WO2021218937A1 - 减少功耗的方法及终端 - Google Patents

减少功耗的方法及终端 Download PDF

Info

Publication number
WO2021218937A1
WO2021218937A1 PCT/CN2021/090063 CN2021090063W WO2021218937A1 WO 2021218937 A1 WO2021218937 A1 WO 2021218937A1 CN 2021090063 W CN2021090063 W CN 2021090063W WO 2021218937 A1 WO2021218937 A1 WO 2021218937A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink transmission
uplink
terminal
transmission mode
data
Prior art date
Application number
PCT/CN2021/090063
Other languages
English (en)
French (fr)
Inventor
何彦召
向晨路
陈小静
张舜卿
徐树公
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2021218937A1 publication Critical patent/WO2021218937A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of mobile communication technology, and in particular to a method and terminal for reducing power consumption.
  • the terminal When sending uplink data, there are multiple uplink transmission modes available to the terminal. Generally, in order to ensure the communication quality of the uplink transmission, the terminal can use the uplink transmission mode with the fastest uplink transmission rate to send uplink data. However, if the uplink transmission mode with the fastest uplink transmission rate is used to send uplink data, it will consume more power. Therefore, how to adaptively select an uplink transmission mode with lower power consumption while ensuring the communication quality of the uplink transmission is a problem that needs to be solved urgently at present.
  • the embodiments of the present application provide a method and a terminal for reducing power consumption, which can enable the terminal to use an uplink transmission mode with lower power consumption to transmit uplink data while ensuring the quality of uplink communication, thereby saving power consumption of the terminal and improving user experience.
  • this application provides a method for reducing power consumption, including: first, determining K first uplink transmission modes among supported uplink transmission modes according to the amount of uplink data, and the first uplink transmission mode supports the terminal in the preset Send data greater than or equal to the amount of uplink data within a time period; then, determine a second uplink transmission mode; the second uplink transmission mode is the uplink transmission mode with the least power consumption among the K first uplink transmission modes; finally, the terminal Use the second uplink transmission mode to send uplink data;
  • the supported uplink transmission mode refers to the available uplink determined according to the current configuration of the terminal (such as the maximum number of transmitting antennas, the uplink frequency band supported by the terminal, the frequency band supported by the cell where the terminal resides, the ability of the terminal to support carrier aggregation, etc.) Transmission mode.
  • the uplink transmission mode of the terminal can be selected adaptively.
  • the terminal may determine different first uplink transmission modes from the uplink transmission modes supported by the terminal, and then select the uplink transmission mode with the lowest power consumption among the first uplink transmission modes to send uplink data.
  • the terminal adaptively selects an uplink transmission mode with lower power consumption to send uplink data, reducing power consumption and improving user experience.
  • the uplink transmission mode indicates the resources used by the terminal to transmit uplink data.
  • the resources include: the number of transmit antennas, the multiple-input multiple-output MIMO mode of the transmit antennas, and the number of uplink carriers. Frequency band, number of uplink carriers.
  • the terminal stores one or more correspondences between data volume ranges and uplink transmission modes; the uplink transmission mode corresponding to the first data volume range supports the terminal in a preset time period Sending data greater than or equal to the first data volume, the first data volume belongs to the first data volume range; the uplink transmission mode corresponding to the data volume range to which the uplink data volume belongs is determined as the first uplink transmission mode.
  • the first uplink transmission mode supports the terminal to transmit data greater than or equal to the amount of uplink data within a preset time period, and the terminal transmits greater than or equal to the amount of uplink data within a preset power. Or data equal to the amount of uplink data. That is, when the terminal uses the uplink transmission mode to send uplink data, it can guarantee the rate of sending the uplink data and the distance the terminal sends the uplink data.
  • the terminal stores one or more correspondences between data volume ranges and uplink transmission modes, and one or more correspondences between channel quality ranges and uplink transmission modes;
  • the uplink transmission mode corresponding to the first data volume range supports the terminal to send data greater than or equal to the first data volume within a preset time period;
  • the uplink transmission mode corresponding to the first channel quality range supports the terminal within the preset power Send data greater than or equal to the first data volume, and determine the uplink transmission mode corresponding to the data volume range to which the uplink data volume belongs as the third uplink transmission mode; then, the terminal sets the third uplink transmission mode corresponding to the channel quality range to which the channel quality belongs.
  • the transmission mode is determined as the first uplink transmission mode.
  • the uplink data is successfully sent within the preset time and within the preset power. Under the circumstance of ensuring communication quality, improve user experience.
  • the second uplink transmission mode with the smallest transmission power of the power amplifier is used, and then the uplink transmission with the smallest transmission power is used.
  • Mode to send upstream data Save the power consumption of the terminal and improve the user experience.
  • this application provides a terminal with reduced power consumption, including: First, the terminal determines K first uplink transmission modes among the supported uplink transmission modes according to the amount of uplink data, and the first uplink transmission mode supports the terminal in advance. It is assumed that data greater than or equal to the amount of uplink data is sent within a time period; then, the terminal determines the second uplink transmission mode; the second uplink transmission mode is the uplink transmission mode with the least power consumption among the K first uplink transmission modes; finally, the terminal uses The second uplink transmission mode sends uplink data.
  • the uplink transmission mode indicates the resources used when sending uplink data.
  • the resources include: the number of transmit antennas, the multiple input multiple output MIMO mode of the transmit antennas, and the frequency band of the uplink carrier. , The number of uplink carriers.
  • the terminal stores one or more correspondences between data volume ranges and uplink transmission modes; the uplink transmission mode corresponding to the first data volume range supports the terminal in a preset time period.
  • the first data volume is within the range of the first data volume; the K first uplink transmission modes are determined in the supported uplink transmission modes according to the uplink data volume, which specifically includes:
  • the uplink transmission mode corresponding to the data volume range to which it belongs is determined as the first uplink transmission mode.
  • the first uplink transmission mode supports the terminal to transmit data greater than or equal to the amount of uplink data within a preset time period, and the terminal transmits greater than or equal to uplink data within a preset power The amount of data.
  • the terminal stores one or more correspondences between data volume ranges and uplink transmission modes, and one or more correspondences between channel quality ranges and uplink transmission modes; first The uplink transmission mode corresponding to the data volume range supports the terminal to send data greater than or equal to the first data volume within a preset time period.
  • the first data volume belongs to the first data volume range; the uplink transmission mode corresponding to the first channel quality range, Support the terminal to send data greater than or equal to the first data volume within the preset power, and the first channel quality belongs to the first channel quality range; K first uplink transmission modes are determined in the supported uplink transmission modes according to the uplink data volume, specifically It also includes: determining the uplink transmission mode corresponding to the data volume range to which the uplink data volume belongs as the third uplink transmission mode; and determining the third uplink transmission mode corresponding to the channel quality range to which the channel quality belongs as the first uplink transmission mode.
  • using the second uplink transmission mode to transmit uplink data specifically includes: determining a fourth uplink transmission mode,
  • the four-uplink transmission mode is the second uplink transmission mode with the smallest transmit power of the power amplifier; the fourth uplink transmission mode is used to send uplink data.
  • the present application provides a device including one or more touch screens, one or more memories, and one or more processors; wherein the one or more memories store one or more programs; It is characterized in that, when the one or more processors are executing the one or more programs, the device is caused to implement the method according to any one of the first aspect.
  • the present application provides a computer storage medium, including computer instructions, which when the computer instructions run on a terminal, cause the terminal to execute the method described in the first aspect.
  • FIG. 1 is a schematic diagram of a network structure provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of the hardware structure of a terminal provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a software structure of a terminal provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of another terminal provided by an embodiment of this application.
  • FIG. 5 is a schematic flowchart of a method for reducing power consumption of a terminal according to an embodiment of the application
  • FIG. 6 is a schematic flowchart of a step of determining an uplink transmission mode according to the amount of uplink data according to an embodiment of the application;
  • FIG. 7 is a schematic flowchart of another method for reducing power consumption of a terminal according to an embodiment of the application.
  • FIG. 8 is a schematic flowchart of a procedure for determining an uplink transmission mode according to the amount of uplink data and channel quality according to an embodiment of the application;
  • FIG. 9 is a comparison diagram of power consumption in a game scenario provided by an embodiment of the application.
  • FIG. 10 is a comparison diagram of power consumption in a live broadcast scenario provided by an embodiment of the application.
  • FIG. 11 is a comparison diagram of power consumption in a web browsing scenario provided by an embodiment of the application.
  • first and second are only used for descriptive purposes, and cannot be understood as implying or implying relative importance or implicitly specifying the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present application, unless otherwise specified, “multiple” The meaning is two or more.
  • an uplink transmission mode corresponds to an uplink transmission rate.
  • a spatial multiplexing mode corresponds to a faster uplink transmission rate.
  • a single antenna mode corresponds to a slower uplink transmission rate.
  • An uplink transmission mode that uses carrier aggregation technology to send uplink data corresponds to a faster uplink transmission rate.
  • An uplink transmission mode that does not use carrier aggregation technology to send uplink data corresponds to a slower uplink transmission rate.
  • the terminal can use the uplink transmission mode with the fastest uplink transmission rate to send uplink data.
  • the uplink transmission mode with the fastest uplink transmission rate is used to send uplink data, it will consume more power.
  • an uplink transmission mode with a low uplink transmission rate can successfully send uplink data within a preset time period. If the uplink transmission mode with the fastest transmission rate is used to send uplink data, more power will be consumed, the standby time of the terminal will be reduced, and the user experience will be poor.
  • the number of transmitting antennas and the number of uplink carriers (CC) used by the terminal to send the uplink data are relatively large.
  • an embodiment of the present application proposes a method for reducing the power consumption of the terminal.
  • the terminal adaptively selects an uplink transmission mode with lower power consumption from the uplink transmission modes available to the terminal under the condition of ensuring communication quality. Then, the terminal can use the selected uplink transmission mode to send uplink data. This method reduces the power consumption of the terminal, prolongs the standby time of the terminal, and improves the user experience.
  • the uplink transmission mode indicates the space domain resources and frequency domain resources used when the terminal sends uplink data.
  • the spatial domain resources may include: the number of transmit antennas used by the terminal when sending uplink data, and the multiple input multiple output (MIMO) mode in which the terminal uses transmit antennas.
  • MIMO multiple input multiple output
  • the frequency domain resources may include: the frequency band of the uplink carrier used by the terminal when sending uplink data, and the number of the uplink carrier.
  • the available uplink transmission mode of the terminal refers to one or more uplink transmission modes that the terminal can support under the current configuration.
  • the configuration includes the terminal's software and hardware settings, the connection between the terminal and the base station, and user settings. When the configuration is changed, the uplink transmission mode available to the terminal also changes accordingly.
  • the software and hardware settings refer to the settings of the terminal's transmitting antenna, the uplink frequency band supported by the terminal, etc.
  • the connection between the terminal and the base station refers to the uplink frequency band supported by the cell where the terminal resides
  • the user setting refers to the carrier aggregation set by the user according to user needs. ability.
  • the number N 1 of transmitting antennas available for the terminal to transmit uplink data is less than or equal to the number N 2 of the largest transmitting antenna of the terminal.
  • the maximum number of transmitting antennas of the terminal N 2 means that the maximum number of antennas that the terminal can use to transmit uplink data is N 2 .
  • the number N 2 of the largest transmitting antennas of the terminal is less than or equal to the total number of antennas N inside the terminal.
  • the number N 2 of the largest transmitting antennas of the terminal is related to the internal space of the terminal. Because the internal installation space of the terminal is different, the number N 2 of the largest transmitting antenna of the terminal is different. Generally, the maximum number of transmitting antennas of the terminal can be 4, 2, 1, or other positive integers, and there is no restriction here.
  • the number of transmit antennas available to the terminal when sending uplink data is N 1 , which can also be said that the terminal supports N 1 transmit antennas (uplink N 1 Transmit, uplink N 1 T).
  • the terminal supports 2 transmitting antennas (uplink 2T).
  • the MIMO modes of the transmitting antenna include: single antenna mode, transmit diversity mode, and spatial multiplexing mode.
  • Single antenna mode refers to the use of a single antenna to transmit uplink data.
  • Transmit diversity mode means that multiple modulated signals of the same uplink data are sent through multiple transmit antennas to increase the gain of uplink transmission, thereby enhancing the uplink coverage of uplink transmission and ensuring the distance of uplink transmission.
  • the transmit diversity mode is usually selected.
  • the spatial multiplexing mode refers to the simultaneous transmission of different uplink data through multiple transmit antennas, so that the channel capacity of uplink transmission increases linearly with the increase of the number of transmit antennas, and the transmission rate of uplink data is increased, thereby increasing the uplink throughput.
  • the frequency band of the uplink carrier used by the terminal to send uplink data belongs to the uplink available frequency band of the terminal.
  • the frequency band available for the uplink of the terminal refers to the uplink frequency band jointly supported by the terminal and the resident cell.
  • the terminal can establish a communication connection with the base station through the uplink available frequency band of the terminal.
  • the uplink frequency band supported by the terminal refers to the uplink frequency band that the terminal can use to send uplink data.
  • the uplink frequency band supported by the terminal is related to the radio frequency chip and antenna of the terminal.
  • the radio frequency chip or antenna of the terminal is different, and the frequency band supported by the terminal is different.
  • the LTE frequency bands supported by the terminal 1 include: B1, B3, B5, B8, B34, B38, B39, B40, and B41.
  • the LTE frequency bands supported by the terminal 2 include: B1, B2, B3, B4, B5, B6, B7, B8, B12, B17, B18, B19, B20, B26, B34, B38, B39, B40, B41.
  • the frequency band represented by B3 is: uplink 1710 ⁇ 1785 MHz, and other frequency bands will not be repeated.
  • the uplink frequency band supported by the terminal may be pre-stored in the memory of the terminal, which may be the memory of the baseband processor of the terminal, or may be other memory of the terminal. There is no restriction here.
  • the uplink frequency band supported by the camping cell of the terminal refers to the uplink frequency band that the camping cell can use to receive uplink data.
  • the uplink frequency band supported by the camping cell is related to the software and hardware configuration of the base station, and will not be repeated here.
  • the terminal may determine the uplink frequency band supported by the cell where the terminal resides according to the primary cell component (PCC) of the cell where the terminal resides.
  • PCC primary cell component
  • the number M 1 of uplink carriers available for the terminal to send uplink data is less than or equal to the number M 2 of the terminal's largest uplink carrier.
  • the maximum number of uplink carriers M 2 of the terminal means that the maximum number of uplink carriers that the terminal can use to send uplink data is M 2 .
  • the number M 2 of the terminal's largest uplink carrier is limited.
  • the maximum number of uplink carriers M 2 of the terminal is related to the carrier aggregation capability of the terminal and the uplink available frequency band.
  • the carrier aggregation capabilities of the terminal include: support for carrier aggregation and not support for carrier aggregation. Whether the terminal supports carrier aggregation is related to whether the radio frequency chip of the terminal and the carrier aggregation function of the terminal are enabled. In the case that the radio frequency chip of the terminal supports carrier aggregation and the carrier aggregation function is enabled, the terminal supports carrier aggregation.
  • the maximum number of uplink carriers M 2 of the terminal is 1.
  • the value of the maximum number of uplink carriers M 2 of the terminal is determined by the uplink available frequency band.
  • performance indicators such as the harm indicators of the uplink available frequency bands to the human body after carrier aggregation, the interference of the uplink available frequency bands to other frequency bands after carrier aggregation, etc.
