WO2021210371A1 - Anti-reflection laminate - Google Patents

Anti-reflection laminate Download PDF

Info

Publication number
WO2021210371A1
WO2021210371A1 PCT/JP2021/013132 JP2021013132W WO2021210371A1 WO 2021210371 A1 WO2021210371 A1 WO 2021210371A1 JP 2021013132 W JP2021013132 W JP 2021013132W WO 2021210371 A1 WO2021210371 A1 WO 2021210371A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
group
layer
index layer
medium
Prior art date
Application number
PCT/JP2021/013132
Other languages
French (fr)
Japanese (ja)
Inventor
昌宏 斉藤
美帆 飯田
Original Assignee
フクビ化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フクビ化学工業株式会社 filed Critical フクビ化学工業株式会社
Priority to JP2022515275A priority Critical patent/JPWO2021210371A1/ja
Publication of WO2021210371A1 publication Critical patent/WO2021210371A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings

Definitions

  • the present invention relates to an antireflection laminate provided to prevent external light from being reflected on the surface of a window, display, or the like.
  • the present invention relates to an antireflection laminate provided on the front panel of an optical display device such as an LED display (LED, OLED), liquid crystal display (LCD), plasma display (PDP).
  • LED LED display
  • OLED liquid crystal display
  • LCD liquid crystal display
  • PDP plasma display
  • Patent Document 1 proposes an antireflection film composed of three layers formed by coating on a translucent substrate, in which each layer has a predetermined film thickness.
  • the minimum reflectance of this antireflection film is about 0.5% at a wavelength of 600 nm, and the average reflectance in the visible light range of 380 to 780 nm is estimated to exceed several percent. Therefore, there is room for further improvement in order to satisfy the visual average reflection characteristics required for recent optical display devices.
  • an object of the present invention is to provide an antireflection laminate having excellent antireflection and light transmission properties.
  • the present inventors further include a low refractive index layer (L), a high refractive index layer (H), a medium refractive index layer (M), and a low refractive index layer (L).
  • L low refractive index layer
  • H high refractive index layer
  • M medium refractive index layer
  • L low refractive index layer
  • the present invention includes the following inventions.
  • 1. An antireflection laminate containing a base material (B), a hard coat layer (HC) and an antireflection layer (AR) in this order.
  • the antireflection layer (AR) is A low refractive index layer (L) having a refractive index of 1.450 or less and a film thickness of 70 to 130 nm.
  • a high-refractive index layer (H) having a refractive index of 1.700 to 1.850 and a film thickness of 10 to 250 nm.
  • a medium refractive index layer (M) having a refractive index of 1.550 to 1.810 and a film thickness of 20 to 150 nm.
  • RI (L) is the refractive index of the low refractive index layer (L).
  • RI (ML) is the refractive index of the medium-low refractive index layer (ML).
  • RI (M) is the refractive index of the medium refractive index layer (M).
  • RI (H) represents the refractive index of the high refractive index layer (H).
  • each of the layers is arranged in the order of the medium-low refractive index layer (ML), the medium-refractive index layer (M), the high-refractive index layer (H), and the low-refractive index layer (L) from the hard coat layer (HC) side.
  • the antireflection laminate having a visual average reflectance of 0.6% or less on both sides at a wavelength of 380 to 780 nm.
  • the medium-low refractive index layer (ML) is (i) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof, and (ii) an alkoxysilane compound represented by the following formula (2) or water thereof. With respect to 100 parts by mass of at least one binder component selected from the group consisting of the hydrolyzate and the (iii) ionizing radiation curable resin.
  • R is an alkylene group and R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom.
  • R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom.
  • R 2 is an alkyl group, an alkenyl group or an alkoxyalkyl group.
  • N is 1 or 2.
  • the medium refractive index layer (M) is (i) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof, and (ii) an alkoxysilane compound represented by the following formula (2) or a hydrolysis thereof.
  • R is an alkylene group and R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom.
  • R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom.
  • R 2 is an alkyl group, an alkenyl group or an alkoxyalkyl group.
  • N is 1 or 2.
  • the high-refractive-index layer (H) is composed of (i) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof, and (ii) an alkoxysilane compound represented by the following formula (2) or a hydrolysis thereof.
  • binder component selected from the group consisting of substances
  • R is an alkylene group and R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom.
  • R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom.
  • R 2 is an alkyl group, an alkenyl group or an alkoxyalkyl group.
  • N is 1 or 2.
  • the low refractive index layer (L) is composed of (i) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof, and (ii) an alkoxysilane compound represented by the following formula (2) or a hydrolysis thereof.
  • binder component selected from the group consisting of substances
  • R is an alkylene group and R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom.
  • R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom.
  • R 2 is an alkyl group, an alkenyl group or an alkoxyalkyl group.
  • N is 1 or 2.
  • the metal oxide particles are titanium oxide, zirconium oxide, niobium pentoxide, antimony-doped tin oxide (ATO), indium oxide-tin oxide (ITO), phosphorus-doped tin oxide (PTO), fluorine-doped tin oxide (FTO), and five.
  • ATO antimony-doped tin oxide
  • ITO indium oxide-tin oxide
  • PTO phosphorus-doped tin oxide
  • FTO fluorine-doped tin oxide
  • the antireflection laminate according to any one of the above items 1 to 5, which is at least one kind of oxide particles selected from the group consisting of antimonium oxide.
  • a protective layer (C) is provided on the antireflection layer (AR), and the protective layer (C) is (i) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof, and ( ii) With respect to 100 parts by mass of at least one binder component selected from the group consisting of the alkoxysilane compound represented by the following formula (2) or a hydrolyzate thereof.
  • R is an alkylene group and R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom.
  • R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom.
  • R 2 is an alkyl group, an alkenyl group or an alkoxyalkyl group.
  • N is 1 or 2.
  • the antireflection laminate of the present invention is excellent in antireflection and light transmission.
  • the antireflection laminate of the present invention has low reflectance in a wide wavelength range of 380 to 780 nm. As a result, the visual average reflectance on both sides of the antireflection laminate of the present invention is 0.6% or less.
  • the antireflection laminate of the present invention has an infrared transmittance of light having a wavelength of 900 nm, that is, infrared rays of at least 85% or more, and 96% when the transmittance is high. Therefore, it is also useful as a front panel or cover material for a safety sensor using an infrared camera or an infrared laser, or as an instrument panel or touch panel for an automobile.
  • the base material (B) is preferably made of a transparent resin having excellent impact resistance and not hindering the visibility.
  • the total light transmittance of the base material (B) at a wavelength of 380 to 780 nm is preferably 88% or more, more preferably 89% or more, still more preferably 92% or more.
  • the base material (B) is preferably formed of at least one resin selected from the group consisting of an acrylic resin, a polycarbonate resin, a polyethylene terephthalate resin and a triacetyl cellulose resin.
  • a laminated base material in which these resins are laminated may be used.
  • a laminated base material of a polycarbonate resin and a polymethylmethacrylate resin may be used.
  • the thickness of the base material (B) is appropriately selected and designed from the required transparency and impact resistance, but is usually in the range of 0.2 to 2.0 mm.
  • the upper limit of the thickness of the base material (B) is preferably 1.0 mm, more preferably 1.5 mm, and even more preferably 2 mm.
  • the hard coat layer (HC) is preferably a layer containing a resin component obtained by curing a urethane acrylate having trifunctionality or less and a urethane acrylate having four or more functionalities.
  • the thickness of the hard coat layer (HC) is preferably 1 to 3 ⁇ m. That is, if this thickness is too thin, it becomes difficult to secure the basic physical properties (for example, hardness and strength) of the hard coat layer (HC), and if it is excessively thick, it becomes a base material (B). This is because the difference in physical properties (for example, flexibility and elongation) becomes large, and as a result, molding defects such as cracks are likely to occur.
  • the thickness of the hard coat layer (HC) is preferably 1.2 to 2.5 ⁇ m, more preferably 1.5 to 2 ⁇ m.
  • the hard coat layer (HC) preferably contains a resin component obtained by curing a urethane acrylate having a trifunctionality or less and a urethane acrylate having a tetrafunctionality or higher, a silane coupling component, silica particles, and a metal chelate compound.
  • the resin component has a function as a binder for forming a hard coat layer (HC).
  • a binder it is preferable to use a urethane acrylate having trifunctionality or less and a urethane acrylate having four or more functionalities in combination. That is, a urethane acrylate having a trifunctionality or less forms a relatively flexible portion by curing, and a urethane acrylate having a trifunctionality or higher forms a hard portion by curing. It is possible to form a dense and hard film.
  • Urethane acrylate is obtained by further reacting a hydroxyl group-containing (meth) acrylate with a terminal isocyanate compound obtained by reacting a polyhydric isocyanate compound with a polyol compound having a plurality of hydroxyl groups, and is contained in urethane acrylate.
  • the (meth) acryloyl group is a functional group, for example, a urethane acrylate having two (meth) acryloyl groups is bifunctional, and one having three is trifunctional.
  • a urethane acrylate having trifunctionality or less has at most three (meth) acryloyl groups.
  • a pentaerythritol mono (meth) acrylate is reacted with a terminal isocyanate compound at both ends.
  • Urethane acrylates into which one (meth) acryloyl group is introduced into each are used as bifunctional urethane acrylates.
  • pentaerythritol mono (meth) acrylate and pentaerythritol di (meth) acrylate are reacted with a terminal isocyanate compound to introduce one (meth) acryloyl group at one end of the isocyanate compound, and the other end. Introduced with two (meth) acryloyl groups is used as a trifunctional urethane acrylate.
  • pentaerythritol di (meth) acrylate is reacted with a terminal isocyanate compound, and two (meth) acryloyl groups are introduced at both ends of the isocyanate compound, which is used as a tetrafunctional urethane acrylate.
  • a terminal isocyanate compound pentaerythritol di (meth) acrylate
  • two (meth) acryloyl groups are introduced at both ends of the isocyanate compound, which is used as a tetrafunctional urethane acrylate.
  • hydroxyl group-containing (meth) acrylic acid esters such as ethylene glycol, diethylene glycol, and monoesters of (meth) acrylic acids of trihydric or higher polyhydric alcohols, and diesters are used to obtain the desired number of (meth) acryloyl groups.
  • urethane acrylate having trifunctionality or less can be obtained.
  • urethane acrylates having four or more functionalities For example, by reacting pentaerythritol tri (meth) acrylate with both terminal isocyanates (for example, trihexadiethylene diisocyanate), three (meth) acrylates are formed at each end of the molecular chain. A hexafunctional urethane acrylate having an acryloyl group can be obtained.
  • the above trifunctional or lower functional urethane acrylate and the tetrafunctional or higher functional urethane acrylate are used in a weight ratio of 2/98 to 70/30, particularly 10/90 to 60/40. If the amount of the trifunctional or lower urethane acrylate used is too large, the hardness of the obtained hard coat layer (HC) may be impaired, and the basic performance of the hard coat layer (HC) may be deteriorated.
