WO2021217469A1 - Dual connectivity cell measurements - Google Patents

Dual connectivity cell measurements Download PDF

Info

Publication number
WO2021217469A1
WO2021217469A1 PCT/CN2020/087649 CN2020087649W WO2021217469A1 WO 2021217469 A1 WO2021217469 A1 WO 2021217469A1 CN 2020087649 W CN2020087649 W CN 2020087649W WO 2021217469 A1 WO2021217469 A1 WO 2021217469A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
measurement
serving cell
cells
satisfies
Prior art date
Application number
PCT/CN2020/087649
Other languages
French (fr)
Inventor
Yuankun ZHU
Chaofeng HUI
Fojian ZHANG
Hao Zhang
Yi Liu
Pan JIANG
Quanling ZHANG
Gang Liu
Qiang Li
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/087649 priority Critical patent/WO2021217469A1/en
Publication of WO2021217469A1 publication Critical patent/WO2021217469A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00698Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using different RATs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • aspects of the present disclosure relate generally to wireless communication and to techniques for dual connectivity cell measurements.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (for example, bandwidth, transmit power, etc. ) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink (DL) and uplink (UL) .
  • the DL (or forward link) refers to the communication link from the BS to the UE
  • the UL (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a NodeB, an LTE evolved nodeB (eNB) , a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G NodeB, or the like.
  • eNB LTE evolved nodeB
  • AP access point
  • TRP transmit receive point
  • NR New Radio
  • NR which also may be referred to as 5G
  • 5G is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency-division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the DL, using CP-OFDM or SC-FDM (for example, also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the UL (or a combination thereof) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency-division multiplexing
  • SC-FDM for example, also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • MIMO multiple-input multiple-output
  • the method may include determining whether a cell measurement for a serving cell of the UE satisfies a measurement threshold.
  • the method may include selectively performing, based at least in part on determining whether the cell measurement for the serving cell satisfies the measurement threshold, one or more cell measurements for one or more cells capable of supporting a single radio access technology (RAT) .
  • RAT radio access technology
  • the one or more cells are capable of supporting a Long Term Evolution (LTE) RAT.
  • the method includes determining that the one or more cells are capable of supporting a single RAT based at least in part on band information associated with the one or more cells.
  • band information for a cell of the one or more cells identifies an operating frequency band for the cell.
  • the UE is operating in an Evolved Universal Mobile Telecommunications System Terrestrial Radio Access (E-UTRA) -New Radio (NR) dual connectivity (ENDC) configuration.
  • E-UTRA Evolved Universal Mobile Telecommunications System Terrestrial Radio Access
  • NR New Radio
  • ENDC dual connectivity
  • the serving cell is an LTE master cell for the UE in the ENDC configuration, and the UE is communicatively connected with a 5G secondary cell in the ENDC configuration.
  • the method includes receiving a measurement control order from the serving cell, and determining whether the cell measurement for the serving cell of the UE satisfies the measurement threshold is based at least in part on receiving the measurement control order from the serving cell.
  • the one or more cells are indicated by the measurement control order.
  • determining whether the cell measurement for the serving cell satisfies the measurement threshold includes determining that the cell measurement for the serving cell satisfies the measurement threshold, and selectively performing the one or more cell measurements for the one or more cells includes refraining from performing the one or more cell measurements for the one or more cells based at least in part on determining that the cell measurement for the serving cell satisfies the measurement threshold.
  • the method includes performing, based at least in part on determining that the cell measurement for the serving cell satisfies the measurement threshold, one or more second cell measurements for one or more second cells that are capable of supporting a plurality of RATs.
  • determining whether the cell measurement for the serving cell satisfies the measurement threshold includes determining that the cell measurement for the serving cell does not satisfy the measurement threshold, and selectively performing the one or more cell measurements for the one or more cells is based at least in part on determining that the cell measurement for the serving cell does not satisfy the measurement threshold.
  • the method includes performing, based at least in part on determining that the cell measurement for the serving cell does not satisfy the measurement threshold, one or more second cell measurements for one or more second cells that are capable of supporting a plurality of RATs.
  • the UE may include a memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to determine whether a cell measurement for a serving cell of the UE satisfies a measurement threshold.
  • the memory and the one or more processors may be configured to selectively perform, based at least in part on determining whether the cell measurement for the serving cell satisfies the measurement threshold, one or more cell measurements for one or more cells capable of supporting a single RAT.
  • the UE may perform or implement any one or more of the aspects described in connection with the method, above or elsewhere herein.
  • the non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a UE, may cause the one or more processors to determine whether a cell measurement for a serving cell of the UE satisfies a measurement threshold.
  • the one or more instructions when executed by one or more processors of a UE, may cause the one or more processors to selectively perform, based at least in part on determining whether the cell measurement for the serving cell satisfies the measurement threshold, one or more cell measurements for one or more cells capable of supporting a single RAT.
  • the non-transitory computer-readable medium may perform or implement any one or more of the aspects described in connection with the method, above or elsewhere herein.
  • the apparatus may include means for determining whether a cell measurement for a serving cell of the apparatus satisfies a measurement threshold.
  • the apparatus may include means for selectively performing, based at least in part on determining whether the cell measurement for the serving cell satisfies the measurement threshold, one or more cell measurements for one or more cells capable of supporting a single RAT.
  • the apparatus may perform or implement any one or more of the aspects described in connection with the method, above or elsewhere herein.
  • Figure 1 is a block diagram conceptually illustrating an example of a wireless network.
  • Figure 2 is a block diagram conceptually illustrating an example of a base station in communication with a user equipment (UE) in a wireless network.
  • UE user equipment
  • Figures 3 and 4 are diagrams illustrating example processes performed, for example, by a UE.
  • the described implementations may be implemented in any device, system or network that is capable of transmitting and receiving radio frequency signals according to any of the wireless communication standards, including any of the IEEE 802.11 standards, the standard, code division multiple access (CDMA) , frequency division multiple access (FDMA) , time division multiple access (TDMA) , Global System for Mobile communications (GSM) , GSM/General Packet Radio Service (GPRS) , Enhanced Data GSM Environment (EDGE) , Terrestrial Trunked Radio (TETRA) , Wideband-CDMA (W-CDMA) , Evolution Data Optimized (EV-DO) , 1xEV-DO, EV-DO Rev A, EV-DO Rev B, High Speed Packet Access (HSPA) , High Speed Downlink Packet Access (HSDPA) , High Speed Uplink Packet Access (HSUPA) , Evolved High Speed Packet Access (HSPA+) , Long Term Evolution (LTE) , AMPS, or other known signals that are used
  • a device such as a user equipment (UE) may operate in a dual (or multi) connectivity configuration, in which the UE is communicatively connected with a first cell (master cell) and one or more second cells (secondary cells) .
  • E-UTRA Evolved Universal Mobile Telecommunications System Terrestrial Radio Access
  • E-NR Evolved Universal Mobile Telecommunications System Terrestrial Radio Access
  • the master cell or primary cell, PCell
  • RAT LTE radio access technology
  • SCell secondary cell
  • a master cell in a dual (or multi) connectivity configuration may transmit a measurement control order (MCO) to configure the UE to perform cell measurements of neighboring cells of the master cell to facilitate secondary cell handover.
  • MCO measurement control order
  • not all cells may be capable of supporting more than one RAT.
  • some cells in the wireless network may be capable of supporting only an LTE RAT, whereas other cells in the wireless network may be capable of supporting both an LTE RAT and a 5G NR RAT.
  • a master cell in a dual (or multi) connectivity configuration configures a UE to perform a cell measurement of a neighboring cell that only supports a single RAT (for example, a cell that only supports an LTE RAT and is not capable of supporting a 5G NR RAT)
  • the UE may perform and report the cell measurement to the master cell.
  • the cell measurement of the cell that only supports the single RAT may cause the master cell to terminate existing connections with secondary cells that support a plurality of RATs, and to instruct the UE to establish a connection with the cell that only supports the single RAT.
  • the UE may lose access to 5G NR services provided by a secondary cell that is capable of supporting both an LTE RAT and a 5G NR RAT.
