WO2021215506A1 - Multilayer film and packaging container - Google Patents

Multilayer film and packaging container Download PDF

Info

Publication number
WO2021215506A1
WO2021215506A1 PCT/JP2021/016330 JP2021016330W WO2021215506A1 WO 2021215506 A1 WO2021215506 A1 WO 2021215506A1 JP 2021016330 W JP2021016330 W JP 2021016330W WO 2021215506 A1 WO2021215506 A1 WO 2021215506A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated film
layer
heat
sealant layer
base material
Prior art date
Application number
PCT/JP2021/016330
Other languages
French (fr)
Japanese (ja)
Inventor
伸一郎 船岡
伊藤 由実
悟史 河村
優斗 佐藤
Original Assignee
東洋製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐株式会社 filed Critical 東洋製罐株式会社
Publication of WO2021215506A1 publication Critical patent/WO2021215506A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/80Packaging reuse or recycling, e.g. of multilayer packaging

Definitions

  • the present invention relates to a laminated film for a packaging bag that is formed into a bag shape by heat-bonding a laminated film, a laminated film for a lid material that is heat-bonded to a container body and used, and a packaging container.
  • a packaging container for packaging and storing the contents of liquid or solid foods, beverages, cosmetics, pharmaceuticals, etc.
  • a packaging bag or a cup container to which a lid material is adhered is used.
  • a packaging bag is used as a packaging container for storing contents such as shampoo, detergent, cooked or semi-cooked food, and a laminated film in which a sealant layer is laminated on a base material layer is formed between the sealant layers.
  • the outer periphery is heat-bonded to form a bag shape in a state where the two are overlapped so as to face each other, and the contents are accommodated in the inner accommodating portion (see, for example, Patent Document 1).
  • the laminated film for forming the packaging bag is required to have puncture resistance.
  • the packaging bag will not tear when a sharp member with a sharp tip comes into contact with the packaging bag.
  • the point of external contact the packaging bag will not tear when filled with solids with horns as well as liquid.
  • High puncture resistance is required in terms of internal contact.
  • films with low piercing strength are fragile, so high care must be taken when handling them during film formation and processing. It is not preferable because it can be.
  • the present invention solves the above-mentioned problems, and although it is a thin layer, good heat sealability can be obtained, the environmental load is reduced, and high piercing strength can be obtained both before and after the retort treatment. It is an object of the present invention to provide a laminated film and a packaging container.
  • the laminated film of the present invention is a laminated film in which a sealant layer is provided on one side of a base material layer.
  • the sealant layer is formed of a thermoplastic polyester resin.
  • the thermoplastic polyester-based resin contains a heat-sealable reinforcing component and contains The above-mentioned problems are solved by the content ratio of the heat-sealable reinforcing component in the thermoplastic polyester resin is 21% by mass or more.
  • the packaging container of the present invention is characterized by using the above-mentioned laminated film.
  • the sealant layer is formed of a thermoplastic polyester resin, good heat sealability can be obtained even though it is a thin layer, and as a result, the environmental load is reduced.
  • the sealant layer contains a thermoplastic polyester resin as a main material, and the base material layer other than the sealant layer is formed of the polyester resin, so that the entire laminated film is composed of the polyester resin as the main material. Therefore, it can be easily recycled into a high-quality polyester-based material or polyester-based product, high recyclability can be obtained, and the environmental load can be further reduced.
  • the laminated film according to the embodiment of the present invention has a sealant layer 150 provided on one side (upper side in FIG. 1) of the base material layer 110.
  • the sealant layer 150 is formed of a thermoplastic polyester resin.
  • the thermoplastic polyester-based resin contains a heat-sealable reinforcing component.
  • the thermoplastic polyester-based resin is a polyester-based copolymer containing a structural unit derived from a heat-sealable reinforcing component (hereinafter, also referred to as “specific polyester-based copolymer”) or heat-sealing.
  • These resins are copolymers containing copolymerization components such as dicarboxylic acids such as isophthalic acid, diols such as 1,4-cyclohexanedimethanol and neopentyl glycol, and polyfunctional compounds such as trimellitic acid and pentaerythritol. There may be.
  • These other polyester-based polymers may be used alone or in combination of two or more.
  • the heat-sealable reinforcing component mixed resin is mainly made of the above-mentioned other polyester-based resin.
  • the heat-sealable reinforcing component contained in the thermoplastic polyester-based resin is highly dispersed in the thermoplastic polyester-based resin, and is composed of an aliphatic compound itself and has a high flexibility and a low melting point. It refers to a component having a resin composition composed of a crystallization inhibitory component that inhibits the crystallization of the based resin.
  • the low melting point component preferably has a melting point of 170 ° C. or lower by itself from the viewpoint of obtaining high heat seal strength by heat bonding in a short time.
  • isophthalic acid is particularly preferable from the viewpoint that it is widely used as a material for a resin for PET bottles, is inexpensive, and can obtain economic rationality.
  • the content ratio of the low melting point component in the thermoplastic polyester resin is preferably 5% by mass or more, more preferably 40 to 80% by mass, further preferably 50 to 80% by mass, and particularly preferably 50 to 60% by mass. be.
  • the content ratio of the low melting point component in the thermoplastic polyester-based resin is the content ratio of the structural unit derived from the low melting point component in the specific polyester-based copolymer in the thermoplastic polyester-based resin and the heat-sealing property strengthening component. It refers to the total with the content ratio of the low melting point component in the mixed resin.
  • the content ratio of the low melting point component in the thermoplastic polyester resin is less than 5% by mass, the effect of softening the sealant layer 150 becomes insufficient, and it becomes difficult to use it as a flexible packaging material such as a packaging bag or a lid material. There is a risk.
  • the crystallization inhibitory component is used together with the low melting point component, it has a property that high heat seal strength can be obtained by heat adhesion in a short time even if the content ratio of the low melting point component is suppressed.
  • the suitable range of the content ratio of the crystallization inhibitory component in the thermoplastic polyester resin varies depending on the type and the content ratio of the low melting point component, but it is generally less than 30% by mass in order not to amorphize the thermoplastic polyester resin.
  • thermoplastic polyester resin can be easily melted and softened by the presence of a low melting point component which itself has a low melting point and a crystallization inhibitory component which inhibits crystallization in a highly dispersed manner and appropriately. It is presumed to be.
  • the PTMG-containing PBT copolymer transesterifies a dicarboxylic acid component containing terephthalic acid as a main component, a diol component containing 1,4-butanediol and PTMG, and other components used as necessary. Alternatively, it is obtained by subjecting it to a transesterification reaction and then a polycondensation reaction, and has a structural unit derived from a dicarboxylic acid component and a structural unit derived from a diol component.
  • the dicarboxylic acid component for forming the PTMG-containing PBT copolymer contains terephthalic acid as a main component, and the content of terephthalic acid in the total dicarboxylic acid component is from the viewpoint of obtaining appropriate heat resistance and economic rationality. , 70 mol% or more, more preferably 85 mol% or more.
  • the other dicarboxylic acid component it is preferable to contain isophthalic acid from the viewpoint of suppressing the heat resistance of the sealant layer 150 to be low at low cost.
  • Alicyclic dicarboxylic acid such as hexahydroterephthalic acid and hexahydroisophthalic acid and its ester-forming derivative; phthalic acid, dibromoisophthalic acid, sodium sulfisophthalate, pheni Rangeoxydicarboxylic acid, 4,4'-diphenyldicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, 4,4'-diphenylketonedicarboxylic acid, 4,4'-diphenoxyetanedicarboxylic acid, 4,4'-diphenyl Examples thereof include aromatic dicarboxylic acids such as sulfonedicarboxylic acid and 2,6-naphthalenedicarboxylic acid and ester-forming derivatives thereof, and 2,5-frangicarboxylic acid and ester-forming derivatives thereof.
  • dicarboxylic acid components are not limited to one type, and two or more types may be mixed and used.
  • terephthalic acid and 2,5-furandicarboxylic acid can be synthesized from plant raw materials, and it is preferable to use them positively from the viewpoint of environmental consideration.
  • the diol component for forming the PTMG-containing PBT copolymer contains 1,4-butanediol and PTMG.
  • the structural unit derived from 1,4-butanediol and the structural unit derived from PTMG constitute the main component as a whole.
  • the total content of 1,4-butanediol and PTMG in all the diol components is preferably 70 mol% or more, more preferably 80 mol% or more, and 90 mol% or more. Is particularly preferable.
  • the molecular weight of PTMG in the diol component is, for example, 500 to 3,000. Usually, the molecular weight of the structural unit derived from PTMG in the PTMG-containing PBT copolymer is maintained based on the molecular weight of PTMG used as a raw material.
  • diol component other than 1,4-butanediol and PTMG include ethylene glycol, diethylene glycol, polyethylene glycol, 1,2-propanediol, 1,3-propanediol, polypropylene glycol, dibutylene glycol, and 1 , 5-Pentanediol, Neopentyl glycol, 1,6-Hexanediol, 1,8-Octanediol and other linear aliphatic diols; 1,2-Cyclohexanediol, 1,4-Cyclohexanediol, 1,1- Cyclic aliphatic diols such as cyclohexanedimethylol and 1,4-cyclohexanedimethylol; xylylene glycol, 4,4'-dihydroxybiphenyl, 2,2-bis (4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) ) Aromatic diols
  • diol components are not limited to one type, and two or more types may be mixed and used.
  • ethylene glycol, 1,3-propanediol, 1,4-butanediol, polyethylene glycol, polypropylene glycol, and PTMG can also be synthesized and polymerized from plant raw materials, and are positive from the viewpoint of environmental consideration. It is preferable to use it for.
  • the polyester-based copolymer may be modified with maleic acid.
  • the content ratio of the structural unit derived from maleic acid in the polyester-based copolymer is preferably 3.0% by mass or less.
  • the sealant layer 150 may be a single layer or may have a multi-layer structure of two or more layers. However, when the sealant layer 150 has a multi-layer structure, at least the outermost layer to be heat-sealed shall be mainly made of a thermoplastic polyester resin containing the heat-sealable reinforcing component described in detail above. Is required.
  • the thickness of the sealant layer 150 (the outermost layer thereof in the case of a multi-layer structure) is, for example, 40 ⁇ m or less, preferably 5 to 35 ⁇ m, more preferably 5 to 30 ⁇ m, and particularly preferably 5 to 25 ⁇ m. .. If the sealant layer 150 is excessively thick, the amount of plastic used is large and the effect of sufficiently reducing the environmental load cannot be obtained. On the other hand, if the sealant layer 150 is excessively thin, the heat seal strength required for sealing the packaging container may not be secured.
  • the base material layer 110 constituting the laminated film 100 together with the sealant layer 150 may be configured as a single-layer film or may be composed of a plurality of layers.
  • the laminated film 100 of the example of FIG. 1 is composed of a surface layer 111 and an intermediate layer 112 interposed between the surface layer 111 and the sealant layer 150.
  • the base material layer 110 When the base material layer 110 is configured as a single-layer film, it may consist of only the surface layer 111 described in detail below, for example.
  • at least the surface layer 111 is preferably made of a material having a melting point of, for example, 200 ° C. or higher so as not to melt when heat-sealed.
  • the intermediate layer 112 can be, for example, a barrier layer to which gas barrier property or moisture barrier property is imparted.
  • a barrier layer a vapor-deposited film made of a metal oxide such as alumina or silicon oxide formed on the surface layer 111, an MXD6 nylon layer having a high barrier property close to the molding processing conditions with polyester, or the like can be used.
  • the thickness of the intermediate layer 112 may be, for example, about 0.05 to 100 ⁇ m, although it depends on the target application.
  • An appropriate layer may be further laminated on the co-extruded film portion obtained by co-extrusion using, for example, a dry laminating adhesive.
  • a dry laminating adhesive such as a urethane-based adhesive or an epoxy-based adhesive.
  • the sealant layer 150 is laminated on the intermediate layer 112 formed on the base material layer 110, the sealant layer 150 and the intermediate layer 112 can be adhered to each other by using a dry laminating adhesive.
  • an adhesive layer is interposed between the sealant layer 150 and the intermediate layer 112.
  • the thickness of the adhesive layer is 100 ⁇ m or less.
  • the packaging container of the present invention is a container having a sealing property using the above-mentioned laminated film 100.
  • Specific examples thereof include a packaging bag (pouch) and a sealed container using the laminated film 100 as a lid material.
  • the packaging bag (pouch) is formed by stacking laminated films 100 arranged so that the sealant layers 150 face each other and heat-sealing the periphery so as to form a bag.
  • the packaging bag is not limited to a flat pouch that has a rectangular outer shape in a plan view and is heat-sealed on all sides, but can be used for various types of pouches such as a standing pouch, a three-way seal type, a pillow type, and a gusset type. Can be applied.
  • test pieces A to L were subjected to a tensile test using a Tensilon universal tester (manufactured by A & D Co., Ltd.) in a 23 ° C. and 50% RH environment according to JIS-Z1707.
  • the test piece was opened 180 ° around the heat-sealed portion, both ends thereof were attached to a universal testing machine, and the maximum load (N) pulled at a speed of 300 mm / min was obtained.
  • the maximum load with respect to the width of the test piece is measured as the heat seal strength (N / 15 mm).
  • One type of laminated film was measured 5 times, and the average value of the measured values for 3 times excluding the minimum and maximum values was taken as the heat seal strength of the laminated film.
  • the results are shown in Table 3. Further, in order to evaluate the heat seal strength of the laminated films M to P, the laminated films M'to P'for evaluation are separately prepared, and the heat seal strength test is performed using the laminated films M'to P'in the same manner as in Example 1. The heat seal strength was measured.
  • the laminated films M'to P'for evaluation are films in which a sealant layer related to the laminated films M to P is formed as a single layer on a biaxially stretched PET layer (base material layer) having a thickness of 12 ⁇ m via an adhesive layer. It is laminated by the conventional dry laminating method. The results are shown in Table 3.
  • IA-modified PET is polyethylene terephthalate in which isophthalic acid is copolymerized
  • block PP is block polypropylene
  • PE composition is linear short-chain branched polyethylene (methaceron). It is a composition composed of catalyst LLDPE) and high-pressure low-density polyethylene (LDPE), and "Modic” is a polyolefin-based resin: trade name “Modic QC430” (manufactured by Mitsubishi Chemical Corporation).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)