  • the hard coat layer (HC) preferably contains a silane coupling component.
  • the silane coupling component is used to stably disperse and hold silica particles, which will be described later, in the hard coat layer (HC) without falling off, and at the same time, to secure adhesion to the antireflection layer (AR). It is an ingredient.
  • the silane coupling component is preferably a compound represented by the following formula (silane coupling agent) or a hydrolyzate thereof.
  • R 3 n- Si (OR 1 ) 4-n (In the formula, R 3 is an alkyl group or an alkenyl group, R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom, and n is a number of 1 or 2.)
  • Examples of the group R 3 in the above formula include an alkyl group such as a methyl group, an ethyl group and a propyl group, and an alkenyl group such as a vinyl group, and the alkyl group includes a halogen atom such as chlorine, a mercapto group and an amino group.
  • Meta It may be substituted with a functional group such as an acryloyl group or an oxylan ring-containing group.
  • the group R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom, and the group OR 1 bonded to the silicon atom is a hydrolyzable group.
  • silane coupling agent examples include vinyltrichlorosilane, vinyltris ( ⁇ -methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltriacetoxysilane, and ⁇ - (meth) acryloxipropyl.
  • the hydrolyzate of such a silane coupling agent is polycondensed at the same time as the hydrolysis to form a polymer connected in a network by a Si—O—Si bond. Therefore, the hard coat layer (HC) can be made dense by using the hydrolyzate of such a silane coupling agent.
  • the content ratio of the above compound or its hydrolyzate in the hard coat layer (HC) is preferably 1 to 30 parts by mass, more preferably 1 to 30 parts by mass, per 100 parts by mass of the resin component formed from the above-mentioned urethane acrylate. It is set in the range of 5 to 20 parts by mass.
  • the hard coat layer (HC) preferably contains solid silica particles.
  • the solid silica particles in the hard coat layer (HC) preferably have a particle size of 5 to 500 nm and a refractive index in the range of 1.44 to 1.5. That is, by using such oxide fine particles, it is possible to uniformly impart basic characteristics such as hardness over the entire hard coat layer (HC).
  • the content of such solid silica particles is preferably 10 to 80 parts by mass, more preferably 20 to 60 parts by mass, per 100 parts by mass of the resin component formed from the urethane acrylate described above.
  • the hard coat layer (HC) preferably contains a metal chelate compound.
  • the metal chelate compound is used to introduce a crosslinked structure into the hard coat layer (HC) to make the hard coat layer (HC) more dense. That is, although the crosslinked structure is formed even with the above-mentioned resin component made of urethane acrylate, its denseness is lowered by using low-functional urethane acrylate in order to impart flexibility. That is, the metal chelate compound adjusts mechanical properties such as hardness, which is affected by the density of the film, in order to compensate for the decrease in the density of the hard coat layer (HC) without impairing the flexibility of the hard coat layer (HC). Is what is used to do.
  • metal chelate compound is also contained in the antireflection layer (AR)
  • the use of the metal chelate compound improves the adhesion between the hard coat layer (HC) and the antireflection layer (AR). It is enhanced and can effectively prevent cracking during molding.
  • a compound of titanium, zirconium, aluminum, tin, niobium, tantalum or lead containing a bidentate ligand is suitable.
  • a bidentate ligand is a chelating agent having two coordination denticities, that is, two atoms that can coordinate to a metal, and generally has a 5- to 7-membered ring depending on O, N, and S atoms. Form to form a chelate compound.
  • bidentate ligands examples include acetylacetonate, ethylacetacetate, diethylmalonato, dibenzoylmethanato, salicilato, glycolat, catecholat, salicylaldehyde, oxyacetophenonato, biphenolato, pyromeconato, oxynaphthoquinonato.
  • the metal chelate compound preferably used in the present invention has the following formula: M (Li) k (X) mk
  • M is titanium, zirconium, aluminum, tin, niobium, tantalum or lead.
  • Li is a bidentate ligand
  • X is a monovalent group, preferably a hydrolyzable group.
  • m is the valence of the metal M
  • k is a number of 1 or more as long as the valence of the metal M is not exceeded. It is represented by.
  • the metal M is preferably titanium, zirconium, or aluminum
  • the group X is preferably an alkoxy group.
  • Specific examples of such a metal chelate compound include the following Ti chelate compounds, Zr chelate compounds, and Al chelate compounds.
  • Zr chelate compound Triethoxy mono (acetylacetonate) zirconium tri-n-propoxymono (acetylacetonate) zirconium tri-i-propoxymono (acetylacetonate) zirconium tri-n-butoxymono (acetylacetonate) zirconium tri- sec-butoxy mono (acetylacetonate) zirconium trit-butoxy mono (acetylacetonate) zirconium diethoxy bis (acetylacetonate) zirconium di-n-propoxybis (acetylacetonate) zirconium di-i- Propoxy bis (acetylacetonate) zirconium di-n-butoxy bis (acetylacetonate) zirconium di-sec-butoxy bis (acetylacetonate) zirconium di-t-butoxy bis (acetylacetonate) zirconium monoethoxy Tris (acetylace
  • Al chelate compound Diethoxy mono (acetylacetonate) aluminum monoethoxybis (acetylacetoneate) aluminum di-i-propoxymono (acetylacetoneate) aluminum mono-i-propoxybis (acetylacetoneate) aluminum mono-i-propoxy -Bis (Ethylacetone Acetate) Aluminum Monoethoxy Bis (Ethylacetone Acetate) Aluminum Diethoxy Mono (Ethylacetone Acetate) Aluminum Di-i-Propoxy Mono (Ethylacetone Acetate) Aluminum Tris (Acetylacetoneate) Aluminum Bis (Ethyl) Acetylacetone) Mono (Acetylacetoneate) Aluminum
  • the above-mentioned metal chelate compound is used in an amount of preferably 0.1 to 30 parts by mass, more preferably 0.5 to 15 parts by mass, per 100 parts by mass of the resin component formed from urethane acrylate.
  • the metal chelate compound within this range, the adhesion with the antireflection layer (AR) formed on the hard coat layer (HC) can be improved.
  • a coating liquid containing a monomer or an oligomer for forming a resin component is applied onto the base material (B) to form a coating film on the base material (B), and the coating film is subjected to a coating liquid.
  • the hard coat layer (HC) can be formed by drying if necessary and then irradiating with ionizing radiation such as ultraviolet rays and electron beams to carry out a curing reaction of the monomer or oligomer for forming the resin component.
  • the antireflection layer (AR) includes a low refractive index layer (L), a high refractive index layer (H), a medium refractive index layer (M), and a medium and low refractive index layer (ML). Each layer is arranged in the order of the medium-low refractive index layer (ML), the medium-refractive index layer (M), the high-refractive index layer (H), and the low-refractive index layer (L) from the hard coat layer (HC) side.
  • the refractive index of each layer satisfies the condition of RI (L) ⁇ RI (ML) ⁇ RI (M) ⁇ RI (H).
  • RI (L) is the refractive index of the low refractive index layer (L).
  • RI (ML) is the refractive index of the medium-low refractive index layer (ML).
  • RI (M) is the refractive index of the medium refractive index layer (M).
  • RI (H) represents the refractive index of the high refractive index layer (H).
  • the refractive index of the medium-low refractive index layer (ML) is 1.500 to 1.650.
  • the lower limit of the refractive index is preferably 1.51 and more preferably 1.55.
  • the upper limit of the refractive index is preferably 1.61 and more preferably 1.60.
  • the film thickness of the medium-low refractive index layer (ML) is 10 to 230 nm.
  • the lower limit of the film thickness is preferably 15 nm, more preferably 45 nm.
  • the upper limit of the film thickness is preferably 190 nm, more preferably 175 nm.
  • the medium-low refractive index layer (ML) is preferably composed of a cured product of a composition containing a binder component and metal oxide particles.
  • the medium-low refractive index layer (ML) is preferably composed of a cured product of a composition containing a binder component, metal oxide particles, and a metal chelate compound.
  • the medium-low refractive index layer (ML) is preferably composed of a cured product of a composition containing 40 to 500 parts by mass of metal oxide particles and 10 parts by mass or less of a metal chelate compound with respect to 100 parts by mass of the binder component.
  • binder component As the binder component, (i) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof, (ii) an alkoxysilane compound represented by the following formula (2) or a hydrolyzate thereof, or (iii). Examples include ionizing radiation curable resins.
  • the binder component examples include (i) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof.
  • R is an alkylene group.
  • the number of carbon atoms of the alkylene group is preferably 1 to 9, more preferably 1 to 5.
  • Examples of the alkylene group include a methylene group, an ethylene group, a trimethylene group, a propylene group, a butylene group, a tetramethylene group, a pentylene group and a hexylene group.
  • R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom.
  • the number of carbon atoms of the alkyl group is preferably 1 to 9, more preferably 1 to 5.
  • the alkyl group include a methyl group, an ethyl group, a trimethyl group, a propyl group, a butyl group, a tetramethyl group, a pentyl group, a hexyl group and the like.
  • the number of carbon atoms of the alkoxyalkyl group is preferably 1 to 9, more preferably 1 to 5.
  • Examples of the alkoxy group of the alkoxyalkyl group include a methoxy group, an ethoxy group, a propoxy group and the like.
  • alkyl group of the alkoxyalkyl group examples include a methyl group, an ethyl group, a trimethyl group, a propyl group, a butyl group, a tetramethyl group, a pentyl group, a hexyl group and the like.
  • the number of carbon atoms of the acyloxy group is preferably 1 to 9, more preferably 1 to 5.
  • examples of the acyloxy group include an acetyloxy group and a benzoyloxy group.
  • the halogen atom include fluorine, chlorine, bromine and iodine.
  • Equation (2) Examples of the binder component include (ii) an alkoxysilane compound represented by the following formula (2) or a hydrolyzate thereof.
  • R 1 is the same as equation (1).
  • n is 1 or 2.
  • R 2 is an alkyl group, an alkenyl group or an alkoxyalkyl group.
  • the number of carbon atoms of the alkyl group is preferably 1 to 9, more preferably 1 to 5.
  • Examples of the alkyl group include a methyl group, an ethyl group, a trimethyl group, a propyl group, a butyl group, a tetramethyl group, a pentyl group, a hexyl group and the like.
  • the number of carbon atoms of the alkenyl group is preferably 1 to 9, more preferably 1 to 5.
  • Examples of the alkenyl group include an ethenyl group, a propenyl group, a butenyl group, a pennyl group, a hexenyl group and the like.
  • the number of carbon atoms of the alkoxyalkyl group is preferably 1 to 9, more preferably 1 to 5.
