a dichroic dye and a polymerizable compound used as a polarizer is applied and cured is a composition containing a dichroic dye having a liquid crystal property, or a dichroic dye and a liquid crystal compound. Examples thereof include a film obtained by applying the containing composition to a substrate and curing it. The film may be used as a linear polarizing plate by peeling off the base material or together with the base material, or may be used as a linear polarizing plate in a configuration having a resin film on one side or both sides thereof.
 基材は樹脂フィルムであってよい。基材の例及び厚さは、上述の樹脂フィルムの説明において例示したものと同一であってよい。基材は、少なくとも一方の表面にハードコート層、反射防止層、又は帯電防止層を有する樹脂フィルムであってもよい。基材は、偏光子が形成されない側の表面のみに、ハードコート層、反射防止層、帯電防止層等が形成されていてもよい。基材は、偏光子が形成されている側の表面のみに、ハードコート層、反射防止層、帯電防止層等が形成されていてもよい。 The base material may be a resin film. The example and thickness of the base material may be the same as those exemplified in the above description of the resin film. The base material may be a resin film having a hard coat layer, an antireflection layer, or an antistatic layer on at least one surface. The base material may have a hard coat layer, an antireflection layer, an antistatic layer, or the like formed only on the surface on the side where the polarizer is not formed. The base material may have a hard coat layer, an antireflection layer, an antistatic layer, or the like formed only on the surface on the side where the polarizer is formed.
 樹脂フィルムとしては、上記延伸フィルム又は延伸層を偏光子として有する直線偏光板と同一のものが挙げられる。樹脂フィルムは、例えば、接着剤や粘着剤を用いて偏光子に貼合することができる。 Examples of the resin film include the same stretched film or linear polarizing plate having a stretched layer as a polarizer. The resin film can be attached to the polarizer using, for example, an adhesive or an adhesive.
 偏光子上には、オーバーコート層を形成することもできる。オーバーコート層は、後述の水系接着剤又は活性エネルギー線硬化型接着剤を塗布することで形成される。オーバーコート層の厚さは、例えば0.1~10μmであり、好ましくは1~5μmである。 An overcoat layer can also be formed on the polarizer. The overcoat layer is formed by applying a water-based adhesive or an active energy ray-curable adhesive, which will be described later. The thickness of the overcoat layer is, for example, 0.1 to 10 μm, preferably 1 to 5 μm.
 二色性色素及び重合性化合物を含む組成物を塗布し硬化させたフィルムは薄い方が好ましいが、薄すぎると強度が低下し、加工性に劣る傾向がある。フィルムの厚さは、例えば、1~100μm、好ましくは5~50μm、より好ましくは10~25μmである。 It is preferable that the film to which the composition containing the dichroic dye and the polymerizable compound is applied and cured is thin, but if it is too thin, the strength is lowered and the processability tends to be inferior. The thickness of the film is, for example, 1 to 100 μm, preferably 5 to 50 μm, and more preferably 10 to 25 μm.
 二色性色素及び重合性化合物を含む組成物を塗布し硬化させたフィルムとしては、具体的には、特開2013-37353号公報や特開2013-33249号公報等に記載のものが挙げられる。 Specific examples of the film coated with the composition containing the dichroic dye and the polymerizable compound and cured include those described in JP2013-37353A, JP2013-33249, and the like. ..
 直線偏光板は、位相差層をさらに有する円偏光板であることができる。位相差層は、λ/4板、λ/2板、又はポジティブCプレートの少なくとも1つを有することができる。
直線偏光板の吸収軸と位相差層の遅相軸とが所定の角度となるように偏光子と位相差層とが配置された円偏光板は、表示装置に組み込まれて反射防止機能等を発揮することができる。位相差層がλ/4板を有する場合、直線偏光板の吸収軸とλ/4板の遅相軸とのなす角度は、45°±10°であることができる。直線偏光板と位相差層とは、接着剤層又は粘着剤層を介して貼合されていてよい。位相差層は、上述の樹脂フィルムから形成されてもよいし、重合性液晶化合物が硬化した層から形成してもよい。位相差層の厚さは、例えば1~20μmであることができ、1~10μmであることができる。
The linear polarizing plate can be a circular polarizing plate further having a retardation layer. The retardation layer can have at least one of a λ / 4 plate, a λ / 2 plate, or a positive C plate.
A circularly polarizing plate in which a polarizer and a retardation layer are arranged so that the absorption axis of the linear polarizing plate and the slow axis of the retardation layer are at a predetermined angle is incorporated in a display device to provide an antireflection function and the like. Can be demonstrated. When the retardation layer has a λ / 4 plate, the angle formed by the absorption axis of the linear polarizing plate and the slow axis of the λ / 4 plate can be 45 ° ± 10 °. The linear polarizing plate and the retardation layer may be bonded to each other via an adhesive layer or an adhesive layer. The retardation layer may be formed from the resin film described above, or may be formed from a layer obtained by curing the polymerizable liquid crystal compound. The thickness of the retardation layer can be, for example, 1 to 20 μm, and can be 1 to 10 μm.
〔タッチセンサー層〕
 フレキシブル積層体100のタッチセンサー層30は、上部全体又は下部全体の少なくとも一方に第2ガラス板40が積層されている(図1)。第2ガラス板40とタッチセンサー層30とは、粘接着剤層を介して貼合される。タッチセンサー層30は、粘接着剤層を介さず、ガラス板20に直接形成されてもよい。第2ガラス板40は、紫外線硬化型接着剤層を介して、タッチセンサー層30に貼合されることが好ましい。該ガラス板が貼合されたタッチセンサー層は、粘接着剤層(非表示)を介して、偏光板20にさらに貼合される。タッチセンサー層30は、透明導電層を有する。
[Touch sensor layer]
In the touch sensor layer 30 of the flexible laminated body 100, a second glass plate 40 is laminated on at least one of the entire upper portion or the entire lower portion (FIG. 1). The second glass plate 40 and the touch sensor layer 30 are bonded to each other via an adhesive layer. The touch sensor layer 30 may be formed directly on the glass plate 20 without interposing the adhesive layer. The second glass plate 40 is preferably bonded to the touch sensor layer 30 via an ultraviolet curable adhesive layer. The touch sensor layer to which the glass plate is attached is further attached to the polarizing plate 20 via the adhesive layer (not displayed). The touch sensor layer 30 has a transparent conductive layer.
 タッチセンサー層の検出方式としては、表面上のタッチされた位置を検出することができるものであれば、特に限定されることはなく、例えば、静電容量方式、抵抗膜方式、光センサー方式、超音方式、電磁誘導結合方式、表面弾性波方式等の中から適宜選択することができる。中でも低コスト、迅速な応答、薄膜化の観点から、静電容量方式が好適である。 The detection method of the touch sensor layer is not particularly limited as long as it can detect the touched position on the surface, and is, for example, a capacitance method, a resistance film method, an optical sensor method, and the like. It can be appropriately selected from the supersonic method, the electromagnetic induction coupling method, the surface acoustic wave method and the like. Above all, the capacitance method is preferable from the viewpoint of low cost, quick response, and thinning.
 静電容量方式の場合、タッチセンサー層は、例えば、基材と、基材上に形成された位置検出用の透明導電層と、タッチ位置検知回路と、により構成される。表面がタッチされると、タッチされた点で人体の静電容量を介して透明導電層が接地され、タッチ位置検知回路が透明導電層の接地を検知することで、タッチ位置を検出することができる。 In the case of the capacitance method, the touch sensor layer is composed of, for example, a base material, a transparent conductive layer for position detection formed on the base material, and a touch position detection circuit. When the surface is touched, the transparent conductive layer is grounded through the capacitance of the human body at the touched point, and the touch position detection circuit detects the grounding of the transparent conductive layer to detect the touch position. can.