Abstract

The present invention addresses the problem of providing: a multilayer film which is thin but still capable of achieving good heat sealing performance, while being reduced in the environmental load; and a packaging container. A multilayer film (100) according to the present invention is provided with a sealant layer (150) on one side of a base material layer (110), and solves the above-described problem by having a configuration wherein: the sealant layer is formed of a thermoplastic polyester resin; the thermoplastic polyester resin contains a polyester copolymer that comprises a structural unit derived from a heat sealing performance reinforcing component; and the content ratio of the structural unit derived from a heat sealing performance reinforcing component in the polyester copolymer is 21% by mass or more. A packaging container according to the present invention is characterized by using this multilayer film.

Description

積層フィルム及び包装容器Laminated film and packaging container
 本発明は、積層フィルムを熱接着することにより袋状に成形される包装袋用や、容器本体に熱接着されて使用される蓋材用の積層フィルム、及び、包装容器に関する。 The present invention relates to a laminated film for a packaging bag that is formed into a bag shape by heat-bonding a laminated film, a laminated film for a lid material that is heat-bonded to a container body and used, and a packaging container.
 現在、液体状や固体状の食品、飲料、化粧品、医薬品等の内容物を包装して収容する包装容器として、包装袋(パウチ)や、蓋材が接着されたカップ容器などが用いられている。例えば包装袋は、シャンプーや洗剤、調理済あるいは半調理済の食品等の内容物を収容する包装容器として用いられており、基材層上にシーラント層が積層された積層フィルムを、シーラント層同士が対向するよう重畳した状態で外周を熱接着して袋状に形成し、内側の収容部に内容物を収容している(例えば特許文献1参照。)。また、蓋材が接着されたカップ容器としては、ヨーグルト、ゼリー、プリン等の内容物を収容するカップ状の容器本体の縁フランジに、積層フィルムのシーラント層を熱接着して密封したものが挙げられる(例えば特許文献2参照。)。 Currently, as a packaging container for packaging and storing the contents of liquid or solid foods, beverages, cosmetics, pharmaceuticals, etc., a packaging bag (pouch) or a cup container to which a lid material is adhered is used. .. For example, a packaging bag is used as a packaging container for storing contents such as shampoo, detergent, cooked or semi-cooked food, and a laminated film in which a sealant layer is laminated on a base material layer is formed between the sealant layers. The outer periphery is heat-bonded to form a bag shape in a state where the two are overlapped so as to face each other, and the contents are accommodated in the inner accommodating portion (see, for example, Patent Document 1). Examples of the cup container to which the lid material is adhered include those in which the sealant layer of the laminated film is heat-bonded to the edge flange of the cup-shaped container body for accommodating the contents such as yogurt, jelly, and pudding. (See, for example, Patent Document 2).
 一方、包装容器においては、近年、省資源や環境保護など環境負荷の観点から、プラスチック使用量の低減やプラスチックのリサイクルが推進されている。
 プラスチック使用量の低減に対しては、積層フィルムを薄肉化することが考えられるが、例えばシーラント層の薄肉化を図ると十分なヒートシール強度が得られず、従って密封性が低くなり内容物の漏洩などが発生してしまうおそれがある。
 また、従来、シーラント層の材料としては直鎖状短鎖分岐ポリエチレン(LLDPE)や高圧法低密度ポリエチレン(LDPE)、或いは無延伸ポリプロピレン(CPP)等のオレフィン系樹脂が広く利用されているが、基材層を形成する材料種によっては積層フィルムから高品質の再生ペレットを得ることができずにリサイクル性が極めて低くなるおそれもある。
 また、包装袋を構成するための積層フィルムには、突刺し耐性を有することが求められている。先端が尖った鋭利な部材が包装袋に接触した場合に包装袋が破けることがない外部接触の点、液体だけでなく角を有する固形物を充填した場合に包装袋が破けることがない内部接触の点から、高い突刺し耐性が必要とされる。破袋以外にも、突刺し強度が低いフィルムは脆いため、製膜時や加工時の取扱いに高度な注意が必要となり、例えばスリットや継ぎ足しの際の張力の変動やフィルムのズレにより破断の原因となりうるために、好ましくない。
On the other hand, in packaging containers, in recent years, reduction of the amount of plastic used and recycling of plastic have been promoted from the viewpoint of environmental load such as resource saving and environmental protection.
In order to reduce the amount of plastic used, it is conceivable to thin the laminated film, but for example, if the sealant layer is thinned, sufficient heat sealing strength cannot be obtained, and therefore the sealing property becomes low and the contents Leakage may occur.
Further, conventionally, as a material for the sealant layer, olefin resins such as linear short chain branched polyethylene (LLDPE), high pressure method low density polyethylene (LDPE), and unstretched polypropylene (CPP) are widely used. Depending on the type of material forming the base material layer, high-quality recycled pellets cannot be obtained from the laminated film, and recyclability may become extremely low.
Further, the laminated film for forming the packaging bag is required to have puncture resistance. The packaging bag will not tear when a sharp member with a sharp tip comes into contact with the packaging bag. The point of external contact, the packaging bag will not tear when filled with solids with horns as well as liquid. High puncture resistance is required in terms of internal contact. In addition to bag rupture, films with low piercing strength are fragile, so high care must be taken when handling them during film formation and processing. It is not preferable because it can be.
特開2015-150807号公報Japanese Unexamined Patent Publication No. 2015-150807 特開2014-46983号公報Japanese Unexamined Patent Publication No. 2014-46983
 本発明は、上述の問題点を解決するものであり、薄層でありながら良好なヒートシール性が得られ、環境負荷が低減され、また、レトルト処理前後のいずれにも高い突刺し強度が得られる積層フィルム及び包装容器を提供することを目的とする。 The present invention solves the above-mentioned problems, and although it is a thin layer, good heat sealability can be obtained, the environmental load is reduced, and high piercing strength can be obtained both before and after the retort treatment. It is an object of the present invention to provide a laminated film and a packaging container.
 本発明の積層フィルムは、基材層の片側にシーラント層を設けた積層フィルムであって、
 シーラント層が、熱可塑性ポリエステル系樹脂により形成されたものであり、
 前記熱可塑性ポリエステル系樹脂が、ヒートシール性強化成分を含有し、
 前記熱可塑性ポリエステル系樹脂における前記ヒートシール性強化成分の含有割合が21質量%以上であることにより、上記課題を解決するものである。
 本発明の包装容器は、上記の積層フィルムを用いたことを特徴とする。
The laminated film of the present invention is a laminated film in which a sealant layer is provided on one side of a base material layer.
The sealant layer is formed of a thermoplastic polyester resin.
The thermoplastic polyester-based resin contains a heat-sealable reinforcing component and contains
The above-mentioned problems are solved by the content ratio of the heat-sealable reinforcing component in the thermoplastic polyester resin is 21% by mass or more.
The packaging container of the present invention is characterized by using the above-mentioned laminated film.
 本発明の積層フィルムによれば、シーラント層が、熱可塑性ポリエステル系樹脂により形成されたものであることにより、薄層でありながら良好なヒートシール性が得られ、その結果、環境負荷が低減されながら内容物の漏洩の発生が防止された包装容器を得ることができる。
 また、シーラント層が熱可塑性ポリエステル系樹脂を主材料として含み、さらにシーラント層以外の基材層をポリエステル系樹脂で形成することによって、積層フィルム全体がポリエステル系樹脂を主材料として構成されることとなるので、容易に高品質のポリエステル系材料やポリエステル系製品に再生することができて高いリサイクル性が得られ、環境負荷をより低減することもできる。
According to the laminated film of the present invention, since the sealant layer is formed of a thermoplastic polyester resin, good heat sealability can be obtained even though it is a thin layer, and as a result, the environmental load is reduced. However, it is possible to obtain a packaging container in which leakage of the contents is prevented.
Further, the sealant layer contains a thermoplastic polyester resin as a main material, and the base material layer other than the sealant layer is formed of the polyester resin, so that the entire laminated film is composed of the polyester resin as the main material. Therefore, it can be easily recycled into a high-quality polyester-based material or polyester-based product, high recyclability can be obtained, and the environmental load can be further reduced.
本発明の一実施形態に係る積層フィルムの概略を示す断面図である。It is sectional drawing which shows the outline of the laminated film which concerns on one Embodiment of this invention.
〔積層フィルム〕
 本発明の一実施形態に係る積層フィルムは、図1に示すように、基材層110の片側(図1において上側)にシーラント層150が設けられたものである。
[Laminated film]
As shown in FIG. 1, the laminated film according to the embodiment of the present invention has a sealant layer 150 provided on one side (upper side in FIG. 1) of the base material layer 110.
〔シーラント層の主構成材料〕
 シーラント層150は、熱可塑性ポリエステル系樹脂により形成されたものである。
 熱可塑性ポリエステル系樹脂はヒートシール性強化成分を含有するものである。熱可塑性ポリエステル系樹脂は、具体的には、ヒートシール性強化成分に由来の構造単位を含有するポリエステル系共重合体(以下、「特定のポリエステル系共重合体」ともいう。)や、ヒートシール性強化成分に由来の構造単位を含有しないポリエステル系重合体(以下、「その他のポリエステル系重合体」ともいう。)にヒートシール性強化成分が分散・混合された樹脂(以下、「ヒートシール性強化成分混合樹脂」ともいう。)、およびこれらの混合物を主材料とするものである。
[Main constituent material of sealant layer]
The sealant layer 150 is formed of a thermoplastic polyester resin.
The thermoplastic polyester-based resin contains a heat-sealable reinforcing component. Specifically, the thermoplastic polyester-based resin is a polyester-based copolymer containing a structural unit derived from a heat-sealable reinforcing component (hereinafter, also referred to as “specific polyester-based copolymer”) or heat-sealing. A resin in which a heat-sealable reinforcing component is dispersed and mixed in a polyester-based polymer (hereinafter, also referred to as "other polyester-based polymer") that does not contain a structural unit derived from the property-enhancing component (hereinafter, "heat-sealable property"). It is also referred to as "reinforcing component mixed resin"), and a mixture thereof is used as a main material.
 特定のポリエステル系共重合体としては、後述するその他のポリエステル系重合体において、ヒートシール性強化成分としてポリオキシアルキレングリコールに由来の構造単位が含有されたものが挙げられる。ポリオキシアルキレングリコールとしては、ポリテトラメチレンエーテルグリコール(PTMG)やポリエチレングリコール(PEG)等が挙げられる。特定のポリエステル系共重合体としては、PTMGに由来の構造単位を含有するポリブチレンテレフタレート共重合体(PTMG含有PBT共重合体)を用いることが好ましい。これらの特定のポリエステル系共重合体は、1種を単独で、または、2種以上を組み合わせて用いることができる。
 その他のポリエステル系重合体としては、例えばポリエチレンナフタレート、ポリトリメチレンテレフタレート、ポリトリメチレンナフタレート、ポリブチレンナフタレート、ポリエチレンフラノエート、ポリエステル系熱可塑性エラストマー(TPC)などを挙げることができ、特に、機械物性、耐熱性、流通量が多く安価であって経済合理性が得られる観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレートを用いることがより好ましい。これらの樹脂は、イソフタル酸等のジカルボン酸や1,4-シクロヘキサンジメタノール、ネオペンチルグリコール等のジオール、トリメリット酸、ペンタエリスリトール等の多官能化合物等の共重合成分を含んだ共重合体であってもよい。これらのその他のポリエステル系重合体は、1種を単独で、または、2種以上を組み合わせて用いることができる。