  • Examples of the alkoxy group of the alkoxyalkyl group include a methoxy group, an ethoxy group, a propoxy group and the like.
  • alkyl group of the alkoxyalkyl group examples include a methyl group, an ethyl group, a trimethyl group, a propyl group, a butyl group, a tetramethyl group, a pentyl group, a hexyl group and the like.
  • Examples of the binder component include (iii) ionizing radiation curable resin.
  • Examples of the ionizing radiation curable resin include urethane acrylate.
  • Urethane acrylate is obtained by further reacting a hydroxyl group-containing (meth) acrylate with a terminal isocyanate compound obtained by reacting a polyhydric isocyanate compound with a polyol compound having a plurality of hydroxyl groups.
  • the (meth) acryloyl group in the urethane acrylate is a functional group.
  • a urethane acrylate having two (meth) acryloyl groups is bifunctional, and one having three is trifunctional.
  • urethane acrylates include bifunctional to hexafunctional urethane acrylates.
  • examples of the bifunctional urethane acrylate include those obtained by reacting a pentaerythritol mono (meth) acrylate with a terminal isocyanate compound and introducing one (meth) acryloyl group at each of both terminals.
  • pentaerythritol mono (meth) acrylate and pentaerythritol di (meth) acrylate are reacted with a terminal isocyanate compound, and one (meth) acryloyl group is introduced into one terminal of the isocyanate compound. , And two (meth) acryloyl groups are introduced at the other end.
  • the tetrafunctional urethane acrylate include those obtained by reacting pentaerythritol di (meth) acrylate with a terminal isocyanate compound and introducing two (meth) acryloyl groups at both ends of the isocyanate compound.
  • hexafunctional urethane acrylate pentaerythritol tri (meth) acrylate is reacted with both terminal isocyanates (for example, trihexadiethylene diisocyanate) to introduce three (meth) acryloyl groups at each of the molecular chain ends.
  • terminal isocyanates for example, trihexadiethylene diisocyanate
  • a desired number of (meth) acryloyl groups were introduced into a hydroxyl group-containing (meth) acrylic acid ester such as ethylene glycol, diethylene glycol, or a monoester of (meth) acrylic acid of a trihydric or higher polyhydric alcohol, or a diester.
  • Urethane acrylate can be mentioned.
  • a urethane acrylate having trifunctionality or less and a urethane acrylate having four or more functionalities can be used in combination.
  • the trifunctional or lower functional urethane acrylate and the tetrafunctional or higher functional urethane acrylate are preferably used in a weight ratio of 2/98 to 70/30, particularly 10/90 to 60/40.
  • Metal oxide particles those having a refractive index of 1.50 or more can be used.
  • Oxide particles and the like are used. These metal oxide particles are appropriately combined to prepare a layer having a desired refractive index. Such particles are known in their own right and are commercially available.
  • the average particle size of the metal oxide particles is preferably 1 to 100 nm, more preferably 1 to 70 nm.
  • the refractive index of the metal oxide particles is preferably 1.70 to 2.80, more preferably 1.90 to 2.50.
  • the content of the metal oxide particles in the medium-low refractive index layer (ML) forming solution is preferably 40 to 500 parts by mass with respect to 100 parts by mass of the binder component.
  • the medium-low refractive index layer (ML) is selected from the group consisting of antimony-doped tin oxide (ATO), indium oxide-tin oxide (ITO), phosphorus-doped tin oxide (PTO), fluorine-doped tin oxide (FTO), and antimony pentoxide.
  • ATO antimony-doped tin oxide
  • ITO indium oxide-tin oxide
  • PTO phosphorus-doped tin oxide
  • FTO fluorine-doped tin oxide
  • antimony pentoxide antimony pentoxide.
  • the medium-low refractive index layer (ML) can be provided with an antimony function.
  • the content of the conductive particles is preferably 100 to 500 parts by mass, more preferably 200 to 500 parts by mass, and further preferably 300 to 500 parts by mass with respect to 100 parts by mass of the binder component.
  • the average particle size of the conductive particles is preferably 1 to 50 nm, more preferably 1 to 30 nm.
  • the film thickness of the medium-low refractive index layer (ML) is preferably 10 to 50 nm.
  • the lower limit of the film thickness is preferably 15 nm, more preferably 20 nm.
  • the upper limit of the film thickness is preferably 50 nm, more preferably 48 nm.
  • the medium-low refractive index layer (ML) may contain at least one oxide particle selected from the group consisting of titanium oxide, zirconium oxide and niobium pentoxide.
  • the content of the metal oxide particles is preferably 10 to 100 parts by mass, more preferably 20 to 60 parts by mass, and further preferably 30 to 60 parts by mass with respect to 100 parts by mass of the binder component.
  • the average particle size of the metal oxide particles is preferably 10 to 100 nm, more preferably 20 to 80 nm.
  • the film thickness of the medium-low refractive index layer (ML) is preferably 50 to 200 nm.
  • the lower limit of the film thickness is preferably 60 nm, more preferably 80 nm.
  • the upper limit of the film thickness is preferably 200 nm, more preferably 180 nm.
  • the metal chelate compound is contained for the purpose of increasing the density and strength of the layer, as well as the hardness.
  • the metal chelate compound is a compound in which a chelating agent typified by a bidentate ligand is coordinated to a metal such as titanium, zirconium, or aluminum.
  • the content of the metal chelate compound in the medium-low refractive index layer (ML) forming solution is preferably 10 parts by mass or less with respect to 100 parts by mass of the binder component.
  • the lower limit of the content is preferably 1 part by mass, more preferably 3 parts by mass with respect to 100 parts by mass of the binder component.
  • the upper limit of the content is preferably 8 parts by mass, more preferably 6 parts by mass with respect to 100 parts by mass of the binder component.
  • the medium-low refractive index layer is selected from the group consisting of antimony-doped tin oxide (ATO), indium oxide-tin oxide (ITO), phosphorus-doped tin oxide (PTO), fluorine-doped tin oxide (FTO), and antimony pentoxide.
  • ATO antimony-doped tin oxide
  • ITO indium oxide-tin oxide
  • PTO phosphorus-doped tin oxide
  • FTO fluorine-doped tin oxide
  • antimony pentoxide antimony pentoxide.
  • the medium-low refractive index layer (ML) is a coating solution for the medium-low refractive index layer (ML) in which each of the above components is dissolved in a specific amount and an arbitrary component is dissolved in the following solvent for the purpose of viscosity adjustment and easy coating. After applying this solution to the hard coat layer (HC), it is dried, and then heated and cured to form the solution. Curing can be performed by irradiating ionizing radiation such as ultraviolet rays (UV) and electron beams (EB).
  • UV ultraviolet rays
  • EB electron beams
  • Solvents used in the coating solution for medium and low refractive index layers are alcohol compounds such as methyl alcohol, ethyl alcohol and propyl alcohol; aromatic compounds such as toluene and xylene; ethyl acetate, butyl acetate, isobutyl acetate and the like. Ester compounds; ketone compounds such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and diacetone alcohol are suitable.
  • solvents such as methylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, and cellosolve compounds such as methyl cellosolve, ethyl cellosolve, and propylene glycol monomethyl ether can also be used.
  • Each of the above components constituting the coating solution for the medium-low refractive index layer (ML) is usually mixed and stirred arbitrarily near room temperature to obtain a solution.
  • a solvent as a dispersion medium is inevitably mixed in the solution.
  • the solvent in the coating solution for the medium-low refractive index layer (ML) and the solvent to be separately blended are removed in the drying and curing steps.
  • the method of applying the solution onto the hard coat layer (HC) is not particularly limited, and methods such as a dip coat method, a roll coat method, a die coat method, a flow coat method, and a spray method are adopted, but the appearance quality and the film are used.
  • the dip coating method is preferable from the viewpoint of thickness control. After that, it can be dried, then heated, and thermoset to form a medium-low refractive index layer (ML). Further, a medium-low refractive index layer (ML) can be formed by performing a curing reaction by irradiating ionizing radiation such as ultraviolet rays and electron beams.
  • the refractive index of the medium refractive index layer (M) is 1.550 to 1.810.
  • the lower limit of the refractive index is preferably 1.550, more preferably 1.580.
  • the upper limit of the refractive index is preferably 1.800, more preferably 1.770.
  • the film thickness of the medium refractive index layer (M) is 20 to 150 nm.
  • the lower limit of the film thickness is preferably 25 nm, more preferably 50 nm.
  • the upper limit of the film thickness is preferably 130 nm, more preferably 110 nm.
  • the lower limit of the refractive index of the medium refractive index layer (M) is , Preferably 1.550, more preferably 1.580.
  • the upper limit of the refractive index of the medium refractive index layer (M) is preferably 1.730, more preferably 1.710, and even more preferably 1.700.
  • the lower limit of the refractive index of the medium refractive index layer (M) is , Preferably 1.750, more preferably 1.760.
  • the upper limit of the refractive index of the medium refractive index layer (M) is preferably 1.810, more preferably 1.790, and even more preferably 1.770.
  • the medium refractive index layer (M) is preferably composed of a cured product of a composition containing a binder component, metal oxide particles and a metal chelate compound.
  • the medium refractive index layer (M) is preferably made of a cured product of a composition containing 40 to 500 parts by mass of metal oxide particles and 1 to 20 parts by mass of a metal chelate compound with respect to 100 parts by mass of the binder component. ..
  • the binder component is at least selected from the group consisting of the alkoxysilane compound represented by the formula (1) or a hydrolyzate thereof and the alkoxysilane compound represented by the formula (2) or a hydrolyzate thereof. It is preferably a kind of binder component.
  • the formulas (1) and (2) are as described in the section of the medium-low refractive index layer (ML).
  • Metal oxide particles As the metal oxide particles used for the medium refractive index layer (M), particles of the same type as the metal oxide particles used for forming the medium and low refractive index layer (ML) can be used, and particles of the same type can be selected from these. Can be used.
  • Metal chelate compound As the metal chelate compound used for the medium refractive index layer (M), the same type as the metal chelate compound used for forming the medium and low refractive index layer (ML) can be used, and the metal chelate compound may be selected from these. Can be done.
  • each of the above components is dissolved in a specific amount, and an arbitrary component is dissolved in a solvent to prepare a solution for the medium refractive index layer (M), and this solution is used as the medium and low refractive index layer (ML). After being applied to, it can be dried, then heated and heat-cured to form.
  • the solvent used for the coating solution for the medium refractive index layer (M) is the same as the solvent used for the coating solution for the medium and low refractive index layer (ML).
  • the thickness of the layer is set in the range of 20 to 150 nm from the viewpoint of antireflection performance.
  • the mixing order and conditions of each of the above components constituting the solution for the medium refractive index layer (M), and the coating method on the medium and low refractive index layer (ML) are not particularly limited.