 タッチセンサー層の透明導電層としては、ITO(酸化インジウム・スズ)が好適に用いられる。無色透明で導電性に優れ、その他成膜性等に優れるものであれば、他の金属酸化物の層からなるもので構成してもよい。透明導電層は、タッチセンサー層が積層体に使用された際、視認されないように形成されることが好ましい。 ITO (indium tin oxide) is preferably used as the transparent conductive layer of the touch sensor layer. If it is colorless and transparent, has excellent conductivity, and has other excellent film-forming properties, it may be composed of a layer of another metal oxide. The transparent conductive layer is preferably formed so as not to be visually recognized when the touch sensor layer is used for the laminated body.
 タッチセンサー層は分離層を有していてもよい。分離層は、タッチセンサー層30の製造過程において、透明導電層を基材から分離しやすくする機能を有する層であることができる。例えば、基材上にシリコーン酸化物等の無機物層あるいは(メタ)アクリル系樹脂組成物、エポキシ系樹脂組成物、ポリイミド系樹脂組成物等の有機物層で形成されて、基材から透明導電層とともに分離されることができる。 The touch sensor layer may have a separation layer. The separation layer can be a layer having a function of facilitating the separation of the transparent conductive layer from the base material in the manufacturing process of the touch sensor layer 30. For example, it is formed on a base material with an inorganic material layer such as a silicone oxide or an organic material layer such as a (meth) acrylic resin composition, an epoxy resin composition, or a polyimide resin composition, and is formed from the base material together with a transparent conductive layer. Can be separated.
 タッチセンサー層は分離層に加えて又は分離層に代えて、少なくとも1層の保護層をさらに含んでもよい。保護層は、透明導電層に接して透明導電層を支持するために設けることができる。分離層と同様、基材上に形成され、基材と透明導電層との間に位置する層となる。保護層は、有機絶縁膜又は無機絶縁膜の少なくともいずれかを含み、これらの膜は、スピンコート法、スパッタリング法、蒸着法等により形成することができる。 The touch sensor layer may further include at least one protective layer in addition to or in place of the separation layer. The protective layer can be provided in contact with the transparent conductive layer to support the transparent conductive layer. Like the separation layer, it is formed on the base material and is a layer located between the base material and the transparent conductive layer. The protective layer contains at least one of an organic insulating film and an inorganic insulating film, and these films can be formed by a spin coating method, a sputtering method, a vapor deposition method, or the like.
 タッチセンサー層は、以下の方法で製造することができる。基材上に分離層を形成し、要すれば、分離層上にさらに保護層を形成する。分離層又は保護層上に、フォトリソグラフィによりパターン化された透明導電層を形成し、透明導電層上に、剥離可能な保護フィルムを積層して基材を分離する。分離層にも同様にして剥離可能な保護フィルムを積層し、タッチセンサー層を得ることができる。タッチセンサー層は、さらに別の樹脂フィルムへ転写して、樹脂フィルムとともにフレキシブル積層体に組み込まれてもよい。タッチセンサー層は、樹脂フィルムを有さない形態でフレキシブル積層体に組み込まれてもよい。 The touch sensor layer can be manufactured by the following method. A separation layer is formed on the base material, and if necessary, a protective layer is further formed on the separation layer. A transparent conductive layer patterned by photolithography is formed on the separation layer or the protective layer, and a peelable protective film is laminated on the transparent conductive layer to separate the base material. A peelable protective film can be laminated on the separation layer in the same manner to obtain a touch sensor layer. The touch sensor layer may be transferred to another resin film and incorporated into the flexible laminate together with the resin film. The touch sensor layer may be incorporated into the flexible laminate in a form that does not have a resin film.
 タッチセンサー層の厚さは、例えば、5~100μm、好ましくは5~50μm、より好ましくは6~30μmであり、6~15μmであってもよい。タッチセンサー層の厚さが5μm以上である場合には、フレキシブル積層体の耐衝撃性を高めることができ、100μm以下である場合には、フレキシブル積層体の屈曲性を高めることができる。 The thickness of the touch sensor layer is, for example, 5 to 100 μm, preferably 5 to 50 μm, more preferably 6 to 30 μm, and may be 6 to 15 μm. When the thickness of the touch sensor layer is 5 μm or more, the impact resistance of the flexible laminate can be enhanced, and when it is 100 μm or less, the flexibility of the flexible laminate can be enhanced.
〔粘接着剤層〕
 フレキシブル積層体100において、粘接着剤層は、前記のように、視認される側に積層された第1ガラス板10と、偏光板20と、上部全体又は下部全体の少なくとも一方に積層された第2ガラス板40を有するタッチセンサー層30とを、互いに貼合する。さらに、粘接着剤層は、フレキシブル積層体100と下部構造50とを貼合し、表示装置200を構成することができる(図2)。
[Adhesive layer]
In the flexible laminate 100, the adhesive layer is laminated on at least one of the first glass plate 10 laminated on the visible side, the polarizing plate 20, and the entire upper portion or the entire lower portion as described above. The touch sensor layer 30 having the second glass plate 40 is bonded to each other. Further, the adhesive layer can form the display device 200 by laminating the flexible laminate 100 and the lower structure 50 (FIG. 2).
 粘接着剤層は、粘着剤層又は接着剤層である。なお、粘着剤とは感圧接着性を有する接着剤をいう。 The adhesive layer is an adhesive layer or an adhesive layer. The adhesive refers to an adhesive having pressure-sensitive adhesiveness.
 粘接着剤層が粘着剤層である場合、粘着剤層は、例えば、(メタ)アクリル系、ゴム系、ウレタン系、エステル系、シリコーン系、ポリビニルエーテル系等の樹脂を主成分とする粘着剤組成物で構成する。中でも、透明性、耐候性、耐熱性等に優れる(メタ)アクリル系樹脂をベースポリマーとする粘着剤組成物が好ましい。粘着剤組成物は、活性エネルギー線硬化型、熱硬化型であってもよい。 When the adhesive layer is an adhesive layer, the adhesive layer is an adhesive containing, for example, a resin such as (meth) acrylic, rubber, urethane, ester, silicone, or polyvinyl ether as a main component. It is composed of an agent composition. Among them, a pressure-sensitive adhesive composition using a (meth) acrylic resin having excellent transparency, weather resistance, heat resistance and the like as a base polymer is preferable. The pressure-sensitive adhesive composition may be an active energy ray-curable type or a thermosetting type.
 粘着剤組成物に用いられる(メタ)アクリル系樹脂(ベースポリマー)としては、例えば、(メタ)アクリル酸ブチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸エステルのうちの1種又は2種以上をモノマーとする重合体又は共重合体が好ましく用いられる。ベースポリマーは、極性モノマーを共重合させることが好ましい。極性モノマーとしては、例えば、(メタ)アクリル酸、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレート等の、カルボキシル基、水酸基、アミド基、アミノ基、エポキシ基等を有するモノマーが挙げられる。 Examples of the (meth) acrylic resin (base polymer) used in the pressure-sensitive adhesive composition include butyl (meth) acrylate, ethyl (meth) acrylate, isooctyl (meth) acrylate, and 2- (meth) acrylate. A polymer or copolymer using one or more of (meth) acrylic acid esters such as ethylhexyl as a monomer is preferably used. The base polymer is preferably copolymerized with polar monomers. Examples of the polar monomer include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, hydroxyethyl (meth) acrylate, (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, and glycidyl (). Examples thereof include monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group and the like, such as meth) acrylate.
 粘着剤組成物は、前記ベースポリマー単独でなるものであってよいが、通常は架橋剤を更に含む。該架橋剤としては、2価以上の金属イオンであって、カルボキシル基との間でカルボン酸金属塩を形成するもの;ポリアミン化合物であって、カルボキシル基との間でアミド結合を形成するもの;ポリエポキシ化合物やポリオールであって、カルボキシル基との間でエステル結合を形成するもの;ポリイソシアネート化合物であって、カルボキシル基との間でアミド結合を形成するもの等が挙げられる。中でも、ポリイソシアネート化合物が好適である。 The pressure-sensitive adhesive composition may consist of the base polymer alone, but usually further contains a cross-linking agent. The cross-linking agent is a divalent or higher metal ion that forms a carboxylic acid metal salt with a carboxyl group; a polyamine compound that forms an amide bond with a carboxyl group; Examples thereof include polyepoxy compounds and polyols that form an ester bond with a carboxyl group; polyisocyanate compounds that form an amide bond with a carboxyl group, and the like. Of these, polyisocyanate compounds are preferable.