  • a UE may be capable of performing a cell measurement of a serving cell (such as a master cell in a dual or multi connectivity configuration) and determining whether the cell measurement satisfies a measurement threshold (for example, -90 dBm, -80 dBm, or another example measurement threshold) . If the UE determines that the cell measurement does not satisfy the threshold, the UE may perform cell measurements for one or more first cells (such as neighboring cells of the master cell) capable of supporting a single RAT as well as one or more second cells (such as neighboring cells of the master cell) capable of supporting a plurality of RATs.
  • a measurement threshold for example, -90 dBm, -80 dBm, or another example measurement threshold
  • the UE may perform cell measurements for the one or more second cells capable of supporting a plurality of RATs, and may refrain from performing cell measurements for the one or more first cells capable of supporting a single RAT.
  • the mobility of the UE may be maintained or improved by performing and reporting cell measurements for cells capable of supporting LTE only and cells capable of supporting both LTE and 5G NR. As such, the quantity of candidate secondary cells for the UE may be increased. Moreover, the UE may be capable of conserving battery life of the UE and increasing or prioritizing access to 5G NR services by performing and reporting cell measurements for cells capable of supporting both LTE and 5G NR.
  • FIG. 1 is a block diagram conceptually illustrating an example of a wireless network 100.
  • the wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network.
  • Wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with UEs and also may be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS, a BS subsystem serving this coverage area, or a combination thereof, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, another type of cell, or a combination thereof.
  • a macro cell may cover a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (for example, a home) and may allow restricted access by UEs having association with the femto cell (for example, UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (for example, three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another as well as to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection, a virtual network, or a combination thereof using any suitable transport network.
  • Wireless network 100 also may include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (for example, a BS or a UE) and send a transmission of the data to a downstream station (for example, a UE or a BS) .
  • a relay station also may be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station also may be referred to as a relay BS, a relay base station, a relay, etc.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, for example, macro BSs, pico BSs, femto BSs, relay BSs, etc. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (for example, 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (for example, 0.1 to 2 Watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs also may communicate with one another, for example, directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE also may be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, etc.
  • a UE may be a cellular phone (for example, a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (for example, smart ring, smart bracelet) ) , an entertainment device (for example, a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a base station, another device (for example, remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (for example, a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices or may be implemented as NB-IoT (narrowband internet of things) devices.
  • Some UEs may be considered a Customer Premises Equipment (CPE) .
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, similar components, or a combination thereof.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT also may be referred to as a radio technology, an air interface, etc.
  • a frequency also may be referred to as a carrier, a frequency channel, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • access to the air interface may be scheduled, where a scheduling entity (for example, a base station) allocates resources for communication among some or all devices and equipment within the scheduling entity’s service area or cell.
  • a scheduling entity for example, a base station
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
  • Base stations are not the only entities that may function as a scheduling entity. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more subordinate entities (for example, one or more other UEs) . In this example, the UE is functioning as a scheduling entity, and other UEs utilize resources scheduled by the UE for wireless communication.
  • a UE may function as a scheduling entity in a peer-to-peer (P2P) network, in a mesh network, or another type of network. In a mesh network example, UEs may optionally communicate directly with one another in addition to communicating with the scheduling entity.
  • P2P peer-to-peer
  • mesh network UEs may optionally communicate directly with one another in addition to communicating with the scheduling entity.
  • a scheduling entity and one or more subordinate entities may communicate utilizing the scheduled resources.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (for example, without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or similar protocol) , a mesh network, or similar networks, or combinations thereof.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, as well as other operations described elsewhere herein as being performed by the base station 110.
  • FIG 2 is a block diagram conceptually illustrating an example 200 of a base station 110 in communication with a UE 120.
  • base station 110 and UE 120 may respectively be one of the base stations and one of the UEs in wireless network 100 of Figure 1.
  • Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (for example, encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs.
  • MCS modulation and coding schemes
  • CQIs channel quality indicators
  • the transmit processor 220 also may process system information (for example, for semi-static resource partitioning information (SRPI) , etc. ) and control information (for example, CQI requests, grants, upper layer signaling, etc. ) and provide overhead symbols and control symbols.
  • system information for example, for semi-static resource partitioning information (SRPI) , etc.
  • control information for example, CQI requests, grants, upper layer signaling, etc.
  • the transmit processor 220 also may generate reference symbols for reference signals (for example, the cell-specific reference signal (CRS) ) and synchronization signals (for example, the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (for example, precoding) on the data symbols, the control symbols, the overhead symbols, or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (for example, for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator 232 may further process (for example, convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (for example, filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (for example, for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (for example, demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller or processor (controller/processor) 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , etc.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (for example, for reports including RSRP, RSSI, RSRQ, CQI, etc. ) from controller/processor 280. Transmit processor 264 also may generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (for example, for DFT-s- OFDM, CP-OFDM, etc. ) , and transmitted to base station 110.
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to a controller or processor (i.e., controller/processor) 240.
  • the base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • the network controller 130 may include communication unit 294, a controller or processor (i.e., controller/processor) 290, and memory 292.
  • controller/processor 280 may be a component of a processing system.
  • a processing system may generally refer to a system or series of machines or components that receives inputs and processes the inputs to produce a set of outputs (which may be passed to other systems or components of, for example, the UE 120) .
  • a processing system of the UE 120 may refer to a system including the various other components or subcomponents of the UE 120.
  • the processing system of the UE 120 may interface with other components of the UE 120, and may process information received from other components (such as inputs or signals) , output information to other components, etc.
  • a chip or modem of the UE 120 may include a processing system, a first interface to receive or obtain information, and a second interface to output, transmit or provide information.
  • the first interface may refer to an interface between the processing system of the chip or modem and a receiver, such that the UE 120 may receive information or signal inputs, and the information may be passed to the processing system.
  • the second interface may refer to an interface between the processing system of the chip or modem and a transmitter, such that the UE 120 may transmit information output from the chip or modem.
  • the second interface also may obtain or receive information or signal inputs, and the first interface also may output, transmit or provide information.
  • the controller/processor 240 of base station 110, the controller/processor 280 of UE 120, or any other component (s) of Figure 2 may perform one or more techniques associated with dual connectivity cell measurements, as described in more detail elsewhere herein.
  • the controller/processor 240 of base station 110, the controller/processor 280 of UE 120, or any other component (s) (or combinations of components) of Figure 2 may perform or direct operations of, for example, process 400 of Figure 4 or other processes as described herein.
  • the memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • a scheduler 246 may schedule UEs for data transmission on the downlink, the uplink, or a combination thereof.