  • the antireflection layer (AR) has a high refractive index layer (H) between the medium refractive index layer (M) and the low refractive index layer (L) in order to exhibit an extremely high antireflection effect.
  • the refractive index of the high refractive index layer (H) is 1.700 to 1.850.
  • the lower limit of the refractive index is preferably 1.710, more preferably 1.730.
  • the upper limit of the refractive index is preferably 1.830, more preferably 1.810.
  • the film thickness of the high refractive index layer (H) is 10 to 250 nm.
  • the lower limit of the film thickness is preferably 15 nm, more preferably 50 nm.
  • the upper limit of the film thickness is preferably 210 nm, more preferably 150 nm.
  • the high refractive index layer (H) is preferably composed of a cured product of a composition containing a binder component, metal oxide particles and a metal chelate compound.
  • the high refractive index layer (H) is preferably composed of a cured product of a composition containing 300 to 500 parts by mass of metal oxide particles and 10 to 20 parts by mass of a metal chelate compound with respect to 100 parts by mass of the binder component.
  • the binder component is at least selected from the group consisting of the alkoxysilane compound represented by the formula (1) or a hydrolyzate thereof and the alkoxysilane compound represented by the formula (2) or a hydrolyzate thereof. It is preferably a kind of binder component.
  • the formulas (1) and (2) are as described in the section of the medium-low refractive index layer (ML).
  • Metal oxide particles As the metal oxide particles used for the high refractive index layer (H), particles of the same type as the metal oxide particles used for forming the medium and low refractive index layer (ML) can be used, and the metal oxide particles can be selected from these. Can be used.
  • Metal chelate compound As the metal chelate compound used for the high refractive index layer (H), the same type of metal chelate compound as the metal chelate compound used for forming the medium and low refractive index layer (ML) can be used, and it is selected from these. Can be done.
  • each component and further an arbitrary component are dissolved in various solvents used at the time of forming the medium and low refractive index layer (ML) to prepare a coating solution for the high refractive index layer (H).
  • the solution can be applied to the medium refractive index layer (M), dried, and then heated and cured to form the solution.
  • the thickness of the layer is set in the range of 10 to 250 nm from the viewpoint of antireflection performance.
  • the mixing order and conditions of each of the above components constituting the coating solution for the high refractive index layer (H), and the coating method on the medium refractive index layer (M) are not particularly limited, and the medium and low refractive index layers are not particularly limited.
  • the method at the time of (ML) formation can be adopted.
  • Antireflection layers (medium-low refractive index layer, medium-refractive index layer, high-refractive index layer and low-refractive index layer) formed by coating by a so-called wet method using the coating solution in the above solution state and then curing. Is superior in transparency of infrared rays as compared with the antireflection layer formed by the dry method. The reason is as follows.
  • the value of the refractive index is lower than that of the dry method. can.
  • the reflection is low in a wide range of the visible light region and the visible light outer region, and the transmittance is relatively high in the infrared region as well.
  • the refractive index of the low refractive index layer (L) is 1.450 or less.
  • the lower limit of the refractive index is preferably 1.300, more preferably 1.320.
  • the upper limit of the refractive index is preferably 1.440, more preferably 1.430.
  • the film thickness of the low refractive index layer (L) is 70 to 130 nm.
  • the lower limit of the film thickness is preferably 75 nm, more preferably 80 nm.
  • the upper limit of the film thickness is preferably 120 nm, more preferably 110 nm.
  • the low refractive index layer (L) is preferably composed of a cured product of a composition containing a binder component, silica particles, and a metal chelate compound.
  • the low refractive index layer (L) is preferably composed of a cured product of a composition containing 100 to 200 parts by mass of silica particles and 5 to 15 parts by mass of a metal chelate compound with respect to 100 parts by mass of the binder component.
  • the binder component is at least selected from the group consisting of the alkoxysilane compound represented by the formula (1) or a hydrolyzate thereof and the alkoxysilane compound represented by the formula (2) or a hydrolyzate thereof. It is preferably a kind of binder component.
  • the formulas (1) and (2) are as described in the section of the medium-low refractive index layer (ML).
  • silica particles As the silica particles, it is preferable to use hollow silica particles having a space inside from the viewpoint of exhibiting an antireflection effect.
  • the average particle size is preferably 10 to 150 nm. Since the hollow silica particles are hollow particles, their density is lower than that of other silica particles, for example, usually 1.5 g / cm 3 or less.
  • Such hollow silica particles are known in their own right, and are manufactured and commercially available, for example, by synthesizing silica in the presence of a surfactant as a template and finally performing calcining to decompose and remove the surfactant. Has been done.
  • the hollow silica particles use a solvent dispersion such as water or alcohol, a solution for forming a low refractive index layer (L) is prepared to form a low refractive index layer (L).
  • solvents are inevitably mixed in.
  • these solvents are volatilized and removed together with the solvent separately added to prepare the coating solution.
  • Hollow silica particles are preferably used, but solid silica particles having no internal cavities can also be used.
  • the content of silica particles in the solution for forming the low refractive index layer (L) is preferably 100 to 200 parts by mass, more preferably 110 to 190 parts by mass, and further preferably 120 to 120 parts by mass with respect to 100 parts by mass of the binder component. It is 185 parts by mass.
  • the metal chelate compound is contained for the purpose of increasing the density and strength of the layer, as well as the hardness.
  • the metal chelate compound is a compound in which a chelating agent typified by a bidentate ligand is coordinated to a metal such as titanium, zirconium, or aluminum.
  • the content of the metal chelate compound in the solution for forming the low refractive index layer (L) is preferably 5 to 15 parts by mass, more preferably 5 to 13 parts by mass, and further preferably 5 with respect to 100 parts by mass of the binder component. ⁇ 10 parts by mass.
  • each of the above components is dissolved in a specific amount, and an optional component is dissolved in the following solvent for the purpose of viscosity adjustment and easy coating to prepare a coating solution for the low refractive index layer (L).
  • This solution can be applied to the hard coat layer (HC), then dried, then heated and heat cured to form.
  • the solvent used in the coating solution for the low refractive index layer (L) is an alcohol compound such as methyl alcohol, ethyl alcohol, or propyl alcohol; an aromatic compound such as toluene or xylene; an ester such as ethyl acetate, butyl acetate, or isobutyl acetate.
  • Alcohol compounds such as methyl alcohol, ethyl alcohol, or propyl alcohol
  • aromatic compound such as toluene or xylene
  • an ester such as ethyl acetate, butyl acetate, or isobutyl acetate.
  • Compounds Ketone compounds such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and diacetone alcohol are suitable.
  • solvents such as methylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, and cellosolve compounds such as methyl cellosolve, ethyl cellosolve, and propylene glycol monomethyl ether can also be used.
  • Each of the above components constituting the coating solution for the low refractive index layer (L) is usually mixed and stirred arbitrarily near room temperature to obtain a solution.
  • a solvent as a dispersion medium is inevitably mixed in the solution.
  • the solvent in the coating solution for the low refractive index layer (L) and the solvent to be separately blended are removed in the drying and curing steps.
  • the method of applying the solution onto the high refractive index layer (H) is not particularly limited, and methods such as a dip coating method, a roll coating method, a die coating method, a flow coating method, and a spray method are adopted.
  • the dip coating method is preferable from the viewpoint of film thickness control.
  • the antireflection laminate of the present invention can have a protective layer (C) on the antireflection layer (AR).
  • the refractive index of the protective layer (C) is preferably 1.450 to 1.550.
  • the lower limit of the refractive index is preferably 1.460, more preferably 1.470.
  • the upper limit of the refractive index is preferably 1.530, more preferably 1.520.
  • the film thickness of the protective layer (C) is 5 to 50 nm.
  • the lower limit of the film thickness is preferably 10 nm, more preferably 15 nm.
  • the upper limit of the film thickness is preferably 40 nm, more preferably 30 nm.
  • the protective layer (C) is preferably composed of a cured product of a composition containing a binder component, silica particles and a metal chelate compound.
  • the protective layer (C) is preferably made of a cured product of a composition containing 10 to 30 parts by mass of solid silica particles and 5 to 15 parts by mass of a metal chelate compound with respect to 100 parts by mass of the binder component.
  • the binder component is at least selected from the group consisting of the alkoxysilane compound represented by the formula (1) or a hydrolyzate thereof and the alkoxysilane compound represented by the formula (2) or a hydrolyzate thereof. It is preferably a kind of binder component.
  • the formulas (1) and (2) are as described in the section of the medium-low refractive index layer (ML).
  • the protective layer (C) preferably contains solid silica particles.
  • the solid silica particles in the protective layer (C) preferably have a particle size of 5 to 500 nm and a refractive index in the range of 1.44 to 1.5. That is, by using such oxide fine particles, basic properties such as hardness can be uniformly imparted over the entire protective layer (C).
  • Metal chelate compound As the metal chelate compound used for the protective layer (C), the same type as the metal chelate compound used for forming the medium-low refractive index layer (ML) can be used, and can be selected and used from these. ..
  • each component and further an arbitrary component are dissolved in various solvents used at the time of forming the medium-low refractive index layer (ML) to prepare a coating solution for the protective layer (C), and this solution is used as a low-refractive index. It is formed by applying it to the rate layer (L), drying it, and then heating and curing it.
  • the thickness of the layer is preferably 5 to 100 nm, more preferably 20 to 70 nm, and even more preferably 30 to 50 nm from the viewpoint of antireflection performance.
  • the mixing order and mixing conditions of the above components constituting the coating solution for the protective layer (C), and the coating method on the low refractive index layer (L) are not particularly limited, and the medium and low refractive index layer (ML) is not particularly limited. ) The method at the time of formation can be adopted.
  • the antireflection laminate of the present invention may have an antistatic layer (AS) between the hard coat layer (HC) and the medium-low refractive index layer (ML).
  • the antistatic layer (AS) is preferably composed of a cured product of a composition containing a binder component and conductive particles.
  • the antistatic layer (AS) is preferably made of a cured product of a composition containing 100 to 500 parts by mass of conductive particles with respect to 100 parts by mass of the binder component.
  • the thickness of the antistatic layer (AS) is preferably 10 to 200 nm, more preferably 20 to 150 nm, still more preferably 30 to 100 nm, and even more preferably 40 to 80 nm.
  • Conductive particles include indium oxide, indium oxide-tin oxide (ITO), tin oxide, antimony-doped tin oxide (ATO), phosphorus-doped tin oxide (PTO), fluorine-doped tin oxide (FTO), zinc oxide, and aluminum-doped zinc oxide. (AZO), gallium-doped zinc oxide (GZO) and the like can be preferably used.
  • ITO indium oxide-tin oxide
  • ATO antimony-doped tin oxide
  • PTO phosphorus-doped tin oxide
  • FTO fluorine-doped tin oxide
  • ZO gallium-doped zinc oxide
  • tin oxide-based conductive particles have a positive correlation absorption with respect to the wavelength, and the light transmission absorption loss of the formed antireflection laminate is facilitated as Q 450 ⁇ Q 550 ⁇ Q 650. be able to.
  • the antistatic layer (AS) is at least one conductive particle selected from the group consisting of indium oxide-tin oxide (ITO), antimony-doped tin oxide (ATO), phosphorus-doped tin oxide (PTO), and fluorine-doped tin oxide (FTO). Is preferably contained. Organic conductive particles can also be used.
  • ITO indium oxide-tin oxide
  • ATO antimony-doped tin oxide
  • PTO phosphorus-doped tin oxide
  • FTO fluorine-doped tin oxide
  • the content of the conductive particles is preferably 200 to 500 parts by mass, and more preferably 300 to 500 parts by mass with respect to 100 parts by mass of the binder component.
  • the particle size of the conductive particles is preferably 1 nm to 100 nm.
  • the particle size is preferably 1 to 50 nm, more preferably 1 to 30 nm, and even more preferably 1 to 15 nm.
  • the binder component of the antistatic layer (AS) is preferably formed by curing a tetrafunctional or higher functional urethane acrylate.
  • a tetrafunctional or higher functional urethane acrylate pentaerythritol tri (meth) acrylate is reacted with both terminal isocyanates (for example, trihexadiethylene diisocyanate), and each of the molecular chain ends has three (meth) acryloyl groups.
  • Urethane acrylate can be mentioned.
  • a tetrafunctional or higher functional urethane acrylate is preferable.
  • the tetrafunctional urethane acrylate include those obtained by reacting pentaerythritol di (meth) acrylate with a terminal isocyanate compound and introducing two (meth) acryloyl groups at both ends of the isocyanate compound.
  • hexafunctional urethane acrylate (a2)
  • pentaerythritol tri (meth) acrylate is reacted with both-terminal isocyanates (for example, trihexadiethylene diisocyanate) to form three (meth) acryloyl groups at each end of the molecular chain.
  • isocyanates for example, trihexadiethylene diisocyanate
  • Solvents and various additives can be added to the coating liquid as needed.
  • Solvents include aromatic hydrocarbons such as toluene, xylene, cyclohexane and cyclohexylbenzene, hydrocarbons such as n-hexane, dibutyl ether, dimethoxymethane, dimethoxyethane, diethoxyethane, propylene oxide, dioxane, dioxolane and trioxane.
  • Tetrahydrofuran, anisole, phenetol and other ethers as well as methylisobutylketone, methylbutylketone, acetone, methylethylketone, diethylketone, dipropylketone, diisobutylketone, cyclopentanone, cyclohexanone, methylcyclopentanone, methylcyclohexanone and the like.
  • Ketones, and esters such as ethyl formate, propyl formate, n-pentyl formate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, n-pentyl acetate, and ⁇ -petitolactone, as well as methyl cellosolves. It is appropriately selected from among cellosolves such as cellosolve, butyl cellosolve, and cellosolve acetate in consideration of coating suitability and the like. Further, as an additive, a surface adjusting agent, a refractive index adjusting agent, an adhesion improving agent, a curing agent and the like can be added to the coating liquid.
  • antistatic layer (Formation of antistatic layer (AS))
  • a coating liquid containing conductive particles and a monomer or oligomer for forming a binder component is applied onto the substrate (B) to form a coating film on the substrate (B), and the coating film is formed.
  • the monomer or oligomer for forming the resin component is cured by irradiating it with ionizing radiation such as ultraviolet rays and electron beams to form an antistatic layer (AS). Can be done.
  • a roll coater As a coating method, a roll coater, a reverse roll coater, a gravure coater, a micro gravure coater, a knife coater, a bar coater, a wire bar coater, a die coater, and a dip coater can be used.
  • the coating liquid for forming the antistatic layer (AS) is cured by ultraviolet rays
  • a photopolymerization initiator may be any one that generates radicals when irradiated with ultraviolet rays, and for example, acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, and thioxanthones are used. Can be done.
  • the amount of the photopolymerization initiator added is preferably 1 to 10 parts by mass, and more preferably 1 to 7 parts by mass with respect to 100 parts by mass of the tetrafunctional or higher functional urethane acrylate.
  • An antifouling layer (AF) may be laminated on the outermost surface depending on the application. When the antifouling layer is provided, it becomes easy to remove stains (human fingerprints, etc.) adhering to the antireflection laminate.
  • the antifouling layer is preferably a layer constituting the outermost surface of the functional layer in order to fully exert its function.
  • the antifouling layer (AF) can be formed by coating with a fluororesin-based antifouling agent. Examples of the fluororesin-based compound include organosilicon compounds having one or more groups selected from the group consisting of a polyfluoropolyether group, a polyfluoroalkylene group, and a polyfluoroalkyl group.
  • the polyfluoropolyether group is a divalent group having a structure in which polyfluoroalkylene groups and etheric oxygen atoms are alternately bonded.
  • an antifouling agent "SURECO (registered trademark) AF” series manufactured by AGC, "SHIN-ETSU SUBELYN (registered trademark)” series manufactured by Shin-Etsu Chemical Co., Ltd., and “Optur” series manufactured by Daikin Industries, Ltd. , Fluorotechnology's “Fluorosurf (registered trademark)” series, Harves'"DURASURF” series, and Neos's "Futergent” series are commercially available and easily available.
  • the thickness of the antifouling layer (AF) is preferably 2 to 20 nm, more preferably 2 to 15 nm, and even more preferably 2 to 10 nm.
  • the antireflection laminate of the present invention has a base material (B) / hard coat layer (HC) / medium / low refractive index layer (ML) / medium refractive index layer (M) / high refractive index layer (H) / low refractive index.
  • the layers (L) are arranged in this order.
  • the protective layer (C) may be provided on the surface of the low refractive index layer (L) opposite to the base material (B) side.
  • an antistatic layer (AS) may be provided between the hard coat layer (HC) and the medium-low refractive index layer (ML).
  • the antireflection laminate of the present invention may have an antifouling layer (AF) on the outermost surface layer.
  • each layer has the following characteristics.
  • Feature 1 The medium-low refractive index layer (ML) has an antistatic function.
  • Feature 2 The medium-low refractive index layer (ML) does not have an antistatic function.
  • Feature 3 Refractive index of medium refractive index layer (M) ⁇ Refractive index of high refractive index layer (H)
  • Feature 5 Has a protective layer.
  • Feature 6 It has an antistatic layer.
  • the antireflection laminate shown in the examples has the following features.
  • the visual average reflectance of both sides of the surface of the antireflection laminate of the present invention at a wavelength of 380 to 780 nm is 0.6% or less.
  • the visual average reflectance is preferably 0.55% or less, more preferably 0.5% or less.
  • the visual average transmittance of the antireflection laminate of the present invention at a wavelength of 380 to 780 nm is preferably 95% or more, more preferably 96% or more, still more preferably 97% or more.
  • the transmittance of the antireflection laminate of the present invention at a wavelength of 900 nm is preferably 85% or more, more preferably 87% or more, still more preferably 90% or more.
  • the transmittance in the infrared region was measured by the following method.
  • An ultraviolet-visible near-infrared spectrophotometer manufactured by JASCO Corporation: A PbS detector was attached to V-570 and used to measure the transmittance at 380 to 1000 nm. From the obtained transmittance value, the value of the transmittance at a wavelength of 900 nm was defined as the infrared transmittance.
  • the obtained transmittance value is the transmittance of each wavelength for each 1 nm.
  • the refractive index of each layer was measured by the following method. Each layer was coated on an acrylic base material, and peak or bottom values were measured using an ultraviolet-visible spectrophotometer manufactured by JASCO Corporation: V-650. Moreover, the refractive index of each layer was calculated using the value.
  • Example 1 A hard coat layer (HC) and an antireflection layer (AR) were formed on a polymethylmethacrylate (PMMA) substrate (B) having a thickness of 1 mm in this order by the following method.
  • the film thickness was adjusted by the rate of withdrawal from the dip layer-forming solution.
  • Table 6 shows the composition, film thickness, refractive index, visual average reflectance at a wavelength of 380 to 780 nm, visual average transmittance at a wavelength of 380 to 780 nm, and infrared transmittance at a wavelength of 900 nm.
  • a medium-low refractive index layer (ML), a medium-refractive index layer (M), a high-refractive index layer (H), and a low-refractive index layer (L) were formed on the laminated body (HC) by the following procedure.
  • the laminate (HC) was dipped in a solution for forming a medium-low refractive index layer (ml-1), dried at 80 ° C. for 10 minutes, and UV-cured under the condition of 500 mJ to form a medium-low refractive index layer (ML).
  • a laminate (ML) was obtained.
  • FIG. 2 shows the distribution of the visual average reflectance.
  • Example 2 An antireflection laminate was produced by the same method as in Example 1 except that the film thickness and the refractive index of each layer were shown in Table 6.
  • Example 3 An antireflection laminate was produced by the same method as in Example 1 except that the film thickness and the refractive index of each layer were shown in Table 6.
  • Examples 4 to 7 An antireflection laminate was produced in the same manner as in Example 1 except that the film thickness of each layer was shown in Table 6.
  • Example 8 An antireflection laminate was produced in the same manner as in Example 1 except that the film thickness of each layer was shown in Table 6.
  • Example 9 An antireflection laminate was produced in the same manner as in Example 1 except that the film thickness of each layer was shown in Table 6.
  • Example 10 An antireflection laminate was produced in the same manner as in Example 1 except that l-2 was used as a solution for forming a low refractive index layer and the film thickness and refractive index of each layer were shown in Table 6.
  • Example 11 An antireflection laminate was produced in the same manner as in Example 1 except that l-3 was used as a solution for forming a low refractive index layer and the film thickness and refractive index of each layer were shown in Table 6.
  • Example 12 An antireflection laminate was produced by the same method as in Example 1 except that h-2 was used as a solution for forming a high refractive index layer and the film thickness and refractive index of each layer were shown in Table 6.
  • Example 13 An antireflection laminate was produced by the same method as in Example 1 except that h-3 was used as a solution for forming a high refractive index layer and the film thickness and refractive index of each layer were shown in Table 6.
  • Example 14 An antireflection laminate was produced in the same manner as in Example 1 except that m-2 was used as the solution for forming the medium refractive index layer and the film thickness and refractive index of each layer were shown in Table 6.
  • Example 15 An antireflection laminate was produced in the same manner as in Example 1 except that m-3 was used as the solution for forming the medium refractive index layer and the film thickness and refractive index of each layer were shown in Table 6.
  • Example 17 An antireflection laminate was produced in the same manner as in Example 1 except that ml-3 was used as a solution for forming a medium-low refractive index layer and the film thickness and refractive index of each layer were shown in Table 6.