 ヒートシール性強化成分混合樹脂は、上記のその他のポリエステル系樹脂を主材料とするものである。
 熱可塑性ポリエステル系樹脂が特定のポリエステル系共重合体を主材料とするものである場合、ヒートシール性強化成分が混合されていない上記のその他のポリエステル系重合体がさらに混合されていてもよい。この場合、熱可塑性ポリエステル系樹脂における特定のポリエステル系共重合体の混合割合は50質量%以上であることが好ましく、より好ましくは70質量%以上、特に好ましくは100質量%である。熱可塑性ポリエステル系樹脂における特定のポリエステル系共重合体の混合割合が過少である場合には、特定のポリエステル系共重合体の含有量が十分に確保されず、薄層化されたシーラント層150に十分なヒートシール性が得られないおそれがある。
 なお、シーラント層150は、上記の熱可塑性ポリエステル系樹脂と、ポリエステル系以外の熱可塑性樹脂との混合樹脂から形成されたものであってもよい。但し、リサイクル性の観点から、ポリエステル系以外の熱可塑性樹脂の混合量は、添加剤レベルの微量に抑える必要がある。さらに、上記の熱可塑性ポリエステル系樹脂には、必要に応じて滑材(アンチブロッキング剤)、光安定剤、相溶化剤、可塑剤、帯電防止剤、反応触媒、着色防止剤、ラジカル禁止剤、帯電防止剤、末端封鎖剤、酸化防止剤、熱安定剤、離型剤、難燃剤、抗菌剤、抗黴剤等の各種添加剤が配合されていてもよい。
Examples of the specific polyester-based copolymer include other polyester-based polymers described later containing a structural unit derived from polyoxyalkylene glycol as a heat-sealable enhancing component. Examples of the polyoxyalkylene glycol include polytetramethylene ether glycol (PTMG) and polyethylene glycol (PEG). As the specific polyester-based copolymer, it is preferable to use a polybutylene terephthalate copolymer (PTMG-containing PBT copolymer) containing a structural unit derived from PTMG. These specific polyester-based copolymers may be used alone or in combination of two or more.
Examples of other polyester-based polymers include polyethylene naphthalate, polytrimethylene terephthalate, polytrimethylene naphthalate, polybutylene naphthalate, polyethylene furanoate, polyester-based thermoplastic elastomer (TPC), and the like. It is more preferable to use polyethylene terephthalate or polybutylene terephthalate from the viewpoints of mechanical properties, heat resistance, a large amount of distribution, low cost, and economical rationality. These resins are copolymers containing copolymerization components such as dicarboxylic acids such as isophthalic acid, diols such as 1,4-cyclohexanedimethanol and neopentyl glycol, and polyfunctional compounds such as trimellitic acid and pentaerythritol. There may be. These other polyester-based polymers may be used alone or in combination of two or more.
The heat-sealable reinforcing component mixed resin is mainly made of the above-mentioned other polyester-based resin.
When the thermoplastic polyester-based resin is mainly made of a specific polyester-based copolymer, the other polyester-based polymer described above, which is not mixed with the heat-sealable reinforcing component, may be further mixed. In this case, the mixing ratio of the specific polyester-based copolymer in the thermoplastic polyester-based resin is preferably 50% by mass or more, more preferably 70% by mass or more, and particularly preferably 100% by mass. When the mixing ratio of the specific polyester-based copolymer in the thermoplastic polyester-based resin is too small, the content of the specific polyester-based copolymer is not sufficiently secured, and the thinned sealant layer 150 is formed. Sufficient heat sealability may not be obtained.
The sealant layer 150 may be formed of a mixed resin of the above-mentioned thermoplastic polyester-based resin and a thermoplastic resin other than the polyester-based resin. However, from the viewpoint of recyclability, it is necessary to limit the mixing amount of the thermoplastic resin other than the polyester-based resin to a very small amount at the additive level. Further, in the above-mentioned thermoplastic polyester resin, if necessary, a lubricant (anti-blocking agent), a light stabilizer, a compatibilizer, a plasticizer, an antistatic agent, a reaction catalyst, a color inhibitor, a radical inhibitor, etc. Various additives such as antistatic agents, terminal blockers, antioxidants, heat stabilizers, mold release agents, flame retardants, antibacterial agents, and anti-plasticizers may be blended.
〔ヒートシール性強化成分〕
 熱可塑性ポリエステル系樹脂に含有されるヒートシール性強化成分は、熱可塑性ポリエステル系樹脂に高分散され、それ自体が脂肪族化合物からなり柔軟性が高く低融点である低融点成分と、熱可塑性ポリエステル系樹脂の結晶化を阻害する結晶化阻害成分からなる樹脂組成の成分とをいう。
 低融点成分は、短時間の熱接着で高いヒートシール強度を得る観点から、それ単体の融点が170℃以下のものであることが好ましい。なお、シーラント層の材料として通常よく用いられるポリエチレン(LDPE:融点105~115℃、LLDPE:融点115~125℃)、ポリプロピレン(融点160~170℃)は、0.1秒間~数秒間という短時間での熱接着で高いヒートシール強度を示す。また、低融点成分は、熱可塑性ポリエステル系樹脂中に高分散されていることが、安定した物性発現に必要である。熱可塑性ポリエステル系樹脂中への低融点成分の高分散は、熱可塑性ポリエステル系樹脂(特定のポリエステル系共重合体)を重合する際に低融点成分を共重合する方法や、その他のポリエステル系重合体と低融点成分とを溶融混練する方法などによって実現することができる。以上の融点及び高分散の観点から、低融点成分としては、特定のポリエステル系共重合体として共重合することもできるポリエーテルポリオール類である、ポリアセタール、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンプロピレングリコール、ポリテトラメチレンエーテルグリコール、メトキシポリエチレングリコール等を好ましく挙げられる。これらの中でも、ポリテトラメチレンエーテルグリコール(PTMG)は、ポリエステルの一種であるポリブチレンテレフタレートを製造する際に副生成物として生じるテトラヒドロフラン(THF)を原料とすることができるため、低融点成分としてPTMGを用いることが経済合理性に優れ、より好ましい。
 結晶化阻害成分は、特定のポリエステル系共重合体を重合する際に共重合する成分であり、イソフタル酸、アジピン酸、セバシン酸、ダイマー酸、1,4-シクロヘキサンジカルボン酸、フマル酸、マレイン酸、5-スルホイソフタル酸ナトリウム、5-ヒドロキシイソフタル酸、コハク酸、アゼライン酸、ドデカン二酸、オルソフタル酸、ジフェン酸、イタコン酸、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、イソソルビド等が挙げられる。結晶化阻害成分としては、PETボトル用樹脂の材料などとして広く用いられており安価であって経済合理性が得られる観点から、イソフタル酸を用いることが特に好ましい。
[Heat seal strengthening component]
The heat-sealable reinforcing component contained in the thermoplastic polyester-based resin is highly dispersed in the thermoplastic polyester-based resin, and is composed of an aliphatic compound itself and has a high flexibility and a low melting point. It refers to a component having a resin composition composed of a crystallization inhibitory component that inhibits the crystallization of the based resin.
The low melting point component preferably has a melting point of 170 ° C. or lower by itself from the viewpoint of obtaining high heat seal strength by heat bonding in a short time. Polyethylene (LDPE: melting point 105 to 115 ° C., LLDPE: melting point 115 to 125 ° C.) and polypropylene (melting point 160 to 170 ° C.), which are usually used as materials for the sealant layer, have a short time of 0.1 seconds to several seconds. Shows high heat seal strength by heat bonding in. Further, it is necessary for the low melting point component to be highly dispersed in the thermoplastic polyester resin in order to exhibit stable physical properties. High dispersion of the low melting point component in the thermoplastic polyester resin includes a method of copolymerizing the low melting point component when polymerizing the thermoplastic polyester resin (specific polyester copolymer) and other polyester-based weights. It can be realized by a method of melt-kneading the coalescence and the low melting point component. From the viewpoint of the above melting point and high dispersion, the low melting point component is polyacetal, polyethylene glycol, polypropylene glycol, polyethylene propylene glycol, poly, which are polyether polyols that can be copolymerized as a specific polyester-based copolymer. Preferable examples include tetramethylene ether glycol and methoxypolyethylene glycol. Among these, polytetramethylene ether glycol (PTMG) can use tetrahydrofuran (THF) produced as a by-product in the production of polybutylene terephthalate, which is a kind of polyester, as a raw material, and therefore PTMG as a low melting point component. Is excellent in economic rationality and is more preferable.
The crystallization inhibitory component is a component that copolymerizes when a specific polyester-based copolymer is polymerized, and is isophthalic acid, adipic acid, sebacic acid, dimer acid, 1,4-cyclohexanedicarboxylic acid, fumaric acid, maleic acid. , 5-sulfoisophthalate sodium, 5-hydroxyisophthalic acid, succinic acid, adipic acid, dodecanedioic acid, orthophthalic acid, diphenylic acid, itaconic acid, 1,4-cyclohexanedimethanol, neopentyl glycol, isosorbide and the like. .. As the crystallization inhibitory component, isophthalic acid is particularly preferable from the viewpoint that it is widely used as a material for a resin for PET bottles, is inexpensive, and can obtain economic rationality.
 熱可塑性ポリエステル系樹脂における低融点成分の含有割合は5質量%以上であることが好ましく、より好ましくは40~80質量%、更に好ましくは50~80質量%、特に好ましくは50~60質量%である。熱可塑性ポリエステル系樹脂における低融点成分の含有割合とは、当該熱可塑性ポリエステル系樹脂における、特定のポリエステル系共重合体中の低融点成分に由来の構造単位の含有割合と、ヒートシール性強化成分混合樹脂中の低融点成分の含有割合との合計をいう。
 熱可塑性ポリエステル系樹脂における低融点成分の含有割合が5質量%未満である場合は、シーラント層150の柔軟化の効果が不十分となり、包装袋や蓋材といった軟包装材料として用いることが難しくなるおそれがある。
 結晶化阻害成分は、低融点成分と共に用いることで、低融点成分の含有割合を抑制しても短時間の熱接着で高いヒートシール強度を得ることができる、という性質を有するものである。熱可塑性ポリエステル系樹脂における結晶化阻害成分の含有割合は、その種類や低融点成分の含有割合により好適な範囲は異なるが、熱可塑性ポリエステル系樹脂を非晶化させないために一般に30質量%未満であることが好ましい。また、熱可塑性ポリエステル系樹脂が低融点成分を充分に含有している場合には、結晶化阻害成分が含有されなくてもよい。
 熱可塑性ポリエステル系樹脂におけるヒートシール性強化成分の含有割合、すなわち熱可塑性ポリエステル系樹脂における低融点成分および結晶化阻害成分の合計の含有割合は、21質量%以上であることが好ましく、より好ましくは30~80質量%、更に好ましくは40~80質量%、特に好ましくは50~60質量%である。
 熱可塑性ポリエステル系樹脂におけるヒートシール性強化成分に由来の構造単位の含有割合が上記の範囲にあることにより、シーラント層150に十分なヒートシール強度が得られる。これは、それ自体が低融点である低融点成分や結晶化を阻害する結晶化阻害成分が高分散かつ適度に存在することによって熱可塑性ポリエステル系樹脂の易溶融化・柔軟化が図られることによるものと推測される。
The content ratio of the low melting point component in the thermoplastic polyester resin is preferably 5% by mass or more, more preferably 40 to 80% by mass, further preferably 50 to 80% by mass, and particularly preferably 50 to 60% by mass. be. The content ratio of the low melting point component in the thermoplastic polyester-based resin is the content ratio of the structural unit derived from the low melting point component in the specific polyester-based copolymer in the thermoplastic polyester-based resin and the heat-sealing property strengthening component. It refers to the total with the content ratio of the low melting point component in the mixed resin.
When the content ratio of the low melting point component in the thermoplastic polyester resin is less than 5% by mass, the effect of softening the sealant layer 150 becomes insufficient, and it becomes difficult to use it as a flexible packaging material such as a packaging bag or a lid material. There is a risk.
When the crystallization inhibitory component is used together with the low melting point component, it has a property that high heat seal strength can be obtained by heat adhesion in a short time even if the content ratio of the low melting point component is suppressed. The suitable range of the content ratio of the crystallization inhibitory component in the thermoplastic polyester resin varies depending on the type and the content ratio of the low melting point component, but it is generally less than 30% by mass in order not to amorphize the thermoplastic polyester resin. It is preferable to have. Further, when the thermoplastic polyester resin sufficiently contains a low melting point component, the crystallization inhibitory component may not be contained.
The content ratio of the heat-sealable reinforcing component in the thermoplastic polyester resin, that is, the total content ratio of the low melting point component and the crystallization inhibitory component in the thermoplastic polyester resin is preferably 21% by mass or more, more preferably 21% by mass or more. It is 30 to 80% by mass, more preferably 40 to 80% by mass, and particularly preferably 50 to 60% by mass.
When the content ratio of the structural unit derived from the heat-sealable reinforcing component in the thermoplastic polyester resin is within the above range, sufficient heat-seal strength can be obtained for the sealant layer 150. This is because the thermoplastic polyester resin can be easily melted and softened by the presence of a low melting point component which itself has a low melting point and a crystallization inhibitory component which inhibits crystallization in a highly dispersed manner and appropriately. It is presumed to be.
 以下、PTMG含有PBT共重合体について説明する。
 PTMG含有PBT共重合体は、テレフタル酸を主成分とするジカルボン酸成分と、1,4-ブタンジオール及びPTMGを含むジオール成分、更に必要に応じて用いられるその他の成分とをエステル化反応及び/又はエステル交換反応させた後、重縮合反応することにより得られるものであり、ジカルボン酸成分に由来の構造単位及びジオール成分に由来の構造単位を有する。
Hereinafter, the PTMG-containing PBT copolymer will be described.
The PTMG-containing PBT copolymer transesterifies a dicarboxylic acid component containing terephthalic acid as a main component, a diol component containing 1,4-butanediol and PTMG, and other components used as necessary. Alternatively, it is obtained by subjecting it to a transesterification reaction and then a polycondensation reaction, and has a structural unit derived from a dicarboxylic acid component and a structural unit derived from a diol component.
 PTMG含有PBT共重合体を形成するためのジカルボン酸成分は、テレフタル酸を主成分として含有し、全ジカルボン酸成分中のテレフタル酸の含有量は、適正な耐熱性及び経済合理性を得る観点から、70モル%以上であることが好ましく、85モル%以上であることがより好ましい。
 その他のジカルボン酸成分としては、安価にシーラント層150の耐熱性を低く抑制する観点から、イソフタル酸を含有することが好ましい。
The dicarboxylic acid component for forming the PTMG-containing PBT copolymer contains terephthalic acid as a main component, and the content of terephthalic acid in the total dicarboxylic acid component is from the viewpoint of obtaining appropriate heat resistance and economic rationality. , 70 mol% or more, more preferably 85 mol% or more.
As the other dicarboxylic acid component, it is preferable to contain isophthalic acid from the viewpoint of suppressing the heat resistance of the sealant layer 150 to be low at low cost.
 テレフタル酸及びイソフタル酸以外のジカルボン酸成分としては、具体的には、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸等の脂肪族鎖式ジカルボン酸及びそのエステル形成性誘導体;ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸等の脂環式ジカルボン酸及びそのエステル形成性誘導体;フタル酸、ジブロモイソフタル酸、スルホイソフタル酸ナトリウム、フェニレンジオキシジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ジフェニルケトンジカルボン酸、4,4’-ジフェノキシエタンジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸、2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸及びそのエステル形成性誘導体、2,5-フランジカルボン酸及びそのエステル形成性誘導体等が挙げられる。これらのジカルボン酸成分は、1種類のものに限定されるものではなく、2種類以上を混合して用いてもよい。
 これらのジカルボン酸成分の中でも、テレフタル酸、2,5-フランジカルボン酸は植物原料から合成することができ、環境配慮の観点から積極的に用いることが好ましい。
Specific examples of the dicarboxylic acid component other than terephthalic acid and isophthalic acid include oxalic acid, succinic acid, glutaric acid, adipic acid, pimeric acid, suberic acid, azelaic acid, sebacic acid, undecandicarboxylic acid, and dodecanedicarboxylic acid. Alicyclic dicarboxylic acid such as hexahydroterephthalic acid and hexahydroisophthalic acid and its ester-forming derivative; phthalic acid, dibromoisophthalic acid, sodium sulfisophthalate, pheni Rangeoxydicarboxylic acid, 4,4'-diphenyldicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, 4,4'-diphenylketonedicarboxylic acid, 4,4'-diphenoxyetanedicarboxylic acid, 4,4'-diphenyl Examples thereof include aromatic dicarboxylic acids such as sulfonedicarboxylic acid and 2,6-naphthalenedicarboxylic acid and ester-forming derivatives thereof, and 2,5-frangicarboxylic acid and ester-forming derivatives thereof. These dicarboxylic acid components are not limited to one type, and two or more types may be mixed and used.
Among these dicarboxylic acid components, terephthalic acid and 2,5-furandicarboxylic acid can be synthesized from plant raw materials, and it is preferable to use them positively from the viewpoint of environmental consideration.
 PTMG含有PBT共重合体を形成するためのジオール成分は、1,4-ブタンジオール及びPTMGを含む。ジオール成分においては、1,4-ブタンジオールに由来の構造単位及びPTMGに由来の構造単位が全体として主成分を構成することが好ましい。具体的には、全ジオール成分中の1,4-ブタンジオール及びPTMGの含有量の合計が、70モル%以上であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であることが特に好ましい。
 ジオール成分におけるPTMGの分子量は例えば500~3,000とされる。通常、PTMG含有PBT共重合体中のPTMGに由来の構造単位の分子量は、原料として用いるPTMGの分子量に基づいて維持される。
The diol component for forming the PTMG-containing PBT copolymer contains 1,4-butanediol and PTMG. In the diol component, it is preferable that the structural unit derived from 1,4-butanediol and the structural unit derived from PTMG constitute the main component as a whole. Specifically, the total content of 1,4-butanediol and PTMG in all the diol components is preferably 70 mol% or more, more preferably 80 mol% or more, and 90 mol% or more. Is particularly preferable.
The molecular weight of PTMG in the diol component is, for example, 500 to 3,000. Usually, the molecular weight of the structural unit derived from PTMG in the PTMG-containing PBT copolymer is maintained based on the molecular weight of PTMG used as a raw material.
 1,4-ブタンジオール及びPTMG以外のジオール成分としては、具体的には、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ポリプロピレングリコール、ジブチレングリコール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,8-オクタンジオールなどの直鎖式脂肪族ジオール;1,2-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,1-シクロヘキサンジメチロール、1,4-シクロヘキサンジメチロールなどの環式脂肪族ジオール;キシリレングリコール、4,4'-ジヒドロキシビフェニル、2,2-ビス(4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホンなどの芳香族ジオール;イソソルビド、イソマンニド、イソイデット、エリトリタンなどの植物原料由来のジオール等を挙げることができる。これらのジオール成分は、1種類のものに限定されるものではなく、2種類以上を混合して用いてもよい。
 これらのジオール成分の中でも、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール、PTMGも植物原料から合成及び重合することができ、環境配慮の観点から積極的に用いることが好ましい。
Specific examples of the diol component other than 1,4-butanediol and PTMG include ethylene glycol, diethylene glycol, polyethylene glycol, 1,2-propanediol, 1,3-propanediol, polypropylene glycol, dibutylene glycol, and 1 , 5-Pentanediol, Neopentyl glycol, 1,6-Hexanediol, 1,8-Octanediol and other linear aliphatic diols; 1,2-Cyclohexanediol, 1,4-Cyclohexanediol, 1,1- Cyclic aliphatic diols such as cyclohexanedimethylol and 1,4-cyclohexanedimethylol; xylylene glycol, 4,4'-dihydroxybiphenyl, 2,2-bis (4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) ) Aromatic diols such as sulfone; diols derived from plant raw materials such as isosorbide, isomannide, isoidet, and erythritan can be mentioned. These diol components are not limited to one type, and two or more types may be mixed and used.
Among these diol components, ethylene glycol, 1,3-propanediol, 1,4-butanediol, polyethylene glycol, polypropylene glycol, and PTMG can also be synthesized and polymerized from plant raw materials, and are positive from the viewpoint of environmental consideration. It is preferable to use it for.
 PTMG含有PBT共重合体を形成する際に更に必要に応じて用いられるその他の成分としては、グリコール酸、p-ヒドロキシ安息香酸、p-β-ヒドロキシエトキシ安息香酸等のヒドロキシカルボン酸や、トリカルバリル酸、トリメリット酸、トリメシン酸、ピロメリット酸、ナフタレンテトラカルボン酸等の三官能以上の多官能カルボン酸;トリメチロールエタン、トリメチロールプロパン、グリセロール、ペンタエリスリトール、シュガーエステル等の三官能以上の多官能アルコール等が挙げられる。これらのその他の成分は、1種類のものに限定されるものではなく、2種類以上を混合して用いてもよい。 Other components used as necessary in forming the PTMG-containing PBT copolymer include hydroxycarboxylic acids such as glycolic acid, p-hydroxybenzoic acid, p-β-hydroxyethoxybenzoic acid, and tricarbaryl. Trifunctional or higher polyfunctional carboxylic acids such as acids, trimellitic acids, trimesic acids, pyromellitic acids and naphthalenetetracarboxylic acids; Examples include functional alcohol. These other components are not limited to one type, and two or more types may be mixed and used.
 ポリエステル系共重合体は、マレイン酸変性されたものであってもよい。ポリエステル系共重合体がマレイン酸変性されたものである場合、当該ポリエステル系共重合体におけるマレイン酸に由来の構造単位の含有割合は3.0質量%以下とされることが好ましい。 The polyester-based copolymer may be modified with maleic acid. When the polyester-based copolymer is modified with maleic acid, the content ratio of the structural unit derived from maleic acid in the polyester-based copolymer is preferably 3.0% by mass or less.
〔シーラント層の層構成〕
 シーラント層150は、単層のものであってもよく、2層以上の多層構成であってもよい。ただし、シーラント層150が多層構成のものである場合には、少なくともヒートシールする最外層が上記に詳述したヒートシール性強化成分を含有する熱可塑性ポリエステル系樹脂を主材料とするものであることが必要とされる。
[Layer structure of sealant layer]
The sealant layer 150 may be a single layer or may have a multi-layer structure of two or more layers. However, when the sealant layer 150 has a multi-layer structure, at least the outermost layer to be heat-sealed shall be mainly made of a thermoplastic polyester resin containing the heat-sealable reinforcing component described in detail above. Is required.
〔シーラント層の厚み〕
 シーラント層150(多層構成のものである場合にはその最外層)の厚みは、例えば40μm以下とされ、好ましくは5~35μmであり、より好ましくは5~30μm、特に好ましくは5~25μmである。
 シーラント層150が過度に厚いものである場合は、プラスチック使用量が多くて環境負荷を十分に軽減する効果が得られない。一方、シーラント層150が過度に薄いものである場合は、包装容器の密封に必要とされるヒートシール強度が確保できないおそれがある。
[Thickness of sealant layer]
The thickness of the sealant layer 150 (the outermost layer thereof in the case of a multi-layer structure) is, for example, 40 μm or less, preferably 5 to 35 μm, more preferably 5 to 30 μm, and particularly preferably 5 to 25 μm. ..
If the sealant layer 150 is excessively thick, the amount of plastic used is large and the effect of sufficiently reducing the environmental load cannot be obtained. On the other hand, if the sealant layer 150 is excessively thin, the heat seal strength required for sealing the packaging container may not be secured.
〔その他の層〕
 シーラント層150とともに積層フィルム100を構成する基材層110は、単層フィルムとして構成されていてもよく、複数層によって構成されていてもよい。図1の例の積層フィルム100においては、表層111と、この表層111及びシーラント層150の間に介在された中間層112とから構成されている。基材層110が単層フィルムとして構成される場合には、例えば下記に詳述する表層111のみからなるものとすることができる。
 基材層110を構成する各層のうち少なくとも表層111は、ヒートシールしたときに溶融しないよう、例えば200℃以上の融点を有する材料よりなることが好ましい。
 また、基材層110を構成する各層は、ポリエステル系樹脂を主成分とする材料よりなることが好ましい。ポリエステル系樹脂を主成分とするとは、当該層を形成する全材料中の80質量%以上がポリエステル系樹脂であることをいい、当該層を形成する全材料(100質量%)がポリエステル系樹脂であることが好ましい。基材層110を構成する各層がポリエステル系樹脂を主成分とする材料よりなることにより、シーラント層150を含めて積層フィルム100全体がポリエステル系樹脂を主材料として構成されることとなるので、リサイクル時の加熱・混練(再ペレット化)におけるエステル交換による相溶化成分の生成などによって高品質の再生ペレットを得ることができ、従って、高いリサイクル性が得られ、環境負荷を低減することができる。
[Other layers]
The base material layer 110 constituting the laminated film 100 together with the sealant layer 150 may be configured as a single-layer film or may be composed of a plurality of layers. The laminated film 100 of the example of FIG. 1 is composed of a surface layer 111 and an intermediate layer 112 interposed between the surface layer 111 and the sealant layer 150. When the base material layer 110 is configured as a single-layer film, it may consist of only the surface layer 111 described in detail below, for example.
Of the layers constituting the base material layer 110, at least the surface layer 111 is preferably made of a material having a melting point of, for example, 200 ° C. or higher so as not to melt when heat-sealed.
Further, each layer constituting the base material layer 110 is preferably made of a material containing a polyester resin as a main component. The fact that the polyester resin is the main component means that 80% by mass or more of all the materials forming the layer is the polyester resin, and all the materials (100% by mass) forming the layer are the polyester resin. It is preferable to have. Since each layer constituting the base material layer 110 is made of a material containing a polyester resin as a main component, the entire laminated film 100 including the sealant layer 150 is made of a polyester resin as a main material, and thus is recycled. High-quality recycled pellets can be obtained by producing compatible components by transesterification during heating and kneading (repelletization), and therefore high recyclability can be obtained and the environmental load can be reduced.
 表層111としては、例えばポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート、PTMGに由来の構造単位を含有しないポリブチレンテレフタレート、ポリエチレンナフタレート、ポリトリメチレンナフタレート、ポリブチレンナフタレート、ポリエチレンフラノエート等からなるものとすることができ、特に、積層フィルム100の突刺し耐性などの機械的強度の向上の観点から、PTMGに由来の構造単位を含有しないポリブチレンテレフタレート、特にホモポリマーのポリブチレンテレフタレートなどのポリブチレンテレフタレート系樹脂からなるものであることが好ましい。表層111(あるいは基材層110)がポリブチレンテレフタレート系樹脂を主成分とする材料により形成されたものであることにより、レトルト処理前後のいずれにも高い突刺し強度を得ることができる。表層111を形成する材料は、機械物性や耐熱性の観点から、延伸処理(一軸延伸、二軸延伸)が施されたホモポリマーであることが好ましいが、無延伸品や共重合品であってもよい。また、これらは、1種を単独で、または、2種以上を組み合わせて用いることもできる。
 表層111の厚みは、例えば10~50μm程度とすることができる。
The surface layer 111 includes, for example, polyethylene terephthalate (PET), polytrimethylene terephthalate, polybutylene terephthalate containing no structural unit derived from PTMG, polyethylene naphthalate, polytrimethylene naphthalate, polybutylene naphthalate, polyethylene furanoate and the like. In particular, from the viewpoint of improving mechanical strength such as puncture resistance of the laminated film 100, polybutylene terephthalate containing no structural unit derived from polyethylene, particularly polybutylene terephthalate of a homopolymer, etc. It is preferably made of a polybutylene terephthalate resin. Since the surface layer 111 (or the base material layer 110) is formed of a material containing a polybutylene terephthalate resin as a main component, high piercing strength can be obtained both before and after the retort treatment. The material forming the surface layer 111 is preferably a homopolymer subjected to stretching treatment (uniaxial stretching, biaxial stretching) from the viewpoint of mechanical properties and heat resistance, but is a non-stretched product or a copolymer product. May be good. In addition, these may be used individually by 1 type or in combination of 2 or more type.
The thickness of the surface layer 111 can be, for example, about 10 to 50 μm.
 中間層112としては、例えばガスバリア性や水分バリア性が付与されたバリア層とすることができる。バリア層としては、表層111に形成されたアルミナや酸化珪素などの金属酸化物による蒸着膜や、ポリエステルとの成形加工条件が近しく高いバリア性を有するMXD6ナイロン層等とすることができる。
 中間層112の厚みは、対象用途にもよるが、例えば0.05~100μm程度とすることができる。
The intermediate layer 112 can be, for example, a barrier layer to which gas barrier property or moisture barrier property is imparted. As the barrier layer, a vapor-deposited film made of a metal oxide such as alumina or silicon oxide formed on the surface layer 111, an MXD6 nylon layer having a high barrier property close to the molding processing conditions with polyester, or the like can be used.
The thickness of the intermediate layer 112 may be, for example, about 0.05 to 100 μm, although it depends on the target application.
 積層フィルム100においては、シーラント層150の基材層110の反対側(内面側)の面上にフィルム同士のブロッキングを防ぐための耐ブロッキング層(アンチブロッキング層)がさらに設けられていてもよい。 In the laminated film 100, a blocking-resistant layer (anti-blocking layer) for preventing blocking between the films may be further provided on the surface of the sealant layer 150 on the opposite side (inner surface side) of the base material layer 110.
 積層フィルム100は、突刺し強度が4N以上であることが好ましく、5N以上であることがより好ましく、さらに好ましくは6N以上である。
 また、積層フィルム100をレトルト処理した後の突刺し強度が4N以上であることが好ましく、5N以上であることがより好ましく、さらに好ましくは6N以上である。
 また、この積層フィルム100のレトルト処理前後の突刺し強度の変化率が±20%以内であることが好ましく、より好ましくは±17%以内であり、さらに好ましくは±11%以内である。このレトルト処理前後の突刺し強度の変化率が前記の範囲にあることにより、基材層110が薄層でありながら高い突刺し強度が得られ、その結果、環境負荷を低減させることができる。突刺し強度の変化率は、レトルト処理後の突刺し強度がレトルト処理前の突刺し強度よりも大きくなる場合がマイナス値となる。
 レトルト処理は、120~135℃の温度範囲で実施されることが多い。処理時間は120℃では20~30分間、135℃では5~10分間にわたって実施されることが多い。本発明では127℃、30分間の加熱をレトルト処理の条件とした。
 積層フィルム100の突刺し強度は、直径40mmのリングにフィルムを弛みのないように張り、先端角度60度、先端R0.5mmの針を使用し、円の中央を50mm/分の速度で突き刺し、針が貫通するときの荷重(N)として測定される値である(JIS-Z1707:2019に準拠)。
The laminated film 100 preferably has a piercing strength of 4N or more, more preferably 5N or more, and even more preferably 6N or more.
Further, the puncture strength after the laminated film 100 is retorted is preferably 4N or more, more preferably 5N or more, and further preferably 6N or more.
Further, the rate of change in the puncture strength of the laminated film 100 before and after the retort treatment is preferably within ± 20%, more preferably within ± 17%, and further preferably within ± 11%. When the rate of change in the piercing strength before and after the retort treatment is within the above range, a high piercing strength can be obtained even though the base material layer 110 is a thin layer, and as a result, the environmental load can be reduced. The rate of change in piercing strength becomes a negative value when the piercing strength after the retort treatment becomes larger than the piercing strength before the retort treatment.
The retort treatment is often carried out in the temperature range of 120 to 135 ° C. The treatment time is often 20 to 30 minutes at 120 ° C. and 5 to 10 minutes at 135 ° C. In the present invention, heating at 127 ° C. for 30 minutes was used as a condition for the retort treatment.
The piercing strength of the laminated film 100 is such that the film is stretched on a ring having a diameter of 40 mm without slack, and a needle having a tip angle of 60 degrees and a tip R of 0.5 mm is used to pierce the center of the circle at a speed of 50 mm / min. It is a value measured as a load (N) when the needle penetrates (based on JIS-Z1707: 2019).
〔積層フィルムの作製方法〕
 本発明の積層フィルム100は、その層構成に応じて、ドライラミネート法や押出しラミネート法、共押出し法などの公知の方法を採用して製造することができる。
 例えば、共押出し法を利用して隣接する層を積層する場合には、各層の材料を共押出しして積層することにより共押出しフィルム部分を得ることができる。積層フィルム100の基材層110が単層フィルム(表層111)として構成される場合には、共押出しフィルム部分がシーラント層150および表層111のみよりなる積層フィルム100を一つの工程で得ることができる。共押出しによって得られた共押出しフィルム部分に対して、例えばドライラミネート用接着剤などを用いてさらに適宜の層を積層させてもよい。
 また例えば、ドライラミネート法を利用して隣接する層を積層する場合には、ウレタン系接着剤やエポキシ系接着剤などのドライラミネート用接着剤を用いて隣接する層を積層することができる。例えば、基材層110上に形成された中間層112上に、シーラント層150を積層する場合、このシーラント層150と中間層112とをドライラミネート用接着剤を用いて接着することができ、この場合、このシーラント層150と中間層112との間には、接着剤層が介在することとなる。接着剤層の厚みは、100μm以下である。
 また例えば、押出しラミネート法を利用して隣接する層を積層する場合には、必要に応じてアンカーコート層を介して隣接する層を積層することができる。アンカーコート層の厚みは、接着剤層よりも薄く、10μm以下である。また例えば、シーラント層150が多層構成のものである場合には、共押出し法を利用して多層構成のシーラント層150を形成することもできる。
 上記の方法の中でも、溶剤や接着剤を必要とせず、フィルムを貼り合わせる工程も不要な共押出しによる方法が、環境負荷が少なく生産効率も高い観点から、特に好ましい。さらに、共押出による方法を用いる場合、基材層を形成する材料としてポリブチレンテレフタレート系樹脂を主成分とする材料を用いると、シーラント層を形成するためのヒートシール性強化成分を含有する熱可塑性ポリエステル系樹脂と共押出しした後、そのまま冷却、巻き取ることで、基材層が結晶化し、耐熱性および機械強度に優れるフィルムとなることから、更に好ましい。
[Method for producing laminated film]
The laminated film 100 of the present invention can be produced by adopting a known method such as a dry laminating method, an extrusion laminating method, or a coextrusion method, depending on the layer structure thereof.
For example, when the adjacent layers are laminated by using the co-extrusion method, the co-extruded film portion can be obtained by co-extruding and laminating the materials of each layer. When the base material layer 110 of the laminated film 100 is configured as a single-layer film (surface layer 111), the laminated film 100 in which the coextruded film portion is composed of only the sealant layer 150 and the surface layer 111 can be obtained in one step. .. An appropriate layer may be further laminated on the co-extruded film portion obtained by co-extrusion using, for example, a dry laminating adhesive.
Further, for example, when the adjacent layers are laminated by using the dry laminating method, the adjacent layers can be laminated by using a dry laminating adhesive such as a urethane-based adhesive or an epoxy-based adhesive. For example, when the sealant layer 150 is laminated on the intermediate layer 112 formed on the base material layer 110, the sealant layer 150 and the intermediate layer 112 can be adhered to each other by using a dry laminating adhesive. In this case, an adhesive layer is interposed between the sealant layer 150 and the intermediate layer 112. The thickness of the adhesive layer is 100 μm or less.
Further, for example, when the adjacent layers are laminated by using the extrusion laminating method, the adjacent layers can be laminated via the anchor coat layer if necessary. The thickness of the anchor coat layer is thinner than that of the adhesive layer and is 10 μm or less. Further, for example, when the sealant layer 150 has a multi-layer structure, the co-extrusion method can be used to form the multi-layer sealant layer 150.
Among the above methods, the coextrusion method, which does not require a solvent or an adhesive and does not require a step of bonding films, is particularly preferable from the viewpoint of low environmental load and high production efficiency. Furthermore, when the coextrusion method is used, if a material containing a polybutylene terephthalate resin as a main component is used as the material for forming the base material layer, thermoplasticity containing a heat-sealable reinforcing component for forming the sealant layer is used. By co-extruding with a polyester resin, cooling and winding as it is, the base material layer crystallizes, and a film having excellent heat resistance and mechanical strength is obtained, which is more preferable.
 本発明の積層フィルム100のヒートシール強度は、シーラント層150の材料や層構成、厚み、基材層110の材料や厚み等によっても異なるが、例えば40N/15mm以上であることが好ましく、より好ましくは60N/15mm以上である。 The heat-sealing strength of the laminated film 100 of the present invention varies depending on the material and layer composition and thickness of the sealant layer 150, the material and thickness of the base material layer 110, and the like, but is preferably 40 N / 15 mm or more, more preferably 40 N / 15 mm or more. Is 60 N / 15 mm or more.
〔包装容器〕
 本発明の包装容器は、上記の積層フィルム100を用いた密封性を有する容器である。具体的には、包装袋(パウチ)や、積層フィルム100を蓋材として用いた密封容器などが挙げられる。
 包装袋(パウチ)は、シーラント層150同士が対向するよう積重配置された積層フィルム100が、袋状をなすよう周囲が熱接着(ヒートシール)されて形成された構成とされる。包装袋は、例えば平面視にて外形形状が矩形形状をなし、四方がヒートシールされた平パウチに限定されず、スタンディングパウチ、三方シールタイプ、ピロータイプ、ガセットタイプ等の種々のタイプのパウチに適用することができる。また、包装袋の形状は、平面視で矩形形状をなす以外の、例えば台形や、一部に凹凸のある異形形状等、如何なる形状としてもよい。
 積層フィルム100を蓋材として用いた密封容器は、内容物を収容する容器本体の縁フランジ上に、積層フィルム100をシーラント層150がこの縁フランジに接触する状態で配置して熱接着することにより、積層フィルム100が接着されて密封された構成とされる。このような密封容器の容器本体は、リサイクル性の観点から、例えばポリエチレンテレフタレート(PET)等よりなるものであることが好ましい。なお、密封容器の容器本体は、カップ状やトレー状等、如何なる形状としてもよい。
[Packaging container]
The packaging container of the present invention is a container having a sealing property using the above-mentioned laminated film 100. Specific examples thereof include a packaging bag (pouch) and a sealed container using the laminated film 100 as a lid material.
The packaging bag (pouch) is formed by stacking laminated films 100 arranged so that the sealant layers 150 face each other and heat-sealing the periphery so as to form a bag. The packaging bag is not limited to a flat pouch that has a rectangular outer shape in a plan view and is heat-sealed on all sides, but can be used for various types of pouches such as a standing pouch, a three-way seal type, a pillow type, and a gusset type. Can be applied. Further, the shape of the packaging bag may be any shape other than a rectangular shape in a plan view, for example, a trapezoidal shape or a deformed shape having a part of unevenness.
In a sealed container using the laminated film 100 as a lid material, the laminated film 100 is placed on the edge flange of the container body for accommodating the contents in a state where the sealant layer 150 is in contact with the edge flange, and heat-bonded. , The laminated film 100 is adhered and sealed. From the viewpoint of recyclability, the container body of such a sealed container is preferably made of, for example, polyethylene terephthalate (PET) or the like. The container body of the sealed container may have any shape such as a cup shape or a tray shape.
 以上、本発明の実施形態を詳述したが、本発明は上記実施形態に限定されるものではなく、請求の範囲に記載された本発明を逸脱することなく種々の設計変更を行なうことが可能である。 Although the embodiment of the present invention has been described in detail above, the present invention is not limited to the above embodiment, and various design changes can be made without departing from the present invention described in the claims. Is.
 以下、本発明の具体的な実施例について説明するが、本発明はこれらに限定されるものではない。 Hereinafter, specific examples of the present invention will be described, but the present invention is not limited thereto.
〔実施例1~6、比較例1~3、参考例1~3〕
 厚み38μmの二軸延伸PET層(最外層)上に接着層を介して表1に示されるシーラント層(最内層)が常法のドライラミネート法で積層された積層フィルムA~Lを用意した。各積層フィルムA~Lは、シーラント層を形成する材料やその厚みが異なる。各積層フィルムA~Lのシーラント層は、表1に示すように、PTMG含有PBT共重合体、直鎖状短鎖分岐ポリエチレン(メタセロン触媒LLDPE)および高圧法低密度ポリエチレン(LDPE)、或いは無延伸ポリプロピレン(CPP)より形成される。なお、参考例で用いたポリエチレン及びポリプロピレンは、スタンディングパウチやレトルトパウチに用いられる一般的な市販品である。表1に、PTMG含有PBT共重合体の樹脂組成を示す。
 各積層フィルムA~Lにおけるシーラント層のイソフタル酸およびPTMGに由来の構造単位の含有割合は、核磁気共鳴分析装置(日本電子社製)を用いたプロトンNMR測定にて樹脂組成を分析して算出した。
 積層フィルムA~Lについて、下記方法に従ってヒートシール強度試験を行い、ヒートシール強度について評価した。結果を表1に示す。
 本発明においては、ヒートシール強度が40(N/15mm)以上である場合を実用に耐えるとして評価した。
[Examples 1 to 6, Comparative Examples 1 to 3, Reference Examples 1 to 3]
Laminated films A to L in which the sealant layer (innermost layer) shown in Table 1 was laminated on a biaxially stretched PET layer (outermost layer) having a thickness of 38 μm via an adhesive layer by a conventional dry laminating method were prepared. Each of the laminated films A to L has a different material for forming the sealant layer and a thickness thereof. As shown in Table 1, the sealant layers of the laminated films A to L are PTMG-containing PBT copolymer, linear short-chain branched polyethylene (metallocene-catalyzed LLDPE) and high-pressure low-density polyethylene (LDPE), or unstretched. Formed from polypropylene (CPP). The polyethylene and polypropylene used in the reference example are general commercial products used for standing pouches and retort pouches. Table 1 shows the resin composition of the PTMG-containing PBT copolymer.
The content ratio of the structural units derived from isophthalic acid and PTMG in the sealant layers in each of the laminated films A to L is calculated by analyzing the resin composition by proton NMR measurement using a nuclear magnetic resonance analyzer (manufactured by JEOL Ltd.). bottom.
The laminated films A to L were subjected to a heat seal strength test according to the following method, and the heat seal strength was evaluated. The results are shown in Table 1.
In the present invention, the case where the heat seal strength is 40 (N / 15 mm) or more is evaluated as being practically usable.
<ヒートシール強度試験>
 以上の積層フィルムA~Lについて、各積層フィルムをシーラント層同士が対向するよう重ね、ヒートシール試験装置(テスター産業株式会社製)を使用し、シール幅10mm、シール温度210℃(片面)、シール圧0.3MPa、シール時間1.0秒間の条件でヒートシールを行い、長さ80mm(シール幅10mm含む)、幅15mmの試験片A~Lをそれぞれ作製した。そして、試験片A~Lについて、テンシロン万能試験機(エー・アンド・デイ社製)を用いて、JIS-Z1707に準じ、23℃、50%RH環境下で引張試験を実施した。引張試験では、ヒートシール部を中心にして試験片を180°開いて、その両端を万能試験機に取り付け、300mm/minの速度で引っ張った最大荷重(N)を求めた。試験片の幅に対する最大荷重がヒートシール強度(N/15mm)として測定される。
 1種の積層フィルムについて5回測定し、最小値・最大値を除いた3回分の測定値の平均値を積層フィルムのヒートシール強度とした。
<Heat seal strength test>
For the above laminated films A to L, the laminated films are laminated so that the sealant layers face each other, and a heat seal test device (manufactured by Tester Sangyo Co., Ltd.) is used to seal the seal width at 10 mm, the seal temperature at 210 ° C. (one side), and the seal. Heat sealing was performed under the conditions of a pressure of 0.3 MPa and a sealing time of 1.0 second to prepare test pieces A to L having a length of 80 mm (including a seal width of 10 mm) and a width of 15 mm, respectively. Then, the test pieces A to L were subjected to a tensile test using a Tensilon universal tester (manufactured by A & D Co., Ltd.) in a 23 ° C. and 50% RH environment according to JIS-Z1707. In the tensile test, the test piece was opened 180 ° around the heat-sealed portion, both ends thereof were attached to a universal testing machine, and the maximum load (N) pulled at a speed of 300 mm / min was obtained. The maximum load with respect to the width of the test piece is measured as the heat seal strength (N / 15 mm).
One type of laminated film was measured 5 times, and the average value of the measured values for 3 times excluding the minimum and maximum values was taken as the heat seal strength of the laminated film.

