WO2021215022A1 - 給湯システム及びその制御方法 - Google Patents

給湯システム及びその制御方法 Download PDF

Info

Publication number
WO2021215022A1
WO2021215022A1 PCT/JP2020/020517 JP2020020517W WO2021215022A1 WO 2021215022 A1 WO2021215022 A1 WO 2021215022A1 JP 2020020517 W JP2020020517 W JP 2020020517W WO 2021215022 A1 WO2021215022 A1 WO 2021215022A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric power
hot water
heat pump
power
supply system
Prior art date
Application number
PCT/JP2020/020517
Other languages
English (en)
French (fr)
Inventor
粟田隆央
Original Assignee
慧通信技術工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 慧通信技術工業株式会社 filed Critical 慧通信技術工業株式会社
Publication of WO2021215022A1 publication Critical patent/WO2021215022A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • the present invention relates to a hot water supply system that supplies hot water by using heating by a heat pump and a control method thereof.
  • Patent Document 1 discloses a hot water supply system that operates a heat pump using the surplus power obtained by subtracting the power used from the power generated by photovoltaic power generation. As a result, hot water can be supplied while suppressing the amount of electric power supplied from the electric power company.
  • the heat pump heats the heat medium using the heat of the outside air, it can be operated efficiently when the outside air temperature is high. Therefore, it is desirable not only to utilize the electric power obtained by photovoltaic power generation but also to realize the operation according to the outside air temperature.
  • the present invention has been made in view of such circumstances, and a main object thereof is to provide a hot water supply system capable of solving the above problems and a control method thereof.
  • the hot water supply system is obtained by heating with a heat pump driven by electric power obtained by solar power generation and electric power supplied from a commercial power source and the heat pump.
  • a hot water storage tank for storing hot water and a control device for controlling the operation of the heat pump are provided, and the control device transfers the heat pump from the commercial power source when the amount of power generated by the solar power generation is equal to or higher than a predetermined threshold.
  • the first operation mode in which the supply of electric power is cut off and the heat pump is operated by using the electric power obtained by the solar power generation is executed.
  • control device further includes a battery for storing the electric power obtained by the solar power generation, the power generation amount of the solar power generation is equal to or more than a predetermined threshold value, and the stored amount of the battery is a predetermined threshold value.
  • the supply of electric power from the commercial power source to the heat pump is cut off, the electric power obtained by the solar power generation is used, and when the electric power is insufficient, the electric power supplied from the battery is used.
  • the first operation mode for operating the heat pump may be executed.
  • control device uses the electric power obtained by the photovoltaic power generation when the outside air temperature is equal to or higher than a predetermined threshold value, and when the electric power is insufficient, the electric power supplied from the commercial power source is used. It may be used to execute a second operation mode for operating the heat pump.
  • the battery further includes a battery for storing the electric power obtained by the solar power generation
  • the control device has an outside air temperature of a predetermined threshold value or more and a stored amount of the battery is a predetermined threshold value or more.
  • the control method of the hot water supply system is a heat pump driven by electric power obtained by solar power generation and electric power supplied from a commercial power source, and a hot water storage tank for storing hot water obtained by heating by the heat pump.
  • the control method of the hot water supply system including It is characterized in that the first operation mode for operating the heat pump is executed by using the heat pump.
  • the hot water supply system further includes a battery for accumulating electric power obtained by the solar power generation, the amount of power generated by the solar power generation is equal to or higher than a predetermined threshold value, and the amount of electricity stored in the battery is predetermined.
  • a battery for accumulating electric power obtained by the solar power generation the amount of power generated by the solar power generation is equal to or higher than a predetermined threshold value, and the amount of electricity stored in the battery is predetermined.
  • the electric power obtained by the photovoltaic power generation is used, and when the electric power is insufficient, the electric power supplied from the commercial power source is used to use the heat pump.
  • the second operation mode for operating the above may be executed.
  • the hot water supply system further includes a battery for accumulating electric power obtained by the solar power generation, the outside air temperature is equal to or higher than a predetermined threshold value, and the amount of electricity stored in the battery is equal to or higher than a predetermined threshold value.
  • the electric power obtained by the solar power generation is used, when the electric power is insufficient, the electric power supplied from the battery is used, and when the electric power is further insufficient, the electric power supplied from the commercial power source is used.
  • the second operation mode for operating the heat pump may be executed.
  • FIG. The flowchart which shows the procedure of the operation mode selection process executed by the control device of the hot water supply system of Embodiment 1.
  • FIG. The figure which shows the whole structure of the hot water supply system of Embodiment 2.
  • the flowchart which shows the procedure of the operation mode selection process executed by the control device of the hot water supply system of Embodiment 2.
  • the heat pump is operated by the electric power obtained by the photovoltaic power generation in addition to the electric power supplied from the commercial power source.
  • the configuration and operation of this hot water supply system will be described.
  • FIG. 1 is a block diagram showing an overall configuration of the hot water supply system of the first embodiment.
  • the hot water supply system 1 of the present embodiment includes a control device 11, a heat pump unit 12, a hot water storage tank 13, a gas unit 14, and a temperature sensor 15.
  • the control device 11 is composed of a CPU, a memory, and the like. When the CPU executes the program stored in this memory, the operation of the hot water supply system 1 described later is realized.
  • the heat pump unit 12 is a heat pump type heat source machine that uses electricity as an energy source and absorbs heat from the outside air to heat the medium.
  • the heat pump unit 12 includes a heat pump cycle composed of a compressor (not shown), a heat exchanger, and an expansion valve, and hot water is generated by heating by the heat pump cycle.