  • the frequency bands of carrier aggregation and the combination of frequency bands are diverse, and different frequency bands are different.
  • the aggregation method Therefore, in the case of different uplink available frequency bands, the value of M 2 is different.
  • the number of uplink carriers available for the terminal to send uplink data is M 1 , which can also be said that the terminal supports M 1 uplink carriers (uplink M 1 CC).
  • the terminal supports 2 uplink carriers (uplink 2CC).
  • M 1 ⁇ [1, M 2 ], M 1 is a positive integer. For example, if M 2 is 2, then M 1 is 1 or 2.
  • the available spatial domain resources and available frequency domain resources of the terminal can be combined arbitrarily.
  • the following example illustrates an available uplink transmission mode determined by a combination of available space domain resources and available frequency domain resources of the terminal under a configuration.
  • the available uplink transmission modes of the terminal include: 2T*1CC transmit diversity mode, 2T*1CC spatial multiplexing mode , 2T*2CC transmit diversity mode, 2T*2CC spatial multiplexing mode, 1T*1CC single carrier mode, 1T*2CC two carrier mode.
  • the uplink data volume of the terminal is related to the service currently provided by the terminal.
  • the amount of uplink data transmitted is also different. For example, the amount of uplink data when the terminal performs a live broadcast service is greater than the amount of uplink data when a web browsing service is performed.
  • a terminal 100 and a base station 200 are included.
  • the terminal 100 and the base station 200 can be connected through a cellular network, such as the global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (code division multiple access).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • code division multiple access code division multiple access
  • CDMA compact code division multiple access
  • WCDMA wideband code division multiple access
  • TD-SCDMA time-division code division multiple access
  • LTE long term evolution
  • 5G fifth generation mobile networks, 5G), wireless local area networks (wireless local area networks, WLAN) (such as wireless fidelity (Wi-Fi) networks), and the difference between cellular networks and wireless local area networks.
  • the terminal 100 may be a portable terminal device, such as a smart phone, a tablet computer, a wearable terminal device with wireless communication function (such as a smart watch), a customer terminal equipment (Customer Premise Equipment, CPE), and a module device with wireless communication function, etc.,
  • a portable terminal device such as a smart phone, a tablet computer, a wearable terminal device with wireless communication function (such as a smart watch), a customer terminal equipment (Customer Premise Equipment, CPE), and a module device with wireless communication function, etc.
  • CPE Customer Premise Equipment
  • the aforementioned terminal may also be a non-portable terminal device, such as a smart water meter, which is not limited here.
  • the base station 200 is a device that provides wireless communication functions for terminals.
  • the base station can be the next generation base station (gnodeB, gNB) in 5G, evolved node B (evolved node B, eNB), node B (node B, eNB), radio network controller (RNC), base station control Base Station Controller (BSC), Base Transceiver Station (BTS), Base Band Unit (BBU), Transmission Point (Transmitting and Receiving Point, TRP), Transmitting Point (TP), Mobile There are no restrictions here, such as exchange centers.
  • FIG. 2 shows a schematic diagram of the structure of the terminal 100.
  • the terminal 100 shown in FIG. 2 is only an example, and the terminal 100 may have more or fewer components than those shown in FIG. 2, may combine two or more components, or may have Different component configurations.
  • the various components shown in the figure may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits.
  • the terminal 100 may include: a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna, and a mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone interface 170D, sensor module 180, buttons 190, motor 191, indicator 192, camera 193, display screen 194, and user identification module ( subscriber identification module, SIM card interface 195, etc.
  • USB universal serial bus
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light Sensor 180L, bone conduction sensor 180M, etc.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU) Wait.
  • AP application processor
  • modem processor modem processor
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • the different processing units may be independent devices or integrated in one or more processors.
  • the controller may be the nerve center and command center of the terminal 100.
  • the controller can generate operation control signals according to the instruction operation code and timing signals to complete the control of fetching instructions and executing instructions.
  • a memory may also be provided in the processor 110 to store instructions and data.
  • the memory in the processor 110 is a cache memory.
  • the memory can store instructions or data that have just been used or recycled by the processor 110. If the processor 110 needs to use the instruction or data again, it can be directly called from the memory. Repeated accesses are avoided, the waiting time of the processor 110 is reduced, and the efficiency of the system is improved.
  • the memory of the baseband processor may store the frequency points and bandwidths of multiple frequency bands of the terminal, and the number of transmitting ports and the number of carriers in each frequency band.
  • the internal memory 121 may be used to store computer executable program code, where the executable program code includes instructions.
  • the processor 110 executes various functional applications and data processing of the terminal 100 by running instructions stored in the internal memory 120.
  • the wireless communication function of the terminal 100 can be implemented by an antenna, a mobile communication module 150, a wireless communication module 160, a modem processor, a baseband processor, and so on.
  • the antenna is used to transmit and receive electromagnetic wave signals.
  • Each antenna in the terminal 100 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the mobile communication module 150 may provide a wireless communication solution including 2G/3G/4G/5G and the like applied to the terminal 100.
  • the mobile communication module 150 may include at least one filter, a switch, a power amplifier, a low noise amplifier (LNA), and the like.
  • the mobile communication module 150 can receive electromagnetic waves by an antenna, and perform processing such as filtering, amplifying and transmitting the received electromagnetic waves to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic waves for radiation by the antenna.
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110.
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal.
  • the demodulator then transmits the demodulated low-frequency baseband signal to the baseband processor for processing. After the low-frequency baseband signal is processed by the baseband processor, it is passed to the application processor.
  • the modem processor may be independent of the processor 110 and be provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide applications on the terminal 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), and global navigation satellite systems. (global navigation satellite system, GNSS), frequency modulation (FM), near field communication (NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • BT Bluetooth
  • GNSS global navigation satellite system
  • FM frequency modulation
  • NFC near field communication
  • IR infrared technology
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via an antenna, modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110.
  • the wireless communication module 160 may also receive a signal to be sent from the processor 110, perform frequency modulation, amplify it, and convert it into electromagnetic waves to radiate through the antenna.
  • the antenna of the terminal 100 is coupled with the mobile communication module 150 and the wireless communication module 160, so that the terminal 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time-division code division multiple access (TD-SCDMA), long term evolution (LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) and/or satellite-based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite-based augmentation systems
  • the terminal 100 supports a variety of communication technologies, and the scope of application of this solution is wide, and the specific market promotion potential is large.
  • the memory of the terminal 100 stores the software and hardware configuration information of the terminal. After the processor of the terminal adaptively selects the uplink transmission mode with lower power consumption from the uplink transmission modes available to the terminal according to the amount of uplink data and the communication quality of the uplink transmission is satisfied, the terminal can adjust the uplink transmission mode according to the above uplink transmission mode.
  • the uplink data is processed by the baseband processor and the modem processor and then converted into electromagnetic waves for radiation by the antenna.
  • the software system of the terminal 100 may adopt a layered architecture, an event-driven architecture, a microkernel architecture, a microservice architecture, or a cloud architecture.
  • the embodiment of the present application takes an Android system with a layered architecture as an example to illustrate the software structure of the terminal 100 by way of example.
  • FIG. 3 is a block diagram of the software structure of the terminal 100 according to an embodiment of the present application.
  • the layered architecture divides the software into several layers, and each layer has a clear role and division of labor. Communication between layers through software interface.
  • the Android system is divided into four layers, from top to bottom, the application layer, the application framework layer, the Android runtime and system library, and the kernel layer.
  • the application layer can include a series of application packages.
  • the application package may include applications such as camera, gallery, calendar, call, map, navigation, WLAN, Bluetooth, music, video, short message, etc.
  • the application framework layer provides an application programming interface (application programming interface, API) and a programming framework for applications in the application layer.
  • the application framework layer includes some predefined functions. As shown in Figure 3, the application framework layer can include a window manager, a content provider, a view system, a phone manager, a resource manager, a notification manager, and so on.
  • Android Runtime includes core libraries and virtual machines. Android runtime is responsible for the scheduling and management of the Android system.
  • the system library can include multiple functional modules. For example: surface manager (surface manager), media library (Media Libraries), three-dimensional graphics processing library (for example: OpenGL ES), 2D graphics engine (for example: SGL), etc.
  • the kernel layer is the layer between hardware and software.
  • the kernel layer contains at least display driver, camera driver, audio driver, and sensor driver.
  • the corresponding hardware interrupt is sent to the kernel layer.
  • the kernel layer processes the touch operation into the original input event (including touch coordinates, time stamp of the touch operation, etc.).
  • the original input events are stored in the kernel layer.
  • the application framework layer obtains the original input event from the kernel layer and identifies the control corresponding to the input event. Taking the touch operation as a touch-click operation, and the control of the short message application corresponding to the click operation as an example, the short message data is processed by the baseband processor and the modem processor and then converted into electromagnetic wave radiation by the antenna.
  • the technical solutions proposed in the embodiments of the present application can be executed by the terminal 100 in the above-mentioned system.
  • the terminal 100 includes a user information processing unit 401, a terminal capability and network information processing unit 402, a mode selection decision unit 403, and a mode execution scheduling unit 404.
  • the user information processing unit 401 may be used to obtain user information, for example, the amount of uplink data and so on.
  • the terminal capability and network information processing unit 402 is used to obtain resources used when sending uplink data, such as the number of transmitting antennas, the MIMO mode of the transmitting antennas, the frequency band of the uplink carrier, the number of uplink carriers, and so on.
  • the mode selection decision unit 403 determines the uplink transmission mode according to the terminal capabilities and the resources used when sending uplink data obtained by the network information processing unit 402, and determines the uplink transmission mode according to the amount of uplink data obtained by the user information processing unit 401 in the supported uplink transmission modes. , Determining K first uplink transmission modes that support sending greater than or equal to the amount of uplink data within a preset time period, and determining a second uplink transmission mode with the least power consumption from the K first uplink transmission modes. Finally, the mode execution scheduling unit 404 can use the second uplink transmission mode to transmit uplink data. For example, the mode execution scheduling unit 404 can interact with the base station and receive the configuration instruction of the second uplink transmission mode issued by the base station, and so on. This can save power consumption and extend standby time without affecting user experience.
  • FIG. 5 is a schematic flowchart of a method for reducing power consumption of a terminal according to an embodiment of the application.
  • the terminal sending uplink data may also be referred to as the terminal sending uplink data.
  • a method for reducing power consumption of a terminal proposed in an embodiment of the present application specifically includes:
  • S501 The terminal determines an available uplink transmission mode.
  • the available uplink transmission mode of the terminal refers to one or more uplink transmission modes that the terminal can support under the current configuration.
  • the terminal may determine the available uplink transmission mode according to the maximum number of transmitting antennas N 2 , the maximum number of uplink carriers M 2 , and the frequency band available for uplink of the terminal.
  • the determination method of the largest number of transmitting antennas N 2 , the largest number of uplink carriers M 2 , and the uplink available frequency band of the terminal can refer to the foregoing, and will not be repeated here.
  • the terminal determines the specific implementation of the available uplink transmission mode according to the maximum number of transmitting antennas N 2 , the maximum number of uplink carriers M 2 , and the uplink available frequency band of the terminal. You can refer to the previous description of the concept of this application. I won't repeat it here.
  • Table 1 exemplarily shows several available uplink transmission modes corresponding to the maximum number of transmitting antennas N 2 of the terminal and the maximum number of uplink carriers M 2 of the terminal. Table 1 is only to illustrate the embodiments of the present application, and should not constitute a limitation. As shown in Table 1,
  • the 2T*2CC transmit diversity mode is the two-antenna two-carrier transmit diversity mode, which means that each of the two antennas transmits the same data stream, and the two carriers on each antenna transmit two different data. flow. That is, in the case of using the 2T*2CC transmit diversity mode to transmit uplink data, the terminal transmits two different data streams at the same time.
  • the upstream transmission rate is medium.
  • the 2T*2CC spatial multiplexing mode is the two-antenna four-carrier spatial multiplexing mode, which means that the data transmitted on each of the two antennas is different, and the two carriers on each antenna transmit two different Data stream, that is, in the case of using 2T*2CC spatial multiplexing mode to send uplink data, the terminal transmits 4 different data streams at the same time.
  • the uplink transmission rate is fast.
  • the 2T*1CC transmit diversity mode is the two-antenna single-carrier transmit diversity mode, which means that the same data stream is transmitted on 2 antennas, and each antenna transmits 1 data stream, that is, it is transmitted in the 2T*1CC transmit diversity mode.
  • the terminal In the case of uplink data, the terminal only transmits one data stream. The uplink transmission rate is slow.
  • the 2T*1CC spatial multiplexing mode is the two-antenna single-carrier spatial multiplexing mode, which means that each of the two antennas transmits different data streams, and each antenna transmits 1 data stream, that is, it is in use
  • the terminal transmits 2 different data streams at the same time.
  • the upstream transmission rate is medium.
  • the 1T*2CC two-carrier mode means that the two carriers on one antenna respectively transmit 2 different data streams, that is, when the 1T*2CC two-carrier mode is used to send uplink data, the terminal transmits 2 different data at the same time flow.
  • the upstream transmission rate is medium.
  • the 1T*1CC single carrier mode refers to the transmission of one data stream on one antenna, that is, when the 1T*1CC single carrier mode is used to send uplink data, the terminal only transmits one data stream.
  • the uplink transmission rate is slow.
  • the terminal determines, according to the current uplink data volume, an uplink transmission mode that can successfully send the uplink data within a preset time period.
  • Each uplink transmission mode corresponds to a different uplink transmission rate. That is, the amount of uplink data sent by the terminal in a unit time is different. Therefore, the total amount of uplink data that the terminal can send within the preset time period is different.
  • One or more data volume ranges are pre-stored in the terminal, and an uplink transmission mode capable of successfully transmitting uplink data within the data volume range within a preset time period.
  • the data volume range indicates that the time required for the terminal to successfully send uplink data using the uplink transmission mode corresponding to the data volume range is less than the preset time.
  • the corresponding uplink transmission mode within the data volume range refers to supporting the terminal to send data greater than or equal to the first data volume within a preset time period, and the first data volume belongs to the data volume range.
  • the number of data volume ranges can be different for terminals of different configurations, and the value of the data volume range can also be different.
  • the available uplink transmission modes supported by the terminal configuration include: 2T*2CC spatial multiplexing mode with faster uplink transmission rate, 2T*1CC spatial multiplexing mode with medium uplink transmission rate, 2T*2CC transmit diversity mode, 1T* In 2CC two-carrier mode, 1T*1CC single-carrier mode and 2T*1CC transmit diversity mode with slower uplink transmission rate, the corresponding first data volume range, second data volume range, and third data under the current configuration can be stored in advance ⁇ Volume range.
  • the fourth data volume corresponding to the current configuration can be pre-stored Range, the fifth data volume range.
  • the same data volume range may be stored for all services, or different data volume ranges may be stored for different services.
  • the embodiments of the present application are illustrated by taking an example of the available uplink transmission mode corresponding to the configuration of the terminal supporting the maximum number of transmitting antennas being 2 and the maximum number of uplink carriers of the terminal being 2.
