WO2021217989A1 - 一种量子比特的重置方法、装置、设备及可读存储介质 - Google Patents

一种量子比特的重置方法、装置、设备及可读存储介质 Download PDF

Info

Publication number
WO2021217989A1
WO2021217989A1 PCT/CN2020/112504 CN2020112504W WO2021217989A1 WO 2021217989 A1 WO2021217989 A1 WO 2021217989A1 CN 2020112504 W CN2020112504 W CN 2020112504W WO 2021217989 A1 WO2021217989 A1 WO 2021217989A1
Authority
WO
WIPO (PCT)
Prior art keywords
qubit
state
reset
gate
quantum bit
Prior art date
Application number
PCT/CN2020/112504
Other languages
English (en)
French (fr)
Inventor
刘幼航
刘强
金长新
Original Assignee
济南浪潮高新科技投资发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 济南浪潮高新科技投资发展有限公司 filed Critical 济南浪潮高新科技投资发展有限公司
Publication of WO2021217989A1 publication Critical patent/WO2021217989A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena

Definitions

  • the present invention relates to the technical field of quantum computing, in particular to a method for resetting a qubit, a resetting device for a qubit, a resetting device for a qubit, and a computer-readable storage medium.
  • Superconducting quantum computing is a popular technology with huge potential application value. Unlike classical computers that distinguish the bit state by the level of the level, the basic calculation unit of superconducting quantum computing, the superconducting qubit, distinguishes the state of the qubit by the level of energy.
  • the qubits generally used in quantum computing are all two-level structures, that is, the energy state of the qubit has only two kinds of ground state and excited state. But unlike the classical bit which can only be in the 0 state or the 1 state, the qubit can be in a superposition state formed by the linear combination of the ground state and the excited state. When the qubit in the superposition state is measured, the ground state will be measured with probability And one of the excited states, and from the theory of quantum mechanics, it is known that the qubit will collapse to the measured state after the measurement.
  • the starting state of superconducting qubits is the ground state. Therefore, the resetting of superconducting qubits is an extremely critical step for superconducting quantum computing.
  • the traditional superconducting qubit reset method is to let the superconducting qubit in the mixing cavity of the dilution refrigerator stand for a period of time, and then the qubit will stabilize to a thermal equilibrium state under the action of energy relaxation. Since the characteristic temperature of the mixing cavity of the dilution refrigerator is extremely low, at the order of 10 mK, the stable thermal equilibrium state is the energy ground state of the superconducting qubit.
  • the purpose of the present invention is to provide a qubit reset method, which can quickly reset the qubit; the present invention also provides a qubit reset device, a qubit reset device and a A computer-readable storage medium can quickly reset the qubit.
  • the present invention provides a method for resetting qubits, including:
  • the method further includes:
  • the flipping the state of the qubit through the X gate includes:
  • the state of the qubit is flipped through the X gate, and the step of measuring the state of the qubit in the superposition state is performed again.
  • the method further includes:
  • the present invention also provides a device for resetting qubits, including:
  • Measurement module used to measure the state of the qubit in the superposition state
  • Judging module used to judge whether the result of measuring the state of the qubit is an excited state
  • Flip module if the result of measuring the state of the qubit is an excited state, flip the state of the qubit through the X gate;
  • Reset confirmation module if the result of measuring the state of the qubit is not an excited state, determine that the state of the qubit is the ground state, and the reset of the qubit has been completed.
  • it also includes:
  • Signal sending module used to send a reset confirmation signal corresponding to the qubit to the upper computer, so that the upper computer executes the preset quantum circuit.
  • the turning module is specifically used for:
  • the state of the qubit is reversed through the X gate, and the measurement module is re-run.
  • it also includes:
  • Recording module used to record the number of times of turning over the state of the qubit through the X gate;
  • Alarm module used to give an alarm to the host computer when the number of flips is greater than the preset number of times.
  • the present invention also provides a device for resetting qubits, including:
  • Memory used to store computer programs
  • the processor is configured to implement the steps of the qubit reset method as described in any one of the above when executing the computer program.
  • the present invention also provides a computer-readable storage medium having a computer program stored on the computer-readable storage medium. step.
  • the method for resetting a qubit includes measuring the state of the qubit in the superposition state; judging whether the result of the qubit state measurement is an excited state; if the result of the qubit state measurement is an excited state The state of the qubit is flipped through the X gate; if the result of the measurement of the qubit state is not an excited state, the state of the qubit is determined to be the ground state, and the reset of the qubit has been completed. When it is detected that the qubit is in an excited state, it means that the qubit needs to be reset to the ground state, so that the upper computer can execute the set quantum circuit after the reset is completed.
  • the state of the qubit is flipped through the X gate in the quantum gate, so that the qubit in the excited state is flipped to the ground state, and the reset of the qubit is completed.
  • the relaxation time required for the qubit's thermal equilibrium can be avoided, thereby greatly reducing the time required for the qubit to reset.
  • the present invention also provides a qubit reset device, a qubit reset device, and a computer-readable storage medium, which also have the above-mentioned beneficial effects, and will not be repeated here.
  • FIG. 1 is a flowchart of a method for resetting qubits according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the structure of a system applied by the qubit reset method in FIG. 1;
  • FIG. 3 is a flowchart of a specific qubit reset method provided by an embodiment of the present invention.
  • FIG. 4 is a structural block diagram of a qubit reset device provided by an embodiment of the present invention.
  • Fig. 5 is a structural block diagram of a qubit reset device provided by an embodiment of the present invention.
  • the core of the present invention is to provide a method for resetting qubits.
  • the superconducting qubit reset method is to let the superconducting qubit in the mixing cavity of the dilution refrigerator stand for a period of time, and then the qubit will stabilize to a thermal equilibrium state under the action of energy relaxation. Since the characteristic temperature of the mixing cavity of the dilution refrigerator is extremely low, at the order of 10 mK, the stable thermal equilibrium state is the energy ground state of the superconducting qubit.
  • this method takes a long time, will extend the time required for a single quantum calculation process, and there may be situations where the superconducting qubit cannot be reset due to thermal fluctuations.
  • the method for resetting a qubit includes measuring the state of the qubit in a superposition state; judging whether the result of the qubit state measurement is an excited state; if the result of the qubit state measurement is In the excited state, the state of the qubit is flipped through the X gate; if the result of the qubit state measurement is not an excited state, the state of the qubit is determined to be the ground state, and the reset of the qubit has been completed.
  • it is detected that the qubit is in an excited state it means that the qubit needs to be reset to the ground state, so that the upper computer can execute the set quantum circuit after the reset is completed.
  • the state of the qubit is flipped through the X gate in the quantum gate, so that the qubit in the excited state is flipped to the ground state, and the reset of the qubit is completed.
  • the relaxation time required for the qubit's thermal equilibrium can be avoided, thereby greatly reducing the time required for the qubit to reset.
  • FIG. 1 is a flowchart of a qubit reset method provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a system applied in the qubit reset method in FIG.
  • the method for resetting the qubit includes:
  • the qubit reset method provided by the embodiment of the present invention is specifically applied in a feedback device, which is connected between the qubit and the upper computer, and is used to ensure that the qubit is executed when the preset quantum circuit is executed. Make sure to be reset.
  • the qubit usually only has two states of an excited state and a ground state after being measured, wherein the ground state is a low-level state and the excited state is a high-level state.
  • the state of the qubit in the superposition state needs to be measured to determine the current state of the qubit. It should be noted that before measuring the qubit, due to its quantum characteristics, it is impossible to determine whether the qubit is in the excited state or the ground state. That is, before the qubit is measured, the qubit is in the excited state and the ground state. The state of superposition is the superposition state. After the qubit is measured, the qubit will collapse to the measured state. That is, after this step, the qubit will collapse into an excited state or a ground state.
  • the specific method and related equipment for measuring the state of the qubit reference may be made to the prior art, which will not be repeated here.
  • S102 Determine whether the result of measuring the state of the qubit is an excited state.
  • this step it is specifically determined whether the state of the qubit is an excited state. If it is, that is, if the result of measuring the state of the qubit is an excited state, it means that the qubit is now in a high-energy state and needs to be reset for the upper position.
  • S103 needs to be executed to reset the qubit; if not, that is, the result of measuring the state of the qubit is the ground state, it means that the qubit is in low energy first. The level state does not need to be reset. Accordingly, S104 needs to be executed in the embodiment of the present invention.
  • the X gate is Pauli-X gate, which is a kind of quantum gate.
  • the X gate is equivalent to the classic logic NOT gate. It can replace
  • this step may specifically include: flipping the state of the qubit through an X gate, and re-executing the step of measuring the state of the qubit in the superposition state. That is, after performing this step, it is possible to loop back to the above S101, so that the qubits flipped by the X gate are measured again to determine the latest state of the qubits after flipping.
  • the qubit flipping microwave in the ideal state cannot be obtained due to factors such as noise influence, so there is a certain probability that the qubit cannot be completely flipped back to the ground state by the X gate.
  • each time the qubit is flipped through the X gate the state of the qubit will be detected. When it is detected that the qubit is still in an excited state, the qubit will continue to be processed through the X gate. Flip and retest to ensure that the qubit will be flipped to the ground state.
  • S104 Determine that the state of the qubit is the ground state, and the reset of the qubit has been completed.
  • a reset confirmation signal corresponding to the qubit is usually sent to the upper computer, so that the upper computer executes the preset quantum circuit.
  • the specific content of the quantum circuit executed by the host computer can be set according to the actual situation, and there is no specific limitation here.
  • a method for resetting a qubit includes measuring the state of the qubit in a superposition state; judging whether the result of the qubit state measurement is an excited state; if the result of the qubit state measurement is If it is an excited state, the state of the qubit is flipped through the X gate; if the result of the qubit state measurement is not an excited state, the state of the qubit is determined to be the ground state, and the reset of the qubit has been completed.
  • it is detected that the qubit is in an excited state it means that the qubit needs to be reset to the ground state, so that the upper computer can execute the set quantum circuit after the reset is completed.
  • the state of the qubit is flipped through the X gate in the quantum gate, so that the qubit in the excited state is flipped to the ground state, and the reset of the qubit is completed.
  • the relaxation time required for the qubit's thermal equilibrium can be avoided, thereby greatly reducing the time required for the qubit to reset.
  • FIG. 3 is a flowchart of a specific qubit reset method according to an embodiment of the present invention.