  • the hot water generated by the heat pump unit 12 is supplied to the hot water storage tank 13.
  • the heating capacity of the heat pump unit 12 can be adjusted by changing the operating frequency of the compressor.
  • the heat pump unit 12 operates in a plurality of specific operation modes.
  • the operation mode is selected by the control device 11. The contents of each operation mode and the details of the selection process will be described later.
  • the hot water storage tank 13 stores hot water heated by the heat pump unit 12. Under the control of the control device 11, the hot water stored in the hot water storage tank 13 is supplied to a hot water supply necessary place such as a bathtub B.
  • the gas unit 14 is a combustion type heat source machine that uses gas as an energy source. According to the instruction from the control device 11, the gas unit 14 heats water supplied from a water supply facility (not shown) to generate hot water when the amount of hot water stored in the hot water storage tank 13 is insufficient, or hot water in the hot water storage tank 13. When the temperature of the hot water storage tank 13 is not sufficient, the hot water supplied from the hot water storage tank 13 is heated.
  • the temperature sensor 15 is a sensor for detecting the outside air temperature, and outputs a signal indicating the detection result.
  • the control device 11 repeatedly acquires the output signal from the temperature sensor 15 at predetermined time intervals and monitors the outside air temperature.
  • the hot water supply system 1 is provided with the temperature sensor 15, but the temperature sensor 15 may be provided outside the hot water supply system 1.
  • the hot water supply system 1 configured as described above uses power obtained from solar power generation as a power source in addition to power supplied from a commercial power source.
  • the solar panel 2 for photovoltaic power generation is composed of a plurality of solar cells and is connected to a junction box 3.
  • the junction box 3 collects the DC power generated by each solar cell of the solar panel 2 and supplies it to the power conditioner 4.
  • the power conditioner 4 converts the DC power received from the junction box 3 into AC power and supplies it to the distribution board 5.
  • this AC power will be referred to as photovoltaic power generation.
  • the distribution board 5 distributes the photovoltaic power generated from the power conditioner 4 to each place of use, and also distributes the AC power supplied from the commercial power source (hereinafter referred to as “commercial power”) to each place of use. do. A part of the electric power distributed by the distribution board 5 is supplied to the hot water supply system 1.
  • a current detection device 6 for detecting the current value output from the solar panel 2 is connected to the solar panel 2. This current value corresponds to the amount of power generated by the solar panel 2.
  • the current detection device 6 outputs a signal indicating the detection result of the current value to the control device 11 of the hot water supply system 1.
  • the control device 11 repeatedly acquires the output signal from the current detection device 6 at predetermined time intervals, and monitors the amount of power generated by the solar panel 2.
  • the hot water supply system 1 supplies hot water according to an instruction from the user.
  • the hot water used for the hot water supply is generated in advance by the operation of the heat pump unit 12, and is stored in the hot water storage tank 13.
  • three operation modes of the heat pump unit 12 are prepared, and each operation mode is selected by the control device 11.
  • the contents of each operation mode and the details of the operation mode selection process for selecting the operation mode will be described.
  • the first operation mode is a mode in which the heat pump unit 12 is operated at maximum by the photovoltaic power generation after cutting off the commercial power.
  • the maximum operation means that the compressor included in the heat pump unit 12 is operated at the maximum operating frequency. As a result, the heating capacity of the heat pump unit 12 is maximized.
  • the second operation mode is a mode in which the heat pump unit 12 is operated at maximum by using both commercial power and photovoltaic power generation. In this case, the use of photovoltaic power is prioritized, and commercial power is used only when photovoltaic power is insufficient. The content of the maximum operation is the same as in the case of the first operation mode.
  • the third operation mode is a mode in which the heat pump unit 12 is operated at a preset reserved time by using both commercial power and photovoltaic power generation.
  • this operation is referred to as a planned operation.
  • the use of photovoltaic power generation is prioritized, and commercial power is used only when the photovoltaic power generation power is insufficient.
  • FIG. 2 is a flowchart showing the procedure of the operation mode selection process executed by the control device 11 of the hot water supply system 1.
  • the control device 11 acquires the current value output from the solar panel 2 based on the signal input from the current detection device 6 (S101). Then, the control device 11 determines whether or not the current value is equal to or higher than a predetermined threshold value (S102). This threshold value is determined based on the power generation capacity of the solar panel 2, the season, and the like.
  • step S102 When it is determined in step S102 that the current value is equal to or higher than a predetermined threshold value (YES in S102), the control device 11 executes the first operation mode (S103), and ends the operation mode selection process.
  • the current value (power generation amount) output from the solar panel 2 tends to increase when the sunshine conditions are good.
  • the outside air temperature tends to be high. Therefore, when the amount of power generated by the solar panel 2 is equal to or higher than a predetermined threshold value, it is estimated that the outside air temperature is high. Since the heat pump unit 12 absorbs heat from the outside air to heat the medium, it is possible to efficiently heat the medium when the outside air temperature is high. Therefore, in the present embodiment, when the amount of power generated by the solar panel 2 is equal to or greater than a predetermined threshold value, the first operation mode for maximally operating the heat pump unit 12 is executed. As described above, in the first operating mode, commercial power is cut off and only photovoltaic power is used. Since the amount of power generated by the solar panel 2 is large, the photovoltaic power generation alone is sufficient.
  • step S102 When it is determined in step S102 that the current value is not equal to or higher than a predetermined threshold value (NO in S102), the control device 11 acquires the outside air temperature based on the signal input from the temperature sensor 15 (S104), and the outside air thereof. It is determined whether or not the temperature is equal to or higher than a predetermined threshold value (S105). This threshold value is determined based on time, season, and the like.