  • Table 2 exemplarily shows the uplink transmission mode that can successfully send the uplink data within the data amount range within the preset time period. As shown in table 2:
  • the uplink data volume of the terminal is medium, and the uplink data can be sent in the 2T*2CC spatial multiplexing mode with the fast uplink transmission rate within the preset time period, or the uplink transmission rate can be used Moderate 2T*1CC spatial multiplexing mode, 2T*2CC transmit diversity mode, 1T*2CC two-carrier mode to send uplink data.
  • the uplink data volume of the terminal is small.
  • the uplink data can be sent using the 2T*2CC spatial multiplexing mode with fast uplink transmission rate, or the uplink transmission can be used Moderate rate 2T*1CC spatial multiplexing mode, 2T*2CC transmit diversity mode, 1T*2CC two-carrier mode to send uplink data, and 2T*1CC transmit diversity mode with slow uplink transmission rate, 1T*1CC single carrier mode can also be used to send Upstream data.
  • S503 Among the uplink transmission modes in which the terminal can successfully send uplink data within a preset time period, determine the uplink transmission mode with the lowest power consumption.
  • the uplink transmission mode with the lowest power consumption is determined according to the sum of the number of transmitting antennas and uplink carriers.
  • the terminal uses the lowest power consumption uplink transmission mode to send uplink data with the least power consumption.
  • the terminal determines that the uplink transmission mode with the lowest power consumption is this one uplink transmission mode.
  • the number of transmit antennas and uplink carriers and the minimum uplink transmission mode are power consumption. The lowest uplink transmission mode.
  • the terminal may determine that the uplink transmission mode with the lowest power consumption is any one of the multiple uplink transmission modes, and the terminal also It can be determined that the uplink transmission mode with the lowest power consumption is the one with the smallest transmit power of the power amplifier among the multiple uplink transmission modes.
  • S504 The terminal sends terminal assistance information (UE Assistance Information) carrying the uplink transmission mode to the base station, the base station issues the configuration instruction of the uplink transmission mode, and the terminal uses the uplink transmission mode to transmit the uplink according to the configuration instruction issued by the base station. data.
  • UE Assistance Information terminal assistance information
  • the terminal can send the uplink transmission mode that can successfully send uplink data within the estimated time and have the lowest power consumption to the base station through the terminal assistance information, and the base station issues Radio Resource Control (RRC)
  • RRC Radio Resource Control
  • the terminal can configure an uplink transmission mode according to the RRC reconfiguration signaling, and use the uplink transmission mode to send uplink data.
  • the terminal can directly use the 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP) protocol to notify the base station to issue the configuration information of the above-mentioned transmission mode, without additional signaling, and minor changes to the base station, so this method is feasible High sex.
  • 3rd Generation Partnership Project 3rd Generation Partnership Project
  • the terminal adaptively selects the uplink transmission mode with lower power consumption from the available uplink transmission modes without affecting the user experience (short user waiting time, etc.). Then, the terminal can use the selected uplink transmission mode to send uplink data.
  • the method reduces the power consumption of the terminal while ensuring the communication quality, prolongs the standby time of the terminal, and improves the user experience.
  • FIG. 6 shows a schematic flow chart of the steps for determining the uplink transmission mode with the lowest power consumption according to the amount of uplink data. As shown in Figure 6, it specifically includes:
  • the uplink transmission modes that the terminal can support include: 2T*2CC transmit diversity mode, 2T*2CC spatial multiplexing mode, 2T*1CC transmit diversity mode, 2T*1CC spatial multiplexing mode, 1T*2CC two-carrier mode, 1T*1CC single-carrier mode.
  • S602 The terminal judges whether the uplink data amount Date is within the first data amount range, and if the uplink data amount Date is within the first data amount range, that is, if Date>D1, execute S603, otherwise execute S604.
  • S603 The terminal determines that the uplink transmission mode that can successfully transmit the uplink data and has the lowest power consumption within the preset time period is the 2T*2CC spatial multiplexing mode, and ends the process.
  • S604 The terminal judges whether the uplink data amount Date is within the second data amount range. When the uplink data amount Date is within the second data amount range, that is, when D2 ⁇ Date ⁇ D1, execute S605, otherwise execute S607.
  • the terminal determines that the uplink transmission modes that can successfully transmit the uplink data within the preset time period include: 2T*2CC spatial multiplexing mode, 2T*1CC spatial multiplexing mode, 2T*2CC transmit diversity mode, and 1T*2CC two-carrier mode , Go to S606.
  • S606 The terminal determines that the uplink transmission mode with the lowest power consumption among the 2T*2CC spatial multiplexing mode, 2T*1CC spatial multiplexing mode, 2T*2CC transmit diversity mode, and 1T*2CC two-carrier mode is the 2T*1CC spatial multiplexing mode or 1T*2CC two-carrier mode. End the process.
  • the terminal determines that the uplink data amount Date is within the third data amount range, that is, when Date ⁇ D2, the terminal determines that the uplink transmission mode that can successfully transmit the uplink data within the preset time period includes: 2T*2CC transmit diversity mode , 2T*2CC spatial multiplexing mode, 2T*1CC transmit diversity mode, 2T*1CC spatial multiplexing mode, 1T*2CC two-carrier mode, 1T*1CC single-carrier mode, execute S608.
  • S608 The terminal determines the power consumption in 2T*2CC transmit diversity mode, 2T*2CC spatial multiplexing mode, 2T*1CC transmit diversity mode, 2T*1CC spatial multiplexing mode, 1T*2CC two-carrier mode, 1T*1CC single-carrier mode
  • the lowest uplink transmission mode is 1T*1CC single carrier mode.
  • FIG. 7 is a schematic flowchart of another method for reducing power consumption of a terminal according to an embodiment of the application.
  • the terminal may select the uplink transmission mode with the lowest power consumption among the uplink transmission modes in which the uplink data is successfully sent within the preset time period and the preset power. See Figure 7, which specifically includes:
  • step S701 The terminal determines an available uplink transmission mode. Please refer to step S501, which will not be repeated here.
  • the terminal determines an uplink transmission mode that can successfully transmit uplink data within a preset time period and preset power according to the current uplink data volume and channel quality.
  • the terminal determines an uplink transmission mode that can successfully send uplink data within a preset time period among the available uplink transmission modes according to the amount of uplink data.
  • the terminal determines an uplink transmission mode that can successfully send uplink data within a preset power among the available uplink transmission modes according to the channel quality.
  • One or more data volume ranges are pre-stored in the terminal, and an uplink transmission mode capable of successfully transmitting uplink data within the data volume range within a preset time period.
  • the terminal may also pre-store one or more channel quality ranges and uplink transmission modes that can successfully transmit uplink data within the channel quality range within a preset power.
  • the channel quality range indicates that the power required by the terminal to successfully send uplink data using the uplink transmission mode corresponding to the channel quality range is lower than the preset power.
  • step S502 For a specific implementation manner for the terminal to determine the uplink transmission mode capable of successfully sending uplink data within a preset time period in the available uplink transmission modes according to the amount of uplink data, refer to step S502, which will not be repeated here.
  • the following describes in detail the uplink transmission mode that the terminal determines in the available uplink transmission modes according to the channel quality that the uplink data can be successfully sent within the preset power.
  • Channel quality refers to the quality of the transmission channel between the terminal and the base station.
  • Channel quality can be measured by one or more of the following parameters: the signal-to-interference and noise ratio of the downlink channel, and the energy of the downlink signal.
  • the greater the signal-to-interference-to-noise ratio of the downlink channel the better the quality of the uplink channel.
  • the greater the energy of the downlink signal received by the terminal the better the quality of the uplink channel.
  • the terminal can use the transmit diversity mode to transmit uplink data to increase the transmission gain of the terminal, so that the terminal can successfully transmit uplink data within the preset power.
  • the embodiments of the present application are illustrated by taking an example of the available uplink transmission mode corresponding to the maximum number of transmitting antennas supported by the current configuration of the terminal being 2, and the maximum number of uplink carriers of the terminal being 2. There is no limitation here.
  • a data volume range, a channel quality range, and an uplink transmission mode that can successfully send uplink data within a preset time and a preset power may be pre-stored in the terminal.
  • the terminal can first determine the uplink transmission mode that can successfully send uplink data within a preset time from the available uplink transmission modes according to the uplink data volume and data volume range, and then according to the channel quality and the channel quality range. Determine the uplink transmission mode that can successfully send uplink data within the preset power.
  • Table 3 exemplarily shows an uplink transmission mode. as shown in Table 3:
  • the uplink transmission modes determined according to the uplink data volume include: 2T*2CC spatial multiplexing mode, 2T*1CC spatial multiplexing mode, 2T*2CC transmit diversity Mode, 1T*2CC two carrier mode.
  • the transmit diversity mode such as the 2T*2CC transmit diversity mode
  • the terminal can use 2T*2CC spatial multiplexing mode, 2T*1CC spatial multiplexing mode, 2T*2CC transmit diversity mode, 1T*2CC two-carrier mode transmission Upstream data. Other situations will not be repeated.
  • the terminal may pre-store the data volume range, the channel quality range, and the uplink transmission mode that can successfully transmit the uplink data within a preset time and within a preset power.
  • the terminal can first determine the uplink transmission mode that can successfully send the uplink data within the preset power from the available uplink transmission modes according to the channel quality and the channel quality range, and then the terminal can then determine the uplink transmission mode according to the amount of uplink data and data.
  • Table 4 exemplarily shows another uplink transmission mode. As shown in Table 4:
  • the uplink transmission modes determined according to the channel quality include: 2T*2CC spatial multiplexing mode, 2T*1CC spatial multiplexing mode, 2T*2CC transmit diversity mode, 2T*1CC transmit diversity mode, 1T*2CC two-carrier mode, 1T*1CC single-carrier mode.
  • the terminal needs to use the 2T*2CC spatial multiplexing mode with the fastest uplink transmission rate to send uplink data within a preset time. Other situations will not be repeated.
  • the terminal can also separately store the corresponding relationship between the data volume range and the uplink transmission mode that can successfully send uplink data within a preset time, the channel quality range and the ability to successfully transmit within the preset power Correspondence of the uplink transmission mode for sending uplink data.
  • Table 5 exemplarily shows the uplink transmission mode that can successfully transmit the uplink data within the channel quality range within the preset power. As shown in Table 5:
  • the terminal when the channel quality is within the first channel quality range, the uplink channel quality is poor, and the terminal needs to be within the preset power Use transmit diversity mode (such as 2T*2CC transmit diversity mode, 2T*1CC transmit diversity mode) to send uplink data.
  • the preset power Use transmit diversity mode such as 2T*2CC transmit diversity mode, 2T*1CC transmit diversity mode
  • the terminal can use 2T*2CC spatial multiplexing mode, 2T*1CC spatial multiplexing mode, 2T*2CC transmit diversity mode, 2T within the preset power *1CC transmit diversity mode, 1T*2CC two-carrier mode, and 1T*1CC single-carrier mode to send uplink data.
  • the terminal can determine the uplink transmission mode capable of successfully sending uplink data within a preset time period and a preset power.
  • step S703 Among the uplink transmission modes in which the terminal can successfully send uplink data within a preset time period and a preset power, determine the uplink transmission mode with the lowest power consumption. Please refer to step S503, which will not be repeated here.
  • the terminal sends the terminal assistance information carrying the uplink transmission mode to the base station, the base station issues the configuration instruction of the uplink transmission mode, and the terminal sends the uplink data in the uplink transmission mode according to the configuration instruction issued by the base station. Please refer to step S504, which will not be repeated here.
  • the terminal adaptively selects the uplink transmission mode with lower power consumption from the available uplink transmission modes under the condition that the user experience is not affected (the user waiting time is short) and the transmission power is within a certain range. . Then, the terminal can use the selected uplink transmission mode to send uplink data.
  • the method reduces the power consumption of the terminal while ensuring the communication quality of the service (that is, ensuring the block error rate and time delay), prolongs the standby time of the terminal, and improves the user experience.
  • FIG. 8 shows a schematic diagram of a procedure for determining the uplink transmission mode with the lowest power consumption according to the amount of uplink data and channel quality. As shown in Figure 8,
  • the maximum number of transmit antennas is 2, and the maximum number of uplink carriers is 2
  • the uplink transmission modes supported by the terminal include: 2T*2CC transmit diversity mode, 2T*2CC spatial multiplexing mode, 2T*1CC transmit diversity mode, 2T* 1CC spatial multiplexing mode, 1T*2CC two-carrier mode, 1T*1CC single-carrier mode.
  • S802 The terminal judges whether the uplink data amount Date is within the first data amount range, and if the uplink data amount Date is within the first data amount range, that is, if Date>D1, execute S803, otherwise execute S805.
  • S803 The terminal determines that the uplink transmission mode that can complete uplink transmission within the preset time period is the 2T*2CC spatial multiplexing mode.
  • S804 The terminal judges whether the channel quality S is within the first channel quality range, and if the channel quality S is within the first channel quality range, the process ends. Otherwise, the terminal determines that the uplink transmission mode with the lowest power consumption to complete the uplink transmission within the preset time period and the preset power is the 2T*2CC spatial multiplexing mode. End the process.
  • S805 The terminal judges whether the uplink data amount Date is within the second data amount range. When the uplink data amount Date is within the second data amount range, that is, in the case of D2 ⁇ Date ⁇ D1, execute S806, otherwise execute S809.
  • the uplink transmission modes that the terminal determines that the uplink transmission can be completed within the preset time period include: 2T*2CC spatial multiplexing mode, 2T*1CC spatial multiplexing mode, 2T*2CC transmit diversity mode, and 1T*2CC two-carrier mode.
  • the terminal judges whether the channel quality S is within the first channel quality range. If the channel quality S is within the first channel quality range, that is, if S ⁇ S1, execute S807, otherwise execute S808.
  • S807 The terminal determines that the uplink transmission mode with the lowest power consumption for completing the uplink transmission within the preset time period and the preset power is the 2T*2CC transmit diversity mode. End the process.
  • S808 The terminal determines that the uplink transmission mode with the lowest power consumption for completing the uplink transmission within the preset time period and the preset power is the 2T*1CC spatial multiplexing mode or the 1T*2CC two-carrier mode. End the process.
  • the terminal determines that the uplink data amount Date is within the third data amount range, that is, when Date ⁇ D2, the terminal determines that the uplink transmission modes that can complete uplink transmission within the preset time period include: 2T*2CC spatial multiplexing mode , 2T*1CC spatial multiplexing mode, 2T*2CC transmit diversity mode, 1T*2CC two carrier mode, 2T*1CC transmit diversity mode, 1T*1CC single carrier mode.
  • the terminal judges whether the channel quality S is within the first channel quality range. If the channel quality S is within the first channel quality range, that is, if S ⁇ S1, execute S810, otherwise execute S811.
  • S810 The terminal determines that the uplink transmission mode with the lowest power consumption for completing the uplink transmission within the preset time period and the preset power is the 2T*1CC transmit diversity mode. End the process.
  • S811 The terminal determines that the uplink transmission mode with the lowest power consumption for completing the uplink transmission within the preset time period and the preset power is the 1T*1CC single carrier mode. End the process.
  • the solid line represents the power consumption of the existing solution
  • the dotted line represents the power consumption of the solution of the application.
  • Live broadcast is a specific application scenario of video, and the solution of this application can be verified through the live broadcast scenario.
  • the solid line represents the power consumption of the existing solution
  • the dashed line represents the power consumption of the solution of the application. It can be found that in the live broadcast scene, the power consumption of the solution of the application is the same when the signal-to-noise ratio is the same. The power consumption is lower than that of the existing solution, so it can be inferred that in a video scene, the solution of the present application has lower power consumption under the same communication quality.
  • the solid line represents the power consumption of the existing solution
  • the dotted line represents the power consumption of the solution of the present application.
  • the terminal under the condition that the user experience is not affected and the transmission power of the terminal is within a fixed range, the terminal selects a transmission mode with lower power consumption from the available uplink transmission modes according to the channel quality. Then the terminal uses the uplink transmission mode with lower power consumption to send uplink data, which reduces the power consumption of the terminal while ensuring the communication quality of the service, prolongs the standby time of the terminal, and improves the user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种减少功耗的方法及终端。终端根据当前配置确定支持的上行传输模式,然后,根据上行数据量在支持的上行传输模式中确定K个第一上行传输模式,再从K个第一上行传输模式中确定功耗最少的上行传输模式;最后,终端利用功耗最少的上行传输模式发送上行数据。在不影响用户体验的情况下,节省终端的功耗,延长终端的待机时间。

Description

减少功耗的方法及终端
本申请要求于2020年4月26日提交中国专利局、申请号为202010339281.9、申请名称为“减少功耗的方法及终端”,以及,于2020年12月07日提交中国专利局、申请号为202011415635.X、申请名称为“减少功耗的方法及终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种减少功耗的方法及终端。
背景技术
随着移动通信网络的不断发展,终端功能逐渐变多的同时终端的功耗也大大增加。由于电池制造技术发展受限,因此利用先进的节能方法来提高终端的电源使用效率变得尤为重要。
在发送上行数据时,终端可用的上行传输模式有多种。通常情况下,为了保证上行传输的通信质量,终端可以采用上行传输速率最快的上行传输模式发送上行数据。但是,如果固定使用上行传输速率最快的上行传输模式发送上行数据会耗费较多电能。因此,如何在保证上行传输的通信质量的情况下自适应选择功耗较低的上行传输模式是目前亟需解决的问题。
发明内容
本申请实施例提供了一种减少功耗的方法及终端,可以使得终端在保证上行通信质量的情况下利用功耗较低的上行传输模式发送上行数据,节省终端的功耗,提升用户体验。
第一方面,本申请提供了一种减少功耗的方法,包括:首先,根据上行数据量在支持的上行传输模式中确定K个第一上行传输模式,第一上行传输模式支持终端在预设时间段内发送大于或等于所述上行数据量的数据;然后,确定第二上行传输模式;该第二上行传输模式为K个第一上行传输模式中功耗最少的上行传输模式;最后,终端利用第二上行传输模式发送上行数据;
其中,支持的上行传输模式是指根据终端当前的配置(如发射天线的最大数量、终端支持的上行频段、终端的驻留小区支持的频段、终端支持载波聚合的能力等)确定的可用的上行传输模式。
这样,可以自适应选择终端的上行传输模式。在上行数据量不同的情况下,终端可以从终端支持的上行传输模式中确定不同的第一上行传输模式,然后,在第一上行传输模式中选择功耗最低的上行传输模式发送上行数据。在保证通信质量(如时延较低)的情况下,终端自适应选择功耗较低的上行传输模式来发送上行数据,减少功耗,提升用户体验。
结合第一方面,在一些可行的实施方式中,上行传输模式指示了终端发送上行数据时所使用的资源,该资源包括:发射天线的数量、发射天线的多输入多输出MIMO模式、上行载波的频段、上行载波的数量。
结合第一方面,在一些可行的实施方式中,终端存储有一个或多个数据量范围和上行 传输模式的对应关系;第一数据量范围对应的上行传输模式,支持终端在预设时间段内发送大于或等于第一数据量的数据,第一数据量属于第一数据量范围;将上行数据量所属的数据量范围对应的上行传输模式,确定为第一上行传输模式。预先存储一个或多个数据量范围和上行传输模式的对应关系,加快处理器的处理速度,提升用户体验。
结合第一方面,在一些可行的实施方式中,第一上行传输模式支持终端在预设时间段内发送大于或等于所述上行数据量的数据,以及,所述终端在预设功率内发送大于或等于所述上行数据量的数据。即终端利用该上行传输模式发送上行数据时可以保证发送上行数据的速率,以及终端发送上行数据的距离。
结合第一方面,在一些可行的实施方式中,首先,终端存储有一个或多个数据量范围和上行传输模式的对应关系,以及,一个或多个信道质量范围和上行传输模式的对应关系;第一数据量范围对应的上行传输模式,支持终端在预设时间段内发送大于或等于第一数据量的数据;第一信道质量范围对应的上行传输模式,支持终端在所述预设功率内发送大于或等于第一数据量的数据,将上行数据量所属的数据量范围对应的上行传输模式,确定为第三上行传输模式;然后,终端将信道质量所属的信道质量范围对应的第三上行传输模式,确定为第一上行传输模式。预设时间内和预设功率内成功发送上行数据。在保证通信质量的情况下,提升用户体验。
结合第一方面,在一些可行的实施方式中,在第二上行传输模式的数量不少于1的情况下,功率放大器的发射功率最小的第二上行传输模式,然后利用发射功率最小的上行传输模式发送上行数据。节省终端的功耗,提升用户体验。
结合第一方面,在一些可行的实施方式中,上行传输模式对应的发射天线和上行载波的数量和越小,上行传输模式的功耗越少。
第二方面,本申请提供了一种减少功耗的终端,包括:首先,终端根据上行数据量在支持的上行传输模式中确定K个第一上行传输模式,第一上行传输模式支持终端在预设时间段内发送大于或等于上行数据量的数据;然后,终端确定第二上行传输模式;第二上行传输模式为K个第一上行传输模式中功耗最少的上行传输模式;最后,终端利用第二上行传输模式发送上行数据。
结合第二方面,在一些可行的实施方式中,上行传输模式指示了发送上行数据时所使用的资源,该资源包括:发射天线的数量、发射天线的多输入多输出MIMO模式、上行载波的频段、上行载波的数量。
结合第二方面,在一些可行的实施方式中,该终端存储有一个或多个数据量范围和上行传输模式的对应关系;第一数据量范围对应的上行传输模式,支持终端在预设时间段内发送大于或等于第一数据量的数据,第一数据量属于第一数据量范围;根据上行数据量在支持的上行传输模式中确定K个第一上行传输模式,具体包括:将上行数据量所属的数据量范围对应的上行传输模式,确定为第一上行传输模式。
结合第二方面,在一些可行的实施方式中,第一上行传输模式支持终端在预设时间段内发送大于或等于上行数据量的数据,以及,终端在预设功率内发送大于或等于上行数据量的数据。
结合第二方面,在一些可行的实施方式中,终端存储有一个或多个数据量范围和上行 传输模式的对应关系,以及,一个或多个信道质量范围和上行传输模式的对应关系;第一数据量范围对应的上行传输模式,支持终端在预设时间段内发送大于或等于第一数据量的数据,第一数据量属于第一数据量范围;第一信道质量范围对应的上行传输模式,支持终端在预设功率内发送大于或等于第一数据量的数据,第一信道质量属于第一信道质量范围;根据上行数据量在支持的上行传输模式中确定K个第一上行传输模式,具体还包括:将上行数据量所属的数据量范围对应的上行传输模式,确定为第三上行传输模式;将信道质量所属的信道质量范围对应的第三上行传输模式,确定为第一上行传输模式。
结合第二方面,在一些可行的实施方式中,在第二上行传输模式包含多个上行传输模式的情况下,利用第二上行传输模式传输上行数据,具体包括:确定第四上行传输模式,第四上行传输模式为功率放大器的发射功率最小的第二上行传输模式;利用第四上行传输模式发送上行数据。
结合第二方面,在一些可行的实施方式中,上行传输模式对应的发射天线和上行载波的数量和越小,上行传输模式的功耗越少。
第三方面,本申请提供了一种设备,包括一个或多个触摸屏,一个或多个存储器,一个或多个处理器;其中所述一个或多个储存器存储有一个或多个程序;其特征在于,当所述一个或多个处理器在执行所述一个或多个程序时,使得所述设备实现第一方面任一项所述的方法。
第四方面,本申请提供了一种计算机存储介质,包括计算机指令,当计算机指令在终端上运行时,使得所述终端执行第一方面所述的方法。
附图说明
图1为本申请实施例提供的一种网络结构示意图;
图2为本申请实施例提供的一种终端的硬件结构示意图;
图3为本申请实施例提供的一种终端的软件结构示意图;
图4为本申请实施例提供的另一种终端的结构示意图;
图5为本申请实施例提供的一种减少终端功耗的方法流程示意图;
图6为本申请实施例提供的一种根据上行数据量确定上行传输模式的步骤流程示意图;
图7为本申请实施例提供的另一种减少终端功耗的方法流程示意图;
图8为本申请实施例提供的一种根据上行数据量和信道质量确定上行传输模式的步骤流程示意图;
图9为本申请实施例提供的一种游戏场景下的耗电量对比图;
图10为本申请实施例提供的一种直播场景下的耗电量对比图;
图11为本申请实施例提供的一种网页浏览场景下的耗电量对比图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行清除、详尽地描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;文本中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,另外,在本申 请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为暗示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在发送上行数据时,终端可以拥有多种上行传输模式。其中,一种上行传输模式对应有一个上行传输速率。例如,一个空间复用模式对应有一个较快的上行传输速率。一个单天线模式对应有一个较慢的上行传输速率。一个利用载波聚合技术发送上行数据的上行传输模式对应有一个较快的上行传输速率。一个未使用载波聚合技术发送上行数据的上行传输模式对应有一个较慢的上行传输速率。
为了保证上行传输的通信质量,终端可以采用上行传输速率最快的上行传输模式发送上行数据。但是,如果固定使用上行传输速率最快的上行传输模式发送上行数据会耗费较多电能。例如,在业务量较小时,上行传输速率低的上行传输模式就能在预设时间段内成功发送上行数据。如果固定使用传输速率最快的上行传输模式发送上行数据会耗费较多电能,终端的待机时间减少,用户体验差。
其中,在利用上行传输速率最快的上行传输模式发送上行数据时,终端发送上行数据所使用的发射天线的数量和上行载波(Component Carrier,CC)的数量较多。发射天线的数量越多,终端的功耗越多。上行载波的数量越多,终端的功耗越多。
为了在保证通信质量的同时降低终端的功耗,本申请实施例提出了一种减少终端功耗的方法。在该方法中,终端根据上行数据量,在保证通信质量的情况下,从终端可用的上行传输模式中自适应选择功耗较小的上行传输模式。然后,终端可以使用选择的上行传输模式来发送上行数据。该方法减少了终端的功耗,延长终端的待机时间,提升用户体验。
为了更好的理解本申请实施例,下面对本申请实施例涉及到的概念进行解释。
(一)终端可用的上行传输模式
上行传输模式指示了终端发送上行数据时使用的空间域资源和频域资源。
空间域资源可包括:终端发送上行数据时所使用的发射天线的数量,以及,终端使用发射天线的多输入多输出(Multi Input Multi Output,MIMO)模式。
频域资源可包括:终端发送上行数据时所使用的上行载波的频段,以及,该上行载波的数量。
终端可用的上行传输模式是指,该终端在当前的配置下可以支持的一个或多个上行传输模式。该配置包括终端的软硬件设置、终端和基站的连接情况以及用户设置。该配置更改时,终端可用的上行传输模式也相应地有所变化。软硬件设置是指终端发射天线的设置、终端支持的上行频段的设置等,终端和基站的连接情况是指终端的驻留小区支持的上行频段,用户设置是指用户根据用户需要设置的载波聚合能力。
(1)终端可用的空间域资源
1、终端发送上行数据时可用的发射天线的数量
终端发送上行数据时可用的发射天线的数量N 1,小于或等于,终端最大的发射天线的数量N 2
终端最大的发射天线的数量N 2是指,终端能够用来发送上行数据的天线的最大数量为N 2。终端最大的发射天线的数量N 2,小于或者等于,终端内部总天线数量N。
终端最大的发射天线的数量N 2与终端的内部空间有关。因为终端的内部安装空间不同,终端最大的发射天线的数量N 2不同。通常情况下,终端最大的发射天线的数量可以是4、2、1,或者其他正整数,这里不做限制。
在本申请实施例中,终端发送上行数据时可用的发射天线的数量为N 1,也可以被称为该终端支持N 1个发射天线(上行N 1Transmit,上行N 1T)。例如,终端支持2个发射天线(上行2T)。
在本申请实施例中,终端发送上行数据时可用的发射天线的数量N 1可以为1,也可以为不大于N 2的偶数。即N 1=1,或者,N 1∈[2,N 2]且为偶数。例如,假设N 2为4,那么N 1可以是4,2,或1。假设N 2为2,那么N 1可以是2或1。
终端发送上行数据时所使用的发射天线的数量N 1越大,终端的功耗越大。
2、终端发送上行数据时所使用的发射天线的MIMO模式
发射天线的MIMO模式包括:单天线模式、发射分集模式、空间复用模式。单天线模式是指利用单个天线发送上行数据。发射分集模式是指通过多个发射天线发送同一上行数据的多个调制信号,提升上行传输的增益,从而增强上行传输的上行覆盖,保证上行传输的距离。在上行信道质量较差的情况下,通常选择发射分集模式。空间复用模式是指通过多个发射天线同时发送不同的上行数据,从而使得上行传输的信道容量随着发射天线数量的增加而线性增加,提升上行数据的传输速率,从而提升上行吞吐量。
(2)终端可用的频域资源
1、终端发送上行数据时所使用的上行载波的频段
终端发送上行数据时所使用的上行载波的频段,属于终端的上行可用频段。
终端的上行可用的频段是指,终端和驻留小区的共同支持的上行频段。终端可通过终端的上行可用频段与基站建立通信连接。
终端支持的上行频段是指,终端能够用来发送上行数据的上行频段。
终端支持的上行频段与终端的射频芯片和天线有关。终端的射频芯片或者天线不同,终端支持的频段不同。例如,终端1支持的LTE频段包括:B1、B3、B5、B8、B34、B38、B39、B40、B41。终端2支持的LTE频段包括:B1、B2、B3、B4、B5、B6、B7、B8、B12、B17、B18、B19、B20、B26、B34、B38、B39、B40、B41。进一步的,B3代表的频段为:上行1710~1785MHz,其他频段不做赘述。
具体的,终端支持的上行频段可预先存储在终端的存储器中,可以是终端的基带处理器的存储器,也可以是终端的其他存储器。这里不做限制。
终端的驻留小区支持的上行频段,是指驻留小区能够用来接收上行数据的上行频段。驻留小区支持的上行频段与基站的软硬件配置相关,这里不做赘述。
具体的,终端可以根据终端驻留小区的主载波单元(Primary Cell Component,PCC) 确定驻留小区支持的上行频段。
2、终端发送上行数据时可用的上行载波的数量
终端发送上行数据时可用的上行载波的数量M 1,小于或等于,终端最多的上行载波的数量M 2
终端最多的上行载波的数量M 2是指,终端能够用来发送上行数据时上行载波的最多的数量为M 2
终端最多的上行载波的数量M 2是有限的。终端最多的上行载波的数量M 2与终端的载波聚合能力以及上行可用频段相关。
其中,终端的载波聚合能力包含:支持载波聚合、不支持载波聚合。终端是否支持载波聚合和终端的射频芯片、终端的载波聚合功能是否开启有关。在终端的射频芯片支持载波聚合并且载波聚合功能开启的情况下,终端支持载波聚合。
当终端不支持载波聚合时,该终端最多的上行载波的数量M 2为1。
当终端支持载波聚合时,该终端最多的上行载波的数量M 2的取值由上行可用频段决定。为了满足性能指标,例如上行可用频段在载波聚合后对人体的伤害指标、上行可用频段在载波聚合后对其他频段的干扰等,载波聚合的频段以及频段的组合是多样的,不同的频段有不同的聚合方式。因此,在上行可用频段不同的情况下,M 2的取值不同。
在本申请实施例中,终端发送上行数据时可用的上行载波的数量为M 1,也可以被称为该终端支持M 1个上行载波(上行M 1CC)。例如,终端支持2个上行载波(上行2CC)。
在一些可行的实施方式中,M 1∈[1,M 2],M 1为正整数。例如,假设M 2为2,那么M 1为1或2。
终端发送上行数据时所使用的上行载波的数量M 1越大,终端的功耗越大。
在本申请实施例中,终端可用的空间域资源和可用的频域资源可以任意组合。
下面举例说明一种配置下终端可用的空间域资源和可用的频域资源组合确定的可用的上行传输模式。
例如,在终端的最大的发射天线的数量为2,终端的最多的上行载波数量为2的情况下,终端的可用的上行传输模式包括:2T*1CC发射分集模式、2T*1CC空间复用模式、2T*2CC发射分集模式、2T*2CC空间复用模式、1T*1CC单载波模式、1T*2CC两载波模式。
(二)上行数据量
终端的上行数据量和该终端当前提供的业务相关联。终端在提供不同的业务时,传输的上行数据量也不同。例如,终端执行直播业务时的上行数据量大于执行网页浏览业务时的上行数据量。
为了更好的描述本申请实施例,下面阐述本申请实施例的***架构。本申请实施例的技术方案可以在图1举例所示的***架构或类似的***架构中具体实施。如图1所示,包括终端100和基站200。终端100与基站200之间可以通过蜂窝网络,如全球移动通讯***(global system for mobile communications,GSM)、通用分组无线服务(general packet radio service,GPRS)、码分多址接入(code division multiple access,CDMA)、宽带码分多址 (wideband code division multiple access,WCDMA)、时分码分多址(time-division code division multiple access,TD-SCDMA)、长期演进(long term evolution,LTE)、第五代移动通信技术(5th generation mobile networks,5G),无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),以及由蜂窝网络和无线局域网构成的异构网络***建立通信连接。
终端100可以是便携式终端设备,诸如智能手机、平板电脑、具备无线通讯功能的可穿戴终端设备(如智能手表),客户终端设备(Customer Premise Equipment,CPE)以及带无线通讯功能的模块设备等,本方案所适用的终端类型多,适用范围广,具有较大的市场推广潜力。还应当理解的是,在其他一些实施例中,上述终端也可以是非便携式终端设备,如,智能水表,这里不做限制。
基站200是一种为终端提供无线通信功能的设备。基站可以是5G中的下一代基站(gnodeB,gNB)、演进型节点B(evolved node B,eNB)、节点B(node B,eNB)、无线网络控制器(radio network controller,RNC)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等,这里不做限制。
下面介绍本申请以下实施例中提供的示例性终端100。
图2示出了终端100的结构示意图。
下面以终端100为例对实施例进行具体说明。应该理解的是,图2所示终端100仅是一个范例,并且终端100可以具有比图2中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
终端100可以包括:处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是终端100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了***的效率。在本申请实施例中,基带处理器的存储器可以存储该终端的多个频段的频点和带宽以及各个频段的发射端口数量和载波数量。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器120的指令,从而执行终端100的各种功能应用以及数据处理。
终端100的无线通信功能可以通过天线,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线用于发射和接收电磁波信号。终端100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在终端100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星***(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线转为电磁波辐射出去。
在一些实施例中,终端100的天线和移动通信模块150,无线通信模块160耦合,使得终端100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯***(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA), 宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位***(global positioning system,GPS),全球导航卫星***(global navigation satellite system,GLONASS),北斗卫星导航***(beidou navigation satellite system,BDS),准天顶卫星***(quasi-zenith satellite system,QZSS)和/或星基增强***(satellite based augmentation systems,SBAS)。终端100支持多种通信技术,本方案的适用范围广,具体较大的市场推广潜力。
在本申请实施例中,终端100的存储器存储终端的软硬件配置信息。在终端的处理器根据上行数据量,在满足上行传输的通信质量的情况下,从终端可用的上行传输模式中自适应选择功耗较小的上行传输模式后,终端可根据上述上行传输模式将上行数据经由基带处理器、调制解调处理器处理后经天线转为电磁波辐射出去。
终端100的软件***可以采用分层架构,事件驱动架构,微核架构,微服务架构,或云架构。本申请实施例以分层架构的Android***为例,示例性说明终端100的软件结构。
图3是本申请实施例的终端100的软件结构框图。
分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,将Android***分为四层,从上至下分别为应用程序层,应用程序框架层,安卓运行时(Android runtime)和***库,以及内核层。
应用程序层可以包括一系列应用程序包。如图3所示,应用程序包可以包括相机,图库,日历,通话,地图,导航,WLAN,蓝牙,音乐,视频,短信息等应用程序。
应用程序框架层为应用程序层的应用程序提供应用编程接口(application programming interface,API)和编程框架。应用程序框架层包括一些预先定义的函数。如图3所示,应用程序框架层可以包括窗口管理器,内容提供器,视图***,电话管理器,资源管理器,通知管理器等。
Android Runtime包括核心库和虚拟机。Android runtime负责安卓***的调度和管理。
***库可以包括多个功能模块。例如:表面管理器(surface manager),媒体库(Media Libraries),三维图形处理库(例如:OpenGL ES),2D图形引擎(例如:SGL)等。
内核层是硬件和软件之间的层。内核层至少包含显示驱动,摄像头驱动,音频驱动,传感器驱动。
下面结合终端发送短信时的场景,示例性说明终端100软件以及硬件的工作流程。
当触摸传感器接收到触摸操作,相应的硬件中断被发给内核层。内核层将触摸操作加工成原始输入事件(包括触摸坐标,触摸操作的时间戳等信息)。原始输入事件被存储在内核层。应用程序框架层从内核层获取原始输入事件,识别该输入事件所对应的控件。以该触摸操作是触摸单击操作,该单击操作所对应的为短信应用的控件为例,短信数据经由基带处理器、调制解调处理器处理后经天线转为电磁波辐射出去。
具体实现中,本申请实施例所提出的技术方案可由上述***中的终端100执行。如图4所示,所述终端100包括用户信息处理单元401、终端能力和网络信息处理单元402、模式选择决策单元403以及模式执行调度单元404。在一个可行的实施方式中,用户信息处 理单元401可用于获取用户信息,例如,上行数据量等等。终端能力和网络信息处理单元402用于获取发送上行数据时所使用的资源,例如发射天线的数量、发射天线的MIMO模式、上行载波的频段、上行载波的数量等等。然后,模式选择决策单元403根据终端能力和网络信息处理单元402获取的发送上行数据时所使用的资源确定上行传输模式,并根据用户信息处理单元401获取的上行数据量在支持的上行传输模式中,确定K个支持在预设时间段内发送大于或等于上行数据量的第一上行传输模式,以及从K个第一上行传输模式中确定出功耗最小的第二上行传输模式。最后,模式执行调度单元404可利用该第二上行传输模式传输上行数据,例如模式执行调度单元404可以与基站交互,并接收基站下发该第二上行传输模式的配置指令等等。从而可在不影响用户体验的情况下,节省功耗,延长待机时间。
下面结合附图对本申请实施例提供的一种减少终端功耗的方法及设备进行介绍。图5为本申请实施例提供的一种减少终端功耗的方法的流程示意图。在本申请实施例中,终端发送上行数据也可以称作终端发送上行数据。请参见图5,本申请实施例提出的一种减少终端功耗的方法,具体包括:
S501:终端确定可用的上行传输模式。
终端可用的上行传输模式是指,该终端在当前的配置下可以支持的一个或多个上行传输模式。终端可以根据最大的发射天线的数量N 2、最多的上行载波的数量M 2,以及,终端的上行可用的频段,确定可用的上行传输模式。
其中,最大的发射天线的数量N 2、最多的上行载波的数量M 2、终端的上行可用频段的确定方式可参考前文,这里不做赘述。
其中,终端根据最大的发射天线的数量N 2、最多的上行载波的数量M 2,以及,终端的上行可用的频段确定可用的上行传输模式的具体实现,可参考前文关于本申请概念的描述,这里不再赘述。
表1示例性的示出了几种终端最大的发射天线数量N 2、终端最多的上行载波数量M 2对应的可用的上行传输模式。表1仅仅是为了说明本申请实施例,不应构成限定。如表1所示,
Figure PCTCN2021090063-appb-000001
表1几种可用的上行传输模式
其中,2T*2CC发射分集模式即两天线两载波发射分集模式,指2根天线中的每根天线 上传输相同的数据流,并且,每根天线上的两个载波分别传输2个不同的数据流。即在利用2T*2CC发射分集模式发送上行数据的情况下,终端同时传输2个不同的数据流。上行传输速率中等。
其中,2T*2CC空间复用模式即两天线四载波空间复用模式,指2根天线中的每根天线上传输的数据不同,并且,每根天线上的两个载波分别传输2个不同的数据流,即在利用2T*2CC空间复用模式发送上行数据的情况下,终端同时传输4个不同的数据流。上行传输速率快。
其中,2T*1CC发射分集模式即两天线单载波发射分集模式,指2根天线上传输相同的数据流,并且,每根天线上传输1个数据流,即在利用2T*1CC发射分集模式发送上行数据的情况下,终端只传输1个数据流。上行传输速率慢。
其中,2T*1CC空间复用模式即两天线单载波空间复用模式,指2根天线中的每根天线上传输不同的数据流,并且,每根天线上传输1个数据流,即在利用2T*1CC空间复用模式发送上行数据的情况下,终端同时传输2个不同的数据流。上行传输速率中等。
其中,1T*2CC两载波模式指1根天线上的两个载波分别传输2个不同的数据流,即在利用1T*2CC两载波模式发送上行数据的情况下,终端同时传输2个不同的数据流。上行传输速率中等。
其中,1T*1CC单载波模式指1根天线上传输1个数据流,即在利用1T*1CC单载波模式发送上行数据的情况下,终端只传输1个数据流。上行传输速率慢。
S502:终端在可用的上行传输模式中,根据当前的上行数据量,确定能够在预设时间段内成功发送该上行数据的上行传输模式。
每一种上行传输模式对应的上行传输速率不同。即终端在单位时间内发送的上行数据量不同。从而,终端在预设时间段内能够发送的总的上行数据量不同。
终端内预先存储了一个或多个数据量范围,以及,能够在预设时间段内成功传输该数据量范围内的上行数据的上行传输模式。
其中,预存的一个或多个数据量范围是经过测试确定的。该数据量范围指示终端利用数据量范围对应的上行传输模式成功发送上行数据所需的时间低于预设时间。
数据量范围内对应的上行传输模式是指支持终端在预设时间段内发送大于或等于第一数据量的数据,该第一数据量属于该数据量范围。
其中,不同配置的终端,数据量范围的数量可以不同,数据量范围的取值也可以不同。例如,在终端的配置支持可用的上行传输模式包括:较快上行传输速率的2T*2CC空间复用模式,中等上行传输速率的2T*1CC空间复用模式、2T*2CC发射分集模式、1T*2CC两载波模式,以及较慢上行传输速率的1T*1CC单载波模式、2T*1CC发射分集模式时,可以预先存储当前配置下对应的第一数据量范围、第二数据量范围、第三数据量范围。在终端的配置支持可用的上行传输模式包括:中等上行传输速率的1T*2CC两载波模式以及较慢上行传输速率的1T*1CC单载波模式时,可以预先存储当前配置下对应的第四数据量范围、第五数据量范围。
在一些可行的实施方式中,可以针对所有业务存储相同的数据量范围,也可以针对不同的业务存储不同的数据量范围。
为了更好的说明本申请实施例,本申请实施例以终端的配置支持最大的发射天线数量为2、终端最多的上行载波数量为2对应的可用的上行传输模式进行举例说明。这里不作限定。表2示例性示出了能够在预设时间段内成功发送该数据量范围内的上行数据的上行传输模式。如表2所示:
Figure PCTCN2021090063-appb-000002
表2根据上行数据量确定的上行传输模式
如表2所示,针对最大的发射天线数量为2、最多的上行载波数量为2的终端,在上行数据量位于第一数据量范围内时,终端的上行数据量较大,在预设时间段内需要利用上行传输速率快的2T*2CC空间复用模式发送上行数据。在上行数据量位于第二数据量范围内时,终端的上行数据量中等,在预设时间段内可以利用上行传输速率快的2T*2CC空间复用模式发送上行数据,也可以利用上行传输速率中等的2T*1CC空间复用模式、2T*2CC发射分集模式、1T*2CC两载波模式发送上行数据。在上行数据量位于第三数据量范围内时,终端的上行数据量小,在预设时间段内,可以利用上行传输速率快的2T*2CC空间复用模式发送上行数据,也可以利用上行传输速率中等的2T*1CC空间复用模式、2T*2CC发射分集模式、1T*2CC两载波模式发送上行数据,还可以利用上行传输速率慢的2T*1CC发射分集模式、1T*1CC单载波模式发送上行数据。
S503:终端在预设时间段内能成功发送上行数据的上行传输模式中,确定功耗最低的上行传输模式。