 活性エネルギー線硬化型粘着剤組成物は、紫外線や電子線のような活性エネルギー線の照射を受けて硬化する性質を有しており、活性エネルギー線照射前においても粘接着性を有してフィルム等の被着体に密着させることができる。活性エネルギー線の照射により硬化して密着力の調整をすることができる。活性エネルギー線硬化型粘着剤組成物は、紫外線硬化型であることが好ましい。活性エネルギー線硬化型粘着剤組成物は、前記のようにベースポリマー、架橋剤に加えて、活性エネルギー線重合性化合物を含む。光重合開始剤や光増感剤等も適宜含む。 The active energy ray-curable pressure-sensitive adhesive composition has a property of being cured by being irradiated with active energy rays such as ultraviolet rays and electron beams, and has adhesiveness even before irradiation with active energy rays. It can be brought into close contact with an adherend such as a film. It can be cured by irradiation with active energy rays and the adhesion can be adjusted. The active energy ray-curable pressure-sensitive adhesive composition is preferably an ultraviolet-curable type. The active energy ray-curable pressure-sensitive adhesive composition contains an active energy ray-polymerizable compound in addition to the base polymer and the cross-linking agent as described above. A photopolymerization initiator, a photosensitizer, and the like are also included as appropriate.
 粘着剤組成物は、光散乱性を付与するための微粒子、ビーズ(樹脂ビーズ、ガラスビーズ等)、ガラス繊維、ベースポリマー以外の樹脂、粘接着性付与剤、充填剤(金属粉やその他の無機粉末等)、酸化防止剤、紫外線吸収剤、染料、顔料、着色剤、消泡剤、腐食防止剤、光重合開始剤等の添加剤を更に含んでもよい。 The pressure-sensitive adhesive composition includes fine particles for imparting light scattering properties, beads (resin beads, glass beads, etc.), glass fibers, resins other than the base polymer, adhesive adhesive-imparting agents, fillers (metal powder and other materials). Additives such as (inorganic powder, etc.), antioxidants, ultraviolet absorbers, dyes, pigments, colorants, antifoaming agents, corrosion inhibitors, photopolymerization initiators, etc. may be further contained.
 粘着剤層は、粘着剤組成物の有機溶剤希釈液を基材上に塗布し、乾燥させることにより形成することができる。活性エネルギー線硬化型粘着剤組成物を用いた場合は、形成された粘着剤層に、活性エネルギー線を照射することにより所望の硬化度を有する硬化物とすることができる。 The pressure-sensitive adhesive layer can be formed by applying an organic solvent diluent of the pressure-sensitive adhesive composition on a substrate and drying it. When the active energy ray-curable pressure-sensitive adhesive composition is used, the formed pressure-sensitive adhesive layer can be irradiated with active energy rays to obtain a cured product having a desired degree of curing.
 粘着剤層の厚さは、例えば、0.1~30μm、好ましくは0.5~20μm、より好ましくは1~10μmである。 The thickness of the pressure-sensitive adhesive layer is, for example, 0.1 to 30 μm, preferably 0.5 to 20 μm, and more preferably 1 to 10 μm.
 粘着剤層の貯蔵弾性率は、25℃において、例えば0.001~1MPaであり、好ましくは0.01~0.3MPaであり、より好ましくは0.05~0.1MPaである。
貯蔵弾性率が0.001MPa以上である場合には、フレキシブル積層体の耐衝撃性が向上しやすく、1MPa以下である場合には、フレキシブル積層体の屈曲性が向上しやすい。粘着剤層の貯蔵弾性率は、後述の実施例に記載された方法で測定することができる。
The storage elastic modulus of the pressure-sensitive adhesive layer is, for example, 0.001 to 1 MPa, preferably 0.01 to 0.3 MPa, and more preferably 0.05 to 0.1 MPa at 25 ° C.
When the storage elastic modulus is 0.001 MPa or more, the impact resistance of the flexible laminate is likely to be improved, and when it is 1 MPa or less, the flexibility of the flexible laminate is likely to be improved. The storage elastic modulus of the pressure-sensitive adhesive layer can be measured by the method described in Examples described later.
 粘接着剤層20が接着剤層である場合、接着剤層は、例えば、水系接着剤又は活性エネルギー線硬化型接着剤から形成することができる。 When the adhesive layer 20 is an adhesive layer, the adhesive layer can be formed from, for example, a water-based adhesive or an active energy ray-curable adhesive.
 水系接着剤は、ポリビニルアルコール系樹脂水溶液、水系二液型ウレタン系エマルジョン接着剤組成物等が挙げられ、ポリビニルアルコール系樹脂水溶液であることが好ましい。 Examples of the water-based adhesive include a polyvinyl alcohol-based resin aqueous solution, an aqueous two-component urethane-based emulsion adhesive composition, and the like, and a polyvinyl alcohol-based resin aqueous solution is preferable.
 水系接着剤がポリビニルアルコール系樹脂を含む場合、ポリビニルアルコール系樹脂の含有量は、水100質量部に対して、1~10質量部であることが好ましく、1~5質量部以下であることがより好ましい。 When the water-based adhesive contains a polyvinyl alcohol-based resin, the content of the polyvinyl alcohol-based resin is preferably 1 to 10 parts by mass and 1 to 5 parts by mass or less with respect to 100 parts by mass of water. More preferable.
 水系接着剤には、多価アルデヒド、水溶性エポキシ化合物、メラミン系化合物、ジルコニア化合物、亜鉛化合物等が添加剤として添加されていてもよい。 A polyhydric aldehyde, a water-soluble epoxy compound, a melamine compound, a zirconia compound, a zinc compound, or the like may be added as an additive to the water-based adhesive.
 水系接着剤は、接着性を向上させるために、グリオキシル酸の金属塩、グリオキサール、水溶性エポキシ樹脂等の硬化性成分又は架橋剤の少なくとも一方を含むことが好ましい。グリオキシル酸の金属塩としては、アルカリ金属塩又はアルカリ土類金属塩であることが好ましく、例えば、グリオキシル酸ナトリウム、グリオキシル酸カリウム、グリオキシル酸マグネシウム、グリオキシル酸カルシウム等が挙げられる。水溶性エポキシ樹脂としては、例えばジエチレントリアミン、トリエチレンテトラミン等のポリアルキレンポリアミンと、アジピン酸等のジカルボン酸との反応で得られるポリアミドアミンに、エピクロロヒドリンを反応させて得られるポリアミドポリアミンエポキシ樹脂を好適に用いることができる。 The water-based adhesive preferably contains at least one of a curable component such as a metal salt of glyoxylic acid, glyoxal, and a water-soluble epoxy resin, or a cross-linking agent, in order to improve the adhesiveness. The metal salt of glyoxylic acid is preferably an alkali metal salt or an alkaline earth metal salt, and examples thereof include sodium glyoxylate, potassium glyoxylate, magnesium glyoxylate, calcium glyoxylate and the like. The water-soluble epoxy resin is a polyamide polyamine epoxy resin obtained by reacting epichlorohydrin with a polyamide amine obtained by reacting a polyalkylene polyamine such as diethylenetriamine or triethylenetetramine with a dicarboxylic acid such as adipic acid. Can be preferably used.
 活性エネルギー線硬化型接着剤は、活性エネルギー線硬化型の化合物を含む。活性エネルギー線硬化型の化合物としては、カチオン重合性化合物又はラジカル重合性化合物が挙げられる。カチオン重合性化合物又はラジカル重合性化合物を含む場合、接着剤層の硬度を高める効果が期待できる。 The active energy ray-curable adhesive contains an active energy ray-curable compound. Examples of the active energy ray-curable compound include a cationically polymerizable compound and a radically polymerizable compound. When a cationically polymerizable compound or a radically polymerizable compound is contained, the effect of increasing the hardness of the adhesive layer can be expected.
 カチオン重合性化合物としては、例えばオキセタン化合物又はエポキシ化合物等が挙げられる。カチオン重合性化合物の含有量は、活性エネルギー線硬化性の接着剤組成物100質量部に対して、10~99質量部であることが好ましく、40~99質量部であることがより好ましい。 Examples of the cationically polymerizable compound include an oxetane compound and an epoxy compound. The content of the cationically polymerizable compound is preferably 10 to 99 parts by mass, more preferably 40 to 99 parts by mass, based on 100 parts by mass of the active energy ray-curable adhesive composition.
 活性エネルギー線硬化型接着剤は、オキセタン化合物を、1種のみ含んでもよいし、2種以上含んでもよい。活性エネルギー線硬化型接着剤は、エポキシ化合物を、1種のみ含んでもよいし、2種以上含んでもよい。 The active energy ray-curable adhesive may contain only one type of oxetane compound, or may contain two or more types of oxetane compounds. The active energy ray-curable adhesive may contain only one type of epoxy compound, or may contain two or more types of epoxy compounds.
 ラジカル重合性化合物としては、(メタ)アクリル化合物、(メタ)アクリルアミド化合物等を挙げることができる。 Examples of the radically polymerizable compound include (meth) acrylic compounds and (meth) acrylamide compounds.
 (メタ)アクリル化合物としては、分子内に少なくとも1個の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートモノマー及び分子内に少なくとも2個の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートオリゴマー等が挙げられる。これらは各々単独で使用してもよいし、2種以上を併用して使用してもよい。 Examples of the (meth) acrylic compound include a (meth) acrylate monomer having at least one (meth) acryloyloxy group in the molecule and a (meth) acrylate oligomer having at least two (meth) acryloyloxy groups in the molecule. Can be mentioned. Each of these may be used alone, or two or more thereof may be used in combination.
 (メタ)アクリルアミド化合物としては、N-置換(メタ)アクリルアミド化合物が挙げられる。N-置換(メタ)アクリルアミド化合物は、N-位に置換基を有する(メタ)アクリルアミド化合物である。その置換基の典型的な例は、アルキル基である。N-位の置換基は互いに結合して環を形成していてもよく、この環を構成する-CH-は、酸素原子に置換されていてもよい。さらに、その環を構成する炭素原子には、アルキル基やオキソ基(=O)等の置換基が結合していてもよい。N-置換(メタ)アクリルアミドは一般に、(メタ)アクリル酸又はその塩化物と1級又は2級アミンとの反応により製造できる。 Examples of the (meth) acrylamide compound include N-substituted (meth) acrylamide compounds. The N-substituted (meth) acrylamide compound is a (meth) acrylamide compound having a substituent at the N-position. A typical example of the substituent is an alkyl group. The substituents at the N-position may be bonded to each other to form a ring, and -CH 2- which constitutes this ring may be substituted with an oxygen atom. Further, a substituent such as an alkyl group or an oxo group (= O) may be bonded to the carbon atom constituting the ring. N-substituted (meth) acrylamide can generally be produced by the reaction of (meth) acrylic acid or its chloride with a primary or secondary amine.
 ラジカル重合性化合物の含有量は、活性エネルギー線硬化型接着剤100質量部に対して1~70質量部であることが好ましく、10~60質量部であることがより好ましい。 The content of the radically polymerizable compound is preferably 1 to 70 parts by mass and more preferably 10 to 60 parts by mass with respect to 100 parts by mass of the active energy ray-curable adhesive.
 活性エネルギー線硬化型接着剤は、ラジカル重合性化合物を、1種のみ含んでもよいし、2種以上含んでもよい。 The active energy ray-curable adhesive may contain only one type of radically polymerizable compound, or may contain two or more types.
 活性エネルギー線硬化型接着剤は、カチオン重合開始剤又はラジカル重合開始剤をさらに含むことができる。活性エネルギー線硬化型接着剤は、重合開始剤を1種のみ含んでもよいし、2種以上含んでもよい。 The active energy ray-curable adhesive may further contain a cationic polymerization initiator or a radical polymerization initiator. The active energy ray-curable adhesive may contain only one type of polymerization initiator, or may contain two or more types of polymerization initiators.
〔フレキシブル積層体〕
 フレキシブル積層体100は、第1ガラス板10と、偏光板20と、タッチセンサー層30と、第2ガラス板40とを、第1ガラス板10が視認される側に積層され、また、第2ガラス板40がタッチセンサー層30の上部全体又は下部全体の少なくとも一方に積層されるように貼合することにより、製造することができる。これらの部材を貼合する際は、上記粘接着剤層を使用してよく、貼合面を易接着処理してもよい。
[Flexible laminate]
In the flexible laminated body 100, the first glass plate 10, the polarizing plate 20, the touch sensor layer 30, and the second glass plate 40 are laminated on the side where the first glass plate 10 is visible, and the second glass plate 10 is visible. It can be manufactured by laminating the glass plate 40 on at least one of the entire upper portion or the entire lower portion of the touch sensor layer 30. When these members are bonded, the adhesive layer may be used, and the bonded surface may be easily bonded.
 ある実施形態においては、まず、第2ガラス板40とタッチセンサー層30とを、紫外線硬化型接着剤層を介して、タッチセンサー層30の両面で貼合する。次いで、第1ガラス板10と、偏光板20と、該ガラス板貼合タッチセンサー層とを、粘接着剤層を介して、この順に貼合する。 In a certain embodiment, first, the second glass plate 40 and the touch sensor layer 30 are bonded to each other on both sides of the touch sensor layer 30 via an ultraviolet curable adhesive layer. Next, the first glass plate 10, the polarizing plate 20, and the glass plate bonding touch sensor layer are bonded in this order via the adhesive layer.
 他の実施形態においては、まず、第2ガラス板40とタッチセンサー層30とを、粘接着剤層を介して、タッチセンサー層30の片面で貼合する。次いで、第1ガラス板10と、偏光板20と、該ガラス板貼合タッチセンサー層とを、粘接着剤層を介して、この順に貼合する。この際、ガラス板貼合タッチセンサー層の貼り合わせる面は、ガラス板側であってもよくタッチセンサー層側であってもよい。 In another embodiment, first, the second glass plate 40 and the touch sensor layer 30 are bonded to each other on one side of the touch sensor layer 30 via the adhesive layer. Next, the first glass plate 10, the polarizing plate 20, and the glass plate bonding touch sensor layer are bonded in this order via the adhesive layer. At this time, the surface to which the glass plate-bonded touch sensor layer is bonded may be the glass plate side or the touch sensor layer side.
 フレキシブル積層体の厚さは、例えば、200~500μmである。フレキシブル積層体の厚さが200μm以上である場合には、フレキシブル積層体の耐衝撃性を向上させることができ、500μm以下である場合には、フレキシブル積層体の屈曲性を向上させることができる。フレキシブル積層体の厚さは、好ましくは250~450μm、より好ましくは300~400μmである。 The thickness of the flexible laminate is, for example, 200 to 500 μm. When the thickness of the flexible laminate is 200 μm or more, the impact resistance of the flexible laminate can be improved, and when it is 500 μm or less, the flexibility of the flexible laminate can be improved. The thickness of the flexible laminate is preferably 250 to 450 μm, more preferably 300 to 400 μm.
 フレキシブル積層体は、表示装置の視認面側を構成する層として使用することができる。表示装置の具体例としては、例えば有機EL表示装置が挙げられる。 The flexible laminate can be used as a layer constituting the visible surface side of the display device. Specific examples of the display device include an organic EL display device.
〔表示装置〕
 フレキシブル積層体100は、下部に、表示装置の下部構造を積層することで、表示装置200を製造することができる。この場合、例えば、フレキシブル積層体100の視認される側でない露出面と下部構造の表示面とを、上記粘接着剤層を介して貼合すればよい。表示装置の下部構造としては、例えば、有機EL層(有機エレクトロルミネッセンス層)、有機TFT層(有機薄膜トランジスタ層)、液晶層等を含む表示構造が挙げられる。
[Display device]
The flexible laminated body 100 can manufacture the display device 200 by laminating the lower structure of the display device on the lower part. In this case, for example, the exposed surface of the flexible laminate 100 that is not on the visible side and the display surface of the lower structure may be bonded to each other via the adhesive layer. Examples of the substructure of the display device include a display structure including an organic EL layer (organic electroluminescence layer), an organic TFT layer (organic thin film transistor layer), a liquid crystal layer, and the like.
 フレキシブル積層体を備える表示装置は、視認される側に位置する第1ガラス板を内側にして、屈曲半径3mmにて180°屈曲させては伸ばす操作を10万回繰り返し行った場合に、好ましくは20万回繰り返し行った場合に、ガラス板に割れ又は破断が生じない耐屈曲性を有することができる。屈曲試験の具体的な方法は、後述の実施例に記載された方法に従う。 The display device provided with the flexible laminate preferably has the operation of bending and stretching 180 ° with the first glass plate located on the side to be visually recognized inside and having a bending radius of 3 mm repeated 100,000 times. When it is repeated 200,000 times, the glass plate can have bending resistance without cracking or breaking. The specific method of the bending test follows the method described in Examples described later.
 以下、実施例により本発明を更に詳細に説明する。本発明はこれらの実施例に限定されるものではない。本実施例中、物質を配合する割合の単位「部」は、特に断らない限り、質量基準とする。 Hereinafter, the present invention will be described in more detail with reference to Examples. The present invention is not limited to these examples. In this example, the unit "part" of the mixing ratio of the substance is based on mass unless otherwise specified.
 下記項目の測定方法は、下記に従った。 The measurement method for the following items was as follows.
(a)層の厚さ
 各層の厚さは、接触式膜厚測定装置(株式会社ニコン製「MS-5C」(商品名))を用いて測定した。ただし、偏光子及び配向膜については、レーザー顕微鏡(オリンパス株式会社製「OLS3000」(商品名))を用いて測定した。
(A) Layer thickness The thickness of each layer was measured using a contact-type film thickness measuring device (“MS-5C” (trade name) manufactured by Nikon Corporation). However, the polarizer and the alignment film were measured using a laser microscope (“OLS3000” (trade name) manufactured by Olympus Corporation).
(b)貯蔵弾性率(G’)
 粘着剤層を150μmになるように積み重ねて、サンプルを作製した。貯蔵弾性率(G’)は、レオメーター(Anton Parr社製「MCR-301」(商品名))を用いて測定した。測定条件は、温度25℃、応力1%及び周波数1Hzとした。
(B) Storage elastic modulus (G')
Samples were prepared by stacking the pressure-sensitive adhesive layers to a size of 150 μm. The storage elastic modulus (G') was measured using a rheometer (“MCR-301” (trade name) manufactured by Antonio Parr). The measurement conditions were a temperature of 25 ° C., a stress of 1%, and a frequency of 1 Hz.
<製造例> <Manufacturing example>
(第1ガラス板10及び第2ガラス板40の作製)
 ガラス板(SCHOTT社製「AS87-eco」(商品名)、厚さ100μm)をエッチング処理した後、化学強化処理をし、第1ガラス板10及び第2ガラス板40(厚さ50μm)を作製した。
(Preparation of 1st glass plate 10 and 2nd glass plate 40)
A glass plate (“AS87-eco” (trade name) manufactured by SCHOTT, thickness 100 μm) is etched and then chemically strengthened to prepare a first glass plate 10 and a second glass plate 40 (thickness 50 μm). bottom.
(偏光板20の作製)
 厚さ25μmのトリアセチルセルロース(TAC)フィルムに光配向膜を形成した。該光配向膜上に、二色性色素と重合性液晶化合物とを含む組成物を塗布し、配向・硬化させて厚さ2μmの偏光子を作製した。該偏光子上に、アクリル系樹脂組成物をさらに塗布し、紫外線を照射し硬化させて、厚さ2μmのオーバーコート層を形成した。該オーバーコート層上に、厚さが5μmのアクリル系粘着剤層を介して、液晶化合物が重合して硬化した層を含む位相差層を貼合した。位相差層の層構成は、液晶化合物が硬化した層及び配向膜からなるλ/4板(厚さ2μm)/紫外線硬化型接着剤層(厚さ2μm)/液晶化合物が硬化した層及び配向膜からなるポジティブCプレート(厚さ3μm)、であった。なお、位相差層は、偏光子側から、λ/4板、ポジティブCプレートの順となるように貼合した。λ/4の遅相軸と、偏光子の吸収軸とのなす角度は、45°であった。このようにして、偏光板20を作製した。偏光板20は、円偏光板であった。
(Preparation of polarizing plate 20)
A photoalignment film was formed on a 25 μm-thick triacetyl cellulose (TAC) film. A composition containing a dichroic dye and a polymerizable liquid crystal compound was applied onto the photoalignment film, and the mixture was oriented and cured to prepare a polarizer having a thickness of 2 μm. An acrylic resin composition was further applied onto the polarizer and cured by irradiating with ultraviolet rays to form an overcoat layer having a thickness of 2 μm. On the overcoat layer, a retardation layer including a layer obtained by polymerizing and curing a liquid crystal compound was laminated via an acrylic pressure-sensitive adhesive layer having a thickness of 5 μm. The layer structure of the retardation layer is a λ / 4 plate (thickness 2 μm) consisting of a layer in which the liquid crystal compound is cured and an alignment film / an ultraviolet curable adhesive layer (thickness 2 μm) / a layer in which the liquid crystal compound is cured and an alignment film. It was a positive C plate (thickness 3 μm) composed of. The retardation layers were laminated in the order of the λ / 4 plate and the positive C plate from the polarizer side. The angle formed by the slow axis of λ / 4 and the absorption axis of the polarizer was 45 °. In this way, the polarizing plate 20 was produced. The polarizing plate 20 was a circular polarizing plate.
(タッチセンサー層30の作製)
 ガラス基材上に、分離層、保護層、透明導電層を順に形成した。透明導電層は、フォトリソグラフィによりパターン化した。分離層は、アクリル系樹脂の硬化層であり、厚さが0.5μmである。保護層は、アクリル系樹脂の硬化層であり、厚さが3μmである。透明導電層は、インジウムスズ酸化物(ITO)層を有し、表面が絶縁層で被覆されている。ITO層の厚さは、0.1μmである。絶縁層は、特開2016-14877号公報の実施例3に記載された感光性樹脂組成物の硬化物であり、厚さが2μmである。分離層、保護層、及び透明導電層からなるタッチセンサー層30をガラス基材から剥離して、フレキシブル積層体の作製に用いた。
(Manufacturing of touch sensor layer 30)
A separation layer, a protective layer, and a transparent conductive layer were formed on the glass substrate in this order. The transparent conductive layer was patterned by photolithography. The separation layer is a cured layer of an acrylic resin and has a thickness of 0.5 μm. The protective layer is a cured layer of an acrylic resin and has a thickness of 3 μm. The transparent conductive layer has an indium tin oxide (ITO) layer, and its surface is coated with an insulating layer. The thickness of the ITO layer is 0.1 μm. The insulating layer is a cured product of the photosensitive resin composition described in Example 3 of Japanese Patent Application Laid-Open No. 2016-14877, and has a thickness of 2 μm. The touch sensor layer 30 composed of the separation layer, the protective layer, and the transparent conductive layer was peeled off from the glass substrate and used for producing a flexible laminate.
(粘着剤層の作製)
 下記成分を、窒素雰囲気下で撹拌しながら55℃で反応させることによりアクリル樹脂を調製した。アクリル酸ブチル:70部、アクリル酸メチル:20部、アクリル酸:1.0部、ラジカル重合開始剤(2,2’-アゾビスイソブチロニトリル):0.2部、溶剤(酢酸エチル):80部。得られたアクリル樹脂に、架橋剤(東ソー株式会社製「コロネートL」(商品名))0.3部、シランカップリング剤(信越化学工業株式会社製「X-12-981」(商品名))0.5部を混合し、全固形分濃度が10%になるように酢酸エチルを添加して、粘着剤組成物を得た。得られた粘着剤組成物を離型処理されたポリエチレンテレフタレートフィルム(剥離フィルムB、厚さ38μm)の離型処理面に、アプリケーターを利用して乾燥後の厚さが25μmになるように塗布した。塗布層を100℃で1分間乾燥して、粘着剤層を有するフィルムを得た。その後、粘着剤層の露出面上に、離型処理された別のポリエチレンテレフタレートフィルム(剥離フィルムA、厚さ38μm)を貼合した。その後、温度23℃、相対湿度50%RHの条件で7日間養生した。このようにして、剥離フィルムA/粘着剤層/剥離フィルムBからなる粘着剤層を作製した。粘着剤層の25℃における貯蔵弾性率は、0.05MPaであった。剥離フィルムは、フレキシブル積層体等を作製する際には、適宜剥離した。
(Preparation of adhesive layer)
An acrylic resin was prepared by reacting the following components at 55 ° C. with stirring in a nitrogen atmosphere. Butyl acrylate: 70 parts, Methyl acrylate: 20 parts, Acrylic acid: 1.0 parts, Radical polymerization initiator (2,2'-azobisisobutyronitrile): 0.2 parts, Solvent (ethyl acetate) : 80 copies. To the obtained acrylic resin, 0.3 parts of a cross-linking agent (“Coronate L” (trade name) manufactured by Tosoh Corporation) and a silane coupling agent (“X-12-981” (trade name) manufactured by Shin-Etsu Chemical Co., Ltd.) ) 0.5 parts were mixed, and ethyl acetate was added so that the total solid content concentration became 10% to obtain a pressure-sensitive adhesive composition. The obtained pressure-sensitive adhesive composition was applied to the release-treated surface of the release-treated polyethylene terephthalate film (release film B, thickness 38 μm) using an applicator so that the thickness after drying was 25 μm. .. The coating layer was dried at 100 ° C. for 1 minute to obtain a film having an adhesive layer. Then, another polyethylene terephthalate film (release film A, thickness 38 μm) that had been released from the mold was attached onto the exposed surface of the pressure-sensitive adhesive layer. Then, it was cured for 7 days under the conditions of a temperature of 23 ° C. and a relative humidity of 50% RH. In this way, a pressure-sensitive adhesive layer composed of the release film A / pressure-sensitive adhesive layer / release film B was produced. The storage elastic modulus of the pressure-sensitive adhesive layer at 25 ° C. was 0.05 MPa. The release film was appropriately peeled off when producing a flexible laminate or the like.
(下部構造50の作製)
 有色ポリイミドフィルム(宇部興産株式会社製「UPILEX‐35S」(商品名)、厚さ35μm)の一方の面に前記粘着剤層(厚さ25μm)を介して有色ポリイミドフィルム(厚さ50μm)を積層し、フレキシブル積層体100に接続する下部構造50(厚さ110μm)を作製した。これを表示装置下部構造の代用品とした。
(Preparation of substructure 50)
A colored polyimide film (thickness 50 μm) is laminated on one surface of a colored polyimide film (“UPILEX-35S” (trade name) manufactured by Ube Industries, Ltd., thickness 35 μm) via the adhesive layer (thickness 25 μm). Then, a lower structure 50 (thickness 110 μm) connected to the flexible laminate 100 was produced. This was used as a substitute for the display device substructure.
(ウィンドウフィルムの作製)
 特開2018-119141号公報の実施例4に従って作製した透明基材フィルム(ポリアミドイミドフィルム、厚さ40μm)の一方の面に、以下のハードコート層用組成物をコーティングした後、溶剤を乾燥させ、紫外線硬化することで、基材フィルムの片面に厚さ10μmのハードコート層が形成されたウィンドウフィルム(厚さ50μm)を作製した。ハードコート層形成用組成物:多機能アクリレート(MIWONスペシャルティーケミカル社製「MIRAMER M340」(商品名))30部、プロピレングリコールモノメチルエーテルに分散したナノシリカゾル(粒子径12nm、固形分40%)50部、エチルアセテート17部、光重合開始剤(BASF社製「I184」(商品名))2.7部、フッ素系添加剤(信越化学工業株式会社製「KY1203」(商品名))0.3部を、撹拌機を利用して配合し、ポリプロピレン(PP)材質のフィルターを用いて濾過することにより調製した。
(Making a window film)
One surface of a transparent base film (polyamideimide film, thickness 40 μm) prepared according to Example 4 of JP-A-2018-119141 is coated with the following composition for a hard coat layer, and then the solvent is dried. By curing with ultraviolet rays, a window film (thickness 50 μm) having a hard coat layer having a thickness of 10 μm formed on one side of the base film was produced. Composition for forming a hard coat layer: 30 parts of multifunctional acrylate (“MIRAMER M340” (trade name) manufactured by MIWON Specialty Chemical Co., Ltd.), nanosilica sol (particle size 12 nm, solid content 40%) dispersed in propylene glycol monomethyl ether 50 Parts, 17 parts of ethyl acetate, photopolymerization initiator (BASF "I184" (trade name)) 2.7 parts, fluorine-based additive ("KY1203" (trade name) manufactured by Shin-Etsu Chemical Industry Co., Ltd.) 0.3 The parts were prepared by blending using a stirrer and filtering using a filter made of polypropylene (PP) material.
<実施例及び比較例>
 まず、第2ガラス板40の両面にコロナ処理(条件:周波数20Hz、出力8.6kW、処理速度6.8m/分)を行い、そのうちの一面とタッチセンサー層30とを、紫外線硬化型接着剤層(日東電工株式会社製NT-01UV(商品名)、厚さ1.5μm)を介して貼合した。次に、偏光板20の両面と、ウィンドウフィルムのポリアミドイミドフィルム側の面と、粘着剤層の両面とに、同様にコロナ処理(条件:周波数20Hz、出力8.6kW、処理速度6.8m/分)を行った。この後、以下に説明する順に、これらを粘着剤層を介して積層、貼合することで、フレキシブル積層体100を作製した。
<Examples and Comparative Examples>
First, both sides of the second glass plate 40 are subjected to corona treatment (conditions: frequency 20 Hz, output 8.6 kW, processing speed 6.8 m / min), and one of the surfaces and the touch sensor layer 30 are bonded with an ultraviolet curable adhesive. It was bonded via a layer (NT-01UV (trade name) manufactured by Nitto Denko KK, thickness 1.5 μm). Next, both sides of the polarizing plate 20, the surface of the window film on the polyamide-imide film side, and both sides of the pressure-sensitive adhesive layer are similarly subjected to corona treatment (conditions: frequency 20 Hz, output 8.6 kW, processing speed 6.8 m /). Minutes) was done. After that, the flexible laminated body 100 was produced by laminating and laminating these in the order described below via the pressure-sensitive adhesive layer.
<実施例1>
 第1ガラス板10と、偏光板20と、下部全体に第2ガラス板40が積層されたタッチセンサー層30とを、視認される側からこの順に積層して、フレキシブル積層体100を作製した(図1A)。
<Example 1>
The flexible laminate 100 was produced by laminating the first glass plate 10, the polarizing plate 20, and the touch sensor layer 30 on which the second glass plate 40 was laminated on the entire lower portion in this order from the side to be visually recognized (). FIG. 1A).
<実施例2>
 第1ガラス板10と、偏光板20と、上部全体に第2ガラス板40が積層されたタッチセンサー層30とを、視認される側からこの順に積層して、フレキシブル積層体100を作製した(図1B)。
<Example 2>
The first glass plate 10, the polarizing plate 20, and the touch sensor layer 30 on which the second glass plate 40 is laminated on the entire upper portion are laminated in this order from the side to be visually recognized to prepare a flexible laminate 100 (a flexible laminate 100). FIG. 1B).
<実施例3>
 第1ガラス板10と、偏光板20と、上部全体及び下部全体に第2ガラス板40が積層されたタッチセンサー層30とを、視認される側からこの順に積層して、フレキシブル積層体100を作製した(図1C)。
<Example 3>
The first glass plate 10, the polarizing plate 20, and the touch sensor layer 30 in which the second glass plate 40 is laminated on the entire upper portion and the entire lower portion are laminated in this order from the side to be visually recognized to form the flexible laminate 100. Made (Fig. 1C).
<比較例1>
 第1ガラス板10の代わりに視認面をウィンドウフィルムとし、これと、偏光板20と、タッチセンサー層30とを、この順に積層して、積層体を作製した(図示していない)。
<Comparative example 1>
A viewing surface was used as a window film instead of the first glass plate 10, and the polarizing plate 20 and the touch sensor layer 30 were laminated in this order to prepare a laminated body (not shown).
<比較例2>
 第1ガラス板10と、偏光板20と、タッチセンサー層30とを、視認される側からこの順に積層して、積層体を作製した(図示していない)。
<Comparative example 2>
The first glass plate 10, the polarizing plate 20, and the touch sensor layer 30 were laminated in this order from the side to be visually recognized to prepare a laminated body (not shown).
<耐衝撃性試験>
 定盤の上に、下部構造50、感圧紙(Fuji Image Tech社製、HS Grade)、及び実施例又は比較例で作製したフレキシブル積層体をこの順に重ねて、積層体を作製した
<Impact resistance test>
A laminate was prepared by stacking a lower structure 50, a pressure-sensitive paper (manufactured by Fuji Image Tech, HS Grade), and a flexible laminate prepared in Examples or Comparative Examples on a surface plate in this order.
 定盤から100mmの高さの位置で、ペン先が下方を向くようにペンを固定し、ペンが落下中傾かないように、やや大きめの管の中でペンを積層体の視認される側へ向けて落下させた。結果を以下の基準で評価した。 At a height of 100 mm from the surface plate, fix the pen so that the pen tip faces downward, and move the pen to the visible side of the laminate in a slightly larger tube so that the pen does not tilt during falling. I dropped it toward it. The results were evaluated according to the following criteria.
 ◎:下部構造50の底面圧力が72MPa未満、
 〇:下部構造50の底面圧力が72MPa以上、75MPa未満、
 △:下部構造50の底面圧力が75MPa以上、80MPa未満、
 ×:下部構造50の底面圧力が80MPa以上。
⊚: The bottom pressure of the lower structure 50 is less than 72 MPa,
〇: The bottom pressure of the lower structure 50 is 72 MPa or more and less than 75 MPa,
Δ: The bottom pressure of the lower structure 50 is 75 MPa or more and less than 80 MPa,
X: The bottom pressure of the lower structure 50 is 80 MPa or more.
<底面圧力の測定>
 耐衝撃試験を終えた後、感圧紙(Fuji Image Tech社製、HS Grade)をスキャナー(EPSON社製「V350」(商品名))でプログラム(FPD-8010E)を使用して、スキャンした。HS Gradeの感圧紙の圧力測定範囲は50MPa~130MPaであり、積層体に対する衝撃圧力(測定可能範囲:60~100MPa)を測定するのに適する。数値は、円形の圧力範囲で一番高く確認された値を基準とした。測定は、積層体を作製した後、1日が経過した後に行った。
<Measurement of bottom pressure>
After completing the impact resistance test, a pressure-sensitive paper (HS Grade, manufactured by Fuji Image Tech) was scanned using a scanner (“V350” (trade name) manufactured by EPSON) using a program (FPD-8010E). The pressure measurement range of the pressure-sensitive paper of HS Grade is 50 MPa to 130 MPa, and it is suitable for measuring the impact pressure on the laminated body (measurable range: 60 to 100 MPa). The values are based on the highest confirmed value in the circular pressure range. The measurement was performed one day after the laminate was prepared.
<表面硬度の測定>
 実施例及び比較例のフレキシブル積層体の表面の鉛筆硬度を測定した。鉛筆硬度試験機は、韓国ソクボ科学(SUKBO SCIENCE)社製「PHT」(商品名)を用いた。試験は、JIS K5600-5-4に準拠し、温度25℃で行った。鉛筆の角度は90°、荷重は1kgとした。 
<Measurement of surface hardness>
The pencil hardness on the surface of the flexible laminates of Examples and Comparative Examples was measured. As the pencil hardness tester, "PHT" (trade name) manufactured by SUKBO SCIENCE of Korea was used. The test was carried out at a temperature of 25 ° C. in accordance with JIS K5600-5-4. The angle of the pencil was 90 ° and the load was 1 kg.
<屈曲試験>
 下部構造50及びフレキシブル積層体にコロナ処理(条件:周波数20Hz、出力8.6kW、処理速度6.8m/分)を行った後、粘着剤層を介して互いに積層し、積層体を作製した。得られた積層体について屈曲試験を行った。屈曲試験は、常温、屈曲半径3mm、インフォールド方式の条件の下で行った。得られた積層体を屈曲試験機(Covotech社製「CFT-720C」(製品名))に平坦な状態(屈曲していない状態)で設置し、視認される側全体に積層された第1ガラス板又はウィンドウフィルム側が内側となるよう(インフォールド方式)180°屈曲させ、その後、元の平坦な状態に戻した。屈曲半径は、3mmとした。
<Bending test>
The substructure 50 and the flexible laminate were subjected to corona treatment (conditions: frequency 20 Hz, output 8.6 kW, processing speed 6.8 m / min), and then laminated with each other via an adhesive layer to prepare a laminate. A bending test was performed on the obtained laminate. The bending test was performed under the conditions of normal temperature, bending radius of 3 mm, and infold method. The obtained laminated body was installed in a bending tester (“CFT-720C” (product name) manufactured by Covotech) in a flat state (not bent), and the first glass laminated on the entire visible side. It was bent 180 ° so that the plate or window film side was on the inside (in-fold method), and then returned to the original flat state. The bending radius was 3 mm.
 屈曲させて平坦に戻す操作を1回行ったことを屈曲回数1回と数え、この動作を繰り返し行った。屈曲速度は1秒で1回屈曲(60rpm)とした。屈曲操作で屈曲した領域において視認される側全体に積層された第1ガラス板又はウィンドウフィルムにクラック又は破断が生じたときの屈曲回数を、限界屈曲回数として記録し、下記の基準に従って評価した。結果を表1に示す。 The operation of bending and returning to flatness was counted as one bending, and this operation was repeated. The bending speed was set to one bending (60 rpm) in 1 second. The number of times of bending when a crack or break occurred in the first glass plate or the window film laminated on the entire side to be visually recognized in the region bent by the bending operation was recorded as the limit number of times of bending, and evaluated according to the following criteria. The results are shown in Table 1.