  • step S105 When it is determined in step S105 that the outside air temperature is equal to or higher than a predetermined threshold value (YES in S105), the control device 11 executes the second operation mode (S106), and ends the operation mode selection process.
  • the heat pump unit 12 can efficiently heat. Therefore, in the present embodiment, when the outside air temperature is equal to or higher than a predetermined threshold value, the second operation mode for maximally operating the heat pump unit 12 is executed. As described above, in the second operation mode, although commercial power and photovoltaic power generation are used together, the use of photovoltaic power generation power is prioritized. Therefore, the use of commercial power can be limited.
  • step S105 If it is determined in step S105 that the outside air temperature is not equal to or higher than a predetermined threshold value (NO in S105), the control device 11 executes the third operation mode (S107), and ends the operation mode selection process.
  • the planned operation of the heat pump unit 12 is performed. Even in this case, as in the case of the second operation mode, the photovoltaic power generation is used with priority over the commercial power, so that the use of the commercial power can be limited.
  • the operation mode of the heat pump unit 12 is selected according to the outside air temperature, efficient heating becomes possible. Further, by using the photovoltaic power generation as much as possible, the use of commercial power can be suppressed.
  • the hot water supply system of the present embodiment includes a battery that stores photovoltaic power generation, and the heat pump can be operated using the power supplied from the battery.
  • the configuration and operation of this hot water supply system will be described.
  • FIG. 3 is a block diagram showing the overall configuration of the hot water supply system according to the second embodiment.
  • the hot water supply system 10 of the present embodiment includes a battery 16 that stores surplus electric power of photovoltaic power generation.
  • the control device 11 uses the electric power stored in the battery 16 (hereinafter, referred to as “battery electric power”) to operate the heat pump unit 12 and the like. Make it work. Since the other configurations of the hot water supply system 10 are the same as those in the first embodiment, the same reference numerals are given and the description thereof will be omitted.
  • the hot water supply system 10 selects one of the three operation modes to operate the heat pump unit 12.
  • the contents of each operation mode and the details of the operation mode selection process for selecting the operation mode will be described.
  • the first operation mode is a mode in which the heat pump unit 12 is operated at maximum with the photovoltaic power generation power and the battery power after shutting off the commercial power.
  • the maximum operation means that the compressor included in the heat pump unit 12 is operated at the maximum operating frequency, whereby the heating capacity of the heat pump unit 12 is maximized.
  • priority is given to the use of photovoltaic power generation, and battery power is used when the photovoltaic power generation power is insufficient.
  • the second operation mode is a mode in which the heat pump unit 12 is operated at maximum by using commercial power, photovoltaic power generation power, and battery power in combination.
  • the use of photovoltaic power is prioritized, and battery power is used when the photovoltaic power is insufficient, and commercial power is used when the battery power is insufficient.
  • the content of the maximum operation is the same as in the case of the first operation mode.
  • the third operation mode is a mode in which the heat pump unit 12 is operated (planned operation) at a preset reserved time by using commercial power, photovoltaic power generation power, and battery power in combination.
  • the photovoltaic power generation is used with the highest priority, and the battery power and the commercial power are used in this order.
  • FIG. 4 is a flowchart showing the procedure of the operation mode selection process executed by the control device 11 of the hot water supply system 10.
  • the control device 11 acquires the current value output from the solar panel 2 based on the signal input from the current detection device 6 (S201), and further acquires the stored amount of the battery 16 (S202).
  • the control device 11 determines whether or not each of the current value and the stored amount is equal to or higher than a predetermined threshold value (S203).
  • the threshold value for the current value is determined based on the power generation capacity and season of the solar panel 2, and the threshold value for the amount of stored electricity is determined based on the capacity of the battery 16 and the like.
  • step S203 When it is determined in step S203 that both the current value and the stored amount are equal to or higher than a predetermined threshold value (YES in S203), the control device 11 executes the first operation mode (S204), and ends the operation mode selection process. do.
  • the photovoltaic power generation power is preferentially used, and when it is insufficient, the battery power is used. Since the amount of power generated by the solar panel 2 is large, the photovoltaic power generation can be sufficiently used, and if there is a shortage, the battery power can be used. As a result, the heat pump unit 12 can be operated efficiently while suppressing the use of commercial power.
  • step S203 when it is determined in step S203 that at least one of the current value and the stored amount is not equal to or higher than a predetermined threshold value (NO in S203), the control device 11 determines the outside air temperature based on the signal input from the temperature sensor 15. It is acquired (S205), and it is determined whether or not the outside air temperature and the amount of electricity stored in the battery 16 are equal to or higher than a predetermined threshold value (S206).
  • the threshold value for the outside air temperature is determined based on time, season, and the like.
  • the threshold value for the amount of stored electricity is the same as that of step S203.
  • step S206 When it is determined in step S206 that both the outside air temperature and the amount of stored electricity are equal to or higher than a predetermined threshold value (YES in S206), the control device 11 executes the second operation mode (S207) and ends the operation mode selection process. do.
  • the photovoltaic power generation power and the battery power are preferentially used, the use of commercial power can be limited as in the case of the first embodiment, and then the heat pump unit 12 Can be operated efficiently.
  • step S206 If it is determined in step S206 that the outside air temperature is not equal to or higher than a predetermined threshold value (NO in S206), the control device 11 executes the third operation mode (S208), and ends the operation mode selection process.
  • the planned operation of the heat pump unit 12 is performed. Even in this case, as in the case of the second operation mode, the photovoltaic power generation power and the battery power are used in preference to the commercial power, so that the use of the commercial power can be limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