  • Example 18 Using ml-4 as a solution for forming a medium-low refractive index layer, m-4 as a solution for forming a medium-low refractive index layer, and l-4 as a solution for forming a low-refractive index layer, the film thickness and refractive index of each layer were determined.
  • An antireflection laminate was produced in the same manner as in Example 1 except as shown in Table 6.
  • Example 19 After dipping ml-5 as a solution for forming a medium-low refractive index layer, heat treatment was performed at 100 ° C. for 60 minutes to obtain a laminate (ML) on which a medium-low refractive index layer (ML) was formed. Using m-5 as the medium refractive index layer forming solution, h-4 as the high refractive index layer forming solution, and l-5 as the low refractive index layer forming solution, the film thickness and refractive index of each layer are shown. An antireflection laminate was produced in the same manner as in Example 1 except as shown in FIG.
  • Example 20> After dipping ml-5 as a solution for forming a medium-low refractive index layer, heat treatment was performed at 100 ° C. for 60 minutes to obtain a laminate (ML) on which a medium-low refractive index layer (ML) was formed.
  • An antireflection laminate was produced by the same method as in Example 1 except that the film thickness and the refractive index of each layer were shown in Table 6.
  • Table 6 shows the composition, film thickness, refractive index, visual average reflectance at a wavelength of 380 to 780 nm, visual average transmittance at a wavelength of 380 to 780 nm, and infrared transmittance at a wavelength of 900 nm of each layer of Examples 1 to 20.
  • the abbreviations in the table are as follows.
  • ⁇ -GPS 3-glycidoxypropyltrimethoxysilane AAA: aluminum tris (acetylacetonate)
  • PEA Pentaerythritol acrylate
  • a hard coat layer (HC), an antireflection layer (AR) and a protective layer (C) were formed on a polymethylmethacrylate (PMMA) substrate (B) having a thickness of 1 mm in this order by the following method.
  • the film thickness was adjusted by the rate of withdrawal from the dip layer-forming solution.
  • Example 22 After dipping ml-6 as a solution for forming a medium-low refractive index layer, heat treatment was performed at 100 ° C. for 60 minutes to obtain a laminate (ML) on which a medium-low refractive index layer (ML) was formed. Using m-6 as the medium refractive index layer forming solution, h-4 as the high refractive index layer forming solution, and l-6 as the low refractive index layer forming solution, the film thickness and refractive index of each layer are shown. An antireflection laminate was produced in the same manner as in Example 1 except as shown in FIG.
  • Medium refractive index layer (M) high refractive index layer (H)
  • a medium-low refractive index layer (ML) is formed using ml-6 as a solution for forming a medium-low refractive index layer, and m-7 is used as a solution for forming a medium-low refractive index layer to form a medium-refractive index layer (M).
  • a solution for forming a high refractive index layer h-4 was further used on the layer to form a layer to form a high refractive index layer (H). That is, the medium refractive index layer (M) and the high refractive index layer (H) are exactly the same layer.
  • the medium refractive index layer forming solution m-7 and the high refractive index layer forming solution h-4 have the same composition except for the solvent. Further, l-6 was used as a solution for forming a low refractive index layer to form a low refractive index layer (L).
  • An antireflection laminate was produced by the same method as in Example 1 except that the film thickness and the refractive index of each layer were shown in Table 8.
  • Table 8 shows the composition, film thickness, refractive index, visual average reflectance at a wavelength of 380 to 780 nm, visual average transmittance at a wavelength of 380 to 780 nm, and infrared transmittance at a wavelength of 900 nm of each layer of Examples 21 to 23.
  • the abbreviations in Table 8 are as follows.
  • ⁇ -GPS 3-glycidoxypropyltrimethoxysilane AAA: aluminum tris (acetylacetonate)
  • PEA Pentaerythritol acrylate
  • Example 24 With antistatic layer (AS) (solution for forming antistatic layer) Each component shown in Table 9 below was mixed to prepare an antistatic layer forming solution as-1.
  • AS antistatic layer
  • a hard coat layer (HC), an antistatic layer (AS), and an antireflection layer (AR) were formed in this order on a polymethylmethacrylate (PMMA) base material (B) having a thickness of 1 mm by the following method.
  • the film thickness was adjusted by the rate of withdrawal from the dip layer-forming solution.
  • the laminate (AS) was dipped in a solution for forming a medium-low refractive index layer (ml-6) and then heat-treated at 100 ° C. for 60 minutes to form a medium-low refractive index layer (ML).
  • ML medium-low refractive index layer
  • ASML was obtained.
  • ASMLM laminated body
  • the laminate (ASMLM) was heat-treated at 100 ° C.
  • ASMLMH laminate
  • l-6 low refractive index layer
  • medium refractive index layer (M) high refractive index layer (H)
  • a medium-low refractive index layer (M) is formed using ml-6 as a solution for forming a medium-low refractive index layer, and m-7 is used as a solution for forming a medium-low refractive index layer to form a medium-refractive index layer (M).
  • a solution for forming a high refractive index layer h-4 was further used on the layer to form a layer to form a high refractive index layer (H). That is, the medium refractive index layer (M) and the high refractive index layer (H) are exactly the same layer.
  • the medium refractive index layer forming solution m-7 and the high refractive index layer forming solution h-4 have the same composition except for the solvent. Further, l-6 was used as a solution for forming a low refractive index layer to form a low refractive index layer (L).
  • An antireflection laminate was produced in the same manner as in Example 24 except that the film thickness and the refractive index of each layer were shown in Table 10.
  • Table 10 shows the composition, film thickness, refractive index, visual average reflectance at a wavelength of 380 to 780 nm, visual average transmittance at a wavelength of 380 to 780 nm, and infrared transmittance at a wavelength of 900 nm of each layer of Examples 24 to 25.
  • the abbreviations in Table 10 are as follows.
  • ⁇ -GPS 3-glycidoxypropyltrimethoxysilane AAA: aluminum tris (acetylacetonate)
  • PEA Pentaerythritol acrylate
  • Medium refractive index layer (M) high refractive index layer (H)
  • a medium-low refractive index layer (ML) is formed using ml-6 as a solution for forming a medium-low refractive index layer, and m-7 is used as a solution for forming a medium-low refractive index layer to form a medium-refractive index layer (M).
  • a solution h-1 for forming a high refractive index layer was further used on the layer to form a layer to form a high refractive index layer (H).
  • the medium refractive index layer (M) and the high refractive index layer (H) had exactly the same refractive index and film thickness.
  • Example 6 was used as a solution for forming a low refractive index layer to form a low refractive index layer (L).
  • An antireflection laminate was produced by the same method as in Example 1 except that the film thickness and the refractive index of each layer were shown in Table 8.
  • Table 8 shows the composition, film thickness, refractive index, visual average reflectance at a wavelength of 380 to 780 nm, visual average transmittance at a wavelength of 380 to 780 nm, and infrared transmittance at a wavelength of 900 nm of each layer of Example 26.
  • Example 1 An antireflection laminate was produced in the same manner as in Example 1 except that the film thickness and the refractive index of each layer were shown in Table 11. This is an example in which the film thickness of the low refractive index layer (L) is increased.
  • FIG. 3 shows the distribution of the average visual reflectance.
  • Example 9 An antireflection laminate was produced in the same manner as in Example 1 except that coll-1 was used as a solution for forming a low refractive index layer and the film thickness and refractive index of each layer were shown in Table 11. .. This is an example in which the refractive index of the low refractive index layer (L) is increased.
  • Example 10 An antireflection laminate was produced in the same manner as in Example 1 except that coh-1 was used as a solution for forming a high refractive index layer and the film thickness and refractive index of each layer were shown in Table 11. .. This is an example in which the refractive index of the high refractive index layer (H) is reduced.
  • Example 11 An antireflection laminate was produced by the same method as in Example 1 except that com-1 was used as a solution for forming a medium refractive index layer and the film thickness and refractive index of each layer were shown in Table 11. .. This is an example in which the refractive index of the medium refractive index layer is increased.
  • Example 12 An antireflection laminate was produced in the same manner as in Example 1 except that com-2 was used as a solution for forming a medium refractive index layer and the film thickness and refractive index of each layer were shown in Table 11. .. This is an example in which the refractive index of the medium refractive index layer is reduced.
  • Example 13 An antireflection laminate was produced by the same method as in Example 1 except that co-ml-1 was used as a solution for forming a medium-low refractive index layer and the film thickness and refractive index of each layer were shown in Table 11. bottom. This is an example in which the refractive index of the medium-low refractive index layer is increased.
  • Example 14 An antireflection laminate was produced by the same method as in Example 1 except that co-ml-2 was used as a solution for forming a medium-low refractive index layer and the film thickness and refractive index of each layer were shown in Table 11. bottom. This is an example in which the refractive index of the medium-low refractive index layer is reduced.
  • Table 11 shows the composition, film thickness, refractive index, visual average reflectance at a wavelength of 380 to 780 nm, visual average transmittance at a wavelength of 380 to 780 nm, and infrared transmittance at a wavelength of 900 nm of each layer of Comparative Examples 1 to 14.
  • the abbreviations in Table 11 are as follows.
  • ⁇ -GPS 3-glycidoxypropyltrimethoxysilane AAA: aluminum tris (acetylacetonate)
  • PEA Pentaerythritol acrylate
  • the antireflection laminate of the present invention is a front panel of an optical display device such as an LED display (LED, OLED), a liquid crystal display (LCD), or a plasma display (PDP), and a front panel of a safety sensor using an infrared camera or an infrared laser. It can be used as a cover material, an instrument panel for automobiles, a touch panel for car navigation systems and electrical appliances.
  • LED LED display
  • LCD liquid crystal display
  • PDP plasma display
  • a front panel of a safety sensor using an infrared camera or an infrared laser can be used as a cover material, an instrument panel for automobiles, a touch panel for car navigation systems and electrical appliances.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

The present invention is an anti-reflection laminate that includes a base material (B), a hard coat layer (HC), and an anti-reflection layer (AR), in the stated order, wherein the anti-reflection layer (AR) includes a low refractive index layer (L) having a refractive index of 1.450 or less and a film thickness of 70-130 nm, a high refractive index layer (H) having a refractive index of 1.700-1.850 and a film thickness of 10-250 nm, a medium refractive index layer (M) having a refractive index of 1.550-1.810 and a film thickness of 20-150 nm, and a medium-low refractive index layer (ML) having a refractive index of 1.500-1.650 and a film thickness of 10-230 nm, and the refractive indices of the layers of the anti-reflection layer (AR) satisfy the condition RI(L)<RI(ML)<RI(M)≤RI(H), where RI(L) represents the refractive index of the low refractive index layer (L), RI(ML) represents the refractive index of the medium-low refractive index layer (ML), RI(M) represents the refractive index of the medium refractive index layer (M), and RI(H) represents the refractive index of the high refractive index layer (H). In addition, the present invention is an anti-reflection laminate having excellent anti-reflection properties and light transmittance, wherein the above-described layers are arranged in the order medium-low refractive index layer (ML), medium refractive index layer (M), high refractive index layer (H), low refractive index layer (L) from the hard coat layer (HC) side, and the average luminous reflectance of both surfaces at a wavelength of 380-780 nm is 0.6% or less.