  • the method for resetting the qubit includes:
  • S202 Determine whether the result of measuring the state of the qubit is an excited state.
  • S201 to S203 are basically the same as S101 to S103 in the foregoing embodiment of the invention.
  • S101 to S103 are basically the same as S101 to S103 in the foregoing embodiment of the invention.
  • S101 to S103 are basically the same as S101 to S103 in the foregoing embodiment of the invention.
  • the number of times the X gate flips the qubit state is recorded, that is, the number of times the X gate is executed in one process.
  • the X gate is executed too much in a process, it means that the executed qubit can never be reset, indicating that there is a problem with the qubit or the X gate, and the user needs to be reminded to check in time.
  • a counting signal can be sent to the system, and the feedback device can record the number of times the qubit is flipped through the counting signal.
  • the specific operations related to the recording process can be set according to the actual situation, and there is no specific limitation here.
  • this step when the recorded number of flips is greater than the preset number, it means that the qubit cannot be reset at all times, and the operator needs to check the qubit or the X-gate circuit.
  • an alarm will be issued to the upper computer to remind the operator.
  • the specific form of the alarm can be set according to the actual situation, and there is no specific limitation here.
  • the specific value of the above-mentioned preset times can also be set according to the actual situation, and there is no specific limitation here. It should be noted that when the recorded number of flips is not greater than the preset number of times, the above reset process will continue to be executed. After an alarm is given to the upper computer, it is usually necessary to end the reset process provided in the embodiment of the present invention.
  • This step is basically the same as S104 in the above-mentioned embodiment of the invention.
  • S104 in the above-mentioned embodiment of the invention.
  • the method for resetting the qubit provided by the embodiment of the present invention records the number of times the qubit is flipped by the X gate, and gives an alarm when the number of flips is too high, which can effectively detect the qubit that has failed, so that the qubit can be checked in time. The operator made an alarm.
  • the following describes a qubit resetting device provided by an embodiment of the present invention.
  • the resetting device described below and the resetting method described above may correspond to each other and refer to each other.
  • FIG. 4 is a structural block diagram of a qubit reset device provided by an embodiment of the present invention.
  • the qubit reset device may include:
  • the measurement module 100 is used to measure the state of the qubit in the superposition state.
  • Judging module 200 used to determine whether the result of measuring the state of the qubit is an excited state.
  • the flip module 300 is used for flipping the state of the qubit through the X gate if the result of measuring the state of the qubit is an excited state.
  • Reset confirmation module 400 if the result of measuring the state of the qubit is not an excited state, determine that the state of the qubit is the ground state, and the reset of the qubit has been completed.
  • it further includes:
  • Signal sending module used to send a reset confirmation signal corresponding to the qubit to the upper computer, so that the upper computer executes the preset quantum circuit.
  • the turning module 300 is specifically used for:
  • the state of the qubit is reversed through the X gate, and the measurement module is re-run.
  • it further includes:
  • Recording module used to record the number of times of turning over the state of the qubit through the X gate;
  • Alarm module used to give an alarm to the host computer when the number of flips is greater than the preset number of times.
  • the qubit resetting device of this embodiment is used to implement the aforementioned qubit resetting method. Therefore, the specific implementation of the qubit resetting device can be seen in the previous embodiment of the qubit resetting method, for example, the measurement module 100, The judgment module 200, the flip module 300, and the reset confirmation module 400 are respectively used to implement steps S101, S102, S103, and S104 in the above-mentioned qubit reset method. Therefore, the specific implementation can refer to the description of the respective parts of the embodiment. I won't repeat them here.
  • the following describes a qubit reset device provided by an embodiment of the present invention.
  • the qubit reset device described below, the qubit reset method and the qubit reset device described above may correspond to each other with reference to each other.
  • FIG. 5 is a structural block diagram of a qubit reset device according to an embodiment of the present invention.
  • the qubit reset device may include a processor 11 and a memory 12.
  • the memory 12 is used to store a computer program; the processor 11 is used to implement the qubit reset method described in the above-mentioned embodiment of the invention when the computer program is executed.
  • the processor 11 is used to install the qubit reset device described in the above-mentioned invention embodiment, and the combination of the processor 11 and the memory 12 can realize the above-mentioned any one of the above-mentioned invention embodiments.
  • the qubit reset method Therefore, the specific implementation in the qubit reset device can be seen in the example part of the qubit reset method in the foregoing, and the specific implementation may refer to the description of the respective parts of the embodiment, and will not be repeated here.
  • the present invention also provides a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the qubit described in any of the above embodiments of the invention is realized Reset method.
  • the rest of the content can refer to the prior art, and will not be further described here.
  • the steps of the method or algorithm described in combination with the embodiments disclosed herein can be directly implemented by hardware, a software module executed by a processor, or a combination of the two.
  • the software module can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disks, removable disks, CD-ROMs, or all areas in the technical field. Any other known storage media.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