給湯システム(1)は、太陽光パネル(2)により得られる電力及び商用電源から供給される電力により駆動するヒートポンプユニット(12)と、ヒートポンプユニット(12)により加熱して得られた湯水を貯湯する貯湯タンク(13)と、ヒートポンプユニット(12)の動作を制御する制御装置(11)とを備える。制御装置(11)は、太陽光パネル(2)の発電量が所定の閾値以上である場合、商用電源からヒートポンプユニット(12)への電力の供給を遮断し、太陽光パネル(2)により得られる電力を用いてヒートポンプユニット(12)を動作させる第1動作モードを実行する。

Description

給湯システム及びその制御方法
 本発明は、ヒートポンプによる加熱を利用して給湯を行う給湯システム及びその制御方法に関する。
 近年、ヒートポンプによる加熱を利用して給湯を行う給湯システムとして、太陽光発電により得られた電力を用いてヒートポンプを駆動させるものが提案されている。例えば、特許文献1には、太陽光発電による発電電力から使用電力を除いた余剰電力が存在する場合に、その余剰電力を用いてヒートポンプを運転させる給湯システムが開示されている。これにより、電力会社から供給される電力の使用量を抑制しながら給湯を行うことができる。
特開2017-36842号公報
 ところで、ヒートポンプは外気の熱を用いて熱媒を加熱するため、外気温度が高い場合に効率良く運転することができる。そのため、太陽光発電により得られた電力を利用するだけでなく、外気温度に応じた運転を実現することが望ましい。
 本発明は斯かる事情に鑑みてなされたものであり、その主たる目的は、上記課題を解決することができる給湯システム及びその制御方法を提供することにある。
 上記の課題を解決するために、本発明の一の態様の給湯システムは、太陽光発電により得られる電力及び商用電源から供給される電力により駆動するヒートポンプと、前記ヒートポンプにより加熱して得られた湯水を貯湯する貯湯タンクと、前記ヒートポンプの動作を制御する制御装置とを備え、前記制御装置は、前記太陽光発電の発電量が所定の閾値以上である場合、前記商用電源から前記ヒートポンプへの電力の供給を遮断し、前記太陽光発電により得られる電力を用いて前記ヒートポンプを動作させる第1動作モードを実行する。
 前記態様において、前記太陽光発電により得られる電力を蓄積するバッテリーをさらに備え、前記制御装置は、前記太陽光発電の発電量が所定の閾値以上であり、且つ前記バッテリーの蓄電量が所定の閾値以上である場合、前記商用電源から前記ヒートポンプへの電力の供給を遮断し、前記太陽光発電により得られる電力を用いて、当該電力で不足するときは前記バッテリーから供給される電力を用いて、前記ヒートポンプを動作させる前記第1動作モードを実行するようにしてもよい。
 また、前記態様において、前記制御装置は、外気温度が所定の閾値以上である場合、前記太陽光発電により得られる電力を用いて、当該電力で不足するときは前記商用電源から供給される電力を用いて、前記ヒートポンプを動作させる第2動作モードを実行するようにしてもよい。
 また、前記態様において、前記太陽光発電により得られる電力を蓄積するバッテリーをさらに備え、前記制御装置は、外気温度が所定の閾値以上であり、且つ前記バッテリーの蓄電量が所定の閾値以上である場合、前記太陽光発電により得られる電力を用いて、当該電力で不足するときは前記バッテリーから供給される電力を用いて、さらに不足するときは前記商用電源から供給される電力を用いて、前記ヒートポンプを動作させる前記第2動作モードを実行するようにしてもよい。
 本発明の一の態様の給湯システムの制御方法は、太陽光発電により得られる電力及び商用電源から供給される電力により駆動するヒートポンプと、前記ヒートポンプにより加熱して得られた湯水を貯湯する貯湯タンクとを備える給湯システムの制御方法において、前記太陽光発電の発電量が所定の閾値以上である場合、前記商用電源から前記ヒートポンプへの電力の供給を遮断し、前記太陽光発電により得られる電力を用いて前記ヒートポンプを動作させる第1動作モードを実行することを特徴とする。
 前記態様において、前記給湯システムは、前記太陽光発電により得られる電力を蓄積するバッテリーをさらに備えており、前記太陽光発電の発電量が所定の閾値以上であり、且つ前記バッテリーの蓄電量が所定の閾値以上である場合、前記商用電源から前記ヒートポンプへの電力の供給を遮断し、前記太陽光発電により得られる電力を用いて、当該電力で不足するときは前記バッテリーから供給される電力を用いて、前記ヒートポンプを動作させる前記第1動作モードを実行するようにしてもよい。
 また、前記態様において、外気温度が所定の閾値以上である場合、前記太陽光発電により得られる電力を用いて、当該電力で不足するときは前記商用電源から供給される電力を用いて、前記ヒートポンプを動作させる第2動作モードを実行するようにしてもよい。
 また、前記態様において、前記給湯システムは、前記太陽光発電により得られる電力を蓄積するバッテリーをさらに備えており、外気温度が所定の閾値以上であり、且つ前記バッテリーの蓄電量が所定の閾値以上である場合、前記太陽光発電により得られる電力を用いて、当該電力で不足するときは前記バッテリーから供給される電力を用いて、さらに不足するときは前記商用電源から供給される電力を用いて、前記ヒートポンプを動作させる前記第2動作モードを実行するようにしてもよい。
 本発明によれば、電力会社から供給される電力の使用量を抑制した上で、ヒートポンプを効率良く運転させることが可能になる。
実施の形態1の給湯システムの全体構成を示す図。 実施の形態1の給湯システムの制御装置によって実行される動作モード選択処理の手順を示すフローチャート。 実施の形態2の給湯システムの全体構成を示す図。 実施の形態2の給湯システムの制御装置によって実行される動作モード選択処理の手順を示すフローチャート。
 以下、本発明の好ましい実施の形態について、図面を参照しながら説明する。なお、以下に示す各実施の形態は、本発明の技術的思想を具体化するための方法及び装置を例示するものであって、本発明の技術的思想は下記のものに限定されるわけではない。本発明の技術的思想は、請求の範囲に記載された技術的範囲内において種々の変更を加えることができる。
 (実施の形態1)
 本実施の形態の給湯システムは、商用電源から供給される電力に加えて太陽光発電により得られる電力によってヒートポンプを動作させる。以下、この給湯システムの構成及び動作について説明する。
 [給湯システム1の構成]
 図1は、実施の形態1の給湯システムの全体構成を示すブロック図である。本実施の形態の給湯システム1は、制御装置11と、ヒートポンプユニット12と、貯湯タンク13と、ガスユニット14と、温度センサ15とを備えている。