 
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、実施例1~6に係る積層フィルムA~Fにおいては、相対的に薄いシーラント層によっても高いヒートシール強度が確保できることが確認された。 From the results in Table 1, it was confirmed that in the laminated films A to F according to Examples 1 to 6, high heat seal strength can be ensured even with a relatively thin sealant layer.
〔実施例7~10〕
 PTMG含有PBT共重合体1(またはPTMG含有PBT共重合体2)とPBTに親水性シリカを5質量%混合した樹脂組成物(表中「MB」と示す。)とを、表3に示す質量%となるよう混合して二軸押出機Aのホッパーから供給し、240~245℃で溶融した。さらにPTMGに由来の構造単位を含有しないポリブチレンテレフタレート(PBT)を二軸押出機Bのホッパーから供給し、260~270℃で溶融混練した。これらの二軸押出機A、Bから押出された樹脂をマルチマニフォールドTダイに供給し、膜状に押出してキャストロール(50℃)で冷却固化することにより、表3に示す厚さの積層フィルムM~Pを製造した。使用したPTMG含有PBT共重合体の樹脂組成を表2に示す。また、積層フィルムM~Pの、PTMG含有PBT共重合体およびMBによる層(シーラント層)の厚み、PBTによる層(基材層)の厚みは表3に示す通りであった。
[Examples 7 to 10]
The mass of the PTMG-containing PBT copolymer 1 (or PTMG-containing PBT copolymer 2) and the resin composition (indicated as “MB” in the table) obtained by mixing 5% by mass of hydrophilic silica with PBT are shown in Table 3. The mixture was mixed so as to be%, supplied from the hopper of the twin-screw extruder A, and melted at 240 to 245 ° C. Further, polybutylene terephthalate (PBT) containing no structural unit derived from PTMG was supplied from the hopper of the twin-screw extruder B and melt-kneaded at 260 to 270 ° C. The resins extruded from these twin-screw extruders A and B are supplied to a multi-manifold T-die, extruded into a film, and cooled and solidified by a cast roll (50 ° C.) to form a laminated film having the thickness shown in Table 3. MP was manufactured. The resin composition of the PTMG-containing PBT copolymer used is shown in Table 2. The thickness of the layer (sealant layer) made of the PTMG-containing PBT copolymer and MB and the thickness of the layer (base material layer) made of PBT in the laminated films MP were as shown in Table 3.
 この積層フィルムM~Pについて、以下のように突刺し強度を測定した。すなわち、直径40mmのリングにフィルムを弛みのないように張り、先端角度60度、先端R0.5mmの針を使用し、円の中央を50mm/分の速度で突き刺し、針が貫通するときの荷重(N)を突刺し強度とした(JIS-Z1707:2019に準拠)。突刺し強度の測定は、基材層側およびシーラント層側からそれぞれ行った。1種の積層フィルムについて各測定を5回実施し、最小値・最大値を除いた3回分の測定値の平均値を突刺し強度とした。結果を表3に示す。
 また、上記積層フィルムM~Pのヒートシール強度について評価するために、それぞれ評価用の積層フィルムM’~P’を別途作製し、これを用いて実施例1と同様にしてヒートシール強度試験を行ってヒートシール強度を測定した。評価用の積層フィルムM’~P’は、厚み12μmの二軸延伸PET層(基材層)上に接着層を介してそれぞれ積層フィルムM~Pに係るシーラント層を単層として形成したフィルムが常法のドライラミネート法で積層されたものである。結果を表3に示す。
The piercing strength of these laminated films MP to P was measured as follows. That is, the film is stretched on a ring having a diameter of 40 mm without slack, a needle with a tip angle of 60 degrees and a tip R0.5 mm is used, and the center of the circle is pierced at a speed of 50 mm / min, and the load when the needle penetrates. (N) was used as the piercing strength (based on JIS-Z1707: 2019). The puncture strength was measured from the base material layer side and the sealant layer side, respectively. Each measurement was carried out 5 times for one type of laminated film, and the average value of the measured values for 3 times excluding the minimum value and the maximum value was taken as the piercing strength. The results are shown in Table 3.
Further, in order to evaluate the heat seal strength of the laminated films M to P, the laminated films M'to P'for evaluation are separately prepared, and the heat seal strength test is performed using the laminated films M'to P'in the same manner as in Example 1. The heat seal strength was measured. The laminated films M'to P'for evaluation are films in which a sealant layer related to the laminated films M to P is formed as a single layer on a biaxially stretched PET layer (base material layer) having a thickness of 12 μm via an adhesive layer. It is laminated by the conventional dry laminating method. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
〔実験例1,2、比較実験例1~6〕
 表4に示される材料および厚みを有する基材層を単層フィルムとして作製し、それぞれについてレトルト処理前後の突刺し強度の測定を上記と同様にして行った。単層フィルムのレトルト処理は次の通りである。単層フィルム片をガラス板に固定し、それをレトルト瓶に入れ、水を充填・密閉した。レトルト瓶をオートクレーブにて127℃で30分間加熱する処理を行った。結果を表4に示す。
 表4中、「IA変性PET」は、イソフタル酸が共重合されたポリエチレンテレフタレートであり、「ブロックPP」は、ブロックポリプロピレンであり、「PE組成物」は、直鎖状短鎖分岐ポリエチレン(メタセロン触媒LLDPE)および高圧法低密度ポリエチレン(LDPE)からなる組成物であり、「モディック」はポリオレフィン系樹脂:商品名「モディック QC430」(三菱ケミカル株式会社製)である。
[Experimental Examples 1 and 2, Comparative Experimental Examples 1 to 6]
The material and the base material layer having the thickness shown in Table 4 were prepared as a single-layer film, and the puncture strength before and after the retort treatment was measured for each of them in the same manner as described above. The retort treatment of the monolayer film is as follows. A single-layer film piece was fixed to a glass plate, placed in a retort bottle, filled with water, and sealed. The retort bottle was heated in an autoclave at 127 ° C. for 30 minutes. The results are shown in Table 4.
In Table 4, "IA-modified PET" is polyethylene terephthalate in which isophthalic acid is copolymerized, "block PP" is block polypropylene, and "PE composition" is linear short-chain branched polyethylene (methaceron). It is a composition composed of catalyst LLDPE) and high-pressure low-density polyethylene (LDPE), and "Modic" is a polyolefin-based resin: trade name "Modic QC430" (manufactured by Mitsubishi Chemical Corporation).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3の結果から、実施例7~10に係る積層フィルムM~Pにおいては、高いヒートシール強度が得られるとともに高い突刺し強度が得られることが確認された。
 また、表4に示すように、基材層がPBTである場合にはレトルト処理前およびレトルト処理後の突刺し強度がいずれも高く、レトルト処理前後の突刺し強度の変化率が小さいことが確認された。
From the results in Table 3, it was confirmed that in the laminated films MP according to Examples 7 to 10, high heat seal strength and high piercing strength were obtained.
Further, as shown in Table 4, it was confirmed that when the base material layer is PBT, the piercing strength before and after the retort treatment is high, and the rate of change in the piercing strength before and after the retort treatment is small. Was done.
100   ・・・ 積層フィルム
110   ・・・ 基材層
111   ・・・ 表層
112   ・・・ 中間層
150   ・・・ シーラント層
 
