WO2021217668A1 - 多载波通信方法、终端设备和网络设备 - Google Patents

多载波通信方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2021217668A1
WO2021217668A1 PCT/CN2020/088520 CN2020088520W WO2021217668A1 WO 2021217668 A1 WO2021217668 A1 WO 2021217668A1 CN 2020088520 W CN2020088520 W CN 2020088520W WO 2021217668 A1 WO2021217668 A1 WO 2021217668A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
carrier communication
frequency band
network device
carriers
Prior art date
Application number
PCT/CN2020/088520
Other languages
English (en)
French (fr)
Inventor
邢金强
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20932970.5A priority Critical patent/EP4145925A4/en
Priority to CN202080094529.8A priority patent/CN115399006A/zh
Priority to PCT/CN2020/088520 priority patent/WO2021217668A1/zh
Publication of WO2021217668A1 publication Critical patent/WO2021217668A1/zh
Priority to US18/050,759 priority patent/US20230083602A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Definitions

  • This application relates to the field of communications, and more specifically, to a multi-carrier communication method, terminal equipment, and network equipment.
  • carrier aggregation or dual connectivity (Dual Connectivity, DC), etc. are typical multi-carrier communications.
  • a terminal first accesses a single-carrier cell, and then the base station configures other uplink or downlink carriers for the terminal to form multi-carrier communication.
  • the working frequency band is generally low (below 6GHz).
  • the terminal uses a small number of omnidirectional antennas to transmit or receive data. It is also relatively simple for the base station to add carriers, and carriers can be added or deleted as required.
  • the millimeter wave operating frequency band is introduced, and the millimeter wave operating frequency can reach above 10 GHz.
  • 5G NR terminals work in the millimeter wave frequency band, which is prone to failure of multi-carrier configuration.
  • the embodiments of the present application provide a multi-carrier communication method, terminal equipment, and network equipment, which can reduce multi-carrier communication failures.
  • An embodiment of the present application provides a multi-carrier communication method, including:
  • the terminal device sends multi-carrier communication capability information to the network device, where the multi-carrier communication capability information is used to instruct the network device to perform multi-carrier communication configuration on the terminal device.
  • An embodiment of the present application provides a multi-carrier communication method, including:
  • the terminal device sends a multi-carrier communication configuration adjustment request to the network device, where the multi-carrier communication configuration adjustment request is used to request the network device to adjust the multi-carrier communication configuration of the terminal device.
  • An embodiment of the present application provides a multi-carrier communication method, including:
  • the network equipment receives the multi-carrier communication capability information from the terminal equipment;
  • the network device performs a multi-carrier communication configuration on the terminal device based on the multi-carrier communication capability information.
  • An embodiment of the present application provides a multi-carrier communication method, including:
  • the network device receives a multi-carrier communication configuration adjustment request
  • the network device adjusts the multi-carrier communication configuration of the terminal device based on the multi-carrier communication configuration adjustment request.
  • An embodiment of the present application provides a terminal device, including:
  • the sending unit is configured to send multi-carrier communication capability information to a network device, where the multi-carrier communication capability information is used to instruct the network device to perform multi-carrier communication configuration on the terminal device.
  • An embodiment of the present application provides a terminal device, including:
  • the sending unit is configured to send a multi-carrier communication configuration adjustment request to a network device, where the multi-carrier communication configuration adjustment request is used to request the network device to adjust the multi-carrier communication configuration of the terminal device.
  • An embodiment of the present application provides a network device, including:
  • the first receiving unit is configured to receive multi-carrier communication capability information from a terminal device
  • the configuration unit is configured to perform multi-carrier communication configuration on the terminal device based on the multi-carrier communication capability information.
  • An embodiment of the present application provides a network device, including:
  • a receiving unit configured to receive a multi-carrier communication configuration adjustment request
  • the configuration adjustment unit is configured to adjust the multi-carrier communication configuration of the terminal device based on the multi-carrier communication configuration adjustment request.
  • the embodiment of the present application provides a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned multi-carrier communication method.
  • the embodiment of the present application provides a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned multi-carrier communication method.
  • An embodiment of the present application provides a chip for implementing the above-mentioned multi-carrier communication method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above-mentioned multi-carrier communication method.
  • the embodiment of the present application provides a computer-readable storage medium for storing a computer program, and the computer program enables a computer to execute the above-mentioned multi-carrier communication method.
  • the embodiments of the present application provide a computer program product, including computer program instructions, and the computer program instructions cause a computer to execute the above-mentioned multi-carrier communication method.
  • the embodiment of the present application provides a computer program, which when running on a computer, causes the computer to execute the above-mentioned multi-carrier communication method.
  • sending multi-carrier communication capability information to a network device through a terminal device can assist the network device to configure the terminal device for multi-carrier communication, reduce multi-carrier communication failures, and enable the terminal device to successfully perform multi-carrier communication.
  • Fig. 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • Fig. 2 is an example diagram of multi-carrier communication.
  • Fig. 3 is a schematic diagram of a terminal based on a beam communication method in the millimeter wave frequency band.
  • Figure 4 is a schematic diagram of the 5G millimeter wave frequency band.
  • Figure 5 is a schematic diagram of the power spectral density of the 5G millimeter wave frequency band.
  • Fig. 6 is a schematic flowchart of a multi-carrier communication method according to an embodiment of the present application.
  • Fig. 7 is a schematic flowchart of a multi-carrier communication method according to another embodiment of the present application.
  • Fig. 8 is a schematic flowchart of a multi-carrier communication method according to another embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a multi-carrier communication method according to another embodiment of the present application.
  • Fig. 10 is a schematic diagram of multi-carrier communication performed by a non-co-site base station.
  • Figures 11a to 11c are schematic diagrams of terminal beamforming capabilities.
  • Figures 12a and 12b are schematic diagrams of the ability of the terminal to demodulate the maximum difference in power spectral density between carriers.
  • FIG. 13 is a schematic diagram of the ability to report the maximum difference in power spectral density between carriers.
  • FIG. 14 is a schematic diagram of requesting adjustment of power spectral density difference information between carriers.
  • Fig. 15 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 16 is a schematic block diagram of a terminal device according to another embodiment of the present application.
  • FIG. 17 is a schematic block diagram of a terminal device according to another embodiment of the present application.
  • FIG. 18 is a schematic block diagram of a terminal device according to another embodiment of the present application.
  • Fig. 19 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 20 is a schematic block diagram of a network device according to another embodiment of the present application.
  • FIG. 21 is a schematic block diagram of a network device according to another embodiment of the present application.
  • Fig. 22 is a schematic block diagram of a network device according to another embodiment of the present application.
  • Fig. 23 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Fig. 24 is a schematic block diagram of a chip according to an embodiment of the present application.
  • FIG. 25 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • evolution system of NR system LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) unlicensed spectrum, NR-U) system, universal mobile telecommunication system (UMTS), wireless local area network (Wireless Local Area Networks, WLAN), wireless fidelity (Wireless Fidelity, WiFi), next-generation communications (5th-Generation) , 5G) system or other communication systems, etc.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (DC) scenario, and can also be applied to a standalone (SA) deployment.
  • CA Carrier Aggregation
  • DC dual connectivity
  • SA standalone
  • the embodiment of the application does not limit the applied frequency spectrum.
  • the embodiments of this application can be applied to licensed spectrum or unlicensed spectrum.
  • the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
  • the terminal equipment may also be referred to as User Equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, and remote. Station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE User Equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, and remote.
  • Station remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device can be a station (STAION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, and personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, and next-generation communication systems, such as terminal devices in the NR network or Terminal equipment in the public land mobile network (PLMN) network that will evolve in the future.
  • STAION, ST station
  • WLAN Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • a network device can be a device used to communicate with mobile devices.
  • the network device can be an access point (AP) in WLAN, a base station (BTS) in GSM or CDMA, or a device in WCDMA.
  • a base station (NodeB, NB) can also be an Evolutional Node B (eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and a network device (gNB) in the NR network Or network equipment in the PLMN network that will evolve in the future.
  • AP access point
  • BTS base station
  • gNB network device
  • the network equipment provides services for the cell
  • the terminal equipment communicates with the network equipment through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell
  • the cell may be a network equipment (for example, The cell corresponding to the base station.
  • the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: Metro cell, Micro cell, Pico Cells, Femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • Fig. 1 exemplarily shows a communication system 100.
  • the communication system includes a network device 110 and two terminal devices 120.
  • the communication system 100 may include multiple network devices 110, and the coverage of each network device 110 may include other numbers of terminal devices 120, which is not limited in the embodiment of the present application.
  • the communication system 100 may also include other network entities such as mobility management entities (Mobility Management Entity, MME), access and mobility management functions (Access and Mobility Management Function, AMF). Not limited.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • carrier 1 and carrier 2 may be in the same frequency band or in different frequency bands.
  • a terminal working in the millimeter wave frequency band generally uses an antenna array composed of multiple antenna elements to form a narrow beam to transmit and receive signals. Moreover, these narrow beams will actually have relatively strong directivity.
  • 5G terminals are based on beam communication in the millimeter wave frequency band. At this time, if another base station 2 that is not co-sited configures another carrier for the terminal, the terminal may not be able to send and receive signals on this carrier, which may cause carrier configuration failure.
  • the frequency gap between millimeter wave bands is very large.
  • the 5G millimeter wave frequency band in Figure 4. This may result in large differences in the spatial propagation loss between different frequency bands or different carriers in the same frequency band.
  • the signal power spectral density of different frequency carriers may be very different at the receiving end.
  • the power spectral density of the 5G millimeter wave frequency band in Figure 5. Take the following line signal as an example. Assuming that the signal at the transmitting end has the same strength, the signal strength received on the UE side will actually vary greatly (for example, 20dB or more).
  • the Low Noise Amplification (LNA) inside the terminal amplifies two received signals at the same time, it will face the interference of the strong signal on the weak signal, which may result in the inability to receive the weaker signal accurately, which will result in the simultaneous operation of multiple carriers s failure.
  • LNA Low Noise Amplification
  • the embodiment of the present application provides a multi-carrier communication method, which can solve the problems that a 5G NR terminal may face when working in a millimeter wave frequency band and configuring multiple carriers.
  • FIG. 6 is a schematic flowchart of a multi-carrier communication method 200 according to an embodiment of the present application. This method can optionally be applied to the system shown in FIG. 1, but is not limited to this. The method includes at least part of the following content.
  • the terminal device sends multi-carrier communication capability information to the network device, where the multi-carrier communication capability information is used to instruct the network device to perform multi-carrier communication configuration on the terminal device.
  • the multi-carrier communication capability information includes multi-beamforming capability.
  • Beamforming is a signal preprocessing technology based on antenna arrays. Beamforming can generate directional beams by adjusting the weighting coefficient of each antenna element in the antenna array, so as to obtain significant array gain.
  • the multi-beam forming capability indicates the capability to generate multiple beams with directivity.
  • the terminal device sends the multi-carrier communication capability information to the network device, which can assist the network device to configure the terminal device for multi-carrier communication, which is beneficial for the terminal device to successfully perform multi-carrier communication. For example, to prevent multi-carrier communication failures caused by terminal equipment not supporting multi-carrier independent beamforming or too large difference in power spectral density between carriers in multi-carrier communication.
  • the multi-beamforming capability includes whether the terminal device supports multiple independent beamforming capabilities.
  • the independent beamforming capability indicates the ability of the terminal to generate two or more beams with independent pointing.
  • whether the terminal device supports multiple independent beamforming capabilities includes at least one of the following scenarios;
  • Scenario 1 The terminal device supports multiple independent beamforming capabilities in the frequency band.
  • Scenario 2 The terminal device does not support multiple beamforming capabilities in the frequency band.
  • the terminal device can report the beamforming capability according to the frequency band.
  • the identifier of the beamforming capability corresponding to band n is 1, indicating that the terminal device supports multiple independent beamforming capabilities in band n; the identifier of the beamforming capability corresponding to band n is 0, indicating that the terminal device Multiple independent beamforming capabilities in frequency band n are not supported.
  • Scenario 3 The terminal device supports multiple independent beamforming capabilities in the frequency band group.
  • Scenario 4 The terminal device does not support multiple independent beamforming capabilities in the frequency band group.
  • the terminal device can report the beamforming capability according to the frequency band group.
  • Frequency bands n257, n258, and n261 belong to frequency band group A and have similar beamforming capabilities.
  • the identifier of the beamforming capability corresponding to frequency band group A is 1, indicating that the terminal device supports multiple independent beamforming capabilities in each frequency band of frequency band group A; the identifier of the beamforming capability corresponding to frequency band group A If it is 0, it means that the terminal device does not support multiple independent beamforming capabilities in each frequency band of the frequency band group A.
  • the terminal reports the beamforming capability according to the frequency band group, which can reduce the signaling overhead.
  • Scenario 5 The terminal device supports multiple independent beamforming capabilities of frequency band combination.
  • the terminal device does not support multiple independent beamforming capabilities of frequency band combination.
  • the terminal device can report the beamforming capability according to the frequency band combination.
  • the frequency bands n257 and n260 do not belong to the same frequency band group, and have similar beamforming capabilities. They can be regarded as a combination of frequency bands.
  • the identifier of the beamforming capability corresponding to the frequency band combination is 1, indicating that the terminal device supports multiple independent beamforming capabilities in each frequency band of the frequency band combination; the identifier of the beamforming capability corresponding to the frequency band combination is 0, Indicates that the terminal device does not support multiple independent beamforming capabilities in each frequency band of the frequency band combination.
  • the terminal reports the beamforming capability according to the frequency band combination, which can reduce signaling overhead.
  • the terminal device supports multiple independent beamforming capabilities of the combination of frequency band groups.
  • the terminal device does not support the combination of multiple independent beamforming capabilities of frequency band groups.
  • the terminal device can report the beamforming capability according to the combination of frequency band groups.
  • Frequency bands n257, n258, and n261 belong to frequency band group A and have similar beamforming capabilities.