 制御装置11は、CPU及びメモリなどで構成される。このメモリに記憶されているプラグラムをCPUが実行することにより、後述する給湯システム1の動作が実現される。
 ヒートポンプユニット12は、電気をエネルギー源とし、外気から吸熱して媒体を加熱するヒートポンプ方式の熱源機である。ヒートポンプユニット12は、図示しない圧縮機、熱交換器、及び膨張弁から構成されるヒートポンプサイクルを備えており、このヒートポンプサイクルによる加熱によって湯水が生成される。ヒートポンプユニット12によって生成された温水は貯湯タンク13に供給される。なお、ヒートポンプユニット12の加熱能力は、圧縮機の運転周波数を変えることによって調整することができる。
 ヒートポンプユニット12は、特定の複数の動作モードで動作する。動作モードの選択は、制御装置11によって行われる。各動作モードの内容及びその選択処理の詳細については後述する。
 貯湯タンク13は、ヒートポンプユニット12によって加熱された温水を貯留する。制御装置11による制御により、貯湯タンク13に貯湯された温水は、浴槽B等の給湯必要箇所に給湯される。
 ガスユニット14は、ガスをエネルギー源とする燃焼式の熱源機である。ガスユニット14は、制御装置11からの指示にしたがって、貯湯タンク13の貯湯量では不足する場合に図示しない給水設備から供給される水を加熱して湯水を生成したり、貯湯タンク13内の湯水の温度が十分ではない場合に貯湯タンク13から供給される湯水を加熱したりする。
 温度センサ15は、外気温度を検出するためのセンサであり、その検出結果を示す信号を出力する。制御装置11は、温度センサ15からの出力信号を所定の時間間隔で繰り返し取得し、外気温度を監視する。なお、本実施の形態では給湯システム1が温度センサ15を備えているが、温度センサ15が給湯システム1の外部に設けられていてもよい。
 上記のように構成された給湯システム1は、商用電源から供給される電力の他、太陽光発電により得られる電力を動力源とする。その太陽光発電のための太陽光パネル2は、複数の太陽電池により構成されており、接続箱3に接続されている。接続箱3は、太陽光パネル2の各太陽電池によって発電された直流電力を集めて、パワーコンディショナ4に供給する。
 パワーコンディショナ4は、接続箱3から受けた直流電力を交流電力に変換して分電盤5に供給する。以下、この交流電力を太陽光発電電力と称する。
 分電盤5は、パワーコンディショナ4から入力された太陽光発電電力を各使用箇所に分配するとともに、商用電源から供給される交流電力(以下、「商用電力」という)も各使用箇所に分配する。分電盤5によって分配される電力の一部は、給湯システム1に供給される。
 また、太陽光パネル2には、太陽光パネル2から出力される電流値を検出する電流検出装置6が接続されている。この電流値は、太陽光パネル2の発電量に相当する。電流検出装置6は、電流値の検出結果を示す信号を給湯システム1の制御装置11に対して出力する。制御装置11は、電流検出装置6からの出力信号を所定の時間間隔で繰り返し取得し、太陽光パネル2の発電量を監視する。
 [給湯システム1の動作]
 次に、給湯システム1の動作について、フローチャートを参照しながら説明する。給湯システム1は、ユーザからの指示に応じて給湯を行う。その給湯に用いられる湯水は、ヒートポンプユニット12の動作により事前に生成され、貯湯タンク13に貯湯されている。本実施の形態では、このヒートポンプユニット12の動作モードが3つ用意されており、制御装置11によって各動作モードが選択される。以下、各動作モードの内容、及び動作モードの選択を行うための動作モード選択処理の詳細について説明する。
 本実施の形態では、以下の3つの動作モードが用意されている。
 (1)第1動作モード
 第1動作モードは、商用電力を遮断した上で、太陽光発電電力でヒートポンプユニット12を最大運転させるモードである。ここで、最大運転とは、ヒートポンプユニット12が備える圧縮機を最大運転周波数で運転させることを示している。これにより、ヒートポンプユニット12の加熱能力が最大となる。
 (2)第2動作モード
 第2動作モードは、商用電力及び太陽光発電電力を併用してヒートポンプユニット12を最大運転させるモードである。この場合、太陽光発電電力の使用が優先され、太陽光発電電力では不足する場合にのみ商用電力が使用される。なお、最大運転の内容は第1動作モードの場合と同様である。
 (3)第3動作モード
 第3動作モードは、商用電力及び太陽光発電電力を併用して、予め設定された予約時間にヒートポンプユニット12を運転させるモードである。以下、この運転を計画運転と称する。この第3動作モードにおいても、第2動作モードの場合と同様に、太陽光発電電力の使用が優先され、太陽光発電電力では不足する場合にのみ商用電力が使用される。
 図2は、給湯システム1の制御装置11によって実行される動作モード選択処理の手順を示すフローチャートである。制御装置11はまず、電流検出装置6から入力された信号に基づいて、太陽光パネル2から出力される電流値を取得する(S101)。そして、制御装置11は、その電流値が所定の閾値以上であるか否かを判定する(S102)。なお、この閾値は、太陽光パネル2の発電能力及び季節などに基づいて決定される。
 ステップS102において電流値が所定の閾値以上であると判定した場合(S102でYES)、制御装置11は、第1動作モードを実行し(S103)、動作モード選択処理を終了する。
 太陽光パネル2から出力される電流値(発電量)は、日照条件が良い場合に高くなる傾向にある。また、日照条件が良い場合は外気温度も高くなる傾向にある。そのため、太陽光パネル2の発電量が所定の閾値以上となっている場合、外気温度が高いことが推定される。ヒートポンプユニット12は、外気から吸熱して媒体を加熱するため、外気温度が高いと効率良く加熱を行うことができる。そこで、本実施の形態では、太陽光パネル2の発電量が所定の閾値以上である場合、ヒートポンプユニット12を最大運転させる第1動作モードが実行される。上述したとおり、第1動作モードでは、商用電力が遮断され、太陽光発電電力のみが使用される。太陽光パネル2の発電量が大きい状況であるため、太陽光発電電力のみで十分対応することができる。
 ステップS102において電流値が所定の閾値以上ではないと判定した場合(S102でNO)、制御装置11は、温度センサ15から入力された信号に基づいて、外気温度を取得し(S104)、その外気温度が所定の閾値以上であるか否かを判定する(S105)。なお、この閾値は、時間及び季節などに基づいて決定される。
 ステップS105において外気温度が所定の閾値以上であると判定した場合(S105でYES)、制御装置11は、第2動作モードを実行し(S106)、動作モード選択処理を終了する。