  • the stored program codes when executed by the controller/processor 280 or other processors and modules at UE 120, may cause the UE 120 to perform operations described with respect to process 400 of Figure 4 or other processes as described herein.
  • a scheduler 246 may schedule UEs for data transmission on the downlink, the uplink, or a combination thereof.
  • UE 120 may include means for determining whether a cell measurement for a serving cell of the UE satisfies a measurement threshold, means for selectively performing, based at least in part on determining whether the cell measurement for the serving cell satisfies the measurement threshold, one or more cell measurements for one or more cells capable of supporting a single RAT, or the like, or combinations thereof.
  • such means may include one or more components of UE 120 described in connection with Figure 2.
  • While blocks in Figure 2 are illustrated as distinct components, the functions described with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, the TX MIMO processor 266, or another processor may be performed by or under the control of controller/processor 280.
  • FIG. 3 is a diagram illustrating an example process 300 performed, for example, by a UE.
  • the process 300 is an example where a UE (for example, UE 120) performs selective dual connectivity cell measurements.
  • the process 300 may include determining whether a cell measurement for a serving cell of the UE satisfies a measurement threshold (block 310) .
  • the UE (such as by using receive processor 258, transmit processor 264, controller/processor 280, memory 282, another component, or a combination thereof) may determine whether a cell measurement for a serving cell of the UE satisfies a measurement threshold.
  • the process 300 may include selectively performing, based at least in part on determining whether the cell measurement for the serving cell satisfies the measurement threshold, one or more cell measurements for one or more cells capable of supporting a single RAT (block 320) .
  • the UE (such as by using receive processor 258, transmit processor 264, controller/processor 280, memory 282, another component, or a combination thereof) may selectively perform, based at least in part on determining whether the cell measurement for the serving cell satisfies the measurement threshold, one or more cell measurements for one or more cells capable of supporting a single RAT.
  • the process 300 may include additional aspects, such as any single aspect or any combination of aspects described below or in connection with one or more other processes described elsewhere herein.
  • the one or more cells are capable of supporting an LTE RAT.
  • the process 300 includes determining that the one or more cells are capable of supporting a single RAT based at least in part on band information associated with the one or more cells.
  • band information for a cell of the one or more cells identifies an operating frequency band for the cell.
  • the UE is operating in an ENDC configuration.
  • the serving cell is an LTE master cell for the UE in the ENDC configuration, and the UE is communicatively connected with a 5G secondary cell in the ENDC configuration.
  • determining whether the cell measurement for the serving cell of the UE satisfies the measurement threshold is based at least in part on receiving the measurement control order from the serving cell.
  • the one or more cells are indicated by the measurement control order.
  • determining whether the cell measurement for the serving cell satisfies the measurement threshold includes determining that the cell measurement for the serving cell satisfies the measurement threshold, and selectively performing the one or more cell measurements for the one or more cells includes refraining from performing the one or more cell measurements for the one or more cells based at least in part on determining that the cell measurement for the serving cell satisfies the measurement threshold.
  • the process 300 includes performing, based at least in part on determining that the cell measurement for the serving cell satisfies the measurement threshold, one or more second cell measurements for one or more second cells that are capable of supporting a plurality of RATs.
  • determining whether the cell measurement for the serving cell satisfies the measurement threshold includes determining that the cell measurement for the serving cell does not satisfy the measurement threshold, and selectively performing the one or more cell measurements for the one or more cells is based at least in part on determining that the cell measurement for the serving cell does not satisfy the measurement threshold.
  • the process 300 includes performing, based at least in part on determining that the cell measurement for the serving cell does not satisfy the measurement threshold, one or more second cell measurements for one or more second cells that are capable of supporting a plurality of RATs.
  • the cell measurement for the serving cell is an RSRP measurement.
  • Figure 3 shows example blocks of the process 300
  • the process 300 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Figure 3. Additionally, or alternatively, two or more of the blocks of the process 300 may be performed in parallel.
  • FIG. 4 is a diagram illustrating an example process 400 performed, for example, by a UE.
  • the process 400 is an example where a UE (for example, UE 120) performs selective dual connectivity cell measurements.
  • the process 400 may include determining whether a cell measurement for a serving cell of the UE satisfies a measurement threshold (block 410) .
  • the UE (such as by using receive processor 258, transmit processor 264, controller/processor 280, memory 282, another component, or a combination thereof) may determine whether a cell measurement for a serving cell of the UE satisfies a measurement threshold.
  • the process 400 may include performing one or more cell measurements for one or more first cells capable of supporting a single RAT and one or more second cells capable of supporting a plurality of RATs (block 420) .
  • the UE (such as by using receive processor 258, transmit processor 264, controller/processor 280, memory 282, another component, or a combination thereof) may perform one or more cell measurements for one or more first cells capable of supporting a single RAT and one or more second cells capable of supporting a plurality of RATs.
  • the process 400 may include performing one or more cell measurements for one or more cells capable of supporting a plurality of RATs (block 430) .
  • the UE (such as by using receive processor 258, transmit processor 264, controller/processor 280, memory 282, another component, or a combination thereof) may perform one or more cell measurements for one or more first cells capable of supporting a plurality of RATs.
  • the UE may refrain from performing one or more measurements for one or more cells capable of supporting a single RAT.
  • the process 400 may include additional aspects, such as any single aspect or any combination of aspects described in connection with one or more other processes described elsewhere herein.
  • Figure 4 shows example blocks of the process 400, in some aspects, the process 400 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Figure 4. Additionally, or alternatively, two or more of the blocks of the process 400 may be performed in parallel.
  • the term “component” is intended to be broadly construed as hardware, firmware, or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, or a combination of hardware and software.
  • the phrase “based on” is intended to be broadly construed to mean “based at least in part on. ”
  • satisfying a threshold may refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover: a, b, c, a-b, a-c, b-c, and a-b-c.
  • the hardware and data processing apparatus used to implement the various illustrative logics, logical blocks, modules and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose single-or multi-chip processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein.
  • a general purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine.
  • a processor also may be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • particular processes and methods may be performed by circuitry that is specific to a given function.
  • the functions described may be implemented in hardware, digital electronic circuitry, computer software, firmware, including the structures disclosed in this specification and their structural equivalents thereof, or in any combination thereof.
  • aspects of the subject matter described in this specification also can be implemented as one or more computer programs, i.e., one or more modules of computer program instructions, encoded on a computer storage media for execution by, or to control the operation of, data processing apparatus.
  • Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program from one place to another.
  • a storage media may be any available media that may be accessed by a computer.
  • such computer-readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer.
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and instructions on a machine readable medium and computer-readable medium, which may be incorporated into a computer program product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This disclosure provides systems, methods and apparatuses for dual (and multi) connectivity cell measurements. In one aspects, a user equipment (UE) may perform a cell measurement of a serving cell (such as a master cell in a dual or multi connectivity configuration) and may determine whether the cell measurement satisfies a measurement threshold. The UE may perform cell measurements for cells capable of supporting a single radio access technology (RAT) and cells capable of supporting a plurality of RATs based on determining that the cell measurement satisfies the measurement threshold, thereby increasing the quantity of candidate secondary cells for the UE. The UE may perform cell measurements for cells capable of supporting a plurality of RATs based on determining that the cell measurement does not satisfy the measurement threshold, thereby increasing or prioritizing access to 5G NR services and conserving battery resources of the UE.