  • n260 and n259 are in frequency band group B and have similar beamforming capabilities.
  • Frequency band group A and frequency band group B are a combination of frequency band groups.
  • the terminal reports the beamforming capability according to the combination of frequency band groups, which can reduce signaling overhead.
  • the terminal reports that it supports multiple independent beamforming capabilities of band group A and band group B.
  • the combination of any frequency band in frequency band group A and any frequency band in frequency band group B can work in non-co-sited cells at the same time . This is because the terminal can form two independently directed beams to point to the base station in the frequency band group A and the base station in the frequency band group B respectively.
  • the identifier of the beamforming capability corresponding to frequency band group A is 1, indicating that the terminal device supports multiple independent beamforming capabilities in each frequency band of frequency band group A; the identifier of the beamforming capability corresponding to frequency band group A If it is 0, it means that the terminal device does not support multiple independent beamforming capabilities in each frequency band of the frequency band group A.
  • the network device can configure the multi-carrier communication of the terminal device after receiving whether the terminal device supports multiple independent beamforming capabilities. If the terminal equipment supports multiple independent beamforming capabilities, a single base station cell, multiple base station cells with co-site sites, or multiple base station cells without co-site sites can be configured accordingly to perform intra-band and band grouping based on the above scenarios. Multi-carrier communication in internal, frequency band combination or frequency band group combination. If the terminal device does not support multiple independent beamforming capabilities, a single base station cell or multiple base station cells co-sited can configure the terminal device to perform intra-band, intra-band group, frequency-band combination, or combination of frequency-band group according to the above scenarios. Multi-carrier communication.
  • the multi-beamforming capability further includes the number of carriers for which the terminal device supports independent beamforming.
  • the network device After the network device receives the number of carriers that the terminal device supports independent beamforming, it can configure the number of carriers sent by the non-co-site base station based on the number of carriers that the terminal device supports independent beamforming.
  • the multi-beamforming capability further includes the polarization mode corresponding to the beam in which the terminal device supports independent beamforming.
  • the network device may transmit a downlink beam to the terminal device based on the polarization mode corresponding to the beam supported by the terminal device for independent beamforming.
  • downlink beam 1 corresponds to horizontal polarization
  • downlink beam 2 corresponds to vertical polarization.
  • the primary base station sends horizontally polarized beam 1 to the terminal device and instructs the secondary base station to vertically polarized beam 2.
  • the multi-carrier communication capability information includes the capability of the maximum difference in power spectral density between carriers supported by the terminal device.
  • the power spectral density may be the ratio of the power of the downlink carrier transmitted by the base station to the bandwidth used by the terminal to receive the downlink carrier.
  • the terminal equipment reports that the maximum power spectral density difference capability of carrier 1 and carrier 2 is 2dB, the maximum power spectral density difference capability of carrier 2 and carrier 3 is 3dB, and the maximum power spectral density difference capability of carrier 1 and carrier 3 is reported. It is 4dB.
  • the capability of the maximum difference in power spectral density between carriers is carried by RRC signaling.
  • the method further includes: the terminal device sends information about the power spectral density difference between carriers.
  • the difference in power spectral density between carriers may include the difference in power spectral density between carriers, which may be specifically expressed as a difference value. If the terminal equipment measures multiple carriers, it can send the power spectral density difference information between every two carriers, or it can send the power spectral density difference information between all carriers including the difference of the maximum difference value. information.
  • the terminal device sending the power spectral density difference information between carriers includes at least one of the following methods:
  • Manner 1 The terminal device periodically measures and reports the measurement result based on the network configuration, and the measurement result includes the power spectral density difference information between carriers of at least one frequency band supported by the terminal device.
  • the measurement result may include power spectral density difference information of carrier 1 and carrier 2 in frequency band n supported by the terminal device.
  • the measurement result may include power spectral density difference information of carrier 1 in frequency band n259 and carrier 2 in frequency band n260 supported by the terminal device, and frequency band n259 and frequency band n260 are frequency band combinations.
  • the terminal equipment supports carrier 1 in frequency band n259, carrier 2 in frequency band n260, and terminal equipment supports carrier 3 in frequency band n261.
  • the measurement result may include: difference information of power spectral density of carrier 1 and carrier 2, carrier 2 and Carrier 3 power spectral density difference information, and carrier 1 and carrier 3 power spectral density difference information.
  • the terminal device supports carrier 1, carrier 2 in band n260, and carrier 3 in band n261. If the difference in power spectral density between carrier 1 and carrier 2 is the largest, the measurement results can include: carrier 1 and carrier 2 power spectral density difference information.
  • Manner 2 The terminal device reports the power spectral density difference information between the carriers based on the trigger event.
  • the trigger event includes at least one of the following:
  • the difference value in the power spectral density difference information between the carriers is greater than the first threshold.
  • the difference between carrier 1 and carrier 2 measured by the terminal device is 4 dB
  • the difference between carrier 2 and carrier 3 is 1 dB
  • the difference between the difference value in the power spectral density difference information between the currently measured carriers and the difference value reported last time is greater than the second threshold.
  • the report is triggered The difference between carrier 1 and carrier 2.
  • FIG. 7 is a schematic flowchart of a multi-carrier communication method 300 according to an embodiment of the present application. This method can optionally be applied to the system shown in FIG. 1, but is not limited to this. The method includes at least part of the following content.
  • the terminal device sends a multi-carrier communication configuration adjustment request to the network device, where the multi-carrier communication configuration adjustment request is used to request the network device to adjust the multi-carrier communication configuration of the terminal device.
  • the terminal device may also determine by itself whether the multi-carrier communication configuration needs to be adjusted, and if adjustment is needed, it sends a multi-carrier communication configuration adjustment request to the network device. Specifically, the terminal device may determine whether adjustment is needed according to its own ability to maximize power spectral density difference between carriers and the measured power spectral density difference information between carriers. The terminal equipment can also determine whether adjustment is needed according to the magnitude of the difference value in the measured power spectral density difference information between the carriers.
  • the method further includes: the terminal device measures the difference information of the power spectral density between the carriers supported by the terminal device.
  • the terminal device sends a multi-carrier communication configuration adjustment request to the network device, including: the terminal device is based on its own power spectrum density difference capability between the carriers and the measured power spectrum density between the carriers Difference information, sending the multi-carrier communication configuration adjustment request to the network device.
  • the maximum power spectral density difference capability between the terminal equipment's own carriers is 10dB
  • the difference value in the power spectral density difference information between the carriers is 9dB, which is about to exceed this capability (it can be judged by a threshold such as 2dB, compared with If the capability is less than or equal to 2 dB, it is determined that the capability is about to be exceeded)
  • the multi-carrier communication configuration adjustment request may be sent to the network device.
  • the terminal device sends a multi-carrier communication configuration adjustment request to the network device, including: the case where the difference value in the measured power spectral density difference information between the carriers of the terminal device is greater than the third threshold
  • the third threshold is set to 5 dB, and if the difference value in the power spectral density difference information between the carriers measured by the terminal device is 6 dB, the multi-carrier communication configuration adjustment request is sent to the network device.
  • the multi-carrier communication configuration adjustment request is used to request the network device to reduce the difference in power spectral density between carriers of the terminal device.
  • the network device can adjust the power and/or power spectral density between carriers of the terminal device to reduce the power spectral density difference between the downlink carriers of the terminal device. For example, if the power spectrum density difference of downlink carrier 1 and downlink carrier 2 is greater than the third threshold, such as 6 dB, the transmit power of downlink carrier 1 is lowered, and the transmit power of downlink carrier 2 is adjusted higher; or, the power spectrum of downlink carrier 1 The density is adjusted lower, and the power spectral density of the downlink carrier 2 is adjusted higher.
  • the third threshold such as 6 dB
  • reducing the transmission power of the carrier and/or increasing the bandwidth of the terminal receiving the carrier can reduce the power spectral density of the carrier.
  • Increasing the transmission power of the carrier and/or reducing the bandwidth of the terminal receiving the carrier can increase the power spectral density of the carrier.
  • FIG. 8 is a schematic flowchart of a multi-carrier communication method 400 according to an embodiment of the present application. This method can optionally be applied to the system shown in FIG. 1, but is not limited to this. The method includes at least part of the following content.
  • the network device receives the multi-carrier communication capability information from the terminal device.
  • the network device performs a multi-carrier communication configuration on the terminal device based on the multi-carrier communication capability information.
  • the multi-carrier communication capability information includes multi-beamforming capability.
  • the multi-beamforming capability includes whether the terminal device supports multiple independent beamforming capabilities.
  • that the network device configures the terminal device for multi-carrier communication based on the multi-carrier communication capability information includes: when the terminal device supports multiple independent beamforming capabilities, A network device configures the terminal device to perform multi-carrier communication.
  • the first network device configures the terminal device to perform multi-carrier communication, including at least one of the following:
  • the first network device configures the terminal device to perform multi-carrier communication in the frequency band
  • the first network device configures the terminal device to perform multi-carrier communication in the frequency band group
  • the first network device configures the terminal device to perform multi-carrier communication of frequency band combination
  • the first network device configures the terminal device to perform multi-carrier communication of the combination of frequency band groups.
  • the first network device includes a single base station cell, multiple base station cells that are co-located, or multiple base station cells that are not co-located.
  • that the network device configures the terminal device for multi-carrier communication based on the multi-carrier communication capability information includes: when the terminal device does not support multiple independent beamforming capabilities, The second network device configures the terminal device to perform multi-carrier communication.
  • the second network device configures the terminal device to perform multi-carrier communication, including at least one of the following:
  • the second network device configures the terminal device to perform multi-carrier communication in the frequency band
  • the second network device configures the terminal device to perform multi-carrier communication in the frequency band group
  • the second network device configures the terminal device to perform multi-carrier communication of the frequency band combination
  • the second network device configures the terminal device to perform the combined multi-carrier communication of the frequency band group.
  • the second network device includes a single base station cell or multiple base station cells co-sited.
  • the multi-beamforming capability further includes the number of carriers for which the terminal device supports independent beamforming.
  • the network device performs multi-carrier communication configuration on the terminal device based on the multi-carrier communication capability information, including: the network device supports independent beamforming based on the number of carriers for which the terminal device supports independent beamforming. The number of carriers sent by the base station.
  • the multi-beamforming capability further includes the polarization mode corresponding to the beam in which the terminal device supports independent beamforming.
  • the network device performing multi-carrier communication configuration on the terminal device based on the multi-carrier communication capability information includes: the network device is based on the pole corresponding to the beam that supports independent beamforming of the terminal device. In this way, the downlink beam is transmitted to the terminal device.
  • the multi-carrier communication capability information includes the capability of the maximum difference in power spectral density between carriers supported by the terminal device.
  • the capability of the maximum difference in power spectral density between carriers is carried by RRC signaling.
  • the method further includes: the network device receives the power spectral density difference information between the carriers from the terminal device.
  • the network device receiving the power spectral density difference information between carriers from the terminal device includes: the network device receiving the measurement result periodically measured and reported by the terminal device, the measurement result Including power spectral density difference information between carriers of at least one frequency band supported by the terminal device.
  • the method further includes: the network device adjusts information to the terminal device based on the maximum difference in power spectral density between carriers of the terminal device and the measurement result, and the adjustment information is used for Adjust the inter-carrier power and/or power spectral density of the terminal device.
  • the adjustment information is used to reduce the power spectral density difference between the downlink carriers of the terminal device.
  • the network device For a specific example of the method 400 executed by the network device in this embodiment, reference may be made to the relevant descriptions of the network device, such as a base station that does not share the site, in the foregoing methods 200 and 300. For brevity, details are not repeated here.
  • FIG. 9 is a schematic flowchart of a multi-carrier communication method 500 according to an embodiment of the present application. This method can optionally be applied to the system shown in FIG. 1, but is not limited to this. The method includes at least part of the following content.
  • the network device receives a multi-carrier communication configuration adjustment request.
  • the network device adjusts the multi-carrier communication configuration of the terminal device based on the multi-carrier communication configuration adjustment request.
  • the method further includes: the network device sends adjustment information to the terminal device based on the multi-carrier communication configuration adjustment request, and the adjustment information is used to adjust the inter-carrier power of the terminal device and / Or power spectral density.
  • the adjustment information is used to reduce the power spectral density difference between the downlink carriers of the terminal device.
  • the embodiments of the present application provide a terminal-assisted multi-carrier communication method, which can be used in an NR system.
  • the terminal reporting its multi-carrier communication capability information, such as multiple independent beamforming capabilities, the ability of the maximum power spectrum density difference between demodulated carriers, etc., to assist the base station in multi-carrier configuration.
  • Example 1 The terminal reports multiple independent beamforming capabilities
  • the terminal may face the problem of failure of the base station to configure the carrier due to the ability of the antenna array to form a narrow beam, resulting in the failure of multiple carriers to work at the same time.
  • the terminal has an antenna array.
  • Figures 11a to 11c are schematic diagrams of terminal beamforming capabilities.
  • the terminal only generates a directed narrow beam, which includes horizontal polarization (H) and vertical polarization (V), as shown in Figure 11a.
  • the terminal can simultaneously generate two directed narrow beams, and each beam corresponds to horizontal polarization (H) and vertical polarization (V), as shown in Fig. 11b.
  • the terminal can generate two directed narrow beams at the same time, and each beam includes horizontal polarization (H) and vertical polarization (V), as shown in Fig. 11c.
  • the terminal has multiple antenna arrays
  • the terminal can generate multiple beams of different directions at the same time.
  • the terminal can only generate one directed beam at the same time.
  • multi-carrier communication within one frequency band or between multiple frequency bands can be formed.
  • the terminal can also be divided into terminal capabilities similar to multi-carrier communication in the frequency band.
  • the capabilities of multi-carrier communication within a frequency band and multi-carrier communication between frequency bands may not be completely the same.
  • a terminal with only one antenna array it may be able to support simultaneous multi-carrier communication with small frequency intervals in the frequency band.
  • the frequency difference is too large, which makes it impossible to support multi-carrier communication between frequency bands at the same time.
  • the above beamforming capabilities are related to specific terminal implementations, and different terminals may have different capabilities. These terminal capabilities are unknown to the base station. Therefore, for some terminals, when they point the beam to a base station and maintain communication, the terminal may not actually be able to communicate with another base station, which may lead to the failure of the multi-carrier configuration.
  • the terminal can report its multiple independent beamforming capabilities to the base station through the RRC signaling method when initially accessing the network to assist the base station in performing operations such as carrier configuration and beamforming of downlink transmission signals.
  • the reporting method can be:
  • Method 1 For each millimeter wave frequency band or frequency band group with similar frequency (n257, n258, n261 in Figure 4 can be regarded as a group), the terminal reports the multiple independent beamforming capabilities it supports, that is, the terminal Multiple independent beams can be formed to point to base stations in the same frequency band or group base stations in the same frequency band at different locations. It is suitable for multi-carrier communication within a frequency band or within a frequency band group.
  • the multiple independent beamforming capabilities may simply indicate whether the terminal supports multiple independent beamforming capabilities, or may indicate the number of independent beamforming carriers that the terminal can specifically support.
  • the terminal For each millimeter wave frequency band combination (n257+n260 in Figure 4), the terminal reports the multiple independent beamforming capabilities it supports, that is, the terminal can form multiple independent beams to point to base stations in different locations. Or, for the combination of millimeter wave band groups (as shown in Figure 4, it can be considered that n257, n258, and n261 are in the same A-band group and have similar beamforming capabilities, while n260 and n259 are in the B-band group and have similar beamforming capabilities. , Then A+B is a combination of a frequency band group), and the terminal reports the multiple independent beamforming capabilities it supports. Suitable for multi-carrier communication between frequency bands.
  • Multiple independent beamforming capabilities can simply indicate whether it supports multiple independent beamforming capabilities, or it can indicate the number of independent beamforming capabilities that it can specifically support
  • the operations that can be performed according to different scenarios are as follows:
  • Scenario 1 For terminals that do not support multiple independent beamforming capabilities in the frequency band, they can be configured in a single base station cell or a co-sited multi-base station cell for multi-carrier communication in the frequency band.
  • the terminal can be configured to perform multi-carrier communication in the frequency band in a single base station cell, a co-located multi-base cell cell, or a non-co-located multi-base cell cell.
  • the terminal can be configured in a single base station cell or a co-sited multi-base station cell for multi-carrier communication between frequency bands in the frequency band group.
  • the terminal can be configured to perform inter-frequency bands in the frequency band group in a single base station cell, co-sited multi-base station cell, and non-co-sited multi-base station cell Multi-carrier communication.
  • the terminals can be configured for multi-carrier communication between frequency bands in a single base station cell or a co-sited multi-base station cell;
  • the terminal can be configured for inter-frequency bands in a single base station cell, co-sited multi-base station cell, and non-co-sited multi-base station cell Multi-carrier communication;
  • the base station can identify the multi-carrier working scenarios that the terminal can support, thereby avoiding the problem of multi-carrier configuration failure.
  • Example 2 The ability of the terminal to report the power spectral density between carriers
  • the signal power spectral density of the two carriers received by the terminal may differ greatly. Furthermore, when a low-noise amplifier (LNA) in the terminal amplifies two received signals at the same time, the strong signal interferes with the weak signal, causing the terminal to fail to accurately receive the weaker signal, thereby causing the failure of simultaneous operation of multiple carriers.
  • LNA low-noise amplifier
  • the above problems include many factors: first, the difference in operating frequency between carriers, that is, the greater the frequency difference, the more serious the problem; second, the receiving capability of the terminal, that is, the ability to correctly receive the power spectrum between demodulated signals Density difference, the stronger the receiving ability, the greater the difference in power spectral density between signals that can be tolerated.
  • FIG. 12a and FIG. 12b are schematic diagrams of the ability of the terminal to demodulate the maximum difference in power spectral density between carriers.
  • the terminal may use one set of antenna arrays or multiple sets (for example, two sets) of independent antenna arrays and corresponding LNAs to receive multiple, for example (two) carriers.
  • the terminal can independently receive different carriers.
  • the two receiving links can work at different frequency points, and the links have a certain degree of suppression, and the difference in the power spectral density that can be received can be relatively large.
  • the same set of antenna arrays and corresponding LNAs are used to receive two carriers, the difference in power spectral density that can be received will be relatively small.
  • the terminal can indicate the ability of the base station to have the maximum difference in power spectral density between carriers that can be demodulated.
  • the indication of this capability can be achieved in the following ways:
  • Method 1 The terminal reports its ability to support the maximum difference in power spectral density between carriers for each combination of frequency bands. As shown in Figure 13, this method may include the following steps:
  • the terminal reports the maximum power spectrum density difference capability between carriers that it can support to the network equipment such as the base station through RRC signaling during initial access.
  • the network device configures the terminal to perform periodic measurement and measurement, and to perform a power spectral density difference measurement between carriers.
  • S603 The terminal reports the measurement result to feed back the power spectral density difference information between the carriers.
  • the terminal feeds back the power spectral density difference information between carriers based on event-triggered measurement. Examples of triggering methods are as follows:
  • the terminal reports the difference value to the base station; or,
  • the terminal reports the currently measured difference value to the base station.
  • a certain threshold for example, 2dB
  • the base station reduces the difference in power spectrum density between carriers of the terminal when the difference in power spectral density between carriers exceeds the capability of the terminal according to the measurement result reported by the terminal. After the base station receives the power spectral density difference information between carriers, if the difference value exceeds the terminal's reporting capability, the base station can adjust the power between the carriers and the corresponding power spectral density to prevent the terminal from being caused by excessive power spectral density differences. Carrier demodulation problem.
  • Method 2 The terminal indicates that the power spectral density difference between the network carriers is too large, and requests to reduce the power spectral density difference between the carriers.
  • this method may include the following steps:
  • the base station configures the terminal to perform multi-carrier communication.
  • S702 The terminal measures the power spectral density difference between the carriers.
  • the terminal When the difference in power spectral density between carriers exceeds the threshold, the terminal reports a network request to reduce the difference in power spectral density between carriers of the terminal. Or, the terminal compares its ability to support the maximum difference in power spectral density between carriers based on real-time measurement results. When the measurement result is about to exceed its capability, for example, when the difference between the measurement result and its capability is 2 dB, the terminal reports a network request to reduce the power spectral density difference between the terminals of the terminal.
  • the base station After receiving the request, the base station can reduce the power spectral density difference between the terminals of the terminal.
  • the embodiments of the present application can assist the base station in avoiding the multi-carrier communication failure problem caused by the terminal does not support multi-carrier independent beamforming or the power spectral density difference between the carriers is too large in the multi-carrier communication.
  • FIG. 15 is a schematic block diagram of a terminal device 10 according to an embodiment of the present application.
  • the terminal device 10 may include:
  • the first sending unit 11 is configured to send multi-carrier communication capability information to a network device, where the multi-carrier communication capability information is used to instruct the network device to perform multi-carrier communication configuration on the terminal device.
  • the multi-carrier communication capability information includes multi-beamforming capability.
  • the multi-beamforming capability includes whether the terminal device supports multiple independent beamforming capabilities.
  • whether the terminal device supports multiple independent beamforming capabilities includes at least one of the following;
  • the terminal equipment supports multiple independent beamforming capabilities in the frequency band
  • the terminal device does not support multiple independent beamforming capabilities in the frequency band
  • the terminal equipment supports multiple independent beamforming capabilities in the frequency band group
  • the terminal device does not support multiple independent beamforming capabilities in the frequency band group
  • the terminal equipment supports multiple independent beamforming capabilities of frequency band combination
  • the terminal device does not support multiple independent beamforming capabilities of frequency band combination
  • the terminal device supports multiple independent beamforming capabilities of the combination of frequency band groups
  • This terminal device does not support the combination of multiple independent beamforming capabilities of frequency band groups.
  • the multi-beamforming capability further includes the number of carriers for which the terminal device supports independent beamforming.
  • the multi-beamforming capability further includes the polarization mode corresponding to the beam in which the terminal device supports independent beamforming.
  • the multi-carrier communication capability information includes the capability of the maximum difference in power spectral density between carriers supported by the terminal device.
  • the capability of the maximum difference in power spectral density between carriers is carried by RRC signaling.
  • the terminal device further includes: a second sending unit 12, configured to send power spectral density difference information between carriers.
  • the second sending unit 12 uses at least one of the following methods to send the power spectral density difference information between carriers:
  • the measurement result includes power spectral density difference information between carriers of at least one frequency band supported by the terminal device;
  • the trigger event includes at least one of the following:
  • the difference value in the power spectral density difference information between the carriers is greater than the first threshold
  • the difference between the difference value in the power spectral density difference information between the currently measured carriers and the difference value reported last time is greater than the second threshold.
  • the terminal device 10 of the embodiment of the present application can implement the corresponding functions of the terminal device in the foregoing method 200 embodiment.
  • the corresponding processes, functions, implementation modes, and beneficial effects of each module (sub-module, unit or component, etc.) in the terminal device 10 please refer to the corresponding description in the foregoing method embodiment, which will not be repeated here.
  • each module (sub-module, unit or component, etc.) in the terminal device 10 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or by the same module ( Sub-modules, units or components, etc.).
  • FIG. 17 is a schematic block diagram of a terminal device 20 according to another embodiment of the present application.
  • the terminal device 20 may include:
  • the sending unit 21 is configured to send a multi-carrier communication configuration adjustment request to a network device, where the multi-carrier communication configuration adjustment request is used to request the network device to adjust the multi-carrier communication configuration of the terminal device.
  • the terminal device further includes: a measuring unit 22 configured to measure and obtain power spectral density difference information between carriers supported by the terminal device.
  • the sending unit 21 is specifically configured to send the multi-carrier to the network device based on its own maximum power spectral density difference capability between carriers and measured power spectral density difference information between carriers Communication configuration adjustment request.
  • the sending unit 21 is specifically configured to send the multi-carrier communication to the network device when the difference value in the measured power spectral density difference information between the carriers is greater than a third threshold. Configuration adjustment request.
  • the multi-carrier communication configuration adjustment request is used to request the network device to reduce the difference in power spectral density between carriers of the terminal device.
  • the terminal device 20 in the embodiment of the present application can implement the corresponding functions of the terminal device in the foregoing method 300 embodiment.
  • the corresponding processes, functions, implementation manners, and beneficial effects of each module (sub-module, unit or component, etc.) in the terminal device 20 please refer to the corresponding description in the foregoing method embodiment, which will not be repeated here.
  • each module (sub-module, unit or component, etc.) in the terminal device 20 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or by the same module ( Sub-modules, units or components, etc.).
  • FIG. 19 is a schematic block diagram of a network device 30 according to an embodiment of the present application.
  • the network device 30 may include:
  • the first receiving unit 31 is configured to receive multi-carrier communication capability information from a terminal device
  • the configuration unit 32 is configured to perform multi-carrier communication configuration on the terminal device based on the multi-carrier communication capability information.
  • the multi-carrier communication capability information includes multi-beamforming capability.
  • the multi-beamforming capability includes whether the terminal device supports multiple independent beamforming capabilities.
  • that the configuration unit 32 performs multi-carrier communication configuration on the terminal device based on the multi-carrier communication capability information includes any of the following situations:
  • the configuration unit 32 is specifically configured to configure the terminal device to perform multi-carrier communication when the terminal device supports multiple independent beamforming capabilities.
  • this situation may include at least one of the following:
  • the configuration unit 32 configures the terminal device to perform multi-carrier communication in the frequency band
  • the configuration unit 32 configures the terminal device to perform multi-carrier communication in the frequency band group
  • the configuration unit 32 configures the terminal device to perform multi-carrier communication of frequency band combination
  • the first network device configures the terminal device to perform multi-carrier communication of the combination of frequency band groups.
  • the configuration unit 32 may be set in a single base station cell, multiple base station cells with a co-site site, or multiple base station cells with no co-site site.
  • the configuration unit 32 is specifically configured to configure the terminal device to perform multi-carrier communication when the terminal device does not support multiple independent beamforming capabilities.
  • this situation may include at least one of the following:
  • the configuration unit 32 configures the terminal device to perform multi-carrier communication in the frequency band
  • the configuration unit 32 configures the terminal device to perform multi-carrier communication in the frequency band group
  • the configuration unit 32 configures the terminal device to perform multi-carrier communication of the frequency band combination
  • the configuration unit 32 configures the terminal device to perform the combined multi-carrier communication of the frequency band group.
  • the configuration unit 32 may be set in a single base station cell or multiple base station cells co-sited.
  • the multi-beamforming capability further includes the number of carriers for which the terminal device supports independent beamforming.
  • the configuration unit 32 is further configured to configure the number of carriers sent by the non-co-site base station based on the number of carriers that the terminal device supports independent beamforming.
  • the multi-beamforming capability further includes the polarization mode corresponding to the beam in which the terminal device supports independent beamforming.
  • the configuration unit 32 is further configured to transmit a downlink beam to the terminal device based on the polarization mode corresponding to the beam in which the terminal device supports independent beamforming.
  • the multi-carrier communication capability information includes the capability of the maximum difference in power spectral density between carriers supported by the terminal device.
  • the capability of the maximum difference in power spectral density between carriers is carried by RRC signaling.
  • the network device 30 further includes:
  • the second receiving unit 33 is configured to receive power spectral density difference information between carriers from the terminal device.
  • the second receiving unit is configured to receive a measurement result periodically measured and reported by the terminal device, and the measurement result includes the inter-carrier power spectrum of at least one frequency band supported by the terminal device. Density difference information.
  • the network device 30 further includes:
  • the information adjustment unit 34 is configured to adjust information to the terminal device based on the maximum difference capability of the power spectral density between carriers of the terminal device and the measurement result, and the adjustment information is used to adjust the inter-carrier power and/or power of the terminal device Power Spectral Density.
  • the adjustment information is used to reduce the power spectral density difference between carriers of the terminal device.
  • the network device 30 in the embodiment of the present application can implement the corresponding functions of the network device in the foregoing method 200 and 400 embodiments.
  • the corresponding processes, functions, implementation modes, and beneficial effects of each module (sub-module, unit or component, etc.) in the network device 30 please refer to the corresponding description in the foregoing method embodiment, which will not be repeated here.
  • each module (sub-module, unit or component, etc.) in the network device 30 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or by the same module ( Sub-modules, units or components, etc.).
  • FIG. 21 is a schematic block diagram of a network device 40 according to another embodiment of the present application.
  • the network device 40 may include:
  • the receiving unit 41 is configured to receive a multi-carrier communication configuration adjustment request
  • the configuration adjustment unit 42 is configured to adjust the multi-carrier communication configuration of the terminal device based on the multi-carrier communication configuration adjustment request.
  • the network device 40 further includes:
  • the sending unit 43 is configured to send adjustment information to the terminal device based on the multi-carrier communication configuration adjustment request, where the adjustment information is used to adjust the inter-carrier power and/or power spectral density of the terminal device.
  • the adjustment information is used to reduce the power spectral density difference between carriers of the terminal device.
  • the network device 40 in the embodiment of the present application can implement the corresponding functions of the network device in the foregoing method 300 and 500 embodiments.
  • the corresponding processes, functions, implementation modes, and beneficial effects of each module (sub-module, unit or component, etc.) in the network device 40 please refer to the corresponding description in the foregoing method embodiment, which will not be repeated here.
  • each module (sub-module, unit or component, etc.) in the network device 40 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or by the same module ( Sub-modules, units or components, etc.).
  • FIG. 23 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 includes a processor 610, and the processor 610 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may be a network device of an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • details are not described herein again.
  • the communication device 600 may be a terminal device of an embodiment of the present application, and the communication device 600 may implement corresponding procedures implemented by the terminal device in each method of the embodiments of the present application. For brevity, details are not described herein again.
  • FIG. 24 is a schematic structural diagram of a chip 700 according to an embodiment of the present application.
  • the chip 700 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • the aforementioned processors can be general-purpose processors, digital signal processors (digital signal processors, DSP), ready-made programmable gate arrays (field programmable gate arrays, FPGAs), application specific integrated circuits (ASICs), or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processors
  • FPGA field programmable gate arrays
  • ASIC application specific integrated circuits
  • the aforementioned general-purpose processor may be a microprocessor or any conventional processor.
  • the above-mentioned memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • FIG. 25 is a schematic block diagram of a communication system 800 according to an embodiment of the present application.
  • the communication system 800 includes a terminal device 810 and a network device 820.
  • the terminal device 810 sends multi-carrier communication capability information to the network device 820, where the multi-carrier communication capability information is used to instruct the network device to perform multi-carrier communication configuration for the terminal device.
  • the network device 820 receives the multi-carrier communication capability information from the terminal device 810; and performs multi-carrier communication configuration on the terminal device based on the multi-carrier communication capability information.
  • the terminal device 810 sends a multi-carrier communication configuration adjustment request to the network device 820, and the multi-carrier communication configuration adjustment request is used to request the network device to adjust the multi-carrier communication configuration of the terminal device.
  • the network device 820 receives a multi-carrier communication configuration adjustment request; the multi-carrier communication configuration adjustment request adjusts the multi-carrier communication configuration of the terminal device.
  • the terminal device 810 may be used to implement the corresponding function implemented by the terminal device in the foregoing method
  • the network device 820 may be used to implement the corresponding function implemented by the network device in the foregoing method.
  • I will not repeat them here.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instruction may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instruction may be transmitted from a website, computer, server, or data center through a cable (Such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种多载波通信方法、终端设备和网络设备。该多载波通信方法,包括:终端设备向网络设备发送多载波通信能力信息,该多载波通信能力信息用于指示该网络设备对该终端设备进行多载波通信配置。本申请实施例,通过终端设备向网络设备发送多载波通信能力信息,可以辅助该网络设备对该终端设备进行多载波通信配置,减少多载波通信失败,使终端设备成功地进行多载波通信。

Description

多载波通信方法、终端设备和网络设备 技术领域
本申请涉及通信领域,更具体地,涉及一种多载波通信方法、终端设备和网络设备。
背景技术
通信***中,载波聚合(Carrier Aggregation,CA)或双连接(Dual Connectivity,DC)等是典型的多载波通信。通常情况下,终端首先接入单载波小区,然后基站配置其它上行或下行载波给终端,形成多载波通信。在4G***中,工作的频段一般频率较低(低于6GHz),通常情况下上述多载波通信的操作不会遇到什么问题,终端采用少量全向辐射天线进行发射或接收数据。基站对载波的添加也比较简单,可以视需求增加或删除载波。
在5G NR***中,引入了毫米波工作频段,毫米波工作频率可达10GHz以上。5G NR终端工作于毫米波频段,容易出现多载波配置失败的问题。
发明内容
本申请实施例提供一种多载波通信方法、终端设备和网络设备,可以减少多载波通信失败。
本申请实施例提供一种多载波通信方法,包括:
终端设备向网络设备发送多载波通信能力信息,该多载波通信能力信息用于指示该网络设备对该终端设备进行多载波通信配置。
本申请实施例提供一种多载波通信方法,包括:
终端设备向网络设备发送多载波通信配置调整请求,该多载波通信配置调整请求用于请求该网络设备对该终端设备的多载波通信配置进行调整。
本申请实施例提供一种多载波通信方法,包括:
网络设备接收来自终端设备的多载波通信能力信息;
该网络设备基于该多载波通信能力信息对该终端设备进行多载波通信配置。
本申请实施例提供一种多载波通信方法,包括:
网络设备接收多载波通信配置调整请求;
该网络设备基于该多载波通信配置调整请求对终端设备的多载波通信配置进行调整。
本申请实施例提供一种终端设备,包括:
发送单元,用于向网络设备发送多载波通信能力信息,该多载波通信能力信息用于指示该网络设备对该终端设备进行多载波通信配置。
本申请实施例提供一种终端设备,包括:
发送单元,用于向网络设备发送多载波通信配置调整请求,该多载波通信配置调整请求用于请求该网络设备对该终端设备的多载波通信配置进行调整。
本申请实施例提供一种网络设备,包括:
第一接收单元,用于接收来自终端设备的多载波通信能力信息;
配置单元,用于基于该多载波通信能力信息对该终端设备进行多载波通信配置。
本申请实施例提供一种网络设备,包括:
接收单元,用于接收多载波通信配置调整请求;
配置调整单元,用于基于该多载波通信配置调整请求对终端设备的多载波通信配置进行调整。
本申请实施例提供一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的多载波通信方法。
本申请实施例提供一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的多载波通信方法。
本申请实施例提供一种芯片,用于实现上述的多载波通信方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的多载波通信方法。
本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的多载波通信方法。
本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的多载波通信方法。
本申请实施例提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述的多载波通信方法。
本申请实施例,通过终端设备向网络设备发送多载波通信能力信息,可以辅助该网络设备对该终端设备进行多载波通信配置,减少多载波通信失败,使终端设备成功地进行多载波通信。
附图说明
图1是根据本申请实施例的应用场景的示意图。
图2是多载波通信的一种示例图。
图3是终端在毫米波频段基于波束通信方式的示意图。
图4是5G毫米波频段的示意图。
图5是5G毫米波频段功率谱密度的示意图。
图6是根据本申请一实施例的多载波通信方法的示意性流程图。
图7是根据本申请另一实施例的多载波通信方法的示意性流程图。
图8是根据本申请另一实施例的多载波通信方法的示意性流程图。
图9是根据本申请另一实施例的多载波通信方法的示意性流程图。
图10是不共站址基站进行多载波通信的示意图。
图11a至图11c是终端波束赋形能力示意图。
图12a和图12b是终端可解调的载波间的功率谱密度最大差异能力示意图。
图13是上报载波间的功率谱密度最大差异能力的示意图。
图14是请求调整载波间的功率谱密度差异信息的示意图。
图15是根据本申请一实施例的终端设备的示意性框图。
图16是根据本申请另一实施例的终端设备的示意性框图。
图17是根据本申请另一实施例的终端设备的示意性框图。
图18是根据本申请另一实施例的终端设备的示意性框图。
图19是根据本申请一实施例的网络设备的示意性框图。
图20是根据本申请另一实施例的网络设备的示意性框图。
图21是根据本申请另一实施例的网络设备的示意性框图。
图22是根据本申请另一实施例的网络设备的示意性框图。
图23是根据本申请实施例的通信设备示意性框图。
图24是根据本申请实施例的芯片的示意性框图。
图25是根据本申请实施例的通信***的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、先进的长期演进(Advanced long term evolution,LTE-A)***、新无线(New Radio,NR)***、NR***的演进***、免授权频谱上的LTE (LTE-based access to unlicensed spectrum,LTE-U)***、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信(5th-Generation,5G)***或其他通信***等。
通常来说,传统的通信***支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信***将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信***。
可选地,本申请实施例中的通信***可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中:终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信***,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一种通信***100。该通信***包括一个网络设备110和两个终端设备120。可选地,该通信***100可以包括多个网络设备110,并且每个网络设备110的覆盖范围内可以包括其它数量的终端设备120,本申请实施例对此不做限定。
可选地,该通信***100还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描 述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
如图2所示,为多载波通信的一种示例。在4G终端多载波工作方式中,载波1和载波2可以是相同频段也可以是不同频段。在5G NR***中,工作于毫米波频段的终端,一般会采用多个天线阵子组成的天线阵形成窄波束来发射和接收信号。而且这些窄波束实际会具有比较强的指向性,如图3所示,5G终端在毫米波频段基于波束通信方式。此时,如有另外一个不共站址的基站2为该终端配置了另外一个载波,那么终端可能无法在该载波上收发信号,进而导致载波配置失败。
此外,毫米波频段间的频率差距非常大。例如图4的5G毫米波频段。这可能导致不同频段或同一频段内不同载波间的空间传播损耗差别很大。并且可能导致不同频率的载波在接收端的信号功率谱密度差别很大。例如,图5的5G毫米波频段功率谱密度。以下行信号为例,假设发射端的信号具有相同的强度,在UE侧接收到的信号强度实际会差别很大(如20dB以上)。这时,终端内部的低噪声放大器(Low Noise Amplification,LNA)在同时放大两个接收信号时,会面临强信号对弱信号的干扰,可能导致无法准确接收较弱信号,进而导致多载波同时工作的失败。
因此,本申请实施例提供了多载波通信方法,能够解决5G NR终端工作于毫米波频段且配置多载波时可能面临的问题。
图6是根据本申请一实施例的多载波通信方法200的示意性流程图。该方法可选地可以应用于图1所示的***,但并不仅限于此。该方法包括以下内容的至少部分内容。
S210、终端设备向网络设备发送多载波通信能力信息,该多载波通信能力信息用于指示该网络设备对该终端设备进行多载波通信配置。
可选地,在本申请实施例中,该多载波通信能力信息包括多波束赋形能力。波束赋形是一种基于天线阵列的信号预处理技术,波束赋形可以通过调整天线阵列中每个天线阵子的加权系数产生具有指向性的波束,从而能够获得明显的阵列增益。多波束赋形能力表示能够产生具有指向性的多个波束的能力。终端设备向网络设备发送多载波通信能力信息,可以辅助网络设备对该终端设备进行多载波通信配置,有利于使终端设备成功地进行多载波通信。例如,防止出现在多载波通信中因终端设备不支持多载波独立波束赋形或载波间的功率谱密度差异过大等带来的多载波通信失败问题。
可选地,在本申请实施例中,该多波束赋形能力包括该终端设备是否支持多个独立波束赋形能力。独立波束赋形能力表示终端可以产生具有独立指向的两个及以上的波束的能力。
可选地,在本申请实施例中,该终端设备是否支持多个独立波束赋形能力,包括以下场景的至少之一;
场景一、该终端设备支持频段内的多个独立波束赋形能力。
场景二、该终端设备不支持频段内的多个波束赋形能力。
例如,终端设备可以按照频段上报波束赋形能力。上报的信息中,频段n对应的波束赋形能力的标识为1,表示终端设备支持频段n内的多个独立波束赋形能力;频段n对应的波束赋形能力的标识为0,表示终端设备不支持频段n内的多个独立波束赋形能力。
场景三、该终端设备支持频段组内的多个独立波束赋形能力。
场景四、该终端设备不支持频段组内的多个独立波束赋形能力。
例如,终端设备可以按照频段组上报波束赋形能力。频段n257、n258、n261属于频段组A,具有类似的波束赋形能力。上报的信息中,频段组A对应的波束赋形能力的标识为1,表示终端设备支持频段组A的各频段内的多个独立波束赋形能力;频段组A对应的波束赋形能力的标识为0,表示终端设备不支持频段组A的各频段内的多个独立波束赋形能力。终端按照频段组上报波束赋形能力,可以减少信令开销。
场景五、该终端设备支持频段组合的多个独立波束赋形能力。
场景六、该终端设备不支持频段组合的多个独立波束赋形能力。
例如,终端设备可以按照频段组合上报波束赋形能力。频段n257、n260不属于同一频段组,也具 有类似的波束赋形能力,可以将二者看做是频段组合。上报的信息中,频段组合对应的波束赋形能力的标识为1,表示终端设备支持频段组合的各频段内的多个独立波束赋形能力;频段组合对应的波束赋形能力的标识为0,表示终端设备不支持频段组合的各频段内的多个独立波束赋形能力。终端按照频段组合上报波束赋形能力,可以减少信令开销。
场景七、该终端设备支持频段组的组合的多个独立波束赋形能力。
场景八、该终端设备不支持频段组的组合多个独立波束赋形能力。
例如,终端设备可以按照频段组的组合上报波束赋形能力。频段n257、n258、n261属于频段组A,具有类似的波束赋形能力。n260、n259处于频段组B具有类似的波束赋形能力,频段组A和频段组B是一个频段组的组合。终端按照频段组的组合上报波束赋形能力,可以减少信令开销。
例如,终端上报支持频段组A和频段组B的多个独立波束赋形能力,频段组A内的任何频段与频段组B内的任何频段形成的组合,可以同时工作于不共站址的小区。这是因为,终端可以形成两个独立指向的波束来分别指向频段组A内的基站和频段组B内的基站。上报的信息中,频段组A对应的波束赋形能力的标识为1,表示终端设备支持频段组A的各频段内的多个独立波束赋形能力;频段组A对应的波束赋形能力的标识为0,表示终端设备不支持频段组A的各频段内的多个独立波束赋形能力。
网络设备收到终端设备是否支持多个独立波束赋形能力,可以配置终端设备的多载波通信。如果终端设备支持多个独立波束赋形能力,单个基站小区、共站址的多个基站小区或不共站址的多个基站小区可以根据上述场景,相应地配置终端设备进行频段内、频段组内、频段组合或频段组的组合的多载波通信。如果终端设备不支持多个独立波束赋形能力,单个基站小区或共站址的多个基站小区可以根据上述场景,相应地配置终端设备进行频段内、频段组内、频段组合或频段组的组合的多载波通信。
可选地,在本申请实施例中,该多波束赋形能力还包括该终端设备支持独立波束赋形的载波数量。网络设备收到终端设备支持独立波束赋形的载波数量后,可以基于该终端设备支持独立波束赋形的载波数量,配置不共站址基站发送的载波数量。
可选地,在本申请实施例中,该多波束赋形能力还包括该终端设备支持独立波束赋形的波束对应的极化方式。网络设备收到终端设备支持独立波束赋形的波束对应的极化方式后,可以基于该终端设备支持独立波束赋形的波束对应的极化方式,向该终端设备发射下行波束。例如,下行波束1对应水平极化,下行波束2对应垂直极化,主基站向终端设备发送水平极化的波束1,并指示辅基站垂直极化的波束2。
可选地,在本申请实施例中,该多载波通信能力信息包括该终端设备支持的载波间的功率谱密度最大差异能力。例如,功率谱密度可以为基站发射下行载波的功率与终端接收下行载波所用带宽的比值。
例如,终端设备上报其支持的载波1与载波2的功率谱密度最大差异能力为2dB,载波2与载波3的功率谱密度最大差异能力为3dB,载波1与载波3的功率谱密度最大差异能力为4dB。
可选地,在本申请实施例中,该载波间的功率谱密度最大差异能力通过RRC信令承载。
可选地,在本申请实施例中,该方法还包括:该终端设备发送载波间的功率谱密度差异信息。载波间的功率谱密度差异信息中可以包括载波间的功率谱密度差异,具体可以表示为差异值。如果终端设备测量到多个载波,可以发送每两个载波之间的载波间的功率谱密度差异信息,也可以发送所有载波之间的载波间的功率谱密度差异信息中包括最大差异值的差异信息。
可选地,在本申请实施例中,终端设备发送载波间的功率谱密度差异信息包括以下方式的至少之一:
方式一、终端设备基于网络配置周期性地测量并上报测量结果,该测量结果包括该终端设备支持的至少一个频段的载波间的功率谱密度差异信息。
例如,测量结果可以包括终端设备支持的频段n内的载波1和载波2的功率谱密度差异信息。
再如,测量结果可以包括终端设备支持的频段n259内的载波1和频段n260内的载波2的功率谱密度差异信息,频段n259和频段n260为频段组合。
再如,终端设备支持频段n259内的载波1、频段n260内的载波2和终端设备支持频段n261内的载波3,测量结果可以包括:载波1和载波2的功率谱密度差异信息,载波2和载波3的功率谱密度差异信息,以及载波1和载波3的功率谱密度差异信息。
再如,终端设备支持频段n259内的载波1、频段n260内的载波2和频段n261内的载波3,如果载波1和载波2的功率谱密度差异值最大,测量结果可以包括:载波1和载波2的功率谱密度差异信息。
方式二、终端设备基于触发事件上报该载波间的功率谱密度差异信息。
可选地,在本申请实施例中,该触发事件包括以下至少之一:
该载波间的功率谱密度差异信息中的差异值大于第一门限。
例如,第一门限为2 dB,终端设备测量的载波1和载波2的差异值为4dB,载波2和载波3的差异值为1dB,则触发上报载波1和载波2的差异值。
当前测量的载波间的功率谱密度差异信息中的差异值与上一次上报的差异值的差值大于第二门限。
例如,第二门限为2 dB,终端设备当前测量的载波1和载波2的差异值为4dB,上一次上报载波1和载波2的差异值为1dB,二者的差值为3dB,则触发上报载波1和载波2的差异值。
图7是根据本申请一实施例的多载波通信方法300的示意性流程图。该方法可选地可以应用于图1所示的***,但并不仅限于此。该方法包括以下内容的至少部分内容。
S310、终端设备向网络设备发送多载波通信配置调整请求,该多载波通信配置调整请求用于请求该网络设备对该终端设备的多载波通信配置进行调整。在本实施例中,终端设备也可以自己判断是否需要调整多载波通信配置,如果需要调整,则向网络设备发送多载波通信配置调整请求。具体地,终端设备可根据自身的载波间的功率谱密度最大差异能力和测量的载波间的功率谱密度差异信息判断是否需要调整。终端设备也可根据测量的载波间的功率谱密度差异信息中差异值的大小来判断是否需要调整。
可选地,在本申请实施例中,该方法还包括:该终端设备测量得到该终端设备支持的载波间的功率谱密度差异信息。
可选地,在本申请实施例中,终端设备向网络设备发送多载波通信配置调整请求,包括:该终端设备基于自身的载波间的功率谱密度最大差异能力和测量的载波间的功率谱密度差异信息,向该网络设备发送该多载波通信配置调整请求。例如,终端设备自身的载波间的功率谱密度最大差异能力为10dB,测量得到载波间的功率谱密度差异信息中的差异值为9dB,即将超过该能力(可以通过一个门限例如2dB来判断,比该能力小2dB及其以下的,判定为即将超过该能力),可以向该网络设备发送该多载波通信配置调整请求。
可选地,在本申请实施例中,终端设备向网络设备发送多载波通信配置调整请求,包括:该终端设备在测量的载波间的功率谱密度差异信息中的差异值大于第三门限的情况下,向该网络设备发送该多载波通信配置调整请求。例如,设定第三门限为5dB,如果终端设备测量到载波间的功率谱密度差异信息中的差异值为6dB,则向该网络设备发送该多载波通信配置调整请求。
可选地,在本申请实施例中,该多载波通信配置调整请求用于请求该网络设备降低该终端设备的载波间的功率谱密度差异。一种情况下,网络设备可以调整该终端设备的载波间的功率和/或功率谱密度,以降低该终端设备的下行载波间的功率谱密度差异。例如,下行载波1比下行载波2的功率谱密度差异大于第三门限如6dB,将下行载波1的发射功率调低,将下行载波2的发射功率调高;或者,将下行载波1的功率谱密度调低,将下行载波2的功率谱密度调高。其中,降低载波的发射功率和/或提高终端接收载波的带宽,可以调低载波的功率谱密度。提高载波的发射功率和/或降低终端接收载波的带宽,可以调高载波的功率谱密度。
本实施例的终端设备执行方法300的具体示例可以参见上述方法200的中关于终端设备的相关描述,为了简洁,在此不再赘述。
图8是根据本申请一实施例的多载波通信方法400的示意性流程图。该方法可选地可以应用于图1所示的***,但并不仅限于此。该方法包括以下内容的至少部分内容。
S410、网络设备接收来自终端设备的多载波通信能力信息;
S420、该网络设备基于该多载波通信能力信息对该终端设备进行多载波通信配置。
可选地,在本申请实施例中,该多载波通信能力信息包括多波束赋形能力。
可选地,在本申请实施例中,该多波束赋形能力包括该终端设备是否支持多个独立波束赋形能力。
可选地,在本申请实施例中,该网络设备基于该多载波通信能力信息对该终端设备进行多载波通信配置,包括:在该终端设备支持多个独立波束赋形能力的情况下,第一网络设备配置该终端设备进行多载波通信。
可选地,在本申请实施例中,在该终端设备支持多个独立波束赋形能力的情况下,第一网络设备配置该终端设备进行多载波通信,包括以下至少之一:
在该终端设备支持频段内的多个独立波束赋形能力的情况下,该第一网络设备配置该终端设备进行频段内多载波通信;
在该终端设备支持频段组内的多个独立波束赋形能力的情况下,该第一网络设备配置该终端设备进行频段组内多载波通信;
在该终端设备支持频段组合的多个独立波束赋形能力的情况下,该第一网络设备配置该终端设备进行频段组合的多载波通信;
在该终端设备支持频段组的组合的多个独立波束赋形能力的情况下,该第一网络设备配置该终端设备进行频段组的组合的多载波通信。
可选地,在本申请实施例中,该第一网络设备包括单个基站小区、共站址的多个基站小区或不共站址的多个基站小区。
可选地,在本申请实施例中,该网络设备基于该多载波通信能力信息对该终端设备进行多载波通信配置,包括:在该终端设备不支持多个独立波束赋形能力的情况下,第二网络设备配置该终端设备进行多载波通信。
可选地,在本申请实施例中,在该终端设备不支持多个独立波束赋形能力的情况下,第二网络设备配置该终端设备进行多载波通信,包括以下至少之一;
在该终端设备不支持频段内的多个独立波束赋形能力的情况下,该第二网络设备配置该终端设备进行频段内多载波通信;
在该终端设备不支持频段组内的多个独立波束赋形能力的情况下,该第二网络设备配置该终端设备进行频段组内多载波通信;
在该终端设备不支持频段组合的多个独立波束赋形能力的情况下,该第二网络设备配置该终端设备进行频段组合的多载波通信;
在该终端设备不支持频段组的组合多个独立波束赋形能力的情况下,该第二网络设备配置该终端设备进行频段组的组合的多载波通信。
可选地,在本申请实施例中,该第二网络设备包括单个基站小区或共站址的多个基站小区。
可选地,在本申请实施例中,该多波束赋形能力还包括该终端设备支持独立波束赋形的载波数量。
可选地,在本申请实施例中,网络设备基于该多载波通信能力信息对该终端设备进行多载波通信配置,包括:网络设备基于该终端设备支持独立波束赋形的载波数量,配置不共站址基站发送的载波数量。
可选地,在本申请实施例中,该多波束赋形能力还包括该终端设备支持独立波束赋形的波束对应的极化方式。