 上述したとおり、外気温度が高い場合、ヒートポンプユニット12は効率良く加熱を行うことができる。そこで、本実施の形態では、外気温度が所定の閾値以上である場合、ヒートポンプユニット12を最大運転させる第2動作モードが実行される。上述したとおり、第2動作モードでは、商用電力及び太陽光発電電力が併用されるものの、太陽光発電電力の使用が優先される。そのため、商用電力の使用を限定的なものにすることができる。
 また、ステップS105において外気温度が所定の閾値以上ではないと判定した場合(S105でNO)、制御装置11は、第3動作モードを実行し(S107)、動作モード選択処理を終了する。
 第3動作モードでは、ヒートポンプユニット12の計画運転が行われる。この場合でも、第2動作モードの場合と同様に、太陽光発電電力が商用電力よりも優先して使用されるため、商用電力の使用を限定的なものにすることができる。
 上記のとおり、本実施の形態では、外気温度に応じてヒートポンプユニット12の動作モードが選択されるため、効率良く加熱することが可能になる。また、太陽光発電電力を可能な限り使用することによって、商用電力の使用を抑制することができる。
 (実施の形態2)
 本実施の形態の給湯システムは、太陽光発電電力を蓄積するバッテリーを備えており、そのバッテリーから供給される電力を用いてヒートポンプを動作させることができる。以下、この給湯システムの構成及び動作について説明する。
 [給湯システム10の構成]
 図3は、実施の形態2の給湯システムの全体構成を示すブロック図である。本実施の形態の給湯システム10は、太陽光発電電力の余剰電力を蓄積するバッテリー16を備えている。制御装置11は、夜間及び雨天時など太陽光パネル2の発電量が十分ではないときに、バッテリー16に蓄えられている電力(以下、「バッテリー電力」という)を使用してヒートポンプユニット12などを動作させる。なお、給湯システム10のその他の構成については、実施の形態1の場合と同様であるため、同一符号を付して説明を省略する。
 [給湯システム10の動作]
 次に、給湯システム10の動作について、フローチャートを参照しながら説明する。給湯システム10は、実施の形態1の場合と同様に、3つの動作モードの中から1つを選択し、ヒートポンプユニット12を作動させる。以下、各動作モードの内容、及び動作モードの選択を行うための動作モード選択処理の詳細について説明する。
 本実施の形態では、以下の3つの動作モードが用意されている。
 (1)第1動作モード
 第1動作モードは、商用電力を遮断した上で、太陽光発電電力及びバッテリー電力でヒートポンプユニット12を最大運転させるモードである。ここで、最大運転とは、ヒートポンプユニット12が備える圧縮機を最大運転周波数で運転させることを示しており、これによりヒートポンプユニット12の加熱能力が最大となる。第1動作モードにおいては、太陽光発電電力の使用が優先され、太陽光発電電力では不足する場合にバッテリー電力が使用される。
 (2)第2動作モード
 第2動作モードは、商用電力、太陽光発電電力及びバッテリー電力を併用してヒートポンプユニット12を最大運転させるモードである。第2動作モードにおいては、太陽光発電電力の使用が優先され、太陽光発電電力では不足する場合にバッテリー電力が、さらにバッテリー電力では不足する場合に商用電力が、それぞれ使用される。なお、最大運転の内容は第1動作モードの場合と同様である。
 (3)第3動作モード
 第3動作モードは、商用電力、太陽光発電電力及びバッテリー電力を併用して、予め設定された予約時間にヒートポンプユニット12を運転(計画運転)させるモードである。この第3動作モードにおいても、第2動作モードの場合と同様に、太陽光発電電力が最優先で使用され、バッテリー電力及び商用電力がこの順に使用される。
 図4は、給湯システム10の制御装置11によって実行される動作モード選択処理の手順を示すフローチャートである。制御装置11は、電流検出装置6から入力された信号に基づいて、太陽光パネル2から出力される電流値を取得し(S201)、さらに、バッテリー16の蓄電量を取得する(S202)。
 次に、制御装置11は、電流値及び蓄電量のそれぞれが所定の閾値以上であるか否かを判定する(S203)。なお、電流値に対する閾値は太陽光パネル2の発電能力及び季節などに基づいて、蓄電量に対する閾値はバッテリー16の容量などに基づいて、それぞれ決定される。
 ステップS203において電流値及び蓄電量の何れもが所定の閾値以上であると判定した場合(S203でYES)、制御装置11は、第1動作モードを実行し(S204)、動作モード選択処理を終了する。
 実施の形態1の場合と同様、第1動作モードでは商用電力が遮断された上で、太陽光発電電力が優先的に使用され、それで不足する場合にバッテリー電力が使用される。太陽光パネル2の発電量が大きい状況であるため、太陽光発電電力で十分対応可能であり、不足する場合はバッテリー電力で対応することができる。これにより、商用電力の使用を抑制した上で、ヒートポンプユニット12を効率良く動作させることができる。
 また、ステップS203において電流値及び蓄電量の少なくとも一方が所定の閾値以上ではないと判定した場合(S203でNO)、制御装置11は、温度センサ15から入力された信号に基づいて、外気温度を取得し(S205)、その外気温度及びバッテリー16の蓄電量が所定の閾値以上であるか否かを判定する(S206)。なお、外気温度に対する閾値は、時間及び季節などに基づいて決定される。蓄電量に対する閾値はステップS203のものと同じである。
 ステップS206において外気温度及び蓄電量の何れもが所定の閾値以上であると判定した場合(S206でYES)、制御装置11は、第2動作モードを実行し(S207)、動作モード選択処理を終了する。
 上述したとおり、太陽光発電電力及びバッテリー電力が優先的に使用されるため、実施の形態1の場合と同様に商用電力の使用を限定的なものとすることができ、その上でヒートポンプユニット12を効率良く動作させることができる。
 また、ステップS206において外気温度が所定の閾値以上ではないと判定した場合(S206でNO)、制御装置11は、第3動作モードを実行し(S208)、動作モード選択処理を終了する。
 第3動作モードでは、ヒートポンプユニット12の計画運転が行われる。この場合でも、第2動作モードの場合と同様に、太陽光発電電力及びバッテリー電力が商用電力よりも優先して使用されるため、商用電力の使用を限定的なものにすることができる。
 1,10 給湯システム
 11 制御装置
 12 ヒートポンプユニット
 13 貯湯タンク
 14 ガスユニット
 15 温度センサ
 16 バッテリー
 2  太陽光パネル
 3  接続箱
 4  パワーコンディショナ
 5  分電盤
 6  電流検出装置