 ◎:限界屈曲回数が20万回以上、
 〇:限界屈曲回数が10万回以上、20万回未満、
 △:限界屈曲回数が1万回以上、10万回未満、
 ×:限界屈曲回数が1万回未満。
⊚: The limit number of bends is 200,000 or more,
〇: The limit number of bends is 100,000 or more, less than 200,000,
Δ: The limit bending number is 10,000 times or more and less than 100,000 times,
X: The limit bending number is less than 10,000 times.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明の視認される側全体に積層された第1ガラス板と、偏光板と、タッチセンサー層と、該タッチセンサー層の上部全体又は下部全体の少なくとも一方に積層された、厚さが10~100μmである第2ガラス板とを有する、フレキシブル積層体100を用いた積層体では、下部構造50の底面に加わる圧力が小さく、フレキシブル積層体100が優れた衝撃緩和効果を示すことが分かる(実施例1~3)。また、その効果は、第2ガラス板がタッチセンサー層の上部全体及び下部全体に積層されているものでより大きかった(実施例3)。第1ガラス板10を積層体の視認面に使用することで、表面硬度も向上した。 From Table 1, the thickness of the first glass plate laminated on the entire visible side of the present invention, the polarizing plate, the touch sensor layer, and the thickness of the touch sensor layer laminated on at least one of the entire upper portion or the entire lower portion. In the laminate using the flexible laminate 100 having the second glass plate having a thickness of 10 to 100 μm, the pressure applied to the bottom surface of the lower structure 50 is small, and the flexible laminate 100 exhibits an excellent impact mitigation effect. Can be understood (Examples 1 to 3). Further, the effect was greater when the second glass plate was laminated on the entire upper part and the entire lower part of the touch sensor layer (Example 3). By using the first glass plate 10 on the visible surface of the laminated body, the surface hardness was also improved.
 本発明のフレキシブル積層体は、上記耐衝撃性試験及び鉛筆硬度試験の結果に加え、屈曲性試験の結果も併せて良好である。本発明のフレキシブル積層体は、表示装置用フレキシブル積層体としての性能要求を満たすものである。 The flexible laminate of the present invention has good results of the flexibility test in addition to the results of the impact resistance test and the pencil hardness test. The flexible laminate of the present invention satisfies the performance requirements as a flexible laminate for a display device.
 10…第1ガラス板、
 20…偏光板、
 30…タッチセンサー層、
 40…第2ガラス板、
 50…下部構造、
 100…フレキシブル積層体、
 200…表示装置。
10 ... 1st glass plate,
20 ... Polarizing plate,
30 ... Touch sensor layer,
40 ... 2nd glass plate,
50 ... Substructure,
100 ... Flexible laminate,
200 ... Display device.

Claims (5)

  1. 厚さが10~100μmである第1ガラス板と、偏光板と、タッチセンサー層と、該タッチセンサー層の上部又は下部に積層された厚さが10~100μmである第2ガラス板とを有する、フレキシブル積層体。 It has a first glass plate having a thickness of 10 to 100 μm, a polarizing plate, a touch sensor layer, and a second glass plate having a thickness of 10 to 100 μm laminated on the upper or lower part of the touch sensor layer. , Flexible laminate.
  2. 厚さが200~500μmである、前記請求項1に記載のフレキシブル積層体。 The flexible laminate according to claim 1, which has a thickness of 200 to 500 μm.
  3. 有機EL表示装置用である、前記請求項1又は2に記載のフレキシブル積層体。 The flexible laminate according to claim 1 or 2, which is used for an organic EL display device.
  4. 有機EL層と、該有機EL層の視認される側に積層された前記請求項1~3のいずれか一項に記載のフレキシブル積層体とを有する、有機EL表示装置。 An organic EL display device having an organic EL layer and a flexible laminated body according to any one of claims 1 to 3 laminated on the visible side of the organic EL layer.
  5. 前記偏光板を基準にして第1ガラス板を内側にして、屈曲半径3mmにて180°屈曲させては伸ばす操作を10万回繰り返し行った場合に、第1ガラス板に割れ又は破断が生じない耐屈曲性を有する、請求項4に記載の有機EL表示装置。 When the operation of bending and stretching 180 ° with a bending radius of 3 mm with the first glass plate inside with the polarizing plate as a reference is repeated 100,000 times, the first glass plate does not crack or break. The organic EL display device according to claim 4, which has bending resistance.
PCT/JP2021/015399 2020-04-28 2021-04-14 Flexible laminate and display device WO2021220806A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180030819.0A CN115485651A (en) 2020-04-28 2021-04-14 Flexible laminate and display device
KR1020227031706A KR20230002314A (en) 2020-04-28 2021-04-14 Flexible laminate and display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020079577 2020-04-28
JP2020-079577 2020-04-28
JP2021-058368 2021-03-30
JP2021058368A JP2021176145A (en) 2020-04-28 2021-03-30 Flexible laminate and display device

Publications (1)

Publication Number Publication Date
WO2021220806A1 true WO2021220806A1 (en) 2021-11-04

Family

ID=78300486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015399 WO2021220806A1 (en) 2020-04-28 2021-04-14 Flexible laminate and display device

Country Status (5)

Country Link
JP (1) JP2021176145A (en)
KR (1) KR20230002314A (en)
CN (1) CN115485651A (en)
TW (1) TW202145612A (en)
WO (1) WO2021220806A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187850A (en) * 2014-03-07 2015-10-29 株式会社半導体エネルギー研究所 Touch sensor, touch panel, and manufacturing method of touch panel
US20190355919A1 (en) * 2017-10-31 2019-11-21 Yungu (Gu'an) Technology Co., Ltd. Flexible substrate and manufacturing method thereof
US20190355925A1 (en) * 2017-10-31 2019-11-21 Yungu (Gu'an) Technology Co., Ltd. Flexible display module, flexible display device and method for preparing the flexible display module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2752402B1 (en) 2011-08-31 2018-06-27 Showa Denko K.K. Production method for 2-alkenylamine compound
KR101688173B1 (en) 2011-12-26 2016-12-21 코오롱인더스트리 주식회사 Plastic substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187850A (en) * 2014-03-07 2015-10-29 株式会社半導体エネルギー研究所 Touch sensor, touch panel, and manufacturing method of touch panel
US20190355919A1 (en) * 2017-10-31 2019-11-21 Yungu (Gu'an) Technology Co., Ltd. Flexible substrate and manufacturing method thereof
US20190355925A1 (en) * 2017-10-31 2019-11-21 Yungu (Gu'an) Technology Co., Ltd. Flexible display module, flexible display device and method for preparing the flexible display module

Also Published As

Publication number Publication date
TW202145612A (en) 2021-12-01
JP2021176145A (en) 2021-11-04
KR20230002314A (en) 2023-01-05
CN115485651A (en) 2022-12-16

Similar Documents

Publication Publication Date Title
JP6732089B2 (en) Flexible laminate and image display device including the same
JP2020019277A (en) Laminate and method for manufacturing the same
JP6735891B2 (en) Flexible laminate and image display device including the same
TW202030088A (en) Optical laminate and image display device provided with same
JP2021144208A (en) Laminated sheet and manufacturing method therefor
WO2021220806A1 (en) Flexible laminate and display device
KR20230000955A (en) Optical laminate and display device
WO2021220805A1 (en) Flexible laminate and display device
WO2021182005A1 (en) Laminate sheet and method for manufacturing same
WO2021200365A1 (en) Laminated body
WO2021200364A1 (en) Multilayer body
WO2020162102A1 (en) Optical layered body and display device
WO2021166434A1 (en) Optical laminate and display device having same
WO2021149359A1 (en) Optical stack and display device
JP2023154554A (en) Laminate and image display device
JP2021162856A (en) Laminate
JP2021162855A (en) Laminate
JP2021152645A (en) Flexible laminate and image display device having the same
JP2021152649A (en) Laminate
JP2021152644A (en) Flexible laminate and image display device having the same
KR20220131157A (en) Optical laminate and display device
KR20210117941A (en) Optical laminate and display device
KR20220015963A (en) Laminated body and image display device
JP2020126575A (en) Optical laminate and display device
CN113341493A (en) Optical laminate and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796147

Country of ref document: EP

Kind code of ref document: A1