一种量子比特的重置方法、装置、设备及存储介质,该方法包括对处于叠加态的量子比特的状态进行测量(S101);判断对量子比特状态测量的结果是否为激发态(S102);若对量子比特状态测量的结果为激发态,则通过X门翻转量子比特的状态(S103);若对量子比特状态测量的结果不为激发态,则确定量子比特的状态为基态,已完成量子比特的重置(S104)。当检测到量子比特处于激发态时,意味着该量子比特需要重置成基态,而在重置时,具体是通过量子门中的X门来翻转量子比特的状态,从而完成对量子比特的重置。通过X门作用于量子比特,可以避免量子比特热平衡所需的弛豫时间,从而大幅减少量子比特重置所需的时间。

Description

一种量子比特的重置方法、装置、设备及可读存储介质 技术领域
本发明涉及量子计算技术领域,特别是涉及一种量子比特的重置方法、一种量子比特的重置装置、一种量子比特的重置设备以及一种计算机可读存储介质。
背景技术
超导量子计算是一种热门并且具有巨大潜在应用价值的技术。与经典计算机以电平的高低区分比特状态不同,超导量子计算的基本计算单元超导量子比特依靠能量的高低区分量子比特所处的状态。一般应用于量子计算的量子比特均为二能级结构,即量子比特所处能量状态仅有基态和激发态两种。但是又与经典比特只能处于0态或1态不同,量子比特又能处于由基态和激发态线性组合而成的叠加态,当对处于叠加态的量子比特进行测量时将有概率测得基态和激发态其中的一种,并且由量子力学理论可知在测量后量子比特将会塌缩到所测量得到的状态。
一般情况下,超导量子比特的起始状态均为基态,因此,超导量子比特的重置对于超导量子计算而言是一个极为关键的步骤。传统的超导量子比特重置方法为让位于稀释制冷机混合腔内的超导量子比特静置一段时间,随后量子比特将在能量弛豫的作用下稳定到热平衡态。由于稀释制冷机混合腔的特征温度极低,位于10mK数量级,该稳定的热平衡态即为超导量子比特的能量基态。但这种方法耗时较长,会延长单次量子计算流程所需时间,并且由于热涨落还可能存在着无法完成超导量子比特重置的情况。所以如何提供一种高效的量子比特重置方法是本领域技术人员急需解决的问题。
发明内容
本发明的目的是提供一种量子比特的重置方法,可以快速实现对量子比特进行重置;本发明还提供了一种量子比特的重置装置、一种量子比特的重置设备以及一种计算机可读存储介质,可以快速实现对 量子比特进行重置。
为解决上述技术问题,本发明提供一种量子比特的重置方法,包括:
对处于叠加态的量子比特的状态进行测量;
判断对所述量子比特状态测量的结果是否为激发态;
若对所述量子比特状态测量的结果为激发态,则通过X门翻转所述量子比特的状态;
若对所述量子比特状态测量的结果不为激发态,则确定所述量子比特的状态为基态,已完成所述量子比特的重置。
可选的,在确定所述量子比特的状态为基态之后,还包括:
向上位机发送对应所述量子比特的重置确认信号,以使所述上位机执行预设的量子线路。
可选的,所述通过X门翻转所述量子比特的状态包括:
通过X门翻转所述量子比特的状态,并重新执行所述对处于叠加态的量子比特的状态进行测量的步骤。
可选的,在所述通过X门翻转所述量子比特的状态之后,还包括:
记录通过所述X门翻转所述量子比特状态的翻转次数;
当所述翻转次数大于预设次数时,向上位机进行告警。
本发明还提供了一种量子比特的重置装置,包括:
测量模块:用于对处于叠加态的量子比特的状态进行测量;
判断模块:用于判断对所述量子比特状态测量的结果是否为激发态;
翻转模块:用于若对所述量子比特状态测量的结果为激发态,则通过X门翻转所述量子比特的状态;
重置确认模块:用于若对所述量子比特状态测量的结果不为激发态,则确定所述量子比特的状态为基态,已完成所述量子比特的重置。
可选的,还包括:
信号发送模块:用于向上位机发送对应所述量子比特的重置确认信号,以使所述上位机执行预设的量子线路。
可选的,所述翻转模块具体用于:
通过X门翻转所述量子比特的状态,并重新运行所述测量模块。
可选的,还包括:
记录模块:用于记录通过所述X门翻转所述量子比特状态的翻转次数;
告警模块:用于当所述翻转次数大于预设次数时,向上位机进行告警。
本发明还提供了一种量子比特的重置设备,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序时实现如上述任一项所述量子比特的重置方法的步骤。
本发明还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上述任一项所述量子比特的重置方法的步骤。
本发明所提供的一种量子比特的重置方法,包括对处于叠加态的量子比特的状态进行测量;判断对量子比特状态测量的结果是否为激发态;若对量子比特状态测量的结果为激发态,则通过X门翻转量子比特的状态;若对量子比特状态测量的结果不为激发态,则确定量子比特的状态为基态,已完成量子比特的重置。当检测到量子比特处于激发态时,意味着该量子比特需要重置成基态,以在重置完成后使上位机可以执行设置的量子线路。而在重置时,具体是通过量子门中的X门来翻转量子比特的状态,从而将处于激发态的量子比特翻转为基态,完成对量子比特的重置。通过X门作用于量子比特,可以避免量子比特热平衡所需的弛豫时间,从而大幅减少量子比特重置所需的时间。
本发明还提供了一种量子比特的重置装置、一种量子比特的重置设备以及一种计算机可读存储介质,同样具有上述有益效果,在此不再进行赘述。
附图说明
为了更清楚的说明本发明实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例所提供的一种量子比特重置方法的流程图;
图2为图1中量子比特重置方法所应用***的结构示意图;
图3为本发明实施例所提供的一种具体的量子比特重置方法的流程图;
图4为本发明实施例所提供的一种量子比特重置装置的结构框图;
图5为本发明实施例所提供的一种量子比特重置设备的结构框图。
具体实施方式
本发明的核心是提供一种量子比特的重置方法。在现有技术中,超导量子比特重置方法为让位于稀释制冷机混合腔内的超导量子比特静置一段时间,随后量子比特将在能量弛豫的作用下稳定到热平衡态。由于稀释制冷机混合腔的特征温度极低,位于10mK数量级,该稳定的热平衡态即为超导量子比特的能量基态。但这种方法耗时较长,会延长单次量子计算流程所需时间,并且由于热涨落还可能存在着无法完成超导量子比特重置的情况。
而本发明所提供的一种量子比特的重置方法,包括对处于叠加态的量子比特的状态进行测量;判断对量子比特状态测量的结果是否为激发态;若对量子比特状态测量的结果为激发态,则通过X门翻转量子比特的状态;若对量子比特状态测量的结果不为激发态,则确定量子比特的状态为基态,已完成量子比特的重置。当检测到量子比特处于激发态时,意味着该量子比特需要重置成基态,以在重置完成后使上位机可以执行设置的量子线路。而在重置时,具体是通过量子门中的X门来翻转量子比特的状态,从而将处于激发态的量子比特翻转为 基态,完成对量子比特的重置。通过X门作用于量子比特,可以避免量子比特热平衡所需的弛豫时间,从而大幅减少量子比特重置所需的时间。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1以及图2,图1为本发明实施例所提供的一种量子比特重置方法的流程图;图2为图1中量子比特重置方法所应用***的结构示意图。
参见图1,在本发明实施例中,量子比特的重置方法包括:
S101:对处于叠加态的量子比特的状态进行测量。
参见图2,本发明实施例所提供的量子比特重置方法具体应用在反馈器中,该反馈器连接在量子比特与上位机之间,用于确保在执行预设的量子线路时该量子比特确保被重置。在本发明实施例中,量子比特在被测量之后通常只具有激发态、基态两种状态,其中基态为低能级状态,而激发态为高能级状态。
具体的,在本步骤中,需要对处于叠加态的量子比特的状态进行测量,以确定量子比特的当前状态。需要说明的是,在对量子比特进行测量之前,量子比特由于其量子特性,无法确定其具体是处于激发态还是基态,即在对量子比特进行测量之前,该量子比特具体处于激发态跟基态相叠加的状态,即叠加态。而对量子比特进行测量之后,该量子比特就会塌缩成测量得到的状态。即在本步骤之后,量子比特会塌缩呈激发态或基态。有关测量量子比特状态的具体方法以及相关设备可以参考现有技术,在此不再进行赘述。
S102:判断对量子比特状态测量的结果是否为激发态。
在本步骤中,具体会判断量子比特的状态是否为激发态,若是, 即若对该量子比特状态测量的结果为激发态,则表示该量子比特现在处于高能级状态,需要被重置以便上位机执行量子线路,相应的在本发明实施例中,需要执行S103以对该量子比特进行重置;若否,即对该量子比特状态测量的结果为基态,则表示该量子比特先在处于低能级状态,不需要被重置,相应的在本发明实施例中需要执行S104。
S103:通过X门翻转量子比特的状态。
X门即泡利-X门,其属于量子门的一种,X门相当于经典的逻辑非门,它可以将|0>换成|1>,并且|1>换成|0>。即通过X门这一量子线路可以将量子比特的状态进行翻转,将量子比特的状态从激发态翻转为基态,或者将量子比特的状态从基态翻转为激发态。在本申请中,具体是在检测到量子比特处于激发态时,通过X门翻转量子比特的状态,此时在本步骤之后,量子比特的状态会从激发态被翻转为基态。具体的,在本步骤中,X门量子线路具体是会向待翻转的量子比特发送翻转操作的微波脉冲,以使量子比特的状态翻转。
作为优选的,本步骤可以具体为:通过X门翻转所述量子比特的状态,并重新执行所述对处于叠加态的量子比特的状态进行测量的步骤。即执行完本步骤之后,可以循环回上述S101,以使得在经过X门翻转后的量子比特重新被测量,以确定翻转后量子比特的最新状态。在实际过程中,由于噪声影响等因素无法获得理想状态下的量子比特翻转微波,因此有一定概率量子比特无法被X门完全翻转回基态。相应的在本步骤中,在每次通过X门对量子比特进行翻转之后,都会对该量子比特的状态进行检测,当检测到该量子比特仍处于激发态时,继续通过X门对量子比特进行翻转并重新检测,以确保该量子比特被翻转会基态。
S104:确定量子比特的状态为基态,已完成量子比特的重置。
在执行本步骤时,则已经确定该量子比特的状态为基态,此时表示该量子比特已经被重置。具体的,在本步骤之后,通常会向上位机发送对应所述量子比特的重置确认信号,以使所述上位机执行预设的量子线路。有关该上位机执行的量子线路的具体内容可以根据实际情 况自行设定,在此不做具体限定。
本发明实施例所提供的一种量子比特的重置方法,包括对处于叠加态的量子比特的状态进行测量;判断对量子比特状态测量的结果是否为激发态;若对量子比特状态测量的结果为激发态,则通过X门翻转量子比特的状态;若对量子比特状态测量的结果不为激发态,则确定量子比特的状态为基态,已完成量子比特的重置。当检测到量子比特处于激发态时,意味着该量子比特需要重置成基态,以在重置完成后使上位机可以执行设置的量子线路。而在重置时,具体是通过量子门中的X门来翻转量子比特的状态,从而将处于激发态的量子比特翻转为基态,完成对量子比特的重置。通过X门作用于量子比特,可以避免量子比特热平衡所需的弛豫时间,从而大幅减少量子比特重置所需的时间。
有关本发明所提供的一种量子比特重置方法的具体内容将在下述发明实施例中做详细介绍。
请参考图3,图3为本发明实施例所提供的一种具体的量子比特重置方法的流程图。
参见图3,在本发明实施例中,量子比特的重置方法包括:
S201:对处于叠加态的量子比特的状态进行测量。
S202:判断对量子比特状态测量的结果是否为激发态。
S203:通过X门翻转量子比特的状态。
上述S201至S203与上述发明实施例中S101至S103基本一致,详细内容请参考上述发明实施例,在此不再进行赘述。
S204:记录通过X门翻转量子比特状态的翻转次数。
在本步骤中,具体会记录X门翻转量子比特状态的翻转次数,即在一次流程中X门被执行的次数。当在一次流程中X门被过多的执行,意味着被执行的量子比特始终无法被重置,说明该量子比特或该X门出现的了问题,需要提醒用户及时进行检查。具体的,在本步骤中,每当X门被执行一次时,可以向***内发送一计数信号,此时反馈器 可以通过该计数信号记录量子比特被翻转的次数。有关该记录过程的具体操作可以根据实际情况自行设定,在此不做具体限定。
S205:当翻转次数大于预设次数时,向上位机进行告警。
在本步骤中,当记录的翻转次数大于预设次数时,意味着该量子比特始终无法被重置,需要操作人员对量子比特或X门线路进行检查。相应的,在本步骤中会向上位机进行告警,以提醒操作人员。有关告警具体的形式可以根据实际情况自行设定,在此不做具体限定。有关上述预设次数具体的数值也可以根据实际情况自行设定,在此不做具体限定。需要说明的是,当记录的翻转次数不大于预设次数时,则会继续执行上述重置流程。而向上位机进行告警之后,通常也需要结束本发明实施例所提供的重置流程。
需要说明的是,上述S204至S205可以与上述S201至S203并行执行,也可以在S203之后执行均可,在本发明实施例中不做具体限定。
S206:确定量子比特的状态为基态,已完成量子比特的重置。
本步骤与上述发明实施例中S104基本一致,详细内容请参考上述发明实施例,在此不再进行赘述。
本发明实施例所提供的一种量子比特的重置方法,通过记录X门翻转量子比特的次数,并在该翻转次数过多时进行告警,可以有效检测出发生故障的量子比特,从而可以及时对操作人员进行告警。
下面对本发明实施例所提供的一种量子比特的重置装置进行介绍,下文描述的重置装置与上文描述的重置方法可相互对应参照。
图4为本发明实施例所提供的一种量子比特重置装置的结构框图,参照图4,量子比特的重置装置可以包括:
测量模块100:用于对处于叠加态的量子比特的状态进行测量。
判断模块200:用于判断对所述量子比特状态测量的结果是否为激发态。
翻转模块300:用于若对所述量子比特状态测量的结果为激发态, 则通过X门翻转所述量子比特的状态。
重置确认模块400:用于若对所述量子比特状态测量的结果不为激发态,则确定所述量子比特的状态为基态,已完成所述量子比特的重置。
作为优选的,在本发明实施例中,还包括:
信号发送模块:用于向上位机发送对应所述量子比特的重置确认信号,以使所述上位机执行预设的量子线路。
作为优选的,在本发明实施例中,所述翻转模块300具体用于:
通过X门翻转所述量子比特的状态,并重新运行所述测量模块。
作为优选的,在本发明实施例中,还包括:
记录模块:用于记录通过所述X门翻转所述量子比特状态的翻转次数;
告警模块:用于当所述翻转次数大于预设次数时,向上位机进行告警。
本实施例的量子比特重置装置用于实现前述的量子比特重置方法,因此量子比特重置装置中的具体实施方式可见前文中量子比特重置方法的实施例部分,例如,测量模块100,判断模块200,翻转模块300,重置确认模块400分别用于实现上述量子比特重置方法中步骤S101,S102,S103以及S104,所以,其具体实施方式可以参照相应的各个部分实施例的描述,在此不再赘述。
下面对本发明实施例提供的一种量子比特的重置设备进行介绍,下文描述的量子比特重置设备与上文描述的量子比特重置方法以及量子比特重置装置可相互对应参照。
请参考图5,图5为本发明实施例所提供的一种量子比特重置设备的结构框图。
参照图5,该量子比特重置设备可以包括处理器11和存储器12。
所述存储器12用于存储计算机程序;所述处理器11用于执行所述计算机程序时实现上述发明实施例中所述的量子比特重置方法。
本实施例的量子比特重置设备中处理器11用于安装上述发明实施例中所述的量子比特重置装置,同时处理器11与存储器12相结合可以实现上述任一发明实施例中所述的量子比特重置方法。因此量子比特重置设备中的具体实施方式可见前文中的量子比特重置方法的实施例部分,其具体实施方式可以参照相应的各个部分实施例的描述,在此不再赘述。
本发明还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一发明实施例中所介绍的一种量子比特重置方法。其余内容可以参照现有技术,在此不再进行展开描述。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关 系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明所提供的一种量子比特的重置方法、一种量子比特的重置装置、一种量子比特的重置设备以及一种计算机可读存储介质进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