Claims (8)

  1.  太陽光発電により得られる電力及び商用電源から供給される電力により駆動するヒートポンプと、
     前記ヒートポンプにより加熱して得られた湯水を貯湯する貯湯タンクと、
     前記ヒートポンプの動作を制御する制御装置と
     を備え、
     前記制御装置は、前記太陽光発電の発電量が所定の閾値以上である場合、前記商用電源から前記ヒートポンプへの電力の供給を遮断し、前記太陽光発電により得られる電力を用いて前記ヒートポンプを動作させる第1動作モードを実行する、
     給湯システム。
  2.  前記太陽光発電により得られる電力を蓄積するバッテリーを
     さらに備え、
     前記制御装置は、前記太陽光発電の発電量が所定の閾値以上であり、且つ前記バッテリーの蓄電量が所定の閾値以上である場合、前記商用電源から前記ヒートポンプへの電力の供給を遮断し、前記太陽光発電により得られる電力を用いて、当該電力で不足するときは前記バッテリーから供給される電力を用いて、前記ヒートポンプを動作させる前記第1動作モードを実行する、
     請求項1に記載の給湯システム。
  3.  前記制御装置は、外気温度が所定の閾値以上である場合、前記太陽光発電により得られる電力を用いて、当該電力で不足するときは前記商用電源から供給される電力を用いて、前記ヒートポンプを動作させる第2動作モードを実行する、
     請求項1又は2に記載の給湯システム。
  4.  前記太陽光発電により得られる電力を蓄積するバッテリーを
     さらに備え、
     前記制御装置は、外気温度が所定の閾値以上であり、且つ前記バッテリーの蓄電量が所定の閾値以上である場合、前記太陽光発電により得られる電力を用いて、当該電力で不足するときは前記バッテリーから供給される電力を用いて、さらに不足するときは前記商用電源から供給される電力を用いて、前記ヒートポンプを動作させる前記第2動作モードを実行する、
     請求項3に記載の給湯システム。
  5.  太陽光発電により得られる電力及び商用電源から供給される電力により駆動するヒートポンプと、前記ヒートポンプにより加熱して得られた湯水を貯湯する貯湯タンクとを備える給湯システムの制御方法において、
     前記太陽光発電の発電量が所定の閾値以上である場合、前記商用電源から前記ヒートポンプへの電力の供給を遮断し、前記太陽光発電により得られる電力を用いて前記ヒートポンプを動作させる第1動作モードを実行することを特徴とする、
     給湯システムの制御方法。
  6.  前記給湯システムは、前記太陽光発電により得られる電力を蓄積するバッテリーをさらに備えており、
     前記太陽光発電の発電量が所定の閾値以上であり、且つ前記バッテリーの蓄電量が所定の閾値以上である場合、前記商用電源から前記ヒートポンプへの電力の供給を遮断し、前記太陽光発電により得られる電力を用いて、当該電力で不足するときは前記バッテリーから供給される電力を用いて、前記ヒートポンプを動作させる前記第1動作モードを実行する、
     請求項5に記載の給湯システムの制御方法。
  7.  外気温度が所定の閾値以上である場合、前記太陽光発電により得られる電力を用いて、当該電力で不足するときは前記商用電源から供給される電力を用いて、前記ヒートポンプを動作させる第2動作モードを実行する、
     請求項5又は6に記載の給湯システムの制御方法。
  8.  前記給湯システムは、前記太陽光発電により得られる電力を蓄積するバッテリーをさらに備えており、
     外気温度が所定の閾値以上であり、且つ前記バッテリーの蓄電量が所定の閾値以上である場合、前記太陽光発電により得られる電力を用いて、当該電力で不足するときは前記バッテリーから供給される電力を用いて、さらに不足するときは前記商用電源から供給される電力を用いて、前記ヒートポンプを動作させる前記第2動作モードを実行する、
     請求項7に記載の給湯システムの制御方法。
PCT/JP2020/020517 2020-04-24 2020-05-25 給湯システム及びその制御方法 WO2021215022A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-077055 2020-04-24
JP2020077055 2020-04-24