 
100 ・ ・ ・ Laminated film 110 ・ ・ ・ Base material layer 111 ・ ・ ・ Surface layer 112 ・ ・ ・ Intermediate layer 150 ・ ・ ・ Sealant layer

Claims (13)

  1.  基材層の片側にシーラント層を設けた積層フィルムであって、
     前記シーラント層が、熱可塑性ポリエステル系樹脂により形成されたものであり、
     前記熱可塑性ポリエステル系樹脂が、ヒートシール性強化成分を含有し、
     前記熱可塑性ポリエステル系樹脂における前記ヒートシール性強化成分の含有割合が21質量%以上であることを特徴とする積層フィルム。
    A laminated film in which a sealant layer is provided on one side of a base material layer.
    The sealant layer is formed of a thermoplastic polyester resin, and the sealant layer is formed of a thermoplastic polyester resin.
    The thermoplastic polyester-based resin contains a heat-sealable reinforcing component and contains
    A laminated film characterized in that the content ratio of the heat-sealable reinforcing component in the thermoplastic polyester resin is 21% by mass or more.
  2.  前記ヒートシール性強化成分の少なくとも1つがポリオキシアルキレングリコールであり、前記熱可塑性ポリエステル系樹脂における当該ポリオキシアルキレングリコールの含有割合が、5質量%以上であることを特徴とする請求項1に記載の積層フィルム。 The first aspect of the present invention, wherein at least one of the heat-sealable reinforcing components is polyoxyalkylene glycol, and the content ratio of the polyoxyalkylene glycol in the thermoplastic polyester resin is 5% by mass or more. Laminated film.
  3.  前記積層フィルムのヒートシール強度が40N/15mm以上となることを特徴とする請求項1または請求項2に記載の積層フィルム。 The laminated film according to claim 1 or 2, wherein the heat-sealing strength of the laminated film is 40 N / 15 mm or more.
  4.  前記基材層の厚みが10~50μmであることを特徴とする請求項1乃至請求項3のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 3, wherein the base material layer has a thickness of 10 to 50 μm.
  5.  前記シーラント層の厚みが40μm以下であることを特徴とする請求項1乃至請求項4に記載の積層フィルム。 The laminated film according to claim 1 to 4, wherein the thickness of the sealant layer is 40 μm or less.
  6.  前記基材層がポリエステル系樹脂を主成分とする材料よりなることを特徴とする請求項1乃至請求項5のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 5, wherein the base material layer is made of a material containing a polyester resin as a main component.
  7.  前記積層フィルムの突刺し強度が4N以上であることを特徴とする請求項1乃至請求項6のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 6, wherein the puncture strength of the laminated film is 4N or more.
  8.  前記基材層が、ポリブチレンテレフタレート系樹脂を主成分とする材料により形成されたものであることを特徴とする請求項6または請求項7に記載の積層フィルム。 The laminated film according to claim 6 or 7, wherein the base material layer is formed of a material containing a polybutylene terephthalate resin as a main component.
  9.  前記積層フィルムが、前記基材層の片側に前記シーラント層を共押出し法により積層した共押出しフィルム部分を含むことを特徴とする請求項1乃至請求項8のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 8, wherein the laminated film includes a co-extruded film portion in which the sealant layer is laminated by a co-extrusion method on one side of the base material layer.
  10.  前記積層フィルムのレトルト処理前後の突刺し強度の変化率が±20%以内であることを特徴とする請求項9に記載の積層フィルム。 The laminated film according to claim 9, wherein the rate of change in the puncture strength before and after the retort treatment of the laminated film is within ± 20%.
  11.  前記シーラント層の基材層の反対側の面上には、耐ブロッキング層が設けられていることを特徴とする請求項1乃至請求項10のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 10, wherein a blocking-resistant layer is provided on the surface of the sealant layer on the opposite side of the base material layer.
  12.  請求項1乃至請求項11のいずれかに記載の積層フィルムを用いたことを特徴とする包装容器。 A packaging container using the laminated film according to any one of claims 1 to 11.
  13.  前記包装容器が、包装袋または前記積層フィルムからなる蓋材を用いた密封容器であることを特徴とする請求項12に記載の包装容器。
     
     
    The packaging container according to claim 12, wherein the packaging container is a packaging bag or a sealed container using a lid material made of the laminated film.

PCT/JP2021/016330 2020-04-22 2021-04-22 Multilayer film and packaging container WO2021215506A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-075896 2020-04-22
JP2020075896A JP2021171961A (en) 2020-04-22 2020-04-22 Multilayer film and packaging container

Publications (1)

Publication Number Publication Date
WO2021215506A1 true WO2021215506A1 (en) 2021-10-28

Family

ID=78269240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016330 WO2021215506A1 (en) 2020-04-22 2021-04-22 Multilayer film and packaging container

Country Status (2)

Country Link
JP (1) JP2021171961A (en)
WO (1) WO2021215506A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214345A (en) * 1990-12-11 1992-08-05 Sekisui Chem Co Ltd Composite wrapping material and wrapping container using it
JPH10139869A (en) * 1996-11-12 1998-05-26 Toyobo Co Ltd Polyester resin for sealant and laminate using the same
JPH10168293A (en) * 1996-10-09 1998-06-23 Unitika Ltd Easily tearable biaxially oriented polyester film
JP2004244555A (en) * 2003-02-17 2004-09-02 Toray Ind Inc Sheet or film excellent in transparency and tearability
JP2006305975A (en) * 2005-05-02 2006-11-09 Fujimori Kogyo Co Ltd Laminated film, packaging bag and forming method of sealant layer
JP2008222287A (en) * 2007-03-15 2008-09-25 Toppan Printing Co Ltd Pouch with zipper
WO2009116436A1 (en) * 2008-03-19 2009-09-24 株式会社イシダ Display strip
WO2014046277A1 (en) * 2012-09-21 2014-03-27 東洋製罐株式会社 Packaging material and packaging structure made by using same
JP2015150807A (en) * 2014-02-17 2015-08-24 ユニチカ株式会社 polyester laminate
WO2017179737A1 (en) * 2016-04-15 2017-10-19 ユニチカ株式会社 Laminate and outer package material for batteries
JP2018177317A (en) * 2017-04-14 2018-11-15 東洋紡株式会社 Bag-in-box inner bag

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214345A (en) * 1990-12-11 1992-08-05 Sekisui Chem Co Ltd Composite wrapping material and wrapping container using it
JPH10168293A (en) * 1996-10-09 1998-06-23 Unitika Ltd Easily tearable biaxially oriented polyester film
JPH10139869A (en) * 1996-11-12 1998-05-26 Toyobo Co Ltd Polyester resin for sealant and laminate using the same
JP2004244555A (en) * 2003-02-17 2004-09-02 Toray Ind Inc Sheet or film excellent in transparency and tearability
JP2006305975A (en) * 2005-05-02 2006-11-09 Fujimori Kogyo Co Ltd Laminated film, packaging bag and forming method of sealant layer
JP2008222287A (en) * 2007-03-15 2008-09-25 Toppan Printing Co Ltd Pouch with zipper
WO2009116436A1 (en) * 2008-03-19 2009-09-24 株式会社イシダ Display strip
WO2014046277A1 (en) * 2012-09-21 2014-03-27 東洋製罐株式会社 Packaging material and packaging structure made by using same
JP2015150807A (en) * 2014-02-17 2015-08-24 ユニチカ株式会社 polyester laminate
WO2017179737A1 (en) * 2016-04-15 2017-10-19 ユニチカ株式会社 Laminate and outer package material for batteries
JP2018177317A (en) * 2017-04-14 2018-11-15 東洋紡株式会社 Bag-in-box inner bag

Also Published As

Publication number Publication date
JP2021171961A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
JP2005145070A (en) Coextrusion biaxially stretched polyester film, its manufacturing method, and packaging material and lid material for tray comprising coextrusion biaxially stretched polyester film
KR20040091572A (en) Coextruded, Heatsealable and Peelable Polyester Film, Process for its Production and its Use
KR20050045866A (en) Process for producing a coextruded, peelable polyester film
KR20040091573A (en) Coextruded, Heatsealable and Peelable Polyester Film having Easy Peelability, Process for its Production and its Use
KR20040091591A (en) Coextruded, Heatsealable and Peelable Polyester Film, Process for its Production and its Use
JPH09254346A (en) Multilayered polyester sheet and packaging container produced by working it
JP6511713B2 (en) Laminate for packaging material
JPH09183200A (en) Laminated film
JP5193395B2 (en) Heat-sealable laminate and method for producing the same
JP2018012201A (en) Coextrusion multilayer film for deep-drawn package, and bottom material for deep-drawn package and deep-drawn package using the same
WO2021215506A1 (en) Multilayer film and packaging container
JP3193565B2 (en) Polyester multilayer sheet and container
JP6511712B2 (en) Laminate for packaging material
JP2023061529A (en) Laminate film and packaging container
JP3914440B2 (en) Overwrap package
JP2024055122A (en) Laminated films and packaging containers
WO2022065379A1 (en) Stretched multilayer film and packaging bag formed of same
JP5355975B2 (en) Composite film, deep drawing packaging bottom, deep drawing packaging lid, and deep drawing packaging
JP4102584B2 (en) Laminated body and packaging bag using the same
JPH03218830A (en) Composite packaging material and packaging container using the same
JPH0149384B2 (en)
JP2003119303A (en) Biaxially oriented polyester-based film, filmy laminate and bag for liquid packing obtained from the laminate
JP2008087181A (en) Easily openable laminated film, laminated film and lid material
JP4294916B2 (en) Easy tear film
WO2021215507A1 (en) Film for heat sealing, and packaging material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21792803

Country of ref document: EP

Kind code of ref document: A1