具体的,终端在预设时间段内能成功传输该上行数据的上行传输模式中,根据发射天线和上行载波的数量和,确定功耗最低的上行传输模式。终端利用功耗最低的上行传输模式发送上行数据所耗费的功耗最少。其中,发射天线和上行载波的数量和越小,终端利用 该上行传输模式发送上行数据所耗费的功耗越少。
在一些可行的实施方式中,在预设时间段内能成功传输该上行数据的上行传输模式只包含1个的情况下,终端确定功耗最低的上行传输模式就为这1个上行传输模式。
在另一些可行的实施方式中,在预设时间段内能成功传输该上行数据的上行传输模式不少于1个的情况下,发射天线和上行载波的数量和最小的上行传输模式为功耗最低的上行传输模式。
进一步的,在发射天线和上行载波的数量和最小的上行传输模式不少于1个的情况下,终端可以确定功耗最低的上行传输模式为这多个上行传输模式中的任意一个,终端还可以确定功耗最低的上行传输模式为这多个上行传输模式中功率放大器的发射功率最小的一个。
S504:终端将携带有上行传输模式的终端辅助信息(UE Assistance Information)发送至基站,基站下发所述上行传输模式的配置指令,终端根据基站下发的配置指令利用所述上行传输模式发送上行数据。
在一种可行的实施方式中,终端可以将预估时间内能成功发送上行数据且功耗最低的上行传输模式通过终端辅助信息发送至基站,基站下发无线资源控制(Radio Resource Control,RRC)重配信令,终端可根据RRC重配信令配置上行传输模式,并利用所述上行传输模式发送上行数据。终端可直接利用第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)协议通知基站下发所述上述传输模式的配置信息,无需额外增加信令,对基站的改动较小,从而本方法的可行性较高。
在该申请实施例中,在不影响用户体验(用户等待时间较短等)的情况下,终端从可用的上行传输模式中自适应选择功耗较小的上行传输模式。然后,终端可以使用选择的上行传输模式来发送上行数据。该方法在保证通信质量的情况下减少终端的功耗,延长终端的待机时间,提升用户体验。
下面将结合一个完整的流程图对图5内相关实施例进行阐述。图6示出了一种根据上行数据量确定功耗最低的上行传输模式的步骤流程示意图。如图6所示,具体包括:
S601:在终端当前配置支持的最大发射天线数量为2、最多的上行载波数量为2的情况下,终端可支持的上行传输模式包括:2T*2CC发射分集模式、2T*2CC空间复用模式、2T*1CC发射分集模式、2T*1CC空间复用模式、1T*2CC两载波模式、1T*1CC单载波模式。
S602:终端判断上行数据量Date是否位于第一数据量范围内,在上行数据量Date位于第一数据量范围的情况下,即在Date>D1的情况下,执行S603,否则执行S604。
S603:终端确定预设时间段内能够成功传输该上行数据且功耗最低的上行传输模式为2T*2CC空间复用模式,结束流程。
S604:终端判断上行数据量Date是否位于第二数据量范围内,在上行数据量Date位于第二数据量范围的情况下,即在D2<Date≤D1的情况下,执行S605,否则执行S607。
S605:终端确定预设时间段内能够成功传输该上行数据的上行传输模式包括:2T*2CC空间复用模式、2T*1CC空间复用模式、2T*2CC发射分集模式、1T*2CC两载波模式,执行S606。
S606:终端确定2T*2CC空间复用模式、2T*1CC空间复用模式、2T*2CC发射分集模式、1T*2CC两载波模式中功耗最低的上行传输模式为2T*1CC空间复用模式或者1T*2CC两载波模式。结束流程。
S607:终端确定上行数据量Date位于第三数据量范围内,即在Date≤D2的情况下,终端确定预设时间段内能够成功传输该上行数据的上行传输模式包括:2T*2CC发射分集模式、2T*2CC空间复用模式、2T*1CC发射分集模式、2T*1CC空间复用模式、1T*2CC两载波模式、1T*1CC单载波模式,执行S608。
S608:终端确定2T*2CC发射分集模式、2T*2CC空间复用模式、2T*1CC发射分集模式、2T*1CC空间复用模式、1T*2CC两载波模式、1T*1CC单载波模式中功耗最低的上行传输模式为1T*1CC单载波模式。结束流程。
终端的发射功率有限,在信道质量较差的情况下,终端在该发射功率内可能无法成功发送上行数据。图7为本申请实施例提供的另一种减少终端功耗的方法的流程示意图。在本申请实施例中,终端可以在预设时间段内以及预设功率内成功发送上行数据的上行传输模式中选择功耗最低的上行传输模式。请参见图7,具体包括:
S701:终端确定可用的上行传输模式。可参考步骤S501,这里不做赘述。
S702:终端在可用的上行传输模式中,根据当前的上行数据量以及信道质量,确定能够在预设时间段以及预设功率内成功传输上行数据的上行传输模式。
具体的,终端根据上行数据量在可用的上行传输模式中确定能够在预设时间段成功发送上行数据的上行传输模式。终端根据信道质量在可用的上行传输模式中确定能够在预设功率内成功发送上行数据的上行传输模式。
终端内预存一个或多个数据量范围,以及能够在预设时间段内成功传输该数据量范围内的上行数据的上行传输模式。终端内还可以预存一个或多个信道质量范围,以及能够在预设功率内成功传输该信道质量范围内的上行数据的上行传输模式。
其中,预存的一个或多个信道质量范围是经过测试确定的。该信道质量范围指示所述终端利用所述信道质量范围对应的上行传输模式成功发送上行数据所需的功率低于预设功率。
进一步的,针对不同的终端可以设置不同的信道质量范围。
终端根据上行数据量在可用的上行传输模式中确定能够在预设时间段成功发送上行数据的上行传输模式的具体实现方式可参考步骤S502,这里不做赘述。
下面详细描述终端根据信道质量在可用的上行传输模式中确定在预设功率内能成功发送上行数据的上行传输模式。
信道质量是指终端和基站之间的传输信道的质量。信道质量可以由以下一种或多种参数来衡量:下行信道的信干噪比,下行信号的能量。一般来说,下行信道的信干噪比越大,上行信道的质量越好。终端接收的下行信号的能量越大,上行信道的质量越好。
在信道质量较差的情况下,终端可利用发射分集模式来发送上行数据,提升终端的发送增益,从而使得终端在预设功率内能够成功发送上行数据。
为了更好的说明本申请实施例,本申请实施例以终端当前配置支持的最大的发射天线数量为2、终端最多的上行载波数量为2对应的可用的上行传输模式进行举例说明。这里 不作限定。
在一些可行的实施方式中,终端内可预先存储有数据量范围、信道质量范围与能在预设时间内和预设功率内成功发送上行数据的上行传输模式。在该实施例中,终端可以先根据上行数据量和数据量范围,从可用的上行传输模式中确定在预设时间内能成功发送上行数据的上行传输模式,然后再根据信道质量和信道质量范围确定在预设功率内能成功发送上行数据的上行传输模式,表3示例性的示出了一种上行传输模式。如表3所示:
Figure PCTCN2021090063-appb-000003
表3一种上行传输模式
如表3所示,当上行数据量位于第二数据量范围时,根据上行数据量确定的上行传输模式包括:2T*2CC空间复用模式、2T*1CC空间复用模式、2T*2CC发射分集模式、1T*2CC两载波模式。在信道质量位于第一信道质量范围时,上行信道质量较差,终端在预设功率内需要利用发射分集模式(如2T*2CC发射分集模式)发送上行数据。在信道质量位于第二信道质量范围时,上行信道质量较好,终端可以利用2T*2CC空间复用模式、2T*1CC空间复用模式、2T*2CC发射分集模式、1T*2CC两载波模式发送上行数据。其他情况不做赘述。
在另一些可行的实施方式中,终端内可预先存储有数据量范围、信道质量范围与能在 预设时间内和预设功率内成功发送上行数据的上行传输模式。在该实施例中,终端可以先根据信道质量和信道质量范围,从可用的上行传输模式中确定在预设功率内能成功发送上行数据的上行传输模式,然后,终端再根据上行数据量和数据量范围,确定在预设时间内能成功发送上行数据的上行传输模式,表4示例性的示出了另一种上行传输模式。如表4所示:
Figure PCTCN2021090063-appb-000004
表4另一种上行传输模式
如表4所示,当信道质量位于第二信道质量范围时,根据信道质量确定的上行传输模式包括:2T*2CC空间复用模式、2T*1CC空间复用模式、2T*2CC发射分集模式、2T*1CC发射分集模式、1T*2CC两载波模式、1T*1CC单载波模式。在上行数据量位于第一数据量范围时,终端在预设时间内需要利用上行传输速率最快的2T*2CC空间复用模式发送上行数据。其他情况不做赘述。
在另一种可行的实施方式中,终端内还可以分别存储,数据量范围与能在预设时间内成功发送上行数据的上行传输模式的对应关系、信道质量范围与能在预设功率内成功发送上行数据的上行传输模式的对应关系。表5示例性示出了能够在预设功率内成功传输该信道质量范围内的上行数据的上行传输模式。如表5所示:
Figure PCTCN2021090063-appb-000005
Figure PCTCN2021090063-appb-000006
表5根据信道质量确定的上行传输模式
如表5所示,针对最大的发射天线数量为2、最多的上行载波数量为2的终端,在信道质量位于第一信道质量范围内时,上行信道质量较差,终端在预设功率内需要利用发射分集模式(如2T*2CC发射分集模式、2T*1CC发射分集模式)发送上行数据。在信道质量位于第二信道质量范围内时,上行信道质量较好,终端在预设功率内可以利用2T*2CC空间复用模式、2T*1CC空间复用模式、2T*2CC发射分集模式、2T*1CC发射分集模式、1T*2CC两载波模式、以及1T*1CC单载波模式发送上行数据。
终端可根据表2和表5确定能够在预设时间段内和预设功率内成功发送上行数据的上行传输模式。
S703:终端在预设时间段内以及预设功率内能成功发送上行数据的上行传输模式中,确定功耗最低的上行传输模式。可参考步骤S503,这里不做赘述。
S704:终端将携带有上行传输模式的终端辅助信息发送至基站,基站下发所述上行传输模式的配置指令,终端根据基站下发的配置指令利用所述上行传输模式发送上行数据。可参考步骤S504,这里不做赘述。
在该申请实施例中,在不影响用户体验(用户等待时间较短),并且发送功率在一定范围内的情况下,终端从可用的上行传输模式中自适应选择功耗较小的上行传输模式。然后,终端可以使用选择的上行传输模式来发送上行数据。该方法在保证业务的通信质量(即保证误块率和时延)的情况下减少终端的功耗,延长终端的待机时间,提升用户体验。
下面将结合流程图对图7所述的申请实施例进行详细阐述。图8示出了一种根据上行数据量、信道质量,确定功耗最低的上行传输模式的步骤流程示意图。如图8所示,
S801:最大发射天线数量为2、最多的上行载波数量为2的终端可支持的上行传输模式包括:2T*2CC发射分集模式、2T*2CC空间复用模式、2T*1CC发射分集模式、2T*1CC空间复用模式、1T*2CC两载波模式、1T*1CC单载波模式。
S802:终端判断上行数据量Date是否位于第一数据量范围内,在上行数据量Date位于第一数据量范围的情况下,即在Date>D1的情况下,执行S803,否则执行S805。
S803:终端确定在预设时间段内能完成上行传输的上行传输模式为2T*2CC空间复用模式。
S804:终端判断信道质量S是否位于第一信道质量范围内,在信道质量S位于第一信道质量范围的情况下,结束流程。否则,终端确定在预设时间段内以及预设功率内完成上行传输的功耗最低的上行传输模式为2T*2CC空间复用模式。结束流程。
S805:终端判断上行数据量Date是否位于第二数据量范围内,在上行数据量Date位于第二数据量范围的情况下,即在D2<Date≤D1的情况下,执行S806,否则执行S809。
S806:终端确定在预设时间段内能完成上行传输的上行传输模式包括:2T*2CC空间复用模式、2T*1CC空间复用模式、2T*2CC发射分集模式、1T*2CC两载波模式。终端判断信道质量S是否位于第一信道质量范围内,在信道质量S位于第一信道质量范围的情况 下,即在S<S1的情况下,执行S807,否则执行S808。
S807:终端确定在预设时间段内以及预设功率内完成上行传输的功耗最低的上行传输模式为2T*2CC发射分集模式。结束流程。
S808:终端确定在预设时间段内以及预设功率内完成上行传输的功耗最低的上行传输模式为2T*1CC空间复用模式或者1T*2CC两载波模式。结束流程。
S809:终端确定上行数据量Date位于第三数据量范围内,即在Date≤D2的情况下,终端确定在预设时间段内能完成上行传输的上行传输模式包括:2T*2CC空间复用模式、2T*1CC空间复用模式、2T*2CC发射分集模式、1T*2CC两载波模式、2T*1CC发射分集模式、1T*1CC单载波模式。终端判断信道质量S是否位于第一信道质量范围内,在信道质量S位于第一信道质量范围的情况下,即在S<S1的情况下,执行S810,否则执行S811。
S810:终端确定在预设时间段内以及预设功率内完成上行传输的功耗最低的上行传输模式为2T*1CC发射分集模式。结束流程。
S811:终端确定在预设时间段内以及预设功率内完成上行传输的功耗最低的上行传输模式为1T*1CC单载波模式。结束流程。
进一步的,为了体现本申请实施例所提及的减少功耗方法的有益效果,选取了游戏,视频,网页浏览等三个场景来进行验证。可选的,可以参考3GPP协议中的业务模型,使用搭载了Open Air Interface(OAI)平台的商业终端来进行验证。首先,提供了一种现有方案,在现有方案中,可以通过上行信道探测参考信号(Sounding Reference Signal,SRS)反馈估计得到当前上行信道质量(Channel Quality Indication,CQI),从而计算得到合适的上行传输模式D。
具体的,在游戏场景中,如图9所示,实线表示现有方案的耗电量,虚线表示本申请方案的耗电量,可以发现在游戏场景中,在信噪比相同的情况下,本申请方案的耗电量低于现有方案的耗电量,从而可以推断在游戏场景中,本申请方案在通信质量相同的情况下功耗更低。
直播作为视频的一种具体应用场景,可以通过直播场景对本申请方案进行验证。如图10所示,实线表示现有方案的耗电量,虚线表示本申请方案的耗电量,可以发现在直播场景中,在信噪比相同的情况下,本申请方案的耗电量低于现有方案的耗电量,从而可以推断在视频场景中,本申请方案在通信质量相同的情况下功耗更低。
在网页浏览场景中,如图11所示,实线表示现有方案的耗电量,虚线表示本申请方案的耗电量,可以发现在网页浏览场景中,在信噪比相同的情况下,本申请方案的耗电量低于现有方案的耗电量,从而可以推断在网页浏览场景中,本申请方案在通信质量相同的情况下功耗更低。
综合以上,在本申请实施例中,在不影响用户体验,并且,终端的发送功率在固定范围内的情况下,终端根据信道质量从可用的上行传输模式中选择功耗较小的传输模式。然后终端利用所述功耗较小的上行传输模式来发送上行数据,在保证业务的通信质量的情况下减少终端的功耗,延长终端的待机时间,提升用户体验。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述 实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (16)