Publications (1)

Publication Number Publication Date
WO2021215022A1 true WO2021215022A1 (ja) 2021-10-28

Family

ID=78270426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020517 WO2021215022A1 (ja) 2020-04-24 2020-05-25 給湯システム及びその制御方法

Country Status (1)

Country Link
WO (1) WO2021215022A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7368814B1 (ja) 2023-03-31 2023-10-25 ダイキン工業株式会社 電気機器および電気機器を備える電力システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010288375A (ja) * 2009-06-11 2010-12-24 Panasonic Electric Works Co Ltd 系統連系システム
JP2016080248A (ja) * 2014-10-16 2016-05-16 三菱電機株式会社 給湯システム
JP2017207249A (ja) * 2016-05-19 2017-11-24 リンナイ株式会社 給湯システム
JP2018136103A (ja) * 2017-02-23 2018-08-30 三菱電機株式会社 貯湯式給湯機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010288375A (ja) * 2009-06-11 2010-12-24 Panasonic Electric Works Co Ltd 系統連系システム
JP2016080248A (ja) * 2014-10-16 2016-05-16 三菱電機株式会社 給湯システム
JP2017207249A (ja) * 2016-05-19 2017-11-24 リンナイ株式会社 給湯システム
JP2018136103A (ja) * 2017-02-23 2018-08-30 三菱電機株式会社 貯湯式給湯機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7368814B1 (ja) 2023-03-31 2023-10-25 ダイキン工業株式会社 電気機器および電気機器を備える電力システム

Similar Documents

Publication Publication Date Title
US8049366B2 (en) DC power system for household appliances
US20120205456A1 (en) Heat pump hot-water supply system
JP5016894B2 (ja) 空調・発電装置及びその制御方法
JP2009071959A (ja) 電力供給システム
US9979203B2 (en) Power supply system using a fuel cell, controller for the same and control method
JP5965123B2 (ja) エネルギー管理システム、エネルギー管理装置及び電力管理方法
KR100968581B1 (ko) 연료전지 열병합 발전시스템 및 그 운전 방법
US9846418B2 (en) Energy control system, energy control device, and energy control method for prioritizing a power generation source based on the possibility of selling generated power
CN100517948C (zh) 混合式发电***及其控制方法
WO2021215022A1 (ja) 給湯システム及びその制御方法
JP6037786B2 (ja) 熱電供給システム
JP2009210162A (ja) 発電併用給湯システム
KR100976353B1 (ko) 태양광발전 모듈의 냉각시스템
JP2019071169A (ja) 燃料電池制御システム、燃料電池制御方法及び燃料電池システム
JP4531490B2 (ja) 太陽光熱複合利用システム、その運転制御方法、プログラムおよび記録媒体
JP2006029635A (ja) 太陽光発電利用の給湯システム
KR102301920B1 (ko) 태양광온수기 열원 우선 공급형 태양광 발전시스템
JP6569080B2 (ja) 燃料電池システム
JP3890765B2 (ja) コジェネレーション装置
JP4630429B2 (ja) 燃料電池付建物
JP2007155188A (ja) 固体酸化物形燃料電池を電源として駆動するヒートポンプ式熱源装置とその運転方法
JP6423497B1 (ja) 電力制御システムおよび電力制御方法
JP6694757B2 (ja) 給湯システム
JP2017175859A (ja) 熱電併給システム
JP2004186081A (ja) コジェネレーションシステムおよびその運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP