WO2021218700A1 - Neodymium-iron-boron magnet material, raw material composition, preparation method therefor and use thereof - Google Patents

Neodymium-iron-boron magnet material, raw material composition, preparation method therefor and use thereof Download PDF

Info

Publication number
WO2021218700A1
WO2021218700A1 PCT/CN2021/088314 CN2021088314W WO2021218700A1 WO 2021218700 A1 WO2021218700 A1 WO 2021218700A1 CN 2021088314 W CN2021088314 W CN 2021088314W WO 2021218700 A1 WO2021218700 A1 WO 2021218700A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
content
iron boron
neodymium iron
sintered body
Prior art date
Application number
PCT/CN2021/088314
Other languages
French (fr)
Chinese (zh)
Inventor
王金磊
黄清芳
黎国妃
汤志辉
黄佳莹
Original Assignee
厦门钨业股份有限公司
福建省长汀金龙稀土有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门钨业股份有限公司, 福建省长汀金龙稀土有限公司 filed Critical 厦门钨业股份有限公司
Publication of WO2021218700A1 publication Critical patent/WO2021218700A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Definitions

  • the invention relates to a neodymium iron boron magnet material, a raw material composition, and a preparation method and application thereof.
  • Nd-Fe-B permanent magnet material is based on Nd 2 Fe l4 B compound, which has the advantages of high magnetic properties, small thermal expansion coefficient, easy processing and low price. Since its introduction, it has grown at an average annual rate of 20-30%. Become the most widely used permanent magnet material. According to the preparation method, Nd-Fe-B permanent magnets can be divided into three types: sintering, bonding and hot pressing. Among them, sintered magnets account for more than 80% of the total output and are the most widely used.
  • Co is the most used and most effective element. This is because the addition of Co can reduce the reversible temperature coefficient of magnetic induction, effectively increase the Curie temperature, and can improve the corrosion resistance of the NdFeB magnet.
  • the addition of Co easily causes the coercivity to decrease, and the cost of Co is higher.
  • the Al element can reduce the infiltration angle between the main phase and the surrounding liquid phase during the sintering process, and improve the coercive force by improving the microstructure between the main phase and the Nd-rich phase. Therefore, in the prior art, the addition of Al is usually used to improve the coercivity. Compensate the decrease in coercivity caused by the addition of Co. However, excessive addition of Al will deteriorate the remanence and Curie temperature.
  • the defect of internal temperature provides a neodymium iron boron magnet material, a raw material composition, and a preparation method and application thereof.
  • the neodymium iron boron magnet material of the present invention has good grain boundary continuity, high remanence, high coercivity and good high temperature performance.
  • a raw material composition of neodymium iron boron magnet material which comprises a first component and a second component, the first component is an element added during smelting, and the second component is an element added during grain boundary diffusion element;
  • the first component includes:
  • Light rare earth element LR 13 ⁇ 31.5wt%; said LR includes Nd;
  • Gd 0 ⁇ 5wt%, and not 0;
  • Dy and/or Tb 0-3wt%, and not 0;
  • Ga 0 ⁇ 0.35wt%, and not 0;
  • X 0.05 to 0.45 wt%; the X includes one or more of Ti, Nb, Zr, Hf, V, Mo, W, Ta and Cr;
  • the balance is Fe;
  • the second component includes: Dy and/or Tb: 0.2-1wt%;
  • the total rare earth content in the raw material composition of the neodymium iron boron magnet material is 29.5-32.5 wt%;
  • the wt% is the weight percentage of each element in the raw material composition of the neodymium iron boron magnet material.
  • the total rare earth content in the raw material composition of the neodymium iron boron magnet material is preferably 30.1-32.1 wt%, for example, 30.5 wt%, 30.8 wt% or 31.5% wt.
  • the content of the LR is preferably 15-30% by weight, such as 17.4% by weight, 18% by weight, 20% by weight, 22.5% by weight, 23% by weight, 23.4% by weight, 23.8% by weight, 24.5% by weight, and 25.5% by weight. %, 26wt% or 29.9wt%.
  • the Nd content is preferably 13-20wt%, for example 18wt% or 18.56wt%.
  • the LR may also include other conventional light rare earth elements in the art, such as Pr and/or Sm.
  • the content of Pr may be 0-16% by weight, and not 0% by weight; preferably 4%-12% by weight, such as 4.84% by weight or 10.8% by weight.
  • the added form of Pr may be pure Pr and/or PrNd, preferably PrNd.
  • the PrNd is an alloy of Pr and Nd, and the weight ratio of Pr to Nd in PrNd is generally 25:75 or 20:80.
  • the content of Sm may be 0-5 wt%, and not 0; for example, 4.8 wt%.
  • the Ho content is preferably 1 to 8.5 wt%, more preferably 4.5 to 7.5 wt%, such as 1.7 wt%, 3 wt%, 4.3 wt% or 8.1 wt%.
  • the Gd content is preferably 0.5 to 3 wt%, for example, 1 wt%, 1.5 wt%, 1.8 wt%, 2.5 wt%, or 2.6 wt%.
  • the total content of the Ho and the Gd is preferably not more than 10 wt%.
  • the content of Dy and/or Tb in the first component preferably ranges from 0.1 to 2% by weight, for example, 0.5% by weight, 1% by weight, 1.5% by weight, 2% by weight or 2.5% by weight.
  • the weight ratio of Dy and Tb may be conventional in the art, and is generally 1:99 to 99:1, such as 50:50, 60:40, or 40:60.
  • the content of Cu is preferably in the range of 0.1 to 0.3 wt%, for example, 0.15 wt%, 0.2 wt% or 0.25 wt%.
  • the content of Ga is preferably in the range of 0.1 to 0.3 wt%, such as 0.15 wt%, 0.2 wt% or 0.25 wt%.
  • the content of Al is preferably in the range of 0 to 0.3 wt%, more preferably 0 to 0.1 wt%, such as 0.02 wt%, 0.04 wt% or 0.08 wt%; more preferably 0 to 0.04 wt% wt%, preferably 0.
  • Al may be impurity Al introduced during the preparation of the neodymium iron boron material and/or additional Al added.
  • Al is generally the impurity Al introduced in the process of preparing the neodymium iron boron material.
  • the type of X is preferably one or more of Ti, Nb, Zr and Hf.
  • the content of X is preferably 0.1 to 0.4 wt%, more preferably 0.15 to 0.2 wt%.
  • the content of the Zr preferably ranges from 0.02 to 0.4 wt%, for example, 0.2 wt%.
  • the content of Ti preferably ranges from 0 to 0.2 wt%, and is not 0, for example, 0.15 wt%.
  • the content of Nb preferably ranges from 0 to 0.4 wt% and is not 0, for example, 0.03 wt% or 0.1 wt%.
  • the content of the Hf preferably ranges from 0 to 0.1 wt% and is not 0, for example, 0.03 wt% or 0.05 wt%.
  • the weight ratio of Ti and Nb can be conventional in the art, and is generally 1:99 to 99:1, such as 2:1 or 2:3.
  • the weight ratio of Hf and Zr can be conventional in the art, and is generally 1:99 to 99:1, such as 1:10 or 5:2.
  • the weight ratio of Hf and Nb can be conventional in the art, and is generally 1:99 to 99:1, such as 1:8.
  • the raw material composition of the neodymium iron boron magnet material may further include Mn, and the content of Mn ranges from ⁇ 0.035wt%, more preferably ⁇ 0.0175wt%.
  • the content of Co is preferably 0 to 0.2 wt%, more preferably 0.
  • the content of B is preferably in the range of 0.94 to 1.02 wt%, for example, 0.98 wt% or 0.99 wt%.
  • the content of Dy and/or Tb in the second component preferably ranges from 0.5 to 0.8 wt%.
  • the content of Dy is preferably in the range of 0.2 to 1 wt%, for example, 0.5 wt% or 0.8 wt%.
  • the addition form of Dy in the second component may be one or more of pure Dy, Dy alloy and Dy fluoride.
  • the Dy alloy is preferably DyGaCu; in the DyGaCu alloy, the content of Dy is preferably ⁇ 75wt%, more preferably ⁇ 95wt%, and the above percentage is the percentage of the amount of Dy to the total weight of the DyGaCu alloy.
  • the content of Tb preferably ranges from 0.2 to 1 wt%, for example, 0.5 wt%.
  • the addition form of Tb in the second component may be one or more of pure Tb, Tb alloy and Tb fluoride.
  • the Tb alloy is preferably a TbGaCu alloy; in the TbGaCu alloy, the Tb content is preferably ⁇ 75wt%, more preferably ⁇ 95wt%, and the above percentage is the percentage of Tb content in the total weight of the TbGaCu alloy.
  • the weight ratio of Dy and Tb may be conventional in the art, and is generally 1:99 to 99:1, such as 50:50, 60:40, or 40:60.
  • the "balance is Fe” means that when other elements are added to the raw material composition of the neodymium iron boron magnet material, the total weight of the raw material composition changes. At this time, the amount of each element In other words, the weight percentage content of existing elements other than Fe does not change, and only the percentage content of Fe element is reduced to achieve a total content of 100 wt% of each element.
  • the raw material composition of the neodymium iron boron magnet material may contain inevitable impurities.
  • lubricants are generally added to introduce carbon impurities, and the content of carbon impurities does not exceed 0.12 wt%.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 15-30wt%; Ho: 1-8.5% by weight; Gd: 0.5-3wt%; Dy and/or Tb: 0.1 ⁇ 2wt%; Cu: 0.1 ⁇ 0.3wt%; Ga: 0.1 ⁇ 0.3wt%; Al: 0 ⁇ 0.1wt%; Zr: 0.2 ⁇ 0.4wt%; Co: 0 ⁇ 0.2wt% B: 0.94-1.02wt%; the second component: Dy and/or Tb: 0.5-0.8wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 25.5% by weight; Ho: 4.5% by weight; Gd: 0.5% by weight; Dy: 0.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt%; the balance is Fe and inevitable impurities.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 25.5% by weight; Ho: 4.5% by weight; Gd: 0.5% by weight; Dy: 0.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Tb: 0.5wt%; the balance is Fe and inevitable impurities.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 26wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt %; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt%; the balance is Fe and Inevitable impurities.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 26wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt %; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Tb: 0.5wt%; the balance is Fe and Inevitable impurities.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 20wt%; Ho: 10wt%; Gd: 0.5wt%; Dy: 0.5wt %; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt%; the balance is Fe and Inevitable impurities.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 29.9 wt%; Ho: 0.1 wt%; Gd: 0.5 wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt%; the balance is Fe and inevitable impurities.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 22.5 wt%; Ho: 7.5 wt%; Gd: 0.5 wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt%; the balance is Fe and inevitable impurities.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 24.5wt%; Ho: 4.5wt%; Gd: 1.5wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt%; the balance is Fe and inevitable impurities.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 23wt%; Ho: 4.5wt%; Gd: 3wt%; Dy: 0.5wt %; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt%; the balance is Fe and Inevitable impurities.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 24.5 wt%; Ho: 4.5 wt%; Gd: 0.5 wt%; Dy: 0.1wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt%; the balance is Fe and inevitable impurities.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 23wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 3wt %; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt%; the balance is Fe and Inevitable impurities.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 17.4 wt%; Ho: 8.1 wt%; Gd: 2.6 wt%; Tb: 3wt%; Cu: 0.3wt%; Ga: 0.1wt%; Al: 0.02wt%; Zr: 0.4wt%; B: 0.99wt%; the second component: Tb: 1wt%; the balance is Fe and Inevitable impurities.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 25.5% by weight; Ho: 4.5% by weight; Gd: 0.5% by weight; Dy: 0.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.1wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt%; the balance is Fe and inevitable impurities.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 25.5% by weight; Ho: 4.5% by weight; Gd: 0.5% by weight; Dy: 0.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.5wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt%; the balance is Fe and inevitable impurities.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 26wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt %; Cu: 0.15wt%; Co: 0.2wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt% ; The balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 26wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt %; Cu: 0.15wt%; Co: 0.5wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt% ; The balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: Nd: 13-20wt%; Sm: 0-5wt%; Ho: 4.5-8.5wt%; Gd: 0.5 to 3 wt%; Dy and/or Tb: 0.1 to 2 wt%; Cu: 0.1 to 0.3 wt%; Ga: 0.1 to 0.3 wt%; Al: 0 to 0.04 wt%; Nb: 0 to 0.4 wt%; Co: 0-0.2wt%; B: 0.9-0.99wt%; the second component: Dy and/or Tb: 0.2-0.5wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: Nd: 18 wt%; Sm: 4.8 wt%; Ho: 5.5 wt%; Gd: 0.5 wt%; Dy: 0.5wt%; Cu: 0.2wt%; Ga: 0.3wt%; Al: 0.03wt%; Nb: 0.15wt%; B: 0.9wt%; the second component: Dy: 0.2wt %; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: Nd: 13-20wt%; Pr: 0-16wt%; Ho: 3.5-4.5wt%; Gd: 0.5 to 3 wt%; Dy and/or Tb: 0.1 to 2 wt%; Cu: 0.1 to 0.3 wt%; Ga: 0 to 0.3 wt%; Al: 0 to 0.4 wt%; Ti: 0 to 0.2 wt%; Co: 0 to 0.2 wt%; B: 0.98 to 1.05 wt%; the second component: Dy and/or Tb: 0.8 to 1 wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: Nd: 18.56 wt%; Pr: 4.84 wt%; Ho: 4.3 wt%; Gd: 1.8wt%; Dy: 2wt%; Cu: 0.25wt%; Ga: 0.05wt%; Al: 0.02wt%; Ti: 0.15wt%; B: 1.05wt%; the second component: Dy:1wt% ; The balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: Nd: 13-20wt%; Pr: 0-16wt%; Ho: 1-4.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.1-2wt%; Cu: 0.2-0.35wt%; Ga: 0.2-0.35wt%; Al: 0-0.0.04wt%; Hf: 0-0.1wt% Co: 0-0.2wt%; B: 0.94-0.99wt%; the second component: Dy and/or Tb: 0.5-1wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: Nd: 13wt%; Pr: 10.8wt%; Ho: 1.7wt%; Gd: 2.5 wt%; Dy: 0.5wt%; Tb: 1.5wt%; Cu: 0.35wt%; Ga: 0.35wt%; Hf: 0.1wt%; B: 0.98wt%; the second component: Dy: 0.8wt %; the balance is Fe and unavoidable impurities.
  • the present invention also provides a preparation method of neodymium iron boron magnet material, which adopts the raw material composition of neodymium iron boron magnet material as described above, and the preparation method includes the following steps:
  • step S2 using the second component to perform grain boundary diffusion on the neodymium iron boron sintered body obtained in step S1;
  • the smelting operation and conditions can be a conventional smelting process in the field, generally, each element of the first component is smelted and casted using an ingot process or a quick-setting sheet process to obtain Alloy flakes.
  • the smelting temperature in step S1, may be 1300-1700°C, for example 1500°C.
  • the melting equipment is generally a high frequency vacuum melting furnace and/or an intermediate frequency vacuum melting furnace.
  • the intermediate frequency vacuum melting furnace may be an intermediate frequency vacuum induction rapid solidification belt spinning furnace.
  • an additional 0-0.3wt% rare earth element ( Generally Nd element), the percentage is the weight percentage of the content of the additional rare earth element to the total content of the raw material composition; in addition, the content of this part of the additional rare earth element is not included in the category of the raw material composition.
  • step S1 the operation and conditions of the powder milling can be conventional powder milling processes in the art, and generally include hydrogen crushing powder milling and/or jet milling powder milling.
  • the hydrogen crushing and pulverizing generally includes hydrogen absorption, dehydrogenation and cooling treatment.
  • the temperature of the hydrogen absorption is generally 20 to 200°C, preferably 20 to 40°C (ie, room temperature).
  • the pressure of the hydrogen absorption is generally 50 to 600 kPa, such as 90 kPa.
  • the temperature of the dehydrogenation is generally 400-650°C, such as 550°C.
  • the gas stream in the gas stream milling powder can be, for example, nitrogen gas and/or argon gas.
  • the pressure of the air jet milling powder is generally 0.1-2 MPa, preferably 0.5-0.7 MPa, for example 0.65 MPa.
  • the efficiency of the jet milling powder may vary according to different equipment, for example, it may be 30-400 kg/h, preferably 200 kg/h.
  • the molding operation and conditions can be a conventional molding process in the field, such as a magnetic field molding method.
  • the magnetic field strength of the magnetic field forming method is generally above 1.5T.
  • the sintering operation and conditions can be a conventional sintering process in the art, such as a vacuum sintering process and/or an inert atmosphere sintering process.
  • the vacuum sintering process or the inert atmosphere sintering process are conventional operations in the art.
  • an inert atmosphere sintering process is used, the initial stage of the sintering can be performed under the condition of a vacuum degree of less than 0.5 Pa.
  • the inert atmosphere may be a conventional atmosphere containing inert gas in the art, and is not limited to helium or argon, and may also be nitrogen.
  • the sintering temperature may be 1000-1200°C, preferably 1030-1090°C.
  • the sintering time may be 0.5-10h, preferably 2-8h.
  • step S2 the operation and conditions of the grain boundary diffusion can be a conventional grain boundary diffusion process in the art, and generally the second component is applied to the neodymium iron boron sintered body for heat preservation.
  • the application method can be coating, magnetron plasma sputtering or evaporation.
  • the second component is coated on the neodymium iron boron sintered body in the form of a fluoride or a low melting point alloy.
  • the second component includes Tb, preferably, Tb is coated in the form of a fluoride of Tb or a low melting point alloy.
  • the second component contains Dy, preferably, Dy is coated in the form of Dy fluoride or a low melting point alloy.
  • the operation and conditions of the magnetron plasma sputtering can be conventional in the art.
  • the target material of the second component is bombarded by an inert gas to generate Dy and/or Tb ions, which are uniformly attached to the target through the control of a magnetic field.
  • the surface of the neodymium iron boron sintered body is a known in the art.
  • the operating conditions and the conventional art can be deposited, typically by a metal of the second component is made of a shaped evacuated to a set value (e.g., 5 ⁇ 10 5Pa to diffusion in a vacuum oven - 2 Pa) and heating to a set temperature (such as 500-900° C.) to generate Dy and/or Tb vapor, thereby enriching the surface of the neodymium iron boron sintered body.
  • a set value e.g., 5 ⁇ 10 5Pa to diffusion in a vacuum oven - 2 Pa
  • a set temperature such as 500-900° C.
  • the temperature of the grain boundary diffusion may be 800-1000°C, preferably 850-950°C, more preferably 900°C.
  • the time for the grain boundary diffusion may be 12 to 90 hours, such as 24 hours.
  • the temperature of the heat treatment may be 450°C to 510°C.
  • the heat treatment time may be 2 to 4 hours.
  • the invention also provides a neodymium iron boron magnet material prepared by the above-mentioned preparation method.
  • the present invention also provides a neodymium iron boron magnet material, which includes:
  • Light rare earth element LR 13 ⁇ 31.5wt%; said LR includes Nd;
  • Heavy rare earth elements HR Ho: 0-10wt%, and not 0; Gd: 0-5wt%, but not 0;
  • Ga 0 ⁇ 0.35wt%, and not 0;
  • X 0.05 to 0.45 wt%; the X includes one or more of Ti, Nb, Zr, Hf, V, Mo, W, Ta and Cr;
  • the balance is Fe;
  • the total rare earth content in the neodymium iron boron magnet material is 29.5-32.5wt%;
  • wt% is the weight percentage of each element in the raw material composition
  • the neodymium iron boron magnet material comprises a main phase, a grain boundary epitaxial layer and a neodymium-rich phase; the main phase and the grain boundary epitaxial layer are distributed with Ho and Gd, and part of Dy and/or Tb; the neodymium-rich phase Dy and/or Tb are distributed; the continuity of the grain boundary of the neodymium iron boron magnet material is more than 96%.
  • the main structure of the main phase is conventional Nd 2 Fe 14 B crystal grains in the art.
  • the grain boundary epitaxial layer generally refers to the two-grain boundary adjacent to the neodymium-rich phase and the main phase, and can also be called the "two-grain boundary” or the "grain boundary shell structure of the main phase and the neodymium-rich phase"".
  • the neodymium-rich phase is a neodymium-rich phase conventionally understood in the art, and most of the phase structures in the grain boundary structure in the art are neodymium-rich phases.
  • more than 95% of the total weight of Ho and Gd elements are preferably distributed in the main phase and the grain boundary epitaxial layer. In other words, only a small part of Ho and Gd elements are distributed in the neodymium-rich phase.
  • the calculation method of the grain boundary continuity refers to the ratio of the length occupied by phases other than voids in the grain boundary (for example, the neodymium-rich phase, the same in the grain boundary epitaxial layer) to the total grain boundary length. If the grain boundary continuity exceeds 96%, it can be called a continuous channel.
  • the grain boundary continuity is preferably 96.3% to 97.11%, such as 96.3%, 96.33%, 96.42%, 96.43%, 96.45%, 96.5%, 96.51%, 96.54%, 96.55%, 96.58%, 96.59%, 96.7%, 96.71%, 96.8% or 97%.
  • the total rare earth content in the neodymium iron boron magnet material is preferably 30.1-32.1 wt%, for example, 30.5 wt%, 30.8 wt% or 31.5% wt.
  • the content of LR is preferably 15-30% by weight, for example 17.4% by weight, 18% by weight, 20% by weight, 22.5% by weight, 23% by weight, 23.4% by weight, 23.8% by weight, 24.5% by weight, and 25.5% by weight. %, 26wt% or 29.9wt%.
  • the Nd content is preferably 13-20wt%, for example 18wt% or 18.56wt%.
  • the LR may also include other conventional light rare earth elements in the art, such as Pr and/or Sm.
  • the content of Pr may be 0-16% by weight, and not 0% by weight; preferably 4%-12% by weight, such as 4.84% by weight or 10.8% by weight.
  • the added form of Pr may be pure Pr and/or PrNd, preferably PrNd.
  • the PrNd is an alloy of Pr and Nd, and the weight ratio of Pr to Nd in PrNd is generally 25:75 or 20:80.
  • the content of Sm may be 0-5 wt%, and not 0; for example, 4.8 wt%.
  • the Ho content is preferably 1 to 8.5 wt%, more preferably 4.5 to 7.5 wt%, such as 1.7 wt%, 3 wt%, 4.3 wt% or 8.1 wt%.
  • the Gd content is preferably 0.5 to 3 wt%, for example, 1 wt%, 1.5 wt%, 1.8 wt%, 2.5 wt%, or 2.6 wt%.
  • the total content of the Ho and the Gd is preferably not more than 10 wt%.
  • the content of Dy and/or Tb is preferably in the range of 0.5 to 3.5 wt%, such as 0.6 wt%, 0.7 wt%, 1 wt%, 1.5 wt%, 2 wt% or 2.8 wt%.
  • the weight ratio of Dy and Tb can be conventional in the art, and is generally 1:99 to 99:1, such as 50:50, 60:40, or 40:60 .
  • the content of Cu is preferably in the range of 0.1 to 0.3 wt%, for example, 0.15 wt%, 0.2 wt% or 0.25 wt%.
  • the content of Ga is preferably in the range of 0.1 to 0.3 wt%, for example, 0.15 wt%, 0.2 wt% or 0.25 wt%.
  • the Al content ranges from 0 to 0.3 wt%, more preferably 0 to 0.1 wt%, such as 0.02 wt%, 0.04 wt% or 0.08 wt%; more preferably 0 to 0.04 wt%, Best is 0.
  • Al may be impurity Al introduced during the preparation of the neodymium iron boron material and/or additional Al added.
  • Al is generally the impurity Al introduced in the process of preparing the neodymium iron boron material.
  • the type of X is preferably one or more of Ti, Nb, Zr and Hf.
  • the content of X is preferably 0.1 to 0.4 wt%, more preferably 0.15 to 0.2 wt%.
  • the content of the Zr preferably ranges from 0.02 to 0.4 wt%, for example, 0.2 wt%.
  • the content of Ti preferably ranges from 0 to 0.2 wt%, and is not 0, for example, 0.15 wt%.
  • the content of Nb preferably ranges from 0 to 0.4 wt% and is not 0, for example, 0.03 wt% or 0.1 wt%.
  • the content of the Hf preferably ranges from 0 to 0.1 wt% and is not 0, for example, 0.03 wt% or 0.05 wt%.
  • the weight ratio of Ti and Nb can be conventional in the art, and is generally 1:99 to 99:1, such as 2:1 or 2:3.
  • the weight ratio of Hf and Zr can be conventional in the art, and is generally 1:99 to 99:1, such as 1:10 or 5:2.
  • the weight ratio of Hf and Nb can be conventional in the art, and is generally 1:99 to 99:1, such as 1:8.
  • the neodymium iron boron magnet material may further include Mn, and the content of Mn ranges from ⁇ 0.035wt%, more preferably ⁇ 0.0175wt%.
  • the content of Co is preferably 0 to 0.2 wt%, more preferably 0.
  • the content of B is preferably in the range of 0.94 to 1.02 wt%, for example, 0.98 wt% or 0.99 wt%.
  • the "balance is Fe” means that when the NdFeB magnet material also includes other elements, the total weight of the NdFeB magnet material changes. At this time, the amount of each element is , The weight percentage content of existing elements other than Fe does not change, only the percentage content of Fe element is reduced to achieve a total content of 100 wt% of each element.
  • the neodymium iron boron magnet material may contain inevitable impurities, such as carbon impurities, and the content of the carbon impurities does not exceed 0.12 wt%.
  • the neodymium iron boron magnet material includes: PrNd: 15-30wt%; Ho: 1-8.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.5-3.5wt% ; Cu: 0.1 ⁇ 0.3wt%; Ga: 0.1 ⁇ 0.3wt%; Al: 0 ⁇ 0.1wt%; Zr: 0.2 ⁇ 0.4wt%; Co: 0 ⁇ 0.2wt%; B: 0.94 ⁇ 1.02wt%; The amount is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material includes: PrNd: 25.5wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 1wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material includes: PrNd: 25.5% by weight; Ho: 4.5% by weight; Gd: 0.5% by weight; Dy: 0.5% by weight; Tb: 0.5% by weight; Cu : 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material raw material composition includes: PrNd: 26wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material includes: PrNd: 26wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 1wt%; Cu: 0.15wt%; Ga: 0.15wt %; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material includes: PrNd: 20wt%; Ho: 10wt%; Gd: 0.5wt%; Dy: 1wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material includes: PrNd: 29.9wt%; Ho: 0.1wt%; Gd: 0.5wt%; Dy: 1wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material includes: PrNd: 22.5wt%; Ho: 7.5wt%; Gd: 0.5wt%; Dy: 1wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material includes: PrNd: 24.5wt%; Ho: 4.5wt%; Gd: 1.5wt%; Dy: 1wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material includes: PrNd: 23wt%; Ho: 4.5wt%; Gd: 3wt%; Dy: 1wt%; Cu: 0.15wt%; Ga: 0.15wt %; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material includes: PrNd: 24.5wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 0.6wt%; Cu: 0.15wt%; Ga : 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material includes: PrNd: 23wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 3.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material includes: PrNd: 17.4wt%; Ho: 8.1wt%; Gd: 2.6wt%; Tb: 4wt%; Cu: 0.3wt%; Ga: 0.1wt%; Al: 0.02wt%; Zr: 0.4wt%; B: 0.99wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material includes: PrNd: 25.5wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 1wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.1wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material includes: PrNd: 25.5wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 1wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.5wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material includes: PrNd: 26wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt%; Dy: 0.5wt%; Cu: 0.15 wt%; Co: 0.2wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material includes: PrNd: 26wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt%; Dy: 0.5wt%; Cu: 0.15 wt%; Co: 0.5wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material includes: Nd: 13-20wt%; Sm: 0-5wt%; Ho: 4.5-8.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.3 ⁇ 2.5wt%; Cu: 0.1 ⁇ 0.3wt%; Ga: 0.1 ⁇ 0.3wt%; Al: 0 ⁇ 0.04wt%; Nb: 0 ⁇ 0.4wt%; Co: 0 ⁇ 0.2wt%; B: 0.9-0.99wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material includes: Nd: 18wt%; Sm: 4.8wt%; Ho: 5.5wt%; Gd: 0.5wt%; Dy: 0.7wt%; Cu: 0.2wt%; Ga: 0.3wt%; Al: 0.03wt%; Nb: 0.15wt%; B: 0.9wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material includes: Nd: 13-20wt%; Pr: 0-16wt%; Ho: 3.5-4.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.9 ⁇ 3wt%; Cu: 0.1 ⁇ 0.3wt%; Ga: 0 ⁇ 0.3wt%; Al: 0 ⁇ 0.4wt%; Ti: 0 ⁇ 0.2wt%; Co: 0 ⁇ 0.2wt%; B: 0.98 ⁇ 1.05wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material includes: Nd: 18.56wt%; Pr: 4.84wt%; Ho: 4.3wt%; Gd: 1.8wt%; Dy: 3wt%; Cu: 0.25wt%; Ga: 0.05wt%; Al: 0.02wt%; Ti: 0.15wt%; B: 1.05wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material includes: Nd: 13-20wt%; Pr: 0-16wt%; Ho: 1-4.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.6-3wt%; Cu: 0.2-0.35wt%; Ga: 0.2-0.35wt%; Al: 0-0.0.04wt%; Hf: 0-0.1wt%; Co: 0-0.2wt%; B: 0.94 ⁇ 0.99wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material includes: Nd: 13wt%; Pr: 10.8wt%; Ho: 1.7wt%; Gd: 2.5wt%; Dy: 1.3wt%; Tb: 1.5wt%; Cu: 0.35wt%; Ga: 0.35wt%; Hf: 0.1wt%; B: 0.98wt%; the balance is Fe and unavoidable impurities.
  • the present invention also provides a raw material composition of the neodymium iron boron sintered body, which includes:
  • Light rare earth element LR 13 ⁇ 31.5wt%; said LR includes Nd;
  • Gd 0 ⁇ 5wt%, and not 0;
  • Dy and/or Tb 0 ⁇ 3.1wt%, and not 0;
  • Ga 0 ⁇ 0.35wt%, and not 0;
  • X 0.05 to 0.45 wt%; the X includes one or more of Ti, Nb, Zr, Hf, V, Mo, W, Ta and Cr;
  • the balance is Fe;
  • the total rare earth content in the raw material composition of the neodymium iron boron sintered body is 29.5-32.5 wt%;
  • the wt% is the weight percentage of each element in the raw material composition of the neodymium iron boron sintered body.
  • the total rare earth content in the raw material composition of the neodymium iron boron sintered body is preferably 29.7 to 31.82 wt%, for example, 30.1 wt%, 30.24 wt%, 31.1 wt%, 31.2 wt%, 31.46 wt% or 31.82wt%.
  • the content of the LR is preferably 15 to 30.5 wt%, for example, 17.6 wt%, 20.1 wt%, 22.6 wt%, 22.8 wt%, 23.1 wt%, 23.64 wt%, 24 wt%, 24.6 wt% , 25.6wt%, 26.1wt% or 30.1wt%.
  • the Nd content is preferably 13-20wt%, for example 13.1wt%, 18wt% or 18.75wt%.
  • the LR may also include other conventional light rare earth elements in the art, such as Pr and/or Sm.
  • the content of Pr may be 0-16% by weight, and not 0% by weight; preferably 4%-12% by weight, such as 4.89% by weight or 10.9% by weight.
  • the added form of Pr may be pure Pr and/or PrNd, preferably PrNd.
  • the PrNd is an alloy of Pr and Nd, and the weight ratio of Pr to Nd in PrNd is generally 25:75 or 20:80.
  • the content of Sm may be 0-5 wt%, and not 0; for example, 4.8 wt%.
  • the Ho content is preferably 1 to 8.5 wt%, more preferably 4.5 to 7.5 wt%, such as 1.71 wt%, 3 wt%, 4.34 wt%, 5.5 wt% or 8.2 wt%.
  • the Gd content is preferably 0.5-3wt%, for example 1wt%, 1.5wt%, 1.82wt%, 2.52wt% or 2.63wt%.
  • the total content of the Ho and the Gd is preferably not more than 10 wt%.
  • the content of Dy and/or Tb preferably ranges from 0.1 to 2% by weight, for example, 0.5% by weight, 1% by weight, 1.51% by weight, 2.02% by weight or 2.5% by weight.
  • the weight ratio of Dy and Tb may be conventional in the art, and is generally 1:99 to 99:1, such as 50:50, 60:40, or 40:60.
  • the content of Cu is preferably in the range of 0.1 to 0.3 wt%, for example, 0.15 wt%, 0.2 wt% or 0.25 wt%.
  • the content of Ga is preferably in the range of 0.1 to 0.3 wt%, such as 0.15 wt%, 0.2 wt% or 0.25 wt%.
  • the Al content ranges from 0 to 0.3 wt%, more preferably 0 to 0.1 wt%, such as 0.02 wt%, 0.04 wt% or 0.08 wt%; more preferably 0 to 0.04 wt%, Best is 0.
  • Al may be impurity Al introduced in the process of preparing the neodymium iron boron material and/or additional Al added.
  • Al is generally the impurity Al introduced in the process of preparing the neodymium iron boron material.
  • the type of X is preferably one or more of Ti, Nb, Zr and Hf.
  • the content of X is preferably 0.1 to 0.4 wt%, more preferably 0.15 to 0.2 wt%.
  • the content of the Zr preferably ranges from 0.02 to 0.4 wt%, for example, 0.2 wt%.
  • the content of Ti preferably ranges from 0 to 0.2 wt%, and is not 0, for example, 0.15 wt%.
  • the content of Nb preferably ranges from 0 to 0.4 wt% and is not 0, for example, 0.03 wt% or 0.1 wt%.
  • the content of the Hf preferably ranges from 0 to 0.1 wt% and is not 0, for example, 0.03 wt% or 0.05 wt%.
  • the weight ratio of Ti and Nb can be conventional in the art, and is generally 1:99 to 99:1, such as 2:1 or 2:3.
  • the weight ratio of Hf and Zr can be conventional in the art, and is generally 1:99 to 99:1, such as 1:10 or 5:2.
  • the weight ratio of Hf and Nb can be conventional in the art, and is generally 1:99 to 99:1, such as 1:8.
  • the raw material composition of the neodymium iron boron sintered body may further include Mn, and the content of Mn ranges from ⁇ 0.035wt%, more preferably ⁇ 0.0175wt%.
  • the content of Co is preferably 0 to 0.2 wt%, more preferably 0.
  • the content of B is preferably in the range of 0.94 to 1.02 wt%, for example, 0.98 wt% or 0.99 wt%.
  • the "balance is Fe” means that when other elements are added to the raw material composition of the neodymium iron boron sintered body, the total weight of the raw material composition changes. In this case, the amount of each element In other words, the weight percentage content of existing elements other than Fe does not change, and only the percentage content of Fe element is reduced to achieve a total content of 100 wt% of each element.
  • the raw material composition of the neodymium iron boron sintered body may contain inevitable impurities.
  • lubricants are generally added to introduce carbon impurities, and the content of carbon impurities does not exceed 0.12 wt%.
  • the raw material composition of the neodymium iron boron sintered body includes: PrNd: 15 to 30.5 wt%; Ho: 1 to 8.5 wt%; Gd: 0.5 to 3 wt%; Dy and/or Tb: 0.1 ⁇ 2wt%; Cu: 0.1 ⁇ 0.3wt%; Ga: 0.1 ⁇ 0.3wt%; Al: 0 ⁇ 0.1wt%; Zr: 0.2 ⁇ 0.4wt%; Co: 0 ⁇ 0.2wt%; B: 0.94 ⁇ 1.02 wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron sintered body includes: PrNd: 25.6% by weight; Ho: 4.5% by weight; Gd: 0.5% by weight; Dy: 0.5% by weight; Cu: 0.15 wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron sintered body includes: PrNd: 25.6% by weight; Ho: 4.5% by weight; Gd: 0.5% by weight; Dy: 0.5% by weight; Cu: 0.15 wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron sintered body includes: PrNd: 26.1wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt%; Cu: 0.15wt% %; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron sintered body includes: PrNd: 26.1wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt%; Cu: 0.15wt% %; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron sintered body includes: PrNd: 20.1wt%; Ho: 10wt%; Gd: 0.5wt%; Dy: 0.5wt%; Cu: 0.15wt %; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron sintered body includes: PrNd: 30.1wt%; Ho: 0.1wt%; Gd: 0.5wt%; Dy: 0.5wt%; Cu: 0.15 wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron sintered body includes: PrNd: 22.6wt%; Ho: 7.5wt%; Gd: 0.5wt%; Dy: 0.5wt%; Cu: 0.15 wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron sintered body includes: PrNd: 24.6wt%; Ho: 4.5wt%; Gd: 1.5wt%; Dy: 0.5wt%; Cu: 0.15 wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron sintered body includes: PrNd: 23.1wt%; Ho: 4.5wt%; Gd: 3wt%; Dy: 0.5wt%; Cu: 0.15wt% %; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron sintered body includes: PrNd: 24.6% by weight; Ho: 4.5% by weight; Gd: 0.5% by weight; Dy: 0.1% by weight; Cu: 0.15 wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron sintered body includes: PrNd: 23.1wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 3wt%; Cu: 0.15wt% %; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron sintered body includes: PrNd: 17.6% by weight; Ho: 8.2% by weight; Gd: 2.63% by weight; Tb: 3.03% by weight; Cu: 0.3 wt%; Ga: 0.1 wt%; Al: 0.02 wt%; Zr: 0.4 wt%; B: 0.99 wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron sintered body includes: PrNd: 25.6% by weight; Ho: 4.5% by weight; Gd: 0.5% by weight; Dy: 0.5% by weight; Cu: 0.15 wt%; Ga: 0.15 wt%; Al: 0.1 wt%; Zr: 0.2 wt%; B: 0.94 wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron sintered body includes: PrNd: 25.6% by weight; Ho: 4.5% by weight; Gd: 0.5% by weight; Dy: 0.5% by weight; Cu: 0.15 wt%; Ga: 0.15wt%; Al: 0.5wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron sintered body includes: PrNd: 26.1wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt%; Cu: 0.15wt% %; Co: 0.2wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron sintered body includes: PrNd: 26.1wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt%; Cu: 0.15wt% %; Co: 0.5wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron sintered body includes: Nd: 13-20wt%; Sm: 0-5wt%; Ho: 4.5-8.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.1 ⁇ 2wt%; Cu: 0.1 ⁇ 0.3wt%; Ga: 0.1 ⁇ 0.3wt%; Al: 0 ⁇ 0.04wt%; Nb: 0 ⁇ 0.4wt%; Co: 0 ⁇ 0.2wt% ; B: 0.9-0.99wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron sintered body includes: Nd: 18wt%; Sm: 4.8wt%; Ho: 5.5wt%; Gd: 0.5wt%; Dy: 0.5wt %; Cu: 0.2wt%; Ga: 0.3wt%; Al: 0.03wt%; Nb: 0.15wt%; B: 0.9wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron sintered body includes: Nd: 13-20wt%; Pr: 0-16wt%; Ho: 3.5-4.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.1 ⁇ 2.5wt%; Cu: 0.1 ⁇ 0.3wt%; Ga: 0 ⁇ 0.3wt%; Al: 0 ⁇ 0.4wt%; Ti: 0 ⁇ 0.2wt%; Co: 0 ⁇ 0.2wt %; B: 0.98 ⁇ 1.1wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron sintered body includes: Nd: 18.75wt%; Pr: 4.89wt%; Ho: 4.34wt%; Gd: 1.82wt%; Dy: 2.02 wt%; Cu: 0.25wt%; Ga: 0.05wt%; Al: 0.02wt%; Ti: 0.15wt%; B: 1.06wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron sintered body includes: Nd: 13-20wt%; Pr: 0-16wt%; Ho: 1-4.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.1-2wt%; Cu: 0.2-0.35wt%; Ga: 0.2-0.35wt%; Al: 0-0.0.04wt%; Hf: 0-0.1wt%; Co: 0-0.2wt %; B: 0.94 ⁇ 1.05wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron sintered body includes: the first component: Nd: 13.1 wt%; Pr: 10.9 wt%; Ho: 1.71 wt%; Gd: 2.52wt%; Dy: 0.5wt%; Tb: 1.51wt%; Cu: 0.35wt%; Ga: 0.35wt%; Hf: 0.1wt%; B: 0.99wt%; the balance is Fe and unavoidable impurities.
  • the present invention also provides a method for preparing the neodymium iron boron sintered body, which can be achieved by smelting, powdering, molding, and sintering the raw material composition of the neodymium iron boron sintered body.
  • the invention also provides a neodymium iron boron sintered body prepared by the above-mentioned preparation method.
  • the present invention also provides a neodymium iron boron sintered body, which comprises:
  • Light rare earth element LR 13 ⁇ 31.5wt%; said LR includes Nd;
  • Gd 0 ⁇ 5wt%, and not 0;
  • Dy and/or Tb 0 ⁇ 3.1wt%, and not 0;
  • Ga 0 ⁇ 0.35wt%, and not 0;
  • X 0.05 to 0.45 wt%; the X includes one or more of Ti, Nb, Zr, Hf, V, Mo, W, Ta and Cr;
  • the balance is Fe;
  • the total rare earth content in the NdFeB sintered body is 29.5-32.5wt%;
  • wt% is the weight percentage of each element in the neodymium iron boron sintered body
  • the neodymium iron boron sintered body includes a main phase, a grain boundary epitaxial layer and a neodymium-rich phase; the main phase and the grain boundary epitaxial layer are distributed with Ho and Gd, and Dy and/or Tb; the neodymium iron boron sintered
  • the continuity of the grain boundary of the bulk is 96% or more.
  • the main phase and the grain boundary epitaxial layer are preferably distributed with more than 95% of the total weight of Ho, Gd and Dy and/or Tb elements. That is, only a small part of Ho and Gd elements and Dy and/or Tb are distributed in the neodymium-rich phase.
  • the total rare earth content in the neodymium iron boron sintered body is preferably 29.7 to 31.82 wt%, for example, 30.1 wt%, 30.24 wt%, 31.1 wt%, 31.2 wt%, 31.46 wt% or 31.82 wt%.
  • the content of the LR is preferably 15 to 30.5 wt%, for example, 17.6 wt%, 20.1 wt%, 22.6 wt%, 22.8 wt%, 23.1 wt%, 23.64 wt%, 24 wt%, 24.6 wt% , 25.6wt%, 26.1wt% or 30.1wt%.
  • the Nd content is preferably 13-20wt%, for example 13.1wt%, 18wt% or 18.75wt%.
  • the LR may also include other conventional light rare earth elements in the art, such as Pr and/or Sm.
  • the content of Pr may be 0-16% by weight, and not 0% by weight; preferably 4%-12% by weight, such as 4.89% by weight or 10.9% by weight.
  • the added form of Pr may be pure Pr and/or PrNd, preferably PrNd.
  • the PrNd is an alloy of Pr and Nd, and the weight ratio of Pr to Nd in PrNd is generally 25:75 or 20:80.
  • the content of Sm may be 0-5 wt%, and not 0; for example, 4.8 wt%.
  • the Ho content is preferably 1 to 8.5 wt%, more preferably 4.5 to 7.5 wt%, such as 1.71 wt%, 3 wt%, 4.34 wt%, 5.5 wt% or 8.2 wt%.
  • the Gd content is preferably 0.5-3wt%, for example 1wt%, 1.5wt%, 1.82wt%, 2.52wt% or 2.63wt%.
  • the total content of the Ho and the Gd is preferably not more than 10 wt%.
  • the content of Dy and/or Tb preferably ranges from 0.1 to 2% by weight, for example, 0.5% by weight, 1% by weight, 1.51% by weight, 2.02% by weight or 2.5% by weight.
  • the weight ratio of Dy and Tb may be conventional in the art, and is generally 1:99 to 99:1, such as 50:50, 60:40, or 40:60.
  • the content of Cu is preferably in the range of 0.1 to 0.3 wt%, for example, 0.15 wt%, 0.2 wt% or 0.25 wt%.
  • the content of Ga is preferably in the range of 0.1 to 0.3 wt%, such as 0.15 wt%, 0.2 wt% or 0.25 wt%.
  • the Al content ranges from 0 to 0.3 wt%, more preferably 0 to 0.1 wt%, such as 0.02 wt%, 0.04 wt% or 0.08 wt%; more preferably 0 to 0.04 wt%, Best is 0.
  • Al may be impurity Al introduced during the preparation of the neodymium iron boron material and/or additional Al added.
  • Al is generally the impurity Al introduced in the process of preparing the neodymium iron boron material.
  • the type of X is preferably one or more of Ti, Nb, Zr and Hf.
  • the content of X is preferably 0.1 to 0.4 wt%, more preferably 0.15 to 0.2 wt%.
  • the content of the Zr preferably ranges from 0.02 to 0.4 wt%, for example, 0.2 wt%.
  • the content of Ti preferably ranges from 0 to 0.2 wt%, and is not 0, for example, 0.15 wt%.
  • the content of Nb preferably ranges from 0 to 0.4 wt% and is not 0, for example, 0.03 wt% or 0.1 wt%.
  • the content of the Hf preferably ranges from 0 to 0.1 wt% and is not 0, for example, 0.03 wt% or 0.05 wt%.
  • the weight ratio of Ti and Nb can be conventional in the art, and is generally 1:99 to 99:1, such as 2:1 or 2:3.
  • the weight ratio of Hf and Zr can be conventional in the art, and is generally 1:99 to 99:1, such as 1:10 or 5:2.
  • the weight ratio of Hf and Nb can be conventional in the art, and is generally 1:99 to 99:1, such as 1:8.
  • the neodymium iron boron sintered body may further include Mn, and the content range of the Mn is ⁇ 0.035wt%, more preferably ⁇ 0.0175wt%.
  • the content of Co is preferably 0 to 0.2 wt%, more preferably 0.
  • the content of B is preferably in the range of 0.94 to 1.02 wt%, for example, 0.98 wt% or 0.99 wt%.
  • the "balance is Fe” means that when the NdFeB sintered body also includes other elements, the total weight of the NdFeB sintered body changes. In this case, the amount of each element is changed. In other words, the weight percentage content of existing elements other than Fe does not change, and only the percentage content of Fe element is reduced to achieve a total content of 100 wt% of each element.
  • the neodymium iron boron sintered body may contain inevitable impurities.
  • lubricants are generally added to introduce carbon impurities, and the content of carbon impurities does not exceed 0.12 wt%.
  • the neodymium iron boron sintered body includes: PrNd: 15-30.5wt%; Ho: 1-8.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.1-2wt% ; Cu: 0.1 ⁇ 0.3wt%; Ga: 0.1 ⁇ 0.3wt%; Al: 0 ⁇ 0.1wt%; Zr: 0.2 ⁇ 0.4wt%; Co: 0 ⁇ 0.2wt%; B: 0.94 ⁇ 1.02wt%; The amount is Fe and unavoidable impurities.
  • the neodymium iron boron sintered body includes: PrNd: 25.6wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga : 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron sintered body includes: PrNd: 25.6wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga : 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron sintered body includes: PrNd: 26.1wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron sintered body includes: PrNd: 26.1wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron sintered body includes: PrNd: 20.1wt%; Ho: 10wt%; Gd: 0.5wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron sintered body includes: PrNd: 30.1wt%; Ho: 0.1wt%; Gd: 0.5wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga : 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron sintered body includes: PrNd: 22.6wt%; Ho: 7.5wt%; Gd: 0.5wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga : 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron sintered body includes: PrNd: 24.6wt%; Ho: 4.5wt%; Gd: 1.5wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga : 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron sintered body includes: PrNd: 23.1wt%; Ho: 4.5wt%; Gd: 3wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron sintered body includes: PrNd: 24.6wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 0.1wt%; Cu: 0.15wt%; Ga : 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron sintered body includes: PrNd: 23.1wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 3wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron sintered body includes: PrNd: 17.6% by weight; Ho: 8.2% by weight; Gd: 2.63% by weight; Tb: 3.03% by weight; Cu: 0.3% by weight; Ga : 0.1wt%; Al: 0.02wt%; Zr: 0.4wt%; B: 0.99wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron sintered body includes: PrNd: 25.6wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga : 0.15wt%; Al: 0.1wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron sintered body includes: PrNd: 25.6wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga : 0.15wt%; Al: 0.5wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron sintered body includes: PrNd: 26.1wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt%; Cu: 0.15wt%; Co: 0.2wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron sintered body includes: PrNd: 26.1wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt%; Cu: 0.15wt%; Co: 0.5wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron sintered body comprises: Nd: 13-20wt%; Sm: 0-5wt%; Ho: 4.5-8.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.1 to 2wt%; Cu: 0.1 to 0.3wt%; Ga: 0.1 to 0.3wt%; Al: 0 to 0.04wt%; Nb: 0 to 0.4wt%; Co: 0 to 0.2wt%; B: 0.9 ⁇ 0.99wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron sintered body includes: Nd: 18wt%; Sm: 4.8wt%; Ho: 5.5wt%; Gd: 0.5wt%; Dy: 0.5wt%; Cu: 0.2wt%; Ga: 0.3wt%; Al: 0.03wt%; Nb: 0.15wt%; B: 0.9wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron sintered body comprises: Nd: 13-20wt%; Pr: 0-16wt%; Ho: 3.5-4.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.1 ⁇ 2.5wt%; Cu: 0.1 ⁇ 0.3wt%; Ga: 0 ⁇ 0.3wt%; Al: 0 ⁇ 0.4wt%; Ti: 0 ⁇ 0.2wt%; Co: 0 ⁇ 0.2wt%; B: 0.98 ⁇ 1.1wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron sintered body includes: Nd: 18.75wt%; Pr: 4.89wt%; Ho: 4.34wt%; Gd: 1.82wt%; Dy: 2.02wt%; Cu : 0.25wt%; Ga: 0.05wt%; Al: 0.02wt%; Ti: 0.15wt%; B: 1.06wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron sintered body comprises: Nd: 13-20wt%; Pr: 0-16wt%; Ho: 1-4.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.1-2wt%; Cu: 0.2-0.35wt%; Ga: 0.2-0.35wt%; Al: 0-0.0.04wt%; Hf: 0-0.1wt%; Co: 0-0.2wt%; B: 0.94 ⁇ 1.05wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron sintered body includes: the first component: Nd: 13.1 wt%; Pr: 10.9 wt%; Ho: 1.71 wt%; Gd: 2.52 wt%; Dy: 0.5wt%; Tb: 1.51wt%; Cu: 0.35wt%; Ga: 0.35wt%; Hf: 0.1wt%; B: 0.99wt%; the balance is Fe and unavoidable impurities.
  • the invention also provides the application of the neodymium iron boron magnet material and/or the neodymium iron boron sintered body in the preparation of magnetic steel.
  • the magnetic steel may be a grade conventionally used in the field, such as 42UH, 45UH, 42EH or 45EH.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the Br of the neodymium iron boron magnet material of the present invention can be 11.2-14 kGs, Hcj is 25.1-38.2 kOe; at high temperature (140°C), Br is 10-12.3 kGs, and Hcj is 10-19.7 kOe.
  • the Br of the neodymium iron boron sintered body of the present invention is 11.32-14.1 kGs, Hcj is 16.5-26.5 kOe; the increase of Hcj after diffusion is 7.33-12.92 kOe.
  • the elements are matched, and the high temperature resistance is good: the open circuit magnetic loss of the neodymium iron boron magnet material is 0.05% to 3.2%, the absolute value of the Br temperature coefficient is 0.089 to 0.101%; the Hcj temperature coefficient is absolute The value is 0.404% to 0.501%.
  • Figure 1 is an SEM image of a neodymium iron boron sintered body in Example 4 of the present invention
  • main phase 2. grain boundary epitaxial layer, 3. neodymium-rich phase, 4. void.
  • Fig. 2 is an SEM image of a neodymium iron boron sintered body in Comparative Example 1 of the present invention.
  • Fig. 3 is an EPMA chart of the neodymium iron boron magnet material prepared in Example 4 of the present invention.
  • neodymium iron boron magnet materials in Examples 1-19 and Comparative Examples 1-8 were prepared according to the following preparation process:
  • the first component is smelted, powdered, formed, and sintered, as follows:
  • Hydrogen breaking powder Place the alloy flakes in a hydrogen breaking furnace, vacuum the hydrogen breaking furnace at room temperature, and then pass hydrogen with a purity of 99.9% into the hydrogen breaking furnace to maintain the hydrogen pressure 90kPa, the alloy flakes fully absorb hydrogen; then, the temperature is raised to 550°C while vacuuming, and the alloy flakes are fully dehydrogenated; then, cooling treatment is performed to obtain powder.
  • Jet milling powder under the condition of a nitrogen atmosphere and a pressure of 0.65 MPa, the powder obtained by hydrogen crushing powder is pulverized by jet milling (the efficiency of jet milling powder may vary depending on the equipment, for example, it can be: 200kg/h) to obtain fine powder.
  • Magnetic field molding the fine powder obtained by airflow milling is compressed and molded in a magnetic field strength above 1.5T to obtain a molded body.
  • Inert atmosphere sintering transfer the molded body to a sintering furnace, and sinter it at a temperature of 1030 ⁇ 1090°C for 2 ⁇ 8h under a nitrogen atmosphere with a vacuum degree of less than 0.5Pa to obtain NdFeB sintering body.
  • the surface of the neodymium iron boron sintered body obtained in step S1 is purified, and the second component is coated on the surface of the neodymium iron boron sintered body, and diffused at a temperature of 900° C. for 24 hours, and then cooled to room temperature.
  • Heat treatment heat treatment at a temperature of 480 to 510°C for 3 hours to obtain a neodymium iron boron magnet material.
  • Table 1 The formula and content of the raw material composition of the neodymium iron boron magnet material (wt%)
  • Table 2 The formula and content of the raw material composition of the neodymium iron boron sintered body (wt%)
  • the SEM images of the neodymium iron boron sintered body and the neodymium iron boron magnet materials in Examples 1-19 and Comparative Examples 1-8 were measured using a SEM-EDS backscattering instrument (instrument model: Hitachi S-3400N).
  • the SEM images of the NdFeB sintered body prepared in Example 4 and the NdFeB sintered body prepared in Comparative Example 1 are shown in FIG. 1 and FIG. 2, respectively.
  • Fig. 1 is an SEM image of a neodymium iron boron sintered body prepared in Example 4.
  • the neodymium iron boron sintered body contains 3 wt% of Ho, 0.5 wt% of Gd, and 0.5 wt% of Tb, and does not contain Co.
  • the Co-containing (Ho+Gd+Tb) NdFeB sintered body contains main phase 1 (dark gray area), grain boundary epitaxial layer 2 (light gray area), and neodymium-rich phase 3 (white area).
  • void 4 black area
  • the grain boundary epitaxial layer 2 is located between the main phase 1 and the neodymium-rich phase 3.
  • the void 4 is caused by the oxidation and shedding of the neodymium-rich phase during sample preparation.
  • the neodymium-rich phase is more uniformly distributed around the main phase particles, and the neodymium-rich phase occupies a relatively large proportion, which can increase the Dy and/or Tb diffusion channels during the grain boundary diffusion process, which is beneficial to improve the Dy and/or Tb diffusion capacity.
  • NdFeB sintered body is an SEM image of the NdFeB sintered body prepared in Comparative Example 1.
  • the NdFeB sintered body does not contain Ho, contains 0.5 wt% of Gd and 0.5 wt% of Dy, and contains 2 wt% of Co. It can be seen from Figure 2 that there is no obvious grain boundary epitaxial layer in the Ho-free Co-containing NdFeB sintered body, and the neodymium-rich phase is less distributed, and its proportion is significantly lower than that in Figure 1, which cannot play the role of magnetic decoupling. It is not conducive to the improvement of coercivity.
  • the neodymium-rich phase in Figure 2 has agglomeration phenomenon, which cannot provide a uniformly distributed diffusion channel, which is not conducive to the subsequent diffusion process of Dy and/or Tb in the neodymium-rich phase.
  • sampling point 1 it belongs to the main phase.
  • the content of PrNd is 25.58wt%
  • the content of Ho is 3.12wt%
  • the content of Gd is 0.52wt%
  • the content of Tb is 0.51wt%
  • other elements The content is 70.27 wt%
  • the above percentage is the weight percentage of the total weight of all elements within the sampling range.
  • Ho, Gd and Tb elements mainly enter the main phase, and Ho and Tb have a certain effect on the anisotropy field of the main phase and can increase Hcj.
  • it due to the entry of Ho, Gd and Tb elements, it partially replaces the Nd in the main phase, causing more Nd to migrate to the neodymium-rich phase, increasing the proportion of the neodymium-rich phase, and providing more diffusion for subsequent Dy or/and Tb diffusion aisle.
  • Ho, Gd and Tb elements also have a certain distribution in the grain boundary epitaxial layer.
  • the concentration of heavy rare earth elements increases, and the concentration difference between the diffused heavy rare earth elements and the main phase is reduced during the diffusion process, so as to avoid the diffusion of the diffused elements to the main phase, and preferentially diffuse along the grain boundary epitaxial layer, thereby increasing the diffusion weight.
  • Rare earth elements diffuse along the neodymium-rich phase, increasing the diffusion depth and diffusion speed.
  • Ho, Gd and Tb elements account for a small proportion in the neodymium-rich phase, especially Gd and Tb, which account for almost zero in the neodymium-rich phase.
  • the melting point of the main phase is much higher than that of the neodymium-rich phase, which is the epitaxial level of the grain boundary. Since the melting point of Ho, Gd and Tb is higher than that of PrNd, high melting point substances are preferentially precipitated in the multi-element phase diagram, so the elements of Ho, Gd and Tb are more distributed in the main phase and less in the neodymium-rich phase. Too high heavy rare earth elements Ho, Tb, and Gd in the neodymium-rich phase will greatly reduce the Br of the product, which is not conducive to the overall performance of the product.
  • the EPMA spectrum of the neodymium iron boron magnet material prepared in Example 4 was measured by a micro-area X-ray spectrum analyzer (instrument model: EPMA-1720), as shown in FIG. 3.
  • FIG 3 shows the distribution of Tb in the NdFeB magnet material. It can be seen from Figure 3 that the Co-free (Ho+Gd+Tb) NdFeB sintered body of Example 4 is diffused by Tb, and the Tb element It does not enter the main phase, but mainly concentrates in the neodymium-rich phase.
  • Co-free (Ho+Gd+Tb) NdFeB sintered body of Example 4 is diffused by Tb, and the Tb element It does not enter the main phase, but mainly concentrates in the neodymium-rich phase.
  • Grain boundary continuity refers to the ratio of the length occupied by phases other than voids in the grain boundary (such as neodymium-rich phase, grain boundary epitaxial layer) to the total grain boundary length. Grain boundary continuity of more than 96% can be called continuous channel. Based on the SEM images of the neodymium iron boron magnet materials of the respective examples and comparative examples, the grain boundary continuity was calculated. The grain boundary continuity of the neodymium iron boron magnet materials in Examples 1-19 and Comparative Examples 1-8 are shown in Table 6. The grain boundary continuity of the neodymium iron boron magnet materials of Examples 1-19 are all above 96%, and the grain boundary continuity of the neodymium iron boron magnet materials of Comparative Examples 1-8 are all below 96%.
  • Example 7 Using the PFM-14 magnetic performance measuring instrument of British Hirst Company, the magnetic performance of each sample in Examples 1-19 and Comparative Examples 1-8 was tested (the test sample is a disc with diameter D10mm*thickness 1.8mm), and the test results As shown in Table 7. Among them, the neodymium iron boron magnet material obtained in Example 4 can be used to prepare a 45EH magnetic steel.
  • Full open circuit magnetic loss refers to the full open circuit magnetism calculated on the basis of the change of the magnetic flux of the neodymium iron boron magnet material before and after baking after baking the neodymium iron boron magnet material at high temperature (140°C) for a certain period of time (such as 120min) Loss, the calculation formula is:
  • the magnetic flux of the neodymium iron boron magnet material is measured at normal temperature (20°C), which is recorded as M1; then the neodymium iron boron magnet material is heated in an oven to the set temperature of 140°C, kept for 120 minutes, and then cooled to room temperature to measure the magnetic flux , Marked as M2.
  • Example 2 Based on Example 1, Dy was not added during smelting, and the same amount of PrNd was used instead, and the total rare earth content remained unchanged.
  • Comparative Example 3 Based on Example 1, the content of Gd is increased to make it excessive, while the content of PrNd is reduced to ensure that the total rare earth content remains unchanged.
  • Comparative Example 4 Based on Example 1, without Zr, supplemented with Fe.
  • Comparative Example 6 Based on Example 1, without Ga, supplemented with Fe.
  • Comparative Example 7 Based on Example 1, the content of Al was increased to make it excessive, and the content of Fe was adjusted.
  • Comparative Example 8 No Ga, too high Al content, no X element, too high total rare earth content.

Abstract

Disclosed are a neodymium-iron-boron magnet material, a raw material composition, a preparation method therefor and the use thereof. The raw material composition of the neodymium-iron-boron magnet material comprises a first component: LR: 13-31.5 wt%, wherein LR comprises Nd, Ho: 0-10 wt% and not being 0, Gd: 0-5 wt% and not being 0, Dy and/or Tb: 0-3 wt % and not being 0, Cu: 0-0.35 wt% and not being 0, Ga: 0-0.35 wt% and not being 0, Al: 0-0.5 wt%, X: 0.05-0.45 wt%, Co: 0-0.5 wt%, B: 0.9-1.05 wt%, and the balance being Fe; and a second component: Dy and/or Tb: 0.2-1 wt%, wherein the total rare earth content is 29.5-32.5 wt%. The neodymium-iron-boron magnet material has a high remanence, a high coercivity and good high-temperature performance.

Description

钕铁硼磁体材料、原料组合物及其制备方法和应用Neodymium iron boron magnet material, raw material composition and preparation method and application thereof 技术领域Technical field
本发明涉及一种钕铁硼磁体材料、原料组合物及其制备方法和应用。The invention relates to a neodymium iron boron magnet material, a raw material composition, and a preparation method and application thereof.
背景技术Background technique
Nd-Fe-B永磁材料以Nd 2Fe l4B化合物为基体,具有磁性能高、热膨胀系数小、易加工和价格低等优点,自问世以来,以平均每年20-30%的速度增长,成为应用最广泛的永磁材料。按制备方法,Nd-Fe-B永磁体可分为烧结、粘结和热压三种,其中烧结磁体占总产量的80%以上,应用最广泛。 Nd-Fe-B permanent magnet material is based on Nd 2 Fe l4 B compound, which has the advantages of high magnetic properties, small thermal expansion coefficient, easy processing and low price. Since its introduction, it has grown at an average annual rate of 20-30%. Become the most widely used permanent magnet material. According to the preparation method, Nd-Fe-B permanent magnets can be divided into three types: sintering, bonding and hot pressing. Among them, sintered magnets account for more than 80% of the total output and are the most widely used.
随着制备工艺和磁体成分的不断优化,烧结Nd-Fe-B磁体的最大磁能积已接近理论值。随着近年来风力发电、混合动力汽车和变频空调等新兴行业的蓬勃发展对高性能Nd-Fe-B磁体的需求越来越大,同时,这些高温领域的应用也对烧结Nd-Fe-B磁体的高温性能提出了更高的要求。With the continuous optimization of the preparation process and magnet composition, the maximum energy product of sintered Nd-Fe-B magnets has approached the theoretical value. With the vigorous development of emerging industries such as wind power generation, hybrid electric vehicles and inverter air conditioners in recent years, the demand for high-performance Nd-Fe-B magnets has increased. The high temperature performance of the magnet puts forward higher requirements.
现有技术中,在制作耐热、耐蚀型烧结Nd-Fe-B磁体时,Co是用得最多而且最有效的元素。这是因为添加Co能够降低磁感可逆温度系数,有效提高居里温度,并且可以提高NdFeB磁体抗腐蚀性能。但是,Co的加入容易造成矫顽力下降,并且Co的成本较高。Al元素能在烧结过程中降低主相与周围液相的浸润角,通过改善主相与富Nd相之间的微结构而提高矫顽力,因此,现有技术中也通常通过Al的添加来补偿Co添加造成的矫顽力降低。然而Al的过量加入会恶化剩磁和居里温度。In the prior art, when making heat-resistant and corrosion-resistant sintered Nd-Fe-B magnets, Co is the most used and most effective element. This is because the addition of Co can reduce the reversible temperature coefficient of magnetic induction, effectively increase the Curie temperature, and can improve the corrosion resistance of the NdFeB magnet. However, the addition of Co easily causes the coercivity to decrease, and the cost of Co is higher. The Al element can reduce the infiltration angle between the main phase and the surrounding liquid phase during the sintering process, and improve the coercive force by improving the microstructure between the main phase and the Nd-rich phase. Therefore, in the prior art, the addition of Al is usually used to improve the coercivity. Compensate the decrease in coercivity caused by the addition of Co. However, excessive addition of Al will deteriorate the remanence and Curie temperature.
发明内容Summary of the invention
本发明为了克服现有技术的钕铁硼磁体通过添加Co来提高居里温度和抗腐蚀性能、而Co又容易造成矫顽力急剧下降以及价格昂贵的缺陷以及Al的过量加入恶化剩磁和居里温度的缺陷,从而提供了一种钕铁硼磁体材料、原料组合物及其制备方法和应用。本发明的钕铁硼磁体材料晶界连续性好, 具有高剩磁、高矫顽力和良好的高温性能。In order to overcome the prior art NdFeB magnets by adding Co to increase the Curie temperature and corrosion resistance, and Co easily causes a sharp drop in coercivity and expensive defects, and excessive addition of Al worsens the remanence and residence. The defect of internal temperature provides a neodymium iron boron magnet material, a raw material composition, and a preparation method and application thereof. The neodymium iron boron magnet material of the present invention has good grain boundary continuity, high remanence, high coercivity and good high temperature performance.
为了实现上述目的,本发明采用以下技术方案:In order to achieve the above objectives, the present invention adopts the following technical solutions:
一种钕铁硼磁体材料的原料组合物,其包含第一组分和第二组分,所述第一组分为熔炼时添加的元素,所述第二组分为晶界扩散时添加的元素;A raw material composition of neodymium iron boron magnet material, which comprises a first component and a second component, the first component is an element added during smelting, and the second component is an element added during grain boundary diffusion element;
所述第一组分包括:The first component includes:
轻稀土元素LR:13~31.5wt%;所述LR包括Nd;Light rare earth element LR: 13~31.5wt%; said LR includes Nd;
Ho:0~10wt%、且不为0;Ho: 0~10wt%, and not 0;
Gd:0~5wt%、且不为0;Gd: 0~5wt%, and not 0;
Dy和/或Tb:0~3wt%,且不为0;Dy and/or Tb: 0-3wt%, and not 0;
Cu:0~0.35wt%,且不为0;Cu: 0~0.35wt%, and not 0;
Ga:0~0.35wt%,且不为0;Ga: 0~0.35wt%, and not 0;
Al:0~0.5wt%;Al: 0~0.5wt%;
X:0.05~0.45wt%;所述X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;X: 0.05 to 0.45 wt%; the X includes one or more of Ti, Nb, Zr, Hf, V, Mo, W, Ta and Cr;
Co:0~0.5wt%;Co: 0~0.5wt%;
B:0.9~1.05wt%;B: 0.9~1.05wt%;
余量为Fe;The balance is Fe;
所述第二组分包括:Dy和/或Tb:0.2~1wt%;The second component includes: Dy and/or Tb: 0.2-1wt%;
所述钕铁硼磁体材料的原料组合物中总稀土含量为29.5~32.5wt%;The total rare earth content in the raw material composition of the neodymium iron boron magnet material is 29.5-32.5 wt%;
wt%为各元素占所述钕铁硼磁体材料的原料组合物的重量百分比。The wt% is the weight percentage of each element in the raw material composition of the neodymium iron boron magnet material.
本发明中,所述钕铁硼磁体材料的原料组合物中总稀土含量较佳地为30.1~32.1wt%,例如30.5wt%、30.8wt%或31.5wt%。In the present invention, the total rare earth content in the raw material composition of the neodymium iron boron magnet material is preferably 30.1-32.1 wt%, for example, 30.5 wt%, 30.8 wt% or 31.5% wt.
本发明中,所述LR的含量较佳地为15~30wt%,例如17.4wt%、18wt%、20wt%、22.5wt%、23wt%、23.4wt%、23.8wt%、24.5wt%、25.5wt%、26wt%或29.9wt%。In the present invention, the content of the LR is preferably 15-30% by weight, such as 17.4% by weight, 18% by weight, 20% by weight, 22.5% by weight, 23% by weight, 23.4% by weight, 23.8% by weight, 24.5% by weight, and 25.5% by weight. %, 26wt% or 29.9wt%.
本发明中,所述Nd的含量较佳地为13~20wt%,例如18wt%或18.56wt%。In the present invention, the Nd content is preferably 13-20wt%, for example 18wt% or 18.56wt%.
本发明中,所述LR还可包括本领域其他常规的轻稀土元素,例如包括 Pr和/或Sm。In the present invention, the LR may also include other conventional light rare earth elements in the art, such as Pr and/or Sm.
其中,当所述LR包含Pr时,所述Pr的含量可为0~16wt%、且不为0wt%;较佳地为4wt%~12wt%,例如4.84wt%或10.8wt%。所述Pr的添加形式可为纯净Pr和/或PrNd,较佳地为PrNd。所述PrNd为Pr和Nd的合金,PrNd中Pr与Nd的重量比一般为25:75或20:80。Wherein, when the LR contains Pr, the content of Pr may be 0-16% by weight, and not 0% by weight; preferably 4%-12% by weight, such as 4.84% by weight or 10.8% by weight. The added form of Pr may be pure Pr and/or PrNd, preferably PrNd. The PrNd is an alloy of Pr and Nd, and the weight ratio of Pr to Nd in PrNd is generally 25:75 or 20:80.
其中,当所述LR包含Sm时,所述Sm的含量可为0~5wt%,且不为0;例如4.8wt%。Wherein, when the LR contains Sm, the content of Sm may be 0-5 wt%, and not 0; for example, 4.8 wt%.
本发明中,所述Ho含量较佳地为1~8.5wt%,更佳地为4.5~7.5wt%,例如1.7wt%、3wt%、4.3wt%或8.1wt%。In the present invention, the Ho content is preferably 1 to 8.5 wt%, more preferably 4.5 to 7.5 wt%, such as 1.7 wt%, 3 wt%, 4.3 wt% or 8.1 wt%.
本发明中,所述Gd含量较佳地为0.5~3wt%,例如1wt%、1.5wt%、1.8wt%、2.5wt%或2.6wt%。In the present invention, the Gd content is preferably 0.5 to 3 wt%, for example, 1 wt%, 1.5 wt%, 1.8 wt%, 2.5 wt%, or 2.6 wt%.
本发明中,所述Ho和所述Gd的总含量较佳地为不超过10wt%。In the present invention, the total content of the Ho and the Gd is preferably not more than 10 wt%.
本发明中,所述第一组分中所述Dy和/或Tb的含量范围较佳地为0.1~2wt%,例如0.5wt%、1wt%、1.5wt%、2wt%或2.5wt%。当所述第一组分包括Dy和Tb的混合物时,Dy和Tb的重量比可为本领域常规,一般为1:99~99:1,例如50:50、60:40或者40:60。In the present invention, the content of Dy and/or Tb in the first component preferably ranges from 0.1 to 2% by weight, for example, 0.5% by weight, 1% by weight, 1.5% by weight, 2% by weight or 2.5% by weight. When the first component includes a mixture of Dy and Tb, the weight ratio of Dy and Tb may be conventional in the art, and is generally 1:99 to 99:1, such as 50:50, 60:40, or 40:60.
本发明中,所述Cu的含量范围较佳地为0.1~0.3wt%,例如0.15wt%、0.2wt%或0.25wt%。In the present invention, the content of Cu is preferably in the range of 0.1 to 0.3 wt%, for example, 0.15 wt%, 0.2 wt% or 0.25 wt%.
本发明中,所述Ga的含量范围较佳地为0.1~0.3wt%,例如0.15wt%、0.2wt%或0.25wt%。In the present invention, the content of Ga is preferably in the range of 0.1 to 0.3 wt%, such as 0.15 wt%, 0.2 wt% or 0.25 wt%.
本发明中,所述Al的含量范围较佳地为0~0.3wt%,更佳地为0~0.1wt%,例如0.02wt%、0.04wt%或0.08wt%;更佳地为0~0.04wt%,最佳地为0。其中当Al的含量为0~0.1wt%时,Al可以为制备钕铁硼材料的过程中引入的杂质Al和/或额外添加的Al。当Al的含量为0~0.04wt%时,Al一般为制备钕铁硼材料的过程中引入的杂质Al。In the present invention, the content of Al is preferably in the range of 0 to 0.3 wt%, more preferably 0 to 0.1 wt%, such as 0.02 wt%, 0.04 wt% or 0.08 wt%; more preferably 0 to 0.04 wt% wt%, preferably 0. When the content of Al is 0-0.1 wt%, Al may be impurity Al introduced during the preparation of the neodymium iron boron material and/or additional Al added. When the content of Al is 0-0.04 wt%, Al is generally the impurity Al introduced in the process of preparing the neodymium iron boron material.
本发明中,所述X的种类较佳地为Ti、Nb、Zr和Hf中的一种或多种。In the present invention, the type of X is preferably one or more of Ti, Nb, Zr and Hf.
本发明中,所述X的含量较佳地为0.1~0.4wt%,更佳地为0.15~0.2wt%。In the present invention, the content of X is preferably 0.1 to 0.4 wt%, more preferably 0.15 to 0.2 wt%.
当所述X包括Zr时,所述Zr的含量范围较佳地为0.02~0.4wt%,例如0.2wt%。When the X includes Zr, the content of the Zr preferably ranges from 0.02 to 0.4 wt%, for example, 0.2 wt%.
当所述X包括Ti时,所述Ti的含量范围较佳地为0~0.2wt%、且不为0,例如0.15wt%。When the X includes Ti, the content of Ti preferably ranges from 0 to 0.2 wt%, and is not 0, for example, 0.15 wt%.
当所述X包括Nb时,所述Nb的含量范围较佳地为0~0.4wt%、且不为0,例如0.03wt%或0.1wt%。When the X includes Nb, the content of Nb preferably ranges from 0 to 0.4 wt% and is not 0, for example, 0.03 wt% or 0.1 wt%.
当所述X包括Hf时,所述Hf的含量范围较佳地为0~0.1wt%、且不为0,例如0.03wt%或0.05wt%。When the X includes Hf, the content of the Hf preferably ranges from 0 to 0.1 wt% and is not 0, for example, 0.03 wt% or 0.05 wt%.
当X包括Ti和Nb时,Ti和Nb的重量比可为本领域常规,一般为1:99~99:1,例如2:1或2:3。When X includes Ti and Nb, the weight ratio of Ti and Nb can be conventional in the art, and is generally 1:99 to 99:1, such as 2:1 or 2:3.
当X包括Hf和Zr时,Hf和Zr的重量比可为本领域常规,一般为1:99~99:1,例如1:10或5:2。When X includes Hf and Zr, the weight ratio of Hf and Zr can be conventional in the art, and is generally 1:99 to 99:1, such as 1:10 or 5:2.
当X包括Hf和Nb时,Hf和Nb的重量比可为本领域常规,一般为1:99~99:1,例如1:8。When X includes Hf and Nb, the weight ratio of Hf and Nb can be conventional in the art, and is generally 1:99 to 99:1, such as 1:8.
本发明中,所述钕铁硼磁体材料的原料组合物还可包括Mn,所述Mn的含量范围≤0.035wt%,更佳地≤0.0175wt%。In the present invention, the raw material composition of the neodymium iron boron magnet material may further include Mn, and the content of Mn ranges from ≤0.035wt%, more preferably ≤0.0175wt%.
本发明中,所述Co的含量较佳地为0~0.2wt%,更佳地为0。In the present invention, the content of Co is preferably 0 to 0.2 wt%, more preferably 0.
本发明中,所述B的含量范围较佳地为0.94~1.02wt%,例如0.98wt%或0.99wt%。In the present invention, the content of B is preferably in the range of 0.94 to 1.02 wt%, for example, 0.98 wt% or 0.99 wt%.
本发明中,所述第二组分中Dy和/或Tb的含量范围较佳地为0.5~0.8wt%。In the present invention, the content of Dy and/or Tb in the second component preferably ranges from 0.5 to 0.8 wt%.
当所述第二组分包括Dy时,所述Dy的含量范围较佳地为0.2~1wt%,例如0.5wt%或0.8wt%。所述第二组分中Dy的添加形式可为纯净Dy、Dy合金和Dy氟化物中的一种或多种。其中,所述Dy合金较佳地为DyGaCu;所述DyGaCu合金中,较佳地Dy含量≥75wt%,更佳地≥95wt%,上述百分比为Dy用量占所述DyGaCu合金总重量的百分比。When the second component includes Dy, the content of Dy is preferably in the range of 0.2 to 1 wt%, for example, 0.5 wt% or 0.8 wt%. The addition form of Dy in the second component may be one or more of pure Dy, Dy alloy and Dy fluoride. Wherein, the Dy alloy is preferably DyGaCu; in the DyGaCu alloy, the content of Dy is preferably ≥75wt%, more preferably ≥95wt%, and the above percentage is the percentage of the amount of Dy to the total weight of the DyGaCu alloy.
当所述第二组分包括Tb时,所述Tb的含量范围较佳地为0.2~1wt%,例如0.5wt%。所述第二组分中Tb的添加形式可为纯净Tb、Tb合金和Tb 氟化物中的一种或多种。所述Tb合金较佳地为TbGaCu合金;所述TbGaCu合金中,较佳地Tb含量≥75wt%,更佳地≥95wt%,上述百分比为Tb用量占所述TbGaCu合金总重量的百分比。When the second component includes Tb, the content of Tb preferably ranges from 0.2 to 1 wt%, for example, 0.5 wt%. The addition form of Tb in the second component may be one or more of pure Tb, Tb alloy and Tb fluoride. The Tb alloy is preferably a TbGaCu alloy; in the TbGaCu alloy, the Tb content is preferably ≥75wt%, more preferably ≥95wt%, and the above percentage is the percentage of Tb content in the total weight of the TbGaCu alloy.
当所述第二组分包括Dy和Tb的混合物时,Dy和Tb的重量比可为本领域常规,一般为1:99~99:1,例如50:50、60:40或者40:60。When the second component includes a mixture of Dy and Tb, the weight ratio of Dy and Tb may be conventional in the art, and is generally 1:99 to 99:1, such as 50:50, 60:40, or 40:60.
本发明中,所述“余量为Fe”是指,所述钕铁硼磁体材料的原料组合物中添加其它元素时,所述原料组合物的总重量发生变化,此时,对于各元素用量而言,除Fe以外的已有元素的重量百分比含量不发生变化,仅降低Fe元素的百分含量,以实现各元素总含量为100wt%。In the present invention, the "balance is Fe" means that when other elements are added to the raw material composition of the neodymium iron boron magnet material, the total weight of the raw material composition changes. At this time, the amount of each element In other words, the weight percentage content of existing elements other than Fe does not change, and only the percentage content of Fe element is reduced to achieve a total content of 100 wt% of each element.
本发明中,所述钕铁硼磁体材料的原料组合物中可含有不可避免的杂质。例如,在制备工艺中一般会添加润滑剂等而引入碳杂质,碳杂质的含量不超过0.12wt%。In the present invention, the raw material composition of the neodymium iron boron magnet material may contain inevitable impurities. For example, in the preparation process, lubricants are generally added to introduce carbon impurities, and the content of carbon impurities does not exceed 0.12 wt%.
本发明中,较佳地,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:PrNd:15~30wt%;Ho:1~8.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.1~2wt%;Cu:0.1~0.3wt%;Ga:0.1~0.3wt%;Al:0~0.1wt%;Zr:0.2~0.4wt%;Co:0~0.2wt%;B:0.94~1.02wt%;所述第二组分:Dy和/或Tb:0.5~0.8wt%;余量为Fe及不可避免的杂质。In the present invention, preferably, the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 15-30wt%; Ho: 1-8.5% by weight; Gd: 0.5-3wt%; Dy and/or Tb: 0.1~2wt%; Cu: 0.1~0.3wt%; Ga: 0.1~0.3wt%; Al: 0~0.1wt%; Zr: 0.2~0.4wt%; Co: 0~0.2wt% B: 0.94-1.02wt%; the second component: Dy and/or Tb: 0.5-0.8wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:PrNd:25.5wt%;Ho:4.5wt%;Gd:0.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;所述第二组分:Dy:0.5wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 25.5% by weight; Ho: 4.5% by weight; Gd: 0.5% by weight; Dy: 0.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt%; the balance is Fe and inevitable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:PrNd:25.5wt%;Ho:4.5wt%;Gd:0.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;所述第二组分:Tb:0.5wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 25.5% by weight; Ho: 4.5% by weight; Gd: 0.5% by weight; Dy: 0.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Tb: 0.5wt%; the balance is Fe and inevitable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:PrNd:26wt%;Ho:3wt%;Gd:0.5wt%;Tb:0.5wt%;Cu: 0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;所述第二组分:Dy:0.5wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 26wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt %; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt%; the balance is Fe and Inevitable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:PrNd:26wt%;Ho:3wt%;Gd:0.5wt%;Tb:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;所述第二组分:Tb:0.5wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 26wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt %; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Tb: 0.5wt%; the balance is Fe and Inevitable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:PrNd:20wt%;Ho:10wt%;Gd:0.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;所述第二组分:Dy:0.5wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 20wt%; Ho: 10wt%; Gd: 0.5wt%; Dy: 0.5wt %; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt%; the balance is Fe and Inevitable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:PrNd:29.9wt%;Ho:0.1wt%;Gd:0.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;所述第二组分:Dy:0.5wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 29.9 wt%; Ho: 0.1 wt%; Gd: 0.5 wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt%; the balance is Fe and inevitable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:PrNd:22.5wt%;Ho:7.5wt%;Gd:0.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;所述第二组分:Dy:0.5wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 22.5 wt%; Ho: 7.5 wt%; Gd: 0.5 wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt%; the balance is Fe and inevitable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:PrNd:24.5wt%;Ho:4.5wt%;Gd:1.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;所述第二组分:Dy:0.5wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 24.5wt%; Ho: 4.5wt%; Gd: 1.5wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt%; the balance is Fe and inevitable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:PrNd:23wt%;Ho:4.5wt%;Gd:3wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;所述第二组分:Dy:0.5wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 23wt%; Ho: 4.5wt%; Gd: 3wt%; Dy: 0.5wt %; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt%; the balance is Fe and Inevitable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括: 所述第一组分:PrNd:24.5wt%;Ho:4.5wt%;Gd:0.5wt%;Dy:0.1wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;所述第二组分:Dy:0.5wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 24.5 wt%; Ho: 4.5 wt%; Gd: 0.5 wt%; Dy: 0.1wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt%; the balance is Fe and inevitable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:PrNd:23wt%;Ho:4.5wt%;Gd:0.5wt%;Dy:3wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;所述第二组分:Dy:0.5wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 23wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 3wt %; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt%; the balance is Fe and Inevitable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:PrNd:17.4wt%;Ho:8.1wt%;Gd:2.6wt%;Tb:3wt%;Cu:0.3wt%;Ga:0.1wt%;Al:0.02wt%;Zr:0.4wt%;B:0.99wt%;所述第二组分:Tb:1wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 17.4 wt%; Ho: 8.1 wt%; Gd: 2.6 wt%; Tb: 3wt%; Cu: 0.3wt%; Ga: 0.1wt%; Al: 0.02wt%; Zr: 0.4wt%; B: 0.99wt%; the second component: Tb: 1wt%; the balance is Fe and Inevitable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:PrNd:25.5wt%;Ho:4.5wt%;Gd:0.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.1wt%;Zr:0.2wt%;B:0.94wt%;所述第二组分:Dy:0.5wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 25.5% by weight; Ho: 4.5% by weight; Gd: 0.5% by weight; Dy: 0.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.1wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt%; the balance is Fe and inevitable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:PrNd:25.5wt%;Ho:4.5wt%;Gd:0.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.5wt%;Zr:0.2wt%;B:0.94wt%;所述第二组分:Dy:0.5wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 25.5% by weight; Ho: 4.5% by weight; Gd: 0.5% by weight; Dy: 0.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.5wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt%; the balance is Fe and inevitable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:PrNd:26wt%;Ho:3wt%;Gd:0.5wt%;Tb:0.5wt%;Cu:0.15wt%;Co:0.2wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;所述第二组分:Dy:0.5wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 26wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt %; Cu: 0.15wt%; Co: 0.2wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt% ; The balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:PrNd:26wt%;Ho:3wt%;Gd:0.5wt%;Tb:0.5wt%;Cu:0.15wt%;Co:0.5wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;所述第二组分:Dy:0.5wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd: 26wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt %; Cu: 0.15wt%; Co: 0.5wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the second component: Dy: 0.5wt% ; The balance is Fe and unavoidable impurities.
本发明中,较佳地,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:Nd:13~20wt%;Sm:0~5wt%;Ho:4.5~8.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.1~2wt%;Cu:0.1~0.3wt%;Ga:0.1~0.3wt%;Al:0~0.04wt%;Nb:0~0.4wt%;Co:0~0.2wt%;B:0.9~0.99wt%;所述第二组分:Dy和/或Tb:0.2~0.5wt%;余量为Fe及不可避免的杂质。In the present invention, preferably, the raw material composition of the neodymium iron boron magnet material includes: the first component: Nd: 13-20wt%; Sm: 0-5wt%; Ho: 4.5-8.5wt%; Gd: 0.5 to 3 wt%; Dy and/or Tb: 0.1 to 2 wt%; Cu: 0.1 to 0.3 wt%; Ga: 0.1 to 0.3 wt%; Al: 0 to 0.04 wt%; Nb: 0 to 0.4 wt%; Co: 0-0.2wt%; B: 0.9-0.99wt%; the second component: Dy and/or Tb: 0.2-0.5wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:Nd:18wt%;Sm:4.8wt%;Ho:5.5wt%;Gd:0.5wt%;Dy:0.5wt%;Cu:0.2wt%;Ga:0.3wt%;Al:0.03wt%;Nb:0.15wt%;B:0.9wt%;所述第二组分:Dy:0.2wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron magnet material includes: the first component: Nd: 18 wt%; Sm: 4.8 wt%; Ho: 5.5 wt%; Gd: 0.5 wt%; Dy: 0.5wt%; Cu: 0.2wt%; Ga: 0.3wt%; Al: 0.03wt%; Nb: 0.15wt%; B: 0.9wt%; the second component: Dy: 0.2wt %; the balance is Fe and unavoidable impurities.
本发明中,较佳地,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:Nd:13~20wt%;Pr:0~16wt%;Ho:3.5~4.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.1~2wt%;Cu:0.1~0.3wt%;Ga:0~0.3wt%;Al:0~0.4wt%;Ti:0~0.2wt%;Co:0~0.2wt%;B:0.98~1.05wt%;所述第二组分:Dy和/或Tb:0.8~1wt%;余量为Fe及不可避免的杂质。In the present invention, preferably, the raw material composition of the neodymium iron boron magnet material includes: the first component: Nd: 13-20wt%; Pr: 0-16wt%; Ho: 3.5-4.5wt%; Gd: 0.5 to 3 wt%; Dy and/or Tb: 0.1 to 2 wt%; Cu: 0.1 to 0.3 wt%; Ga: 0 to 0.3 wt%; Al: 0 to 0.4 wt%; Ti: 0 to 0.2 wt%; Co: 0 to 0.2 wt%; B: 0.98 to 1.05 wt%; the second component: Dy and/or Tb: 0.8 to 1 wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:Nd:18.56wt%;Pr:4.84wt%;Ho:4.3wt%;Gd:1.8wt%;Dy:2wt%;Cu:0.25wt%;Ga:0.05wt%;Al:0.02wt%;Ti:0.15wt%;B:1.05wt%;所述第二组分:Dy:1wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron magnet material includes: the first component: Nd: 18.56 wt%; Pr: 4.84 wt%; Ho: 4.3 wt%; Gd: 1.8wt%; Dy: 2wt%; Cu: 0.25wt%; Ga: 0.05wt%; Al: 0.02wt%; Ti: 0.15wt%; B: 1.05wt%; the second component: Dy:1wt% ; The balance is Fe and unavoidable impurities.
本发明中,较佳地,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:Nd:13~20wt%;Pr:0~16wt%;Ho:1~4.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.1~2wt%;Cu:0.2~0.35wt%;Ga:0.2~0.35wt%;Al:0~0.0.04wt%;Hf:0~0.1wt%;Co:0~0.2wt%;B:0.94~0.99wt%;所述第二组分:Dy和/或Tb:0.5~1wt%;余量为Fe及不可避免的杂质。In the present invention, preferably, the raw material composition of the neodymium iron boron magnet material includes: the first component: Nd: 13-20wt%; Pr: 0-16wt%; Ho: 1-4.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.1-2wt%; Cu: 0.2-0.35wt%; Ga: 0.2-0.35wt%; Al: 0-0.0.04wt%; Hf: 0-0.1wt% Co: 0-0.2wt%; B: 0.94-0.99wt%; the second component: Dy and/or Tb: 0.5-1wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:Nd:13wt%;Pr:10.8wt%;Ho:1.7wt%;Gd:2.5wt%;Dy:0.5wt%;Tb:1.5wt%;Cu:0.35wt%;Ga:0.35wt%;Hf:0.1wt%;B:0.98wt%;所述第二组分:Dy:0.8wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron magnet material includes: the first component: Nd: 13wt%; Pr: 10.8wt%; Ho: 1.7wt%; Gd: 2.5 wt%; Dy: 0.5wt%; Tb: 1.5wt%; Cu: 0.35wt%; Ga: 0.35wt%; Hf: 0.1wt%; B: 0.98wt%; the second component: Dy: 0.8wt %; the balance is Fe and unavoidable impurities.
本发明还提供了一种钕铁硼磁体材料的制备方法,其采用如上所述钕铁硼磁体材料的原料组合物进行,所述制备方法包括如下步骤:The present invention also provides a preparation method of neodymium iron boron magnet material, which adopts the raw material composition of neodymium iron boron magnet material as described above, and the preparation method includes the following steps:
S1、将所述第一组分熔炼、制粉、成型、烧结,得钕铁硼烧结体;S1. Melting, pulverizing, molding, and sintering the first component to obtain a neodymium iron boron sintered body;
S2、采用所述第二组分对步骤S1所得的钕铁硼烧结体进行晶界扩散;S2, using the second component to perform grain boundary diffusion on the neodymium iron boron sintered body obtained in step S1;
S3、热处理,即得钕铁硼磁体材料。S3. Heat treatment to obtain neodymium iron boron magnet material.
本发明中,步骤S1中,所述熔炼的操作和条件可为本领域常规的熔炼工艺,一般为将所述第一组分的各元素采用铸锭工艺或速凝片工艺进行熔炼浇铸,得到合金片。In the present invention, in step S1, the smelting operation and conditions can be a conventional smelting process in the field, generally, each element of the first component is smelted and casted using an ingot process or a quick-setting sheet process to obtain Alloy flakes.
本发明中,步骤S1中,所述熔炼的温度可为1300~1700℃,例如1500℃。In the present invention, in step S1, the smelting temperature may be 1300-1700°C, for example 1500°C.
本发明中,步骤S1中,所述熔炼的设备一般为高频真空熔炼炉和/或中频真空熔炼炉。所述中频真空熔炼炉可为中频真空感应速凝甩带炉。In the present invention, in step S1, the melting equipment is generally a high frequency vacuum melting furnace and/or an intermediate frequency vacuum melting furnace. The intermediate frequency vacuum melting furnace may be an intermediate frequency vacuum induction rapid solidification belt spinning furnace.
本领域技术人员知晓,因熔炼和烧结工艺中通常会损耗稀土元素,为保证终产品的质量,一般会在熔炼过程中在原料组合物的配方基础中额外添加0~0.3wt%的稀土元素(一般为Nd元素),百分比为额外添加的稀土元素的含量占所述原料组合物的总含量的重量百分比;另外这部分额外添加的稀土元素的含量不计入原料组合物的范畴。Those skilled in the art know that because rare earth elements are usually lost in the smelting and sintering process, in order to ensure the quality of the final product, an additional 0-0.3wt% rare earth element ( Generally Nd element), the percentage is the weight percentage of the content of the additional rare earth element to the total content of the raw material composition; in addition, the content of this part of the additional rare earth element is not included in the category of the raw material composition.
本发明中,步骤S1中,所述制粉的操作和条件可为本领域常规制粉工艺,一般包括氢破制粉和/或气流磨制粉。In the present invention, in step S1, the operation and conditions of the powder milling can be conventional powder milling processes in the art, and generally include hydrogen crushing powder milling and/or jet milling powder milling.
所述氢破制粉一般包括吸氢、脱氢和冷却处理。所述吸氢的温度一般为20~200℃,较佳地为20~40℃(即室温)。所述吸氢的压力一般为50~600kPa,例如90kPa。所述脱氢的温度一般为400~650℃,例如550℃。The hydrogen crushing and pulverizing generally includes hydrogen absorption, dehydrogenation and cooling treatment. The temperature of the hydrogen absorption is generally 20 to 200°C, preferably 20 to 40°C (ie, room temperature). The pressure of the hydrogen absorption is generally 50 to 600 kPa, such as 90 kPa. The temperature of the dehydrogenation is generally 400-650°C, such as 550°C.
所述气流磨制粉中的气流例如可为氮气和/或氩气。所述气流磨制粉的压力一般为0.1~2MPa,优选0.5~0.7MPa,例如0.65MPa。所述气流磨制粉的效率可根据设备不同有所差别,例如可为30-400kg/h,优选200kg/h。The gas stream in the gas stream milling powder can be, for example, nitrogen gas and/or argon gas. The pressure of the air jet milling powder is generally 0.1-2 MPa, preferably 0.5-0.7 MPa, for example 0.65 MPa. The efficiency of the jet milling powder may vary according to different equipment, for example, it may be 30-400 kg/h, preferably 200 kg/h.
本发明中,步骤S1中,所述成型的操作和条件可为本领域常规的成型工艺,例如磁场成型法。所述的磁场成型法的磁场强度一般在1.5T以上。In the present invention, in step S1, the molding operation and conditions can be a conventional molding process in the field, such as a magnetic field molding method. The magnetic field strength of the magnetic field forming method is generally above 1.5T.
本发明中,步骤S1中,所述烧结的操作和条件可为本领域常规的烧结 工艺,例如真空烧结工艺和/或惰性气氛烧结工艺。所述真空烧结工艺或所述惰性气氛烧结工艺均为本领域常规操作。当采用惰性气氛烧结工艺时,所述烧结开始阶段可在真空度低于0.5Pa的条件下进行。所述惰性气氛可为本领域常规的含有惰性气体的气氛,不限于氦气、氩气,还可为氮气。In the present invention, in step S1, the sintering operation and conditions can be a conventional sintering process in the art, such as a vacuum sintering process and/or an inert atmosphere sintering process. The vacuum sintering process or the inert atmosphere sintering process are conventional operations in the art. When an inert atmosphere sintering process is used, the initial stage of the sintering can be performed under the condition of a vacuum degree of less than 0.5 Pa. The inert atmosphere may be a conventional atmosphere containing inert gas in the art, and is not limited to helium or argon, and may also be nitrogen.
本发明中,步骤S1中,所述烧结的温度可为1000~1200℃,较佳地为1030~1090℃。In the present invention, in step S1, the sintering temperature may be 1000-1200°C, preferably 1030-1090°C.
本发明中,步骤S1中,所述烧结的时间可为0.5~10h,较佳地为2~8h。In the present invention, in step S1, the sintering time may be 0.5-10h, preferably 2-8h.
本发明中,步骤S2中,所述晶界扩散的操作和条件可为本领域常规的晶界扩散工艺,一般为将所述第二组分施加于所述钕铁硼烧结体上保温即可。其中,所述施加方式可为涂覆、磁控等离子溅射或蒸镀。In the present invention, in step S2, the operation and conditions of the grain boundary diffusion can be a conventional grain boundary diffusion process in the art, and generally the second component is applied to the neodymium iron boron sintered body for heat preservation. . Wherein, the application method can be coating, magnetron plasma sputtering or evaporation.
所述涂覆的操作和条件可为本领域常规,一般将所述第二组分以氟化物或低熔点合金的形式涂覆到所述钕铁硼烧结体上。当所述第二组分包括Tb时,较佳地,Tb以Tb的氟化物或低熔点合金的形式涂覆。当所述第二组分包含Dy时,较佳地,Dy以Dy的氟化物或低熔点合金的形式涂覆。The operation and conditions of the coating can be conventional in the art. Generally, the second component is coated on the neodymium iron boron sintered body in the form of a fluoride or a low melting point alloy. When the second component includes Tb, preferably, Tb is coated in the form of a fluoride of Tb or a low melting point alloy. When the second component contains Dy, preferably, Dy is coated in the form of Dy fluoride or a low melting point alloy.
所述磁控等离子溅射的操作和条件可为本领域常规,一般是通过惰性气体轰击所述第二组分的靶材,产生Dy和/或Tb离子,经过磁场的控制均匀附着在所述钕铁硼烧结体的表面。The operation and conditions of the magnetron plasma sputtering can be conventional in the art. Generally, the target material of the second component is bombarded by an inert gas to generate Dy and/or Tb ions, which are uniformly attached to the target through the control of a magnetic field. The surface of the neodymium iron boron sintered body.
所述蒸镀的操作和条件可为本领域常规,一般是通过将所述第二组分的金属做成一定形状,在真空扩散炉中抽真空到设定值(如5Pa到5×10 -2Pa)并加热到设定温度下(如500~900℃)产生Dy和/或Tb的蒸气,从而富集到所述钕铁硼烧结体的表面。 The operating conditions and the conventional art can be deposited, typically by a metal of the second component is made of a shaped evacuated to a set value (e.g., 5 × 10 5Pa to diffusion in a vacuum oven - 2 Pa) and heating to a set temperature (such as 500-900° C.) to generate Dy and/or Tb vapor, thereby enriching the surface of the neodymium iron boron sintered body.
本发明中,步骤S2中,所述晶界扩散的温度可为800~1000℃,优选850~950℃,更佳地为900℃。所述晶界扩散的时间可为12~90h,例如24h。In the present invention, in step S2, the temperature of the grain boundary diffusion may be 800-1000°C, preferably 850-950°C, more preferably 900°C. The time for the grain boundary diffusion may be 12 to 90 hours, such as 24 hours.
本发明中,步骤S3中,所述热处理的温度可为450℃~510℃。所述热处理的时间可为2~4小时。In the present invention, in step S3, the temperature of the heat treatment may be 450°C to 510°C. The heat treatment time may be 2 to 4 hours.
本发明还提供了一种由如上所述的制备方法制得的钕铁硼磁体材料。The invention also provides a neodymium iron boron magnet material prepared by the above-mentioned preparation method.
本发明还提供了一种钕铁硼磁体材料,其包括:The present invention also provides a neodymium iron boron magnet material, which includes:
轻稀土元素LR:13~31.5wt%;所述LR包括Nd;Light rare earth element LR: 13~31.5wt%; said LR includes Nd;
重稀土元素HR:Ho:0~10wt%、且不为0;Gd:0~5wt%、且不为0;Heavy rare earth elements HR: Ho: 0-10wt%, and not 0; Gd: 0-5wt%, but not 0;
Dy和/或Tb:0.2~4wt%;Dy and/or Tb: 0.2-4wt%;
Cu:0~0.35wt%,且不为0;Cu: 0~0.35wt%, and not 0;
Ga:0~0.35wt%,且不为0;Ga: 0~0.35wt%, and not 0;
Al:0~0.5wt%;Al: 0~0.5wt%;
X:0.05~0.45wt%;所述X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;X: 0.05 to 0.45 wt%; the X includes one or more of Ti, Nb, Zr, Hf, V, Mo, W, Ta and Cr;
Co:0~0.5wt%;Co: 0~0.5wt%;
B:0.9~1.05wt%;B: 0.9~1.05wt%;
余量为Fe;The balance is Fe;
所述钕铁硼磁体材料中总稀土含量为29.5~32.5wt%;The total rare earth content in the neodymium iron boron magnet material is 29.5-32.5wt%;
wt%为各元素占所述原料组合物的重量百分比;wt% is the weight percentage of each element in the raw material composition;
所述钕铁硼磁体材料包含主相、晶界外延层和富钕相;所述主相和所述晶界外延层分布有Ho和Gd,以及部分Dy和/或Tb;所述富钕相分布有Dy和/或Tb;所述钕铁硼磁体材料的晶界连续性为96%以上。The neodymium iron boron magnet material comprises a main phase, a grain boundary epitaxial layer and a neodymium-rich phase; the main phase and the grain boundary epitaxial layer are distributed with Ho and Gd, and part of Dy and/or Tb; the neodymium-rich phase Dy and/or Tb are distributed; the continuity of the grain boundary of the neodymium iron boron magnet material is more than 96%.
本发明中,所述主相的主要结构为本领域常规的Nd 2Fe l4B晶粒。所述晶界外延层一般是指邻接富钕相和主相的二颗粒晶界处,也可以称为“二颗粒晶界”或者称为“主相和富钕相的晶界边沿壳层结构”。所述富钕相为本领域常规理解的富钕相,本领域中晶界结构中的相结构大部分为富钕相。 In the present invention, the main structure of the main phase is conventional Nd 2 Fe 14 B crystal grains in the art. The grain boundary epitaxial layer generally refers to the two-grain boundary adjacent to the neodymium-rich phase and the main phase, and can also be called the "two-grain boundary" or the "grain boundary shell structure of the main phase and the neodymium-rich phase"". The neodymium-rich phase is a neodymium-rich phase conventionally understood in the art, and most of the phase structures in the grain boundary structure in the art are neodymium-rich phases.
本发明中,所述主相和所述晶界外延层中较佳地分布有Ho和Gd元素的总重量的95%以上。也就是说,只有少部分Ho和Gd元素分布在富钕相。In the present invention, more than 95% of the total weight of Ho and Gd elements are preferably distributed in the main phase and the grain boundary epitaxial layer. In other words, only a small part of Ho and Gd elements are distributed in the neodymium-rich phase.
本发明中,所述晶界连续性的计算方式是指晶界中除空洞外的物相(例如富钕相、晶界外延层中的相等)占据的长度与总晶界长度的比值。所述晶界连续性超过96%即可称为连续通道。所述晶界连续性较佳地为96.3%~97.11%,例如96.3%、96.33%、96.42%、96.43%、96.45%、96.5%、 96.51%、96.54%、96.55%、96.58%、96.59%、96.7%、96.71%、96.8%或97%。In the present invention, the calculation method of the grain boundary continuity refers to the ratio of the length occupied by phases other than voids in the grain boundary (for example, the neodymium-rich phase, the same in the grain boundary epitaxial layer) to the total grain boundary length. If the grain boundary continuity exceeds 96%, it can be called a continuous channel. The grain boundary continuity is preferably 96.3% to 97.11%, such as 96.3%, 96.33%, 96.42%, 96.43%, 96.45%, 96.5%, 96.51%, 96.54%, 96.55%, 96.58%, 96.59%, 96.7%, 96.71%, 96.8% or 97%.
本发明中,所述钕铁硼磁体材料中总稀土含量较佳地为30.1~32.1wt%,例如30.5wt%、30.8wt%或31.5wt%。In the present invention, the total rare earth content in the neodymium iron boron magnet material is preferably 30.1-32.1 wt%, for example, 30.5 wt%, 30.8 wt% or 31.5% wt.
本发明中,所述LR的含量较佳地为15~30wt%,例如17.4wt%、18wt%、20wt%、22.5wt%、23wt%、23.4wt%、23.8wt%、24.5wt%、25.5wt%、26wt%或29.9wt%。In the present invention, the content of LR is preferably 15-30% by weight, for example 17.4% by weight, 18% by weight, 20% by weight, 22.5% by weight, 23% by weight, 23.4% by weight, 23.8% by weight, 24.5% by weight, and 25.5% by weight. %, 26wt% or 29.9wt%.
本发明中,所述Nd的含量较佳地为13~20wt%,例如18wt%或18.56wt%。In the present invention, the Nd content is preferably 13-20wt%, for example 18wt% or 18.56wt%.
本发明中,所述LR还可包括本领域其他常规的轻稀土元素,例如包括Pr和/或Sm。In the present invention, the LR may also include other conventional light rare earth elements in the art, such as Pr and/or Sm.
其中,当所述LR包含Pr时,所述Pr的含量可为0~16wt%、且不为0wt%;较佳地为4wt%~12wt%,例如4.84wt%或10.8wt%。所述Pr的添加形式可为纯净Pr和/或PrNd,较佳地为PrNd。所述PrNd为Pr和Nd的合金,PrNd中Pr与Nd的重量比一般为25:75或20:80。Wherein, when the LR contains Pr, the content of Pr may be 0-16% by weight, and not 0% by weight; preferably 4%-12% by weight, such as 4.84% by weight or 10.8% by weight. The added form of Pr may be pure Pr and/or PrNd, preferably PrNd. The PrNd is an alloy of Pr and Nd, and the weight ratio of Pr to Nd in PrNd is generally 25:75 or 20:80.
其中,当所述LR包含Sm时,所述Sm的含量可为0~5wt%,且不为0;例如4.8wt%。Wherein, when the LR contains Sm, the content of Sm may be 0-5 wt%, and not 0; for example, 4.8 wt%.
本发明中,所述Ho含量较佳地为1~8.5wt%,更佳地为4.5~7.5wt%,例如1.7wt%、3wt%、4.3wt%或8.1wt%。In the present invention, the Ho content is preferably 1 to 8.5 wt%, more preferably 4.5 to 7.5 wt%, such as 1.7 wt%, 3 wt%, 4.3 wt% or 8.1 wt%.
本发明中,所述Gd含量较佳地为0.5~3wt%,例如1wt%、1.5wt%、1.8wt%、2.5wt%或2.6wt%。In the present invention, the Gd content is preferably 0.5 to 3 wt%, for example, 1 wt%, 1.5 wt%, 1.8 wt%, 2.5 wt%, or 2.6 wt%.
本发明中,所述Ho和所述Gd的总含量较佳地为不超过10wt%。In the present invention, the total content of the Ho and the Gd is preferably not more than 10 wt%.
本发明中,所述Dy和/或Tb的含量范围较佳地为0.5~3.5wt%,例如0.6wt%、0.7wt%、1wt%、1.5wt%、2wt%或2.8wt%。当所述钕铁硼磁体材料包括Dy和Tb的混合物时,Dy和Tb的重量比可为本领域常规,一般为1:99~99:1,例如50:50、60:40或者40:60。In the present invention, the content of Dy and/or Tb is preferably in the range of 0.5 to 3.5 wt%, such as 0.6 wt%, 0.7 wt%, 1 wt%, 1.5 wt%, 2 wt% or 2.8 wt%. When the neodymium iron boron magnet material includes a mixture of Dy and Tb, the weight ratio of Dy and Tb can be conventional in the art, and is generally 1:99 to 99:1, such as 50:50, 60:40, or 40:60 .
本发明中,所述Cu的含量范围较佳地为0.1~0.3wt%,例如0.15wt%、0.2wt%或0.25wt%。In the present invention, the content of Cu is preferably in the range of 0.1 to 0.3 wt%, for example, 0.15 wt%, 0.2 wt% or 0.25 wt%.
本发明中,所述Ga的含量范围较佳地为0.1~0.3wt%,例如0.15wt%、 0.2wt%或0.25wt%。In the present invention, the content of Ga is preferably in the range of 0.1 to 0.3 wt%, for example, 0.15 wt%, 0.2 wt% or 0.25 wt%.
本发明中,所述Al的含量范围为0~0.3wt%,更佳地为0~0.1wt%,例如0.02wt%、0.04wt%或0.08wt%;更佳地为0~0.04wt%,最佳地为0。其中当Al的含量为0~0.1wt%时,Al可以为制备钕铁硼材料的过程中引入的杂质Al和/或额外添加的Al。当Al的含量为0~0.04wt%时,Al一般为制备钕铁硼材料的过程中引入的杂质Al。In the present invention, the Al content ranges from 0 to 0.3 wt%, more preferably 0 to 0.1 wt%, such as 0.02 wt%, 0.04 wt% or 0.08 wt%; more preferably 0 to 0.04 wt%, Best is 0. When the content of Al is 0-0.1 wt%, Al may be impurity Al introduced during the preparation of the neodymium iron boron material and/or additional Al added. When the content of Al is 0-0.04 wt%, Al is generally the impurity Al introduced in the process of preparing the neodymium iron boron material.
本发明中,所述X的种类较佳地为Ti、Nb、Zr和Hf中的一种或多种。In the present invention, the type of X is preferably one or more of Ti, Nb, Zr and Hf.
本发明中,所述X的含量较佳地为0.1~0.4wt%,更佳地为0.15~0.2wt%。In the present invention, the content of X is preferably 0.1 to 0.4 wt%, more preferably 0.15 to 0.2 wt%.
当所述X包括Zr时,所述Zr的含量范围较佳地为0.02~0.4wt%,例如0.2wt%。When the X includes Zr, the content of the Zr preferably ranges from 0.02 to 0.4 wt%, for example, 0.2 wt%.
当所述X包括Ti时,所述Ti的含量范围较佳地为0~0.2wt%、且不为0,例如0.15wt%。When the X includes Ti, the content of Ti preferably ranges from 0 to 0.2 wt%, and is not 0, for example, 0.15 wt%.
当所述X包括Nb时,所述Nb的含量范围较佳地为0~0.4wt%、且不为0,例如0.03wt%或0.1wt%。When the X includes Nb, the content of Nb preferably ranges from 0 to 0.4 wt% and is not 0, for example, 0.03 wt% or 0.1 wt%.
当所述X包括Hf时,所述Hf的含量范围较佳地为0~0.1wt%、且不为0,例如0.03wt%或0.05wt%。When the X includes Hf, the content of the Hf preferably ranges from 0 to 0.1 wt% and is not 0, for example, 0.03 wt% or 0.05 wt%.
当X包括Ti和Nb时,Ti和Nb的重量比可为本领域常规,一般为1:99~99:1,例如2:1或2:3。When X includes Ti and Nb, the weight ratio of Ti and Nb can be conventional in the art, and is generally 1:99 to 99:1, such as 2:1 or 2:3.
当X包括Hf和Zr时,Hf和Zr的重量比可为本领域常规,一般为1:99~99:1,例如1:10或5:2。When X includes Hf and Zr, the weight ratio of Hf and Zr can be conventional in the art, and is generally 1:99 to 99:1, such as 1:10 or 5:2.
当X包括Hf和Nb时,Hf和Nb的重量比可为本领域常规,一般为1:99~99:1,例如1:8。When X includes Hf and Nb, the weight ratio of Hf and Nb can be conventional in the art, and is generally 1:99 to 99:1, such as 1:8.
本发明中,所述钕铁硼磁体材料还可包括Mn,所述Mn的含量范围≤0.035wt%,更佳地≤0.0175wt%。In the present invention, the neodymium iron boron magnet material may further include Mn, and the content of Mn ranges from ≤0.035wt%, more preferably ≤0.0175wt%.
本发明中,所述Co的含量较佳地为0~0.2wt%,更佳地为0。In the present invention, the content of Co is preferably 0 to 0.2 wt%, more preferably 0.
本发明中,所述B的含量范围较佳地为0.94~1.02wt%,例如0.98wt%或0.99wt%。In the present invention, the content of B is preferably in the range of 0.94 to 1.02 wt%, for example, 0.98 wt% or 0.99 wt%.
本发明中,所述“余量为Fe”是指所述钕铁硼磁体材料中还包括其它元素时,所述钕铁硼磁体材料的总重量发生变化,此时,对于各元素用量而言,除Fe以外的已有元素的重量百分比含量不发生变化,仅降低Fe元素的百分含量,以实现各元素总含量为100wt%。In the present invention, the "balance is Fe" means that when the NdFeB magnet material also includes other elements, the total weight of the NdFeB magnet material changes. At this time, the amount of each element is , The weight percentage content of existing elements other than Fe does not change, only the percentage content of Fe element is reduced to achieve a total content of 100 wt% of each element.
本发明中,所述钕铁硼磁体材料中可含有不可避免的杂质,例如碳杂质,所述碳杂质的含量不超过0.12wt%。In the present invention, the neodymium iron boron magnet material may contain inevitable impurities, such as carbon impurities, and the content of the carbon impurities does not exceed 0.12 wt%.
本发明中,较佳地,所述钕铁硼磁体材料包括:PrNd:15~30wt%;Ho:1~8.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.5~3.5wt%;Cu:0.1~0.3wt%;Ga:0.1~0.3wt%;Al:0~0.1wt%;Zr:0.2~0.4wt%;Co:0~0.2wt%;B:0.94~1.02wt%;余量为Fe及不可避免的杂质。In the present invention, preferably, the neodymium iron boron magnet material includes: PrNd: 15-30wt%; Ho: 1-8.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.5-3.5wt% ; Cu: 0.1~0.3wt%; Ga: 0.1~0.3wt%; Al: 0~0.1wt%; Zr: 0.2~0.4wt%; Co: 0~0.2wt%; B: 0.94~1.02wt%; The amount is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:PrNd:25.5wt%;Ho:4.5wt%;Gd:0.5wt%;Dy:1wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron magnet material includes: PrNd: 25.5wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 1wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:PrNd:25.5wt%;Ho:4.5wt%;Gd:0.5wt%;Dy:0.5wt%;Tb:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron magnet material includes: PrNd: 25.5% by weight; Ho: 4.5% by weight; Gd: 0.5% by weight; Dy: 0.5% by weight; Tb: 0.5% by weight; Cu : 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料原料组合物包括:PrNd:26wt%;Ho:3wt%;Gd:0.5wt%;Tb:0.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron magnet material raw material composition includes: PrNd: 26wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:PrNd:26wt%;Ho:3wt%;Gd:0.5wt%;Tb:1wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron magnet material includes: PrNd: 26wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 1wt%; Cu: 0.15wt%; Ga: 0.15wt %; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:PrNd:20wt%;Ho:10wt%;Gd:0.5wt%;Dy:1wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免 的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron magnet material includes: PrNd: 20wt%; Ho: 10wt%; Gd: 0.5wt%; Dy: 1wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:PrNd:29.9wt%;Ho:0.1wt%;Gd:0.5wt%;Dy:1wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron magnet material includes: PrNd: 29.9wt%; Ho: 0.1wt%; Gd: 0.5wt%; Dy: 1wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:PrNd:22.5wt%;Ho:7.5wt%;Gd:0.5wt%;Dy:1wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron magnet material includes: PrNd: 22.5wt%; Ho: 7.5wt%; Gd: 0.5wt%; Dy: 1wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:PrNd:24.5wt%;Ho:4.5wt%;Gd:1.5wt%;Dy:1wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron magnet material includes: PrNd: 24.5wt%; Ho: 4.5wt%; Gd: 1.5wt%; Dy: 1wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:PrNd:23wt%;Ho:4.5wt%;Gd:3wt%;Dy:1wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron magnet material includes: PrNd: 23wt%; Ho: 4.5wt%; Gd: 3wt%; Dy: 1wt%; Cu: 0.15wt%; Ga: 0.15wt %; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:PrNd:24.5wt%;Ho:4.5wt%;Gd:0.5wt%;Dy:0.6wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron magnet material includes: PrNd: 24.5wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 0.6wt%; Cu: 0.15wt%; Ga : 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:PrNd:23wt%;Ho:4.5wt%;Gd:0.5wt%;Dy:3.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron magnet material includes: PrNd: 23wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 3.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:PrNd:17.4wt%;Ho:8.1wt%;Gd:2.6wt%;Tb:4wt%;Cu:0.3wt%;Ga:0.1wt%;Al:0.02wt%;Zr:0.4wt%;B:0.99wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron magnet material includes: PrNd: 17.4wt%; Ho: 8.1wt%; Gd: 2.6wt%; Tb: 4wt%; Cu: 0.3wt%; Ga: 0.1wt%; Al: 0.02wt%; Zr: 0.4wt%; B: 0.99wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:PrNd:25.5wt%;Ho:4.5wt%;Gd:0.5wt%;Dy:1wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.1wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron magnet material includes: PrNd: 25.5wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 1wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.1wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:PrNd:25.5wt%;Ho:4.5wt%;Gd:0.5wt%;Dy:1wt%;Cu:0.15wt%;Ga:0.15wt%;Al: 0.5wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron magnet material includes: PrNd: 25.5wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 1wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.5wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:PrNd:26wt%;Ho:3wt%;Gd:0.5wt%;Tb:0.5wt%;Dy:0.5wt%;Cu:0.15wt%;Co:0.2wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron magnet material includes: PrNd: 26wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt%; Dy: 0.5wt%; Cu: 0.15 wt%; Co: 0.2wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:PrNd:26wt%;Ho:3wt%;Gd:0.5wt%;Tb:0.5wt%;Dy:0.5wt%;Cu:0.15wt%;Co:0.5wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron magnet material includes: PrNd: 26wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt%; Dy: 0.5wt%; Cu: 0.15 wt%; Co: 0.5wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
本发明中,较佳地,所述钕铁硼磁体材料包括:Nd:13~20wt%;Sm:0~5wt%;Ho:4.5~8.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.3~2.5wt%;Cu:0.1~0.3wt%;Ga:0.1~0.3wt%;Al:0~0.04wt%;Nb:0~0.4wt%;Co:0~0.2wt%;B:0.9~0.99wt%;余量为Fe及不可避免的杂质。In the present invention, preferably, the neodymium iron boron magnet material includes: Nd: 13-20wt%; Sm: 0-5wt%; Ho: 4.5-8.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.3~2.5wt%; Cu: 0.1~0.3wt%; Ga: 0.1~0.3wt%; Al: 0~0.04wt%; Nb: 0~0.4wt%; Co: 0~0.2wt%; B: 0.9-0.99wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:Nd:18wt%;Sm:4.8wt%;Ho:5.5wt%;Gd:0.5wt%;Dy:0.7wt%;Cu:0.2wt%;Ga:0.3wt%;Al:0.03wt%;Nb:0.15wt%;B:0.9wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron magnet material includes: Nd: 18wt%; Sm: 4.8wt%; Ho: 5.5wt%; Gd: 0.5wt%; Dy: 0.7wt%; Cu: 0.2wt%; Ga: 0.3wt%; Al: 0.03wt%; Nb: 0.15wt%; B: 0.9wt%; the balance is Fe and unavoidable impurities.
本发明中,较佳地,所述钕铁硼磁体材料包括:Nd:13~20wt%;Pr:0~16wt%;Ho:3.5~4.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.9~3wt%;Cu:0.1~0.3wt%;Ga:0~0.3wt%;Al:0~0.4wt%;Ti:0~0.2wt%;Co:0~0.2wt%;B:0.98~1.05wt%;余量为Fe及不可避免的杂质。In the present invention, preferably, the neodymium iron boron magnet material includes: Nd: 13-20wt%; Pr: 0-16wt%; Ho: 3.5-4.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.9~3wt%; Cu: 0.1~0.3wt%; Ga: 0~0.3wt%; Al: 0~0.4wt%; Ti: 0~0.2wt%; Co: 0~0.2wt%; B: 0.98 ~1.05wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:Nd:18.56wt%;Pr:4.84wt%;Ho:4.3wt%;Gd:1.8wt%;Dy:3wt%;Cu:0.25wt%;Ga:0.05wt%;Al:0.02wt%;Ti:0.15wt%;B:1.05wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron magnet material includes: Nd: 18.56wt%; Pr: 4.84wt%; Ho: 4.3wt%; Gd: 1.8wt%; Dy: 3wt%; Cu: 0.25wt%; Ga: 0.05wt%; Al: 0.02wt%; Ti: 0.15wt%; B: 1.05wt%; the balance is Fe and unavoidable impurities.
本发明中,较佳地,所述钕铁硼磁体材料包括:Nd:13~20wt%;Pr:0~16wt%;Ho:1~4.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.6~3wt%;Cu: 0.2~0.35wt%;Ga:0.2~0.35wt%;Al:0~0.0.04wt%;Hf:0~0.1wt%;Co:0~0.2wt%;B:0.94~0.99wt%;余量为Fe及不可避免的杂质。In the present invention, preferably, the neodymium iron boron magnet material includes: Nd: 13-20wt%; Pr: 0-16wt%; Ho: 1-4.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.6-3wt%; Cu: 0.2-0.35wt%; Ga: 0.2-0.35wt%; Al: 0-0.0.04wt%; Hf: 0-0.1wt%; Co: 0-0.2wt%; B: 0.94~0.99wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:Nd:13wt%;Pr:10.8wt%;Ho:1.7wt%;Gd:2.5wt%;Dy:1.3wt%;Tb:1.5wt%;Cu:0.35wt%;Ga:0.35wt%;Hf:0.1wt%;B:0.98wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron magnet material includes: Nd: 13wt%; Pr: 10.8wt%; Ho: 1.7wt%; Gd: 2.5wt%; Dy: 1.3wt%; Tb: 1.5wt%; Cu: 0.35wt%; Ga: 0.35wt%; Hf: 0.1wt%; B: 0.98wt%; the balance is Fe and unavoidable impurities.
本发明还提供了一种钕铁硼烧结体的原料组合物,其包括:The present invention also provides a raw material composition of the neodymium iron boron sintered body, which includes:
轻稀土元素LR:13~31.5wt%;所述LR包括Nd;Light rare earth element LR: 13~31.5wt%; said LR includes Nd;
Ho:0~10wt%、且不为0;Ho: 0~10wt%, and not 0;
Gd:0~5wt%、且不为0;Gd: 0~5wt%, and not 0;
Dy和/或Tb:0~3.1wt%,且不为0;Dy and/or Tb: 0~3.1wt%, and not 0;
Cu:0~0.35wt%,且不为0;Cu: 0~0.35wt%, and not 0;
Ga:0~0.35wt%,且不为0;Ga: 0~0.35wt%, and not 0;
Al:0~0.5wt%;Al: 0~0.5wt%;
X:0.05~0.45wt%;所述X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;X: 0.05 to 0.45 wt%; the X includes one or more of Ti, Nb, Zr, Hf, V, Mo, W, Ta and Cr;
Co:0~0.5wt%;Co: 0~0.5wt%;
B:0.9~1.1wt%;B: 0.9~1.1wt%;
余量为Fe;The balance is Fe;
所述钕铁硼烧结体的原料组合物中总稀土含量为29.5~32.5wt%;The total rare earth content in the raw material composition of the neodymium iron boron sintered body is 29.5-32.5 wt%;
wt%为各元素占所述钕铁硼烧结体的原料组合物的重量百分比。The wt% is the weight percentage of each element in the raw material composition of the neodymium iron boron sintered body.
本发明中,所述钕铁硼烧结体的原料组合物中总稀土含量较佳地为29.7~31.82wt%,例如30.1wt%、30.24wt%、31.1wt%、31.2wt%、31.46wt%或31.82wt%。In the present invention, the total rare earth content in the raw material composition of the neodymium iron boron sintered body is preferably 29.7 to 31.82 wt%, for example, 30.1 wt%, 30.24 wt%, 31.1 wt%, 31.2 wt%, 31.46 wt% or 31.82wt%.
本发明中,所述LR的含量较佳地为15~30.5wt%,例如17.6wt%、20.1wt%、22.6wt%、22.8wt%、23.1wt%、23.64wt%、24wt%、24.6wt%、25.6wt%、 26.1wt%或30.1wt%。In the present invention, the content of the LR is preferably 15 to 30.5 wt%, for example, 17.6 wt%, 20.1 wt%, 22.6 wt%, 22.8 wt%, 23.1 wt%, 23.64 wt%, 24 wt%, 24.6 wt% , 25.6wt%, 26.1wt% or 30.1wt%.
本发明中,所述Nd的含量较佳地为13~20wt%,例如13.1wt%、18wt%或18.75wt%。In the present invention, the Nd content is preferably 13-20wt%, for example 13.1wt%, 18wt% or 18.75wt%.
本发明中,所述LR还可包括本领域其他常规的轻稀土元素,例如包括Pr和/或Sm。In the present invention, the LR may also include other conventional light rare earth elements in the art, such as Pr and/or Sm.
其中,当所述LR包含Pr时,所述Pr的含量可为0~16wt%、且不为0wt%;较佳地为4wt%~12wt%,例如4.89wt%或10.9wt%。所述Pr的添加形式可为纯净Pr和/或PrNd,较佳地为PrNd。所述PrNd为Pr和Nd的合金,PrNd中Pr与Nd的重量比一般为25:75或20:80。Wherein, when the LR contains Pr, the content of Pr may be 0-16% by weight, and not 0% by weight; preferably 4%-12% by weight, such as 4.89% by weight or 10.9% by weight. The added form of Pr may be pure Pr and/or PrNd, preferably PrNd. The PrNd is an alloy of Pr and Nd, and the weight ratio of Pr to Nd in PrNd is generally 25:75 or 20:80.
其中,当所述LR包含Sm时,所述Sm的含量可为0~5wt%,且不为0;例如4.8wt%。Wherein, when the LR contains Sm, the content of Sm may be 0-5 wt%, and not 0; for example, 4.8 wt%.
本发明中,所述Ho含量较佳地为1~8.5wt%,更佳地为4.5~7.5wt%,例如1.71wt%、3wt%、4.34wt%、5.5wt%或8.2wt%。In the present invention, the Ho content is preferably 1 to 8.5 wt%, more preferably 4.5 to 7.5 wt%, such as 1.71 wt%, 3 wt%, 4.34 wt%, 5.5 wt% or 8.2 wt%.
本发明中,所述Gd含量较佳地为0.5~3wt%,例如1wt%、1.5wt%、1.82wt%、2.52wt%或2.63wt%。In the present invention, the Gd content is preferably 0.5-3wt%, for example 1wt%, 1.5wt%, 1.82wt%, 2.52wt% or 2.63wt%.
本发明中,所述Ho和所述Gd的总含量较佳地为不超过10wt%。In the present invention, the total content of the Ho and the Gd is preferably not more than 10 wt%.
本发明中,所述Dy和/或Tb的含量范围较佳地为0.1~2wt%,例如0.5wt%、1wt%、1.51wt%、2.02wt%或2.5wt%。当所述第一组分包括Dy和Tb的混合物时,Dy和Tb的重量比可为本领域常规,一般为1:99~99:1,例如50:50、60:40或者40:60。In the present invention, the content of Dy and/or Tb preferably ranges from 0.1 to 2% by weight, for example, 0.5% by weight, 1% by weight, 1.51% by weight, 2.02% by weight or 2.5% by weight. When the first component includes a mixture of Dy and Tb, the weight ratio of Dy and Tb may be conventional in the art, and is generally 1:99 to 99:1, such as 50:50, 60:40, or 40:60.
本发明中,所述Cu的含量范围较佳地为0.1~0.3wt%,例如0.15wt%、0.2wt%或0.25wt%。In the present invention, the content of Cu is preferably in the range of 0.1 to 0.3 wt%, for example, 0.15 wt%, 0.2 wt% or 0.25 wt%.
本发明中,所述Ga的含量范围较佳地为0.1~0.3wt%,例如0.15wt%、0.2wt%或0.25wt%。In the present invention, the content of Ga is preferably in the range of 0.1 to 0.3 wt%, such as 0.15 wt%, 0.2 wt% or 0.25 wt%.
本发明中,所述Al的含量范围为0~0.3wt%,更佳地为0~0.1wt%,例如0.02wt%、0.04wt%或0.08wt%;更佳地为0~0.04wt%,最佳地为0。其中当Al的含量为0~0.1wt%时,Al可以为制备钕铁硼材料的过程中引入的杂 质Al和/或额外添加的Al。当Al的含量为0~0.04wt%时,Al一般为制备钕铁硼材料的过程中引入的杂质Al。In the present invention, the Al content ranges from 0 to 0.3 wt%, more preferably 0 to 0.1 wt%, such as 0.02 wt%, 0.04 wt% or 0.08 wt%; more preferably 0 to 0.04 wt%, Best is 0. Wherein, when the content of Al is 0-0.1 wt%, Al may be impurity Al introduced in the process of preparing the neodymium iron boron material and/or additional Al added. When the content of Al is 0-0.04 wt%, Al is generally the impurity Al introduced in the process of preparing the neodymium iron boron material.
本发明中,所述X的种类较佳地为Ti、Nb、Zr和Hf中的一种或多种。In the present invention, the type of X is preferably one or more of Ti, Nb, Zr and Hf.
本发明中,所述X的含量较佳地为0.1~0.4wt%,更佳地为0.15~0.2wt%。In the present invention, the content of X is preferably 0.1 to 0.4 wt%, more preferably 0.15 to 0.2 wt%.
当所述X包括Zr时,所述Zr的含量范围较佳地为0.02~0.4wt%,例如0.2wt%。When the X includes Zr, the content of the Zr preferably ranges from 0.02 to 0.4 wt%, for example, 0.2 wt%.
当所述X包括Ti时,所述Ti的含量范围较佳地为0~0.2wt%、且不为0,例如0.15wt%。When the X includes Ti, the content of Ti preferably ranges from 0 to 0.2 wt%, and is not 0, for example, 0.15 wt%.
当所述X包括Nb时,所述Nb的含量范围较佳地为0~0.4wt%、且不为0,例如0.03wt%或0.1wt%。When the X includes Nb, the content of Nb preferably ranges from 0 to 0.4 wt% and is not 0, for example, 0.03 wt% or 0.1 wt%.
当所述X包括Hf时,所述Hf的含量范围较佳地为0~0.1wt%、且不为0,例如0.03wt%或0.05wt%。When the X includes Hf, the content of the Hf preferably ranges from 0 to 0.1 wt% and is not 0, for example, 0.03 wt% or 0.05 wt%.
当X包括Ti和Nb时,Ti和Nb的重量比可为本领域常规,一般为1:99~99:1,例如2:1或2:3。When X includes Ti and Nb, the weight ratio of Ti and Nb can be conventional in the art, and is generally 1:99 to 99:1, such as 2:1 or 2:3.
当X包括Hf和Zr时,Hf和Zr的重量比可为本领域常规,一般为1:99~99:1,例如1:10或5:2。When X includes Hf and Zr, the weight ratio of Hf and Zr can be conventional in the art, and is generally 1:99 to 99:1, such as 1:10 or 5:2.
当X包括Hf和Nb时,Hf和Nb的重量比可为本领域常规,一般为1:99~99:1,例如1:8。When X includes Hf and Nb, the weight ratio of Hf and Nb can be conventional in the art, and is generally 1:99 to 99:1, such as 1:8.
本发明中,所述钕铁硼烧结体的原料组合物还可包括Mn,所述Mn的含量范围≤0.035wt%,更佳地≤0.0175wt%。In the present invention, the raw material composition of the neodymium iron boron sintered body may further include Mn, and the content of Mn ranges from ≤0.035wt%, more preferably ≤0.0175wt%.
本发明中,所述Co的含量较佳地为0~0.2wt%,更佳地为0。In the present invention, the content of Co is preferably 0 to 0.2 wt%, more preferably 0.
本发明中,所述B的含量范围较佳地为0.94~1.02wt%,例如0.98wt%或0.99wt%。In the present invention, the content of B is preferably in the range of 0.94 to 1.02 wt%, for example, 0.98 wt% or 0.99 wt%.
本发明中,所述“余量为Fe”是指,所述钕铁硼烧结体的原料组合物中添加其它元素时,所述原料组合物的总重量发生变化,此时,对于各元素用量而言,除Fe以外的已有元素的重量百分比含量不发生变化,仅降低Fe元素的百分含量,以实现各元素总含量为100wt%。In the present invention, the "balance is Fe" means that when other elements are added to the raw material composition of the neodymium iron boron sintered body, the total weight of the raw material composition changes. In this case, the amount of each element In other words, the weight percentage content of existing elements other than Fe does not change, and only the percentage content of Fe element is reduced to achieve a total content of 100 wt% of each element.
本发明中,所述钕铁硼烧结体的原料组合物中可含有不可避免的杂质。例如,在制备工艺中一般会添加润滑剂等而引入碳杂质,碳杂质的含量不超过0.12wt%。In the present invention, the raw material composition of the neodymium iron boron sintered body may contain inevitable impurities. For example, in the preparation process, lubricants are generally added to introduce carbon impurities, and the content of carbon impurities does not exceed 0.12 wt%.
本发明中,较佳地,所述钕铁硼烧结体的原料组合物包括:PrNd:15~30.5wt%;Ho:1~8.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.1~2wt%;Cu:0.1~0.3wt%;Ga:0.1~0.3wt%;Al:0~0.1wt%;Zr:0.2~0.4wt%;Co:0~0.2wt%;B:0.94~1.02wt%;余量为Fe及不可避免的杂质。In the present invention, preferably, the raw material composition of the neodymium iron boron sintered body includes: PrNd: 15 to 30.5 wt%; Ho: 1 to 8.5 wt%; Gd: 0.5 to 3 wt%; Dy and/or Tb: 0.1~2wt%; Cu: 0.1~0.3wt%; Ga: 0.1~0.3wt%; Al: 0~0.1wt%; Zr: 0.2~0.4wt%; Co: 0~0.2wt%; B: 0.94~1.02 wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:PrNd:25.6wt%;Ho:4.5wt%;Gd:0.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron sintered body includes: PrNd: 25.6% by weight; Ho: 4.5% by weight; Gd: 0.5% by weight; Dy: 0.5% by weight; Cu: 0.15 wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:PrNd:25.6wt%;Ho:4.5wt%;Gd:0.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron sintered body includes: PrNd: 25.6% by weight; Ho: 4.5% by weight; Gd: 0.5% by weight; Dy: 0.5% by weight; Cu: 0.15 wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:PrNd:26.1wt%;Ho:3wt%;Gd:0.5wt%;Tb:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron sintered body includes: PrNd: 26.1wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt%; Cu: 0.15wt% %; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:PrNd:26.1wt%;Ho:3wt%;Gd:0.5wt%;Tb:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron sintered body includes: PrNd: 26.1wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt%; Cu: 0.15wt% %; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:PrNd:20.1wt%;Ho:10wt%;Gd:0.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron sintered body includes: PrNd: 20.1wt%; Ho: 10wt%; Gd: 0.5wt%; Dy: 0.5wt%; Cu: 0.15wt %; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:PrNd:30.1wt%;Ho:0.1wt%;Gd:0.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron sintered body includes: PrNd: 30.1wt%; Ho: 0.1wt%; Gd: 0.5wt%; Dy: 0.5wt%; Cu: 0.15 wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:PrNd:22.6wt%;Ho:7.5wt%;Gd:0.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron sintered body includes: PrNd: 22.6wt%; Ho: 7.5wt%; Gd: 0.5wt%; Dy: 0.5wt%; Cu: 0.15 wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:PrNd:24.6wt%;Ho:4.5wt%;Gd:1.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron sintered body includes: PrNd: 24.6wt%; Ho: 4.5wt%; Gd: 1.5wt%; Dy: 0.5wt%; Cu: 0.15 wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:PrNd:23.1wt%;Ho:4.5wt%;Gd:3wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron sintered body includes: PrNd: 23.1wt%; Ho: 4.5wt%; Gd: 3wt%; Dy: 0.5wt%; Cu: 0.15wt% %; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:PrNd:24.6wt%;Ho:4.5wt%;Gd:0.5wt%;Dy:0.1wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron sintered body includes: PrNd: 24.6% by weight; Ho: 4.5% by weight; Gd: 0.5% by weight; Dy: 0.1% by weight; Cu: 0.15 wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:PrNd:23.1wt%;Ho:4.5wt%;Gd:0.5wt%;Dy:3wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron sintered body includes: PrNd: 23.1wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 3wt%; Cu: 0.15wt% %; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:PrNd:17.6wt%;Ho:8.2wt%;Gd:2.63wt%;Tb:3.03wt%;Cu:0.3wt%;Ga:0.1wt%;Al:0.02wt%;Zr:0.4wt%;B:0.99wt%;余量为Fe及不可 避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron sintered body includes: PrNd: 17.6% by weight; Ho: 8.2% by weight; Gd: 2.63% by weight; Tb: 3.03% by weight; Cu: 0.3 wt%; Ga: 0.1 wt%; Al: 0.02 wt%; Zr: 0.4 wt%; B: 0.99 wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:PrNd:25.6wt%;Ho:4.5wt%;Gd:0.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.1wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron sintered body includes: PrNd: 25.6% by weight; Ho: 4.5% by weight; Gd: 0.5% by weight; Dy: 0.5% by weight; Cu: 0.15 wt%; Ga: 0.15 wt%; Al: 0.1 wt%; Zr: 0.2 wt%; B: 0.94 wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:PrNd:25.6wt%;Ho:4.5wt%;Gd:0.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.5wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron sintered body includes: PrNd: 25.6% by weight; Ho: 4.5% by weight; Gd: 0.5% by weight; Dy: 0.5% by weight; Cu: 0.15 wt%; Ga: 0.15wt%; Al: 0.5wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:PrNd:26.1wt%;Ho:3wt%;Gd:0.5wt%;Tb:0.5wt%;Cu:0.15wt%;Co:0.2wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron sintered body includes: PrNd: 26.1wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt%; Cu: 0.15wt% %; Co: 0.2wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:PrNd:26.1wt%;Ho:3wt%;Gd:0.5wt%;Tb:0.5wt%;Cu:0.15wt%;Co:0.5wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron sintered body includes: PrNd: 26.1wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt%; Cu: 0.15wt% %; Co: 0.5wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
本发明中,较佳地,所述钕铁硼烧结体的原料组合物包括:Nd:13~20wt%;Sm:0~5wt%;Ho:4.5~8.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.1~2wt%;Cu:0.1~0.3wt%;Ga:0.1~0.3wt%;Al:0~0.04wt%;Nb:0~0.4wt%;Co:0~0.2wt%;B:0.9~0.99wt%;余量为Fe及不可避免的杂质。In the present invention, preferably, the raw material composition of the neodymium iron boron sintered body includes: Nd: 13-20wt%; Sm: 0-5wt%; Ho: 4.5-8.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.1~2wt%; Cu: 0.1~0.3wt%; Ga: 0.1~0.3wt%; Al: 0~0.04wt%; Nb: 0~0.4wt%; Co: 0~0.2wt% ; B: 0.9-0.99wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:Nd:18wt%;Sm:4.8wt%;Ho:5.5wt%;Gd:0.5wt%;Dy:0.5wt%;Cu:0.2wt%;Ga:0.3wt%;Al:0.03wt%;Nb:0.15wt%;B:0.9wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron sintered body includes: Nd: 18wt%; Sm: 4.8wt%; Ho: 5.5wt%; Gd: 0.5wt%; Dy: 0.5wt %; Cu: 0.2wt%; Ga: 0.3wt%; Al: 0.03wt%; Nb: 0.15wt%; B: 0.9wt%; the balance is Fe and unavoidable impurities.
本发明中,较佳地,所述钕铁硼烧结体的原料组合物包括:Nd:13~20wt%;Pr:0~16wt%;Ho:3.5~4.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.1~2.5wt%; Cu:0.1~0.3wt%;Ga:0~0.3wt%;Al:0~0.4wt%;Ti:0~0.2wt%;Co:0~0.2wt%;B:0.98~1.1wt%;余量为Fe及不可避免的杂质。In the present invention, preferably, the raw material composition of the neodymium iron boron sintered body includes: Nd: 13-20wt%; Pr: 0-16wt%; Ho: 3.5-4.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.1~2.5wt%; Cu: 0.1~0.3wt%; Ga: 0~0.3wt%; Al: 0~0.4wt%; Ti: 0~0.2wt%; Co: 0~0.2wt %; B: 0.98~1.1wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:Nd:18.75wt%;Pr:4.89wt%;Ho:4.34wt%;Gd:1.82wt%;Dy:2.02wt%;Cu:0.25wt%;Ga:0.05wt%;Al:0.02wt%;Ti:0.15wt%;B:1.06wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron sintered body includes: Nd: 18.75wt%; Pr: 4.89wt%; Ho: 4.34wt%; Gd: 1.82wt%; Dy: 2.02 wt%; Cu: 0.25wt%; Ga: 0.05wt%; Al: 0.02wt%; Ti: 0.15wt%; B: 1.06wt%; the balance is Fe and unavoidable impurities.
本发明中,较佳地,所述钕铁硼烧结体的原料组合物包括:Nd:13~20wt%;Pr:0~16wt%;Ho:1~4.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.1~2wt%;Cu:0.2~0.35wt%;Ga:0.2~0.35wt%;Al:0~0.0.04wt%;Hf:0~0.1wt%;Co:0~0.2wt%;B:0.94~1.05wt%;余量为Fe及不可避免的杂质。In the present invention, preferably, the raw material composition of the neodymium iron boron sintered body includes: Nd: 13-20wt%; Pr: 0-16wt%; Ho: 1-4.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.1-2wt%; Cu: 0.2-0.35wt%; Ga: 0.2-0.35wt%; Al: 0-0.0.04wt%; Hf: 0-0.1wt%; Co: 0-0.2wt %; B: 0.94~1.05wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:所述第一组分:Nd:13.1wt%;Pr:10.9wt%;Ho:1.71wt%;Gd:2.52wt%;Dy:0.5wt%;Tb:1.51wt%;Cu:0.35wt%;Ga:0.35wt%;Hf:0.1wt%;B:0.99wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the raw material composition of the neodymium iron boron sintered body includes: the first component: Nd: 13.1 wt%; Pr: 10.9 wt%; Ho: 1.71 wt%; Gd: 2.52wt%; Dy: 0.5wt%; Tb: 1.51wt%; Cu: 0.35wt%; Ga: 0.35wt%; Hf: 0.1wt%; B: 0.99wt%; the balance is Fe and unavoidable impurities.
本发明还提供了一种钕铁硼烧结体的制备方法,将上述钕铁硼烧结体的原料组合物经熔炼、制粉、成型、烧结即可。The present invention also provides a method for preparing the neodymium iron boron sintered body, which can be achieved by smelting, powdering, molding, and sintering the raw material composition of the neodymium iron boron sintered body.
其中,所述熔炼、所述制粉、所述成型和所述烧结的过程与上述相同。Wherein, the processes of the smelting, the powder making, the forming and the sintering are the same as those described above.
本发明还提供了一种由如上所述的制备方法制得的钕铁硼烧结体。The invention also provides a neodymium iron boron sintered body prepared by the above-mentioned preparation method.
本发明还提供了一种钕铁硼烧结体,其包括:The present invention also provides a neodymium iron boron sintered body, which comprises:
轻稀土元素LR:13~31.5wt%;所述LR包括Nd;Light rare earth element LR: 13~31.5wt%; said LR includes Nd;
Ho:0~10wt%、且不为0;Ho: 0~10wt%, and not 0;
Gd:0~5wt%、且不为0;Gd: 0~5wt%, and not 0;
Dy和/或Tb:0~3.1wt%,且不为0;Dy and/or Tb: 0~3.1wt%, and not 0;
Cu:0~0.35wt%,且不为0;Cu: 0~0.35wt%, and not 0;
Ga:0~0.35wt%,且不为0;Ga: 0~0.35wt%, and not 0;
Al:0~0.5wt%;Al: 0~0.5wt%;
X:0.05~0.45wt%;所述X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;X: 0.05 to 0.45 wt%; the X includes one or more of Ti, Nb, Zr, Hf, V, Mo, W, Ta and Cr;
Co:0~0.5wt%;Co: 0~0.5wt%;
B:0.9~1.1wt%;B: 0.9~1.1wt%;
余量为Fe;The balance is Fe;
所述钕铁硼烧结体中总稀土含量为29.5~32.5wt%;The total rare earth content in the NdFeB sintered body is 29.5-32.5wt%;
wt%为各元素占所述钕铁硼烧结体的重量百分比;wt% is the weight percentage of each element in the neodymium iron boron sintered body;
所述钕铁硼烧结体包含主相、晶界外延层和富钕相;所述主相和所述晶界外延层分布有Ho和Gd,以及Dy和/或Tb;所述钕铁硼烧结体的晶界连续性为96%以上。The neodymium iron boron sintered body includes a main phase, a grain boundary epitaxial layer and a neodymium-rich phase; the main phase and the grain boundary epitaxial layer are distributed with Ho and Gd, and Dy and/or Tb; the neodymium iron boron sintered The continuity of the grain boundary of the bulk is 96% or more.
其中,所述主相和所述晶界外延层中较佳地分布有Ho和Gd以及Dy和/或Tb元素的总重量的95%以上。也就是说,只有少部分Ho和Gd元素以及Dy和/或Tb分布在富钕相。Wherein, the main phase and the grain boundary epitaxial layer are preferably distributed with more than 95% of the total weight of Ho, Gd and Dy and/or Tb elements. That is, only a small part of Ho and Gd elements and Dy and/or Tb are distributed in the neodymium-rich phase.
本发明中,所述钕铁硼烧结体中总稀土含量较佳地为29.7~31.82wt%,例如30.1wt%、30.24wt%、31.1wt%、31.2wt%、31.46wt%或31.82wt%。In the present invention, the total rare earth content in the neodymium iron boron sintered body is preferably 29.7 to 31.82 wt%, for example, 30.1 wt%, 30.24 wt%, 31.1 wt%, 31.2 wt%, 31.46 wt% or 31.82 wt%.
本发明中,所述LR的含量较佳地为15~30.5wt%,例如17.6wt%、20.1wt%、22.6wt%、22.8wt%、23.1wt%、23.64wt%、24wt%、24.6wt%、25.6wt%、26.1wt%或30.1wt%。In the present invention, the content of the LR is preferably 15 to 30.5 wt%, for example, 17.6 wt%, 20.1 wt%, 22.6 wt%, 22.8 wt%, 23.1 wt%, 23.64 wt%, 24 wt%, 24.6 wt% , 25.6wt%, 26.1wt% or 30.1wt%.
本发明中,所述Nd的含量较佳地为13~20wt%,例如13.1wt%、18wt%或18.75wt%。In the present invention, the Nd content is preferably 13-20wt%, for example 13.1wt%, 18wt% or 18.75wt%.
本发明中,所述LR还可包括本领域其他常规的轻稀土元素,例如包括Pr和/或Sm。In the present invention, the LR may also include other conventional light rare earth elements in the art, such as Pr and/or Sm.
其中,当所述LR包含Pr时,所述Pr的含量可为0~16wt%、且不为0wt%;较佳地为4wt%~12wt%,例如4.89wt%或10.9wt%。所述Pr的添加形式可为纯净Pr和/或PrNd,较佳地为PrNd。所述PrNd为Pr和Nd的合金,PrNd中Pr与Nd的重量比一般为25:75或20:80。Wherein, when the LR contains Pr, the content of Pr may be 0-16% by weight, and not 0% by weight; preferably 4%-12% by weight, such as 4.89% by weight or 10.9% by weight. The added form of Pr may be pure Pr and/or PrNd, preferably PrNd. The PrNd is an alloy of Pr and Nd, and the weight ratio of Pr to Nd in PrNd is generally 25:75 or 20:80.
其中,当所述LR包含Sm时,所述Sm的含量可为0~5wt%,且不为0;例如4.8wt%。Wherein, when the LR contains Sm, the content of Sm may be 0-5 wt%, and not 0; for example, 4.8 wt%.
本发明中,所述Ho含量较佳地为1~8.5wt%,更佳地为4.5~7.5wt%,例如1.71wt%、3wt%、4.34wt%、5.5wt%或8.2wt%。In the present invention, the Ho content is preferably 1 to 8.5 wt%, more preferably 4.5 to 7.5 wt%, such as 1.71 wt%, 3 wt%, 4.34 wt%, 5.5 wt% or 8.2 wt%.
本发明中,所述Gd含量较佳地为0.5~3wt%,例如1wt%、1.5wt%、1.82wt%、2.52wt%或2.63wt%。In the present invention, the Gd content is preferably 0.5-3wt%, for example 1wt%, 1.5wt%, 1.82wt%, 2.52wt% or 2.63wt%.
本发明中,所述Ho和所述Gd的总含量较佳地为不超过10wt%。In the present invention, the total content of the Ho and the Gd is preferably not more than 10 wt%.
本发明中,所述Dy和/或Tb的含量范围较佳地为0.1~2wt%,例如0.5wt%、1wt%、1.51wt%、2.02wt%或2.5wt%。当所述第一组分包括Dy和Tb的混合物时,Dy和Tb的重量比可为本领域常规,一般为1:99~99:1,例如50:50、60:40或者40:60。In the present invention, the content of Dy and/or Tb preferably ranges from 0.1 to 2% by weight, for example, 0.5% by weight, 1% by weight, 1.51% by weight, 2.02% by weight or 2.5% by weight. When the first component includes a mixture of Dy and Tb, the weight ratio of Dy and Tb may be conventional in the art, and is generally 1:99 to 99:1, such as 50:50, 60:40, or 40:60.
本发明中,所述Cu的含量范围较佳地为0.1~0.3wt%,例如0.15wt%、0.2wt%或0.25wt%。In the present invention, the content of Cu is preferably in the range of 0.1 to 0.3 wt%, for example, 0.15 wt%, 0.2 wt% or 0.25 wt%.
本发明中,所述Ga的含量范围较佳地为0.1~0.3wt%,例如0.15wt%、0.2wt%或0.25wt%。In the present invention, the content of Ga is preferably in the range of 0.1 to 0.3 wt%, such as 0.15 wt%, 0.2 wt% or 0.25 wt%.
本发明中,所述Al的含量范围为0~0.3wt%,更佳地为0~0.1wt%,例如0.02wt%、0.04wt%或0.08wt%;更佳地为0~0.04wt%,最佳地为0。其中当Al的含量为0~0.1wt%时,Al可以为制备钕铁硼材料的过程中引入的杂质Al和/或额外添加的Al。当Al的含量为0~0.04wt%时,Al一般为制备钕铁硼材料的过程中引入的杂质Al。In the present invention, the Al content ranges from 0 to 0.3 wt%, more preferably 0 to 0.1 wt%, such as 0.02 wt%, 0.04 wt% or 0.08 wt%; more preferably 0 to 0.04 wt%, Best is 0. When the content of Al is 0-0.1 wt%, Al may be impurity Al introduced during the preparation of the neodymium iron boron material and/or additional Al added. When the content of Al is 0-0.04 wt%, Al is generally the impurity Al introduced in the process of preparing the neodymium iron boron material.
本发明中,所述X的种类较佳地为Ti、Nb、Zr和Hf中的一种或多种。In the present invention, the type of X is preferably one or more of Ti, Nb, Zr and Hf.
本发明中,所述X的含量较佳地为0.1~0.4wt%,更佳地为0.15~0.2wt%。In the present invention, the content of X is preferably 0.1 to 0.4 wt%, more preferably 0.15 to 0.2 wt%.
当所述X包括Zr时,所述Zr的含量范围较佳地为0.02~0.4wt%,例如0.2wt%。When the X includes Zr, the content of the Zr preferably ranges from 0.02 to 0.4 wt%, for example, 0.2 wt%.
当所述X包括Ti时,所述Ti的含量范围较佳地为0~0.2wt%、且不为0,例如0.15wt%。When the X includes Ti, the content of Ti preferably ranges from 0 to 0.2 wt%, and is not 0, for example, 0.15 wt%.
当所述X包括Nb时,所述Nb的含量范围较佳地为0~0.4wt%、且不为 0,例如0.03wt%或0.1wt%。When the X includes Nb, the content of Nb preferably ranges from 0 to 0.4 wt% and is not 0, for example, 0.03 wt% or 0.1 wt%.
当所述X包括Hf时,所述Hf的含量范围较佳地为0~0.1wt%、且不为0,例如0.03wt%或0.05wt%。When the X includes Hf, the content of the Hf preferably ranges from 0 to 0.1 wt% and is not 0, for example, 0.03 wt% or 0.05 wt%.
当X包括Ti和Nb时,Ti和Nb的重量比可为本领域常规,一般为1:99~99:1,例如2:1或2:3。When X includes Ti and Nb, the weight ratio of Ti and Nb can be conventional in the art, and is generally 1:99 to 99:1, such as 2:1 or 2:3.
当X包括Hf和Zr时,Hf和Zr的重量比可为本领域常规,一般为1:99~99:1,例如1:10或5:2。When X includes Hf and Zr, the weight ratio of Hf and Zr can be conventional in the art, and is generally 1:99 to 99:1, such as 1:10 or 5:2.
当X包括Hf和Nb时,Hf和Nb的重量比可为本领域常规,一般为1:99~99:1,例如1:8。When X includes Hf and Nb, the weight ratio of Hf and Nb can be conventional in the art, and is generally 1:99 to 99:1, such as 1:8.
本发明中,所述钕铁硼烧结体还可包括Mn,所述Mn的含量范围≤0.035wt%,更佳地≤0.0175wt%。In the present invention, the neodymium iron boron sintered body may further include Mn, and the content range of the Mn is ≤0.035wt%, more preferably ≤0.0175wt%.
本发明中,所述Co的含量较佳地为0~0.2wt%,更佳地为0。In the present invention, the content of Co is preferably 0 to 0.2 wt%, more preferably 0.
本发明中,所述B的含量范围较佳地为0.94~1.02wt%,例如0.98wt%或0.99wt%。In the present invention, the content of B is preferably in the range of 0.94 to 1.02 wt%, for example, 0.98 wt% or 0.99 wt%.
本发明中,所述“余量为Fe”是指,所述钕铁硼烧结体中还包括其它元素时,所述钕铁硼烧结体的总重量发生变化,此时,对于各元素用量而言,除Fe以外的已有元素的重量百分比含量不发生变化,仅降低Fe元素的百分含量,以实现各元素总含量为100wt%。In the present invention, the "balance is Fe" means that when the NdFeB sintered body also includes other elements, the total weight of the NdFeB sintered body changes. In this case, the amount of each element is changed. In other words, the weight percentage content of existing elements other than Fe does not change, and only the percentage content of Fe element is reduced to achieve a total content of 100 wt% of each element.
本发明中,所述钕铁硼烧结体中可含有不可避免的杂质。例如,在制备工艺中一般会添加润滑剂等而引入碳杂质,碳杂质的含量不超过0.12wt%。In the present invention, the neodymium iron boron sintered body may contain inevitable impurities. For example, in the preparation process, lubricants are generally added to introduce carbon impurities, and the content of carbon impurities does not exceed 0.12 wt%.
本发明中,较佳地,所述钕铁硼烧结体包括:PrNd:15~30.5wt%;Ho:1~8.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.1~2wt%;Cu:0.1~0.3wt%;Ga:0.1~0.3wt%;Al:0~0.1wt%;Zr:0.2~0.4wt%;Co:0~0.2wt%;B:0.94~1.02wt%;余量为Fe及不可避免的杂质。In the present invention, preferably, the neodymium iron boron sintered body includes: PrNd: 15-30.5wt%; Ho: 1-8.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.1-2wt% ; Cu: 0.1~0.3wt%; Ga: 0.1~0.3wt%; Al: 0~0.1wt%; Zr: 0.2~0.4wt%; Co: 0~0.2wt%; B: 0.94~1.02wt%; The amount is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:PrNd:25.6wt%;Ho:4.5wt%;Gd:0.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron sintered body includes: PrNd: 25.6wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga : 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:PrNd:25.6wt%;Ho:4.5wt%;Gd:0.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron sintered body includes: PrNd: 25.6wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga : 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:PrNd:26.1wt%;Ho:3wt%;Gd:0.5wt%;Tb:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron sintered body includes: PrNd: 26.1wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:PrNd:26.1wt%;Ho:3wt%;Gd:0.5wt%;Tb:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron sintered body includes: PrNd: 26.1wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:PrNd:20.1wt%;Ho:10wt%;Gd:0.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron sintered body includes: PrNd: 20.1wt%; Ho: 10wt%; Gd: 0.5wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:PrNd:30.1wt%;Ho:0.1wt%;Gd:0.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron sintered body includes: PrNd: 30.1wt%; Ho: 0.1wt%; Gd: 0.5wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga : 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:PrNd:22.6wt%;Ho:7.5wt%;Gd:0.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron sintered body includes: PrNd: 22.6wt%; Ho: 7.5wt%; Gd: 0.5wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga : 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:PrNd:24.6wt%;Ho:4.5wt%;Gd:1.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron sintered body includes: PrNd: 24.6wt%; Ho: 4.5wt%; Gd: 1.5wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga : 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:PrNd:23.1wt%;Ho:4.5wt%;Gd:3wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron sintered body includes: PrNd: 23.1wt%; Ho: 4.5wt%; Gd: 3wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:PrNd:24.6wt%;Ho:4.5wt%;Gd:0.5wt%;Dy:0.1wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron sintered body includes: PrNd: 24.6wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 0.1wt%; Cu: 0.15wt%; Ga : 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:PrNd:23.1wt%;Ho:4.5wt%;Gd:0.5wt%;Dy:3wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron sintered body includes: PrNd: 23.1wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 3wt%; Cu: 0.15wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:PrNd:17.6wt%;Ho:8.2wt%;Gd:2.63wt%;Tb:3.03wt%;Cu:0.3wt%;Ga:0.1wt%;Al:0.02wt%;Zr:0.4wt%;B:0.99wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron sintered body includes: PrNd: 17.6% by weight; Ho: 8.2% by weight; Gd: 2.63% by weight; Tb: 3.03% by weight; Cu: 0.3% by weight; Ga : 0.1wt%; Al: 0.02wt%; Zr: 0.4wt%; B: 0.99wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:PrNd:25.6wt%;Ho:4.5wt%;Gd:0.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.1wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron sintered body includes: PrNd: 25.6wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga : 0.15wt%; Al: 0.1wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:PrNd:25.6wt%;Ho:4.5wt%;Gd:0.5wt%;Dy:0.5wt%;Cu:0.15wt%;Ga:0.15wt%;Al:0.5wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron sintered body includes: PrNd: 25.6wt%; Ho: 4.5wt%; Gd: 0.5wt%; Dy: 0.5wt%; Cu: 0.15wt%; Ga : 0.15wt%; Al: 0.5wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:PrNd:26.1wt%;Ho:3wt%;Gd:0.5wt%;Tb:0.5wt%;Cu:0.15wt%;Co:0.2wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron sintered body includes: PrNd: 26.1wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt%; Cu: 0.15wt%; Co: 0.2wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:PrNd:26.1wt%;Ho:3wt%;Gd:0.5wt%;Tb:0.5wt%;Cu:0.15wt%;Co:0.5wt%;Ga:0.15wt%;Al:0.04wt%;Zr:0.2wt%;B:0.94wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron sintered body includes: PrNd: 26.1wt%; Ho: 3wt%; Gd: 0.5wt%; Tb: 0.5wt%; Cu: 0.15wt%; Co: 0.5wt%; Ga: 0.15wt%; Al: 0.04wt%; Zr: 0.2wt%; B: 0.94wt%; the balance is Fe and unavoidable impurities.
本发明中,较佳地,所述钕铁硼烧结体包括:Nd:13~20wt%;Sm:0~5wt%;Ho:4.5~8.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.1~2wt%;Cu:0.1~0.3wt%;Ga:0.1~0.3wt%;Al:0~0.04wt%;Nb:0~0.4wt%;Co:0~0.2wt%;B:0.9~0.99wt%;余量为Fe及不可避免的杂质。In the present invention, preferably, the neodymium iron boron sintered body comprises: Nd: 13-20wt%; Sm: 0-5wt%; Ho: 4.5-8.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.1 to 2wt%; Cu: 0.1 to 0.3wt%; Ga: 0.1 to 0.3wt%; Al: 0 to 0.04wt%; Nb: 0 to 0.4wt%; Co: 0 to 0.2wt%; B: 0.9 ~0.99wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:Nd:18wt%;Sm:4.8wt%;Ho:5.5wt%;Gd:0.5wt%;Dy:0.5wt%;Cu:0.2wt%;Ga:0.3wt%;Al:0.03wt%;Nb:0.15wt%;B:0.9wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron sintered body includes: Nd: 18wt%; Sm: 4.8wt%; Ho: 5.5wt%; Gd: 0.5wt%; Dy: 0.5wt%; Cu: 0.2wt%; Ga: 0.3wt%; Al: 0.03wt%; Nb: 0.15wt%; B: 0.9wt%; the balance is Fe and unavoidable impurities.
本发明中,较佳地,所述钕铁硼烧结体包括:Nd:13~20wt%;Pr:0~16wt%;Ho:3.5~4.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.1~2.5wt%;Cu:0.1~0.3wt%;Ga:0~0.3wt%;Al:0~0.4wt%;Ti:0~0.2wt%;Co:0~0.2wt%;B:0.98~1.1wt%;余量为Fe及不可避免的杂质。In the present invention, preferably, the neodymium iron boron sintered body comprises: Nd: 13-20wt%; Pr: 0-16wt%; Ho: 3.5-4.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.1~2.5wt%; Cu: 0.1~0.3wt%; Ga: 0~0.3wt%; Al: 0~0.4wt%; Ti: 0~0.2wt%; Co: 0~0.2wt%; B: 0.98~1.1wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:Nd:18.75wt%;Pr:4.89wt%;Ho:4.34wt%;Gd:1.82wt%;Dy:2.02wt%;Cu:0.25wt%;Ga:0.05wt%;Al:0.02wt%;Ti:0.15wt%;B:1.06wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron sintered body includes: Nd: 18.75wt%; Pr: 4.89wt%; Ho: 4.34wt%; Gd: 1.82wt%; Dy: 2.02wt%; Cu : 0.25wt%; Ga: 0.05wt%; Al: 0.02wt%; Ti: 0.15wt%; B: 1.06wt%; the balance is Fe and unavoidable impurities.
本发明中,较佳地,所述钕铁硼烧结体包括:Nd:13~20wt%;Pr:0~16wt%;Ho:1~4.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.1~2wt%;Cu:0.2~0.35wt%;Ga:0.2~0.35wt%;Al:0~0.0.04wt%;Hf:0~0.1wt%;Co:0~0.2wt%;B:0.94~1.05wt%;余量为Fe及不可避免的杂质。In the present invention, preferably, the neodymium iron boron sintered body comprises: Nd: 13-20wt%; Pr: 0-16wt%; Ho: 1-4.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.1-2wt%; Cu: 0.2-0.35wt%; Ga: 0.2-0.35wt%; Al: 0-0.0.04wt%; Hf: 0-0.1wt%; Co: 0-0.2wt%; B: 0.94~1.05wt%; the balance is Fe and unavoidable impurities.
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:所述第一组分:Nd:13.1wt%;Pr:10.9wt%;Ho:1.71wt%;Gd:2.52wt%;Dy:0.5wt%;Tb:1.51wt%;Cu:0.35wt%;Ga:0.35wt%;Hf:0.1wt%;B:0.99wt%;余量为Fe及不可避免的杂质。In a preferred embodiment of the present invention, the neodymium iron boron sintered body includes: the first component: Nd: 13.1 wt%; Pr: 10.9 wt%; Ho: 1.71 wt%; Gd: 2.52 wt%; Dy: 0.5wt%; Tb: 1.51wt%; Cu: 0.35wt%; Ga: 0.35wt%; Hf: 0.1wt%; B: 0.99wt%; the balance is Fe and unavoidable impurities.
本发明还提供了所述钕铁硼磁体材料和/或所述钕铁硼烧结体在制备磁钢中的应用。所述磁钢可为本领域常规使用的牌号,例如42UH、45UH、42EH或45EH。The invention also provides the application of the neodymium iron boron magnet material and/or the neodymium iron boron sintered body in the preparation of magnetic steel. The magnetic steel may be a grade conventionally used in the field, such as 42UH, 45UH, 42EH or 45EH.
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。On the basis of conforming to common knowledge in the field, the above-mentioned preferred conditions can be combined arbitrarily to obtain preferred embodiments of the present invention.
本发明所用试剂和原料均市售可得。The reagents and raw materials used in the present invention are all commercially available.
本发明的积极进步效果在于:The positive and progressive effects of the present invention are:
在无或低Co且低Al含量时,通过调整各元素种类及用量,调节材料的剩磁、矫顽力在特定范围内,同时改善高温稳定性,具体地:When there is no or low Co and low Al content, by adjusting the type and amount of each element, the remanence and coercivity of the material are adjusted within a specific range, and the high temperature stability is improved at the same time, specifically:
1)常温下,本发明钕铁硼磁体材料的Br可为11.2~14kGs,Hcj为 25.1~38.2kOe;高温(140℃)下,Br为10~12.3kGs,Hcj为10~19.7kOe。1) At room temperature, the Br of the neodymium iron boron magnet material of the present invention can be 11.2-14 kGs, Hcj is 25.1-38.2 kOe; at high temperature (140°C), Br is 10-12.3 kGs, and Hcj is 10-19.7 kOe.
2)常温下,本发明钕铁硼烧结体的Br为11.32~14.1kGs,Hcj为16.5~26.5kOe;扩散后Hcj增加量为7.33~12.92kOe。2) At room temperature, the Br of the neodymium iron boron sintered body of the present invention is 11.32-14.1 kGs, Hcj is 16.5-26.5 kOe; the increase of Hcj after diffusion is 7.33-12.92 kOe.
3)基于本申请的配方组分,各元素相配合,耐高温性能好:钕铁硼磁体材料的开路磁损0.05%~3.2%,Br温度系数绝对值为0.089~0.101%;Hcj温度系数绝对值为0.404%~0.501%。3) Based on the formulation components of this application, the elements are matched, and the high temperature resistance is good: the open circuit magnetic loss of the neodymium iron boron magnet material is 0.05% to 3.2%, the absolute value of the Br temperature coefficient is 0.089 to 0.101%; the Hcj temperature coefficient is absolute The value is 0.404% to 0.501%.
附图说明Description of the drawings
图1为本发明实施例4中钕铁硼烧结体的SEM图;Figure 1 is an SEM image of a neodymium iron boron sintered body in Example 4 of the present invention;
其中,1、主相,2、晶界外延层,3、富钕相,4、空洞。Among them, 1. main phase, 2. grain boundary epitaxial layer, 3. neodymium-rich phase, 4. void.
图2为本发明对比例1中钕铁硼烧结体的SEM图。Fig. 2 is an SEM image of a neodymium iron boron sintered body in Comparative Example 1 of the present invention.
图3为本发明实施例4制得的钕铁硼磁体材料的EPMA图谱。Fig. 3 is an EPMA chart of the neodymium iron boron magnet material prepared in Example 4 of the present invention.
具体实施方式Detailed ways
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。The present invention will be further described by way of examples below, but the present invention is not limited to the scope of the described examples. In the following examples, the experimental methods without specific conditions are selected according to conventional methods and conditions, or according to the product specification.
制备实施例Preparation examples
按照如下制备过程制备实施例1~19和对比例1~8中的钕铁硼磁体材料:The neodymium iron boron magnet materials in Examples 1-19 and Comparative Examples 1-8 were prepared according to the following preparation process:
S1、将第一组分熔炼、制粉、成型、烧结,具体如下:S1. The first component is smelted, powdered, formed, and sintered, as follows:
(1)熔炼浇铸:将表1中第一组分的各元素(也即表2中的各元素)放入氧化铝的坩埚中,在高频真空熔炼炉中以0.05Pa的真空和1500℃的条件进行真空熔炼;转移至中频真空感应速凝甩带炉中,通入氩气,进行铸造,急冷,得合金片。(1) Melting and casting: Put each element of the first component in Table 1 (that is, each element in Table 2) into an alumina crucible, and use a vacuum of 0.05 Pa and 1500°C in a high-frequency vacuum melting furnace. Under the conditions of vacuum melting; transfer to the intermediate frequency vacuum induction rapid solidification belt spinning furnace, pass argon gas, carry out casting, and quench to obtain alloy flakes.
(2)氢破制粉:将合金片放置在氢破用炉中,在室温下将氢破用炉抽真空,而后向氢破用炉内通入纯度为99.9%的氢气,维持氢气的压力90kPa,使合金片充分吸氢;接着,边抽真空边升温至550℃,使合金片充分脱氢; 之后进行冷却处理,得粉末。(2) Hydrogen breaking powder: Place the alloy flakes in a hydrogen breaking furnace, vacuum the hydrogen breaking furnace at room temperature, and then pass hydrogen with a purity of 99.9% into the hydrogen breaking furnace to maintain the hydrogen pressure 90kPa, the alloy flakes fully absorb hydrogen; then, the temperature is raised to 550°C while vacuuming, and the alloy flakes are fully dehydrogenated; then, cooling treatment is performed to obtain powder.
(3)气流磨制粉:在氮气气氛下,压力为0.65MPa的条件下对氢破制粉得到的粉末进行气流磨粉碎(气流磨制粉的效率可根据设备不同有所差别,例如可为200kg/h),得到细粉。(3) Jet milling powder: under the condition of a nitrogen atmosphere and a pressure of 0.65 MPa, the powder obtained by hydrogen crushing powder is pulverized by jet milling (the efficiency of jet milling powder may vary depending on the equipment, for example, it can be: 200kg/h) to obtain fine powder.
(4)磁场成型:将气流磨制粉得到的细粉在1.5T以上的磁场强度中压制成型,得成型体。(4) Magnetic field molding: the fine powder obtained by airflow milling is compressed and molded in a magnetic field strength above 1.5T to obtain a molded body.
(5)惰性气氛烧结:将成型体转移至烧结炉中,在氮气气氛下,在真空度低于0.5Pa的条件下,在1030~1090℃的温度下烧结2~8h,得钕铁硼烧结体。(5) Inert atmosphere sintering: transfer the molded body to a sintering furnace, and sinter it at a temperature of 1030~1090℃ for 2~8h under a nitrogen atmosphere with a vacuum degree of less than 0.5Pa to obtain NdFeB sintering body.
S2、采用表1中的第二组分对所述钕铁硼烧结体进行晶界扩散,具体如下:S2. Use the second component in Table 1 to perform grain boundary diffusion on the neodymium iron boron sintered body, which is specifically as follows:
将步骤S1得到的钕铁硼烧结体的表面净化,将第二组分涂覆于钕铁硼烧结体的表面,并以900℃的温度扩散24h,之后冷却至室温。The surface of the neodymium iron boron sintered body obtained in step S1 is purified, and the second component is coated on the surface of the neodymium iron boron sintered body, and diffused at a temperature of 900° C. for 24 hours, and then cooled to room temperature.
S3、热处理:在480~510℃的温度进行热处理3h,即得钕铁硼磁体材料。S3. Heat treatment: heat treatment at a temperature of 480 to 510°C for 3 hours to obtain a neodymium iron boron magnet material.
表1钕铁硼磁体材料的原料组合物的配方和含量(wt%)Table 1 The formula and content of the raw material composition of the neodymium iron boron magnet material (wt%)
Figure PCTCN2021088314-appb-000001
Figure PCTCN2021088314-appb-000001
Figure PCTCN2021088314-appb-000002
Figure PCTCN2021088314-appb-000002
*PrNd合金中Pr与Nd的重量比为25:75。 * The weight ratio of Pr to Nd in the PrNd alloy is 25:75.
表2钕铁硼烧结体的原料组合物的配方和含量(wt%)Table 2 The formula and content of the raw material composition of the neodymium iron boron sintered body (wt%)
Figure PCTCN2021088314-appb-000003
Figure PCTCN2021088314-appb-000003
*PrNd合金中Pr与Nd的重量比为25:75。 * The weight ratio of Pr to Nd in the PrNd alloy is 25:75.
效果实施例1:材料成分测定Effect Example 1: Material composition measurement
采用本领域常规的方法,使用高频电感耦合等离子体发射光谱仪(ICP-OES)对实施例1~19和对比例1~8中的钕铁硼磁体材料(扩散后)和钕铁硼烧结体(扩散前)的各成分进行测定,测定结果分别如表3和表4所示。Using a conventional method in the art, using a high-frequency inductively coupled plasma emission spectrometer (ICP-OES) to compare the neodymium iron boron magnet materials (after diffusion) and the neodymium iron boron sintered body in Examples 1-19 and Comparative Examples 1-8 The components (before diffusion) were measured, and the measurement results are shown in Table 3 and Table 4, respectively.
表3钕铁硼磁体材料的组分和含量(wt%)Table 3 Composition and content of neodymium iron boron magnet materials (wt%)
Figure PCTCN2021088314-appb-000004
Figure PCTCN2021088314-appb-000004
表4钕铁硼烧结体的组分和含量(wt%)Table 4 Composition and content of neodymium iron boron sintered body (wt%)
Figure PCTCN2021088314-appb-000005
Figure PCTCN2021088314-appb-000005
效果实施例2:微观结构测定Effect Example 2: Microstructure measurement
1、SEM分析1. SEM analysis
采用SEM-EDS背散射仪(仪器型号:日立S-3400N)测定实施例1~19和对比例1~8中的钕铁硼烧结体和钕铁硼磁体材料的SEM图。实施例4制得的钕铁硼烧结体和对比例1制得的钕铁硼烧结体的SEM图分别如图1和图2所示。The SEM images of the neodymium iron boron sintered body and the neodymium iron boron magnet materials in Examples 1-19 and Comparative Examples 1-8 were measured using a SEM-EDS backscattering instrument (instrument model: Hitachi S-3400N). The SEM images of the NdFeB sintered body prepared in Example 4 and the NdFeB sintered body prepared in Comparative Example 1 are shown in FIG. 1 and FIG. 2, respectively.
图1为实施例4制得的钕铁硼烧结体的SEM图,该钕铁硼烧结体中含有3wt%的Ho、0.5wt%的Gd和0.5wt%的Tb,不含Co。由图1可见,该无Co含(Ho+Gd+Tb)的钕铁硼烧结体包含主相1(深灰色区域)、晶界外延层2(浅灰色区域)、富钕相3(白色区域)和空洞4(黑色区域);晶界外延层2处于主相1和富钕相3之间,空洞4是因为制样时富钕相有氧化脱落造成。其中,富钕相较为均匀地分布在主相颗粒周围,且富钕相占比较大,可增加晶界扩散过程中Dy和/或Tb扩散通道,有利于提高晶界扩散过程中Dy和/或Tb扩散能力。Fig. 1 is an SEM image of a neodymium iron boron sintered body prepared in Example 4. The neodymium iron boron sintered body contains 3 wt% of Ho, 0.5 wt% of Gd, and 0.5 wt% of Tb, and does not contain Co. It can be seen from Figure 1 that the Co-containing (Ho+Gd+Tb) NdFeB sintered body contains main phase 1 (dark gray area), grain boundary epitaxial layer 2 (light gray area), and neodymium-rich phase 3 (white area). ) And void 4 (black area); the grain boundary epitaxial layer 2 is located between the main phase 1 and the neodymium-rich phase 3. The void 4 is caused by the oxidation and shedding of the neodymium-rich phase during sample preparation. Among them, the neodymium-rich phase is more uniformly distributed around the main phase particles, and the neodymium-rich phase occupies a relatively large proportion, which can increase the Dy and/or Tb diffusion channels during the grain boundary diffusion process, which is beneficial to improve the Dy and/or Tb diffusion capacity.
图2为对比例1制得的钕铁硼烧结体的SEM图,该钕铁硼烧结体中不含Ho,含有0.5wt%的Gd和0.5wt%的Dy,含有2wt%的Co。由图2可见,该无Ho含Co的钕铁硼烧结体中没有明显的晶界外延层,富钕相分布较少,其占比明显低于图1,不能起到磁去耦合的作用,不利于矫顽力的提高。另外,图2中富钕相有团聚现象,无法提供均匀分布的扩散通道,不利于后续Dy和/或Tb在富钕相中的扩散过程。2 is an SEM image of the NdFeB sintered body prepared in Comparative Example 1. The NdFeB sintered body does not contain Ho, contains 0.5 wt% of Gd and 0.5 wt% of Dy, and contains 2 wt% of Co. It can be seen from Figure 2 that there is no obvious grain boundary epitaxial layer in the Ho-free Co-containing NdFeB sintered body, and the neodymium-rich phase is less distributed, and its proportion is significantly lower than that in Figure 1, which cannot play the role of magnetic decoupling. It is not conducive to the improvement of coercivity. In addition, the neodymium-rich phase in Figure 2 has agglomeration phenomenon, which cannot provide a uniformly distributed diffusion channel, which is not conducive to the subsequent diffusion process of Dy and/or Tb in the neodymium-rich phase.
2、SEM-EDS分析2. SEM-EDS analysis
在图1的基础上,通过SEM电镜中的EDS测试,计算实施例4制得的钕铁硼烧结体在取样范围内的元素组成,结果见表5。On the basis of FIG. 1, through the EDS test in the SEM electron microscope, the element composition of the neodymium iron boron sintered body prepared in Example 4 within the sampling range was calculated, and the results are shown in Table 5.
表5table 5
Figure PCTCN2021088314-appb-000006
Figure PCTCN2021088314-appb-000006
注:以取样点1为例,其属于主相,在该取样范围内,PrNd含量为25.58wt%,Ho含量为3.12wt%,Gd含量为0.52wt%,Tb含量为0.51wt%,其它元素含量为70.27wt%,上述百分比为该取样范围内,各元素重量分别占全部元素总重量的重量百分比。Note: Taking sampling point 1 as an example, it belongs to the main phase. Within this sampling range, the content of PrNd is 25.58wt%, the content of Ho is 3.12wt%, the content of Gd is 0.52wt%, the content of Tb is 0.51wt%, and other elements The content is 70.27 wt%, and the above percentage is the weight percentage of the total weight of all elements within the sampling range.
由表5可知,Ho、Gd和Tb元素主要进入主相,Ho和Tb对主相的各向异性场有一定的提高作用,可提高Hcj。同时,由于Ho、Gd和Tb元素的进入,部分代替主相中的Nd,使得更多的Nd迁移到富钕相,增加富钕相占比,为后续Dy或/和Tb扩散提供更多扩散通道。It can be seen from Table 5 that Ho, Gd and Tb elements mainly enter the main phase, and Ho and Tb have a certain effect on the anisotropy field of the main phase and can increase Hcj. At the same time, due to the entry of Ho, Gd and Tb elements, it partially replaces the Nd in the main phase, causing more Nd to migrate to the neodymium-rich phase, increasing the proportion of the neodymium-rich phase, and providing more diffusion for subsequent Dy or/and Tb diffusion aisle.
Ho、Gd和Tb元素在晶界外延层中也有一定的分布。在晶界外延层中,重稀土元素浓度增加,在扩散过程中减少扩散重稀土元素与主相的浓度差,避免扩散元素向主相扩散,优先沿着晶界外延层扩散,进而增加扩散重稀土元素沿着富钕相扩散,增加扩散深度和扩散速度。Ho, Gd and Tb elements also have a certain distribution in the grain boundary epitaxial layer. In the grain boundary epitaxial layer, the concentration of heavy rare earth elements increases, and the concentration difference between the diffused heavy rare earth elements and the main phase is reduced during the diffusion process, so as to avoid the diffusion of the diffused elements to the main phase, and preferentially diffuse along the grain boundary epitaxial layer, thereby increasing the diffusion weight. Rare earth elements diffuse along the neodymium-rich phase, increasing the diffusion depth and diffusion speed.
Ho、Gd和Tb元素在富钕相中占比很少,尤其是Gd和Tb,在富钕相中的占比几乎为零。主相的熔点远高于富钕相的,晶界外延层次之。由于Ho、Gd和Tb的熔点高于PrNd,在多元相图上,优先析出高熔点物质,所以Ho、Gd和Tb元素在主相中分布更多,富钕相中分布较少。富钕相中重稀土元素Ho、Tb、Gd过高会大幅度降低产品的Br,不利于产品的综合性能。Ho, Gd and Tb elements account for a small proportion in the neodymium-rich phase, especially Gd and Tb, which account for almost zero in the neodymium-rich phase. The melting point of the main phase is much higher than that of the neodymium-rich phase, which is the epitaxial level of the grain boundary. Since the melting point of Ho, Gd and Tb is higher than that of PrNd, high melting point substances are preferentially precipitated in the multi-element phase diagram, so the elements of Ho, Gd and Tb are more distributed in the main phase and less in the neodymium-rich phase. Too high heavy rare earth elements Ho, Tb, and Gd in the neodymium-rich phase will greatly reduce the Br of the product, which is not conducive to the overall performance of the product.
3、EPMA分析3. EPMA analysis
采用微区X射线光谱分析仪(仪器型号:EPMA-1720)测得实施例4制得的钕铁硼磁体材料的EPMA图谱,见图3。The EPMA spectrum of the neodymium iron boron magnet material prepared in Example 4 was measured by a micro-area X-ray spectrum analyzer (instrument model: EPMA-1720), as shown in FIG. 3.
图3显示了钕铁硼磁体材料中Tb的分布情况,从图3中可以看出,实施例4的无Co含(Ho+Gd+Tb)的钕铁硼烧结体经过Tb扩散后,Tb元素未进入主相,而主要集中到富钕相中。Figure 3 shows the distribution of Tb in the NdFeB magnet material. It can be seen from Figure 3 that the Co-free (Ho+Gd+Tb) NdFeB sintered body of Example 4 is diffused by Tb, and the Tb element It does not enter the main phase, but mainly concentrates in the neodymium-rich phase.
4、晶界连续性4. Grain boundary continuity
晶界连续性是指晶界中除空洞外的物相(例如富钕相、晶界外延层)占据的长度与总晶界长度的比值。晶界连续性超过96%即可称为连续通道。基于各实施例和对比例的钕铁硼磁体材料的SEM图,计算晶界连续性。实施例1~19和对比例1~8中的钕铁硼磁体材料的晶界连续性,如表6所示。实施例1~19的钕铁硼磁体材料的晶界连续性均在96%以上,对比例1~8中的钕铁硼磁体材料的晶界连续性均在96%以下。Grain boundary continuity refers to the ratio of the length occupied by phases other than voids in the grain boundary (such as neodymium-rich phase, grain boundary epitaxial layer) to the total grain boundary length. Grain boundary continuity of more than 96% can be called continuous channel. Based on the SEM images of the neodymium iron boron magnet materials of the respective examples and comparative examples, the grain boundary continuity was calculated. The grain boundary continuity of the neodymium iron boron magnet materials in Examples 1-19 and Comparative Examples 1-8 are shown in Table 6. The grain boundary continuity of the neodymium iron boron magnet materials of Examples 1-19 are all above 96%, and the grain boundary continuity of the neodymium iron boron magnet materials of Comparative Examples 1-8 are all below 96%.
表6钕铁硼磁体材料的晶界连续性Table 6 Grain boundary continuity of NdFeB magnet materials
Figure PCTCN2021088314-appb-000007
Figure PCTCN2021088314-appb-000007
效果实施例3:磁性能测试Effect embodiment 3: Magnetic performance test
使用英国Hirst公司的PFM-14磁性能测量仪,对实施例1~19和对比例1~8中的个各个样品进行磁性能测试(测试样品为直径D10mm*厚度1.8mm圆片),测试结果如表7所示。其中,实施例4制得钕铁硼磁体材料可用于制备牌号为45EH的磁钢。Using the PFM-14 magnetic performance measuring instrument of British Hirst Company, the magnetic performance of each sample in Examples 1-19 and Comparative Examples 1-8 was tested (the test sample is a disc with diameter D10mm*thickness 1.8mm), and the test results As shown in Table 7. Among them, the neodymium iron boron magnet material obtained in Example 4 can be used to prepare a 45EH magnetic steel.
表7磁性能测试结果Table 7 Magnetic performance test results
Figure PCTCN2021088314-appb-000008
Figure PCTCN2021088314-appb-000008
表7中数据说明如下:The data in Table 7 are explained as follows:
1.ΔHcj(kOe):指常温(20℃)下,扩散后的钕铁硼磁体材料的矫顽力Hcj相对于扩散前的钕铁硼烧结体的矫顽力的增加值。1. ΔHcj (kOe): refers to the increased value of the coercive force Hcj of the neodymium iron boron magnet material after diffusion relative to the coercive force of the neodymium iron boron sintered body before diffusion at normal temperature (20°C).
2.Br温度系数α绝对值(%):指基于钕铁硼磁体材料在常温(20℃)和高温(140℃)的剩磁Br计算出来的温度系数,计算公式为:2. The absolute value of the Br temperature coefficient α (%): refers to the temperature coefficient calculated based on the remanence Br of the neodymium iron boron magnet material at room temperature (20°C) and high temperature (140°C). The calculation formula is:
Figure PCTCN2021088314-appb-000009
Figure PCTCN2021088314-appb-000009
3.Hcj温度系数β绝对值(%):指基于钕铁硼磁体材料在常温(20℃)和高温(140℃)的矫顽力Hcj计算出来的温度系数,计算公式为:3. The absolute value of the Hcj temperature coefficient β (%): refers to the temperature coefficient calculated based on the coercivity Hcj of the neodymium iron boron magnet material at room temperature (20°C) and high temperature (140°C). The calculation formula is:
Figure PCTCN2021088314-appb-000010
Figure PCTCN2021088314-appb-000010
4.全开路磁损(%):指钕铁硼磁体材料在高温(140℃)烘烤一定时间(如120min),基于烘烤前后钕铁硼磁体材料的磁通变化计算出来的全开路磁损,计算公式为:4. Full open circuit magnetic loss (%): refers to the full open circuit magnetism calculated on the basis of the change of the magnetic flux of the neodymium iron boron magnet material before and after baking after baking the neodymium iron boron magnet material at high temperature (140℃) for a certain period of time (such as 120min) Loss, the calculation formula is:
Figure PCTCN2021088314-appb-000011
Figure PCTCN2021088314-appb-000011
其中,在常温(20℃)下测定钕铁硼磁体材料的磁通,记为M1;然后在烘箱中加热钕铁硼磁体材料到设定温度140℃,保温120min,再冷却到常温测定磁通,记为M2。Among them, the magnetic flux of the neodymium iron boron magnet material is measured at normal temperature (20°C), which is recorded as M1; then the neodymium iron boron magnet material is heated in an oven to the set temperature of 140°C, kept for 120 minutes, and then cooled to room temperature to measure the magnetic flux , Marked as M2.
对表7中磁性能测试结果的分析:Analysis of the magnetic performance test results in Table 7:
1)对比例1:基于实施例1,用相同量的PrNd替代Ho,总稀土含量不变。1) Comparative Example 1: Based on Example 1, the same amount of PrNd was used instead of Ho, and the total rare earth content remained unchanged.
对比例1中,扩散后矫顽力提升(ΔHcj)较小;高温下Hcj比较小,全开路磁损失远高于实施例1,高温下Br、Hcj温度系数绝对值较大,高温性能较差。In Comparative Example 1, the coercivity increase (ΔHcj) after diffusion is small; Hcj is relatively small at high temperature, and the magnetic loss of full open circuit is much higher than that of Example 1. At high temperature, the absolute value of the temperature coefficient of Br and Hcj is large, and the high temperature performance is poor. .
2)对比例2:基于实施例1,熔炼时不添加Dy,用相同量的PrNd替代,总稀土含量不变。2) Comparative Example 2: Based on Example 1, Dy was not added during smelting, and the same amount of PrNd was used instead, and the total rare earth content remained unchanged.
对比例1中,扩散后矫顽力提升(ΔHcj)较小;高温下Hcj比较小, 全开路磁损失远高于实施例1,高温下Br、Hcj温度系数绝对值较大,高温性能较差。In Comparative Example 1, the coercivity increase (ΔHcj) after diffusion is small; Hcj is relatively small at high temperature, and the magnetic loss of full open circuit is much higher than that of Example 1. At high temperature, the absolute value of the temperature coefficient of Br and Hcj is large, and the high temperature performance is poor. .
3)对比例3:基于实施例1,增加Gd的含量使之过量,同时减少PrNd的含量以保证总稀土含量不变。3) Comparative Example 3: Based on Example 1, the content of Gd is increased to make it excessive, while the content of PrNd is reduced to ensure that the total rare earth content remains unchanged.
对比例3中,常温下剩磁稍低,扩散后矫顽力提升(ΔHcj)较小;高温下Hcj比较小,全开路磁损失远高于实施例1,高温下Br、Hcj温度系数绝对值较大,高温性能较差。In Comparative Example 3, the remanence at room temperature is slightly lower, and the coercivity increase (ΔHcj) after diffusion is small; Hcj is relatively small at high temperature, and the magnetic loss of full open circuit is much higher than that of Example 1. The absolute value of the temperature coefficient of Br and Hcj at high temperature Larger, poor high temperature performance.
4)对比例4:基于实施例1,不含Zr,用Fe补足。4) Comparative Example 4: Based on Example 1, without Zr, supplemented with Fe.
对比例4中,扩散后矫顽力提升(ΔHcj)较小;高温下Hcj比较小,全开路磁损失远高于实施例1,高温下Br、Hcj温度系数绝对值较大,高温性能较差。In Comparative Example 4, the coercivity increase (ΔHcj) after diffusion is small; Hcj is relatively small at high temperature, and the magnetic loss of full open circuit is much higher than that of Example 1. At high temperature, the absolute value of the temperature coefficient of Br and Hcj is large, and the high temperature performance is poor. .
5)对比例5:基于实施例1,用相同量的Mn替代Zr。5) Comparative Example 5: Based on Example 1, the same amount of Mn was used instead of Zr.
对比例5中,扩散后矫顽力提升(ΔHcj)较小;高温下Hcj比较小,全开路磁损失远高于实施例1,高温下Br、Hcj温度系数绝对值较大,高温性能较差。In Comparative Example 5, the coercivity increase (ΔHcj) after diffusion is small; Hcj is relatively small at high temperature, and the magnetic loss of full open circuit is much higher than that of Example 1. At high temperature, the absolute value of the temperature coefficient of Br and Hcj is large, and the high temperature performance is poor. .
6)对比例6:基于实施例1,不含Ga,用Fe补足。6) Comparative Example 6: Based on Example 1, without Ga, supplemented with Fe.
对比例6中,扩散后矫顽力提升(ΔHcj)较小;高温下Hcj比较小,全开路磁损失远高于实施例1,高温下Br、Hcj温度系数绝对值较大,高温性能较差。In Comparative Example 6, the coercivity increase (ΔHcj) after diffusion is small; Hcj is relatively small at high temperature, and the magnetic loss of full open circuit is much higher than that of Example 1. At high temperature, the absolute value of the temperature coefficient of Br and Hcj is large, and the high temperature performance is poor. .
7)对比例7:基于实施例1,增加Al的含量使之过量,调整Fe含量。7) Comparative Example 7: Based on Example 1, the content of Al was increased to make it excessive, and the content of Fe was adjusted.
对比例6中,扩散后矫顽力提升(ΔHcj)较小;高温下Hcj比较小,全开路磁损失远高于实施例1,高温下Br、Hcj温度系数绝对值较大,高温性能较差。In Comparative Example 6, the coercivity increase (ΔHcj) after diffusion is small; Hcj is relatively small at high temperature, and the magnetic loss of full open circuit is much higher than that of Example 1. At high temperature, the absolute value of the temperature coefficient of Br and Hcj is large, and the high temperature performance is poor. .
8)对比例8:不含Ga,Al含量过高,不含X元素,总稀土含量过高。8) Comparative Example 8: No Ga, too high Al content, no X element, too high total rare earth content.
对比例8中,扩散后矫顽力提升(ΔHcj)较小;高温下Hcj比较小,全开路磁损失远高于实施例1,高温下Br、Hcj温度系数绝对值较大,高温性能较差。In Comparative Example 8, the coercivity increase (ΔHcj) after diffusion is small; Hcj is relatively small at high temperature, and the magnetic loss of full open circuit is much higher than that of Example 1. At high temperature, the absolute value of the temperature coefficient of Br and Hcj is large, and the high temperature performance is poor. .

Claims (10)

  1. 一种钕铁硼磁体材料的原料组合物,其包含第一组分和第二组分,所述第一组分为熔炼时添加的元素,所述第二组分为晶界扩散时添加的元素;A raw material composition of neodymium iron boron magnet material, which comprises a first component and a second component, the first component is an element added during smelting, and the second component is an element added during grain boundary diffusion element;
    所述第一组分包括:The first component includes:
    轻稀土元素LR:13~31.5wt%;所述LR包括Nd;Light rare earth element LR: 13~31.5wt%; said LR includes Nd;
    Ho:0~10wt%、且不为0;Ho: 0~10wt%, and not 0;
    Gd:0~5wt%、且不为0;Gd: 0~5wt%, and not 0;
    Dy和/或Tb:0~3wt%,且不为0;Dy and/or Tb: 0-3wt%, and not 0;
    Cu:0~0.35wt%,且不为0;Cu: 0~0.35wt%, and not 0;
    Ga:0~0.35wt%,且不为0;Ga: 0~0.35wt%, and not 0;
    Al:0~0.5wt%;Al: 0~0.5wt%;
    X:0.05~0.45wt%;所述X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;X: 0.05 to 0.45 wt%; the X includes one or more of Ti, Nb, Zr, Hf, V, Mo, W, Ta and Cr;
    Co:0~0.5wt%;Co: 0~0.5wt%;
    B:0.9~1.05wt%;B: 0.9~1.05wt%;
    余量为Fe;The balance is Fe;
    所述第二组分包括:Dy和/或Tb:0.2~1wt%;The second component includes: Dy and/or Tb: 0.2-1wt%;
    所述钕铁硼磁体材料的原料组合物中总稀土含量为29.5~32.5wt%;The total rare earth content in the raw material composition of the neodymium iron boron magnet material is 29.5-32.5 wt%;
    wt%为各元素占所述钕铁硼磁体材料的原料组合物的重量百分比。The wt% is the weight percentage of each element in the raw material composition of the neodymium iron boron magnet material.
  2. 根据权利要求1所述的钕铁硼磁体材料的原料组合物,其特征在于,The raw material composition of neodymium iron boron magnet material according to claim 1, characterized in that:
    所述钕铁硼磁体材料的原料组合物中总稀土含量为30.1~32.1wt%,例如30.5wt%、30.8wt%或31.5wt%;The total rare earth content in the raw material composition of the neodymium iron boron magnet material is 30.1-32.1wt%, for example 30.5wt%, 30.8wt% or 31.5%wt;
    和/或,所述LR的含量为15~30wt%,例如17.4wt%、18wt%、20wt%、22.5wt%、23wt%、23.4wt%、23.8wt%、24.5wt%、25.5wt%、26wt%或29.9wt%;And/or, the content of the LR is 15-30% by weight, for example 17.4% by weight, 18% by weight, 20% by weight, 22.5% by weight, 23% by weight, 23.4% by weight, 23.8% by weight, 24.5% by weight, 25.5% by weight, 26% by weight % Or 29.9wt%;
    和/或,所述Nd的含量为13~20wt%,例如18wt%或18.56wt%;And/or, the Nd content is 13-20wt%, for example 18wt% or 18.56wt%;
    和/或,所述LR还包括Pr和/或Sm;其中,And/or, the LR also includes Pr and/or Sm; wherein,
    当所述LR包含Pr时,所述Pr的含量为0~16wt%、且不为0wt%;较佳 地为4wt%~12wt%,例如4.84wt%或10.8wt%;所述Pr的添加形式为纯净Pr和/或PrNd,较佳地为PrNd;当所述LR包含Sm时,所述Sm的含量为0~5wt%,且不为0;例如4.8wt%;When the LR contains Pr, the content of Pr is 0-16% by weight, and not 0% by weight; preferably 4%-12% by weight, such as 4.84% by weight or 10.8% by weight; the form of addition of Pr It is pure Pr and/or PrNd, preferably PrNd; when the LR contains Sm, the content of Sm is 0-5wt%, and is not 0; for example, 4.8wt%;
    和/或,所述Ho含量为1~8.5wt%,更佳地为4.5~7.5wt%,例如1.7wt%、3wt%、4.3wt%或8.1wt%;And/or, the Ho content is 1 to 8.5 wt%, more preferably 4.5 to 7.5 wt%, such as 1.7 wt%, 3 wt%, 4.3 wt% or 8.1 wt%;
    和/或,所述Gd含量为0.5~3wt%,例如1wt%、1.5wt%、1.8wt%、2.5wt%或2.6wt%;And/or, the Gd content is 0.5-3wt%, for example 1wt%, 1.5wt%, 1.8wt%, 2.5wt% or 2.6wt%;
    所述Ho和所述Gd的总含量较佳地为不超过10wt%;The total content of the Ho and the Gd is preferably not more than 10wt%;
    和/或,所述第一组分中所述Dy和/或Tb的含量范围为0.1~2wt%,例如0.5wt%、1wt%、1.5wt%、2wt%或2.5wt%;当所述第一组分包括Dy和Tb的混合物时,Dy和Tb的重量比较佳地为1:99~99:1,例如50:50、60:40或者40:60;And/or, the content of Dy and/or Tb in the first component ranges from 0.1 to 2% by weight, such as 0.5% by weight, 1% by weight, 1.5% by weight, 2% by weight, or 2.5% by weight; When one component includes a mixture of Dy and Tb, the weight of Dy and Tb is preferably 1:99~99:1, such as 50:50, 60:40 or 40:60;
    和/或,所述Cu的含量范围为0.1~0.3wt%,例如0.15wt%、0.2wt%或0.25wt%;And/or, the Cu content ranges from 0.1 to 0.3 wt%, such as 0.15 wt%, 0.2 wt%, or 0.25 wt%;
    和/或,所述Ga的含量范围为0.1~0.3wt%,例如0.15wt%、0.2wt%或0.25wt%;And/or, the Ga content ranges from 0.1 to 0.3 wt%, for example, 0.15 wt%, 0.2 wt%, or 0.25 wt%;
    和/或,所述Al的含量范围为0~0.3wt%,较佳地为0~0.1wt%,例如0.02wt%、0.04wt%或0.08wt%;更佳地为0~0.04wt%,最佳地为0;And/or, the Al content ranges from 0 to 0.3 wt%, preferably 0 to 0.1 wt%, such as 0.02 wt%, 0.04 wt% or 0.08 wt%; more preferably 0 to 0.04 wt%, Best is 0;
    和/或,所述X的种类为Ti、Nb、Zr和Hf中的一种或多种;所述X的含量较佳地为0.1~0.4wt%,更佳地为0.15~0.2wt%;And/or, the type of X is one or more of Ti, Nb, Zr and Hf; the content of X is preferably 0.1 to 0.4 wt%, more preferably 0.15 to 0.2 wt%;
    当所述X包括Zr时,所述Zr的含量范围较佳地为0.02~0.4wt%,例如0.2wt%;When the X includes Zr, the content of the Zr preferably ranges from 0.02 to 0.4 wt%, for example, 0.2 wt%;
    当所述X包括Ti时,所述Ti的含量范围较佳地为0~0.2wt%、且不为0,例如0.15wt%;When the X includes Ti, the content of Ti preferably ranges from 0 to 0.2 wt%, and is not 0, for example, 0.15 wt%;
    当所述X包括Nb时,所述Nb的含量范围较佳地为0~0.4wt%、且不为0,例如0.03wt%或0.1wt%;When the X includes Nb, the content of Nb is preferably in the range of 0 to 0.4 wt%, and is not 0, for example, 0.03 wt% or 0.1 wt%;
    当所述X包括Hf时,所述Hf的含量范围较佳地为0~0.1wt%、且不为 0,例如0.03wt%或0.05wt%;When the X includes Hf, the content of Hf is preferably in the range of 0 to 0.1 wt%, and not 0, for example, 0.03 wt% or 0.05 wt%;
    当X包括Ti和Nb时,Ti和Nb的重量比较佳地为1:99~99:1,例如2:1或2:3;When X includes Ti and Nb, the weight of Ti and Nb is preferably 1:99~99:1, such as 2:1 or 2:3;
    当X包括Hf和Zr时,Hf和Zr的重量比较佳地为1:99~99:1,例如1:10或5:2;When X includes Hf and Zr, the weight of Hf and Zr is preferably 1:99~99:1, such as 1:10 or 5:2;
    当X包括Hf和Nb时,Hf和Nb的重量比较佳地为1:99~99:1,例如1:8;When X includes Hf and Nb, the weight of Hf and Nb is preferably 1:99 to 99:1, such as 1:8;
    和/或,所述Co的含量为0~0.2wt%;And/or, the content of Co is 0-0.2wt%;
    和/或,所述B的含量范围为0.94~1.02wt%,例如0.98wt%或0.99wt%;And/or, the content of B ranges from 0.94 to 1.02 wt%, such as 0.98 wt% or 0.99 wt%;
    和/或,所述第二组分中Dy和/或Tb的含量范围为0.5~0.8wt%;And/or, the content of Dy and/or Tb in the second component ranges from 0.5 to 0.8 wt%;
    当所述第二组分包括Dy时,所述Dy的含量范围较佳地为0.2~1wt%,例如0.5wt%或0.8wt%;When the second component includes Dy, the content of Dy is preferably in the range of 0.2 to 1 wt%, for example, 0.5 wt% or 0.8 wt%;
    当所述第二组分包括Tb时,所述Tb的含量范围较佳地为0.2~1wt%,例如0.5wt%;When the second component includes Tb, the content of Tb preferably ranges from 0.2 to 1 wt%, such as 0.5 wt%;
    当所述第二组分包括Dy和Tb的混合物时,Dy和Tb的重量比较佳地为1:99~99:1,例如50:50、60:40或者40:60;When the second component includes a mixture of Dy and Tb, the weight of Dy and Tb is preferably 1:99 to 99:1, such as 50:50, 60:40 or 40:60;
    较佳地,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:PrNd:15~30wt%;Ho:1~8.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.1~2wt%;Cu:0.1~0.3wt%;Ga:0.1~0.3wt%;Al:0~0.1wt%;Zr:0.2~0.4wt%;Co:0~0.2wt%;B:0.94~1.02wt%;所述第二组分:Dy和/或Tb:0.5~0.8wt%;余量为Fe及不可避免的杂质;Preferably, the raw material composition of the neodymium iron boron magnet material comprises: the first component: PrNd: 15-30 wt%; Ho: 1-8.5%; Gd: 0.5-3 wt%; Dy and/or Tb: 0.1~2wt%; Cu: 0.1~0.3wt%; Ga: 0.1~0.3wt%; Al: 0~0.1wt%; Zr: 0.2~0.4wt%; Co: 0~0.2wt%; B: 0.94 ~1.02wt%; the second component: Dy and/or Tb: 0.5~0.8wt%; the balance is Fe and unavoidable impurities;
    较佳地,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:Nd:13~20wt%;Sm:0~5wt%;Ho:4.5~8.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.1~2wt%;Cu:0.1~0.3wt%;Ga:0.1~0.3wt%;Al:0~0.04wt%;Nb:0~0.4wt%;Co:0~0.2wt%;B:0.9~0.99wt%;所述第二组分:Dy和/或Tb:0.2~0.5wt%;余量为Fe及不可避免的杂质;Preferably, the raw material composition of the neodymium iron boron magnet material includes: the first component: Nd: 13-20wt%; Sm: 0-5wt%; Ho: 4.5-8.5wt%; Gd: 0.5- 3wt%; Dy and/or Tb: 0.1 to 2wt%; Cu: 0.1 to 0.3wt%; Ga: 0.1 to 0.3wt%; Al: 0 to 0.04wt%; Nb: 0 to 0.4wt%; Co: 0 to 0.2wt%; B: 0.9-0.99wt%; the second component: Dy and/or Tb: 0.2-0.5wt%; the balance is Fe and unavoidable impurities;
    较佳地,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:Nd:13~20wt%;Pr:0~16wt%;Ho:3.5~4.5wt%;Gd:0.5~3wt%;Dy和/或Tb: 0.1~2wt%;Cu:0.1~0.3wt%;Ga:0~0.3wt%;Al:0~0.4wt%;Ti:0~0.2wt%;Co:0~0.2wt%;B:0.98~1.05wt%;所述第二组分:Dy和/或Tb:0.8~1wt%;余量为Fe及不可避免的杂质;Preferably, the raw material composition of the neodymium iron boron magnet material includes: the first component: Nd: 13-20wt%; Pr: 0-16wt%; Ho: 3.5-4.5wt%; Gd: 0.5- 3wt%; Dy and/or Tb: 0.1 to 2wt%; Cu: 0.1 to 0.3wt%; Ga: 0 to 0.3wt%; Al: 0 to 0.4wt%; Ti: 0 to 0.2wt%; Co: 0 to 0.2wt%; B: 0.98-1.05wt%; the second component: Dy and/or Tb: 0.8-1wt%; the balance is Fe and unavoidable impurities;
    较佳地,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:Nd:13~20wt%;Pr:0~16wt%;Ho:1~4.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.1~2wt%;Cu:0.2~0.35wt%;Ga:0.2~0.35wt%;Al:0~0.0.04wt%;Hf:0~0.1wt%;Co:0~0.2wt%;B:0.94~0.99wt%;所述第二组分:Dy和/或Tb:0.5~1wt%;余量为Fe及不可避免的杂质。Preferably, the raw material composition of the neodymium iron boron magnet material includes: the first component: Nd: 13-20wt%; Pr: 0-16wt%; Ho: 1-4.5wt%; Gd: 0.5- 3wt%; Dy and/or Tb: 0.1-2wt%; Cu: 0.2-0.35wt%; Ga: 0.2-0.35wt%; Al: 0-0.0.04wt%; Hf: 0-0.1wt%; Co:0 ~0.2wt%; B: 0.94 to 0.99wt%; the second component: Dy and/or Tb: 0.5 to 1wt%; the balance is Fe and unavoidable impurities.
  3. 一种钕铁硼磁体材料的制备方法,其采用权利要求1或2所述钕铁硼磁体材料的原料组合物进行,所述制备方法包括如下步骤:A preparation method of neodymium iron boron magnet material, which adopts the raw material composition of the neodymium iron boron magnet material of claim 1 or 2, and the preparation method comprises the following steps:
    S1、将所述第一组分熔炼、制粉、成型、烧结,得钕铁硼烧结体;S1. Melting, pulverizing, molding, and sintering the first component to obtain a neodymium iron boron sintered body;
    S2、采用所述第二组分对步骤S1所得的钕铁硼烧结体进行晶界扩散;S2, using the second component to perform grain boundary diffusion on the neodymium iron boron sintered body obtained in step S1;
    S3、热处理,即得钕铁硼磁体材料;S3. Heat treatment to obtain neodymium iron boron magnet material;
    步骤S1中,所述熔炼的操作和条件较佳地为将所述第一组分的各元素采用铸锭工艺或速凝片工艺进行熔炼浇铸,得到合金片;In step S1, the smelting operation and conditions are preferably that each element of the first component is smelted and casted using an ingot process or a rapid-setting flake process to obtain alloy flakes;
    步骤S1中,所述熔炼的温度较佳地为1300~1700℃,例如1500℃;In step S1, the smelting temperature is preferably 1300 to 1700°C, for example, 1500°C;
    步骤S1中,所述熔炼的设备较佳地为高频真空熔炼炉和/或中频真空熔炼炉;所述中频真空熔炼炉较佳地为中频真空感应速凝甩带炉;In step S1, the smelting equipment is preferably a high frequency vacuum melting furnace and/or an intermediate frequency vacuum melting furnace; the intermediate frequency vacuum melting furnace is preferably an intermediate frequency vacuum induction rapid solidification belt spinning furnace;
    步骤S1中,所述制粉的操作和条件较佳地包括氢破制粉和/或气流磨制粉;其中,In step S1, the operation and conditions of the pulverizing preferably include hydrogen crushing pulverizing and/or jet mill pulverizing; wherein,
    所述氢破制粉较佳地包括吸氢、脱氢和冷却处理;所述吸氢的温度较佳地为20~200℃,更佳地为20~40℃;所述吸氢的压力较佳地为50~600kPa,例如90kPa;所述脱氢的温度较佳地为400~650℃,例如550℃;The hydrogen pulverization preferably includes hydrogen absorption, dehydrogenation, and cooling treatment; the temperature of the hydrogen absorption is preferably 20 to 200°C, more preferably 20 to 40°C; the pressure of the hydrogen absorption is relatively high. Preferably it is 50-600kPa, such as 90kPa; the temperature of the dehydrogenation is preferably 400-650°C, such as 550°C;
    所述气流磨制粉中的气流较佳地为氮气和/或氩气;所述气流磨制粉的压力较佳地为0.1~2MPa,更佳地为0.5~0.7MPa,例如0.65MPa;所述气流磨制粉的效率较佳地为30-400kg/h,例如200kg/h;The gas flow in the air-flow milling powder is preferably nitrogen and/or argon; the pressure of the air-flow milling powder is preferably 0.1-2 MPa, more preferably 0.5-0.7 MPa, such as 0.65 MPa; The efficiency of the jet milling powder is preferably 30-400kg/h, such as 200kg/h;
    步骤S1中,所述成型的操作和条件较佳地为磁场成型法,所述的磁场 成型法的磁场强度较佳地在1.5T以上;In step S1, the molding operation and conditions are preferably a magnetic field molding method, and the magnetic field strength of the magnetic field molding method is preferably above 1.5T;
    步骤S1中,所述烧结的操作和条件较佳地为真空烧结工艺和/或惰性气氛烧结工艺;In step S1, the sintering operation and conditions are preferably a vacuum sintering process and/or an inert atmosphere sintering process;
    步骤S1中,所述烧结的温度较佳地为1000~1200℃,更佳地为1030~1090℃;In step S1, the sintering temperature is preferably 1000 to 1200°C, more preferably 1030 to 1090°C;
    步骤S1中,所述烧结的时间较佳地为0.5~10h,更佳地为2~8h;In step S1, the sintering time is preferably 0.5-10h, more preferably 2-8h;
    步骤S2中,所述晶界扩散的操作和条件较佳地为将所述第二组分施加于所述钕铁硼烧结体上保温即可,其中,所述施加方式较佳地为涂覆、磁控等离子溅射或蒸镀;所述晶界扩散的温度较佳地为800~1000℃,更佳地为850~950℃,更佳地为900℃;In step S2, the operation and conditions of the grain boundary diffusion are preferably to apply the second component to the neodymium iron boron sintered body for heat preservation, wherein the application method is preferably coating , Magnetron plasma sputtering or evaporation; the temperature of the grain boundary diffusion is preferably 800-1000°C, more preferably 850-950°C, more preferably 900°C;
    步骤S2中,所述晶界扩散的时间较佳地为12~90h,例如24h;In step S2, the time for the grain boundary diffusion is preferably 12 to 90 hours, such as 24 hours;
    步骤S3中,所述热处理的温度较佳地为450℃~510℃;所述热处理的时间较佳地为2~4小时。In step S3, the temperature of the heat treatment is preferably 450°C to 510°C; the time of the heat treatment is preferably 2 to 4 hours.
  4. 一种钕铁硼磁体材料,其由权利要求3所述的钕铁硼磁体材料的制备方法制得。A neodymium iron boron magnet material, which is prepared by the method for preparing a neodymium iron boron magnet material according to claim 3.
  5. 一种钕铁硼磁体材料,其包括:A neodymium iron boron magnet material, which comprises:
    轻稀土元素LR:13~31.5wt%;所述LR包括Nd;Light rare earth element LR: 13~31.5wt%; said LR includes Nd;
    重稀土元素HR:Ho:0~10wt%、且不为0;Gd:0~5wt%、且不为0;Heavy rare earth elements HR: Ho: 0-10wt%, and not 0; Gd: 0-5wt%, but not 0;
    Dy和/或Tb:0.2~4wt%;Dy and/or Tb: 0.2-4wt%;
    Cu:0~0.35wt%,且不为0;Cu: 0~0.35wt%, and not 0;
    Ga:0~0.35wt%,且不为0;Ga: 0~0.35wt%, and not 0;
    Al:0~0.5wt%;Al: 0~0.5wt%;
    X:0.05~0.45wt%;所述X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;X: 0.05 to 0.45 wt%; the X includes one or more of Ti, Nb, Zr, Hf, V, Mo, W, Ta and Cr;
    Co:0~0.5wt%;Co: 0~0.5wt%;
    B:0.9~1.05wt%;B: 0.9~1.05wt%;
    余量为Fe;The balance is Fe;
    所述钕铁硼磁体材料中总稀土含量为29.5~32.5wt%;The total rare earth content in the neodymium iron boron magnet material is 29.5-32.5wt%;
    wt%为各元素占所述原料组合物的重量百分比;wt% is the weight percentage of each element in the raw material composition;
    所述钕铁硼磁体材料包含主相、晶界外延层和富钕相;所述主相和所述晶界外延层分布有Ho和Gd,以及部分Dy和/或Tb;所述富钕相分布有Dy和/或Tb;所述钕铁硼磁体材料的晶界连续性为96%以上;The neodymium iron boron magnet material comprises a main phase, a grain boundary epitaxial layer and a neodymium-rich phase; the main phase and the grain boundary epitaxial layer are distributed with Ho and Gd, and part of Dy and/or Tb; the neodymium-rich phase Dy and/or Tb are distributed; the grain boundary continuity of the neodymium iron boron magnet material is more than 96%;
    所述主相和所述晶界外延层中较佳地分布有Ho和Gd元素的总重量的95%以上;Preferably, more than 95% of the total weight of Ho and Gd elements are distributed in the main phase and the grain boundary epitaxial layer;
    所述晶界连续性较佳地为96.3%~97.11%,例如96.3%、96.33%、96.42%、96.43%、96.45%、96.5%、96.51%、96.54%、96.55%、96.58%、96.59%、96.7%、96.71%、96.8%或97%;The grain boundary continuity is preferably 96.3% to 97.11%, such as 96.3%, 96.33%, 96.42%, 96.43%, 96.45%, 96.5%, 96.51%, 96.54%, 96.55%, 96.58%, 96.59%, 96.7%, 96.71%, 96.8% or 97%;
    所述钕铁硼磁体材料中总稀土含量较佳地为30.1~32.1wt%,例如30.5wt%、30.8wt%或31.5wt%;The total rare earth content in the neodymium iron boron magnet material is preferably 30.1-32.1wt%, for example 30.5wt%, 30.8wt% or 31.5% by weight;
    所述LR的含量较佳地为15~30wt%,例如17.4wt%、18wt%、20wt%、22.5wt%、23wt%、23.4wt%、23.8wt%、24.5wt%、25.5wt%、26wt%或29.9wt%;The content of the LR is preferably 15-30% by weight, for example 17.4% by weight, 18% by weight, 20% by weight, 22.5% by weight, 23% by weight, 23.4% by weight, 23.8% by weight, 24.5% by weight, 25.5% by weight, 26% by weight Or 29.9wt%;
    所述Nd的含量较佳地为13~20wt%,例如18wt%或18.56wt%;The Nd content is preferably 13-20wt%, for example 18wt% or 18.56wt%;
    所述LR较佳地还包括Pr和/或Sm;其中,The LR preferably further includes Pr and/or Sm; wherein,
    当所述LR包含Pr时,所述Pr的含量为0~16wt%、且不为0wt%;较佳地为4wt%~12wt%,例如4.84wt%或10.8wt%;所述Pr的添加形式为纯净Pr和/或PrNd,较佳地为PrNd;When the LR contains Pr, the content of Pr is 0-16% by weight, and not 0% by weight; preferably 4%-12% by weight, such as 4.84% by weight or 10.8% by weight; the form of addition of Pr Is pure Pr and/or PrNd, preferably PrNd;
    当所述LR包含Sm时,所述Sm的含量为0~5wt%,且不为0;例如4.8wt%;When the LR contains Sm, the content of Sm is 0-5 wt%, and is not 0; for example, 4.8 wt%;
    所述Ho含量较佳地为1~8.5wt%,更佳地为4.5~7.5wt%,例如1.7wt%、3wt%、4.3wt%或8.1wt%;The Ho content is preferably 1 to 8.5 wt%, more preferably 4.5 to 7.5 wt%, such as 1.7 wt%, 3 wt%, 4.3 wt% or 8.1 wt%;
    所述Gd含量较佳地为0.5~3wt%,例如1wt%、1.5wt%、1.8wt%、2.5wt%或2.6wt%;The Gd content is preferably 0.5-3wt%, such as 1wt%, 1.5wt%, 1.8wt%, 2.5wt% or 2.6wt%;
    所述Ho和所述Gd的总含量较佳地为不超过10wt%;The total content of the Ho and the Gd is preferably not more than 10wt%;
    所述Dy和/或Tb的含量范围较佳地为0.5~3.5wt%,例如0.6wt%、0.7wt%、 1wt%、1.5wt%、2wt%或2.8wt%;当所述钕铁硼磁体材料包括Dy和Tb的混合物时,Dy和Tb的重量比较佳地为1:99~99:1,例如50:50、60:40或者40:60;The content of Dy and/or Tb is preferably in the range of 0.5 to 3.5% by weight, such as 0.6% by weight, 0.7% by weight, 1% by weight, 1.5% by weight, 2% by weight or 2.8% by weight; when the neodymium iron boron magnet When the material includes a mixture of Dy and Tb, the weight of Dy and Tb is preferably 1:99~99:1, such as 50:50, 60:40 or 40:60;
    所述Cu的含量范围较佳地为0.1~0.3wt%,例如0.15wt%、0.2wt%或0.25wt%;The content of Cu is preferably in the range of 0.1 to 0.3 wt%, such as 0.15 wt%, 0.2 wt% or 0.25 wt%;
    所述Ga的含量范围较佳地为0.1~0.3wt%,例如0.15wt%、0.2wt%或0.25wt%;The content of Ga is preferably 0.1-0.3wt%, for example 0.15wt%, 0.2wt% or 0.25wt%;
    所述Al的含量范围较佳地为0~0.3wt%,更佳地为0~0.1wt%,例如0.02wt%、0.04wt%或0.08wt%;更佳地为0~0.04wt%,最佳地为0;The content of Al is preferably 0-0.3wt%, more preferably 0-0.1wt%, such as 0.02wt%, 0.04wt% or 0.08wt%; more preferably 0-0.04wt%, most The best place is 0;
    所述X的种类较佳地为Ti、Nb、Zr和Hf中的一种或多种;The type of X is preferably one or more of Ti, Nb, Zr and Hf;
    所述X的含量较佳地为0.1~0.4wt%,更佳地为0.15~0.2wt%;The content of X is preferably 0.1 to 0.4 wt%, more preferably 0.15 to 0.2 wt%;
    当所述X包括Zr时,所述Zr的含量范围较佳地为0.02~0.4wt%,例如0.2wt%;When the X includes Zr, the content of the Zr preferably ranges from 0.02 to 0.4 wt%, for example, 0.2 wt%;
    当所述X包括Ti时,所述Ti的含量范围较佳地为0~0.2wt%、且不为0,例如0.15wt%;When the X includes Ti, the content of Ti preferably ranges from 0 to 0.2 wt%, and is not 0, for example, 0.15 wt%;
    当所述X包括Nb时,所述Nb的含量范围较佳地为0~0.4wt%、且不为0,例如0.03wt%或0.1wt%;When the X includes Nb, the content of Nb is preferably in the range of 0 to 0.4 wt%, and is not 0, for example, 0.03 wt% or 0.1 wt%;
    当所述X包括Hf时,所述Hf的含量范围较佳地为0~0.1wt%、且不为0,例如0.03wt%或0.05wt%;When the X includes Hf, the content of the Hf preferably ranges from 0 to 0.1 wt% and is not 0, for example, 0.03 wt% or 0.05 wt%;
    当X包括Ti和Nb时,Ti和Nb的重量比较佳地为1:99~99:1,例如2:1或2:3;When X includes Ti and Nb, the weight of Ti and Nb is preferably 1:99~99:1, such as 2:1 or 2:3;
    当X包括Hf和Zr时,Hf和Zr的重量比较佳地为1:99~99:1,例如1:10或5:2;When X includes Hf and Zr, the weight of Hf and Zr is preferably 1:99~99:1, such as 1:10 or 5:2;
    当X包括Hf和Nb时,Hf和Nb的重量比较佳地为1:99~99:1,例如1:8;When X includes Hf and Nb, the weight of Hf and Nb is preferably 1:99 to 99:1, such as 1:8;
    所述Co的含量较佳地为0~0.2wt%,更佳地为0;The content of Co is preferably 0-0.2wt%, more preferably 0;
    所述B的含量范围较佳地为0.94~1.02wt%,例如0.98wt%或0.99wt%;The content of B is preferably 0.94-1.02wt%, for example 0.98wt% or 0.99wt%;
    较佳地,所述钕铁硼磁体材料包括:PrNd:15~30wt%;Ho:1~8.5wt%; Gd:0.5~3wt%;Dy和/或Tb:0.5~3.5wt%;Cu:0.1~0.3wt%;Ga:0.1~0.3wt%;Al:0~0.1wt%;Zr:0.2~0.4wt%;Co:0~0.2wt%;B:0.94~1.02wt%;余量为Fe及不可避免的杂质;Preferably, the neodymium iron boron magnet material includes: PrNd: 15-30wt%; Ho: 1-8.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.5-3.5wt%; Cu: 0.1 ~0.3wt%; Ga: 0.1~0.3wt%; Al: 0~0.1wt%; Zr: 0.2~0.4wt%; Co: 0~0.2wt%; B: 0.94~1.02wt%; the balance is Fe and Inevitable impurities;
    较佳地,所述钕铁硼磁体材料包括:Nd:13~20wt%;Sm:0~5wt%;Ho:4.5~8.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.3~2.5wt%;Cu:0.1~0.3wt%;Ga:0.1~0.3wt%;Al:0~0.04wt%;Nb:0~0.4wt%;Co:0~0.2wt%;B:0.9~0.99wt%;余量为Fe及不可避免的杂质;Preferably, the neodymium iron boron magnet material includes: Nd: 13-20wt%; Sm: 0-5wt%; Ho: 4.5-8.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.3- 2.5wt%; Cu: 0.1~0.3wt%; Ga: 0.1~0.3wt%; Al: 0~0.04wt%; Nb: 0~0.4wt%; Co: 0~0.2wt%; B: 0.9~0.99wt %; the balance is Fe and unavoidable impurities;
    较佳地,所述钕铁硼磁体材料包括:Nd:13~20wt%;Pr:0~16wt%;Ho:3.5~4.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.9~3wt%;Cu:0.1~0.3wt%;Ga:0~0.3wt%;Al:0~0.4wt%;Ti:0~0.2wt%;Co:0~0.2wt%;B:0.98~1.05wt%;余量为Fe及不可避免的杂质;Preferably, the neodymium iron boron magnet material includes: Nd: 13-20wt%; Pr: 0-16wt%; Ho: 3.5-4.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.9- 3wt%; Cu: 0.1~0.3wt%; Ga: 0~0.3wt%; Al: 0~0.4wt%; Ti: 0~0.2wt%; Co: 0~0.2wt%; B: 0.98~1.05wt% ; The balance is Fe and unavoidable impurities;
    较佳地,所述钕铁硼磁体材料包括:Nd:13~20wt%;Pr:0~16wt%;Ho:1~4.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.6~3wt%;Cu:0.2~0.35wt%;Ga:0.2~0.35wt%;Al:0~0.0.04wt%;Hf:0~0.1wt%;Co:0~0.2wt%;B:0.94~0.99wt%;余量为Fe及不可避免的杂质。Preferably, the neodymium iron boron magnet material includes: Nd: 13-20wt%; Pr: 0-16wt%; Ho: 1-4.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.6- 3wt%; Cu: 0.2~0.35wt%; Ga: 0.2~0.35wt%; Al: 0~0.0.04wt%; Hf: 0~0.1wt%; Co: 0~0.2wt%; B: 0.94~0.99wt %; the balance is Fe and unavoidable impurities.
  6. 一种钕铁硼烧结体的原料组合物,其包括:A raw material composition of a neodymium iron boron sintered body, which comprises:
    轻稀土元素LR:13~31.5wt%;所述LR包括Nd;Light rare earth element LR: 13~31.5wt%; said LR includes Nd;
    Ho:0~10wt%、且不为0;Ho: 0~10wt%, and not 0;
    Gd:0~5wt%、且不为0;Gd: 0~5wt%, and not 0;
    Dy和/或Tb:0~3.1wt%,且不为0;Dy and/or Tb: 0~3.1wt%, and not 0;
    Cu:0~0.35wt%,且不为0;Cu: 0~0.35wt%, and not 0;
    Ga:0~0.35wt%,且不为0;Ga: 0~0.35wt%, and not 0;
    Al:0~0.5wt%;Al: 0~0.5wt%;
    X:0.05~0.45wt%;所述X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;X: 0.05 to 0.45 wt%; the X includes one or more of Ti, Nb, Zr, Hf, V, Mo, W, Ta and Cr;
    Co:0~0.5wt%;Co: 0~0.5wt%;
    B:0.9~1.1wt%;B: 0.9~1.1wt%;
    余量为Fe;The balance is Fe;
    所述钕铁硼烧结体的原料组合物中总稀土含量为29.5~32.5wt%;The total rare earth content in the raw material composition of the neodymium iron boron sintered body is 29.5-32.5 wt%;
    wt%为各元素占所述钕铁硼烧结体的原料组合物的重量百分比;wt% is the weight percentage of each element in the raw material composition of the neodymium iron boron sintered body;
    所述钕铁硼烧结体的原料组合物中总稀土含量较佳地为29.7~31.82wt%,例如30.1wt%、30.24wt%、31.1wt%、31.2wt%、31.46wt%或31.82wt%;The total rare earth content in the raw material composition of the neodymium iron boron sintered body is preferably 29.7-31.82wt%, for example 30.1wt%, 30.24wt%, 31.1wt%, 31.2wt%, 31.46wt% or 31.82wt%;
    所述LR的含量较佳地为15~30.5wt%,例如17.6wt%、20.1wt%、22.6wt%、22.8wt%、23.1wt%、23.64wt%、24wt%、24.6wt%、25.6wt%、26.1wt%或30.1wt%;The content of the LR is preferably 15 to 30.5 wt%, for example, 17.6 wt%, 20.1 wt%, 22.6 wt%, 22.8 wt%, 23.1 wt%, 23.64 wt%, 24 wt%, 24.6 wt%, 25.6 wt% , 26.1wt% or 30.1wt%;
    所述Nd的含量较佳地为13~20wt%,例如13.1wt%、18wt%或18.75wt%;The Nd content is preferably 13-20wt%, for example 13.1wt%, 18wt% or 18.75wt%;
    所述LR较佳地还包括Pr和/或Sm;其中,The LR preferably further includes Pr and/or Sm; wherein,
    当所述LR包含Pr时,所述Pr的含量为0~16wt%、且不为0wt%;较佳地为4wt%~12wt%,例如4.89wt%或10.9wt%;所述Pr的添加形式为纯净Pr和/或PrNd,较佳地为PrNd;When the LR contains Pr, the content of Pr is 0-16% by weight, and not 0% by weight; preferably 4%-12% by weight, for example, 4.89% by weight or 10.9% by weight; the form of addition of Pr Is pure Pr and/or PrNd, preferably PrNd;
    当所述LR包含Sm时,所述Sm的含量为0~5wt%,且不为0;例如4.8wt%;When the LR contains Sm, the content of Sm is 0-5 wt%, and is not 0; for example, 4.8 wt%;
    所述Ho含量较佳地为1~8.5wt%,更佳地为4.5~7.5wt%,例如1.71wt%、3wt%、4.34wt%、5.5wt%或8.2wt%;The Ho content is preferably 1 to 8.5 wt%, more preferably 4.5 to 7.5 wt%, such as 1.71 wt%, 3 wt%, 4.34 wt%, 5.5 wt% or 8.2 wt%;
    所述Gd含量较佳地为0.5~3wt%,例如1wt%、1.5wt%、1.82wt%、2.52wt%或2.63wt%;The Gd content is preferably 0.5-3wt%, for example 1wt%, 1.5wt%, 1.82wt%, 2.52wt% or 2.63wt%;
    所述Ho和所述Gd的总含量较佳地为不超过10wt%;The total content of the Ho and the Gd is preferably not more than 10wt%;
    所述Dy和/或Tb的含量范围较佳地为0.1~2wt%,例如0.5wt%、1wt%、1.51wt%、2.02wt%或2.5wt%;当所述第一组分包括Dy和Tb的混合物时,Dy和Tb的重量比较佳地为1:99~99:1,例如50:50、60:40或者40:60;The content of Dy and/or Tb preferably ranges from 0.1 to 2% by weight, such as 0.5% by weight, 1% by weight, 1.51% by weight, 2.02% by weight, or 2.5% by weight; when the first component includes Dy and Tb In the case of a mixture of, the weight of Dy and Tb is preferably 1:99~99:1, such as 50:50, 60:40 or 40:60;
    所述Cu的含量范围较佳地为0.1~0.3wt%,例如0.15wt%、0.2wt%或0.25wt%;The content of Cu is preferably in the range of 0.1 to 0.3 wt%, such as 0.15 wt%, 0.2 wt% or 0.25 wt%;
    所述Ga的含量范围较佳地为0.1~0.3wt%,例如0.15wt%、0.2wt%或0.25wt%;The content of Ga is preferably 0.1-0.3wt%, for example 0.15wt%, 0.2wt% or 0.25wt%;
    所述Al的含量范围较佳地为0~0.3wt%,更佳地为0~0.1wt%,例如0.02 wt%、0.04wt%或0.08wt%;更佳地为0~0.04wt%,最佳地为0;The content of Al is preferably in the range of 0 to 0.3 wt%, more preferably 0 to 0.1 wt%, such as 0.02 wt%, 0.04 wt% or 0.08 wt%; more preferably 0 to 0.04 wt%, most preferably The best place is 0;
    所述X的种类较佳地为Ti、Nb、Zr和Hf中的一种或多种;The type of X is preferably one or more of Ti, Nb, Zr and Hf;
    所述X的含量较佳地为0.1~0.4wt%,更佳地为0.15~0.2wt%;The content of X is preferably 0.1 to 0.4 wt%, more preferably 0.15 to 0.2 wt%;
    当所述X包括Zr时,所述Zr的含量范围较佳地为0.02~0.4wt%,例如0.2wt%;When the X includes Zr, the content of the Zr preferably ranges from 0.02 to 0.4 wt%, for example, 0.2 wt%;
    当所述X包括Ti时,所述Ti的含量范围较佳地为0~0.2wt%、且不为0,例如0.15wt%;When the X includes Ti, the content of Ti preferably ranges from 0 to 0.2 wt%, and is not 0, for example, 0.15 wt%;
    当所述X包括Nb时,所述Nb的含量范围较佳地为0~0.4wt%、且不为0,例如0.03wt%或0.1wt%;When the X includes Nb, the content of Nb is preferably in the range of 0 to 0.4 wt%, and is not 0, for example, 0.03 wt% or 0.1 wt%;
    当所述X包括Hf时,所述Hf的含量范围较佳地为0~0.1wt%、且不为0,例如0.03wt%或0.05wt%;When the X includes Hf, the content of the Hf preferably ranges from 0 to 0.1 wt% and is not 0, for example, 0.03 wt% or 0.05 wt%;
    当X包括Ti和Nb时,Ti和Nb的重量比较佳地为1:99~99:1,例如2:1或2:3;When X includes Ti and Nb, the weight of Ti and Nb is preferably 1:99~99:1, such as 2:1 or 2:3;
    当X包括Hf和Zr时,Hf和Zr的重量比较佳地为1:99~99:1,例如1:10或5:2;When X includes Hf and Zr, the weight of Hf and Zr is preferably 1:99~99:1, such as 1:10 or 5:2;
    当X包括Hf和Nb时,Hf和Nb的重量比较佳地为1:99~99:1,例如1:8;When X includes Hf and Nb, the weight of Hf and Nb is preferably 1:99 to 99:1, such as 1:8;
    所述Co的含量较佳地为0~0.2wt%,更佳地为0;The content of Co is preferably 0-0.2wt%, more preferably 0;
    所述B的含量范围较佳地为0.94~1.02wt%,例如0.98wt%或0.99wt%;The content of B is preferably 0.94-1.02wt%, for example 0.98wt% or 0.99wt%;
    较佳地,所述钕铁硼烧结体的原料组合物包括:PrNd:15~30.5wt%;Ho:1~8.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.1~2wt%;Cu:0.1~0.3wt%;Ga:0.1~0.3wt%;Al:0~0.1wt%;Zr:0.2~0.4wt%;Co:0~0.2wt%;B:0.94~1.02wt%;余量为Fe及不可避免的杂质;Preferably, the raw material composition of the neodymium iron boron sintered body includes: PrNd: 15 to 30.5 wt%; Ho: 1 to 8.5 wt%; Gd: 0.5 to 3 wt%; Dy and/or Tb: 0.1 to 2 wt% ; Cu: 0.1~0.3wt%; Ga: 0.1~0.3wt%; Al: 0~0.1wt%; Zr: 0.2~0.4wt%; Co: 0~0.2wt%; B: 0.94~1.02wt%; The amount is Fe and unavoidable impurities;
    较佳地,所述钕铁硼烧结体的原料组合物包括:Nd:13~20wt%;Sm:0~5wt%;Ho:4.5~8.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.1~2wt%;Cu:0.1~0.3wt%;Ga:0.1~0.3wt%;Al:0~0.04wt%;Nb:0~0.4wt%;Co:0~0.2wt%;B:0.9~0.99wt%;余量为Fe及不可避免的杂质;Preferably, the raw material composition of the neodymium iron boron sintered body includes: Nd: 13-20wt%; Sm: 0-5wt%; Ho: 4.5-8.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.1 to 2wt%; Cu: 0.1 to 0.3wt%; Ga: 0.1 to 0.3wt%; Al: 0 to 0.04wt%; Nb: 0 to 0.4wt%; Co: 0 to 0.2wt%; B: 0.9 ~0.99wt%; the balance is Fe and unavoidable impurities;
    较佳地,所述钕铁硼烧结体的原料组合物包括:Nd:13~20wt%;Pr: 0~16wt%;Ho:3.5~4.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.1~2.5wt%;Cu:0.1~0.3wt%;Ga:0~0.3wt%;Al:0~0.4wt%;Ti:0~0.2wt%;Co:0~0.2wt%;B:0.98~1.1wt%;余量为Fe及不可避免的杂质;Preferably, the raw material composition of the neodymium iron boron sintered body includes: Nd: 13-20wt%; Pr: 0-16wt%; Ho: 3.5-4.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.1~2.5wt%; Cu: 0.1~0.3wt%; Ga: 0~0.3wt%; Al: 0~0.4wt%; Ti: 0~0.2wt%; Co: 0~0.2wt%; B: 0.98~1.1wt%; the balance is Fe and unavoidable impurities;
    较佳地,所述钕铁硼烧结体的原料组合物包括:Nd:13~20wt%;Pr:0~16wt%;Ho:1~4.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.1~2wt%;Cu:0.2~0.35wt%;Ga:0.2~0.35wt%;Al:0~0.0.04wt%;Hf:0~0.1wt%;Co:0~0.2wt%;B:0.94~1.05wt%;余量为Fe及不可避免的杂质。Preferably, the raw material composition of the neodymium iron boron sintered body includes: Nd: 13-20wt%; Pr: 0-16wt%; Ho: 1-4.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.1-2wt%; Cu: 0.2-0.35wt%; Ga: 0.2-0.35wt%; Al: 0-0.0.04wt%; Hf: 0-0.1wt%; Co: 0-0.2wt%; B: 0.94~1.05wt%; the balance is Fe and unavoidable impurities.
  7. 一种钕铁硼烧结体的制备方法,其包括:将权利要求6所述的钕铁硼烧结体的原料组合物经熔炼、制粉、成型、烧结即可;所述熔炼、制粉、成型、烧结如权利要求3所述。A method for preparing a neodymium iron boron sintered body, comprising: smelting, powdering, molding, and sintering the raw material composition of the neodymium iron boron sintered body according to claim 6; the smelting, powdering, and molding , Sintering as claimed in claim 3.
  8. 一种钕铁硼烧结体,其由权利要求所述7的钕铁硼烧结体的制备方法制得。A neodymium iron boron sintered body, which is prepared by the method for preparing a neodymium iron boron sintered body according to claim 7.
  9. 一种钕铁硼烧结体,其包括:A neodymium iron boron sintered body, which comprises:
    轻稀土元素LR:13~31.5wt%;所述LR包括Nd;Light rare earth element LR: 13~31.5wt%; said LR includes Nd;
    Ho:0~10wt%、且不为0;Ho: 0~10wt%, and not 0;
    Gd:0~5wt%、且不为0;Gd: 0~5wt%, and not 0;
    Dy和/或Tb:0~3.1wt%,且不为0;Dy and/or Tb: 0~3.1wt%, and not 0;
    Cu:0~0.35wt%,且不为0;Cu: 0~0.35wt%, and not 0;
    Ga:0~0.35wt%,且不为0;Ga: 0~0.35wt%, and not 0;
    Al:0~0.5wt%;Al: 0~0.5wt%;
    X:0.05~0.45wt%;所述X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;X: 0.05 to 0.45 wt%; the X includes one or more of Ti, Nb, Zr, Hf, V, Mo, W, Ta and Cr;
    Co:0~0.5wt%;Co: 0~0.5wt%;
    B:0.9~1.1wt%;B: 0.9~1.1wt%;
    余量为Fe;The balance is Fe;
    所述钕铁硼烧结体中总稀土含量为29.5~32.5wt%;The total rare earth content in the NdFeB sintered body is 29.5-32.5wt%;
    wt%为各元素占所述钕铁硼烧结体的重量百分比;wt% is the weight percentage of each element in the neodymium iron boron sintered body;
    所述钕铁硼烧结体包含主相、晶界外延层和富钕相;所述主相和所述晶界外延层分布有Ho和Gd,以及Dy和/或Tb;所述钕铁硼烧结体的晶界连续性为96%以上;The neodymium iron boron sintered body includes a main phase, a grain boundary epitaxial layer and a neodymium-rich phase; the main phase and the grain boundary epitaxial layer are distributed with Ho and Gd, and Dy and/or Tb; the neodymium iron boron sintered The continuity of the grain boundary of the volume is above 96%;
    所述主相和所述晶界外延层中较佳地分布有Ho和Gd以及Dy和/或Tb元素的总重量的95%以上;Preferably, more than 95% of the total weight of Ho, Gd and Dy and/or Tb elements are distributed in the main phase and the grain boundary epitaxial layer;
    所述钕铁硼烧结体中总稀土含量较佳地为29.7~31.82wt%,例如30.1wt%、30.24wt%、31.1wt%、31.2wt%、31.46wt%或31.82wt%;The total rare earth content in the neodymium iron boron sintered body is preferably 29.7-31.82wt%, for example 30.1wt%, 30.24wt%, 31.1wt%, 31.2wt%, 31.46wt% or 31.82wt%;
    所述LR的含量较佳地为15~30.5wt%,例如17.6wt%、20.1wt%、22.6wt%、22.8wt%、23.1wt%、23.64wt%、24wt%、24.6wt%、25.6wt%、26.1wt%或30.1wt%;The content of the LR is preferably 15 to 30.5 wt%, for example, 17.6 wt%, 20.1 wt%, 22.6 wt%, 22.8 wt%, 23.1 wt%, 23.64 wt%, 24 wt%, 24.6 wt%, 25.6 wt% , 26.1wt% or 30.1wt%;
    所述Nd的含量较佳地为13~20wt%,例如13.1wt%、18wt%或18.75wt%;The Nd content is preferably 13-20wt%, for example 13.1wt%, 18wt% or 18.75wt%;
    所述LR较佳地还可包括Pr和/或Sm;其中,Preferably, the LR may also include Pr and/or Sm; wherein,
    当所述LR包含Pr时,所述Pr的含量为0~16wt%、且不为0wt%;较佳地为4wt%~12wt%,例如4.89wt%或10.9wt%;所述Pr的添加形式为纯净Pr和/或PrNd,较佳地为PrNd;When the LR contains Pr, the content of Pr is 0-16% by weight, and not 0% by weight; preferably 4%-12% by weight, for example, 4.89% by weight or 10.9% by weight; the form of addition of Pr Is pure Pr and/or PrNd, preferably PrNd;
    其中,当所述LR包含Sm时,所述Sm的含量为0~5wt%,且不为0;例如4.8wt%;Wherein, when the LR contains Sm, the content of Sm is 0-5 wt%, and is not 0; for example, 4.8 wt%;
    所述Ho含量较佳地为1~8.5wt%,更佳地为4.5~7.5wt%,例如1.71wt%、3wt%、4.34wt%、5.5wt%或8.2wt%;The Ho content is preferably 1 to 8.5 wt%, more preferably 4.5 to 7.5 wt%, such as 1.71 wt%, 3 wt%, 4.34 wt%, 5.5 wt% or 8.2 wt%;
    所述Gd含量较佳地为0.5~3wt%,例如1wt%、1.5wt%、1.82wt%、2.52wt%或2.63wt%;The Gd content is preferably 0.5-3wt%, for example 1wt%, 1.5wt%, 1.82wt%, 2.52wt% or 2.63wt%;
    所述Ho和所述Gd的总含量较佳地为不超过10wt%;The total content of the Ho and the Gd is preferably not more than 10wt%;
    所述Dy和/或Tb的含量范围较佳地为0.1~2wt%,例如0.5wt%、1wt%、1.51wt%、2.02wt%或2.5wt%;当所述第一组分包括Dy和Tb的混合物时,Dy和Tb的重量比较佳地为1:99~99:1,例如50:50、60:40或者40:60;The content of Dy and/or Tb preferably ranges from 0.1 to 2% by weight, such as 0.5% by weight, 1% by weight, 1.51% by weight, 2.02% by weight, or 2.5% by weight; when the first component includes Dy and Tb In the case of a mixture of, the weight of Dy and Tb is preferably 1:99~99:1, such as 50:50, 60:40 or 40:60;
    所述Cu的含量范围较佳地为0.1~0.3wt%,例如0.15wt%、0.2wt%或0.25wt%;The content of Cu is preferably in the range of 0.1 to 0.3 wt%, such as 0.15 wt%, 0.2 wt% or 0.25 wt%;
    所述Ga的含量范围较佳地为0.1~0.3wt%,例如0.15wt%、0.2wt%或0.25wt%;The content of Ga is preferably 0.1-0.3wt%, for example 0.15wt%, 0.2wt% or 0.25wt%;
    所述Al的含量范围较佳地为0~0.3wt%,更佳地为0~0.1wt%,例如0.02wt%、0.04wt%或0.08wt%;更佳地为0~0.04wt%,最佳地为;The content of Al is preferably 0-0.3wt%, more preferably 0-0.1wt%, such as 0.02wt%, 0.04wt% or 0.08wt%; more preferably 0-0.04wt%, most Best place
    所述X的种类较佳地为Ti、Nb、Zr和Hf中的一种或多种;The type of X is preferably one or more of Ti, Nb, Zr and Hf;
    所述X的含量较佳地为0.1~0.4wt%,更佳地为0.15~0.2wt%;The content of X is preferably 0.1 to 0.4 wt%, more preferably 0.15 to 0.2 wt%;
    当所述X包括Zr时,所述Zr的含量范围较佳地为0.02~0.4wt%,例如0.2wt%;When the X includes Zr, the content of the Zr preferably ranges from 0.02 to 0.4 wt%, for example, 0.2 wt%;
    当所述X包括Ti时,所述Ti的含量范围较佳地为0~0.2wt%、且不为0,例如0.15wt%;When the X includes Ti, the content of Ti preferably ranges from 0 to 0.2 wt%, and is not 0, for example, 0.15 wt%;
    当所述X包括Nb时,所述Nb的含量范围较佳地为0~0.4wt%、且不为0,例如0.03wt%或0.1wt%;When the X includes Nb, the content of Nb is preferably in the range of 0 to 0.4 wt%, and is not 0, for example, 0.03 wt% or 0.1 wt%;
    当所述X包括Hf时,所述Hf的含量范围较佳地为0~0.1wt%、且不为0,例如0.03wt%或0.05wt%;When the X includes Hf, the content of the Hf preferably ranges from 0 to 0.1 wt% and is not 0, for example, 0.03 wt% or 0.05 wt%;
    当X包括Ti和Nb时,Ti和Nb的重量比较佳地为1:99~99:1,例如2:1或2:3;When X includes Ti and Nb, the weight of Ti and Nb is preferably 1:99~99:1, such as 2:1 or 2:3;
    当X包括Hf和Zr时,Hf和Zr的重量比较佳地为1:99~99:1,例如1:10或5:2;When X includes Hf and Zr, the weight of Hf and Zr is preferably 1:99~99:1, such as 1:10 or 5:2;
    当X包括Hf和Nb时,Hf和Nb的重量比较佳地为1:99~99:1,例如1:8;When X includes Hf and Nb, the weight of Hf and Nb is preferably 1:99 to 99:1, such as 1:8;
    所述Co的含量较佳地为0~0.2wt%,更佳地为0;The content of Co is preferably 0-0.2wt%, more preferably 0;
    所述B的含量范围较佳地为0.94~1.02wt%,例如0.98wt%或0.99wt%;The content of B is preferably 0.94-1.02wt%, for example 0.98wt% or 0.99wt%;
    较佳地,所述钕铁硼烧结体包括:PrNd:15~30.5wt%;Ho:1~8.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.1~2wt%;Cu:0.1~0.3wt%;Ga:0.1~0.3wt%;Al:0~0.1wt%;Zr:0.2~0.4wt%;Co:0~0.2wt%;B:0.94~1.02wt%;余量为Fe及不可避免的杂质;Preferably, the neodymium iron boron sintered body comprises: PrNd: 15-30.5wt%; Ho: 1-8.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.1-2wt%; Cu: 0.1 ~0.3wt%; Ga: 0.1~0.3wt%; Al: 0~0.1wt%; Zr: 0.2~0.4wt%; Co: 0~0.2wt%; B: 0.94~1.02wt%; the balance is Fe and Inevitable impurities;
    较佳地,所述钕铁硼烧结体包括:Nd:13~20wt%;Sm:0~5wt%;Ho:4.5~8.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.1~2wt%;Cu:0.1~0.3wt%; Ga:0.1~0.3wt%;Al:0~0.04wt%;Nb:0~0.4wt%;Co:0~0.2wt%;B:0.9~0.99wt%;余量为Fe及不可避免的杂质;Preferably, the neodymium iron boron sintered body comprises: Nd: 13-20wt%; Sm: 0-5wt%; Ho: 4.5-8.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.1- 2wt%; Cu: 0.1~0.3wt%; Ga: 0.1~0.3wt%; Al: 0~0.04wt%; Nb: 0~0.4wt%; Co: 0~0.2wt%; B: 0.9~0.99wt% ; The balance is Fe and unavoidable impurities;
    较佳地,所述钕铁硼烧结体包括:Nd:13~20wt%;Pr:0~16wt%;Ho:3.5~4.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.1~2.5wt%;Cu:0.1~0.3wt%;Ga:0~0.3wt%;Al:0~0.4wt%;Ti:0~0.2wt%;Co:0~0.2wt%;B:0.98~1.1wt%;余量为Fe及不可避免的杂质;Preferably, the neodymium iron boron sintered body comprises: Nd: 13-20wt%; Pr: 0-16wt%; Ho: 3.5-4.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.1- 2.5wt%; Cu: 0.1~0.3wt%; Ga: 0~0.3wt%; Al: 0~0.4wt%; Ti: 0~0.2wt%; Co: 0~0.2wt%; B: 0.98~1.1wt %; the balance is Fe and unavoidable impurities;
    较佳地,所述钕铁硼烧结体包括:Nd:13~20wt%;Pr:0~16wt%;Ho:1~4.5wt%;Gd:0.5~3wt%;Dy和/或Tb:0.1~2wt%;Cu:0.2~0.35wt%;Ga:0.2~0.35wt%;Al:0~0.0.04wt%;Hf:0~0.1wt%;Co:0~0.2wt%;B:0.94~1.05wt%;余量为Fe及不可避免的杂质。Preferably, the neodymium iron boron sintered body comprises: Nd: 13-20wt%; Pr: 0-16wt%; Ho: 1-4.5wt%; Gd: 0.5-3wt%; Dy and/or Tb: 0.1- 2wt%; Cu: 0.2~0.35wt%; Ga: 0.2~0.35wt%; Al: 0~0.0.04wt%; Hf: 0~0.1wt%; Co: 0~0.2wt%; B: 0.94~1.05wt %; the balance is Fe and unavoidable impurities.
  10. 一种根据权利要求4或5所述钕铁硼磁体材料和/或权利要求8或9所述钕铁硼烧结体在制备磁钢中的应用。An application of the neodymium iron boron magnet material according to claim 4 or 5 and/or the neodymium iron boron sintered body according to claim 8 or 9 in the preparation of magnetic steel.
PCT/CN2021/088314 2020-04-30 2021-04-20 Neodymium-iron-boron magnet material, raw material composition, preparation method therefor and use thereof WO2021218700A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010365875.7 2020-04-30
CN202010365875.7A CN111524673A (en) 2020-04-30 2020-04-30 Neodymium-iron-boron magnet material, raw material composition, preparation method and application thereof

Publications (1)

Publication Number Publication Date
WO2021218700A1 true WO2021218700A1 (en) 2021-11-04

Family

ID=71912101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088314 WO2021218700A1 (en) 2020-04-30 2021-04-20 Neodymium-iron-boron magnet material, raw material composition, preparation method therefor and use thereof

Country Status (2)

Country Link
CN (1) CN111524673A (en)
WO (1) WO2021218700A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111524673A (en) * 2020-04-30 2020-08-11 福建省长汀金龙稀土有限公司 Neodymium-iron-boron magnet material, raw material composition, preparation method and application thereof
CN112992460B (en) * 2021-03-17 2023-04-14 福建省长汀金龙稀土有限公司 R-T-B magnet and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120280775A1 (en) * 2011-05-02 2012-11-08 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnets and their preparation
CN110619984A (en) * 2018-06-19 2019-12-27 厦门钨业股份有限公司 R-Fe-B sintered magnet with low B content and preparation method thereof
CN110853855A (en) * 2019-11-21 2020-02-28 厦门钨业股份有限公司 R-T-B series permanent magnetic material and preparation method and application thereof
CN111524673A (en) * 2020-04-30 2020-08-11 福建省长汀金龙稀土有限公司 Neodymium-iron-boron magnet material, raw material composition, preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104249137B (en) * 2014-09-12 2016-05-25 沈阳中北通磁科技股份有限公司 The manufacture method of RE permanent magnetic alloy and Fe-B rare-earth permanent magnet and manufacture method
CN109509605B (en) * 2019-01-11 2019-12-13 宁波复能新材料股份有限公司 Rare earth permanent magnet with multilayer structure and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120280775A1 (en) * 2011-05-02 2012-11-08 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnets and their preparation
CN110619984A (en) * 2018-06-19 2019-12-27 厦门钨业股份有限公司 R-Fe-B sintered magnet with low B content and preparation method thereof
CN110853855A (en) * 2019-11-21 2020-02-28 厦门钨业股份有限公司 R-T-B series permanent magnetic material and preparation method and application thereof
CN111524673A (en) * 2020-04-30 2020-08-11 福建省长汀金龙稀土有限公司 Neodymium-iron-boron magnet material, raw material composition, preparation method and application thereof

Also Published As

Publication number Publication date
CN111524673A (en) 2020-08-11

Similar Documents

Publication Publication Date Title
TWI755151B (en) R-t-b series permanent magnetic material and preparation method and application thereof
TWI751789B (en) NdFeB MAGNET MATERIAL, RAW MATERIAL COMPOSITION, PREPARATION METHOD AND APPLICATION
TWI755152B (en) NdFeB MAGNET MATERIAL, RAW MATERIAL COMPOSITION, PREPARATION METHOD AND APPLICATION
WO2021169886A1 (en) Neodymium-iron-boron magnet material, raw material composition, preparation method therefor and use thereof
WO2021169891A1 (en) Neodymium-iron-boron magnet material, raw material composition, preparation method therefor and use thereof
WO2021218701A1 (en) Neodymium iron boron magnet material, raw material composition, preparation method and use
WO2021244315A1 (en) Neodymium-iron-boron magnet material, raw material composition and preparation method and use thereof
WO2021244312A1 (en) Neodymium-iron-boron magnet material, raw material composition, and preparation method and application of neodymium-iron-boron magnet material
WO2021244311A1 (en) Neodymium-iron-boron magnet material, raw material composition thereof, preparation method therefor, and application thereof
WO2021169888A1 (en) Neodymium-iron-boron magnet material, raw material composition, preparation method therefor and use thereof
TWI751788B (en) NdFeB MAGNET MATERIAL, RAW MATERIAL COMPOSITION, PREPARATION METHOD AND APPLICATION
WO2021169887A1 (en) Neodymium-iron-boron magnet material, raw material composition, preparation method therefor and use thereof
WO2021169889A1 (en) Neodymium-iron-boron magnet material, raw material composition, preparation method therefor and use thereof
WO2021169890A1 (en) Neodymium-iron-boron magnet material, raw material composition, preparation method therefor and use thereof
WO2021169893A1 (en) Neodymium-iron-boron magnet material, raw material composition, preparation method, and application
WO2021218700A1 (en) Neodymium-iron-boron magnet material, raw material composition, preparation method therefor and use thereof
WO2021238783A1 (en) Neodymium-iron-boron permanent magnet material, raw material composition thereof, preparation method therefor and use thereof
TW202106896A (en) Rare earth permanent magnet matieral, and raw material composition, preparation method, and application thereof
WO2021218698A1 (en) Ndfeb magnet material, and raw material composition thereof, preparation method therefor, and application thereof
WO2021218699A1 (en) Neodymium-iron-boron magnet material, raw material composition, preparation method, and application
WO2021169892A1 (en) Neodymium-iron-boron magnet material, raw material composition, preparation method therefor and use thereof
WO2021244316A1 (en) R-t-b-based permanent magnetic material, raw material composition, preparation method therefor and use thereof
WO2021244319A1 (en) R-t-b-based permanent magnetic material, raw material composition, preparation method therefor and use thereof
WO2021244314A1 (en) Neodymium-iron-boron magnet material, raw material composition, preparation method therefor and use thereof
WO2021238784A1 (en) Neodymium-iron-boron permanent magnet material, raw material composition therefor and preparation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796880

Country of ref document: EP

Kind code of ref document: A1