WO2021214916A1 - Substance analysis method and substance analysis system - Google Patents

Substance analysis method and substance analysis system Download PDF

Info

Publication number
WO2021214916A1
WO2021214916A1 PCT/JP2020/017365 JP2020017365W WO2021214916A1 WO 2021214916 A1 WO2021214916 A1 WO 2021214916A1 JP 2020017365 W JP2020017365 W JP 2020017365W WO 2021214916 A1 WO2021214916 A1 WO 2021214916A1
Authority
WO
WIPO (PCT)
Prior art keywords
substance
flow path
unit
detection
column
Prior art date
Application number
PCT/JP2020/017365
Other languages
French (fr)
Japanese (ja)
Inventor
勇輝 長屋
峻 熊野
益之 杉山
平林 由紀子
信二 吉岡
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2020/017365 priority Critical patent/WO2021214916A1/en
Priority to JP2022516555A priority patent/JPWO2021214916A1/ja
Publication of WO2021214916A1 publication Critical patent/WO2021214916A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers

Definitions

  • the present invention relates to a substance analysis method and a technique of a substance analysis system.
  • the liquid chromatograph mass spectrometry system is widely used for chemical analysis containing various substances such as biological samples.
  • a biological sample as a sample contains a substance to be measured (substance to be measured) and a substance such as a protein that interferes with measurement. Therefore, in the liquid chromatograph mass spectrometry system, the substance to be measured is measured after removing factors such as proteins that interfere with measurement by using a pretreatment column.
  • Patent Document 1 and Patent Document 2 are disclosed as techniques related to such a liquid chromatograph mass spectrometry system.
  • Patent Document 1 states, "The present invention provides a method for efficiently extracting a target protein contained in a biological sample such as serum or plasma, and makes it possible to perform highly accurate analysis. A method for removing a protein from a sample and extracting the target protein, which provides a method using a high concentration of salt and / or urea and a water-soluble organic solvent. ”A method for extracting a target protein from a biological sample and A method for analyzing the target protein is disclosed (see summary).
  • Patent Document 2 states, "Using the column switching method, pretreatment is performed using a low-pressure pump under optimum pressure that does not cause clogging, etc., and the treatment status is monitored using an ultraviolet detector. Only the sample that has been purified and purified is analyzed at high speed using a high-pressure pump to extend the life of the system and improve the throughput. ”A liquid chromatograph device and an analysis method are disclosed (see summary).
  • the sample is flowed through the pretreatment column, the low-molecular-weight measurement target substance is adsorbed on the pretreatment column, and the protein, which is a measurement interfering substance, is flowed through the ultraviolet detection device.
  • the flow path switching valve is switched so that the outflow route of the sample flows from the pretreatment column to the mass spectrometer.
  • the substance to be measured flowing out of the pretreatment column is separated in the column for analysis so as to be suitable for mass spectrometry, and the separated substance to be measured is introduced into the mass spectrometer.
  • the present invention has been made in view of such a background, and an object of the present invention is to perform efficient substance detection.
  • the present invention comprises a first substance detection unit that detects the amount of the first substance in the sample, and a substance other than the first substance in the sample, and the first substance.
  • Liquid is supplied by the second substance detection unit that detects the second substance that interferes with the measurement in the detection unit, the first liquid feed pump, the second liquid feed pump, and the first liquid feed pump.
  • a sample injection unit for injecting the sample into the liquid, a first column capable of selectively adsorbing and eluting the first substance, and permeating the second substance, and the first liquid feeding pump.
  • the second liquid feed pump, the first column, the first substance detection unit, and the flow path selection unit for switching the flow path connecting the second substance detection unit, and at least the first.
  • the first state having a flow path to which the first substance detection unit is connected, the first liquid feed pump, the sample injection unit, and the second substance detection unit are connected in series. It is possible to switch between such a flow path and a second state having a flow path such that the second liquid feeding pump, the first column, and the first substance detection unit are connected in series.
  • the control unit is the first detection result acquisition step for acquiring the first detection result which is the detection result by the second substance detection unit, and the detection result by the first substance detection unit. Timing for switching from the first state to the second state based on the second detection result acquisition step for acquiring the detection result 2, the first detection result, and the second detection result. It is characterized in that the switching timing determination step of determining the switching timing is executed. Other solutions will be described as appropriate in the embodiments.
  • efficient substance detection can be performed.
  • FIG. 1 is a diagram showing a configuration of a liquid chromatograph mass spectrometry system Z according to the first embodiment.
  • the liquid chromatograph mass spectrometer Z includes a liquid feed pump 8A, a liquid feed pump 8B, an autosampler 7, a UV detector 3, and a mass spectrometer 4. Further, the liquid chromatograph mass spectrometry system Z includes a pretreatment column 5, an analysis column 6, a flow path switching valve 2, and a control device 1.
  • Each of the liquid feed pump 8A, the liquid feed pump 8B, the autosampler 7, the UV detector 3, the mass spectrometer 4, and the flow path switching valve 2 communicates with the control device 1.
  • the control device 1 performs control, data acquisition, and the like with each of these devices.
  • the pretreatment column 5 and the analysis column 6 are collectively referred to as columns as appropriate.
  • the first buffer solution container C1 is filled with the first buffer solution. Further, the second buffer solution container C2 is filled with the second buffer solution.
  • the liquid feed pump 8A is connected to the first buffer solution container C1 and the second buffer solution container C2, and feeds the first buffer solution and the second buffer solution to the flow path F1 by applying a gradient.
  • the sent first buffer solution and second buffer solution are sent to the autosampler 7 through the flow path F1.
  • the autosampler 7 flows a certain amount of sample solution sucked up from one of a plurality of sample containers (not shown) set inside the autosampler 7 into the flow path F2.
  • the sample is mixed with the mixed solution of the first buffer solution and the second buffer solution.
  • the solution in which the sample is mixed is called the sample solution.
  • the mixed solution with each buffer solution and the sample solution are collectively collectively referred to as a solution.
  • the third buffer solution container C3 is filled with the third buffer solution.
  • the fourth buffer solution container C4 is filled with the fourth buffer solution.
  • the liquid feed pump 8B is connected to the third buffer solution container C3 and the fourth buffer solution container C4, and feeds the third buffer solution and the fourth buffer solution to the flow path F6 by applying a gradient.
  • the flow paths F3, F4, F5, F7 and F8 will be described later.
  • the flow paths F1 to F8 are collectively referred to as a flow path F as appropriate. again,
  • the liquid feed pump 8A feeds two types of buffer solutions, but one type or three or more types of buffer solutions may be fed.
  • the liquid feed pump 8B feeds two kinds of buffer solutions, but one kind or three or more kinds of buffer solutions may be fed.
  • the flow path switching valve 2 switches the flow path F.
  • switching of the flow path switching valve 2 will be described with reference to FIGS. 2A and 2B.
  • FIG. 2A is a diagram showing a first state of the flow path switching valve 2
  • FIG. 2B is a diagram showing a second state. Refer to FIG. 1 as appropriate.
  • the flow of the solution is indicated by a dashed arrow.
  • the sample solution introduced from the autosampler 7 is introduced into the pretreatment column 5 via the flow paths F2 and F3.
  • the pretreatment column 5 a large substance having a molecular weight of tens of thousands or more such as a protein is quickly discharged, but a substance having a molecular weight of several hundreds such as a drug or a hormone, that is, a substance to be measured (first substance).
  • the solution (containing the protein) discharged from the pretreatment column 5 is sent to the UV detector 3 via the flow paths F4 and F5. Thereby, the UV detector 3 detects the amount of the protein (second substance) which is an interfering substance in the sample.
  • the mixed solution of the third buffer solution and the fourth buffer solution sent from the liquid feed pump 8B is sent to the analysis column 6 via the flow paths F6 and F7. Be liquid. Further, the mixed solution of the third buffer solution and the fourth buffer solution is sent to the mass spectrometer 4 via the flow path F8. However, in the first state, since the solution flowing to the mass spectrometer 4 does not contain a sample, nothing is detected by the mass spectrometer 4.
  • the control device 1 determines that the protein is substantially discharged
  • the control device 1 switches the flow path switching valve 2 from the first state to the second state shown in FIG. 2B at a predetermined timing.
  • the timing of switching from the first state to the second state will be described later.
  • the flow path F2 and the flow path F5 are directly connected.
  • the sample solution sent from the autosampler 7 is sent to the UV detector 3 as it is.
  • the flow path F6 and the flow path F4 are connected, and further, the flow path F3 and the flow path F7 are connected. Therefore, the solution sent from the liquid feeding pump 8B is sent to the pretreatment column 5 via the flow paths F6 and F4. Then, the delivered solution slowly discharges the substance to be measured adsorbed on the pretreatment column 5.
  • the discharged solution containing the substance to be measured is introduced into the analytical column 6 via the flow paths F3 and F7.
  • the substance to be measured contained in the solution is separated so as to be suitable for analysis by the mass spectrometer 4. After that, the substance to be measured separated by the analytical column 6 is introduced into the mass spectrometer 4 via the flow path F8 and analyzed by the mass spectrometer 4.
  • the mass spectrometer 4 can detect a sharp peak by preventing diffusion of the substance to be measured in the flow path F and in the pretreatment column 5. As a result, a high S / N ratio can be obtained.
  • FIG. 3 is a functional block diagram showing the configuration of the control device 1 according to the first embodiment.
  • the control device 1 includes a memory 110 composed of a volatile memory and the like, an input device 151 such as a keyboard and a mouse, and a display device 152 such as a display. Further, the control device 1 has a communication device 153 such as a NIC (Network Interface Card), a CPU (Central Processing Unit) 154, and a storage device 160 such as an HD (Hard Disk).
  • NIC Network Interface Card
  • CPU Central Processing Unit
  • HD Hard Disk
  • the processing unit 111 includes a parameter setting unit 112, a UV detection control unit 113, a switching timing setting unit 114, a loop determination unit 115, a warning processing unit 116, a valve control unit 117, a mass spectrometry control unit 118, and a switching time determination unit 119. Has been done.
  • the parameter setting unit 112 sets each parameter required in the process of determining the switching timing of the flow path switching valve 2, which will be described later.
  • the UV detection control unit 113 controls the UV detector 3 to acquire UV detection results such as the amount of protein detected.
  • the switching timing setting unit 114 determines and sets the timing for switching the flow path switching valve 2 from the first state to the second state.
  • the loop determination unit 115 determines whether or not the processing loop exceeds a predetermined threshold value in the process of determining the switching timing of the flow path switching valve 2, which will be described later.
  • the warning processing unit 116 outputs a warning when the timing (switching time) for switching the flow path switching valve 2 from the first state to the second state cannot be determined.
  • the mass spectrometry control unit 118 controls the mass spectrometer to acquire the detected amount of the substance to be measured.
  • the switching time determination unit 119 determines whether or not the current switching time is appropriate.
  • FIG. 4A is a graph showing the amount of protein detected by the UV detector 3.
  • the horizontal axis represents time and the vertical axis represents the amount of protein.
  • the UV detector 3 draws a curve (graph L1) having a peak at the peak arrival time t1 as shown in FIG. 4A.
  • the amino acids that make up proteins tyrosine, tryptophan, and phenylalanine have aromatic groups such as benzene rings and absorb ultraviolet rays with a wavelength of around 280 nm.
  • the UV detector 3 quantifies the amount of protein by measuring the absorbance of ultraviolet rays at 280 nm.
  • the UV detector 3 may measure the absorbance at 260 nm and 280 nm and calculate the protein concentration corrected for the influence of the light absorption of the nucleic acid.
  • the time of the timing (switching timing) for switching the flow path switching valve 2 from the first state to the second state is set as the switching time t2.
  • the control device 1 determines whether or not a measurement interfering substance such as a protein is discharged based on the detection result of the UV detector 3. That is, when the switching time t2 shown in FIG. 4A is set to the timing for switching from the first state to the second state, the amount of protein detected by the UV detector 3 is almost nonexistent, so that the protein discharge is almost completed. It is thought that there is. Therefore, by switching the flow path switching valve 2 from the first state to the second state at the switching time t2, it is possible to prevent the inflow of protein into the analysis column 6 and the mass spectrometer 4.
  • the pretreatment column 5 adsorbs the substance to be measured, but it is not completely adsorbed, but the discharge time is delayed. That is, over time, the substance to be measured flows out from the pretreatment column 5.
  • the switching time t2 in FIG. 4A is set as the switching timing, the amount of the substance to be measured flowing out from the pretreatment column 5 also increases. That is, many substances to be measured flow out to the UV detector 3.
  • the amount of the substance to be measured flowing to the mass analyzer 4 is reduced, and the sensitivity is lowered.
  • the peak area A0 in FIG. 4A is the area of the portion surrounded by the curve L1 and the horizontal axis.
  • this switching time t2 is a timing at which the detected amount of protein has not completely decreased, in other words, the protein has not been completely discharged from the pretreatment column 5. Therefore, when the flow path switching valve 2 is switched from the first state to the second state at this switching time t2, proteins flowing into the flow paths F3, F7, and F8 are present. The proteins flowing into the flow paths F3 and F7 shown in FIG.
  • the peak area A1 in FIG. 4B is the area of the portion surrounded by the curve L1 and the horizontal axis (the area of the shaded portion) after the switching time t2.
  • the timing of switching the flow path switching valve 2 needs to be balanced between the amount of protein detected by the UV detector 3 (the amount of protein discharged) and the substance to be measured flowing out from the pretreatment column 5.
  • FIG. 5 is a mass spectrometric result plotting the relationship between the switching time t2 of the flow path switching valve 2 in FIGS. 4A and 4B and the detection peak height of the substance to be measured by the mass spectrometer 4.
  • the peak area of the substance to be measured is constant. That is, in FIG. 5, it is shown that the higher the detection peak height, the sharper the detection peak is, because the detection region is not diffused.
  • the earlier the time for switching the flow path switching valve 2 the higher the detection peak height. That is, if the time for switching the flow path switching valve 2 is earlier, the detection region is not diffused and a higher S / N ratio can be obtained.
  • the peak detected by the mass spectrometer 4 due to the influence of the interfering substance. May be low.
  • FIGS. 6A and 6B are flowcharts showing a procedure for determining the switching timing of the flow path switching valve 2 according to the first embodiment.
  • the processes of FIGS. 6A and 6B are processes performed by the control device 1.
  • the parameter setting unit 112 sets each parameter used in this flowchart (S101 in FIG. 6A).
  • the parameters set here are the threshold values (Nth, MPth, Rat) and the like used in steps S111, S131, and 133.
  • the setting parameters of the threshold the peak height, the peak area, the peak arrival time, the peak width, the temporary differential coefficient of the peak, the measurement time, and the sample in the UV detector 3 and the mass spectrometer 4 are used.
  • the amount of injection from the autosampler 7 may be set.
  • the UV detection control unit 113 sets the flow path switching valve 2 in the first state (S102), and measures with the UV detector 3 (UV measurement). Do (S103). This UV measurement is performed with the flow path switching valve 2 in the first state until the protein has completely flowed out.
  • the switching timing setting unit 114 records the peak area A0 (see FIG. 4A) and the peak arrival time t1 in the measurement result of step S103 (S104).
  • the switching timing setting unit 114 determines the switching time t2 based on the peak area A0 recorded in step S104 and the peak arrival time t1 (S105). At this time, the switching timing setting unit 114 sets a sufficiently large switching time t2 so that proteins exceeding a predetermined amount do not flow into the flow paths F3, F7, and F8. For example, the time at which the peak value ⁇ 0.2 in the graph L1 of the UV detector 3 shown in FIG. 4 is set as the switching time t2.
  • the loop determination unit 115 determines whether or not the number of repetitions (N) is equal to or less than the repetition threshold value (Nth) (S111).
  • the warning processing unit 116 When the number of repetitions (N) is larger than the repetition threshold (Nth) (S111 ⁇ No), the warning processing unit 116 outputs a warning (S112). In step S112, for example, the warning processing unit 116 displays a warning message on the display device 152 recommending the change of the liquid feeding condition or the replacement of the pretreatment column 5, assuming that the switching time t2 satisfying the condition does not exist.
  • the valve control unit 117 switches the flow path switching valve 2 to the first state (S121), and the UV detection control unit 113 detects UV.
  • the measurement (UV measurement) by the device 3 is started (S122).
  • the valve control unit 117 determines whether or not the time t from the start of injection of the sample by the autosampler 7 is equal to or greater than the switching time t2 (S123). When the time t from the start of injection of the sample is less than the switching time t2 (S123 ⁇ No), the processing unit 111 returns the processing to step S123. When the time t from the start of sample injection is equal to or longer than the switching time t2 (S123 ⁇ Yes), the valve control unit 117 switches the flow path switching valve 2 to the second state (S124), and the mass spectrometry control unit 118 determines. The measurement (MS measurement) by the mass spectrometer 4 is started (S125).
  • the switching time determination unit 119 determines whether or not the detection peak value (MP) by the mass spectrometer 4 is equal to or higher than the mass spectrometry threshold value (MPth). Judgment (S131 in FIG. 6B). When the peak value (MP) detected by the mass spectrometer 4 is less than the mass spectrometry threshold (MPth) (S131 ⁇ No), the switching timing setting unit 114 reduces the switching time t2 by a predetermined amount (S132), and the processing unit 111. Returns the process to step S111. As described above, a high detection peak value corresponds to a high S / N ratio.
  • the switching time determination unit 119 has a peak area ratio (RA) equal to or greater than the peak area ratio threshold (RAth). It is determined whether or not it is (S133).
  • the peak area ratio (RA) is the ratio of the peak area A1 of the UV detection result (see FIG. 4B) and the peak area A0 of the UV detection result (see FIG. 4A) after the switching time t2.
  • the peak area ratio (RA) is a value obtained by dividing the peak area A1 of the UV detection result after the switching time t2 by the peak area A0 of the UV detection result.
  • the peak area ratio (RA) corresponds to the protein removal rate.
  • the peak area ratio threshold value (RAth) is a value set by the parameter setting unit 112 in step S101.
  • the switching timing setting unit 114 When the peak area ratio (RA) is less than the peak area ratio threshold value (RAth) (S133 ⁇ No), the switching timing setting unit 114 increases the switching time t2 by a predetermined amount (S134), and the processing unit 111 goes to step S111. Return the process.
  • the switching timing setting unit 114 determines the switching time t2 with the current value (S135).
  • the switching timing setting unit 114 may increase the mass spectrometry threshold value (MPth) by a predetermined amount.
  • switching time t2 switching timing in which the protein removal rate (peak area ratio (RA)) and the peak value of the mass spectrometer 4 are balanced.
  • RA peak area ratio
  • FIG. 7 is a diagram showing the configuration of the liquid chromatograph mass spectrometry system Za according to the second embodiment.
  • the liquid chromatograph mass spectrometric system Za shown in FIG. 7 includes a first filter 9A and a second filter 9B. As shown in FIG. 7, when the flow path switching valve 2 is in the first state, the first filter 9A is provided in the front stage of the pretreatment column 5, and the second filter 9B is provided in the front stage of the analysis column 6. Be done.
  • the first filter 9A protects the pretreatment column 5
  • the second filter 9B protects the analysis column 6.
  • Other configurations and operations are the same as those in the first embodiment.
  • FIG. 8 is a diagram showing the configuration of the liquid chromatograph mass spectrometry system Zb according to the third embodiment.
  • a pretreatment column switching system 50 is provided in a portion of the pretreatment column 5.
  • an analysis column switching system 60 is provided in a portion of the analysis column 6.
  • a plurality of pretreatment columns 5A to 5D are connected to the first column switching valve 2A and the second column switching valve 2B.
  • the first column switching valve 2A and the second column switching valve 2B switch the pretreatment columns 5A to 5D so that any one of the pretreatment columns 5A to 5D is selected as the pretreatment column 5.
  • a plurality of analysis columns 6A to 6D are connected to the third column switching valve 2C and the fourth column switching valve 2D.
  • the third column switching valve 2C and the fourth column switching valve 2D switch the analytical columns 6A to 6D so that any one of the analytical columns 6A to 6D is selected as the analytical column 6.
  • FIG. 9 is a functional block diagram showing the configuration of the control device 1b according to the third embodiment.
  • the processing unit 111b of the control device 1b is different from the control device 1 shown in FIG. 3 in that it has a valve switching processing unit 120 and a deterioration determination unit 121.
  • the valve switching processing unit 120 controls the flow path switching of the first column switching valve 2A to the fourth column switching valve 2D.
  • the deterioration determination unit 121 determines the deterioration state of the pretreatment columns 5A to 5D and the analysis columns 6A to 6D.
  • FIG. 10 is a flowchart showing a procedure for determining the switching timing of the flow path switching valve 2 according to the third embodiment.
  • the same process as in FIG. 6A is assigned the same step number and the description thereof will be omitted. Further, since the processing after step S131 is the same as that in FIG. 6B, the illustration and description will be omitted.
  • the valve switching processing unit 120 includes all of the pretreatment columns 5A to 5D and the analysis columns 6A to 6D (all of the columns). Determines whether or not has been switched (S141). When all of the preprocessing columns 5A to 5D and the analysis columns 6A to 6D (all of the columns) have been switched (S141 ⁇ Yes), the warning processing unit 116 outputs a warning (S112).
  • the valve switching processing unit 120 is the first column switching valve 2A to the fourth column switching valve. A switching process for switching each of the 2Ds is performed (S142). At this time, the valve switching processing unit 120 switches the first column switching valve 2A to the fourth column switching valve 2D so as to use the unused pretreatment columns 5A to 5D and the analysis columns 6A to 6D. After that, the deterioration determination unit 121 performs deterioration determination processing of the pretreatment columns 5A to 5D and the analysis columns 6A to 6D (S143). Details of the deterioration determination process will be described later. Then, the processing unit 111 returns the processing to step S102.
  • the first column switching valve 2A to the fourth column switching valve 2D show an example of a four-way valve, but a six-way valve or a ten-way valve is used, and the pretreatment column 5 and the analysis column 6 are used. 4 or more types of each may be installed in parallel.
  • a plurality of pretreatment columns 5A to 5D and a plurality of analytical columns 6A to 6D if the number of times the sample is injected is the same, the frequency of use of each column is reduced and the liquid chromatograph The durability of the mass spectrometry system Zb is improved. Further, by using two or more pretreatment columns 5, the pretreatment can proceed in parallel. As a result, it is possible to improve the analysis throughput.
  • the pretreatment columns 5A to 5D and the analysis columns 6A to 6D are distributed.
  • the processing columns 5A to 5D and the analysis columns 6A to 6D can be specified.
  • the pretreatment columns 5A to 5D and the analysis columns 6A to 6D, which have no problem can be selected and measured.
  • the pretreatment columns 5A to 5D may be of the same type, and the analysis columns 6A to 6D may be of the same type.
  • the measurement is performed by the UV detector 3 or the mass spectrometer 4 while switching each of the pretreatment columns 5A to 5D.
  • the deterioration determination unit 121 confirms whether the pretreatment columns 5A to 5D and the analysis columns 6A to 6D have deteriorated. Specifically, first, the pretreatment column 5A and the analysis column 6A are selected, the protein (interfering substance) removal rate (A1 / A0 (see FIGS. 4A and 4B), and the signal of the substance to be measured).
  • the intensity and the peak arrival time of the protein (interfering substance) and the substance to be measured are observed.
  • the removal rate of the protein (interfering substance) is A1 / A0 (see FIGS. 4A and 4B.
  • the signal intensity of the substance is the detection peak (MP) in the mass analyzer 4, and the peak arrival time of the substance to be measured is the time from the injection of the sample to the detection of the detection peak in the mass analyzer 4. ..
  • the measurement is performed in a state of being fixed to the analysis column 6A while sequentially switching between the pretreatment column 5B, the pretreatment column 5C, and the pretreatment column 5D.
  • a t-test was performed on the protein removal rate obtained for each pretreatment column 5, the signal intensity of the substance to be measured, and the peak arrival time of the protein and the substance to be measured, and pretreatment with a significant difference. If there is a column 5, the deterioration determination unit 121 considers that the pretreatment column 5 has deteriorated. Then, when it is determined that the product has deteriorated, the warning processing unit 116 may output a warning message prompting the replacement.
  • first column switching valve 2A and the second column switching valve 2B were fixed to the pretreatment column 5 in which no deterioration was observed, and the analysis column 6A, the analysis column 6B, the analysis column 6C, and the analysis column 6D were formed.
  • the signal intensity of the substance to be measured and the peak arrival time of the substance to be measured are measured while sequentially switching.
  • the deterioration determination unit 121 performs a t-test on the obtained signal intensity of the small molecule and the peak arrival time of the small molecule for each of the analysis columns 6A to 6D.
  • the deterioration determination unit 121 considers that the analysis column 6 has deteriorated, and the warning processing unit 116 outputs a warning message prompting the replacement. May be good.
  • deterioration determination processing By performing such deterioration determination processing, it is possible to detect the deteriorated pretreatment column 5 and analysis column 6 and avoid such columns. As a result, highly accurate UV measurement and mass spectrometric measurement can be performed over a long period of time.
  • a reference threshold value may be set for the determination of deterioration, and if it is outside the range of the threshold value, the deterioration determination may be performed. Further, the deterioration determination process and the deterioration determination unit 121 can be omitted. The deterioration determination process may be performed independently of the process of FIG. 10, for example, on Saturdays and Sundays during a period when the plant is closed.
  • FIG. 11 is a flowchart showing a procedure for determining the switching timing of the flow path switching valve 2 according to the fourth embodiment.
  • the process of FIG. 11 is a process performed by the control device 1. Since the configurations of the liquid chromatograph mass spectrometry system Z and the control device 1 are the same as those in the first embodiment, the illustration and description thereof are omitted here.
  • the switching time t2 is determined while monitoring the protein intensity in real time.
  • the parameter setting unit 112 sets each parameter used in this flowchart (S201).
  • the parameters to be set are the threshold values (UVth, MPth) and the like used in steps S213 and S231. Other parameters are the same as those set in step S101 of FIG. 6A.
  • the loop determination unit 115 determines whether or not the number of repetitions (N) is equal to or less than the repetition threshold value (Nth) (S202).
  • the repeat threshold value (Nth) is a value set by the parameter setting unit 112 in step S201.
  • the warning processing unit 116 outputs a warning (S203).
  • Step S203 is the same process as step S112 of FIG. 6A.
  • the valve control unit 117 switches the flow path switching valve 2 to the first state (S211), and the UV detection control unit 113 detects UV.
  • the measurement (UV measurement) by the device 3 is started (S212).
  • the UV detection control unit 113 measures the peak value of the absorption chromatograph of the UV detector 3 and monitors the peak intensity.
  • the current time t exceeds the peak arrival time t1 of the UV detection result (t ⁇ t1), and the UV detection value (UV) is a predetermined UV. It is determined whether or not it is equal to or less than the detection threshold (UVth) (S213).
  • the switching timing setting unit 114 Increases the switching time t2 by a predetermined amount (S214). Then, the processing unit 111 returns the processing to step S213 and continues the measurement by the UV detector 3.
  • the bulb control unit 117 moves through the flow path.
  • the switching valve 2 is switched to the second state (S221).
  • the valve control unit 117 stores the switching time t2 at this time in the storage device 160 (S222).
  • the mass spectrometry control unit 118 starts the measurement (MS measurement) by the mass spectrometer 4 (S223).
  • the measurement by the UV detector 3 is also performed in parallel with the measurement by the mass spectrometer 4.
  • the switching timing setting unit 114 ends the measurement by the UV detector 3 and the measurement by the mass spectrometer 4 (S224), and as a result of the measurement by the mass spectrometer 4, the detection peak (MP) is the detection peak threshold. It is determined whether or not it is (MPth) or more (S231).
  • the detection peak (RAth) is a value set by the parameter setting unit 112 in step S201.
  • the switching timing setting unit 114 increases the value of the UV detection threshold value (UVth) used in step S213 (S232). After that, the processing unit 111 returns the processing to step S202.
  • the switching timing setting unit 114 determines the switching time t2 with the current value (S233).
  • the process shown in FIGS. 11A and 11B is a step of fixing the flow path switching valve 2 in FIG. 6A in the first state and performing measurement by the UV detector 3.
  • the processing of S102 and S103 is omitted. That is, it is possible to omit the process of performing only the measurement of the UV detector 3 without performing the measurement by the mass spectrometer 4 once, as in the process shown in FIGS. 6A and 6B.
  • the fourth embodiment can perform analysis with higher throughput than the first embodiment.
  • the protein removal rate (A1 / A0) is obtained by fitting the peak to the result of the chromatogram and dividing the area of the fitted peak from the integrated value of the signal values up to the switching time of the flow path switching valve 2. May be calculated.
  • FIG. 12 is a diagram showing a measurement result of the UV detector 3 according to the fourth embodiment and a measurement result of the mass spectrometer 4.
  • the horizontal axis represents time.
  • the graph L11 shows a time-lapse graph of the amount of protein (for example, protein in urine) detected by the UV detector 3
  • the graph L12 shows a substance to be measured (for example, in urine) detected by the mass spectrometer 4.
  • the time passage graph of the included metabolite (molecule A) is shown.
  • the intensity of the vertical axis is standardized. Further, in order to achieve high-speed analysis, each measurement of the UV detector 3 and the mass spectrometer 4 was performed under the condition that the peaks of both substances (protein and the substance to be measured) could be detected within 2 minutes.
  • the line L21 is the UV detection threshold (UVth). As shown in FIG. 12, the time after the peak of the graph L11 and the intersection of the graph L11 and the line L21 is the switching time t2.
  • the pretreatment column 5 used a filler having a particle size of 25 um, an inner diameter of 2.1 mm, and a length of 10 mm.
  • the pretreatment column 5 used a filler having a particle size of 25 um, an inner diameter of 2.1 mm, and a length of 10 mm.
  • UVth UV detection threshold
  • UVP UVP ⁇ 0.2
  • the method shown in the fifth embodiment relates to cleaning of the pretreatment column 5 and the analysis column 6.
  • FIG. 13 is a diagram showing the configuration of the liquid chromatograph mass spectrometry system Zd according to the fifth embodiment.
  • the same components as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • waste liquid valves V1 and V2 which are valves for switching waste liquid, are provided in the flow path F4 and the flow path F8.
  • a waste liquid flow path F9 is connected to each of the waste liquid valves V1 and V2.
  • a cleaning / equilibrium apparatus W1 for cleaning and equilibrating the pretreatment column 5 and a cleaning / equilibrium apparatus W2 for cleaning and equilibrating the analytical column 6 are provided.
  • the waste liquid valves V1 and V2 and the cleaning / balancing devices W1 and W2, respectively, are controlled by the control device 1d.
  • FIG. 14 is a functional block diagram showing the configuration of the control device 1d according to the fifth embodiment.
  • the processing unit 111d in the control device 1d is different from the control device 1 in FIG. 3 in that it has a cleaning / equilibration processing unit 122.
  • the cleaning / equilibration processing unit 122 controls the cleaning / balancing devices W1 and W2 (see FIG. 13) to perform cleaning and equilibration of the pretreatment column 5 and the analysis column 6.
  • the cleaning / equilibration processing unit 122 switches the waste liquid valves V1 and V2 to the side of the waste liquid flow path F9 at the time of cleaning the pretreatment column 5 and the analysis column 6, and wastes the cleaning liquid and the solution. Flow to the flow path F9. This makes it possible to prevent contamination of the UV detector 3 and the mass spectrometer 4.
  • FIG. 15 is a flowchart showing a procedure for determining the switching timing of the flow path switching valve 2 according to the fifth embodiment.
  • the process of FIG. 15 is a process performed by the control device 1.
  • the same steps as those in FIG. 6A are designated by the same step numbers, and the description thereof will be omitted. Further, since the processing after step S131 is the same as that in FIG. 6B, the illustration and description will be omitted.
  • the valve control unit 117 switches the flow path switching valve 2 to the first state (S161).
  • the cleaning / equilibration processing unit 122 performs cleaning and equilibration of the pretreatment column 5 and the analysis column 6 by the cleaning / equilibration devices W1 and W2 (see FIG. 13), respectively (S162). .. After that, the switching timing setting unit 114 performs the process of step S131 (FIG. 6B).
  • FIG. 16 is a flowchart in which the process of the fifth embodiment is applied to the process of FIG.
  • the same process as in FIG. 11 is assigned the same step number and the description thereof will be omitted.
  • the cleaning / equilibration processing unit 122 switches the flow path switching valve 2 to the first state (S261). After that, the cleaning / equilibration processing unit 122 performs cleaning and equilibration of the pretreatment column 5 and the analysis column 6 by the cleaning / equilibration devices W1 and W2 (see FIG. 13), respectively (S262). .. After that, the switching timing setting unit 114 performs the process of step S231.
  • the time required for cleaning the pretreatment column 5 and the analysis column 6 depends on the signal intensity of the UV detection result observed in step S103 in FIG. 15, step S212 in FIG. 16, and the peak area. May be changed.
  • the cleaning / balancing processing unit 122 may determine whether or not the time required for the cleaning step is appropriate by monitoring the background level of the detection signal of the UV detector 3. In this case, if the background level is equal to or less than the reference value, the cleaning / equilibration processing unit 122 determines that the pretreatment column 5 is not contaminated. If the background level is equal to or higher than the reference value, the cleaning / equilibration processing unit 122 continues the cleaning process or increases the cleaning time. Further, the cleaning / equilibration processing unit 122 may perform control such that the voltage of the ion source of the mass spectrometer 4 is not applied or heated during cleaning.
  • the robustness of the UV detector 3 and the mass spectrometer 4 is improved, and the analysis accuracy is stabilized. It has the effect of.
  • the flow rate of the flow path F is appropriately adjusted in order to solve the problem of column withstand voltage, which is a problem in aiming at measurement by a high-speed liquid chromatograph mass spectrometry system Z using online pretreatment. It is to do.
  • the configuration of the liquid chromatograph mass spectrometry system Z is the same as that shown in FIG. 1 except that the control device 1 becomes the control device 1e, and thus the illustration and description thereof are omitted here.
  • FIG. 17 is a functional block diagram showing the configuration of the control device 1e according to the sixth embodiment.
  • the processing unit 111e of the control device 1e is different from the control device 1 of FIG. 3 in that it has a flow rate control unit 123.
  • the flow rate control unit 123 controls the liquid feed pump 8B to increase the flow rate of the solution flowing through the flow paths F6 to F8.
  • FIG. 18 is a flowchart showing a procedure for determining the switching timing of the flow path switching valve 2 according to the sixth embodiment.
  • the same processing as in FIG. 6A is designated by the same reference numerals and the description thereof will be omitted. Further, since the processing after step S131 is the same as that in FIG. 6B, the illustration and description will be omitted.
  • the flow path F In order to solve the problem of the withstand voltage of the column, which is a problem in aiming at the measurement by the high-speed liquid chromatograph mass spectrometry system Z using the online pretreatment, the flow path F The flow rate is adjusted appropriately.
  • a packing material having a particle size of 1 to 5 ⁇ m is used for the analytical column 6. Since the high withstand voltage analytical column 6 generally has a withstand voltage of 50 MPa or more, it is possible to send a liquid at a high flow rate of 0.5 mL / min or more. On the other hand, since a large-sized substance such as a protein flows into the pretreatment column 5, a filler having a particle size of 10 um or more, which is larger than that of the analysis column 6, is generally used in order to prevent clogging. As a result, many of the pretreatment columns 5 have a lower withstand voltage than the analysis column 6, and the withstand voltage is about 10 to 30 MPa.
  • the pressure is most applied to the pretreatment column 5 in the second state in which the analysis column 6 and the pretreatment column 5 are connected in series. While the flow path switching valve 2 is in the second state, it is necessary to reduce the flow rate in order to use the pretreatment column 5 at a pressure equal to or lower than the withstand voltage. As a result, the measurement time increases.
  • step S124 the measurement by the mass spectrometer 4 is performed with the flow path switching valve 2 in the second state (S125). Then, the flow rate control unit 123 determines whether or not the substance to be measured has been completely eluted from the pretreatment column 5 (S171). When the substance to be measured has not been completely eluted from the pretreatment column 5 (S171 ⁇ No), the flow rate control unit 123 returns the treatment to step S171. When the substance to be measured has been completely eluted from the pretreatment column 5 (S171 ⁇ Yes), the valve control unit 117 switches the flow path switching valve 2 to the first state (S172). Then, the flow rate control unit 123 increases the flow rate within the range of the withstand voltage of the analysis column 6 (S173). After that, the process of step S131 is performed.
  • the valve control unit 117 takes too early to switch the flow path switching valve 2 from the second state to the first state. Is determined. Insufficient detection result of mass spectrometer means that the detection peak is not detected in the graph in the detection result of mass spectrometer 4, or the detection peak is detected but a part of the graph is missing. If you are.
  • the valve control unit 117 sets the flow path switching valve 2 from the second state to the first state in step S172. Controls to delay the timing of switching to the state.
  • the flow velocity of the solution flowing through the flow path F can be increased, so that the overall measurement time can be shortened.
  • GUI (Graphical User Interface) screen 200) 19A to 19C are diagrams showing an example of the GUI screen 200 in this embodiment.
  • the GUI screen 200 has a status screen area 210 for displaying the status of the liquid chromatograph mass spectrometric systems Z, Za, Zb, and Zd, and an input for instructing the execution of processing.
  • It has a screen area 220 and an optimization result (Result) screen area 230 for displaying the optimization result.
  • the optimization means the optimization of the switching time t2.
  • the process is any one of the processes shown in FIGS. 6A, 6B, 10, 11, 15, 16, and 18.
  • the state of the liquid chromatograph mass spectrometry system Z such as the temperature of the pretreatment column 5 and the analysis column 6, the internal pressure of the flow path F, the state of the flow path switching valve 2, and the ion source (not shown).
  • the state of the mass spectrometer 4 such as the temperature and the degree of vacuum in the vacuum chamber (not shown) may be displayed.
  • the input screen area 220 receives an instruction input for processing execution. When the input is made, the process is started.
  • the valve switching time t2 obtained as the execution result of each of the processes shown in FIGS. 6A, 6B, 10, 11, 15, 16 and 18, the number of times the process is executed, and the protein.
  • the removal rate of is displayed.
  • each process includes the number of loops in the process (N in FIGS. 6A, 10, 11, 15, and 18), a warning message issued when the switching time t2 of the flow path switching valve 2 satisfying the condition cannot be determined, and the like.
  • the information obtained by may be displayed.
  • the GUI screen 200 shown in FIG. 19A is a screen before the processing is started, and the optimization result screen area 230 includes “execution count: 0 times”, “switching time: 0s”, and “protein removal rate: 0”. It is displayed that it is “%".
  • the "switching time” is the switching time t2, which is the time of the switching timing for switching from the first state to the second state.
  • "preparing" indicating that the status is being prepared is displayed in the status screen area 210.
  • the protein removal rate corresponds to the peak area ratio (RA) as described above in FIG. 6A.
  • the GUI screen 200 shown in FIG. 19B is a screen displayed during processing, and nothing is displayed in the optimization result screen area 230. Further, in the status screen area 210, "execution” indicating that the process is being executed is displayed.
  • the GUI screen 200 shown in FIG. 19C is a screen displayed after the processing is completed, and "preparing” is displayed in the status screen area 210. Further, in the optimization result screen area, "execution count: 1 time”, “switching time: 100s”, and protein removal rate: 80% are displayed as the result of the processing.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations.
  • an apparatus using an electrophoresis method may be used instead of the UV detector 3.
  • the peak width, the arrival time to the peak, and the like may be used.
  • each of the above-described configurations, functions, processing units 111, units 112 to 123, storage device 160, and the like may be realized by hardware, for example, by designing a part or all of them by an integrated circuit or the like.
  • the above-mentioned configurations, functions, and the like are realized by software by interpreting and executing a program in which a processor such as a CPU 154 realizes each function. You may. Information such as programs, tables, and files that realize each function is stored in HD as shown in FIGS. 3, 9, 14, and 17, and is recorded in memory, SSD (Solid State Drive), and the like.
  • control lines and information lines are shown as necessary for explanation, and not all the control lines and information lines are necessarily shown in the product. In practice, almost all configurations can be considered interconnected.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

In order to carry out efficient substance detection, the present invention is provided with: a mass spectrometer (4); a UV detector (3) which detects a protein in a sample; an autosampler (7) which introduces a sample into liquid that has been delivered by a liquid delivery pump (8A); a pretreatment column (5); a flow channel switching valve (2) which switches flow channels connecting the liquid delivery pump (8A), a liquid delivery pump (8B), the pretreatment column (5), the mass spectrometer (4), and the UV detector (3); and a control device (1) which controls at least the mass spectrometer (4), the UV detector (3), and the flow channel switching valve (2). The present invention is characterized in that the flow channel switching valve (2) is switchable between a first state and a second state, and the control device (1) determines switching timing on the basis of a first detection result which is a detection result by the UV detector (3) and a detection result by the mass spectrometer (4).

Description

物質分析方法及び物質分析システムMaterial analysis method and material analysis system
 本発明は、物質分析方法及び物質分析システムの技術に関する。 The present invention relates to a substance analysis method and a technique of a substance analysis system.
 生体試料等の様々な物質が含まれる化学分析に、液体クロマトグラフ質量分析システムが広く用いられている。一般的に、試料となる生体試料には、測定対象となる物質(測定対象物質)と、タンパク質等、測定の妨害となる物質が含まれている。そのため、液体クロマトグラフ質量分析システムでは、前処理用カラムを用いてタンパク質等といった測定妨害の要因を除去した後、測定対象物質の測定が行われる。 The liquid chromatograph mass spectrometry system is widely used for chemical analysis containing various substances such as biological samples. In general, a biological sample as a sample contains a substance to be measured (substance to be measured) and a substance such as a protein that interferes with measurement. Therefore, in the liquid chromatograph mass spectrometry system, the substance to be measured is measured after removing factors such as proteins that interfere with measurement by using a pretreatment column.
 このような液体クロマトグラフ質量分析システムに関する技術として特許文献1や、特許文献2に記載の技術が開示されている。 The techniques described in Patent Document 1 and Patent Document 2 are disclosed as techniques related to such a liquid chromatograph mass spectrometry system.
 特許文献1には、「本発明は、血清・血漿等の生体試料中に含まれる標的タンパク質を効率よく抽出する方法を提供し、高精度な分析を可能とすることを課題とし、生体由来の試料からタンパク質を除去し、標的タンパク質を抽出する方法であって、高濃度の塩及び/又は尿素と、水溶性有機溶媒とを用いる方法を提供する」生体試料中からの標的タンパク質の抽出方法及び標的タンパク質の分析方法が開示されている(要約参照)。 Patent Document 1 states, "The present invention provides a method for efficiently extracting a target protein contained in a biological sample such as serum or plasma, and makes it possible to perform highly accurate analysis. A method for removing a protein from a sample and extracting the target protein, which provides a method using a high concentration of salt and / or urea and a water-soluble organic solvent. ”A method for extracting a target protein from a biological sample and A method for analyzing the target protein is disclosed (see summary).
 特許文献2には、「カラムスイッチング法を用いて,前処理は低圧のポンプを用いて目詰まり等起こさない最適な圧力下で行い,その処理状況は紫外線検出器を用いてモニターする。前処理され精製された後の試料のみを高耐圧ポンプを用いて高速に分析し,システム寿命を延ばしつつスループットも向上させる」液体クロマトグラフ装置及び分析方法が開示されている(要約参照)。 Patent Document 2 states, "Using the column switching method, pretreatment is performed using a low-pressure pump under optimum pressure that does not cause clogging, etc., and the treatment status is monitored using an ultraviolet detector. Only the sample that has been purified and purified is analyzed at high speed using a high-pressure pump to extend the life of the system and improve the throughput. ”A liquid chromatograph device and an analysis method are disclosed (see summary).
国際公開第2018/221745号International Publication No. 2018/221745 特開2012-47655号公報Japanese Unexamined Patent Publication No. 2012-47655
 特許文献2に記載の技術では、まず、試料を前処理用カラムに流し、低分子の測定対象物質を前処理用カラムに吸着させるとともに、測定妨害物質であるタンパク質を紫外線検出装置へ流す。紫外線検出装置によるタンパク質の検出量を基に、試料の流出経路を前処理用カラムから質量分析計へ流すよう流路切替バルブを切り替える。前処理用カラムから流れ出る測定対象物質は、分析用カラムにおいて質量分析に適するよう分離され、この分離された測定対象物質が質量分析計へ導入される。 In the technique described in Patent Document 2, first, the sample is flowed through the pretreatment column, the low-molecular-weight measurement target substance is adsorbed on the pretreatment column, and the protein, which is a measurement interfering substance, is flowed through the ultraviolet detection device. Based on the amount of protein detected by the ultraviolet detector, the flow path switching valve is switched so that the outflow route of the sample flows from the pretreatment column to the mass spectrometer. The substance to be measured flowing out of the pretreatment column is separated in the column for analysis so as to be suitable for mass spectrometry, and the separated substance to be measured is introduced into the mass spectrometer.
 ここで、試料中のタンパク質等といった測定妨害物質が分析用カラムや、質量分析計に流れ込むと、分析用カラムや、質量分析計のキャピラリが詰まるおそれがある。このため、このような現象に対して、さらなる改良が必要である。 Here, if a measurement interfering substance such as a protein in the sample flows into the analytical column or the mass spectrometer, the analytical column or the capillary of the mass spectrometer may be clogged. Therefore, further improvement is required for such a phenomenon.
 また、オンラインによる処理が行われることにより、質量分析測定の自動化を達成することができる。これにより、質量分析測定の高い再現性と省力化を保証し、液体クロマトグラフ質量分析システムの小型化を図ることができる。オンライン処理が行われる場合、前記したように、タンパク質等の測定妨害物質が分析用カラムや、質量分析計に流れ込まないようにすることが重要となる。一方、質量分析計により検出する測定対象物質の感度と、分析用カラムに流れこむタンパク質の量は、流路切替バルブを切り替える時間により変化するため、流路切替バルブの切替時間を適当な値に決定することが必要となる。 In addition, automation of mass spectrometric measurement can be achieved by performing online processing. As a result, high reproducibility and labor saving of mass spectrometric measurement can be guaranteed, and the size of the liquid chromatograph mass spectrometric system can be reduced. When online processing is performed, as described above, it is important to prevent measurement interfering substances such as proteins from flowing into the analytical column or mass spectrometer. On the other hand, the sensitivity of the substance to be measured detected by the mass analyzer and the amount of protein flowing into the analysis column change depending on the time to switch the flow path switching valve, so set the switching time of the flow path switching valve to an appropriate value. It is necessary to decide.
 このような背景に鑑みて本発明がなされたのであり、本発明は、効率的な物質検出を行うことを課題とする。 The present invention has been made in view of such a background, and an object of the present invention is to perform efficient substance detection.
 前記課題を解決するため、本発明は、試料における第1の物質の量を検出する第1の物質検出部と、前記試料において、前記第1の物質以外の物質であり、前記第1の物質検出部における測定の障害となる第2の物質を検出する第2の物質検出部と、第1の送液ポンプと、第2の送液ポンプと、前記第1の送液ポンプによって送液された液中に前記試料を注入させる試料注入部と、前記第1の物質を選択的に吸着及び溶離できるとともに、前記第2の物質を透過させる第1のカラムと、前記第1の送液ポンプ、前記第2の送液ポンプ、前記第1のカラム、前記第1の物質検出部、及び、前記第2の物質検出部を接続する流路を切り替える流路選択部と、少なくとも前記第1の物質検出部と、前記第2の物質検出部と、前記流路選択部と、を制御する制御部と、を有する物質検出システムが行う物質検出方法であって、前記流路選択部は、前記第1の送液ポンプ、前記試料注入部、前記第1のカラム、及び、前記第2の物質検出部が直列に接続されるような流路と、前記第1の送液ポンプ、及び、前記第1の物質検出部が接続されるような流路を有する第1の状態と、前記第1の送液ポンプ、前記試料注入部、及び、前記第2の物質検出部が直列に接続されるような流路と、前記第2の送液ポンプ、前記第1のカラム、及び、前記第1の物質検出部が直列に接続されるような流路を有する第2の状態と、に切替可能であり、前記制御部は、前記第2の物質検出部による検出結果である第1の検出結果を取得する第1の検出結果取得ステップと、前記第1の物質検出部による検出結果である第2の検出結果を取得する第2の検出結果取得ステップと、前記第1の検出結果、及び、前記第2の検出結果を基に、前記第1の状態から前記第2の状態へと切り替えるタイミングである切替タイミングを決定する切替タイミング決定ステップと、を実行することを特徴とする。
 その他の解決手段は、実施形態中において適宜記載する。
In order to solve the above problems, the present invention comprises a first substance detection unit that detects the amount of the first substance in the sample, and a substance other than the first substance in the sample, and the first substance. Liquid is supplied by the second substance detection unit that detects the second substance that interferes with the measurement in the detection unit, the first liquid feed pump, the second liquid feed pump, and the first liquid feed pump. A sample injection unit for injecting the sample into the liquid, a first column capable of selectively adsorbing and eluting the first substance, and permeating the second substance, and the first liquid feeding pump. , The second liquid feed pump, the first column, the first substance detection unit, and the flow path selection unit for switching the flow path connecting the second substance detection unit, and at least the first. A substance detection method performed by a substance detection system having a substance detection unit, a second substance detection unit, and a control unit for controlling the flow path selection unit, wherein the flow path selection unit is the same. A flow path in which the first liquid feed pump, the sample injection unit, the first column, and the second substance detection unit are connected in series, the first liquid feed pump, and the above. The first state having a flow path to which the first substance detection unit is connected, the first liquid feed pump, the sample injection unit, and the second substance detection unit are connected in series. It is possible to switch between such a flow path and a second state having a flow path such that the second liquid feeding pump, the first column, and the first substance detection unit are connected in series. The control unit is the first detection result acquisition step for acquiring the first detection result which is the detection result by the second substance detection unit, and the detection result by the first substance detection unit. Timing for switching from the first state to the second state based on the second detection result acquisition step for acquiring the detection result 2, the first detection result, and the second detection result. It is characterized in that the switching timing determination step of determining the switching timing is executed.
Other solutions will be described as appropriate in the embodiments.
 本発明によれば、効率的な物質検出を行うことができる。 According to the present invention, efficient substance detection can be performed.
第1実施形態に係る液体クロマトグラフ質量分析システムの構成を示す図である。It is a figure which shows the structure of the liquid chromatograph mass spectrometry system which concerns on 1st Embodiment. 流路切替バルブにおける第1の状態を示す図である。It is a figure which shows the 1st state in the flow path switching valve. 流路切替バルブにおける第2の状態を示す図である。It is a figure which shows the 2nd state in the flow path switching valve. 第1実施形態における制御装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the control device in 1st Embodiment. UV検出器において検出されるタンパク質量を示すグラフ(その1)である。It is a graph (the 1) which shows the amount of protein detected by a UV detector. UV検出器において検出されるタンパク質量を示すグラフ(その2)である。It is a graph (No. 2) showing the amount of protein detected by a UV detector. 流路切替バルブの切替時刻と、質量分析計における測定対象物質の検出ピーク高さの関係をプロットした質量分析結果である。It is a mass spectrometric result which plotted the relationship between the switching time of the flow path switching valve and the detection peak height of the substance to be measured by the mass spectrometer. 第1実施形態に係る流路切替バルブの切替タイミングの決定処理の手順を示すフローチャート(その1)である。It is a flowchart (the 1) which shows the procedure of the process of determining the switching timing of the flow path switching valve which concerns on 1st Embodiment. 第1実施形態に係る流路切替バルブの切替タイミングの決定処理の手順を示すフローチャート(その2)である。It is a flowchart (No. 2) which shows the procedure of the process of determining the switching timing of the flow path switching valve which concerns on 1st Embodiment. 第2実施形態に係る液体クロマトグラフ質量分析システムの構成を示す図である。It is a figure which shows the structure of the liquid chromatograph mass spectrometry system which concerns on 2nd Embodiment. 第3実施形態に係る液体クロマトグラフ質量分析システムの構成を示す図である。It is a figure which shows the structure of the liquid chromatograph mass spectrometry system which concerns on 3rd Embodiment. 第3実施形態における制御装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the control device in 3rd Embodiment. 第3実施形態に係る流路切替バルブの切替タイミングの決定処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the determination process of the switching timing of the flow path switching valve which concerns on 3rd Embodiment. 第4実施形態に係る流路切替バルブの切替タイミングの決定処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the determination process of the switching timing of the flow path switching valve which concerns on 4th Embodiment. 第4実施形態によるUV検出器の測定結果と、質量分析計の測定結果とを示す図である。It is a figure which shows the measurement result of the UV detector by 4th Embodiment, and the measurement result of the mass spectrometer. 第5実施形態に係る液体クロマトグラフ質量分析システムの構成を示す図である。It is a figure which shows the structure of the liquid chromatograph mass spectrometry system which concerns on 5th Embodiment. 第5実施形態における制御装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the control device in 5th Embodiment. 第5実施形態に係る流路切替バルブの切替タイミングの決定処理の手順を示すフローチャート(その1)である。It is a flowchart (the 1) which shows the procedure of the determination process of the switching timing of the flow path switching valve which concerns on 5th Embodiment. 第5実施形態に係る流路切替バルブの切替タイミングの決定処理の手順を示すフローチャート(その2)である。It is a flowchart (No. 2) which shows the procedure of the process of determining the switching timing of the flow path switching valve which concerns on 5th Embodiment. 第6実施形態における制御装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the control device in 6th Embodiment. 第6実施形態に係る流路切替バルブの切替タイミングの決定処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the determination processing of the switching timing of the flow path switching valve which concerns on 6th Embodiment. 本実施形態におけるGUI画面の例を示す図(その1)である。It is a figure (the 1) which shows the example of the GUI screen in this embodiment. 本実施形態におけるGUI画面の例を示す図(その2)である。It is a figure (the 2) which shows the example of the GUI screen in this embodiment. 本実施形態におけるGUI画面の例を示す図(その3)である。It is a figure (the 3) which shows the example of the GUI screen in this embodiment.
 次に、本発明を実施するための形態(「実施形態」という)について、適宜図面を参照しながら詳細に説明する。なお、各図面において、同様の構成要素については、同一の符号を付して説明を省略する。 Next, a mode for carrying out the present invention (referred to as "the embodiment") will be described in detail with reference to the drawings as appropriate. In each drawing, similar components are designated by the same reference numerals and description thereof will be omitted.
 [第1実施形態]
 <液体クロマトグラフ質量分析システムZ>
 図1は、第1実施形態に係る液体クロマトグラフ質量分析システムZの構成を示す図である。
 液体クロマトグラフ質量分析システムZは、送液ポンプ8A、送液ポンプ8B、オートサンプラ7、UV検出器3、質量分析計4を備える。また、液体クロマトグラフ質量分析システムZは、前処理用カラム5、分析用カラム6、流路切替バルブ2、制御装置1を備える。送液ポンプ8A、送液ポンプ8B、オートサンプラ7、UV検出器3、質量分析計4、流路切替バルブ2のそれぞれは、制御装置1と通信を行う。制御装置1は、これらの各機器との間で、制御や、データの取得等を行う。なお、前処理用カラム5、分析用カラム6をカラムと適宜総称する。
[First Embodiment]
<Liquid chromatograph mass spectrometry system Z>
FIG. 1 is a diagram showing a configuration of a liquid chromatograph mass spectrometry system Z according to the first embodiment.
The liquid chromatograph mass spectrometer Z includes a liquid feed pump 8A, a liquid feed pump 8B, an autosampler 7, a UV detector 3, and a mass spectrometer 4. Further, the liquid chromatograph mass spectrometry system Z includes a pretreatment column 5, an analysis column 6, a flow path switching valve 2, and a control device 1. Each of the liquid feed pump 8A, the liquid feed pump 8B, the autosampler 7, the UV detector 3, the mass spectrometer 4, and the flow path switching valve 2 communicates with the control device 1. The control device 1 performs control, data acquisition, and the like with each of these devices. The pretreatment column 5 and the analysis column 6 are collectively referred to as columns as appropriate.
 第1バッファ溶液容器C1には第1バッファ溶液が充填されている。また、第2バッファ溶液容器C2には第2バッファ溶液が充填されている。
 送液ポンプ8Aは、第1バッファ溶液容器C1と、第2バッファ溶液容器C2とに接続され、グラジエントをかけて第1バッファ溶液及び第2バッファ溶液を流路F1に送液する。送液された第1バッファ溶液及び第2バッファ溶液は、流路F1を通ってオートサンプラ7に送られる。そして、オートサンプラ7は、オートサンプラ7の内部にセットされている複数の試料容器(不図示)のうちの一つから吸い上げた一定量の試料溶液を流路F2に流し込む。これにより、第1バッファ溶液と第2バッファ溶液との混合液に試料が混合する。試料が混合している溶液を試料溶液と称する。また、各バッファ溶液との混合液や、試料溶液を溶液と適宜総称する。
The first buffer solution container C1 is filled with the first buffer solution. Further, the second buffer solution container C2 is filled with the second buffer solution.
The liquid feed pump 8A is connected to the first buffer solution container C1 and the second buffer solution container C2, and feeds the first buffer solution and the second buffer solution to the flow path F1 by applying a gradient. The sent first buffer solution and second buffer solution are sent to the autosampler 7 through the flow path F1. Then, the autosampler 7 flows a certain amount of sample solution sucked up from one of a plurality of sample containers (not shown) set inside the autosampler 7 into the flow path F2. As a result, the sample is mixed with the mixed solution of the first buffer solution and the second buffer solution. The solution in which the sample is mixed is called the sample solution. Further, the mixed solution with each buffer solution and the sample solution are collectively collectively referred to as a solution.
 また、第3バッファ溶液容器C3には第3バッファ溶液が充填されている。また、第4バッファ溶液容器C4には第4バッファ溶液が充填されている。
 送液ポンプ8Bは、第3バッファ溶液容器C3と、第4バッファ溶液容器C4とに接続され、グラジエントをかけて第3バッファ溶液及び第4バッファ溶液を流路F6に送液する。
 流路F3,F4,F5,F7,F8については後記する。なお、流路F1~F8をまとめて流路Fと適宜称する。また、
Further, the third buffer solution container C3 is filled with the third buffer solution. Further, the fourth buffer solution container C4 is filled with the fourth buffer solution.
The liquid feed pump 8B is connected to the third buffer solution container C3 and the fourth buffer solution container C4, and feeds the third buffer solution and the fourth buffer solution to the flow path F6 by applying a gradient.
The flow paths F3, F4, F5, F7 and F8 will be described later. The flow paths F1 to F8 are collectively referred to as a flow path F as appropriate. again,
 本実施形態では、送液ポンプ8Aは二種類のバッファ溶液を送液しているが、一種類あるいは三種類以上のバッファ溶液を送液してもよい。同様に、本実施形態では、送液ポンプ8Bは二種類のバッファ溶液を送液しているが、一種類あるいは三種類以上のバッファ溶液を送液してもよい。 In the present embodiment, the liquid feed pump 8A feeds two types of buffer solutions, but one type or three or more types of buffer solutions may be fed. Similarly, in the present embodiment, the liquid feed pump 8B feeds two kinds of buffer solutions, but one kind or three or more kinds of buffer solutions may be fed.
 流路切替バルブ2は、流路Fの切り替えを行う。ここで、図2A及び図2Bを参照して、流路切替バルブ2の切り替えについて説明する。 The flow path switching valve 2 switches the flow path F. Here, switching of the flow path switching valve 2 will be described with reference to FIGS. 2A and 2B.
 (流路切替バルブ2の切り替え)
 図2Aは、流路切替バルブ2における第1の状態を示す図であり、図2Bは、第2の状態を示す図である。適宜、図1を参照する。
 図2A及び図2Bにおいて、溶液の流れを破線矢印で示す。
 図2Aに示す第1の状態のとき、オートサンプラ7から導入された試料溶液は、流路F2,F3を介して前処理用カラム5に導入される。前処理用カラム5では、タンパク質のような分子量が数万以上の大きな物質は早く排出されるが、薬剤やホルモンなどの分子量が数百の小さな物質、すなわち、測定対象物質(第1の物質)はカラム内に吸着されやすく、ゆっくりと排出される。そして、前処理用カラム5から排出した溶液(タンパク質を含む)は、流路F4,F5を介してUV検出器3へと送液される。これにより、UV検出器3は試料中の妨害物質であるタンパク質(第2の物質)の量を検出する。
(Switching of flow path switching valve 2)
FIG. 2A is a diagram showing a first state of the flow path switching valve 2, and FIG. 2B is a diagram showing a second state. Refer to FIG. 1 as appropriate.
In FIGS. 2A and 2B, the flow of the solution is indicated by a dashed arrow.
In the first state shown in FIG. 2A, the sample solution introduced from the autosampler 7 is introduced into the pretreatment column 5 via the flow paths F2 and F3. In the pretreatment column 5, a large substance having a molecular weight of tens of thousands or more such as a protein is quickly discharged, but a substance having a molecular weight of several hundreds such as a drug or a hormone, that is, a substance to be measured (first substance). Is easily adsorbed in the column and is slowly discharged. Then, the solution (containing the protein) discharged from the pretreatment column 5 is sent to the UV detector 3 via the flow paths F4 and F5. Thereby, the UV detector 3 detects the amount of the protein (second substance) which is an interfering substance in the sample.
 また、図2Aに示す第1の状態では、送液ポンプ8Bから送液された第3バッファ溶液と、第4バッファ溶液との混合液は流路F6,F7を介して分析用カラム6へ送液される。さらに、第3バッファ溶液と、第4バッファ溶液との混合液は流路F8を介して、質量分析計4へと送液される。ただし、第1の状態では、質量分析計4へ流れる溶液には試料が含まれていないため、質量分析計4では何も検出されない。 Further, in the first state shown in FIG. 2A, the mixed solution of the third buffer solution and the fourth buffer solution sent from the liquid feed pump 8B is sent to the analysis column 6 via the flow paths F6 and F7. Be liquid. Further, the mixed solution of the third buffer solution and the fourth buffer solution is sent to the mass spectrometer 4 via the flow path F8. However, in the first state, since the solution flowing to the mass spectrometer 4 does not contain a sample, nothing is detected by the mass spectrometer 4.
 そして、制御装置1は、タンパク質が概ね排出されたと判定すると、所定のタイミングで流路切替バルブ2を第1の状態から図2Bに示す第2の状態に切り替える。第1の状態から第2の状態に切り替えるタイミングについては後記する。
 図2Bに示す第2の状態では、流路F2と流路F5とが直接接続される。これにより、オートサンプラ7から送液された試料溶液は、そのままUV検出器3へと送液される。
Then, when the control device 1 determines that the protein is substantially discharged, the control device 1 switches the flow path switching valve 2 from the first state to the second state shown in FIG. 2B at a predetermined timing. The timing of switching from the first state to the second state will be described later.
In the second state shown in FIG. 2B, the flow path F2 and the flow path F5 are directly connected. As a result, the sample solution sent from the autosampler 7 is sent to the UV detector 3 as it is.
 また、第2の状態では流路F6と流路F4とが接続され、さらに、流路F3と流路F7とが接続される。従って、送液ポンプ8Bから送液された溶液は、流路F6,F4を介して前処理用カラム5へ送液される。そして、送液された溶液は、前処理用カラム5において吸着している測定対象物質をゆっくり排出させる。排出された測定対象物質を含む溶液は、流路F3,F7を介して分析用カラム6に導入される。分析用カラム6では、溶液に含まれる測定対象物質を、質量分析計4での分析に適するよう分離する。その後、分析用カラム6で分離された測定対象物質は、流路F8を介して質量分析計4へと導入され、質量分析計4において分析される。 Further, in the second state, the flow path F6 and the flow path F4 are connected, and further, the flow path F3 and the flow path F7 are connected. Therefore, the solution sent from the liquid feeding pump 8B is sent to the pretreatment column 5 via the flow paths F6 and F4. Then, the delivered solution slowly discharges the substance to be measured adsorbed on the pretreatment column 5. The discharged solution containing the substance to be measured is introduced into the analytical column 6 via the flow paths F3 and F7. In the analysis column 6, the substance to be measured contained in the solution is separated so as to be suitable for analysis by the mass spectrometer 4. After that, the substance to be measured separated by the analytical column 6 is introduced into the mass spectrometer 4 via the flow path F8 and analyzed by the mass spectrometer 4.
 前処理用カラム5を用いることにより、測定対象物質の流路Fや、前処理用カラム5内における拡散を防ぎ、シャープなピークを質量分析計4が検出することができる。これにより、高いS/N比を得られる。 By using the pretreatment column 5, the mass spectrometer 4 can detect a sharp peak by preventing diffusion of the substance to be measured in the flow path F and in the pretreatment column 5. As a result, a high S / N ratio can be obtained.
 (制御装置1)
 図3は、第1実施形態における制御装置1の構成を示す機能ブロック図である。
 制御装置1は、揮発性メモリ等で構成されるメモリ110、キーボードや、マウス等の入力装置151、ディスプレイ等の表示装置152を有する。さらに、制御装置1は、NIC(Network Interface Card)等の通信装置153、CPU(Central Processing Unit)154、HD(Hard Disk)等の記憶装置160を有している。
(Control device 1)
FIG. 3 is a functional block diagram showing the configuration of the control device 1 according to the first embodiment.
The control device 1 includes a memory 110 composed of a volatile memory and the like, an input device 151 such as a keyboard and a mouse, and a display device 152 such as a display. Further, the control device 1 has a communication device 153 such as a NIC (Network Interface Card), a CPU (Central Processing Unit) 154, and a storage device 160 such as an HD (Hard Disk).
 そして、記憶装置160に格納されているプログラムがメモリ110にロードされ、ロードされたプログラムがCPU154によって実行される。これにより、処理部111が具現化する。処理部111は、パラメータ設定部112、UV検出制御部113、切替タイミング設定部114、ループ判定部115、警告処理部116、バルブ制御部117、質量分析制御部118、切替時刻判定部119で構成されている。 Then, the program stored in the storage device 160 is loaded into the memory 110, and the loaded program is executed by the CPU 154. As a result, the processing unit 111 is embodied. The processing unit 111 includes a parameter setting unit 112, a UV detection control unit 113, a switching timing setting unit 114, a loop determination unit 115, a warning processing unit 116, a valve control unit 117, a mass spectrometry control unit 118, and a switching time determination unit 119. Has been done.
 パラメータ設定部112は、後記する流路切替バルブ2の切替タイミングの決定処理において必要な各パラメータを設定する。
 UV検出制御部113は、UV検出器3を制御して、タンパク質検出量等のUV検出結果を取得する。
 切替タイミング設定部114は、流路切替バルブ2を第1の状態から第2の状態に切り替えるタイミングを決定し、設定する。
The parameter setting unit 112 sets each parameter required in the process of determining the switching timing of the flow path switching valve 2, which will be described later.
The UV detection control unit 113 controls the UV detector 3 to acquire UV detection results such as the amount of protein detected.
The switching timing setting unit 114 determines and sets the timing for switching the flow path switching valve 2 from the first state to the second state.
 ループ判定部115は、後記する流路切替バルブ2の切替タイミングの決定処理において処理のループが所定の閾値を超えていないか否かを判定する。
 警告処理部116は、流路切替バルブ2を第1の状態から第2の状態に切り替えるタイミング(切替時刻)を決定できなかった場合において警告を出力する。
 質量分析制御部118は、質量分析器を制御して、測定対象物質の検出量を取得する。
 切替時刻判定部119は、現在の切替時刻が適切であるか否かを判定する。
The loop determination unit 115 determines whether or not the processing loop exceeds a predetermined threshold value in the process of determining the switching timing of the flow path switching valve 2, which will be described later.
The warning processing unit 116 outputs a warning when the timing (switching time) for switching the flow path switching valve 2 from the first state to the second state cannot be determined.
The mass spectrometry control unit 118 controls the mass spectrometer to acquire the detected amount of the substance to be measured.
The switching time determination unit 119 determines whether or not the current switching time is appropriate.
 (UV検出結果)
 図4Aは、UV検出器3において検出されるタンパク質量を示すグラフである。なお、図4A及び図4Bにおいて、横軸は時間を示し、縦軸はタンパク質量を示す。
 一般に、UV検出器3では、図4Aのようなピーク到達時刻時刻t1にピークを有する曲線(グラフL1)を描く。タンパク質を構成するアミノ酸の内、チロシン、トリプトファン、フェニルアラニンはベンゼン環等の芳香族基を持ち、波長280nm付近の紫外線を吸収する。これにより、UV検出器3は、280nmにおける紫外線の吸光度を測定することにより、タンパク質量を定量する。また、核酸は、260nmと280nmに極大吸収波長を有することからUV検出器3は、260nmと280nmの吸光度を測定し、核酸の光吸収による影響を補正したタンパク質濃度を算出してもよい。
(UV detection result)
FIG. 4A is a graph showing the amount of protein detected by the UV detector 3. In FIGS. 4A and 4B, the horizontal axis represents time and the vertical axis represents the amount of protein.
Generally, the UV detector 3 draws a curve (graph L1) having a peak at the peak arrival time t1 as shown in FIG. 4A. Among the amino acids that make up proteins, tyrosine, tryptophan, and phenylalanine have aromatic groups such as benzene rings and absorb ultraviolet rays with a wavelength of around 280 nm. As a result, the UV detector 3 quantifies the amount of protein by measuring the absorbance of ultraviolet rays at 280 nm. Further, since the nucleic acid has maximum absorption wavelengths at 260 nm and 280 nm, the UV detector 3 may measure the absorbance at 260 nm and 280 nm and calculate the protein concentration corrected for the influence of the light absorption of the nucleic acid.
 ここで、流路切替バルブ2を第1の状態から第2の状態へと切り替えるタイミング(切替タイミング)の時刻を切替時刻t2とする。制御装置1は、UV検出器3の検出結果を基にタンパク質等の測定妨害物質が排出されたか否かを判定する。すなわち、図4Aに示す切替時刻t2を第1の状態から第2の状態へと切り替えるタイミングとすると、UV検出器3が検出するタンパク質量がほとんどないことから、タンパク質の排出は、ほぼ完了していると考えられる。従って、切替時刻t2で流路切替バルブ2を第1の状態から第2の状態へと切り替えることで、分析用カラム6や、質量分析計4へのタンパク質の流入を防ぐことができる。 Here, the time of the timing (switching timing) for switching the flow path switching valve 2 from the first state to the second state is set as the switching time t2. The control device 1 determines whether or not a measurement interfering substance such as a protein is discharged based on the detection result of the UV detector 3. That is, when the switching time t2 shown in FIG. 4A is set to the timing for switching from the first state to the second state, the amount of protein detected by the UV detector 3 is almost nonexistent, so that the protein discharge is almost completed. It is thought that there is. Therefore, by switching the flow path switching valve 2 from the first state to the second state at the switching time t2, it is possible to prevent the inflow of protein into the analysis column 6 and the mass spectrometer 4.
 ここで、前処理用カラム5では、測定対象物質を吸着するが、完全に吸着されるのではなく、排出される時間を遅らせている。つまり、時間が経過すると、測定対象物質が前処理用カラム5から流出してしまう。
 しかし、図4Aにおける切替時刻t2を切り替えるタイミングとすると、前処理用カラム5から流れ出る測定対象物質の量も多くなってしまう。つまり、多くの測定対象物質がUV検出器3へと流出してしまう。この結果、第2の状態へと切り替えても、質量分析計4へ流れる測定対象物質の量が減ってしまい、感度が低下してしまう。
Here, the pretreatment column 5 adsorbs the substance to be measured, but it is not completely adsorbed, but the discharge time is delayed. That is, over time, the substance to be measured flows out from the pretreatment column 5.
However, when the switching time t2 in FIG. 4A is set as the switching timing, the amount of the substance to be measured flowing out from the pretreatment column 5 also increases. That is, many substances to be measured flow out to the UV detector 3. As a result, even if the state is switched to the second state, the amount of the substance to be measured flowing to the mass analyzer 4 is reduced, and the sensitivity is lowered.
 ここで、図4Aにおけるピーク面積A0は、曲線L1と横軸とで囲まれる部分の面積である。 Here, the peak area A0 in FIG. 4A is the area of the portion surrounded by the curve L1 and the horizontal axis.
 そこで、図4Bに示すように、測定対象物質が前処理用カラム5から流出する前の切替時刻t2で第1の状態から第2の状態へと切り替えることが考えられる。しかし、図4Bに示すように、この切替時刻t2は、タンパク質の検出量が下がりきっていない、換言すれば、タンパク質が前処理用カラム5から排出されきっていないタイミングである。従って、この切替時刻t2に流路切替バルブ2を第1の状態から第2の状態切り替えると、流路F3,F7,F8に流れ込むタンパク質が存在する。図2Bに示す流路F3,F7に流れ込むタンパク質は分析用カラム6や、質量分析計4へと流れこみ、分析用カラム6や、質量分析計4のキャピラリが詰まる原因となる。結果として、液体クロマトグラフ質量分析システムZのロバスト性の低下につながる。
 ここで、図4Bにおけるピーク面積A1は、切替時刻t2以降において曲線L1と横軸とで囲まれる部分の面積(斜線部分の面積)である。
Therefore, as shown in FIG. 4B, it is conceivable to switch from the first state to the second state at the switching time t2 before the substance to be measured flows out from the pretreatment column 5. However, as shown in FIG. 4B, this switching time t2 is a timing at which the detected amount of protein has not completely decreased, in other words, the protein has not been completely discharged from the pretreatment column 5. Therefore, when the flow path switching valve 2 is switched from the first state to the second state at this switching time t2, proteins flowing into the flow paths F3, F7, and F8 are present. The proteins flowing into the flow paths F3 and F7 shown in FIG. 2B flow into the analytical column 6 and the mass spectrometer 4, and cause the capillary of the analytical column 6 and the mass spectrometer 4 to be clogged. As a result, the robustness of the liquid chromatograph mass spectrometry system Z is reduced.
Here, the peak area A1 in FIG. 4B is the area of the portion surrounded by the curve L1 and the horizontal axis (the area of the shaded portion) after the switching time t2.
 つまり、図4Bに示す切替時刻t2を紙面左側に移動させすぎる(切り替えのタイミングを早める)とタンパク質が分析用カラム6や、質量分析計4に流れ込んでしまう。逆に、切替時刻t2を紙面右側に移動させすぎる(切り替えのタイミングを遅くする)と、質量分析計4へ流れ込む測定対象物質の量が減少し、質量分析計4の感度が低下してしまう。
 従って、流路切替バルブ2を切り替えるタイミングは、UV検出器3によるタンパク質の検出量(タンパク質の排出量)と、前処理用カラム5から流出する測定対象物質との間でバランスする必要がある。
That is, if the switching time t2 shown in FIG. 4B is moved too far to the left side of the paper (advancing the switching timing), the protein will flow into the analysis column 6 and the mass spectrometer 4. On the contrary, if the switching time t2 is moved too much to the right side of the paper (the switching timing is delayed), the amount of the substance to be measured flowing into the mass spectrometer 4 decreases, and the sensitivity of the mass spectrometer 4 decreases.
Therefore, the timing of switching the flow path switching valve 2 needs to be balanced between the amount of protein detected by the UV detector 3 (the amount of protein discharged) and the substance to be measured flowing out from the pretreatment column 5.
 (質量分析結果)
 図5は、図4A及び図4Bにおける流路切替バルブ2の切替時刻t2と、質量分析計4における測定対象物質の検出ピーク高さの関係をプロットした質量分析結果である。
 なお、測定対象物質のピーク面積は一定である。つまり、図5において、検出ピーク高さが高ければ高いほど、検出領域が拡散せず、鋭い検出ピークとなっていることを示す。
(Mass spectrometry result)
FIG. 5 is a mass spectrometric result plotting the relationship between the switching time t2 of the flow path switching valve 2 in FIGS. 4A and 4B and the detection peak height of the substance to be measured by the mass spectrometer 4.
The peak area of the substance to be measured is constant. That is, in FIG. 5, it is shown that the higher the detection peak height, the sharper the detection peak is, because the detection region is not diffused.
 図5に示すように、流路切替バルブ2を切り替える時間が早ければ早いほど検出ピーク高さが高くなる。すなわち、流路切替バルブ2を切り替える時間がより早ければ、検出領域が拡散せず、より高いS/N比が得られることになる。ただし、前記したように、試料中にタンパク質等といった他の妨害成分が混ざっている場合、流路切替バルブ2を切り替える時間が早すぎると、妨害物質の影響により質量分析計4で検出されるピークの高さが低くなる場合がある。 As shown in FIG. 5, the earlier the time for switching the flow path switching valve 2, the higher the detection peak height. That is, if the time for switching the flow path switching valve 2 is earlier, the detection region is not diffused and a higher S / N ratio can be obtained. However, as described above, when other interfering components such as proteins are mixed in the sample, if the time to switch the flow path switching valve 2 is too early, the peak detected by the mass spectrometer 4 due to the influence of the interfering substance. May be low.
 <フローチャート>
 図6A及び図6Bは、第1実施形態に係る流路切替バルブ2の切替タイミングの決定処理の手順を示すフローチャートである。図6A及び図6Bの処理は制御装置1で行われる処理である。
 まず、パラメータ設定部112が本フローチャートで使用する各パラメータを設定する(図6AのS101)。ここで設定されるパラメータは、ステップS111,S131,133で使用される閾値(Nth、MPth、Rath)等である。また、閾値の設定パラメータとしては、このほかにも、UV検出器3や、質量分析計4におけるピーク高さ、ピーク面積、ピーク到達時間、ピーク幅、ピークの一時微分係数、測定時間、試料をオートサンプラ7からインジェクションする量等が設定されてもよい。
<Flowchart>
6A and 6B are flowcharts showing a procedure for determining the switching timing of the flow path switching valve 2 according to the first embodiment. The processes of FIGS. 6A and 6B are processes performed by the control device 1.
First, the parameter setting unit 112 sets each parameter used in this flowchart (S101 in FIG. 6A). The parameters set here are the threshold values (Nth, MPth, Rat) and the like used in steps S111, S131, and 133. In addition, as the setting parameters of the threshold, the peak height, the peak area, the peak arrival time, the peak width, the temporary differential coefficient of the peak, the measurement time, and the sample in the UV detector 3 and the mass spectrometer 4 are used. The amount of injection from the autosampler 7 may be set.
 次に、UV検出制御部113は、タンパク質の除去率の基準値を測定するため、流路切替バルブ2を第1の状態の状態とし(S102)、UV検出器3による測定(UV測定)を行う(S103)。このUV測定は、流路切替バルブ2を第1の状態のまま、タンパク質が流れ切るまで行う。 Next, in order to measure the reference value of the protein removal rate, the UV detection control unit 113 sets the flow path switching valve 2 in the first state (S102), and measures with the UV detector 3 (UV measurement). Do (S103). This UV measurement is performed with the flow path switching valve 2 in the first state until the protein has completely flowed out.
 次に、切替タイミング設定部114は、ステップS103の測定結果におけるピーク面積A0(図4A参照)と、ピーク到達時刻t1を記録する(S104)。ここでは、オートサンプラ7が試料を注入する時刻をt=0としているが、これに限らない。なお、ピーク面積A0が基準値に対して大幅に逸脱している場合、警告処理部116が試料の希釈率や前処理工程が間違っている可能性を示唆するアラートを発生させてもよい。 Next, the switching timing setting unit 114 records the peak area A0 (see FIG. 4A) and the peak arrival time t1 in the measurement result of step S103 (S104). Here, the time at which the autosampler 7 injects the sample is set to t = 0, but the time is not limited to this. If the peak area A0 deviates significantly from the reference value, the warning processing unit 116 may generate an alert suggesting that the dilution ratio of the sample or the pretreatment step may be incorrect.
 そして、切替タイミング設定部114は、ステップS104で記録したピーク面積A0と、ピーク到達時刻t1と、を基に切替時刻t2を決定する(S105)。このとき、切替タイミング設定部114は、所定量を超えるタンパク質が流路F3,F7,F8に流れこまないよう十分大きな切替時刻t2を設定する。例えば、図4に示すUV検出器3のグラフL1におけるピーク値×0.2となる時刻を切替時刻t2とする。 Then, the switching timing setting unit 114 determines the switching time t2 based on the peak area A0 recorded in step S104 and the peak arrival time t1 (S105). At this time, the switching timing setting unit 114 sets a sufficiently large switching time t2 so that proteins exceeding a predetermined amount do not flow into the flow paths F3, F7, and F8. For example, the time at which the peak value × 0.2 in the graph L1 of the UV detector 3 shown in FIG. 4 is set as the switching time t2.
 次に、ループ判定部115は、繰り返し回数(N)が繰り返し閾値(Nth)以下であるか否かを判定する(S111)。 Next, the loop determination unit 115 determines whether or not the number of repetitions (N) is equal to or less than the repetition threshold value (Nth) (S111).
 繰り返し回数(N)が繰り返し閾値(Nth)より大きい場合(S111→No)、警告処理部116は警告を出力する(S112)。ステップS112では、例えば、警告処理部116が、条件を満たす切替時刻t2が存在しないとして、送液条件の変更や、前処理用カラム5の交換を推奨する警告メッセージを表示装置152に表示する。 When the number of repetitions (N) is larger than the repetition threshold (Nth) (S111 → No), the warning processing unit 116 outputs a warning (S112). In step S112, for example, the warning processing unit 116 displays a warning message on the display device 152 recommending the change of the liquid feeding condition or the replacement of the pretreatment column 5, assuming that the switching time t2 satisfying the condition does not exist.
 繰り返し回数(N)が繰り返し閾値(Nth)以下である場合(S111→Yes)、バルブ制御部117は流路切替バルブ2を第1の状態に切り替え(S121)、UV検出制御部113はUV検出器3による測定(UV測定)を開始する(S122)。 When the number of repetitions (N) is equal to or less than the repetition threshold (Nth) (S111 → Yes), the valve control unit 117 switches the flow path switching valve 2 to the first state (S121), and the UV detection control unit 113 detects UV. The measurement (UV measurement) by the device 3 is started (S122).
 次に、バルブ制御部117はオートサンプラ7による試料の注入開始からの時刻tが切替時刻t2以上となったか否かを判定する(S123)。
 試料の注入開始からの時刻tが切替時刻t2未満である場合(S123→No)、処理部111はステップS123へ処理を戻す。
 試料の注入開始からの時刻tが切替時刻t2以上である場合(S123→Yes)、バルブ制御部117は流路切替バルブ2を第2の状態に切り替え(S124)、質量分析制御部118は、質量分析計4による測定(MS測定)を開始する(S125)。
 UV検出器3及び質量分析計4による測定が終了すると(S126)、切替時刻判定部119は、質量分析計4による検出ピーク値(MP)が質量分析閾値(MPth)以上であるか否かを判定する(図6BのS131)。
 質量分析計4による検出ピーク値(MP)が質量分析閾値(MPth)未満である場合(S131→No)、切替タイミング設定部114は、切替時刻t2を所定量小さくし(S132)、処理部111はステップS111へ処理を戻す。前記したように、検出ピーク値が高いことはS/N比が高いことに対応する。
Next, the valve control unit 117 determines whether or not the time t from the start of injection of the sample by the autosampler 7 is equal to or greater than the switching time t2 (S123).
When the time t from the start of injection of the sample is less than the switching time t2 (S123 → No), the processing unit 111 returns the processing to step S123.
When the time t from the start of sample injection is equal to or longer than the switching time t2 (S123 → Yes), the valve control unit 117 switches the flow path switching valve 2 to the second state (S124), and the mass spectrometry control unit 118 determines. The measurement (MS measurement) by the mass spectrometer 4 is started (S125).
When the measurement by the UV detector 3 and the mass spectrometer 4 is completed (S126), the switching time determination unit 119 determines whether or not the detection peak value (MP) by the mass spectrometer 4 is equal to or higher than the mass spectrometry threshold value (MPth). Judgment (S131 in FIG. 6B).
When the peak value (MP) detected by the mass spectrometer 4 is less than the mass spectrometry threshold (MPth) (S131 → No), the switching timing setting unit 114 reduces the switching time t2 by a predetermined amount (S132), and the processing unit 111. Returns the process to step S111. As described above, a high detection peak value corresponds to a high S / N ratio.
 質量分析計4による検出ピーク値(MP)が質量分析閾値(MPth)以上である場合(S131→No)、切替時刻判定部119は、ピーク面積比(RA)がピーク面積比閾値(RAth)以上であるか否かを判定する(S133)。ここで、ピーク面積比(RA)は、切替時刻t2以降におけるUV検出結果のピーク面積A1(図4B参照)と、UV検出結果のピーク面積A0(図4A参照)の比である。具体的には、ピーク面積比(RA)は、切替時刻t2以降におけるUV検出結果のピーク面積A1を、UV検出結果のピーク面積A0で割った値である。ピーク面積比(RA)はタンパク質除去率に相当する。なお、ピーク面積比閾値(RAth)はステップS101においてパラメータ設定部112によって設定される値である。 When the peak value (MP) detected by the mass spectrometer 4 is equal to or greater than the mass spectrometry threshold (MPth) (S131 → No), the switching time determination unit 119 has a peak area ratio (RA) equal to or greater than the peak area ratio threshold (RAth). It is determined whether or not it is (S133). Here, the peak area ratio (RA) is the ratio of the peak area A1 of the UV detection result (see FIG. 4B) and the peak area A0 of the UV detection result (see FIG. 4A) after the switching time t2. Specifically, the peak area ratio (RA) is a value obtained by dividing the peak area A1 of the UV detection result after the switching time t2 by the peak area A0 of the UV detection result. The peak area ratio (RA) corresponds to the protein removal rate. The peak area ratio threshold value (RAth) is a value set by the parameter setting unit 112 in step S101.
 ピーク面積比(RA)がピーク面積比閾値(RAth)未満である場合(S133→No)、切替タイミング設定部114は、切替時刻t2を所定量大きくし(S134)、処理部111はステップS111へ処理を戻す。
 ピーク面積比(RA)がピーク面積比閾値(RAth)以上である場合(S133→Yes)、切替タイミング設定部114は切替時刻t2を現在の値で決定する(S135)。
When the peak area ratio (RA) is less than the peak area ratio threshold value (RAth) (S133 → No), the switching timing setting unit 114 increases the switching time t2 by a predetermined amount (S134), and the processing unit 111 goes to step S111. Return the process.
When the peak area ratio (RA) is equal to or greater than the peak area ratio threshold value (RAth) (S133 → Yes), the switching timing setting unit 114 determines the switching time t2 with the current value (S135).
 なお、ステップS133で「No」の場合、切替タイミング設定部114は、質量分析閾値(MPth)を所定量大きくしてもよい。 If "No" is set in step S133, the switching timing setting unit 114 may increase the mass spectrometry threshold value (MPth) by a predetermined amount.
 図6A及び図6Bに示す処理により、タンパク質除去率(ピーク面積比(RA))と、質量分析計4のピーク値とをバランスさせた切替時刻t2(切替タイミング)の決定が可能となる。これにより、分析用カラム6の詰まりを軽減することができる。その結果、タンパク質の除去をオンライン処理により行う際に、測定対象物質の検出感度とロバスト性及びメンテナンスコストとをバランスさせることができる。 By the processing shown in FIGS. 6A and 6B, it is possible to determine the switching time t2 (switching timing) in which the protein removal rate (peak area ratio (RA)) and the peak value of the mass spectrometer 4 are balanced. As a result, clogging of the analysis column 6 can be reduced. As a result, when the protein is removed by the online treatment, the detection sensitivity of the substance to be measured, the robustness and the maintenance cost can be balanced.
 [第2実施形態]
 <液体クロマトグラフ質量分析システムZa>
 図7は、第2実施形態に係る液体クロマトグラフ質量分析システムZaの構成を示す図である。
 図7に示す液体クロマトグラフ質量分析システムZaは、第1フィルタ9A及び第2フィルタ9Bを備える。図7に示すように、流路切替バルブ2が第1の状態である場合、第1フィルタ9Aは前処理用カラム5の前段に備えられ、第2フィルタ9Bは分析用カラム6の前段に備えられる。
[Second Embodiment]
<Liquid chromatograph mass spectrometry system Za>
FIG. 7 is a diagram showing the configuration of the liquid chromatograph mass spectrometry system Za according to the second embodiment.
The liquid chromatograph mass spectrometric system Za shown in FIG. 7 includes a first filter 9A and a second filter 9B. As shown in FIG. 7, when the flow path switching valve 2 is in the first state, the first filter 9A is provided in the front stage of the pretreatment column 5, and the second filter 9B is provided in the front stage of the analysis column 6. Be done.
 このような構成とすることにより、第1フィルタ9Aは前処理用カラム5を保護し、第2フィルタ9Bは分析用カラム6を保護する。それ以外の構成と動作は第1実施形態と同様である。第1フィルタ9A及び第2フィルタ9Bが設けられることで、液体クロマトグラフ質量分析システムZaにおけるロバスト性の向上と、メンテナンス性の向上とを図ることができる。 With such a configuration, the first filter 9A protects the pretreatment column 5, and the second filter 9B protects the analysis column 6. Other configurations and operations are the same as those in the first embodiment. By providing the first filter 9A and the second filter 9B, it is possible to improve the robustness and maintainability of the liquid chromatograph mass spectrometry system Za.
 [第3実施形態]
 <液体クロマトグラフ質量分析システムZb>
 図8は、第3実施形態に係る液体クロマトグラフ質量分析システムZbの構成を示す図である。
 液体クロマトグラフ質量分析システムZbは、前処理用カラム5の部分に前処理用カラム切替システム50が設けられている。また、分析用カラム6の部分に分析用カラム切替システム60が設けられている。
[Third Embodiment]
<Liquid chromatograph mass spectrometry system Zb>
FIG. 8 is a diagram showing the configuration of the liquid chromatograph mass spectrometry system Zb according to the third embodiment.
In the liquid chromatograph mass spectrometry system Zb, a pretreatment column switching system 50 is provided in a portion of the pretreatment column 5. Further, an analysis column switching system 60 is provided in a portion of the analysis column 6.
 前処理用カラム切替システム50は、複数(図8の例では4つ)の前処理用カラム5A~5Dが第1カラム切替バルブ2A及び第2カラム切替バルブ2Bに接続されている。第1カラム切替バルブ2A及び第2カラム切替バルブ2Bは、前処理用カラム5A~5Dのいずれか1つが前処理用カラム5として選択されるよう、前処理用カラム5A~5Dの切り替えを行う。 In the pretreatment column switching system 50, a plurality of pretreatment columns 5A to 5D (four in the example of FIG. 8) are connected to the first column switching valve 2A and the second column switching valve 2B. The first column switching valve 2A and the second column switching valve 2B switch the pretreatment columns 5A to 5D so that any one of the pretreatment columns 5A to 5D is selected as the pretreatment column 5.
 分析用カラム切替システム60は、複数(図8の例では4つ)の分析用カラム6A~6Dが第3カラム切替バルブ2C及び第4カラム切替バルブ2Dに接続されている。第3カラム切替バルブ2C及び第4カラム切替バルブ2Dは、分析用カラム6A~6Dのいずれか1つが分析用カラム6として選択されるよう、分析用カラム6A~6Dの切り替えを行う。 In the analysis column switching system 60, a plurality of analysis columns 6A to 6D (four in the example of FIG. 8) are connected to the third column switching valve 2C and the fourth column switching valve 2D. The third column switching valve 2C and the fourth column switching valve 2D switch the analytical columns 6A to 6D so that any one of the analytical columns 6A to 6D is selected as the analytical column 6.
 (制御装置1)
 図9は、第3実施形態における制御装置1bの構成を示す機能ブロック図である。
 図9において、図3と同様の同様の構成については同一の符号を付して説明を省略する。
 制御装置1bの処理部111bはバルブ切替処理部120及び劣化判定部121を有している点が図3に示す制御装置1と異なっている。
 バルブ切替処理部120は、第1カラム切替バルブ2A~第4カラム切替バルブ2Dの流路切替を制御する。
 劣化判定部121は、前処理用カラム5A~5Dや、分析用カラム6A~6Dの劣化状態を判定する。
(Control device 1)
FIG. 9 is a functional block diagram showing the configuration of the control device 1b according to the third embodiment.
In FIG. 9, the same components as those in FIG. 3 are designated by the same reference numerals and the description thereof will be omitted.
The processing unit 111b of the control device 1b is different from the control device 1 shown in FIG. 3 in that it has a valve switching processing unit 120 and a deterioration determination unit 121.
The valve switching processing unit 120 controls the flow path switching of the first column switching valve 2A to the fourth column switching valve 2D.
The deterioration determination unit 121 determines the deterioration state of the pretreatment columns 5A to 5D and the analysis columns 6A to 6D.
 <フローチャート>
 図10は、第3実施形態に係る流路切替バルブ2の切替タイミングの決定処理の手順を示すフローチャートである。
 図10において、図6Aと同様の処理については同一のステップ番号を付して説明を省略する。また、ステップS131以降の処理は、図6Bと同様であるので図示及び説明を省略する。
 ステップS111で繰り返し回数(N)が繰り返し閾値(Nth)より大きい場合(S111→No)、バルブ切替処理部120は前処理用カラム5A~5D、分析用カラム6A~6Dのすべて(カラムのすべて)が切替済みであるか否かを判定する(S141)。
 前処理用カラム5A~5D、分析用カラム6A~6Dのすべて(カラムのすべて)が切替済みである場合(S141→Yes)、警告処理部116は警告を出力する(S112)。
<Flowchart>
FIG. 10 is a flowchart showing a procedure for determining the switching timing of the flow path switching valve 2 according to the third embodiment.
In FIG. 10, the same process as in FIG. 6A is assigned the same step number and the description thereof will be omitted. Further, since the processing after step S131 is the same as that in FIG. 6B, the illustration and description will be omitted.
When the number of repetitions (N) is larger than the repetition threshold (Nth) in step S111 (S111 → No), the valve switching processing unit 120 includes all of the pretreatment columns 5A to 5D and the analysis columns 6A to 6D (all of the columns). Determines whether or not has been switched (S141).
When all of the preprocessing columns 5A to 5D and the analysis columns 6A to 6D (all of the columns) have been switched (S141 → Yes), the warning processing unit 116 outputs a warning (S112).
 前処理用カラム5A~5D、分析用カラム6A~6Dのすべて(カラムのすべて)が切替済みでない場合(S141→No)、バルブ切替処理部120は第1カラム切替バルブ2A~第4カラム切替バルブ2Dのそれぞれを切り替える切替処理を行う(S142)。このとき、バルブ切替処理部120は使用されていない前処理用カラム5A~5D、分析用カラム6A~6Dを使用するよう、第1カラム切替バルブ2A~第4カラム切替バルブ2Dの切り替えを行う。
 その後、劣化判定部121が前処理用カラム5A~5Dや、分析用カラム6A~6Dの劣化判定処理を行う(S143)。劣化判定処理の詳細は後記する。
 そして、処理部111はステップS102へ処理を戻す。
When all of the pretreatment columns 5A to 5D and the analysis columns 6A to 6D (all of the columns) have not been switched (S141 → No), the valve switching processing unit 120 is the first column switching valve 2A to the fourth column switching valve. A switching process for switching each of the 2Ds is performed (S142). At this time, the valve switching processing unit 120 switches the first column switching valve 2A to the fourth column switching valve 2D so as to use the unused pretreatment columns 5A to 5D and the analysis columns 6A to 6D.
After that, the deterioration determination unit 121 performs deterioration determination processing of the pretreatment columns 5A to 5D and the analysis columns 6A to 6D (S143). Details of the deterioration determination process will be described later.
Then, the processing unit 111 returns the processing to step S102.
 図8では、第1カラム切替バルブ2A~第4カラム切替バルブ2Dは4方バルブの例を示したが、6方バルブや10方バルブを利用し、前処理用カラム5や、分析用カラム6のそれぞれを4種類以上、並列に取り付けてもよい。複数の前処理用カラム5A~5Dや、複数の分析用カラム6A~6Dを使用することで、試料をインジェクションする回数が同一であれば、一つ一つのカラムの使用頻度が少なくなり液体クロマトグラフ質量分析システムZbの耐久性が向上する。また、2つ以上の前処理用カラム5を用いることにより、前処理を並行に進めることができる。これにより、分析スループットの向上を実現することができる。 In FIG. 8, the first column switching valve 2A to the fourth column switching valve 2D show an example of a four-way valve, but a six-way valve or a ten-way valve is used, and the pretreatment column 5 and the analysis column 6 are used. 4 or more types of each may be installed in parallel. By using a plurality of pretreatment columns 5A to 5D and a plurality of analytical columns 6A to 6D, if the number of times the sample is injected is the same, the frequency of use of each column is reduced and the liquid chromatograph The durability of the mass spectrometry system Zb is improved. Further, by using two or more pretreatment columns 5, the pretreatment can proceed in parallel. As a result, it is possible to improve the analysis throughput.
 また、前処理用カラム5A~5Dや、分析用カラム6A~6Dを順に流通させることにより、測定上問題のある前処理用カラム5A~5Dや、分析用カラム6A~6Dや、問題のある前処理用カラム5A~5Dや、分析用カラム6A~6Dの特定を行うことができる。そして、問題のない前処理用カラム5A~5Dや、分析用カラム6A~6Dを選択して測定を行うことができる。 Further, by distributing the pretreatment columns 5A to 5D and the analysis columns 6A to 6D in order, the pretreatment columns 5A to 5D and the analysis columns 6A to 6D, which have a problem in measurement, and the pretreatment columns 6A to 6D, which have a problem in measurement, are distributed. The processing columns 5A to 5D and the analysis columns 6A to 6D can be specified. Then, the pretreatment columns 5A to 5D and the analysis columns 6A to 6D, which have no problem, can be selected and measured.
 ここで、図10のステップS143で行われる劣化判定処理について説明する。
 前処理用カラム5A~5Dのそれぞれを同一種類とし、分析用カラム6A~6Dのそれぞれを同一種類としてもよい。このような場合、前処理用カラム5A~5Dのそれぞれを切り替えながらUV検出器3や、質量分析計4による測定が行われる。これにより、劣化判定部121が、前処理用カラム5A~5Dや、分析用カラム6A~6Dが劣化していないかの確認が行う。具体的には、最初は、前処理用カラム5A、分析用カラム6Aが選択された上、タンパク質(妨害物質)の除去率(A1/A0(図4A及び図4B参照)、測定対象物質のシグナル強度と、タンパク質(妨害物質)及び測定対象物質のピーク到達時間とが観測される。ここで、タンパク質(妨害物質)の除去率は、A1/A0(図4A及び図4B参照である。測定対象物質のシグナル強度は、質量分析計4における検出ピーク(MP)である。また、測定対象物質のピーク到達時間は、試料の注入から質量分析計4における検出ピークが検出されるまでの時間である。
Here, the deterioration determination process performed in step S143 of FIG. 10 will be described.
The pretreatment columns 5A to 5D may be of the same type, and the analysis columns 6A to 6D may be of the same type. In such a case, the measurement is performed by the UV detector 3 or the mass spectrometer 4 while switching each of the pretreatment columns 5A to 5D. As a result, the deterioration determination unit 121 confirms whether the pretreatment columns 5A to 5D and the analysis columns 6A to 6D have deteriorated. Specifically, first, the pretreatment column 5A and the analysis column 6A are selected, the protein (interfering substance) removal rate (A1 / A0 (see FIGS. 4A and 4B), and the signal of the substance to be measured). The intensity and the peak arrival time of the protein (interfering substance) and the substance to be measured are observed. Here, the removal rate of the protein (interfering substance) is A1 / A0 (see FIGS. 4A and 4B. Measurement target. The signal intensity of the substance is the detection peak (MP) in the mass analyzer 4, and the peak arrival time of the substance to be measured is the time from the injection of the sample to the detection of the detection peak in the mass analyzer 4. ..
 次に、前処理用カラム5B、前処理用カラム5C、前処理用カラム5Dと順次切り替えながら、分析用カラム6Aに固定した状態で測定が行われる。それぞれの前処理用カラム5に対して得られたタンパク質の除去率と、測定対象物質のシグナル強度と、タンパク質及び測定対象物質のピーク到達時間に対してt検定を行い、有意差がある前処理用カラム5があれば、劣化判定部121は、その前処理用カラム5が劣化しているとみなす。そして、劣化していると判定された場合、警告処理部116が交換を促す警告メッセージを出力してもよい。 Next, the measurement is performed in a state of being fixed to the analysis column 6A while sequentially switching between the pretreatment column 5B, the pretreatment column 5C, and the pretreatment column 5D. A t-test was performed on the protein removal rate obtained for each pretreatment column 5, the signal intensity of the substance to be measured, and the peak arrival time of the protein and the substance to be measured, and pretreatment with a significant difference. If there is a column 5, the deterioration determination unit 121 considers that the pretreatment column 5 has deteriorated. Then, when it is determined that the product has deteriorated, the warning processing unit 116 may output a warning message prompting the replacement.
 また、劣化が見られない前処理用カラム5に第1カラム切替バルブ2A及び第2カラム切替バルブ2Bを固定し、分析用カラム6A、分析用カラム6B、分析用カラム6C、分析用カラム6Dと順次切り替えながら、測定対象物質のシグナル強度と、測定対象物質のピーク到達時間が測定される。劣化判定部121は、それぞれの分析用カラム6A~6Dに対して、得られた低分子のシグナル強度と低分子のピーク到達時間に対してt検定を行う。t検定の結果、有意差がある分析用カラム6があれば、劣化判定部121は、その分析用カラム6が劣化しているとみなし、警告処理部116が交換を促す警告メッセージを出力してもよい。 Further, the first column switching valve 2A and the second column switching valve 2B were fixed to the pretreatment column 5 in which no deterioration was observed, and the analysis column 6A, the analysis column 6B, the analysis column 6C, and the analysis column 6D were formed. The signal intensity of the substance to be measured and the peak arrival time of the substance to be measured are measured while sequentially switching. The deterioration determination unit 121 performs a t-test on the obtained signal intensity of the small molecule and the peak arrival time of the small molecule for each of the analysis columns 6A to 6D. If there is an analysis column 6 having a significant difference as a result of the t-test, the deterioration determination unit 121 considers that the analysis column 6 has deteriorated, and the warning processing unit 116 outputs a warning message prompting the replacement. May be good.
 このような劣化判定処理を行うことで、劣化している前処理用カラム5や、分析用カラム6を検知し、そのようなカラムを避けて使用することができる。これにより、精度の高いUV測定や、質量分析測定を長期間にわたって行うことができる。なお、劣化の判定には、t検定を行う以外にも、基準となる閾値を設定しておき、その閾値の範囲外であれば、劣化判定を行うとしてもよい。
 また、劣化判定処理及び劣化判定部121は省略可能である。劣化判定処理は、図10の処理とは独立の処理、例えば、土日等、プラントが閉鎖している期間に行われるようにしてもよい。
By performing such deterioration determination processing, it is possible to detect the deteriorated pretreatment column 5 and analysis column 6 and avoid such columns. As a result, highly accurate UV measurement and mass spectrometric measurement can be performed over a long period of time. In addition to the t-test, a reference threshold value may be set for the determination of deterioration, and if it is outside the range of the threshold value, the deterioration determination may be performed.
Further, the deterioration determination process and the deterioration determination unit 121 can be omitted. The deterioration determination process may be performed independently of the process of FIG. 10, for example, on Saturdays and Sundays during a period when the plant is closed.
 [第4実施形態]
 <フローチャート>
 図11は、第4実施形態に係る流路切替バルブ2の切替タイミングの決定処理の手順を示すフローチャートである。図11の処理は制御装置1で行われる処理である。
 なお、液体クロマトグラフ質量分析システムZ及び制御装置1の構成は、第1実施形態と同様であるので、ここでの図示及び説明を省略する。
 図11に示す処理では、タンパク質の強度をリアルタイムでモニタしながら、切替時刻t2を決定する。
 まず、パラメータ設定部112が本フローチャートで使用する各パラメータを設定する(S201)。設定されるパラメータとしては、ステップS213,S231で用いられる閾値(UVth、MPth)等である。その他のパラメータは図6AのステップS101において設定されるものと同様である。
[Fourth Embodiment]
<Flowchart>
FIG. 11 is a flowchart showing a procedure for determining the switching timing of the flow path switching valve 2 according to the fourth embodiment. The process of FIG. 11 is a process performed by the control device 1.
Since the configurations of the liquid chromatograph mass spectrometry system Z and the control device 1 are the same as those in the first embodiment, the illustration and description thereof are omitted here.
In the process shown in FIG. 11, the switching time t2 is determined while monitoring the protein intensity in real time.
First, the parameter setting unit 112 sets each parameter used in this flowchart (S201). The parameters to be set are the threshold values (UVth, MPth) and the like used in steps S213 and S231. Other parameters are the same as those set in step S101 of FIG. 6A.
 次に、ループ判定部115は、繰り返し回数(N)が繰り返し閾値(Nth)以下であるか否かを判定する(S202)。繰返閾値(Nth)はステップS201においてパラメータ設定部112によって設定される値である。
 繰り返し回数(N)が繰り返し閾値(Nth)より大きい場合(S202→No)、警告処理部116は警告を出力する(S203)。ステップS203は、図6AのステップS112と同様の処理である。
 繰り返し回数(N)が繰り返し閾値(Nth)以下である場合(S202→Yes)、バルブ制御部117は流路切替バルブ2を第1の状態に切り替え(S211)、UV検出制御部113はUV検出器3による測定(UV測定)を開始する(S212)。ステップS212では、UV検出制御部113は、UV検出器3の吸光クロマトグラフのピーク値を測定し、ピーク強度をモニタする。
Next, the loop determination unit 115 determines whether or not the number of repetitions (N) is equal to or less than the repetition threshold value (Nth) (S202). The repeat threshold value (Nth) is a value set by the parameter setting unit 112 in step S201.
When the number of repetitions (N) is larger than the repetition threshold value (Nth) (S202 → No), the warning processing unit 116 outputs a warning (S203). Step S203 is the same process as step S112 of FIG. 6A.
When the number of repetitions (N) is equal to or less than the repetition threshold (Nth) (S202 → Yes), the valve control unit 117 switches the flow path switching valve 2 to the first state (S211), and the UV detection control unit 113 detects UV. The measurement (UV measurement) by the device 3 is started (S212). In step S212, the UV detection control unit 113 measures the peak value of the absorption chromatograph of the UV detector 3 and monitors the peak intensity.
 そして、バルブ制御部117は、UV検出器3による測定の結果、現在の時刻tがUV検出結果のピーク到達時刻t1を超え(t≧t1)、かつ、UV検出値(UV)が所定のUV検出閾値(UVth)以下であるか否かを判定する(S213)。
 現在の時刻tがUV検出結果のピーク到達時刻t1を超えていないか、または、UV検出値(UV)が所定のUV検出閾値(UVth)より大きい場合(S213→No)、切替タイミング設定部114は切替時刻t2を所定量大きくする(S214)。そして、処理部111はステップS213へ処理を戻し、UV検出器3による測定を継続する。UVthは、例えば、。UVth=UVP(UV検出結果のピーク値)×0.2等である。
Then, in the bulb control unit 117, as a result of measurement by the UV detector 3, the current time t exceeds the peak arrival time t1 of the UV detection result (t ≧ t1), and the UV detection value (UV) is a predetermined UV. It is determined whether or not it is equal to or less than the detection threshold (UVth) (S213).
When the current time t does not exceed the peak arrival time t1 of the UV detection result, or when the UV detection value (UV) is larger than the predetermined UV detection threshold value (UVth) (S213 → No), the switching timing setting unit 114 Increases the switching time t2 by a predetermined amount (S214). Then, the processing unit 111 returns the processing to step S213 and continues the measurement by the UV detector 3. UVth is, for example. UVth = UVP (peak value of UV detection result) × 0.2 and so on.
 現在の時刻tがUV検出結果のピーク到達時刻t1を超え、かつ、UV検出値(UV)が所定のUV検出閾値(UVth)以下である場合(S213→Yes)、バルブ制御部117は流路切替バルブ2を第2の状態へと切り替える(S221)。そして、バルブ制御部117は、このときの切替時刻t2を記憶装置160に記憶する(S222)。
 そして、質量分析制御部118は、質量分析計4による測定(MS測定)を開始する(S223)。このとき、質量分析計4による測定と並行してUV検出器3による測定も行われている。
 続いて、切替タイミング設定部114は、UV検出器3による測定と、質量分析計4による測定が終了する(S224)と、質量分析計4による測定の結果、検出ピーク(MP)が検出ピーク閾値(MPth)以上であるか否かを判定する(S231)。検出ピーク(RAth)はステップS201においてパラメータ設定部112によって設定される値である。
When the current time t exceeds the peak arrival time t1 of the UV detection result and the UV detection value (UV) is equal to or less than the predetermined UV detection threshold (UVth) (S213 → Yes), the bulb control unit 117 moves through the flow path. The switching valve 2 is switched to the second state (S221). Then, the valve control unit 117 stores the switching time t2 at this time in the storage device 160 (S222).
Then, the mass spectrometry control unit 118 starts the measurement (MS measurement) by the mass spectrometer 4 (S223). At this time, the measurement by the UV detector 3 is also performed in parallel with the measurement by the mass spectrometer 4.
Subsequently, the switching timing setting unit 114 ends the measurement by the UV detector 3 and the measurement by the mass spectrometer 4 (S224), and as a result of the measurement by the mass spectrometer 4, the detection peak (MP) is the detection peak threshold. It is determined whether or not it is (MPth) or more (S231). The detection peak (RAth) is a value set by the parameter setting unit 112 in step S201.
 検出ピーク(MP)が検出ピーク閾値(MPth)未満の場合(S231→No)、切替タイミング設定部114は、ステップS213で使用するUV検出閾値(UVth)の値を大きくする(S232)。その後、処理部111はステップS202へ処理を戻す。
 検出ピーク(MP)が検出ピーク閾値(MPth)以上の場合(S231→Yes)、切替タイミング設定部114は切替時刻t2を現在の値で決定する(S233)。
When the detection peak (MP) is less than the detection peak threshold value (MPth) (S231 → No), the switching timing setting unit 114 increases the value of the UV detection threshold value (UVth) used in step S213 (S232). After that, the processing unit 111 returns the processing to step S202.
When the detection peak (MP) is equal to or greater than the detection peak threshold value (MPth) (S231 → Yes), the switching timing setting unit 114 determines the switching time t2 with the current value (S233).
 図11A及び図11Bに示す処理は、図6A及び図6Bに示す処理と比較すると、図6Aにおける流路切替バルブ2を第1の状態のまま固定してUV検出器3による測定を行うというステップS102,S103の処理が省略されている。つまり、図6A及び図6Bに示す処理のように、一度、質量分析計4による測定を行わずにUV検出器3の測定のみを行う処理を省略することができる。これにより、第4実施形態は、第1実施形態より高スループットな分析を行うことが可能となる。クロマトグラムの結果に対してピークのフィッテイングを行い、流路切替バルブ2切り替え時間までの信号値の積分値から、フィッテイングしたピークの面積を割ることにより、タンパク質の除去率(A1/A0)が計算されてもよい。 Compared with the process shown in FIGS. 6A and 6B, the process shown in FIGS. 11A and 11B is a step of fixing the flow path switching valve 2 in FIG. 6A in the first state and performing measurement by the UV detector 3. The processing of S102 and S103 is omitted. That is, it is possible to omit the process of performing only the measurement of the UV detector 3 without performing the measurement by the mass spectrometer 4 once, as in the process shown in FIGS. 6A and 6B. As a result, the fourth embodiment can perform analysis with higher throughput than the first embodiment. The protein removal rate (A1 / A0) is obtained by fitting the peak to the result of the chromatogram and dividing the area of the fitted peak from the integrated value of the signal values up to the switching time of the flow path switching valve 2. May be calculated.
 <測定結果>
 図12は、第4実施形態によるUV検出器3の測定結果と、質量分析計4の測定結果とを示す図である。
 図12において、横軸は時間を示している。また、グラフL11はUV検出器3によって検出されたタンパク質(例えば、尿中のタンパク質)量の時間経過グラフを示し、グラフL12は質量分析計4によって検出された測定対象物質(例えば、尿中に含まれる代謝物(分子A))の時間経過グラフを示す。
 ちなみに、縦軸の強度(Intensity)はそれぞれ規格化してある。また、高速な分析を達成するため、両物質(タンパク質及び測定対象物質)のピークを2分以内に検出することが可能な条件においてUV検出器3及び質量分析計4の各測定を行った。
<Measurement result>
FIG. 12 is a diagram showing a measurement result of the UV detector 3 according to the fourth embodiment and a measurement result of the mass spectrometer 4.
In FIG. 12, the horizontal axis represents time. Further, the graph L11 shows a time-lapse graph of the amount of protein (for example, protein in urine) detected by the UV detector 3, and the graph L12 shows a substance to be measured (for example, in urine) detected by the mass spectrometer 4. The time passage graph of the included metabolite (molecule A) is shown.
By the way, the intensity of the vertical axis is standardized. Further, in order to achieve high-speed analysis, each measurement of the UV detector 3 and the mass spectrometer 4 was performed under the condition that the peaks of both substances (protein and the substance to be measured) could be detected within 2 minutes.
 また、線L21はUV検出閾値(UVth)である。図12に示すように、グラフL11のピークを過ぎ、かつ、グラフL11と、線L21との交点の時刻が切替時刻t2となっている。 The line L21 is the UV detection threshold (UVth). As shown in FIG. 12, the time after the peak of the graph L11 and the intersection of the graph L11 and the line L21 is the switching time t2.
 ここで、前処理用カラム5は粒径25um、内径2.1mm、長さ10mmのサイズの充填剤を利用した。これらのUV検出器3の測定結果及び質量分析計4の測定結果のピークを時間的に分離するには、カラムの理論段数を上げるといった工夫が考えられる。理論段数を増加させるために、前処理用カラム5として粒径が数um程度のものを用いると、タンパク質の流入により前処理用カラム5が詰まるリスクが増大する。理論段数を増加させるために、カラムの長さを長くするといった工夫が考えられるが、こちらは分析時間を長大化させてしまう。 Here, the pretreatment column 5 used a filler having a particle size of 25 um, an inner diameter of 2.1 mm, and a length of 10 mm. In order to temporally separate the peaks of the measurement results of the UV detector 3 and the measurement results of the mass spectrometer 4, it is conceivable to increase the number of theoretical plates of the column. If a pretreatment column 5 having a particle size of about several um is used in order to increase the number of theoretical plates, the risk of clogging of the pretreatment column 5 due to the inflow of protein increases. In order to increase the number of theoretical plates, it is possible to increase the length of the column, but this will increase the analysis time.
 第4実施形態に示す手法は、前処理用カラム5の長さを長くすることなく、つまり、高速な測定を維持しつつ、UV検出結果と、質量分析結果とにおけるピークの分離が不十分な場合にも適用することができる。例えば、UV検出閾値(UVth)をピークの最大値(UVP)に対して0.2と設定した場合(UVth=UVP×0.2)、およそ、1分で液体クロマトグラフ質量分析システムZによる測定を完了することができる。 In the method shown in the fourth embodiment, the peak separation between the UV detection result and the mass spectrometry result is insufficient without increasing the length of the pretreatment column 5, that is, while maintaining high-speed measurement. It can also be applied in cases. For example, when the UV detection threshold (UVth) is set to 0.2 with respect to the maximum peak value (UVP) (UVth = UVP × 0.2), the measurement by the liquid chromatograph mass spectrometry system Z takes about 1 minute. Can be completed.
 [第5実施形態]
 第5実施形態で示す手法は、前処理用カラム5や、分析用カラム6の洗浄に関するものである。
[Fifth Embodiment]
The method shown in the fifth embodiment relates to cleaning of the pretreatment column 5 and the analysis column 6.
 <液体クロマトグラフ質量分析システムZd>
 図13は、第5実施形態に係る液体クロマトグラフ質量分析システムZdの構成を示す図である。図13において、図1と同様の構成については同一の符号を付して説明を省略する。
 第5実施形態では、図13に示すように、流路F4と流路F8とに廃液切り替え用のバルブである廃液用バルブV1,V2を備えている。それぞれの廃液用バルブV1,V2には廃液用流路F9が接続されている。また、前処理用カラム5を洗浄、平衡化するための洗浄・平衡化装置W1と、分析用カラム6を洗浄、平衡化するための洗浄・平衡化装置W2とが備えられている。それぞれの廃液用バルブV1,V2、それぞれの洗浄・平衡化装置W1,W2は制御装置1dによって制御される。
<Liquid chromatograph mass spectrometry system Zd>
FIG. 13 is a diagram showing the configuration of the liquid chromatograph mass spectrometry system Zd according to the fifth embodiment. In FIG. 13, the same components as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
In the fifth embodiment, as shown in FIG. 13, waste liquid valves V1 and V2, which are valves for switching waste liquid, are provided in the flow path F4 and the flow path F8. A waste liquid flow path F9 is connected to each of the waste liquid valves V1 and V2. Further, a cleaning / equilibrium apparatus W1 for cleaning and equilibrating the pretreatment column 5 and a cleaning / equilibrium apparatus W2 for cleaning and equilibrating the analytical column 6 are provided. The waste liquid valves V1 and V2 and the cleaning / balancing devices W1 and W2, respectively, are controlled by the control device 1d.
 (制御装置1d)
 図14は、第5実施形態における制御装置1dの構成を示す機能ブロック図である。
 図14において図3と同様の構成については同一の符号を付して説明を省略する。
 制御装置1dにおける処理部111dは洗浄・平衡化処理部122を有している点が図3における制御装置1と異なっている。
 洗浄・平衡化処理部122は、洗浄・平衡化装置W1,W2(図13参照)を制御して、前処理用カラム5及び分析用カラム6の洗浄、及び、平衡化を行う。また、洗浄・平衡化処理部122は、前処理用カラム5及び分析用カラム6の洗浄時において、それぞれの廃液用バルブV1,V2を廃液用流路F9の側に切り替え、洗浄液及び溶液を廃液用流路F9へ流す。これにより、UV検出器3や、質量分析計4の汚染を防ぐことができる。
(Control device 1d)
FIG. 14 is a functional block diagram showing the configuration of the control device 1d according to the fifth embodiment.
In FIG. 14, the same components as those in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted.
The processing unit 111d in the control device 1d is different from the control device 1 in FIG. 3 in that it has a cleaning / equilibration processing unit 122.
The cleaning / equilibration processing unit 122 controls the cleaning / balancing devices W1 and W2 (see FIG. 13) to perform cleaning and equilibration of the pretreatment column 5 and the analysis column 6. Further, the cleaning / equilibration processing unit 122 switches the waste liquid valves V1 and V2 to the side of the waste liquid flow path F9 at the time of cleaning the pretreatment column 5 and the analysis column 6, and wastes the cleaning liquid and the solution. Flow to the flow path F9. This makes it possible to prevent contamination of the UV detector 3 and the mass spectrometer 4.
 (フローチャート)
 図15は、第5実施形態に係る流路切替バルブ2の切替タイミングの決定処理の手順を示すフローチャートである。図15の処理は制御装置1で行われる処理である。
 なお、図15において、図6A及びと同様の処理については同一のステップ番号を付して説明を省略する。また、ステップS131以降の処理は図6Bと同様であるため、図示及び説明を省略する。
 図15に示すステップS126でUV検出器3及び質量分析計4の測定が完了すると、バルブ制御部117は、流路切替バルブ2を第1の状態に切り替える(S161)。
 その後、洗浄・平衡化処理部122は、前処理用カラム5及び分析用カラム6それぞれに対して洗浄・平衡化装置W1,W2(図13参照)による洗浄と、平衡化とを行う(S162)。
 その後、切替タイミング設定部114がステップS131(図6B)の処理を行う。
(flowchart)
FIG. 15 is a flowchart showing a procedure for determining the switching timing of the flow path switching valve 2 according to the fifth embodiment. The process of FIG. 15 is a process performed by the control device 1.
In FIG. 15, the same steps as those in FIG. 6A are designated by the same step numbers, and the description thereof will be omitted. Further, since the processing after step S131 is the same as that in FIG. 6B, the illustration and description will be omitted.
When the measurement of the UV detector 3 and the mass spectrometer 4 is completed in step S126 shown in FIG. 15, the valve control unit 117 switches the flow path switching valve 2 to the first state (S161).
After that, the cleaning / equilibration processing unit 122 performs cleaning and equilibration of the pretreatment column 5 and the analysis column 6 by the cleaning / equilibration devices W1 and W2 (see FIG. 13), respectively (S162). ..
After that, the switching timing setting unit 114 performs the process of step S131 (FIG. 6B).
 図16は、図11の処理に対して第5実施形態の処理を適用したフローチャートである。図16において、図11と同様の処理については同一のステップ番号を付して説明を省略する。
 図16に示すステップS224でUV検出器3及び質量分析計4の測定が完了すると、洗浄・平衡化処理部122は、流路切替バルブ2を第1の状態に切り替える(S261)。
 その後、洗浄・平衡化処理部122は、前処理用カラム5及び分析用カラム6それぞれに対して洗浄・平衡化装置W1,W2(図13参照)による洗浄と、平衡化とを行う(S262)。
 その後、切替タイミング設定部114がステップS231の処理を行う。
FIG. 16 is a flowchart in which the process of the fifth embodiment is applied to the process of FIG. In FIG. 16, the same process as in FIG. 11 is assigned the same step number and the description thereof will be omitted.
When the measurement of the UV detector 3 and the mass spectrometer 4 is completed in step S224 shown in FIG. 16, the cleaning / equilibration processing unit 122 switches the flow path switching valve 2 to the first state (S261).
After that, the cleaning / equilibration processing unit 122 performs cleaning and equilibration of the pretreatment column 5 and the analysis column 6 by the cleaning / equilibration devices W1 and W2 (see FIG. 13), respectively (S262). ..
After that, the switching timing setting unit 114 performs the process of step S231.
 ここで、前処理用カラム5や、分析用カラム6の洗浄にかける時間は、図15におけるステップS103や、図16のステップS212等において観測されるUV検出結果の信号強度や、ピーク面積に応じて変化させてもよい。また、洗浄・平衡化処理部122は、UV検出器3の検出信号のバックグラウンドレベルをモニタすることにより、洗浄工程にかける時間が適切であるか否かを判断してもよい。この場合、バックグラウンドレベルが基準値以下であれば、洗浄・平衡化処理部122は前処理用カラム5について汚染なしと判定する。また、バックグラウンドレベルが基準値以上であれば、洗浄・平衡化処理部122は洗浄工程を続ける、あるいは洗浄時間を増加させる。また、洗浄・平衡化処理部122は、洗浄の間、質量分析計4のイオン源の電圧印加や加熱を行わないといった制御を行ってもよい。 Here, the time required for cleaning the pretreatment column 5 and the analysis column 6 depends on the signal intensity of the UV detection result observed in step S103 in FIG. 15, step S212 in FIG. 16, and the peak area. May be changed. Further, the cleaning / balancing processing unit 122 may determine whether or not the time required for the cleaning step is appropriate by monitoring the background level of the detection signal of the UV detector 3. In this case, if the background level is equal to or less than the reference value, the cleaning / equilibration processing unit 122 determines that the pretreatment column 5 is not contaminated. If the background level is equal to or higher than the reference value, the cleaning / equilibration processing unit 122 continues the cleaning process or increases the cleaning time. Further, the cleaning / equilibration processing unit 122 may perform control such that the voltage of the ion source of the mass spectrometer 4 is not applied or heated during cleaning.
 第5実施形態によれば、前処理用カラム5や、分析用カラム6の洗浄が行われることにより、UV検出器3や質量分析計4のロバスト性が向上することや、分析精度が安定するといった効果を奏する。 According to the fifth embodiment, by cleaning the pretreatment column 5 and the analysis column 6, the robustness of the UV detector 3 and the mass spectrometer 4 is improved, and the analysis accuracy is stabilized. It has the effect of.
 [第6実施形態]
 第6実施形態は、オンラインによる前処理を用いた高速な液体クロマトグラフ質量分析システムZによる測定を目指すうえで課題となるカラムの耐圧の問題を解決するため、流路Fの流量を適切に調整するというものである。
 第6実施形態において、液体クロマトグラフ質量分析システムZの構成は、制御装置1が制御装置1eとなること以外は図1に示すものと同様であるので、ここでの図示及び説明を省略する。
[Sixth Embodiment]
In the sixth embodiment, the flow rate of the flow path F is appropriately adjusted in order to solve the problem of column withstand voltage, which is a problem in aiming at measurement by a high-speed liquid chromatograph mass spectrometry system Z using online pretreatment. It is to do.
In the sixth embodiment, the configuration of the liquid chromatograph mass spectrometry system Z is the same as that shown in FIG. 1 except that the control device 1 becomes the control device 1e, and thus the illustration and description thereof are omitted here.
 (制御装置1e)
 図17は、第6実施形態における制御装置1eの構成を示す機能ブロック図である。
 図17において、図3と同様の構成については同一の符号を付して説明を省略する。
 制御装置1eの処理部111eは流量制御部123を有している点が、図3の制御装置1と異なっている。
 流量制御部123は、前処理用カラム5から測定対象物質が溶出しきると、送液ポンプ8Bを制御して流路F6~F8を流れる溶液の流量を増加させる。
(Control device 1e)
FIG. 17 is a functional block diagram showing the configuration of the control device 1e according to the sixth embodiment.
In FIG. 17, the same components as those in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted.
The processing unit 111e of the control device 1e is different from the control device 1 of FIG. 3 in that it has a flow rate control unit 123.
When the substance to be measured is completely eluted from the pretreatment column 5, the flow rate control unit 123 controls the liquid feed pump 8B to increase the flow rate of the solution flowing through the flow paths F6 to F8.
 (フローチャート)
 図18は、第6実施形態に係る流路切替バルブ2の切替タイミングの決定処理の手順を示すフローチャートである。図18において、図6Aと同様の処理については同一の符号を付して説明を省略する。また、ステップS131以降の処理は図6Bと同様であるため、図示及び説明を省略する。
 前記したように、第6実施形態は、オンラインによる前処理を用いた高速な液体クロマトグラフ質量分析システムZによる測定を目指すうえで課題となるカラムの耐圧の問題を解決するため、流路Fの流量を適切に調整するというものである。一般的に分析用カラム6は粒径が1~5μmの充填剤が利用される。高耐圧の分析用カラム6は、一般的に50MPa以上の耐圧を有するため、0.5mL/min以上の高流量による送液が可能である。一方、前処理用カラム5にはタンパク質等のサイズの大きい物質が流れ込むため、詰まりを防ぐために、10um以上と、分析用カラム6と比べて粒径が大きい充填剤が一般的に用いられる。これにより、前処理用カラム5は分析用カラム6に比べて耐圧が低いものが多く、その耐圧は10~30MPa程度である。前処理用カラム5に最も圧力が加わるのは、分析用カラム6と前処理用カラム5とが直列に接続する第2の状態のときである。流路切替バルブ2が第2の状態となっている間、前処理用カラム5を耐圧以下の圧力で用いるために、流量を下げる必要がある。この結果、測定時間が増大してしまう。
(flowchart)
FIG. 18 is a flowchart showing a procedure for determining the switching timing of the flow path switching valve 2 according to the sixth embodiment. In FIG. 18, the same processing as in FIG. 6A is designated by the same reference numerals and the description thereof will be omitted. Further, since the processing after step S131 is the same as that in FIG. 6B, the illustration and description will be omitted.
As described above, in the sixth embodiment, in order to solve the problem of the withstand voltage of the column, which is a problem in aiming at the measurement by the high-speed liquid chromatograph mass spectrometry system Z using the online pretreatment, the flow path F The flow rate is adjusted appropriately. Generally, a packing material having a particle size of 1 to 5 μm is used for the analytical column 6. Since the high withstand voltage analytical column 6 generally has a withstand voltage of 50 MPa or more, it is possible to send a liquid at a high flow rate of 0.5 mL / min or more. On the other hand, since a large-sized substance such as a protein flows into the pretreatment column 5, a filler having a particle size of 10 um or more, which is larger than that of the analysis column 6, is generally used in order to prevent clogging. As a result, many of the pretreatment columns 5 have a lower withstand voltage than the analysis column 6, and the withstand voltage is about 10 to 30 MPa. The pressure is most applied to the pretreatment column 5 in the second state in which the analysis column 6 and the pretreatment column 5 are connected in series. While the flow path switching valve 2 is in the second state, it is necessary to reduce the flow rate in order to use the pretreatment column 5 at a pressure equal to or lower than the withstand voltage. As a result, the measurement time increases.
 これを回避するため、質量分析計4による測定が行われ場合において、まず、ステップS124において、流路切替バルブ2を第2の状態として質量分析計4による測定を行う(S125)。
 そして、流量制御部123は、前処理用カラム5から測定対象物質が溶出しきったか否かを判定する(S171)。
 前処理用カラム5から測定対象物質が溶出しきっていない場合(S171→No)、流量制御部123はステップS171へ処理を戻す。
 前処理用カラム5から測定対象物質が溶出しきっている場合(S171→Yes)、バルブ制御部117は流路切替バルブ2を第1の状態へと切り替える(S172)。そして、流量制御部123が分析用カラム6の耐圧の範囲内において流量を増加させる(S173)。その後、ステップS131の処理が行われる。
In order to avoid this, when the measurement by the mass spectrometer 4 is performed, first, in step S124, the measurement by the mass spectrometer 4 is performed with the flow path switching valve 2 in the second state (S125).
Then, the flow rate control unit 123 determines whether or not the substance to be measured has been completely eluted from the pretreatment column 5 (S171).
When the substance to be measured has not been completely eluted from the pretreatment column 5 (S171 → No), the flow rate control unit 123 returns the treatment to step S171.
When the substance to be measured has been completely eluted from the pretreatment column 5 (S171 → Yes), the valve control unit 117 switches the flow path switching valve 2 to the first state (S172). Then, the flow rate control unit 123 increases the flow rate within the range of the withstand voltage of the analysis column 6 (S173). After that, the process of step S131 is performed.
 ここで、測定対象物質が溶出しきったか否かの判定は、質量分析計4により得られる測定物質の検出シグナルから判断することができる。図12のグラフL12に示す質量分析計の検出結果が不十分である場合、バルブ制御部117は、流路切替バルブ2を第2の状態から第1の状態へと切り替えるには時間が早すぎると判定する。質量分析計の検出結果が不十分であるとは、質量分析計4の検出結果におけるグラフにおいて、検出ピークが検出されていない、あるいは、検出ピークは検出されているものの、グラフの一部が欠けている場合である。流路切替バルブ2を第2の状態から第1の状態へと切り替えるには時間が早すぎる場合、バルブ制御部117は、ステップS172において、流路切替バルブ2を第2の状態から第1の状態へと切り替えるタイミングを遅くする制御を行う。 Here, it is possible to determine whether or not the substance to be measured has completely eluted from the detection signal of the substance to be measured obtained by the mass spectrometer 4. When the detection result of the mass spectrometer shown in the graph L12 of FIG. 12 is insufficient, the valve control unit 117 takes too early to switch the flow path switching valve 2 from the second state to the first state. Is determined. Insufficient detection result of mass spectrometer means that the detection peak is not detected in the graph in the detection result of mass spectrometer 4, or the detection peak is detected but a part of the graph is missing. If you are. When it is too early to switch the flow path switching valve 2 from the second state to the first state, the valve control unit 117 sets the flow path switching valve 2 from the second state to the first state in step S172. Controls to delay the timing of switching to the state.
 第6実施形態によれば、質量分析計4における測定において、流路Fを流れる溶液の流速を速めることができるため、全体的な測定時間の短縮を可能とすることができる。 According to the sixth embodiment, in the measurement by the mass spectrometer 4, the flow velocity of the solution flowing through the flow path F can be increased, so that the overall measurement time can be shortened.
 [GUI(Graphical User Interface)画面200)
 図19A~図19Cは、本実施形態におけるGUI画面200の例を示す図である。
 図19A~図19Cに示すように、GUI画面200は液体クロマトグラフ質量分析システムZ,Za,Zb,Zdの状態を表示するステータス(status)画面領域210、処理の実行を指示入力する入力(Input)画面領域220、最適化結果を表示する最適化結果(Result)画面領域230を有する。ここで、最適化とは切替時刻t2の最適化を意味する。
[GUI (Graphical User Interface) screen 200)
19A to 19C are diagrams showing an example of the GUI screen 200 in this embodiment.
As shown in FIGS. 19A to 19C, the GUI screen 200 has a status screen area 210 for displaying the status of the liquid chromatograph mass spectrometric systems Z, Za, Zb, and Zd, and an input for instructing the execution of processing. ) It has a screen area 220 and an optimization result (Result) screen area 230 for displaying the optimization result. Here, the optimization means the optimization of the switching time t2.
 ステータス画面領域210では、処理が実行されているか否かや、液体クロマトグラフ質量分析システムZ,Za,Zb,Zdが分析可能な状態にあるか否かに関する情報が表示される。ここで処理とは、図6A、図6B、図10、図11、図15、図16、図18に示す各処理のうち、いずれか1つである。加えて、前処理用カラム5及び分析用カラム6の温度や、流路Fの内部圧力、流路切替バルブ2の状態といった液体クロマトグラフ質量分析システムZの状態や、イオン源(不図示)の温度、真空室(不図示)の真空度といった質量分析計4の状態が表示されてもよい。 In the status screen area 210, information regarding whether or not the process is being executed and whether or not the liquid chromatograph mass spectrometry systems Z, Za, Zb, and Zd are in an analyzable state is displayed. Here, the process is any one of the processes shown in FIGS. 6A, 6B, 10, 11, 15, 16, and 18. In addition, the state of the liquid chromatograph mass spectrometry system Z such as the temperature of the pretreatment column 5 and the analysis column 6, the internal pressure of the flow path F, the state of the flow path switching valve 2, and the ion source (not shown). The state of the mass spectrometer 4 such as the temperature and the degree of vacuum in the vacuum chamber (not shown) may be displayed.
 入力画面領域220では、処理実行の指示入力を受け付ける。入力が行われると、処理が開始される。 The input screen area 220 receives an instruction input for processing execution. When the input is made, the process is started.
 最適化結果画面領域230では、図6A、図6B、図10、図11、図15、図16、図18に示す各処理の実行結果として得られるバルブ切替時刻t2や、処理の実行回数、タンパク質の除去率等が表示される。その他、処理におけるループ回数(図6A、図10、図11、図15、図18におけるN)や、条件を満たす流路切替バルブ2の切替時刻t2が決定できない際に発する警告メッセージなど、各処理により得られる情報が表示されてもよい。 In the optimization result screen area 230, the valve switching time t2 obtained as the execution result of each of the processes shown in FIGS. 6A, 6B, 10, 11, 15, 16 and 18, the number of times the process is executed, and the protein. The removal rate of is displayed. In addition, each process includes the number of loops in the process (N in FIGS. 6A, 10, 11, 15, and 18), a warning message issued when the switching time t2 of the flow path switching valve 2 satisfying the condition cannot be determined, and the like. The information obtained by may be displayed.
 図19Aに示すGUI画面200は、処理が開始される前の画面であり、最適化結果画面領域230には、「実行回数:0回」、「切替時刻:0s」、「タンパク質除去率:0%」であること等が表示されている。ここで、「切替時刻」とは、第1の状態から第2の状態へと切り替える切替タイミングの時刻である切替時刻t2のことである。また、ステータス画面領域210には準備中であることを示す「準備中」が表示されている。そして、タンパク質除去率とは、図6Aで前記したようにピーク面積比(RA)に相当する。 The GUI screen 200 shown in FIG. 19A is a screen before the processing is started, and the optimization result screen area 230 includes “execution count: 0 times”, “switching time: 0s”, and “protein removal rate: 0”. It is displayed that it is "%". Here, the "switching time" is the switching time t2, which is the time of the switching timing for switching from the first state to the second state. In addition, "preparing" indicating that the status is being prepared is displayed in the status screen area 210. The protein removal rate corresponds to the peak area ratio (RA) as described above in FIG. 6A.
 図19Bに示すGUI画面200は、処理が行われている最中に表示されている画面であり、最適化結果画面領域230には何も表示されていない。また、ステータス画面領域210には、処理が実行されていることを示す「実行中」が表示されている。
 そして、図19Cに示すGUI画面200は、処理が終了した後に表示される画面であり、ステータス画面領域210には「準備中」が表示されている。また、最適化結果画面領域には、処理の結果として「実行回数:1回」、「切替時刻:100s」、タンパク質除去率:80%」が表示されている。
The GUI screen 200 shown in FIG. 19B is a screen displayed during processing, and nothing is displayed in the optimization result screen area 230. Further, in the status screen area 210, "execution" indicating that the process is being executed is displayed.
The GUI screen 200 shown in FIG. 19C is a screen displayed after the processing is completed, and "preparing" is displayed in the status screen area 210. Further, in the optimization result screen area, "execution count: 1 time", "switching time: 100s", and protein removal rate: 80% are displayed as the result of the processing.
 なお、本発明は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を有するものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace other configurations with respect to a part of the configurations of each embodiment.
 例えば、UV検出器3の代わりに電気泳動法を利用した装置が用いられてもよい。
 また、図6BのステップS131や、図11のステップS231の比較処理において、質量分析計4のピーク値(MP;=S/N比)が用いられているが、質量分析計4のピーク面積、ピーク幅、ピークまでの到達時間等が用いられてもよい。
For example, an apparatus using an electrophoresis method may be used instead of the UV detector 3.
Further, in the comparison process of step S131 of FIG. 6B and step S231 of FIG. 11, the peak value (MP; = S / N ratio) of the mass spectrometer 4 is used, but the peak area of the mass spectrometer 4 is determined. The peak width, the arrival time to the peak, and the like may be used.
 また、前記した各構成、機能、処理部111、各部112~123、記憶装置160等は、それらの一部又はすべてを、例えば集積回路で設計すること等によりハードウェアで実現してもよい。また、図3、図9、図14、図17で示すように、前記した各構成、機能等は、CPU154等のプロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、図3、図9、図14、図17に示すようにHDに格納すること以外に、メモリや、SSD(Solid State Drive)等の記録装置、又は、IC(Integrated Circuit)カードや、SD(Secure Digital)カード、DVD(Digital Versatile Disc)等の記録媒体に格納することができる。
 また、各実施形態において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には、ほとんどすべての構成が相互に接続されていると考えてよい。
Further, each of the above-described configurations, functions, processing units 111, units 112 to 123, storage device 160, and the like may be realized by hardware, for example, by designing a part or all of them by an integrated circuit or the like. Further, as shown in FIGS. 3, 9, 14, and 17, the above-mentioned configurations, functions, and the like are realized by software by interpreting and executing a program in which a processor such as a CPU 154 realizes each function. You may. Information such as programs, tables, and files that realize each function is stored in HD as shown in FIGS. 3, 9, 14, and 17, and is recorded in memory, SSD (Solid State Drive), and the like. It can be stored in a device or a recording medium such as an IC (Integrated Circuit) card, an SD (Secure Digital) card, or a DVD (Digital Versatile Disc).
Further, in each embodiment, the control lines and information lines are shown as necessary for explanation, and not all the control lines and information lines are necessarily shown in the product. In practice, almost all configurations can be considered interconnected.
 1,1b,1d,1e 制御装置(制御部)
 2   流路切替バルブ(流路選択部)
 2A  第1カラム切替バルブ(第1のカラム選択部)
 2B  第2カラム切替バルブ(第1のカラム選択部)
 2C  第3カラム切替バルブ(第2のカラム選択部)
 2D  第4カラム切替バルブ(第2のカラム選択部)
 3   UV検出器(第2の物質検出部)
 4   質量分析計(第1の物質検出部)
 7   オートサンプラ(試料注入部)
 5,5A~5D 前処理用カラム(第1のカラム)
 6,6A~6D 分析用カラム(第2のカラム)
 8A  送液ポンプ(第1の送液ポンプ)
 8B  送液ポンプ(第2の送液ポンプ)
 9A  第1フィルタ(フィルタ)
 9B  第2フィルタ(フィルタ)
 L11 グラフ(第2の物質)
 L12 グラフ(第1の物質)
 F9  廃液用流路
 t2  切替時刻(切替タイミング)
 V1,V2 廃液用バルブ(第2の流路選択部)
 W1,W2 洗浄・平衡化装置(洗浄・平衡化部)
 Z,Za,Zb,Zd 液体クロマトグラフ質量分析システム(物質検出システム)
 S102 第1の状態(第1の流路切替ステップ)
 S103 UV測定(第3の検出結果取得ステップ)
 S105 t2の決定(切替タイミング設定ステップ)
 S122 UV測定を開始(第4の検出結果取得ステップ)
 S124 第2の状態(第2の流路切替ステップ)
 S122 UV測定を開始(第1の検出結果取得ステップ、第5の検出結果取得ステップ)
 S125 MS測定を開始(第2の検出結果取得ステップ、第5の検出結果取得ステップ)
 S132 t2を小さくする(第1の切替タイミング調整ステップ)
 S134 t2を大きくする(第2の切替タイミング調整ステップ)
 S135 t2を決定(切替タイミング決定ステップ)
 S143 劣化判定処理(劣化判定ステップ)
 S161 第1の状態(第6の流路切替ステップ)
 S162 洗浄・平衡化(洗浄・平衡化ステップ)
 S172 第1の状態(第3の流路切替ステップ)
 S211 第1の状態(第4の流路切替ステップ)
 S212 UV測定を開始(第6の検出結果取得ステップ)
 S221 第5の流路切替ステップ
 S223 MS測定を開始(第7の検出結果取得ステップ)
 S232 UVthの設定値を大きくする(第3の切替タイミング調整ステップ)
1,1b, 1d, 1e control device (control unit)
2 Flow path switching valve (flow path selection section)
2A 1st column switching valve (1st column selection part)
2B 2nd column switching valve (1st column selection part)
2C 3rd column switching valve (2nd column selection part)
2D 4th column switching valve (2nd column selection part)
3 UV detector (second substance detector)
4 Mass spectrometer (first substance detector)
7 Autosampler (sample injection section)
5,5A-5D pretreatment column (first column)
6,6A-6D analysis column (second column)
8A liquid feed pump (first liquid feed pump)
8B liquid feed pump (second liquid feed pump)
9A 1st filter (filter)
9B 2nd filter (filter)
L11 graph (second substance)
L12 graph (first substance)
F9 Waste liquid flow path t2 Switching time (switching timing)
V1, V2 Waste liquid valve (second flow path selection part)
W1, W2 cleaning / equilibrium device (cleaning / equilibrium unit)
Z, Za, Zb, Zd Liquid chromatograph mass spectrometry system (substance detection system)
S102 First state (first flow path switching step)
S103 UV measurement (third detection result acquisition step)
Determination of S105 t2 (switching timing setting step)
S122 UV measurement started (4th detection result acquisition step)
S124 Second state (second flow path switching step)
S122 UV measurement started (first detection result acquisition step, fifth detection result acquisition step)
Start S125 MS measurement (second detection result acquisition step, fifth detection result acquisition step)
Make S132 t2 smaller (first switching timing adjustment step)
Increase S134 t2 (second switching timing adjustment step)
Determine S135 t2 (switching timing determination step)
S143 Deterioration determination process (deterioration determination step)
S161 1st state (6th flow path switching step)
S162 Cleaning / balancing (cleaning / balancing step)
S172 First state (third flow path switching step)
S211 First state (fourth flow path switching step)
S212 UV measurement started (sixth detection result acquisition step)
S221 Fifth flow path switching step S223 MS measurement started (seventh detection result acquisition step)
Increase the set value of S232 UVth (third switching timing adjustment step)

Claims (11)

  1.  試料における第1の物質の量を検出する第1の物質検出部と、
     前記試料において、前記第1の物質以外の物質であり、前記第1の物質検出部における測定の障害となる第2の物質を検出する第2の物質検出部と、
     第1の送液ポンプと、
     第2の送液ポンプと、
     前記第1の送液ポンプによって送液された液中に前記試料を注入させる試料注入部と、
     前記第1の物質を選択的に吸着及び溶離できるとともに、前記第2の物質を透過させる第1のカラムと、
     前記第1の送液ポンプ、前記第2の送液ポンプ、前記第1のカラム、前記第1の物質検出部、及び、前記第2の物質検出部を接続する流路を切り替える流路選択部と、
     少なくとも前記第1の物質検出部と、前記第2の物質検出部と、前記流路選択部と、を制御する制御部と、
     を有する物質検出システムが行う物質検出方法であって、
     前記流路選択部は、
     前記第1の送液ポンプ、前記試料注入部、前記第1のカラム、及び、前記第2の物質検出部が直列に接続されるような流路と、前記第1の送液ポンプ、及び、前記第1の物質検出部が接続されるような流路を有する第1の状態と、
     前記第1の送液ポンプ、前記試料注入部、及び、前記第2の物質検出部が直列に接続されるような流路と、前記第2の送液ポンプ、前記第1のカラム、及び、前記第1の物質検出部が直列に接続されるような流路を有する第2の状態と、
     に切替可能であり、
     前記制御部は、
     前記第2の物質検出部による検出結果である第1の検出結果を取得する第1の検出結果取得ステップと、
     前記第1の物質検出部による検出結果である第2の検出結果を取得する第2の検出結果取得ステップと、
     前記第1の検出結果、及び、前記第2の検出結果を基に、前記第1の状態から前記第2の状態へと切り替えるタイミングである切替タイミングを決定する切替タイミング決定ステップと、
     を実行することを特徴とする物質検出方法。
    A first substance detector that detects the amount of the first substance in the sample,
    In the sample, a second substance detection unit that detects a second substance that is a substance other than the first substance and interferes with the measurement in the first substance detection unit, and
    The first liquid feed pump and
    With the second liquid feed pump,
    A sample injection unit for injecting the sample into the liquid sent by the first liquid feeding pump, and a sample injection unit.
    A first column capable of selectively adsorbing and eluting the first substance and allowing the second substance to permeate.
    A flow path selection unit that switches the flow path connecting the first liquid feed pump, the second liquid feed pump, the first column, the first substance detection unit, and the second substance detection unit. When,
    A control unit that controls at least the first substance detection unit, the second substance detection unit, and the flow path selection unit.
    It is a substance detection method performed by a substance detection system having
    The flow path selection unit
    A flow path in which the first liquid feed pump, the sample injection section, the first column, and the second substance detection section are connected in series, the first liquid feed pump, and the like. A first state having a flow path to which the first substance detection unit is connected, and
    A flow path in which the first liquid feed pump, the sample injection unit, and the second substance detection unit are connected in series, the second liquid feed pump, the first column, and the like. A second state having a flow path such that the first substance detection unit is connected in series, and
    Can be switched to
    The control unit
    The first detection result acquisition step for acquiring the first detection result, which is the detection result by the second substance detection unit, and
    A second detection result acquisition step for acquiring a second detection result, which is a detection result by the first substance detection unit, and
    A switching timing determination step for determining a switching timing, which is a timing for switching from the first state to the second state, based on the first detection result and the second detection result.
    A substance detection method characterized by performing.
  2.  前記制御部は、
     前記流路選択部を前記第1の状態にする第1の流路切替ステップと、
     前記第1の状態のまま、前記第2の物質検出部による検出を実行し、前記第2の物質検出部による検出結果を取得する第3の検出結果取得ステップと、
     前記第2の物質検出部による検出結果を基に、前記切替タイミングを設定する切替タイミング設定ステップと、
     前記第1の状態で、前記第2の物質検出部による検出を実行し、前記第2の物質検出部による検出結果を取得する第4の検出結果取得ステップと、
     前記第2の物質検出部による検出を行いつつ、前記切替タイミングになると前記第2の状態へ前記流路選択部を切り替える第2の流路切替ステップと、
     前記第2の流路切替ステップの後に、前記第2の物質検出部による検出を実行し、前記第2の物質検出部による検出結果を取得しつつ、前記第1の物質検出部による検出を実行し、前記第1の物質検出部による検出結果を取得する第5の検出結果取得ステップと、
     前記第1の物質検出部及び前記第2の物質検出部による検出が終了した後、前記第2の物質検出部による検出結果が適切ではない場合、前記切替タイミングの時刻を早くする第1の切替タイミング調整ステップと、
     前記第1の物質検出部及び前記第2の物質検出部による検出が終了した後、前記第3の検出結果取得ステップで取得された前記第2の物質検出部による検出結果と、前記第5の検出結果取得ステップで取得された前記第2の物質検出部による検出結果との比較結果が適切ではない場合、前記切替タイミングの時刻を遅くする第2の切替タイミング調整ステップと、
     を実行することを特徴とする請求項1に記載の物質検出方法。
    The control unit
    A first flow path switching step that brings the flow path selection unit into the first state, and
    The third detection result acquisition step of executing the detection by the second substance detection unit and acquiring the detection result by the second substance detection unit in the first state, and the third detection result acquisition step.
    Based on the detection result by the second substance detection unit, the switching timing setting step for setting the switching timing and the switching timing setting step
    In the first state, the fourth detection result acquisition step of executing the detection by the second substance detection unit and acquiring the detection result by the second substance detection unit, and
    A second flow path switching step of switching the flow path selection unit to the second state at the switching timing while performing detection by the second substance detection unit, and
    After the second flow path switching step, the detection by the second substance detection unit is executed, and the detection by the first substance detection unit is executed while acquiring the detection result by the second substance detection unit. Then, the fifth detection result acquisition step of acquiring the detection result by the first substance detection unit, and
    After the detection by the first substance detection unit and the second substance detection unit is completed, if the detection result by the second substance detection unit is not appropriate, the first switching that advances the time of the switching timing. Timing adjustment steps and
    After the detection by the first substance detection unit and the second substance detection unit is completed, the detection result by the second substance detection unit acquired in the third detection result acquisition step and the fifth substance detection unit. When the comparison result with the detection result by the second substance detection unit acquired in the detection result acquisition step is not appropriate, the second switching timing adjustment step for delaying the switching timing time and the second switching timing adjustment step
    The substance detection method according to claim 1, wherein the substance is detected.
  3.  前記第1の物質検出部は、質量分析計であり、
     前記第2の物質検出部は、紫外線検出器であり、
     前記第1の切替タイミング調整ステップでは、
     前記制御部が、前記質量分析計の検出ピークの高さが、所定の閾値より小さければ、前記切替タイミングの時刻を早くし、
     前記第2の切替タイミング調整ステップでは、
     前記制御部が、前記第3の検出結果取得ステップで取得された前記紫外線検出器のピーク面積と、前記第5の検出結果取得ステップで取得された、前記第2の状態に前記流路選択部が切り替えられた後における前記紫外線検出器のピーク面積と、の比が所定の閾値より小さければ、前記切替タイミングの時刻を遅くする
     ことを特徴とする請求項2に記載の物質検出方法。
    The first substance detection unit is a mass spectrometer, and is
    The second substance detection unit is an ultraviolet detector, and is
    In the first switching timing adjustment step,
    If the height of the detection peak of the mass spectrometer is smaller than a predetermined threshold value, the control unit advances the time of the switching timing.
    In the second switching timing adjustment step,
    The control unit sets the peak area of the ultraviolet detector acquired in the third detection result acquisition step and the flow path selection unit in the second state acquired in the fifth detection result acquisition step. The substance detection method according to claim 2, wherein if the ratio of the peak area of the ultraviolet detector to the peak area of the ultraviolet detector after the switching is smaller than a predetermined threshold value, the time of the switching timing is delayed.
  4.  前記流路選択部が、前記第1の状態である場合、かつ、前記第2の状態において、
     前記第1の物質検出部の前段に備えられ、前記第1の物質を前記第1の物質検出部における検出に適した状態に分離する第2のカラムを有し、
     前記第1のカラムは、前記第2のカラムより耐圧が低く、
     前記制御部は、
     前記第2の流路切替ステップの後、前記第1の物質検出部の検出結果から、前記第1の物質が前記第1のカラムから溶出しきったと判定されると、前記流路選択部を前記第1の状態へ切り替える第3の流路切替ステップと、
     を実行することを特徴とする請求項2に記載の物質検出方法。
    When the flow path selection unit is in the first state and in the second state,
    It has a second column provided in front of the first substance detection unit and separates the first substance into a state suitable for detection in the first substance detection unit.
    The first column has a lower withstand voltage than the second column.
    The control unit
    After the second flow path switching step, when it is determined from the detection result of the first substance detection unit that the first substance has completely eluted from the first column, the flow path selection unit is referred to. A third flow path switching step for switching to the first state, and
    The substance detection method according to claim 2, wherein the substance is detected.
  5.  前記第1の物質検出部は、質量分析計であり、
     前記第2の物質検出部は、紫外線検出器であり、
     前記制御部は、
     前記流路選択部を前記第1の状態にする第4の流路切替ステップと、
     前記紫外線検出器による検出を実行し、前記紫外線検出器による検出結果を取得する第6の検出結果取得ステップと、
     前記紫外線検出器による検出結果において、検出ピークが過ぎ、かつ、検出値が所定の閾値より小さくなると、前記流路選択部を前記第2の状態にする第5の流路切替ステップと、
     前記第5の流路切替ステップの後において、前記質量分析計による検出を実行し、前記質量分析計による検出結果を取得する第7の検出結果取得ステップと、
     前記第7の検出結果取得ステップにおいて、取得された前記質量分析計による検出結果において、検出ピークの値が、所定の閾値より小さい場合、前記第5の流路切替ステップにおける所定の閾値を大きくする第3の切替タイミング調整ステップと、
     を実行することを特徴とする請求項1に記載の物質検出方法。
    The first substance detection unit is a mass spectrometer, and is
    The second substance detection unit is an ultraviolet detector, and is
    The control unit
    A fourth flow path switching step that brings the flow path selection unit into the first state, and
    The sixth detection result acquisition step of executing the detection by the ultraviolet detector and acquiring the detection result by the ultraviolet detector, and
    In the detection result by the ultraviolet detector, when the detection peak has passed and the detected value becomes smaller than the predetermined threshold value, the fifth flow path switching step of setting the flow path selection unit to the second state, and the fifth flow path switching step.
    After the fifth flow path switching step, a seventh detection result acquisition step of executing detection by the mass spectrometer and acquiring a detection result by the mass spectrometer, and
    When the value of the detection peak is smaller than the predetermined threshold value in the detection result by the mass spectrometer acquired in the seventh detection result acquisition step, the predetermined threshold value in the fifth flow path switching step is increased. The third switching timing adjustment step and
    The substance detection method according to claim 1, wherein the substance is detected.
  6.  前記流路選択部が、前記第1の状態である場合、かつ、前記第2の状態において、
     前記第1の物質検出部の前段に備えられ、前記第1の物質を前記第1の物質検出部における検出に適した状態に分離する第2のカラムを有し、
     前記第1のカラム及び前記第2のカラムのそれぞれを洗浄し、平衡化する洗浄・平衡化部を備え、
     前記制御部は、
     前記第1の検出結果取得ステップ及び前記第2の検出結果取得ステップの終了後に、前記洗浄・平衡化部による前記第1のカラム及び前記第2のカラムの洗浄及び平衡化を行う洗浄・平衡化ステップ
     を実行することを特徴とする請求項1に記載の物質検出方法。
    When the flow path selection unit is in the first state and in the second state,
    It has a second column provided in front of the first substance detection unit and separates the first substance into a state suitable for detection in the first substance detection unit.
    A cleaning / equilibrium unit for cleaning and equilibrating each of the first column and the second column is provided.
    The control unit
    After the completion of the first detection result acquisition step and the second detection result acquisition step, the cleaning / equilibration unit performs cleaning / equilibration of the first column and the second column. The substance detection method according to claim 1, wherein the step is performed.
  7.  前記流路選択部が前記第1の状態において、前記第1のカラムの後段、及び、前記第2のカラムの後段に、前記第1のカラムの後段、及び、前記第2のカラムの後段それぞれから延出する流路を廃液用流路に切り替える第2の流路選択部を備え、
     前記制御部は、
     前記洗浄・平衡化ステップを実行する前に、前記流路選択部を前記第1の状態へ切り替える第6の流路切替ステップ
     を実行することを特徴とする請求項6に記載の物質検出方法。
    In the first state, the flow path selection unit is in the rear stage of the first column, the rear stage of the second column, the rear stage of the first column, and the rear stage of the second column, respectively. It is equipped with a second flow path selection unit that switches the flow path extending from the flow path to the waste liquid flow path.
    The control unit
    The substance detection method according to claim 6, wherein a sixth flow path switching step for switching the flow path selection unit to the first state is executed before the cleaning / equilibration step is executed.
  8.  前記流路選択部が、前記第1の状態である場合、かつ、前記第2の状態において、
     前記第1の物質検出部の前段に備えられ、前記第1の物質を前記第1の物質検出部における検出に適した状態に分離する第2のカラムを有し、
     前記第1のカラムが複数設けられているとともに、前記第2のカラムが複数設けられており、
     複数の前記第1のカラムの前段及び後段のそれぞれに、前記流路に接続される複数の前記第1のカラムを選択する第1のカラム選択部と、
     複数の前記第2のカラムの前段及び後段のそれぞれに、前記流路に接続される複数の前記第2のカラムを選択する第2のカラム選択部と、
     を有し、
     前記第1のカラム選択部において、複数の前記第1のカラムを順に選択接続し、前記第2のカラム選択部において、複数の前記第2のカラムを順に選択接続し、それぞれの選択接続における前記第1の物質検出部及び前記第2の物質検出部の検出結果を基に、劣化している前記第1のカラム及び前記第2のカラムを検出する劣化判定ステップ
     を実行することを特徴とする請求項1に記載の物質検出方法。
    When the flow path selection unit is in the first state and in the second state,
    It has a second column provided in front of the first substance detection unit and separates the first substance into a state suitable for detection in the first substance detection unit.
    A plurality of the first columns are provided, and a plurality of the second columns are provided.
    In each of the front stage and the rear stage of the plurality of first columns, a first column selection unit for selecting a plurality of the first columns connected to the flow path, and a first column selection unit.
    In each of the front stage and the rear stage of the plurality of the second columns, a second column selection unit for selecting the plurality of the second columns connected to the flow path, and a second column selection unit.
    Have,
    In the first column selection unit, a plurality of the first columns are selectively connected in order, and in the second column selection unit, a plurality of the second columns are selectively connected in order, and the said in each selective connection. Based on the detection results of the first substance detection unit and the second substance detection unit, a deterioration determination step for detecting the deteriorated first column and the second column is executed. The substance detection method according to claim 1.
  9.  試料における第1の物質の量を検出する第1の物質検出部と、
     前記試料において、前記第1の物質以外の物質であり、前記第1の物質検出部における測定の障害となる第2の物質を検出する第2の物質検出部と、
     第1の送液ポンプと、
     第2の送液ポンプと、
     前記第1の送液ポンプによって送液された液中に前記試料を注入させる試料注入部と、
     前記第1の物質を選択的に吸着及び溶離できるとともに、前記第2の物質を透過させる第1のカラムと、
     前記第1の送液ポンプ、前記第2の送液ポンプ、前記第1のカラム、前記第1の物質検出部、及び、前記第2の物質検出部を接続する流路を切り替える流路選択部と、
     少なくとも前記第1の物質検出部と、前記第2の物質検出部と、前記流路選択部と、を制御する制御部と、
     を有する物質検出システムであって、
     前記流路選択部は、
     前記第1の送液ポンプ、前記試料注入部、前記第1のカラム、及び、前記第2の物質検出部が直列に接続されるような流路と、前記第1の送液ポンプ、及び、前記第1の物質検出部が接続されるような流路を有する第1の状態と、
     前記第1の送液ポンプ、前記試料注入部、及び、前記第2の物質検出部が直列に接続されるような流路と、前記第2の送液ポンプ、前記第1のカラム、及び、前記第1の物質検出部が直列に接続されるような流路を有する第2の状態と、
     に切替可能であり、
     前記制御部は、
     前記第2の物質検出部による検出結果である第1の検出結果を取得し、前記第1の物質検出部による検出結果である第2の検出結果を取得し、前記第1の検出結果、及び、前記第2の検出結果を基に、前記第1の状態から前記第2の状態へと切り替えるタイミングである切替タイミングを決定する
     ことを特徴とする物質検出システム。
    A first substance detector that detects the amount of the first substance in the sample,
    In the sample, a second substance detection unit that detects a second substance that is a substance other than the first substance and interferes with the measurement in the first substance detection unit, and
    The first liquid feed pump and
    With the second liquid feed pump,
    A sample injection unit for injecting the sample into the liquid sent by the first liquid feeding pump, and a sample injection unit.
    A first column capable of selectively adsorbing and eluting the first substance and allowing the second substance to permeate.
    A flow path selection unit that switches the flow path connecting the first liquid feed pump, the second liquid feed pump, the first column, the first substance detection unit, and the second substance detection unit. When,
    A control unit that controls at least the first substance detection unit, the second substance detection unit, and the flow path selection unit.
    It is a substance detection system with
    The flow path selection unit
    A flow path in which the first liquid feed pump, the sample injection section, the first column, and the second substance detection section are connected in series, the first liquid feed pump, and the like. A first state having a flow path to which the first substance detection unit is connected, and
    A flow path in which the first liquid feed pump, the sample injection unit, and the second substance detection unit are connected in series, the second liquid feed pump, the first column, and the like. A second state having a flow path such that the first substance detection unit is connected in series, and
    Can be switched to
    The control unit
    The first detection result, which is the detection result by the second substance detection unit, is acquired, the second detection result, which is the detection result by the first substance detection unit, is acquired, the first detection result, and the first detection result, and , A substance detection system characterized in that a switching timing, which is a timing for switching from the first state to the second state, is determined based on the second detection result.
  10.  前記流路選択部が、前記第1の状態である場合、かつ、前記第2の状態において、
     前記第1の物質検出部の前段に備えられ、前記第1の物質を前記第1の物質検出部における検出に適した状態に分離する第2のカラムを有し、
     前記流路選択部が、前記第1の状態において、
     前記第1のカラムの前段、及び、第2のカラムの前段にそれぞれ設けられるフィルタ
     を有することを特徴とする請求項9に記載の物質検出システム。
    When the flow path selection unit is in the first state and in the second state,
    It has a second column provided in front of the first substance detection unit and separates the first substance into a state suitable for detection in the first substance detection unit.
    In the first state, the flow path selection unit is
    The substance detection system according to claim 9, further comprising filters provided in the front stage of the first column and the front stage of the second column, respectively.
  11.  前記流路選択部が、前記第1の状態である場合、かつ、前記第2の状態において、
     前記第1の物質検出部の前段に備えられ、前記第1の物質を前記第1の物質検出部における検出に適した状態に分離する第2のカラムを有し、
     前記第1のカラムが複数設けられているとともに、前記第2のカラムが複数設けられており、
     複数の前記第1のカラムの前段及び後段のそれぞれに、前記流路に接続される複数の前記第1のカラムを選択する第1のカラム選択部と、
     複数の前記第2のカラムの前段及び後段のそれぞれに、前記流路に接続される複数の前記第2のカラムを選択する第2のカラム選択部と、
     を有することを請求項9に記載の物質検出システム。
    When the flow path selection unit is in the first state and in the second state,
    It has a second column provided in front of the first substance detection unit and separates the first substance into a state suitable for detection in the first substance detection unit.
    A plurality of the first columns are provided, and a plurality of the second columns are provided.
    In each of the front stage and the rear stage of the plurality of first columns, a first column selection unit for selecting a plurality of the first columns connected to the flow path, and a first column selection unit.
    In each of the front stage and the rear stage of the plurality of the second columns, a second column selection unit for selecting the plurality of the second columns connected to the flow path, and a second column selection unit.
    The substance detection system according to claim 9.
PCT/JP2020/017365 2020-04-22 2020-04-22 Substance analysis method and substance analysis system WO2021214916A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/017365 WO2021214916A1 (en) 2020-04-22 2020-04-22 Substance analysis method and substance analysis system
JP2022516555A JPWO2021214916A1 (en) 2020-04-22 2020-04-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/017365 WO2021214916A1 (en) 2020-04-22 2020-04-22 Substance analysis method and substance analysis system

Publications (1)

Publication Number Publication Date
WO2021214916A1 true WO2021214916A1 (en) 2021-10-28

Family

ID=78270483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017365 WO2021214916A1 (en) 2020-04-22 2020-04-22 Substance analysis method and substance analysis system

Country Status (2)

Country Link
JP (1) JPWO2021214916A1 (en)
WO (1) WO2021214916A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295767A (en) * 2022-03-10 2022-04-08 湖南明瑞制药有限公司 Medicine impurity detection method based on propane fumarate tenofovir disoproxil tablets

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254955A (en) * 2002-03-06 2003-09-10 Shimadzu Corp Multidimensional liquid chromatographic analyzer
JP2012047655A (en) * 2010-08-30 2012-03-08 Hitachi Ltd Liquid chromatograph apparatus and analysis method
JP2014153075A (en) * 2013-02-05 2014-08-25 Shimadzu Corp Gas passage switching device, gas passage switching method, and gas passage switching program
JP2015052533A (en) * 2013-09-06 2015-03-19 株式会社日立製作所 Chromatography device and chromatography method
JP2018169257A (en) * 2017-03-29 2018-11-01 地方独立行政法人青森県産業技術センター Multi-component continuous separation analyzer, multi-component continuous separation analysis method, and multi-component continuous separation analysis program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254955A (en) * 2002-03-06 2003-09-10 Shimadzu Corp Multidimensional liquid chromatographic analyzer
JP2012047655A (en) * 2010-08-30 2012-03-08 Hitachi Ltd Liquid chromatograph apparatus and analysis method
JP2014153075A (en) * 2013-02-05 2014-08-25 Shimadzu Corp Gas passage switching device, gas passage switching method, and gas passage switching program
JP2015052533A (en) * 2013-09-06 2015-03-19 株式会社日立製作所 Chromatography device and chromatography method
JP2018169257A (en) * 2017-03-29 2018-11-01 地方独立行政法人青森県産業技術センター Multi-component continuous separation analyzer, multi-component continuous separation analysis method, and multi-component continuous separation analysis program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295767A (en) * 2022-03-10 2022-04-08 湖南明瑞制药有限公司 Medicine impurity detection method based on propane fumarate tenofovir disoproxil tablets
CN114295767B (en) * 2022-03-10 2022-06-03 湖南明瑞制药有限公司 Medicine impurity detection method based on propane fumarate tenofovir disoproxil tablets

Also Published As

Publication number Publication date
JPWO2021214916A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
CN110832299B (en) Automated clinical diagnostic system and method
US6942793B2 (en) Liquid chromatograph mass spectrometer
US20180339244A1 (en) Method for controlling continuous chromatography and multi-column chromatography arrangement
JP7076454B2 (en) Bioprocess purification system and method
US20180340917A1 (en) Chromatography system with guard columns
WO2021214916A1 (en) Substance analysis method and substance analysis system
von der Au et al. Development of an automated on-line purification HPLC single cell-ICP-MS approach for fast diatom analysis
CN217981374U (en) Multidimensional liquid chromatography device for simultaneously detecting multiple biological small molecules in biological sample
CN110064229A (en) Prepare chromatogram arrangement
US10018603B2 (en) Two-dimensional liquid chromatography system for heart-cut method
US7216039B2 (en) Method and device for carrying out chromatographic analyses in an automatic and optimised manner
EP2581741B1 (en) Method transfer by freezing an initially non-controlled parameter
US20240011949A1 (en) Analysis of mobile phase supply from mobile phase container
JP2020508857A (en) Method in continuous chromatography
CN113396328A (en) Analysis device
US20210387192A1 (en) Purity detection of separated sample portion as basis for a positive or negative decision concerning further separation
JP2020051960A (en) Liquid chromatograph analysis method and liquid chromatograph analyzer
JP2017198666A (en) Liquid chromatography measurement method, liquid chromatography measurement device, and liquid chromatography measurement program
JP2012047655A (en) Liquid chromatograph apparatus and analysis method
US4914036A (en) Method and apparatus for simultaneously analyzing vanillylmandelic acid, homovanillic acid and creatinine
JPH1010107A (en) Sample analysis method by liquid chromatography
CN107305204B (en) Liquid chromatography measuring method, liquid chromatography measuring apparatus, and liquid chromatography measuring program storage medium
US9465016B2 (en) Chromatographic system and method of isolating compound in sample using chromatographic system
US11209405B2 (en) Liquid chromatograph analysis system
US20240011952A1 (en) Multidimensional lc system for analysing antibodies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022516555

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931716

Country of ref document: EP

Kind code of ref document: A1