  1. 一种减少功耗的方法,其特征在于,包括:
    根据上行数据量在支持的上行传输模式中确定K个第一上行传输模式,所述第一上行传输模式支持终端在预设时间段内发送大于或等于所述上行数据量的数据;
    确定第二上行传输模式;所述第二上行传输模式为K个所述第一上行传输模式中功耗最少的上行传输模式;
    利用所述第二上行传输模式传输所述上行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述上行传输模式指示了所述终端发送上行数据时所使用的资源,所述资源包括:发射天线的数量、发射天线的多输入多输出MIMO模式、上行载波的频段、上行载波的数量。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端存储有一个或多个数据量范围和上行传输模式的对应关系;第一数据量范围对应的上行传输模式,支持所述终端在所述预设时间段内发送大于或等于第一数据量的数据,所述第一数据量属于所述第一数据量范围;
    根据所述上行数据量在所述支持的上行传输模式中确定K个所述第一上行传输模式,具体包括:
    将所述上行数据量所属的数据量范围对应的上行传输模式,确定为所述第一上行传输模式。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一上行传输模式支持所述终端在预设时间段内发送大于或等于所述上行数据量的数据,以及,所述终端在预设功率内发送大于或等于所述上行数据量的数据。
  5. 根据权利要求1或4所述的方法,其特征在于,存储有一个或多个数据量范围和上行传输模式的对应关系,以及,一个或多个信道质量范围和上行传输模式的对应关系;第一数据量范围对应的上行传输模式,支持所述终端在所述预设时间段内发送大于或等于第一数据量的数据,所述第一数据量属于所述第一数据量范围;第一信道质量范围对应的上行传输模式,支持所述终端在所述预设功率内发送大于或等于第一数据量的数据,所述第一信道质量属于所述第一信道质量范围;
    根据所述上行数据量在所述支持的上行传输模式中确定K个所述第一上行传输模式,具体还包括:
    将所述上行数据量所属的数据量范围对应的上行传输模式,确定为第三上行传输模式;
    将所述信道质量所属的信道质量范围对应的所述第三上行传输模式,确定为所述第一上行传输模式。
  6. 根据权利要求1-5任一所述的方法,其特征在于,在所述第二上行传输模式包含多个上行传输模式的情况下,利用所述第二上行传输模式传输所述上行数据,具体包括:
    确定第四上行传输模式,所述第四上行传输模式为功率放大器的发射功率最小的所述第二上行传输模式;
    利用所述第四上行传输模式发送上行数据。
  7. 根据权利要求1-6任一所述的方法,其特征在于,所述上行传输模式对应的发射天线和上行载波的数量和越小,所述上行传输模式的功耗越少。
  8. 一种减少功耗的终端,其特征在于,包括:
    根据上行数据量在支持的上行传输模式中确定K个第一上行传输模式,所述第一上行传输模式支持所述终端在预设时间段内发送大于或等于所述上行数据量的数据;
    确定第二上行传输模式;所述第二上行传输模式为K个所述第一上行传输模式中功耗最少的上行传输模式;
    利用所述第二上行传输模式传输所述上行数据。
  9. 根据权利要求8所述的终端,其特征在于,所述上行传输模式指示了发送上行数据时所使用的资源,所述资源包括:发射天线的数量、发射天线的多输入多输出MIMO模式、上行载波的频段、上行载波的数量。
  10. 根据权利要求8或9所述的终端,其特征在于,所述终端存储有一个或多个数据量范围和上行传输模式的对应关系;第一数据量范围对应的上行传输模式,支持所述终端在所述预设时间段内发送大于或等于第一数据量的数据,所述第一数据量属于所述第一数据量范围;
    根据所述上行数据量在所述支持的上行传输模式中确定K个所述第一上行传输模式,具体包括:
    将所述上行数据量所属的数据量范围对应的上行传输模式,确定为所述第一上行传输模式。
  11. 根据权利要求8或9所述的终端,其特征在于,所述第一上行传输模式支持所述终端在预设时间段内发送大于或等于所述上行数据量的数据,以及,所述终端在预设功率内发送大于或等于所述上行数据量的数据。
  12. 根据权利要求8或11所述的终端,其特征在于,所述终端存储有一个或多个数据量范围和上行传输模式的对应关系,以及,一个或多个信道质量范围和上行传输模式的对应关系;第一数据量范围对应的上行传输模式,支持所述终端在所述预设时间段内发送大于或等于第一数据量的数据,所述第一数据量属于所述第一数据量范围;第一信道质量范围对应的上行传输模式,支持所述终端在所述预设功率内发送大于或等于第一数据量的数 据,所述第一信道质量属于所述第一信道质量范围;
    所述根据所述上行数据量在所述支持的上行传输模式中确定K个所述第一上行传输模式,具体还包括:
    将所述上行数据量所属的数据量范围对应的上行传输模式,确定为第三上行传输模式;
    将所述信道质量所属的信道质量范围对应的所述第三上行传输模式,确定为所述第一上行传输模式。
  13. 根据权利要求8-12任一所述的终端,其特征在于,在所述第二上行传输模式包含多个上行传输模式的情况下,利用所述第二上行传输模式传输所述上行数据,具体包括:
    确定第四上行传输模式,所述第四上行传输模式为功率放大器的发射功率最小的所述第二上行传输模式;
    利用所述第四上行传输模式发送上行数据。
  14. 根据权利要求8-13任一所述的终端,其特征在于,所述上行传输模式对应的发射天线和上行载波的数量和越小,所述上行传输模式的功耗越少。
  15. 一种设备,包括一个或多个触摸屏,一个或多个存储器,一个或多个处理器;其中所述一个或多个储存器存储有一个或多个程序;其特征在于,当所述一个或多个处理器在执行所述一个或多个程序时,使得所述设备实现如权利要求1至8任一项所述的方法。
  16. 一种计算机存储介质,其特征在于,包括计算机指令,当所述计算机指令在终端上运行时,使得所述终端执行如权利要求1至8任一项所述的方法。
PCT/CN2021/090063 2020-04-26 2021-04-26 减少功耗的方法及终端 WO2021218937A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010339281 2020-04-26
CN202010339281.9 2020-04-26
CN202011415635.XA CN113556805B (zh) 2020-04-26 2020-12-07 减少功耗的方法及终端
CN202011415635.X 2020-12-07