Description

反射防止積層体Anti-reflective laminate
 本発明は、窓やディスプレイなどの表面に外光が反射することを防止するために設けられる反射防止積層体に関する。特に本発明は、LEDディスプレイ(LED、OLED)、液晶ディスプレイ(LCD)、プラズマデイスプレイ(PDP)などの光表示装置の前面パネルに設けられる反射防止積層体に関する。 The present invention relates to an antireflection laminate provided to prevent external light from being reflected on the surface of a window, display, or the like. In particular, the present invention relates to an antireflection laminate provided on the front panel of an optical display device such as an LED display (LED, OLED), liquid crystal display (LCD), plasma display (PDP).
 特許文献1には、透光性を有する基板上にコーティングにより形成された3層からなる反射防止膜であって、各層を所定の膜厚にした反射防止膜が提案されている。しかし、この反射防止膜の、反射率の最小値は波長600nmで0.5%程度であり、380~780nmの可視光の範囲の平均反射率は、数%を超えるものと推定される。従って、近年の光表示装置に要求される視感平均反射特性を満足するためには更なる改良の余地がある。 Patent Document 1 proposes an antireflection film composed of three layers formed by coating on a translucent substrate, in which each layer has a predetermined film thickness. However, the minimum reflectance of this antireflection film is about 0.5% at a wavelength of 600 nm, and the average reflectance in the visible light range of 380 to 780 nm is estimated to exceed several percent. Therefore, there is room for further improvement in order to satisfy the visual average reflection characteristics required for recent optical display devices.
特開2002-182007号公報JP-A-2002-182007
 そこで本発明の目的は、反射防止性、光透過性に優れた反射防止積層体を提供することにある。
 本発明者らは、低屈折率層(L)と、高屈折率層(H)と、中屈折率層(M)から構成される3層の反射防止層にさらに、低屈折率層(L)の屈折率と中屈折率層(M)の屈折率の中間の屈折率を有する中低屈折率層(ML)を設けることにより、波長380~780nmにおける両面の視感平均反射率に優れ、かつ波長380~780nmにおける視感平均透過率に優れた反射防止積層体が得られることを見出し、本発明を完成した。
Therefore, an object of the present invention is to provide an antireflection laminate having excellent antireflection and light transmission properties.
The present inventors further include a low refractive index layer (L), a high refractive index layer (H), a medium refractive index layer (M), and a low refractive index layer (L). By providing a medium-low refractive index layer (ML) having a refractive index intermediate between the refractive index of) and the refractive index of the medium-refractive index layer (M), the visual average reflectance on both sides at a wavelength of 380 to 780 nm is excellent. Further, they have found that an anti-refractive laminate having excellent visual average transmittance at a wavelength of 380 to 780 nm can be obtained, and have completed the present invention.
 すなわち本発明は、以下の発明を包含する。
1.基材(B)、ハードコート層(HC)および反射防止層(AR)をこの順序に含む反射防止積層体であって、
 前記反射防止層(AR)は、
 屈折率が1.450以下で、膜厚が70~130nmの低屈折率層(L)と、
 屈折率が1.700~1.850で、膜厚が10~250nmの高屈折率層(H)と、
 屈折率が1.550~1.810で、膜厚が20~150nmの中屈折率層(M)と、
 屈折率が1.500~1.650で、膜厚が10~230nmの中低屈折率層(ML)とを含み、
 前記反射防止層(AR)の前記各層の屈折率が、RI(L)<RI(ML)<RI(M)≦RI(H)の条件を満たし、
  ここで、
  RI(L)は、低屈折率層(L)の屈折率、
  RI(ML)は、中低屈折率層(ML)の屈折率、
  RI(M)は、中屈折率層(M)の屈折率、
  RI(H)は、高屈折率層(H)の屈折率を表す、
 かつ、前記各層がハードコート層(HC)側から、中低屈折率層(ML)、中屈折率層(M)、高屈折率層(H)、低屈折率層(L)の順に配置され、
 波長380~780nmにおける両面の視感平均反射率が0.6%以下である前記反射防止積層体。
That is, the present invention includes the following inventions.
1. 1. An antireflection laminate containing a base material (B), a hard coat layer (HC) and an antireflection layer (AR) in this order.
The antireflection layer (AR) is
A low refractive index layer (L) having a refractive index of 1.450 or less and a film thickness of 70 to 130 nm.
A high-refractive index layer (H) having a refractive index of 1.700 to 1.850 and a film thickness of 10 to 250 nm.
A medium refractive index layer (M) having a refractive index of 1.550 to 1.810 and a film thickness of 20 to 150 nm.
It contains a medium-low refractive index layer (ML) having a refractive index of 1.500 to 1.650 and a film thickness of 10 to 230 nm.
The refractive index of each layer of the antireflection layer (AR) satisfies the condition of RI (L) <RI (ML) <RI (M) ≤ RI (H).
here,
RI (L) is the refractive index of the low refractive index layer (L).
RI (ML) is the refractive index of the medium-low refractive index layer (ML).
RI (M) is the refractive index of the medium refractive index layer (M).
RI (H) represents the refractive index of the high refractive index layer (H).
In addition, each of the layers is arranged in the order of the medium-low refractive index layer (ML), the medium-refractive index layer (M), the high-refractive index layer (H), and the low-refractive index layer (L) from the hard coat layer (HC) side. ,
The antireflection laminate having a visual average reflectance of 0.6% or less on both sides at a wavelength of 380 to 780 nm.
2.前記中低屈折率層(ML)は、(i)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物、(ii)下記式(2)で表されるアルコキシシラン化合物またはその加水分解物および(iii)電離放射線硬化樹脂からなる群より選ばれる少なくとも一種のバインダー成分100質量部に対して、
Figure JPOXMLDOC01-appb-C000011
(式中、Rはアルキレン基であり、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子である。)
Figure JPOXMLDOC01-appb-C000012
(式中、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子である。Rはアルキル基、アルケニル基またはアルコキシアルキル基である。nは1または2である。)
 金属酸化物粒子を40~500質量部、金属キレート化合物を10質量部以下含む組成物の硬化物からなる前項1に記載の反射防止積層体。
2. The medium-low refractive index layer (ML) is (i) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof, and (ii) an alkoxysilane compound represented by the following formula (2) or water thereof. With respect to 100 parts by mass of at least one binder component selected from the group consisting of the hydrolyzate and the (iii) ionizing radiation curable resin.
Figure JPOXMLDOC01-appb-C000011
(In the formula, R is an alkylene group and R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom.)
Figure JPOXMLDOC01-appb-C000012
(In the formula, R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom. R 2 is an alkyl group, an alkenyl group or an alkoxyalkyl group. N is 1 or 2.)
The antireflection laminate according to item 1 above, which comprises a cured product of a composition containing 40 to 500 parts by mass of metal oxide particles and 10 parts by mass or less of a metal chelate compound.
3.前記中屈折率層(M)は、(i)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物および(ii)下記式(2)で表されるアルコキシシラン化合物またはその加水分解物からなる群より選ばれる少なくとも一種のバインダー成分100質量部に対して、
Figure JPOXMLDOC01-appb-C000013
(式中、Rはアルキレン基であり、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子である。)
Figure JPOXMLDOC01-appb-C000014
(式中、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子である。Rはアルキル基、アルケニル基またはアルコキシアルキル基である。nは1または2である。)
 金属酸化物粒子を40~500質量部、金属キレート化合物を1~20質量部含む組成物の硬化物からなる前項1に記載の反射防止積層体。
3. 3. The medium refractive index layer (M) is (i) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof, and (ii) an alkoxysilane compound represented by the following formula (2) or a hydrolysis thereof. For 100 parts by mass of at least one kind of binder component selected from the group consisting of substances
Figure JPOXMLDOC01-appb-C000013
(In the formula, R is an alkylene group and R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom.)
Figure JPOXMLDOC01-appb-C000014
(In the formula, R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom. R 2 is an alkyl group, an alkenyl group or an alkoxyalkyl group. N is 1 or 2.)
The antireflection laminate according to item 1 above, which comprises a cured product of a composition containing 40 to 500 parts by mass of metal oxide particles and 1 to 20 parts by mass of a metal chelate compound.
4.前記高屈折率層(H)は、(i)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物および(ii)下記式(2)で表されるアルコキシシラン化合物またはその加水分解物からなる群より選ばれる少なくとも一種のバインダー成分100質量部に対して、
Figure JPOXMLDOC01-appb-C000015
(式中、Rはアルキレン基であり、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子である。)
Figure JPOXMLDOC01-appb-C000016
(式中、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子である。Rはアルキル基、アルケニル基またはアルコキシアルキル基である。nは1または2である。)
 金属酸化物粒子を300~500質量部、金属キレート化合物を10~20質量部含む組成物の硬化物からなる前項1に記載の反射防止積層体。
4. The high-refractive-index layer (H) is composed of (i) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof, and (ii) an alkoxysilane compound represented by the following formula (2) or a hydrolysis thereof. For 100 parts by mass of at least one kind of binder component selected from the group consisting of substances
Figure JPOXMLDOC01-appb-C000015
(In the formula, R is an alkylene group and R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom.)
Figure JPOXMLDOC01-appb-C000016
(In the formula, R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom. R 2 is an alkyl group, an alkenyl group or an alkoxyalkyl group. N is 1 or 2.)
The antireflection laminate according to item 1 above, which comprises a cured product of a composition containing 300 to 500 parts by mass of metal oxide particles and 10 to 20 parts by mass of a metal chelate compound.
5.前記低屈折率層(L)は、(i)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物および(ii)下記式(2)で表されるアルコキシシラン化合物またはその加水分解物からなる群より選ばれる少なくとも一種のバインダー成分100質量部に対して、
Figure JPOXMLDOC01-appb-C000017
(式中、Rはアルキレン基であり、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子である。)
Figure JPOXMLDOC01-appb-C000018
(式中、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子である。Rはアルキル基、アルケニル基またはアルコキシアルキル基である。nは1または2である。)
 シリカ粒子を100~200質量部、金属キレート化合物を5~15質量部含む組成物の硬化物からなる前項1に記載の反射防止積層体。
5. The low refractive index layer (L) is composed of (i) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof, and (ii) an alkoxysilane compound represented by the following formula (2) or a hydrolysis thereof. For 100 parts by mass of at least one kind of binder component selected from the group consisting of substances
Figure JPOXMLDOC01-appb-C000017
(In the formula, R is an alkylene group and R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom.)