可选地,在本申请实施例中,该网络设备基于该多载波通信能力信息对该终端设备进行多载波通信配置,包括:该网络设备基于该终端设备支持独立波束赋形的波束对应的极化方式,向该终端设备发射下行波束。
可选地,在本申请实施例中,该多载波通信能力信息包括该终端设备支持的载波间的功率谱密度最大差异能力。
可选地,在本申请实施例中,该载波间的功率谱密度最大差异能力通过RRC信令承载。
可选地,在本申请实施例中,该方法还包括:该网络设备接收来自该终端设备的载波间的功率谱密度差异信息。
可选地,在本申请实施例中,该网络设备接收来自该终端设备的载波间的功率谱密度差异信息包括:该网络设备接收该终端设备周期性地测量并上报的测量结果,该测量结果包括该终端设备支持的至少一 个频段的载波间的功率谱密度差异信息。
可选地,在本申请实施例中,该方法还包括:该网络设备基于该终端设备的载波间的功率谱密度最大差异能力和该测量结果,向该终端设备调整信息,该调整信息用于调整该终端设备的载波间的功率和/或功率谱密度。
可选地,在本申请实施例中,该调整信息用于降低该终端设备的下行载波间的功率谱密度差异。
本实施例的网络设备执行方法400的具体示例可以参见上述方法200、300的中关于网络设备例如不共站址的基站的相关描述,为了简洁,在此不再赘述。
图9是根据本申请一实施例的多载波通信方法500的示意性流程图。该方法可选地可以应用于图1所示的***,但并不仅限于此。该方法包括以下内容的至少部分内容。
S510、网络设备接收多载波通信配置调整请求;
S520、该网络设备基于该多载波通信配置调整请求对终端设备的多载波通信配置进行调整。
可选地,在本申请实施例中,该方法还包括:该网络设备基于该多载波通信配置调整请求向该终端设备发送调整信息,该调整信息用于调整该终端设备的载波间的功率和/或功率谱密度。
可选地,在本申请实施例中,该调整信息用于降低该终端设备的下行载波间的功率谱密度差异。
本实施例的网络设备执行方法500的具体示例可以参见上述方法200、300、400的中关于网络设备例如不共站址的基站的相关描述,为了简洁,在此不再赘述。
本申请实施例提供了终端辅助的多载波通信方法,可以用于NR***中。通过终端上报其多载波通信能力信息例如多个独立波束赋形能力、可解调的载波间的功率谱密度最大差异能力等,辅助基站进行多载波配置。
示例1:终端上报多个独立波束赋形能力
在NR***中,特别是毫米波频段,可能会面临终端因受限于天线阵形成窄波束的能力而导致基站配置载波的失败,导致多载波无法同时工作的问题。
例如,对终端与图10所示的多个不共站址基站进行多载波通信的问题进行分析。当基站1和基站2工作在同一个毫米波频段的多载波通信时,实际构成的是频段内连续或非连续多载波通信。根据毫米波终端的天线阵数量及波束赋形能力,可以划分为以下终端能力:
(1)终端具有一个天线阵列。图11a至图11c是终端波束赋形能力示意图。
在同一时刻终端只产生一个指向的窄波束,且其中包括了水平极化(H)和垂直极化(V),如图11a所示。
在同一时刻终端能够同时产生两个指向的窄波束,且每个波束分别对应水平极化(H)和垂直极化(V),如图11b所示。
在同一时刻终端能够同时产生两个指向的窄波束,且每个波束分别包含水平极化(H)和垂直极化(V),如图11c所示。
(2)终端具有多个天线阵列
在同一时刻终端能够同时产生多个不同指向的波束。
在同一时刻终端只能同时产生一个指向的波束。
当基站1和基站2通过不同的毫米波载波与终端通信时,可以构成一个频段内或多个频段间的多载波通信。此时根据毫米波终端的天线阵数量及波束赋形能力,也可将终端划分为与频段内多载波通信类似的终端能力。
但是,对于一个终端来说其支持的频段内多载波通信和频段间多载波通信能力可能是不完全相同的。例如,对于只具有一个天线阵列的终端来说,它可能可以支持频段内频率间隔不大的多载波同时通信。再如,对于频段间的多载波通信来说,频率差异过大导致无法同时支持频段间多载波通信。
以上波束赋形的能力与具体终端实现有关,不同的终端其能力可能会不同。这些终端能力对于基站来说是不知道的。因此,对于某些终端,当其将波束指向一个基站并保持通信时,实际该终端可能并不能跟另外一个基站进行通信,进而导致多载波配置上面的失败问题。
为了解决该问题,终端可以将其多个独立波束赋形能力在初始接入网络时通过该RRC信令方式上报给基站,以辅助基站进行载波配置和下行发射信号的波束赋形等操作。示例性地,上报方式可以为:
方式一、对于每个毫米波频段,或频率相近的频段组(如图4中的n257、n258、n261可视为一组),终端上报其支持的多个独立波束赋形能力,也即终端可以形成多个独立波束来指向不同位置的同频段基站或同频段组基站。适用于频段内或频段组内多载波通信。
多个独立波束赋形能力可以为简单的指示终端是否支持多个独立波束赋形能力,也可以是指示终端能具体支持的独立波束赋形的载波数量。
方式二、对于每个毫米波频段组合(如图4中的n257+n260)终端上报其支持的多个独立波束赋形能力,也即终端可以形成多个独立波束来指向不同位置的基站。或者,对于毫米波频段组的组合(如图4中可以认为n257、n258、n261处于同一个A频段组具有类似的波束赋形能力,而n260、n259处于B频段组具有类似的波束赋形能力,那么A+B就是一个频段组的组合),终端上报其支持的多个独立波束赋形能力。适用于频段间多载波通信。
多个独立波束赋形能力可以为简单的指示其是否支持多个独立波束赋形能力,也可以是指示其能具体支持的独立波束赋形的数量
当基站获取到终端的多个独立波束赋形能力后,可根据不同场景进行的操作如下:
场景一、对于不支持频段内多个独立波束赋形能力的终端,可在单个基站小区,或者共站址的多基站小区,配置终端进行频段内多载波通信。
场景二、对于支持频段内多个独立波束赋形能力的终端,可在单个基站小区、共站址的多基站小区、不共站址的多基站小区,配置终端进行频段内多载波通信。
场景三、对于不支持频段组内多个独立波束赋形能力的终端,可在单个基站小区、共站址的多基站小区,配置终端进行频段组内的频段间多载波通信。
场景四、对于支持频段组内多个独立波束赋形能力的终端,可在单个基站小区、共站址的多基站小区、不共站址的多基站小区,配置终端进行频段组内的频段间多载波通信。
场景五、对于不支持频段组合或频段组的组合多个独立波束赋形能力的终端,可在单个基站小区,或者共站址的多基站小区,配置终端进行频段间多载波通信;
场景六、对于支持频段组合或频段组的组合多个独立波束赋形能力的终端,可在单个基站小区、共站址的多基站小区、不共站址的多基站小区,配置终端进行频段间的多载波通信;
通过上报终端支持的独立多波束赋形能力,基站可以识别终端能支持的多载波工作场景,进而避免多载波配置失败的问题。
示例2:终端上报载波间的功率谱密度能力
在NR***中,特别是在毫米波频段,由于两个载波间的大传播损耗差异,可能引起终端接收到的两个载波的信号功率谱密度相差很大。进而,可能导致终端内低噪声放大器(LNA)在同时放大两个接收信号时,强信号对弱信号产生干扰,导致终端无法准确接收较弱信号,进而导致多载波同时工作的失败。
上述问题的产生包括多方面的因素:首先,载波间的工作频率差异,也即频率差异越大则该问题越严重;其次,终端的接收能力,也即能正确接收解调的信号间功率谱密度差异,接收能力越强则可承受的信号间功率谱密度差异越大。
终端的载波间接收功率谱密度差异跟终端实现情况有关。图12a和图12b是终端可解调的载波间的功率谱密度最大差异能力示意图。如图12a和图12b所示,终端可以采用一套天线阵或多套(例如两套)独立天线阵及相应的LNA来接收多个例如(两个)载波等。通常情况下,当终端具有多个天线阵及相应的LNA等接收链路时,终端可独立接收不同的载波。此时两个接收链路可以分别工作于不同的频点,链路间具有一定的抑制度,其能接收的功率谱密度差异就可以相对较大。当采用同一套天线阵及相应的LNA来接收两个载波时,其能接收的功率谱密度差异就会相对较小。
上述终端可接收解调的载波间的功率谱密度最大差异能力目前对于基站来说是未知的。当基站配置 的多个载波功率谱密度差异过大时,终端无法接收解调的问题。本申请实施例,终端可以指示基站其可解调的载波间的功率谱密度最大差异能力。该能力的指示可通过以下方式实现:
方式一:终端针对各频段组合,上报其能支持的载波间的功率谱密度最大差异能力。如图13所示,该方式可以包括以下步骤:
S601、终端在初始接入时将其能支持的载波间的功率谱密度最大差异能力通过RRC信令方式上报给网络设备例如基站。
S602、网络设备配置终端进行周期性测量并,并进行载波间的功率谱密度差异测量。
S603、终端上报测量结果,以反馈载波间的功率谱密度差异信息。
终端基于事件触发的测量反馈载波间的功率谱密度差异信息。触发方式示例如下:
如果差异值大于某个门限(如2dB),终端将该差异值上报给基站;或者,
如果当前测量的差异值跟上次上报的差异值的差值大于某个门限(如2dB),终端将当前测量的差异值上报给基站。
S604、基站根据终端上报的测量结果,当载波间的功率谱密度差异超过终端能力时,降低终端的载波间的功率谱密度差异。基站收到载波间的功率谱密度差异信息后,如果其中的差异值超过终端上报的能力,基站可以调整载波间的功率及对应的功率谱密度,以避免终端因功率谱密度差异过大导致的载波接收解调问题。
方式二:终端指示网络载波间的功率谱密度差异过大,请求降低载波间的功率谱密度差异。
在该方式中,终端不需要向网络上报其各个频段组合能支持的功率谱密度最大差异能力。如图14所示,该方式可以包括以下步骤:
S701、基站配置终端进行多载波通信。
S702、终端测量载波间的功率谱密度差异。
S703、当载波间的功率谱密度差异超过门限时,终端上报网络请求降低终端的载波间的功率谱密度差异。或者,终端基于实时测量结果与其能支持的载波间的功率谱密度最大差异能力相比较。当测量结果即将超过其能力时,例如测量结果与其能力差为2dB时,终端上报网络请求降低终端的载波间的功率谱密度差异。
S704基站收到该请求后,可以降低终端的载波间的功率谱密度差异。
本申请实施例,可辅助基站规避在多载波通信中因终端不支持多载波独立波束赋形或载波间的功率谱密度差异过大等带来的多载波通信失败问题。
图15是根据本申请一实施例的终端设备10的示意性框图。该终端设备10可以包括:
第一发送单元11,用于向网络设备发送多载波通信能力信息,该多载波通信能力信息用于指示该网络设备对该终端设备进行多载波通信配置。
可选地,在本申请实施例中,该多载波通信能力信息包括多波束赋形能力。
可选地,在本申请实施例中,该多波束赋形能力包括该终端设备是否支持多个独立波束赋形能力。
可选地,在本申请实施例中,该终端设备是否支持多个独立波束赋形能力,包括以下至少之一;
该终端设备支持频段内的多个独立波束赋形能力;
该终端设备不支持频段内的多个独立波束赋形能力;
该终端设备支持频段组内的多个独立波束赋形能力;
该终端设备不支持频段组内的多个独立波束赋形能力;
该终端设备支持频段组合的多个独立波束赋形能力;
该终端设备不支持频段组合的多个独立波束赋形能力;
该终端设备支持频段组的组合的多个独立波束赋形能力;
该终端设备不支持频段组的组合多个独立波束赋形能力。
可选地,在本申请实施例中,该多波束赋形能力还包括该终端设备支持独立波束赋形的载波数量。
可选地,在本申请实施例中,该多波束赋形能力还包括该终端设备支持独立波束赋形的波束对应的 极化方式。
可选地,在本申请实施例中,该多载波通信能力信息包括该终端设备支持的载波间的功率谱密度最大差异能力。
可选地,在本申请实施例中,该载波间的功率谱密度最大差异能力通过RRC信令承载。
可选地,在本申请实施例中,如图16所示,该终端设备还包括:第二发送单元12,用于发送载波间的功率谱密度差异信息。
可选地,在本申请实施例中,该第二发送单元12采用以下方式的至少之一发送载波间的功率谱密度差异信息:
基于网络配置周期性地测量并上报测量结果,该测量结果包括该终端设备支持的至少一个频段的载波间的功率谱密度差异信息;
基于触发事件上报该载波间的功率谱密度差异信息。
可选地,在本申请实施例中,该触发事件包括以下至少之一:
该载波间的功率谱密度差异信息中的差异值大于第一门限;
当前测量的载波间的功率谱密度差异信息中的差异值与上一次上报的差异值的差值大于第二门限。
本申请实施例的终端设备10能够实现前述的方法200实施例中的终端设备的对应功能。该终端设备10中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。
需要说明,关于申请实施例的终端设备10中的各个模块(子模块、单元或组件等)所描述的功能,可由不同的模块(子模块、单元或组件等)实现,也可由同一个模块(子模块、单元或组件等)实现。
图17是根据本申请另一实施例的终端设备20的示意性框图。该终端设备20可以包括:
发送单元21,用于向网络设备发送多载波通信配置调整请求,该多载波通信配置调整请求用于请求该网络设备对该终端设备的多载波通信配置进行调整。
可选地,在本申请实施例中,如图18所示,该终端设备还包括:测量单元22,用于测量得到该终端设备支持的载波间的功率谱密度差异信息。
可选地,在本申请实施例中,该发送单元21具体用于基于自身的载波间的功率谱密度最大差异能力和测量的载波间的功率谱密度差异信息,向该网络设备发送该多载波通信配置调整请求。
可选地,在本申请实施例中,该发送单元21具体用于在测量的载波间的功率谱密度差异信息中的差异值大于第三门限的情况下,向该网络设备发送该多载波通信配置调整请求。
可选地,在本申请实施例中,该多载波通信配置调整请求用于请求该网络设备降低该终端设备的载波间的功率谱密度差异。
本申请实施例的终端设备20能够实现前述的方法300实施例中的终端设备的对应功能。该终端设备20中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。
需要说明,关于申请实施例的终端设备20中的各个模块(子模块、单元或组件等)所描述的功能,可由不同的模块(子模块、单元或组件等)实现,也可由同一个模块(子模块、单元或组件等)实现。
图19是根据本申请一实施例的网络设备30的示意性框图。该网络设备30可以包括:
第一接收单元31,用于接收来自终端设备的多载波通信能力信息;
配置单元32,用于基于该多载波通信能力信息对该终端设备进行多载波通信配置。
可选地,在本申请实施例中,该多载波通信能力信息包括多波束赋形能力。
可选地,在本申请实施例中,该多波束赋形能力包括该终端设备是否支持多个独立波束赋形能力。
可选地,在本申请实施例中,该配置单元32基于该多载波通信能力信息对该终端设备进行多载波通信配置包括以下任一情况:
情况一、该配置单元32具体用于:在该终端设备支持多个独立波束赋形能力的情况下,配置该终端设备进行多载波通信。
可选地,该情况可以包括以下至少之一:
在该终端设备支持频段内的多个独立波束赋形能力的情况下,该配置单元32配置该终端设备进行频段内多载波通信;
在该终端设备支持频段组内的多个独立波束赋形能力的情况下,该配置单元32配置该终端设备进行频段组内多载波通信;
在该终端设备支持频段组合的多个独立波束赋形能力的情况下,该配置单元32配置该终端设备进行频段组合的多载波通信;
在该终端设备支持频段组的组合的多个独立波束赋形能力的情况下,该第一网络设备配置该终端设备进行频段组的组合的多载波通信。
可选地,在情况一中,配置单元32可以设置于单个基站小区、共站址的多个基站小区或不共站址的多个基站小区。
情况二、该配置单元32具体用于:在该终端设备不支持多个独立波束赋形能力的情况下,配置该终端设备进行多载波通信。
可选地,该情况可以包括以下至少之一;
在该终端设备不支持频段内的多个独立波束赋形能力的情况下,该配置单元32配置该终端设备进行频段内多载波通信;
在该终端设备不支持频段组内的多个独立波束赋形能力的情况下,该配置单元32配置该终端设备进行频段组内多载波通信;
在该终端设备不支持频段组合的多个独立波束赋形能力的情况下,该配置单元32配置该终端设备进行频段组合的多载波通信;
在该终端设备不支持频段组的组合多个独立波束赋形能力的情况下,该配置单元32配置该终端设备进行频段组的组合的多载波通信。
可选地,在情况二中,该配置单元32可以设置于单个基站小区或共站址的多个基站小区。
可选地,在本申请实施例中,该多波束赋形能力还包括该终端设备支持独立波束赋形的载波数量。
可选地,在本申请实施例中,该配置单元32还用于:基于该终端设备支持独立波束赋形的载波数量,配置不共站址基站发送的载波数量。
可选地,在本申请实施例中,该多波束赋形能力还包括该终端设备支持独立波束赋形的波束对应的极化方式。
可选地,在本申请实施例中,该配置单元32还用于基于该终端设备支持独立波束赋形的波束对应的极化方式,向该终端设备发射下行波束。
可选地,在本申请实施例中,该多载波通信能力信息包括该终端设备支持的载波间的功率谱密度最大差异能力。
可选地,在本申请实施例中,该载波间的功率谱密度最大差异能力通过RRC信令承载。
可选地,在本申请实施例中,如图20所示,该网络设备30还包括:
第二接收单元33,用于接收来自该终端设备的载波间的功率谱密度差异信息。
可选地,在本申请实施例中,该第二接收单元用于接收该终端设备周期性地测量并上报的测量结果,该测量结果包括该终端设备支持的至少一个频段的载波间的功率谱密度差异信息。
可选地,在本申请实施例中,该网络设备30还包括:
信息调整单元34,用于基于该终端设备的载波间的功率谱密度最大差异能力和该测量结果,向该终端设备调整信息,该调整信息用于调整该终端设备的载波间的功率和/或功率谱密度。