Publications (1)

Publication Number Publication Date
WO2021218937A1 true WO2021218937A1 (zh) 2021-11-04

Family

ID=78129989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090063 WO2021218937A1 (zh) 2020-04-26 2021-04-26 减少功耗的方法及终端

Country Status (2)

Country Link
CN (1) CN113556805B (zh)
WO (1) WO2021218937A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114466400B (zh) * 2022-01-18 2024-03-19 Tcl通讯科技(成都)有限公司 设备控制方法、装置、设备及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105474557A (zh) * 2013-07-23 2016-04-06 瑞典爱立信有限公司 Lte网络中的传输模式分配
CN108494462A (zh) * 2018-03-28 2018-09-04 奇酷互联网络科技(深圳)有限公司 天线功能控制方法、装置、可读存储介质及智能终端
CN109327612A (zh) * 2018-09-29 2019-02-12 北京小米移动软件有限公司 一种多天线设备控制方法及装置
CN110557178A (zh) * 2018-06-04 2019-12-10 电信科学技术研究院有限公司 一种天线配置的指示方法、基站、终端及计算机存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102802243A (zh) * 2011-05-24 2012-11-28 中兴通讯股份有限公司 一种终端载波配置的方法及***
EP2587867B1 (en) * 2011-10-30 2018-07-11 Lantiq Beteiligungs-GmbH & Co.KG Power saving mode for multi carrier-transmission
US9474075B2 (en) * 2014-03-28 2016-10-18 Qualcomm Incorporated Operation mode adaptation based on hardware and channel condition constraints
CN116033580A (zh) * 2016-02-03 2023-04-28 三菱电机株式会社 通信***
CN107493597B (zh) * 2017-09-30 2020-06-02 北京小米移动软件有限公司 降低移动终端功耗的方法、装置及***
CN110324884B (zh) * 2018-03-30 2021-04-06 维沃移动通信有限公司 传输模式确定方法及设备
CN110719623B (zh) * 2018-07-11 2021-05-04 维沃移动通信有限公司 配置方法和设备
CN108880639A (zh) * 2018-09-21 2018-11-23 珠海格力电器股份有限公司 一种数据传输的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105474557A (zh) * 2013-07-23 2016-04-06 瑞典爱立信有限公司 Lte网络中的传输模式分配
CN108494462A (zh) * 2018-03-28 2018-09-04 奇酷互联网络科技(深圳)有限公司 天线功能控制方法、装置、可读存储介质及智能终端
CN110557178A (zh) * 2018-06-04 2019-12-10 电信科学技术研究院有限公司 一种天线配置的指示方法、基站、终端及计算机存储介质
CN109327612A (zh) * 2018-09-29 2019-02-12 北京小米移动软件有限公司 一种多天线设备控制方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Study on User Equipment (UE) power saving in NR (Release 16)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 38.840, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. V16.0.0, 24 June 2019 (2019-06-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 74, XP051754330 *
HUAWEI, HISILICON: "UE reporting assistance information to gNB", 3GPP DRAFT; R1-1901243, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Taipei; 20190121 - 20190125, 12 January 2019 (2019-01-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051576770 *

Also Published As

Publication number Publication date
CN113556805B (zh) 2022-09-27
CN113556805A (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
WO2019222954A1 (zh) 接收信号的方法和终端设备
US11589305B2 (en) Scheduling profile for UE power savings
US11304133B2 (en) Power savings for multi-link wireless local area network infrastructure
CN113261320B (zh) 通信方法、装置及***
WO2022021878A1 (zh) 一种信道调整方法及电子设备
WO2020135117A1 (zh) 通信方法、通信装置及存储介质
WO2021155677A1 (zh) 一种双卡双待双通方法、设备和存储介质
WO2022083327A1 (zh) 调度数据传输的方法和通信装置
WO2021159347A1 (en) Full power uplink transmission enhancement
US20220408281A1 (en) Method for Adjusting Quantity of Data Streams, Terminal, and MIMO System
CN113676269A (zh) 电子设备的数据传输方法及其介质和电子设备
WO2022237309A1 (zh) 一种峰值下载方法和装置
WO2022111718A1 (zh) 一种射频通道的共享方法及相关装置
WO2021013121A1 (zh) 一种设备控制方法、***相关装置
WO2021218937A1 (zh) 减少功耗的方法及终端
WO2022228190A1 (zh) 一种WiFi连接方法及装置
WO2022246616A1 (zh) 数据传输方法及通信装置
WO2022033550A1 (zh) 一种数据发送方法与终端设备
RU2801333C1 (ru) Способ регулирования количества потоков данных, оконечное устройство и система mimo
KR20140145054A (ko) 복수의 통신 서비스를 지원하는 무선통신 방법 및 장치
WO2023178489A1 (zh) 一种传输能力信息的方法、装置及存储介质
WO2022268129A1 (zh) 一种通信方法及装置
WO2024000130A1 (zh) 一种传输上行资源的方法、装置、设备以及可读存储介质
WO2022205233A1 (zh) 用于pusch的通信方法、用于pusch的通信装置及存储介质
US20220400439A1 (en) Side channel mechanism for controlling data flows

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21797041

Country of ref document: EP

Kind code of ref document: A1