Description

DUAL CONNECTIVITY CELL MEASUREMENTS TECHNICAL FIELD
Aspects of the present disclosure relate generally to wireless communication and to techniques for dual connectivity cell measurements.
DESCRIPTION OF THE RELATED TECHNOLOGY
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (for example, bandwidth, transmit power, etc. ) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink (DL) and uplink (UL) . The DL (or forward link) refers to the communication link from the BS to the UE, and the UL (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a NodeB, an LTE evolved nodeB (eNB) , a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G NodeB, or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different UEs to communicate on a municipal, national, regional, and even global level. NR, which also may be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to  better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency-division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the DL, using CP-OFDM or SC-FDM (for example, also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the UL (or a combination thereof) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
SUMMARY
The systems, methods, and devices of this disclosure each have several innovative aspects, no single one of which is solely responsible for the desirable attributes disclosed herein.
One innovative aspect of the subject matter described in this disclosure can be implemented in a method of wireless communication performed by an apparatus of a user equipment. The method may include determining whether a cell measurement for a serving cell of the UE satisfies a measurement threshold. The method may include selectively performing, based at least in part on determining whether the cell measurement for the serving cell satisfies the measurement threshold, one or more cell measurements for one or more cells capable of supporting a single radio access technology (RAT) .
In some aspects, the one or more cells are capable of supporting a Long Term Evolution (LTE) RAT. In some aspects, the method includes determining that the one or more cells are capable of supporting a single RAT based at least in part on band information associated with the one or more cells. In some aspects, band information for a cell of the one or more cells identifies an operating frequency band for the cell. In some aspects, the UE is operating in an Evolved Universal Mobile Telecommunications System Terrestrial Radio Access (E-UTRA) -New Radio (NR) dual connectivity (ENDC) configuration. In some aspects, the serving cell is an LTE master cell for the UE in the ENDC configuration, and the UE is communicatively connected with a 5G secondary cell in the ENDC configuration.
In some aspects, the method includes receiving a measurement control order from the serving cell, and determining whether the cell measurement for the serving cell of the UE satisfies the measurement threshold is based at least in part on receiving the  measurement control order from the serving cell. In some aspects, the one or more cells are indicated by the measurement control order. In some aspects, determining whether the cell measurement for the serving cell satisfies the measurement threshold includes determining that the cell measurement for the serving cell satisfies the measurement threshold, and selectively performing the one or more cell measurements for the one or more cells includes refraining from performing the one or more cell measurements for the one or more cells based at least in part on determining that the cell measurement for the serving cell satisfies the measurement threshold.
In some aspects, the method includes performing, based at least in part on determining that the cell measurement for the serving cell satisfies the measurement threshold, one or more second cell measurements for one or more second cells that are capable of supporting a plurality of RATs. In some aspects, determining whether the cell measurement for the serving cell satisfies the measurement threshold includes determining that the cell measurement for the serving cell does not satisfy the measurement threshold, and selectively performing the one or more cell measurements for the one or more cells is based at least in part on determining that the cell measurement for the serving cell does not satisfy the measurement threshold. In some aspects, the method includes performing, based at least in part on determining that the cell measurement for the serving cell does not satisfy the measurement threshold, one or more second cell measurements for one or more second cells that are capable of supporting a plurality of RATs.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a UE for wireless communication. The UE may include a memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to determine whether a cell measurement for a serving cell of the UE satisfies a measurement threshold. The memory and the one or more processors may be configured to selectively perform, based at least in part on determining whether the cell measurement for the serving cell satisfies the measurement threshold, one or more cell measurements for one or more cells capable of supporting a single RAT. In some aspects, the UE may perform or implement any one or more of the aspects described in connection with the method, above or elsewhere herein.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a non-transitory computer-readable medium. The non-transitory  computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a UE, may cause the one or more processors to determine whether a cell measurement for a serving cell of the UE satisfies a measurement threshold. The one or more instructions, when executed by one or more processors of a UE, may cause the one or more processors to selectively perform, based at least in part on determining whether the cell measurement for the serving cell satisfies the measurement threshold, one or more cell measurements for one or more cells capable of supporting a single RAT. In some aspects, the non-transitory computer-readable medium may perform or implement any one or more of the aspects described in connection with the method, above or elsewhere herein.
Another innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus for wireless communication. The apparatus may include means for determining whether a cell measurement for a serving cell of the apparatus satisfies a measurement threshold. The apparatus may include means for selectively performing, based at least in part on determining whether the cell measurement for the serving cell satisfies the measurement threshold, one or more cell measurements for one or more cells capable of supporting a single RAT. In some aspects, the apparatus may perform or implement any one or more of the aspects described in connection with the method, above or elsewhere herein.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, or processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
Details of one or more implementations of the subject matter described in this disclosure are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages will become apparent from the description, the drawings and the claims. Note that the relative dimensions of the following figures may not be drawn to scale.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a block diagram conceptually illustrating an example of a wireless network.
Figure 2 is a block diagram conceptually illustrating an example of a base station in communication with a user equipment (UE) in a wireless network.
Figures 3 and 4 are diagrams illustrating example processes performed, for example, by a UE.
Like reference numbers and designations in the various drawings indicate like elements.
DETAILED DESCRIPTION
The following description is directed to certain implementations for the purposes of describing the innovative aspects of this disclosure. However, a person having ordinary skill in the art will readily recognize that the teachings herein can be applied in a multitude of different ways. Some of the examples in this disclosure are based on wireless and wired local area network (LAN) communication according to the Institute of Electrical and Electronics Engineers (IEEE) 802.11 wireless standards, the IEEE 802.3 Ethernet standards, and the IEEE 1901 Powerline communication (PLC) standards. However, the described implementations may be implemented in any device, system or network that is capable of transmitting and receiving radio frequency signals according to any of the wireless communication standards, including any of the IEEE 802.11 standards, the
Figure PCTCN2020087649-appb-000001