可选地,在本申请实施例中,该调整信息用于降低该终端设备的载波间的功率谱密度差异。
本申请实施例的网络设备30能够实现前述的方法200、400实施例中的网络设备的对应功能。该网络设备30中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。
需要说明,关于申请实施例的网络设备30中的各个模块(子模块、单元或组件等)所描述的功能,可由不同的模块(子模块、单元或组件等)实现,也可由同一个模块(子模块、单元或组件等)实现。
图21是根据本申请另一实施例的网络设备40的示意性框图。该网络设备40可以包括:
接收单元41,用于接收多载波通信配置调整请求;
配置调整单元42,用于基于该多载波通信配置调整请求对终端设备的多载波通信配置进行调整。
可选地,在本申请实施例中,如图22所示,该网络设备40还包括:
发送单元43,用于基于该多载波通信配置调整请求向该终端设备发送调整信息,该调整信息用于调整该终端设备的载波间的功率和/或功率谱密度。
可选地,在本申请实施例中,该调整信息用于降低该终端设备的载波间的功率谱密度差异。
本申请实施例的网络设备40能够实现前述的方法300、500实施例中的网络设备的对应功能。该网络设备40中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。
需要说明,关于申请实施例的网络设备40中的各个模块(子模块、单元或组件等)所描述的功能,可由不同的模块(子模块、单元或组件等)实现,也可由同一个模块(子模块、单元或组件等)实现。
图23是根据本申请实施例的通信设备600示意性结构图。该通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图23所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图23所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图24是根据本申请实施例的芯片700的示意性结构图。该芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图24所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器 可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图25是根据本申请实施例的通信***800的示意性框图。该通信***800包括终端设备810和网络设备820。
一种情况下,终端设备810向网络设备820发送多载波通信能力信息,该多载波通信能力信息用于指示该网络设备对该终端设备进行多载波通信配置。网络设备820接收来自终端设备810的多载波通信能力信息;基于该多载波通信能力信息对该终端设备进行多载波通信配置。
另一种情况下,终端设备810向网络设备820发送多载波通信配置调整请求,该多载波通信配置调整请求用于请求该网络设备对该终端设备的多载波通信配置进行调整。网络设备820接收多载波通信配置调整请求;该多载波通信配置调整请求对终端设备的多载波通信配置进行调整。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (87)

  1. 一种多载波通信方法,包括:
    终端设备向网络设备发送多载波通信能力信息,所述多载波通信能力信息用于指示所述网络设备对所述终端设备进行多载波通信配置。
  2. 根据权利要求1所述的方法,其中,所述多载波通信能力信息包括多波束赋形能力。
  3. 根据权利要求2所述的方法,其中,所述多波束赋形能力包括所述终端设备是否支持多个独立波束赋形能力。
  4. 根据权利要求3所述的方法,其中,所述终端设备是否支持多个独立波束赋形能力,包括以下至少之一;
    所述终端设备支持频段内的多个独立波束赋形能力;
    所述终端设备不支持频段内的多个独立波束赋形能力;
    所述终端设备支持频段组内的多个独立波束赋形能力;
    所述终端设备不支持频段组内的多个独立波束赋形能力;
    所述终端设备支持频段组合的多个独立波束赋形能力;
    所述终端设备不支持频段组合的多个独立波束赋形能力;
    所述终端设备支持频段组的组合的多个独立波束赋形能力;
    所述终端设备不支持频段组的组合多个独立波束赋形能力。
  5. 根据权利要求2至4中任一项所述的方法,其中,所述多波束赋形能力还包括所述终端设备支持独立波束赋形的载波数量。
  6. 根据权利要求2至5中任一项所述的方法,其中,所述多波束赋形能力还包括所述终端设备支持独立波束赋形的波束对应的极化方式。
  7. 根据权利要求1至6中任一项所述的方法,其中,所述多载波通信能力信息包括所述终端设备支持的载波间功率谱密度最大差异能力。
  8. 根据权利要求7所述的方法,其中,所述载波间的功率谱密度最大差异能力通过RRC信令承载。
  9. 根据权利要求7或8所述的方法,其中,所述方法还包括:
    所述终端设备发送载波间的功率谱密度差异信息。
  10. 根据权利要求9所述的方法,其中,所述终端设备发送载波间的功率谱密度差异信息包括以下至少之一:
    所述终端设备基于网络配置周期性地测量并上报测量结果,所述测量结果包括所述终端设备支持的至少一个频段的载波间的功率谱密度差异信息;
    所述终端设备基于触发事件上报所述载波间的功率谱密度差异信息。
  11. 根据权利要求10所述的方法,其中,所述触发事件包括以下至少之一:
    所述载波间的功率谱密度差异信息中的差异值大于第一门限;
    当前测量的载波间的功率谱密度差异信息中的差异值与上一次上报的差异值的差值大于第二门限。
  12. 一种多载波通信方法,包括:
    终端设备向网络设备发送多载波通信配置调整请求,所述多载波通信配置调整请求用于请求所述网络设备对所述终端设备的多载波通信配置进行调整。
  13. 根据权利要求12所述的方法,其中,所述方法还包括:
    所述终端设备测量得到所述终端设备支持的载波间的功率谱密度差异信息。
  14. 根据权利要求13所述的方法,其中,终端设备向网络设备发送多载波通信配置调整请求,包括:
    所述终端设备基于自身的载波间的功率谱密度最大差异能力和测量的载波间的功率谱密度差异信息,向所述网络设备发送所述多载波通信配置调整请求。
  15. 根据权利要求13所述的方法,其中,终端设备向网络设备发送多载波通信配置调整请求,包括:
    所述终端设备在测量的载波间的功率谱密度差异信息中的差异值大于第三门限的情况下,向所述网络设备发送所述多载波通信配置调整请求。
  16. 根据权利要求12至15中任一项所述的方法,其中,所述多载波通信配置调整请求用于请求所述网络设备降低所述终端设备的载波间的功率谱密度差异。
  17. 一种多载波通信方法,包括:
    网络设备接收来自终端设备的多载波通信能力信息;
    所述网络设备基于所述多载波通信能力信息对所述终端设备进行多载波通信配置。
  18. 根据权利要求17所述的方法,其中,所述多载波通信能力信息包括多波束赋形能力。
  19. 根据权利要求18所述的方法,其中,所述多波束赋形能力包括所述终端设备是否支持多个独立波束赋形能力。
  20. 根据权利要求19所述的方法,其中,所述网络设备基于所述多载波通信能力信息对所述终端设备进行多载波通信配置,包括:在所述终端设备支持多个独立波束赋形能力的情况下,第一网络设备配置所述终端设备进行多载波通信。
  21. 根据权利要求20所述的方法,其中,在所述终端设备支持多个独立波束赋形能力的情况下,第一网络设备配置所述终端设备进行多载波通信,包括以下至少之一:
    在所述终端设备支持频段内的多个独立波束赋形能力的情况下,所述第一网络设备配置所述终端设备进行频段内多载波通信;
    在所述终端设备支持频段组内的多个独立波束赋形能力的情况下,所述第一网络设备配置所述终端设备进行频段组内多载波通信;
    在所述终端设备支持频段组合的多个独立波束赋形能力的情况下,所述第一网络设备配置所述终端设备进行频段组合的多载波通信;
    在所述终端设备支持频段组的组合的多个独立波束赋形能力的情况下,所述第一网络设备配置所述终端设备进行频段组的组合的多载波通信。
  22. 根据权利要求20或21所述的方法,其中,所述第一网络设备包括单个基站小区、共站址的多个基站小区或不共站址的多个基站小区。
  23. 根据权利要求19所述的方法,其中,所述网络设备基于所述多载波通信能力信息对所述终端设备进行多载波通信配置,包括:在所述终端设备不支持多个独立波束赋形能力的情况下,第二网络设备配置所述终端设备进行多载波通信。
  24. 根据权利要求23所述的方法,其中,在所述终端设备不支持多个独立波束赋形能力的情况下,第二网络设备配置所述终端设备进行多载波通信,包括以下至少之一;
    在所述终端设备不支持频段内的多个独立波束赋形能力的情况下,所述第二网络设备配置所述终端设备进行频段内多载波通信;
    在所述终端设备不支持频段组内的多个独立波束赋形能力的情况下,所述第二网络设备配置所述终端设备进行频段组内多载波通信;
    在所述终端设备不支持频段组合的多个独立波束赋形能力的情况下,所述第二网络设备配置所述终端设备进行频段组合的多载波通信;
    在所述终端设备不支持频段组的组合多个独立波束赋形能力的情况下,所述第二网络设备配置所述终端设备进行频段组的组合的多载波通信。
  25. 根据权利要求23或24所述的方法,其中,所述第二网络设备包括单个基站小区或共站址的多个基站小区。
  26. 根据权利要求18至25中任一项所述的方法,其中,所述多波束赋形能力还包括所述终端设备支持独立波束赋形的载波数量。
  27. 根据权利要求26所述的方法,其中,所述网络设备基于所述多载波通信能力信息对所述终端设备进行多载波通信配置,包括:所述网络设备基于所述终端设备支持独立波束赋形的载波数量,配置不 共站址基站发送的载波数量。
  28. 根据权利要求18至27中任一项所述的方法,其中,所述多波束赋形能力还包括所述终端设备支持独立波束赋形的波束对应的极化方式。
  29. 根据权利要求28所述的方法,其中,所述网络设备基于所述多载波通信能力信息对所述终端设备进行多载波通信配置,包括:所述网络设备基于所述终端设备支持独立波束赋形的波束对应的极化方式,向所述终端设备发射下行波束。
  30. 根据权利要求17至29中任一项所述的方法,其中,所述多载波通信能力信息包括所述终端设备支持的载波间的功率谱密度最大差异能力。
  31. 根据权利要求30所述的方法,其中,所述载波间的功率谱密度最大差异能力通过RRC信令承载。
  32. 根据权利要求30或31所述的方法,其中,所述方法还包括:
    所述网络设备接收来自所述终端设备的载波间的功率谱密度差异信息。
  33. 根据权利要求32所述的方法,其中,所述网络设备接收来自所述终端设备的载波间的功率谱密度差异信息包括:所述网络设备接收所述终端设备周期性地测量并上报的测量结果,所述测量结果包括所述终端设备支持的至少一个频段的载波间的功率谱密度差异信息。
  34. 根据权利要求33所述的方法,其中,所述方法还包括:
    所述网络设备基于所述终端设备的载波间的功率谱密度最大差异能力和所述测量结果,向所述终端设备调整信息,所述调整信息用于调整所述终端设备的载波间的功率和/或功率谱密度。
  35. 根据权利要求34所述的方法,其中,所述调整信息用于降低所述终端设备的载波间的功率谱密度差异。
  36. 一种多载波通信方法,包括:
    网络设备接收多载波通信配置调整请求;
    所述网络设备基于所述多载波通信配置调整请求对终端设备的多载波通信配置进行调整。
  37. 根据权利要求36所述的方法,其中,所述方法还包括:
    所述网络设备基于所述多载波通信配置调整请求向所述终端设备发送调整信息,所述调整信息用于调整所述终端设备的载波间的功率和/或功率谱密度。
  38. 根据权利要求37所述的方法,其中,所述调整信息用于降低所述终端设备的载波间的功率谱密度差异。
  39. 一种终端设备,包括:
    第一发送单元,用于向网络设备发送多载波通信能力信息,所述多载波通信能力信息用于指示所述网络设备对所述终端设备进行多载波通信配置。
  40. 根据权利要求39所述的终端设备,其中,所述多载波通信能力信息包括多波束赋形能力。
  41. 根据权利要求40所述的终端设备,其中,所述多波束赋形能力包括所述终端设备是否支持多个独立波束赋形能力。
  42. 根据权利要求41所述的终端设备,其中,所述终端设备是否支持多个独立波束赋形能力,包括以下至少之一;
    所述终端设备支持频段内的多个独立波束赋形能力;
    所述终端设备不支持频段内的多个独立波束赋形能力;
    所述终端设备支持频段组内的多个独立波束赋形能力;
    所述终端设备不支持频段组内的多个独立波束赋形能力;
    所述终端设备支持频段组合的多个独立波束赋形能力;
    所述终端设备不支持频段组合的多个独立波束赋形能力;
    所述终端设备支持频段组的组合的多个独立波束赋形能力;
    所述终端设备不支持频段组的组合多个独立波束赋形能力。
  43. 根据权利要求40至42中任一项所述的终端设备,其中,所述多波束赋形能力还包括所述终端设备支持独立波束赋形的载波数量。
  44. 根据权利要求40至43中任一项所述的终端设备,其中,所述多波束赋形能力还包括所述终端设备支持独立波束赋形的波束对应的极化方式。
  45. 根据权利要求39至44中任一项所述的终端设备,其中,所述多载波通信能力信息包括所述终端设备支持的载波间的功率谱密度最大差异能力。
  46. 根据权利要求45所述的终端设备,其中,所述载波间的功率谱密度最大差异能力通过RRC信令承载。
  47. 根据权利要求45或46所述的终端设备,其中,所述终端设备还包括:
    第二发送单元,用于发送载波间的功率谱密度差异信息。
  48. 根据权利要求47所述的终端设备,其中,所述第二发送单元采用以下方式的至少之一发送载波间的功率谱密度差异信息:
    基于网络配置周期性地测量并上报测量结果,所述测量结果包括所述终端设备支持的至少一个频段的载波间的功率谱密度差异信息;
    基于触发事件上报所述载波间的功率谱密度差异信息。
  49. 根据权利要求48所述的终端设备,其中,所述触发事件包括以下至少之一:
    所述载波间的功率谱密度差异信息中的差异值大于第一门限;
    当前测量的载波间的功率谱密度差异信息中的差异值与上一次上报的差异值的差值大于第二门限。
  50. 一种终端设备,包括:
    发送单元,用于向网络设备发送多载波通信配置调整请求,所述多载波通信配置调整请求用于请求所述网络设备对所述终端设备的多载波通信配置进行调整。
  51. 根据权利要求50所述的终端设备,其中,所述终端设备还包括:
    测量单元,用于测量得到所述终端设备支持的载波间的功率谱密度差异信息。
  52. 根据权利要求51所述的终端设备,其中,所述发送单元具体用于基于自身的载波间的功率谱密度最大差异能力和测量的载波间的功率谱密度差异信息,向所述网络设备发送所述多载波通信配置调整请求。
  53. 根据权利要求51所述的终端设备,其中,所述发送单元具体用于在测量的载波间的功率谱密度差异信息中的差异值大于第三门限的情况下,向所述网络设备发送所述多载波通信配置调整请求。
  54. 根据权利要求50至53中任一项所述的终端设备,其中,所述多载波通信配置调整请求用于请求所述网络设备降低所述终端设备的载波间的功率谱密度差异。
  55. 一种网络设备,包括:
    第一接收单元,用于接收来自终端设备的多载波通信能力信息;
    配置单元,用于基于所述多载波通信能力信息对所述终端设备进行多载波通信配置。
  56. 根据权利要求55所述的网络设备,其中,所述多载波通信能力信息包括多波束赋形能力。
  57. 根据权利要求56所述的网络设备,其中,所述多波束赋形能力包括所述终端设备是否支持多个独立波束赋形能力。
  58. 根据权利要求57所述的网络设备,其中,所述配置单元用于在所述终端设备支持多个独立波束赋形能力的情况下,配置所述终端设备进行多载波通信。
  59. 根据权利要求58所述的网络设备,其中,在所述终端设备支持多个独立波束赋形能力的情况下,第一网络设备配置所述终端设备进行多载波通信,包括以下至少之一:
    在所述终端设备支持频段内的多个独立波束赋形能力的情况下,所述第一网络设备配置所述终端设备进行频段内多载波通信;
    在所述终端设备支持频段组内的多个独立波束赋形能力的情况下,配置所述终端设备进行频段组内多载波通信;
    在所述终端设备支持频段组合的多个独立波束赋形能力的情况下,配置所述终端设备进行频段组合的多载波通信;
    在所述终端设备支持频段组的组合的多个独立波束赋形能力的情况下,配置所述终端设备进行频段组的组合的多载波通信。
  60. 根据权利要求58或59所述的网络设备,其中,所述配置单元设置于单个基站小区、共站址的多个基站小区或不共站址的多个基站小区。
  61. 根据权利要求57所述的网络设备,其中,所述配置单元用于在所述终端设备不支持多个独立波束赋形能力的情况下,配置所述终端设备进行多载波通信。
  62. 根据权利要求61所述的网络设备,其中,所述配置单元用于在所述终端设备不支持多个独立波束赋形能力的情况下,配置所述终端设备进行多载波通信,包括以下至少之一;
    在所述终端设备不支持频段内的多个独立波束赋形能力的情况下,配置所述终端设备进行频段内多载波通信;
    在所述终端设备不支持频段组内的多个独立波束赋形能力的情况下,配置所述终端设备进行频段组内多载波通信;
    在所述终端设备不支持频段组合的多个独立波束赋形能力的情况下,配置所述终端设备进行频段组合的多载波通信;
    在所述终端设备不支持频段组的组合多个独立波束赋形能力的情况下,配置所述终端设备进行频段组的组合的多载波通信。
  63. 根据权利要求61或62所述的网络设备,其中,所述配置单元设置于单个基站小区或共站址的多个基站小区。
  64. 根据权利要求56至63中任一项所述的网络设备,其中,所述多波束赋形能力还包括所述终端设备支持独立波束赋形的载波数量。
  65. 根据权利要求64所述的网络设备,其中,所述配置单元还用于基于所述终端设备支持独立波束赋形的载波数量,配置不共站址基站发送的载波数量。
  66. 根据权利要求56至65中任一项所述的网络设备,其中,所述多波束赋形能力还包括所述终端设备支持独立波束赋形的波束对应的极化方式。
  67. 根据权利要求66所述的网络设备,其中,所述配置单元还用于基于所述终端设备支持独立波束赋形的波束对应的极化方式,向所述终端设备发射下行波束。
  68. 根据权利要求55至67中任一项所述的网络设备,其中,所述多载波通信能力信息包括所述终端设备支持的载波间的功率谱密度最大差异能力。
  69. 根据权利要求68所述的网络设备,其中,所述载波间的功率谱密度最大差异能力通过RRC信令承载。
  70. 根据权利要求68或69所述的网络设备,其中,所述网络设备还包括:
    第二接收单元,用于接收来自所述终端设备的载波间的功率谱密度差异信息。
  71. 根据权利要求70所述的网络设备,其中,所述第二接收单元用于接收所述终端设备周期性地测量并上报的测量结果,所述测量结果包括所述终端设备支持的至少一个频段的载波间的功率谱密度差异信息。
  72. 根据权利要求71所述的网络设备,其中,所述网络设备还包括:
    信息调整单元,用于基于所述终端设备的载波间的功率谱密度最大差异能力和所述测量结果,向所述终端设备调整信息,所述调整信息用于调整所述终端设备的载波间的功率和/或功率谱密度。
  73. 根据权利要求72所述的网络设备,其中,所述调整信息用于降低所述终端设备的载波间的功率谱密度差异。
  74. 一种网络设备,包括:
    接收单元,用于接收多载波通信配置调整请求;
    配置调整单元,用于基于所述多载波通信配置调整请求对终端设备的多载波通信配置进行调整。
  75. 根据权利要求74所述的网络设备,其中,所述网络设备还包括:
    发送单元,用于基于所述多载波通信配置调整请求向所述终端设备发送调整信息,所述调整信息用于调整所述终端设备的载波间的功率和/或功率谱密度。
  76. 根据权利要求75所述的网络设备,其中,所述调整信息用于降低所述终端设备的载波间的功率谱密度差异。
  77. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至16中任一项所述的方法。
  78. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求17至38中任一项所述的方法。
  79. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至16中任一项所述的方法。
  80. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求17至38中任一项所述的方法。
  81. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至16中任一项所述的方法。
  82. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求17至38中任一项所述的方法。
  83. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至16中任一项所述的方法。
  84. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求17至38中任一项所述的方法。
  85. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至16中任一项所述的方法。
  86. 一种计算机程序,所述计算机程序使得计算机执行如权利要求17至38中任一项所述的方法。
  87. 一种通信***,包括:
    终端设备,用于执行如权利要求1至16中任一项所述的方法;
    网络设备,用于执行如权利要求17至38中任一项所述的方法。
PCT/CN2020/088520 2020-04-30 2020-04-30 多载波通信方法、终端设备和网络设备 WO2021217668A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20932970.5A EP4145925A4 (en) 2020-04-30 2020-04-30 MULTI-CARRIER COMMUNICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
CN202080094529.8A CN115399006A (zh) 2020-04-30 2020-04-30 多载波通信方法、终端设备和网络设备
PCT/CN2020/088520 WO2021217668A1 (zh) 2020-04-30 2020-04-30 多载波通信方法、终端设备和网络设备
US18/050,759 US20230083602A1 (en) 2020-04-30 2022-10-28 Multi-carrier communication method, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088520 WO2021217668A1 (zh) 2020-04-30 2020-04-30 多载波通信方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/050,759 Continuation US20230083602A1 (en) 2020-04-30 2022-10-28 Multi-carrier communication method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2021217668A1 true WO2021217668A1 (zh) 2021-11-04

Family

ID=78331701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088520 WO2021217668A1 (zh) 2020-04-30 2020-04-30 多载波通信方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US20230083602A1 (zh)
EP (1) EP4145925A4 (zh)
CN (1) CN115399006A (zh)
WO (1) WO2021217668A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114223230A (zh) * 2021-11-15 2022-03-22 北京小米移动软件有限公司 波束能力上报方法、装置、设备及存储介质
CN114731510A (zh) * 2022-02-14 2022-07-08 北京小米移动软件有限公司 一种传输终端能力的方法、装置及可读存储介质
US20230155650A1 (en) * 2021-11-15 2023-05-18 Qualcomm Incorporated Heterogenous beamforming capability with mixed beamforming architecture
WO2024026633A1 (zh) * 2022-08-01 2024-02-08 北京小米移动软件有限公司 一种传输能力信息的方法、装置以及可读存储介质
CN114731510B (zh) * 2022-02-14 2024-07-30 北京小米移动软件有限公司 一种传输终端能力的方法、装置及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102474758A (zh) * 2009-08-25 2012-05-23 夏普株式会社 无线通信***、无线通信装置和无线通信方法
WO2017199219A1 (en) * 2016-05-20 2017-11-23 Telefonaktiebolaget Lm Ericsson (Publ) Resource allocation and signaling methods for scheduling in unlicensed spectrum
CN109698739A (zh) * 2017-10-23 2019-04-30 华为技术有限公司 一种信号配置方法及相关设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10631159B2 (en) * 2016-09-01 2020-04-21 Qualcomm Incorporated UE capability reporting for dual-polarization wireless communication
CN108541063B (zh) * 2017-03-01 2020-09-08 中兴通讯股份有限公司 一种多载波小区增强的方法及装置
CN110365459B (zh) * 2019-05-23 2021-05-18 华为技术有限公司 一种上行harq传输方法及通信装置
EP4132154A4 (en) * 2020-04-07 2023-05-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD FOR CONFIGURING MULTIPLE CARRIERS, TERMINAL DEVICE AND NETWORK DEVICE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102474758A (zh) * 2009-08-25 2012-05-23 夏普株式会社 无线通信***、无线通信装置和无线通信方法
WO2017199219A1 (en) * 2016-05-20 2017-11-23 Telefonaktiebolaget Lm Ericsson (Publ) Resource allocation and signaling methods for scheduling in unlicensed spectrum
CN109698739A (zh) * 2017-10-23 2019-04-30 华为技术有限公司 一种信号配置方法及相关设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Discussion on cross-carrier beam management", 3GPP DRAFT; R1-1715963, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Nagoya, Japan; 20170918 - 20170921, 17 September 2017 (2017-09-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051339422 *
See also references of EP4145925A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114223230A (zh) * 2021-11-15 2022-03-22 北京小米移动软件有限公司 波束能力上报方法、装置、设备及存储介质
US20230155650A1 (en) * 2021-11-15 2023-05-18 Qualcomm Incorporated Heterogenous beamforming capability with mixed beamforming architecture
CN114731510A (zh) * 2022-02-14 2022-07-08 北京小米移动软件有限公司 一种传输终端能力的方法、装置及可读存储介质
CN114731510B (zh) * 2022-02-14 2024-07-30 北京小米移动软件有限公司 一种传输终端能力的方法、装置及可读存储介质
WO2024026633A1 (zh) * 2022-08-01 2024-02-08 北京小米移动软件有限公司 一种传输能力信息的方法、装置以及可读存储介质

Also Published As

Publication number Publication date
CN115399006A (zh) 2022-11-25
EP4145925A1 (en) 2023-03-08
EP4145925A4 (en) 2023-06-07
US20230083602A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
US11438847B2 (en) Power control method and apparatus
US11949553B2 (en) Transmission parameter configuration method and apparatus
WO2021217668A1 (zh) 多载波通信方法、终端设备和网络设备
WO2021000289A1 (zh) 用于传输小数据的方法及设备
WO2021163938A1 (zh) 天线切换方法、终端设备和通信设备
WO2020199902A1 (zh) 一种选择接收波束的方法及装置
WO2018121540A1 (zh) 一种下行波束调整的方法及装置
WO2021237675A1 (zh) 无线通信方法和终端设备
US11546044B2 (en) Wireless communication method, terminal device and network device
US11350455B2 (en) Method and device for performing channel detection on unlicensed carrier
US20230179374A1 (en) Channel transmission method, terminal device, and network device
WO2023050472A1 (zh) 用于寻呼的方法和装置
US20220338262A1 (en) Information determination method, information indication method, terminal device, and network device
US20220353767A1 (en) Communication Method and Apparatus
WO2022027684A1 (zh) 信息上报方法、信息处理方法、终端设备和网络设备
WO2022133692A1 (zh) 状态切换的方法、终端设备和网络设备
US20230007927A1 (en) Doppler spread based beam measurement and reporting for high speed mobility
WO2022021245A1 (zh) 通信方法、终端设备和网络设备
US20220337306A1 (en) Method for beam selection, terminal device, and network device
WO2024065324A1 (zh) 通信方法和设备
WO2021168628A1 (zh) 搜索空间组切换方法、终端设备和网络设备
WO2021217513A1 (zh) 工作带宽部分的切换方法、终端设备和网络设备
US11051221B2 (en) Network access method and device
US20230371056A1 (en) Frequency band configuration method, terminal device, network device, chip and storage medium
US20230129834A1 (en) Method for determining antenna panel for transmission, and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020932970

Country of ref document: EP

Effective date: 20221130