  1. 一种量子比特的重置方法,其特征在于,包括:
    对处于叠加态的量子比特的状态进行测量;
    判断对所述量子比特状态测量的结果是否为激发态;
    若对所述量子比特状态测量的结果为激发态,则通过X门翻转所述量子比特的状态;
    若对所述量子比特状态测量的结果不为激发态,则确定所述量子比特的状态为基态,已完成所述量子比特的重置。
  2. 根据权利要求1所述的方法,其特征在于,在确定所述量子比特的状态为基态之后,还包括:
    向上位机发送对应所述量子比特的重置确认信号,以使所述上位机执行预设的量子线路。
  3. 根据权利要求1或2所述的方法,其特征在于,所述通过X门翻转所述量子比特的状态包括:
    通过X门翻转所述量子比特的状态,并重新执行所述对处于叠加态的量子比特的状态进行测量的步骤。
  4. 根据权利要求3所述的方法,其特征在于,在所述通过X门翻转所述量子比特的状态之后,还包括:
    记录通过所述X门翻转所述量子比特状态的翻转次数;
    当所述翻转次数大于预设次数时,向上位机进行告警。
  5. 一种量子比特的重置装置,其特征在于,包括:
    测量模块:用于对处于叠加态的量子比特的状态进行测量;
    判断模块:用于判断对所述量子比特状态测量的结果是否为激发态;
    翻转模块:用于若对所述量子比特状态测量的结果为激发态,则通过X门翻转所述量子比特的状态;
    重置确认模块:用于若对所述量子比特状态测量的结果不为激发态,则确定所述量子比特的状态为基态,已完成所述量子比特的重置。
  6. 根据权利要求5所述的装置,其特征在于,还包括:
    信号发送模块:用于向上位机发送对应所述量子比特的重置确认 信号,以使所述上位机执行预设的量子线路。
  7. 根据权利要求5或6所述的装置,其特征在于,所述翻转模块具体用于:
    通过X门翻转所述量子比特的状态,并重新运行所述测量模块。
  8. 根据权利要求7所述的装置,其特征在于,还包括:
    记录模块:用于记录通过所述X门翻转所述量子比特状态的翻转次数;
    告警模块:用于当所述翻转次数大于预设次数时,向上位机进行告警。
  9. 一种量子比特的重置设备,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述计算机程序时实现如权利要求1至4任一项所述量子比特的重置方法的步骤。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至4任一项所述量子比特的重置方法的步骤。
PCT/CN2020/112504 2020-04-28 2020-08-31 一种量子比特的重置方法、装置、设备及可读存储介质 WO2021217989A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010349539.3A CN111539531A (zh) 2020-04-28 2020-04-28 一种量子比特的重置方法、装置、设备及可读存储介质
CN202010349539.3 2020-04-28

Publications (1)

Publication Number Publication Date
WO2021217989A1 true WO2021217989A1 (zh) 2021-11-04

Family

ID=71967682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112504 WO2021217989A1 (zh) 2020-04-28 2020-08-31 一种量子比特的重置方法、装置、设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN111539531A (zh)
WO (1) WO2021217989A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111539531A (zh) * 2020-04-28 2020-08-14 济南浪潮高新科技投资发展有限公司 一种量子比特的重置方法、装置、设备及可读存储介质
CN112434815B (zh) * 2020-10-22 2022-12-02 清华大学 新型混合量子比特***
CN112734042B (zh) * 2020-12-30 2022-11-15 山东浪潮科学研究院有限公司 一种量子计算机多比特计算能力的标定方法及设备、介质
CN113300781B (zh) * 2021-05-11 2022-09-06 山东浪潮科学研究院有限公司 一种超导量子比特读取脉冲的优化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110073372A (zh) * 2016-12-07 2019-07-30 谷歌有限责任公司 量子比特多状态重置
WO2019156760A1 (en) * 2018-01-05 2019-08-15 Yale University Hardware-efficient fault-tolerant operations with superconducting circuits
CN110516811A (zh) * 2019-08-30 2019-11-29 南方科技大学 一种量子态确定方法、装置、设备和存储介质
CN110516810A (zh) * 2019-08-29 2019-11-29 合肥本源量子计算科技有限责任公司 一种量子程序的处理方法、装置、存储介质和电子装置
CN111539531A (zh) * 2020-04-28 2020-08-14 济南浪潮高新科技投资发展有限公司 一种量子比特的重置方法、装置、设备及可读存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012209971B3 (de) * 2012-06-14 2013-05-29 Areva Np Gmbh Digitale Abtastschaltung für ein mit Hilfe eines Primär-Taktsignals auf Taktausfall zu überwachendes Sekundär-Taktsignal
CN110942151B (zh) * 2019-09-17 2023-12-12 本源量子计算科技(合肥)股份有限公司 一种量子态层析方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110073372A (zh) * 2016-12-07 2019-07-30 谷歌有限责任公司 量子比特多状态重置
WO2019156760A1 (en) * 2018-01-05 2019-08-15 Yale University Hardware-efficient fault-tolerant operations with superconducting circuits
CN110516810A (zh) * 2019-08-29 2019-11-29 合肥本源量子计算科技有限责任公司 一种量子程序的处理方法、装置、存储介质和电子装置
CN110516811A (zh) * 2019-08-30 2019-11-29 南方科技大学 一种量子态确定方法、装置、设备和存储介质
CN111539531A (zh) * 2020-04-28 2020-08-14 济南浪潮高新科技投资发展有限公司 一种量子比特的重置方法、装置、设备及可读存储介质

Also Published As

Publication number Publication date
CN111539531A (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
WO2021217989A1 (zh) 一种量子比特的重置方法、装置、设备及可读存储介质
Rudinger et al. Probing context-dependent errors in quantum processors
Zhang et al. Hi-fi playback: Tolerating position errors in shift operations of racetrack memory
Wang et al. Analyzing static and dynamic write margin for nanometer SRAMs
WO2016106605A1 (zh) 一种fpga功能模块仿真验证方法及其***
US20120167025A1 (en) Method for analyzing sensitivity and failure probability of a circuit
US20140195867A1 (en) Memory testing with selective use of an error correction code decoder
US9612908B2 (en) Performing memory data scrubbing operations in processor-based memory in response to periodic memory controller wake-up periods
Wang et al. MEMRES: A fast memory system reliability simulator
WO2021082831A1 (zh) 日志存储方法、装置、服务器及计算机可读存储介质
US20140195852A1 (en) Memory testing of three dimensional (3d) stacked memory
Patel et al. A case for transparent reliability in DRAM systems
CN115795928A (zh) 基于伽马过程的加速退化试验数据处理方法和装置
Yağlıkçı et al. Spatial Variation-Aware Read Disturbance Defenses: Experimental Analysis of Real DRAM Chips and Implications on Future Solutions
CN113946983A (zh) 产品可靠性薄弱环节评估方法、装置和计算机设备
Calhoun et al. Understanding the propagation of error due to a silent data corruption in a sparse matrix vector multiply
TWI270003B (en) Memory power model related to access information or the variation thereof and the method of applying the power model
CN106648969A (zh) 一种磁盘中损坏数据巡检方法及***
CN115421967A (zh) 一种评估二次设备存储异常风险点的方法及***
Bonate Coverage and precision of confidence intervals for area under the curve using parametric and non-parametric methods in a toxicokinetic experimental design
US7992047B2 (en) Context sensitive detection of failing I/O devices
Zick et al. High-level vulnerability over space and time to insidious soft errors
Hayrapetyan et al. Implementation of memory static, coupling and dynamic fault models at the register transfer level
Kulcziycki A test for comparing distribution functions with strongly unbalanced samples
EP4266177A1 (en) Image models to predict memory failures in computing systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933318

Country of ref document: EP

Kind code of ref document: A1