standard, code division multiple access (CDMA) , frequency division multiple access (FDMA) , time division multiple access (TDMA) , Global System for Mobile communications (GSM) , GSM/General Packet Radio Service (GPRS) , Enhanced Data GSM Environment (EDGE) , Terrestrial Trunked Radio (TETRA) , Wideband-CDMA (W-CDMA) , Evolution Data Optimized (EV-DO) , 1xEV-DO, EV-DO Rev A, EV-DO Rev B, High Speed Packet Access (HSPA) , High Speed Downlink Packet Access (HSDPA) , High Speed Uplink Packet Access (HSUPA) , Evolved High Speed Packet Access (HSPA+) , Long Term Evolution (LTE) , AMPS, or other known signals that are used to communicate within a wireless, cellular or internet of things (IOT) network, such as a system utilizing 3G, 4G or 5G, or further implementations thereof, technology.
A device such as a user equipment (UE) may operate in a dual (or multi) connectivity configuration, in which the UE is communicatively connected with a first cell (master cell) and one or more second cells (secondary cells) . In an Evolved Universal Mobile Telecommunications System Terrestrial Radio Access (E-UTRA) -NR  dual connectivity (ENDC) configuration, for example, the master cell (or primary cell, PCell) may be configured to operate using an LTE radio access technology (RAT) and a secondary cell (SCell) may be configured to operate using a 5G New Radio (NR) RAT. A master cell in a dual (or multi) connectivity configuration may transmit a measurement control order (MCO) to configure the UE to perform cell measurements of neighboring cells of the master cell to facilitate secondary cell handover.
In a wireless network, not all cells may be capable of supporting more than one RAT. For example, some cells in the wireless network may be capable of supporting only an LTE RAT, whereas other cells in the wireless network may be capable of supporting both an LTE RAT and a 5G NR RAT. In some cases, if a master cell in a dual (or multi) connectivity configuration configures a UE to perform a cell measurement of a neighboring cell that only supports a single RAT (for example, a cell that only supports an LTE RAT and is not capable of supporting a 5G NR RAT) , the UE may perform and report the cell measurement to the master cell. The cell measurement of the cell that only supports the single RAT may cause the master cell to terminate existing connections with secondary cells that support a plurality of RATs, and to instruct the UE to establish a connection with the cell that only supports the single RAT. As a result, the UE may lose access to 5G NR services provided by a secondary cell that is capable of supporting both an LTE RAT and a 5G NR RAT.
Some aspects described herein provide techniques and apparatuses for dual (and multi) connectivity cell measurements. In some aspects, a UE may be capable of performing a cell measurement of a serving cell (such as a master cell in a dual or multi connectivity configuration) and determining whether the cell measurement satisfies a measurement threshold (for example, -90 dBm, -80 dBm, or another example measurement threshold) . If the UE determines that the cell measurement does not satisfy the threshold, the UE may perform cell measurements for one or more first cells (such as neighboring cells of the master cell) capable of supporting a single RAT as well as one or more second cells (such as neighboring cells of the master cell) capable of supporting a plurality of RATs. If the UE determines that the cell measurement satisfies the threshold, the UE may perform cell measurements for the one or more second cells capable of supporting a plurality of RATs, and may refrain from performing cell measurements for the one or more first cells capable of supporting a single RAT.
Particular implementations of the subject matter described in this disclosure can be implemented to realize one or more of the following potential advantages. The mobility of the UE may be maintained or improved by performing and reporting cell measurements for cells capable of supporting LTE only and cells capable of supporting both LTE and 5G NR. As such, the quantity of candidate secondary cells for the UE may be increased. Moreover, the UE may be capable of conserving battery life of the UE and increasing or prioritizing access to 5G NR services by performing and reporting cell measurements for cells capable of supporting both LTE and 5G NR.
Figure 1 is a block diagram conceptually illustrating an example of a wireless network 100. The wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network. Wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with UEs and also may be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS, a BS subsystem serving this coverage area, or a combination thereof, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, another type of cell, or a combination thereof. A macro cell may cover a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (for example, a home) and may allow restricted access by UEs having association with the femto cell (for example, UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Figure 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (for example, three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some examples, the BSs may be interconnected to one another as well as to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection, a virtual network, or a combination thereof using any suitable transport network.
Wireless network 100 also may include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (for example, a BS or a UE) and send a transmission of the data to a downstream station (for example, a UE or a BS) . A relay station also may be a UE that can relay transmissions for other UEs. In the example shown in Figure 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station also may be referred to as a relay BS, a relay base station, a relay, etc.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, for example, macro BSs, pico BSs, femto BSs, relay BSs, etc. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (for example, 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (for example, 0.1 to 2 Watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs also may communicate with one another, for example, directly or indirectly via a wireless or wireline backhaul.
UEs 120 (for example, 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE also may be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, etc. A UE may be a cellular phone (for example, a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (for example,  smart ring, smart bracelet) ) , an entertainment device (for example, a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a base station, another device (for example, remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (for example, a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, similar components, or a combination thereof.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT also may be referred to as a radio technology, an air interface, etc. A frequency also may be referred to as a carrier, a frequency channel, etc. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some examples, access to the air interface may be scheduled, where a scheduling entity (for example, a base station) allocates resources for communication among some or all devices and equipment within the scheduling entity’s service area or cell. Within the present disclosure, as discussed further below, the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
Base stations are not the only entities that may function as a scheduling entity. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more subordinate entities (for example, one or more other UEs) . In this example, the UE is functioning as a scheduling entity, and other UEs utilize  resources scheduled by the UE for wireless communication. A UE may function as a scheduling entity in a peer-to-peer (P2P) network, in a mesh network, or another type of network. In a mesh network example, UEs may optionally communicate directly with one another in addition to communicating with the scheduling entity.
Thus, in a wireless communication network with a scheduled access to time–frequency resources and having a cellular configuration, a P2P configuration, and a mesh configuration, a scheduling entity and one or more subordinate entities may communicate utilizing the scheduled resources.
In some aspects, two or more UEs 120 (for example, shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (for example, without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or similar protocol) , a mesh network, or similar networks, or combinations thereof. In this case, the UE 120 may perform scheduling operations, resource selection operations, as well as other operations described elsewhere herein as being performed by the base station 110.
Figure 2 is a block diagram conceptually illustrating an example 200 of a base station 110 in communication with a UE 120. In some aspects, base station 110 and UE 120 may respectively be one of the base stations and one of the UEs in wireless network 100 of Figure 1. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (for example, encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. The transmit processor 220 also may process system information (for example, for semi-static resource partitioning information (SRPI) , etc. ) and control information (for example, CQI requests, grants, upper layer signaling, etc. ) and provide overhead symbols and control symbols. The transmit processor 220 also may generate reference symbols for reference signals (for example, the cell-specific reference signal (CRS) ) and  synchronization signals (for example, the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (for example, precoding) on the data symbols, the control symbols, the overhead symbols, or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (for example, for OFDM, etc. ) to obtain an output sample stream. Each modulator 232 may further process (for example, convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (for example, filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (for example, for OFDM, etc. ) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (for example, demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller or processor (controller/processor) 280. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , etc. In some aspects, one or more components of UE 120 may be included in a housing.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (for example, for reports including RSRP, RSSI, RSRQ, CQI, etc. ) from controller/processor 280. Transmit processor 264 also may generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (for example, for DFT-s- OFDM, CP-OFDM, etc. ) , and transmitted to base station 110. At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to a controller or processor (i.e., controller/processor) 240. The base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. The network controller 130 may include communication unit 294, a controller or processor (i.e., controller/processor) 290, and memory 292.
In some implementations, controller/processor 280 may be a component of a processing system. A processing system may generally refer to a system or series of machines or components that receives inputs and processes the inputs to produce a set of outputs (which may be passed to other systems or components of, for example, the UE 120) . For example, a processing system of the UE 120 may refer to a system including the various other components or subcomponents of the UE 120.
The processing system of the UE 120 may interface with other components of the UE 120, and may process information received from other components (such as inputs or signals) , output information to other components, etc. For example, a chip or modem of the UE 120 may include a processing system, a first interface to receive or obtain information, and a second interface to output, transmit or provide information. In some cases, the first interface may refer to an interface between the processing system of the chip or modem and a receiver, such that the UE 120 may receive information or signal inputs, and the information may be passed to the processing system. In some cases, the second interface may refer to an interface between the processing system of the chip or modem and a transmitter, such that the UE 120 may transmit information output from the chip or modem. A person having ordinary skill in the art will readily recognize that the second interface also may obtain or receive information or signal inputs, and the first interface also may output, transmit or provide information.
The controller/processor 240 of base station 110, the controller/processor 280 of UE 120, or any other component (s) of Figure 2 may perform one or more techniques associated with dual connectivity cell measurements, as described in more detail elsewhere herein. For example, the controller/processor 240 of base station 110, the controller/processor 280 of UE 120, or any other component (s) (or combinations of  components) of Figure 2 may perform or direct operations of, for example, process 400 of Figure 4 or other processes as described herein. The  memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. A scheduler 246 may schedule UEs for data transmission on the downlink, the uplink, or a combination thereof. The stored program codes, when executed by the controller/processor 280 or other processors and modules at UE 120, may cause the UE 120 to perform operations described with respect to process 400 of Figure 4 or other processes as described herein. A scheduler 246 may schedule UEs for data transmission on the downlink, the uplink, or a combination thereof.
In some aspects, UE 120 may include means for determining whether a cell measurement for a serving cell of the UE satisfies a measurement threshold, means for selectively performing, based at least in part on determining whether the cell measurement for the serving cell satisfies the measurement threshold, one or more cell measurements for one or more cells capable of supporting a single RAT, or the like, or combinations thereof. In some aspects, such means may include one or more components of UE 120 described in connection with Figure 2.
While blocks in Figure 2 are illustrated as distinct components, the functions described with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, the TX MIMO processor 266, or another processor may be performed by or under the control of controller/processor 280.
Figure 3 is a diagram illustrating an example process 300 performed, for example, by a UE. The process 300 is an example where a UE (for example, UE 120) performs selective dual connectivity cell measurements.
As shown in Figure 3, in some aspects, the process 300 may include determining whether a cell measurement for a serving cell of the UE satisfies a measurement threshold (block 310) . For example, the UE (such as by using receive processor 258, transmit processor 264, controller/processor 280, memory 282, another component, or a combination thereof) may determine whether a cell measurement for a serving cell of the UE satisfies a measurement threshold.
As shown in Figure 3, in some aspects, the process 300 may include selectively performing, based at least in part on determining whether the cell measurement for the serving cell satisfies the measurement threshold, one or more cell  measurements for one or more cells capable of supporting a single RAT (block 320) . For example, the UE (such as by using receive processor 258, transmit processor 264, controller/processor 280, memory 282, another component, or a combination thereof) may selectively perform, based at least in part on determining whether the cell measurement for the serving cell satisfies the measurement threshold, one or more cell measurements for one or more cells capable of supporting a single RAT.
The process 300 may include additional aspects, such as any single aspect or any combination of aspects described below or in connection with one or more other processes described elsewhere herein.
In a first aspect, the one or more cells are capable of supporting an LTE RAT. In a second aspect, alone or in combination with the first aspect, the process 300 includes determining that the one or more cells are capable of supporting a single RAT based at least in part on band information associated with the one or more cells. In a third aspect, alone or in combination with one or more of the first and second aspects, band information for a cell of the one or more cells identifies an operating frequency band for the cell. In a fourth aspect, alone or in combination with one or more of the first through third aspects, the UE is operating in an ENDC configuration.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the serving cell is an LTE master cell for the UE in the ENDC configuration, and the UE is communicatively connected with a 5G secondary cell in the ENDC configuration. In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, determining whether the cell measurement for the serving cell of the UE satisfies the measurement threshold is based at least in part on receiving the measurement control order from the serving cell. In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the one or more cells are indicated by the measurement control order.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, determining whether the cell measurement for the serving cell satisfies the measurement threshold includes determining that the cell measurement for the serving cell satisfies the measurement threshold, and selectively performing the one or more cell measurements for the one or more cells includes refraining from performing the one or more cell measurements for the one or more cells based at least in part on determining that the cell measurement for the serving cell satisfies the measurement threshold. In a ninth aspect, alone or in combination with one or more of  the first through eighth aspects, the process 300 includes performing, based at least in part on determining that the cell measurement for the serving cell satisfies the measurement threshold, one or more second cell measurements for one or more second cells that are capable of supporting a plurality of RATs.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, determining whether the cell measurement for the serving cell satisfies the measurement threshold includes determining that the cell measurement for the serving cell does not satisfy the measurement threshold, and selectively performing the one or more cell measurements for the one or more cells is based at least in part on determining that the cell measurement for the serving cell does not satisfy the measurement threshold. In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, the process 300 includes performing, based at least in part on determining that the cell measurement for the serving cell does not satisfy the measurement threshold, one or more second cell measurements for one or more second cells that are capable of supporting a plurality of RATs. In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, the cell measurement for the serving cell is an RSRP measurement.
Although Figure 3 shows example blocks of the process 300, in some aspects, the process 300 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Figure 3. Additionally, or alternatively, two or more of the blocks of the process 300 may be performed in parallel.
Figure 4 is a diagram illustrating an example process 400 performed, for example, by a UE. The process 400 is an example where a UE (for example, UE 120) performs selective dual connectivity cell measurements.
As shown in Figure 4, in some aspects, the process 400 may include determining whether a cell measurement for a serving cell of the UE satisfies a measurement threshold (block 410) . For example, the UE (such as by using receive processor 258, transmit processor 264, controller/processor 280, memory 282, another component, or a combination thereof) may determine whether a cell measurement for a serving cell of the UE satisfies a measurement threshold.
As shown in Figure 4, in some aspects, if the cell measurement does not satisfy the measurement threshold (block 410-No) , the process 400 may include performing one or more cell measurements for one or more first cells capable of  supporting a single RAT and one or more second cells capable of supporting a plurality of RATs (block 420) . For example, the UE (such as by using receive processor 258, transmit processor 264, controller/processor 280, memory 282, another component, or a combination thereof) may perform one or more cell measurements for one or more first cells capable of supporting a single RAT and one or more second cells capable of supporting a plurality of RATs.
As shown in Figure 4, in some aspects, if the cell measurement satisfies the measurement threshold (block 410-Yes) , the process 400 may include performing one or more cell measurements for one or more cells capable of supporting a plurality of RATs (block 430) . For example, the UE (such as by using receive processor 258, transmit processor 264, controller/processor 280, memory 282, another component, or a combination thereof) may perform one or more cell measurements for one or more first cells capable of supporting a plurality of RATs. In some aspects, the UE may refrain from performing one or more measurements for one or more cells capable of supporting a single RAT.
The process 400 may include additional aspects, such as any single aspect or any combination of aspects described in connection with one or more other processes described elsewhere herein. Although Figure 4 shows example blocks of the process 400, in some aspects, the process 400 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Figure 4. Additionally, or alternatively, two or more of the blocks of the process 400 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, or a combination of hardware and software. As used herein, the phrase “based on” is intended to be broadly construed to mean “based at least in part on. ”
Some aspects are described herein in connection with thresholds. As used herein, satisfying a threshold may refer to a value being greater than the threshold,  greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover: a, b, c, a-b, a-c, b-c, and a-b-c.
The various illustrative logics, logical blocks, modules, circuits and algorithm processes described in connection with the aspects disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. The interchangeability of hardware and software has been described generally, in terms of functionality, and illustrated in the various illustrative components, blocks, modules, circuits and processes described herein. Whether such functionality is implemented in hardware or software depends upon the particular application and design constraints imposed on the overall system.
The hardware and data processing apparatus used to implement the various illustrative logics, logical blocks, modules and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose single-or multi-chip processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine. A processor also may be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. In some aspects, particular processes and methods may be performed by circuitry that is specific to a given function.
In one or more aspects, the functions described may be implemented in hardware, digital electronic circuitry, computer software, firmware, including the structures disclosed in this specification and their structural equivalents thereof, or in any combination thereof. Aspects of the subject matter described in this specification also can be implemented as one or more computer programs, i.e., one or more modules of computer program instructions, encoded on a computer storage media for execution by, or to control the operation of, data processing apparatus.
If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. The processes of a method or algorithm disclosed herein may be implemented in a processor-executable software module which may reside on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program from one place to another. A storage media may be any available media that may be accessed by a computer. By way of example, and not limitation, such computer-readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer. Also, any connection can be properly termed a computer-readable medium. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and instructions on a machine readable medium and computer-readable medium, which may be incorporated into a computer program product.
Various modifications to the aspects described in this disclosure may be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects without departing from the spirit or scope of this disclosure. Thus, the claims are not intended to be limited to the aspects shown herein, but are to be accorded the widest scope consistent with this disclosure, the principles and the novel features disclosed herein.
Additionally, a person having ordinary skill in the art will readily appreciate, the terms “upper” and “lower” are sometimes used for ease of describing the figures, and indicate relative positions corresponding to the orientation of the figure on a properly oriented page, and may not reflect the proper orientation of any device as implemented.
Certain features that are described in this specification in the context of separate aspects also can be implemented in combination in a single aspect. Conversely, various features that are described in the context of a single aspect also can  be implemented in multiple aspects separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Further, the drawings may schematically depict one more example processes in the form of a flow diagram. However, other operations that are not depicted can be incorporated in the example processes that are schematically illustrated. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the illustrated operations. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the aspects described above should not be understood as requiring such separation in all aspects, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products. Additionally, other aspects are within the scope of the following claims. In some cases, the actions recited in the claims can be performed in a different order and still achieve desirable results.

Claims (19)

  1. A method of wireless communication performed by an apparatus of a user equipment (UE) , comprising:
    determining whether a cell measurement for a serving cell of the UE satisfies a measurement threshold; and
    selectively performing, based at least in part on determining whether the cell measurement for the serving cell satisfies the measurement threshold, one or more cell measurements for one or more cells capable of supporting a single radio access technology (RAT) .
  2. The method of claim 1, wherein the one or more cells are capable of supporting a Long Term Evolution (LTE) RAT.
  3. The method of claim 1, further comprising:
    determining that the one or more cells are capable of supporting a single RAT based at least in part on band information associated with the one or more cells.
  4. The method of claim 3, wherein band information for a cell of the one or more cells identifies an operating frequency band for the cell.
  5. The method of claim 1, wherein the UE is operating in an Evolved Universal Mobile Telecommunications System Terrestrial Radio Access (E-UTRA) -New Radio (NR) dual connectivity (ENDC) configuration.
  6. The method of claim 5, wherein the serving cell is a Long Term Evolution (LTE) master cell for the UE in the ENDC configuration; and
    wherein the UE is communicatively connected with a 5G secondary cell in the ENDC configuration.
  7. The method of claim 1, further comprising:
    receiving a measurement control order from the serving cell; and
    wherein determining whether the cell measurement for the serving cell of the UE satisfies the measurement threshold is based at least in part on receiving the measurement control order from the serving cell.
  8. The method of claim 7, wherein the one or more cells are indicated by the measurement control order.
  9. The method of claim 1, wherein determining whether the cell measurement for the serving cell satisfies the measurement threshold comprises:
    determining that the cell measurement for the serving cell satisfies the measurement threshold; and
    wherein selectively performing the one or more cell measurements for the one or more cells comprises:
    refraining from performing the one or more cell measurements for the one or more cells based at least in part on determining that the cell measurement for the serving cell satisfies the measurement threshold.
  10. The method of claim 9, further comprising:
    performing, based at least in part on determining that the cell measurement for the serving cell satisfies the measurement threshold, one or more second cell measurements for one or more second cells that are capable of supporting a plurality of RATs.
  11. The method of claim 1, wherein determining whether the cell measurement for the serving cell satisfies the measurement threshold comprises:
    determining that the cell measurement for the serving cell does not satisfy the measurement threshold; and
    wherein selectively performing the one or more cell measurements for the one or more cells is based at least in part on determining that the cell measurement for the serving cell does not satisfy the measurement threshold.
  12. The method of claim 11, further comprising:
    performing, based at least in part on determining that the cell measurement for the serving cell does not satisfy the measurement threshold, one or more second cell  measurements for one or more second cells that are capable of supporting a plurality of RATs.
  13. The method of claim 1, wherein the cell measurement for the serving cell is a reference signal received power (RSRP) measurement.
  14. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    determine whether a cell measurement for a serving cell of the UE satisfies a measurement threshold; and
    selectively perform, based at least in part on determining whether the cell measurement for the serving cell satisfies the measurement threshold, one or more cell measurements for one or more cells capable of supporting a single radio access technology (RAT) .
  15. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment (UE) , cause the one or more processors to:
    determine whether a cell measurement for a serving cell of the UE satisfies a measurement threshold; and
    selectively perform, based at least in part on determining whether the cell measurement for the serving cell satisfies the measurement threshold, one or more cell measurements for one or more cells capable of supporting a single radio access technology (RAT) .
  16. An apparatus for wireless communication, comprising:
    means for determining whether a cell measurement for a serving cell of the apparatus satisfies a measurement threshold; and
    means for selectively performing, based at least in part on determining whether the cell measurement for the serving cell satisfies the measurement threshold, one or more cell measurements for one or more cells capable of supporting a single radio access technology (RAT) .
  17. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising one or more instructions that, when executed by one or more processors, cause the one or more processors to perform operations according to the method of any one of claims 1-13.
  18. An apparatus for wireless communication, comprising:
    a memory; and
    one or more processors coupled to the memory, the memory and the one or more processors configured to perform operations according to the method of any one of claims 1-13.
  19. An apparatus for wireless communication, comprising:
    means for performing operations according to the method of any one of claims 1-13.
PCT/CN2020/087649 2020-04-29 2020-04-29 Dual connectivity cell measurements WO2021217469A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/087649 WO2021217469A1 (en) 2020-04-29 2020-04-29 Dual connectivity cell measurements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/087649 WO2021217469A1 (en) 2020-04-29 2020-04-29 Dual connectivity cell measurements

Publications (1)

Publication Number Publication Date
WO2021217469A1 true WO2021217469A1 (en) 2021-11-04

Family

ID=78373278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087649 WO2021217469A1 (en) 2020-04-29 2020-04-29 Dual connectivity cell measurements

Country Status (1)

Country Link
WO (1) WO2021217469A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281552A (en) * 2010-06-12 2011-12-14 华为技术有限公司 Cell measurement method and device
CN109151921A (en) * 2017-06-16 2019-01-04 北京展讯高科通信技术有限公司 Cell measurement configuration method and device
WO2019028908A1 (en) * 2017-08-11 2019-02-14 Zte Corporation Methods and computing device for carrying out wireless communication with multiple nodes of a wireless network
WO2019106575A1 (en) * 2017-11-28 2019-06-06 Telefonaktiebolaget Lm Ericsson (Publ) On triggering measurements in lte-nr interworking
US20200077325A1 (en) * 2018-08-30 2020-03-05 Samsung Electronics Co., Ltd. Method and apparatus for handling cell selection and re-selection in mr-dc system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281552A (en) * 2010-06-12 2011-12-14 华为技术有限公司 Cell measurement method and device
CN109151921A (en) * 2017-06-16 2019-01-04 北京展讯高科通信技术有限公司 Cell measurement configuration method and device
WO2019028908A1 (en) * 2017-08-11 2019-02-14 Zte Corporation Methods and computing device for carrying out wireless communication with multiple nodes of a wireless network
WO2019106575A1 (en) * 2017-11-28 2019-06-06 Telefonaktiebolaget Lm Ericsson (Publ) On triggering measurements in lte-nr interworking
US20200077325A1 (en) * 2018-08-30 2020-03-05 Samsung Electronics Co., Ltd. Method and apparatus for handling cell selection and re-selection in mr-dc system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CMCC, SOFTBANK, ERICSSON, HUAWEI, ZTE, CATT, VIVO, OPPO: "36.304 CR to introduce alternative cell reselection priority for EN-DC", 3GPP DRAFT; R2-2003492, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online Meeting ;20200420 - 20200430, 10 April 2020 (2020-04-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051871424 *

Similar Documents

Publication Publication Date Title
US11622303B2 (en) Random access channel (RACH)-less timing advance determination
US11778570B2 (en) Transmit power adjustment for synchronization signal block (SSB)
US11916609B2 (en) Techniques for indicating a user equipment capability for Layer 1 signal to interference plus noise ratio measurement
US11689973B2 (en) Bandwidth part activation in handover with supplementary links
US11659465B2 (en) Channel load-based cell reselection procedures
WO2021026856A1 (en) Low latency handover between secondary nodes
WO2021030821A1 (en) Uplink switching for enhanced mobility
US11956074B2 (en) Physical downlink control channel (PDCCH) parameters for multiple cell groups
US20210337612A1 (en) Adding and releasing a secondary cell in a multi-cell connectivity configuration
WO2022011540A1 (en) High priority route selection descriptor (rsd) selection timer
US11758425B2 (en) Techniques for indicating a user equipment capability for layer 1 signal to interference plus noise ratio measurement
WO2020199847A1 (en) Control message for dynamic radio link control (rlc) entity selection
WO2021026862A1 (en) NEW RADIO (NR) EARLY MEASUREMENT WITH MULTIPLE SECONDARY NODES (MULTI-SNs)
WO2021217469A1 (en) Dual connectivity cell measurements
WO2021159422A1 (en) Aperiodic measurement configuration
CN114208276B (en) Low latency handover between auxiliary nodes
WO2021003727A1 (en) Configured grant uplink shared channel transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933755

Country of ref document: EP

Kind code of ref document: A1