Figure JPOXMLDOC01-appb-C000018
(In the formula, R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom. R 2 is an alkyl group, an alkenyl group or an alkoxyalkyl group. N is 1 or 2.)
The antireflection laminate according to item 1 above, which comprises a cured product of a composition containing 100 to 200 parts by mass of silica particles and 5 to 15 parts by mass of a metal chelate compound.
6.前記金属酸化物粒子が、酸化チタン、酸化ジルコニウム、五酸化ニオブ、アンチモンドープ酸化錫(ATO)、酸化インジウム-酸化錫(ITO)、リンドープ酸化錫(PTO)、フッ素ドープ酸化錫(FTO)および五酸化アンチモンからなる群より選ばれる少なくとも一種の酸化物粒子である前項1~5のいずれか一項に記載の反射防止積層体。 6. The metal oxide particles are titanium oxide, zirconium oxide, niobium pentoxide, antimony-doped tin oxide (ATO), indium oxide-tin oxide (ITO), phosphorus-doped tin oxide (PTO), fluorine-doped tin oxide (FTO), and five. The antireflection laminate according to any one of the above items 1 to 5, which is at least one kind of oxide particles selected from the group consisting of antimonium oxide.
7.前記反射防止層(AR)の上に、保護層(C)を有し、前記保護層(C)は、(i)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物および(ii)下記式(2)で表されるアルコキシシラン化合物またはその加水分解物からなる群より選ばれる少なくとも一種のバインダー成分100質量部に対して、
Figure JPOXMLDOC01-appb-C000019
(式中、Rはアルキレン基であり、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子である。)
Figure JPOXMLDOC01-appb-C000020
(式中、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子である。Rはアルキル基、アルケニル基またはアルコキシアルキル基である。nは1または2である。)
 シリカ粒子を10~30質量部、金属キレート化合物を5~15質量部含む組成物の硬化物からなる前項1に記載の反射防止積層体。
7. A protective layer (C) is provided on the antireflection layer (AR), and the protective layer (C) is (i) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof, and ( ii) With respect to 100 parts by mass of at least one binder component selected from the group consisting of the alkoxysilane compound represented by the following formula (2) or a hydrolyzate thereof.
Figure JPOXMLDOC01-appb-C000019
(In the formula, R is an alkylene group and R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom.)
Figure JPOXMLDOC01-appb-C000020
(In the formula, R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom. R 2 is an alkyl group, an alkenyl group or an alkoxyalkyl group. N is 1 or 2.)
The antireflection laminate according to item 1 above, which comprises a cured product of a composition containing 10 to 30 parts by mass of silica particles and 5 to 15 parts by mass of a metal chelate compound.
8.波長380~780nmにおける視感平均透過率が、95%以上である前項1~7のいずれか一項に記載の反射防止積層体。
9.波長900nmにおける赤外線透過率が、85%以上である前項1~8のいずれか一項に記載の反射防止積層体。
8. The antireflection laminate according to any one of the above items 1 to 7, wherein the visual average transmittance at a wavelength of 380 to 780 nm is 95% or more.
9. The antireflection laminate according to any one of items 1 to 8 above, wherein the infrared transmittance at a wavelength of 900 nm is 85% or more.
 本発明の反射防止積層体は、反射防止性および光透過性に優れる。本発明の反射防止積層体は、波長380~780nmの広い波長の範囲において、低い反射率を有する。その結果、本発明の反射防止積層体の両面の視感平均反射率は0.6%以下である。
 更に、本発明の反射防止積層体は、900nmの波長の光、即ち赤外線の透過率が少なくとも85%以上、高い場合は96%であり、赤外線の透過性に優れている。従って、赤外線カメラや赤外線レーザーを使った安全センサーの前面パネルやカバー材、或いは自動車のインストルメントパネルやタッチパネルとしても有用である。
The antireflection laminate of the present invention is excellent in antireflection and light transmission. The antireflection laminate of the present invention has low reflectance in a wide wavelength range of 380 to 780 nm. As a result, the visual average reflectance on both sides of the antireflection laminate of the present invention is 0.6% or less.
Further, the antireflection laminate of the present invention has an infrared transmittance of light having a wavelength of 900 nm, that is, infrared rays of at least 85% or more, and 96% when the transmittance is high. Therefore, it is also useful as a front panel or cover material for a safety sensor using an infrared camera or an infrared laser, or as an instrument panel or touch panel for an automobile.
本発明の反射防止積層体の層構成の一例を示す図である。It is a figure which shows an example of the layer structure of the antireflection laminated body of this invention. 実施例1の反射防止積層体の反射率分布図である。It is a reflectance distribution map of the antireflection laminate of Example 1. 比較例1の反射防止積層体の反射率分布図である。It is a reflectance distribution map of the antireflection laminate of Comparative Example 1.
<基材(B)>
 基材(B)は、耐衝撃強度に優れ視野性の障害にならない透明樹脂で形成されていることが好ましい。基材(B)の波長380~780nmでの全光線透過率は、好ましくは88%以上、より好ましくは89%以上、さらに好ましくは92%以上である。透明性および耐衝撃強度の観点から、基材(B)は、アクリル樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂およびトリアセチルセルロース樹脂からなる群より選ばれる少なくとも一種の樹脂により形成されていることが好ましい。これらの樹脂を積層した積層基材でもよい。例えば、ポリカーボネート樹脂とポリメチルメタクリレート樹脂との積層基材でもよい。
 基材(B)の厚みは、要求される透明度や耐衝撃強度から適宜選択して設計されるが、通常、0.2~2.0mmの範囲である。基材(B)の厚みの上限は、好ましくは1.0mm、より好ましくは1.5mm、さらに好ましくは2mmである。
<Base material (B)>
The base material (B) is preferably made of a transparent resin having excellent impact resistance and not hindering the visibility. The total light transmittance of the base material (B) at a wavelength of 380 to 780 nm is preferably 88% or more, more preferably 89% or more, still more preferably 92% or more. From the viewpoint of transparency and impact resistance, the base material (B) is preferably formed of at least one resin selected from the group consisting of an acrylic resin, a polycarbonate resin, a polyethylene terephthalate resin and a triacetyl cellulose resin. A laminated base material in which these resins are laminated may be used. For example, a laminated base material of a polycarbonate resin and a polymethylmethacrylate resin may be used.
The thickness of the base material (B) is appropriately selected and designed from the required transparency and impact resistance, but is usually in the range of 0.2 to 2.0 mm. The upper limit of the thickness of the base material (B) is preferably 1.0 mm, more preferably 1.5 mm, and even more preferably 2 mm.
<ハードコート層(HC)>
 ハードコート層(HC)は、3官能以下のウレタンアクリレートと4官能以上のウレタンアクリレートとを硬化させてなる樹脂成分を含有する層であることが好ましい。
 ハードコート層(HC)の厚みは、1~3μmであることが好ましい。即ち、この厚みが薄すぎると、ハードコート層(HC)の基本的な物性(例えば、硬度や強度)等を確保することが困難となり、また、過度に厚いと、基材(B)との物性差(例えば柔軟性や伸び)が大きくなり、この結果、割れ等の成形不良を生じ易くなってしまうからである。ハードコート層(HC)の厚みは、好ましくは1.2~2.5μm、より好ましくは1.5~2μmである。
 ハードコート層(HC)は、3官能以下のウレタンアクリレートと4官能以上のウレタンアクリレートとを硬化させてなる樹脂成分、シランカップリング成分、シリカ粒子および金属キレート化合物を含有することが好ましい。
<Hard coat layer (HC)>
The hard coat layer (HC) is preferably a layer containing a resin component obtained by curing a urethane acrylate having trifunctionality or less and a urethane acrylate having four or more functionalities.
The thickness of the hard coat layer (HC) is preferably 1 to 3 μm. That is, if this thickness is too thin, it becomes difficult to secure the basic physical properties (for example, hardness and strength) of the hard coat layer (HC), and if it is excessively thick, it becomes a base material (B). This is because the difference in physical properties (for example, flexibility and elongation) becomes large, and as a result, molding defects such as cracks are likely to occur. The thickness of the hard coat layer (HC) is preferably 1.2 to 2.5 μm, more preferably 1.5 to 2 μm.
The hard coat layer (HC) preferably contains a resin component obtained by curing a urethane acrylate having a trifunctionality or less and a urethane acrylate having a tetrafunctionality or higher, a silane coupling component, silica particles, and a metal chelate compound.
(樹脂成分)
 樹脂成分は、ハードコート層(HC)を形成するバインダーとしての機能を有する。かかるバインダーとして、3官能以下のウレタンアクリレートと4官能以上のウレタンアクリレートとを併用することが好ましい。即ち、3官能以下のウレタンアクリレートは硬化により比較的柔軟性に富んだ部分を形成し、4官能以上のウレタンアクリレートは硬化により硬質の部分を形成するものであり、両者を併用することにより、適度に緻密で硬度の高い膜を形成することができる。
 尚、ウレタンアクリレートは、多価イソシアネート化合物と複数の水酸基を有するポリオール化合物とを反応して得られる末端イソシアネート化合物に、さらに水酸基含有(メタ)アクリレートを反応させて得られるものであり、ウレタンアクリレート中の(メタ)アクリロイル基が官能基であり、例えば(メタ)アクリロイル基を2個有するウレタンアクリレートは2官能であり、3個有するものは3官能である。
(Resin component)
The resin component has a function as a binder for forming a hard coat layer (HC). As such a binder, it is preferable to use a urethane acrylate having trifunctionality or less and a urethane acrylate having four or more functionalities in combination. That is, a urethane acrylate having a trifunctionality or less forms a relatively flexible portion by curing, and a urethane acrylate having a trifunctionality or higher forms a hard portion by curing. It is possible to form a dense and hard film.
Urethane acrylate is obtained by further reacting a hydroxyl group-containing (meth) acrylate with a terminal isocyanate compound obtained by reacting a polyhydric isocyanate compound with a polyol compound having a plurality of hydroxyl groups, and is contained in urethane acrylate. The (meth) acryloyl group is a functional group, for example, a urethane acrylate having two (meth) acryloyl groups is bifunctional, and one having three is trifunctional.
 従って、3官能以下のウレタンアクリレートとは、(メタ)アクリロイル基を多くて3個まで有しているものであり、例えば、ペンタエリスリトールモノ(メタ)アクリレートに末端イソシアネート化合物を反応させ、両末端のそれぞれに1個の(メタ)アクリロイル基が導入されているウレタンアクリレートは、2官能のウレタンアクリレートとして使用される。
 また、ペンタエリスリトールモノ(メタ)アクリレートとペンタエリスリトールジ(メタ)アクリレートとを、末端イソシアネート化合物と反応させ、イソシアネート化合物の一方の末端に1個の(メタ)アクリロイル基を導入し、且つ他方の末端に2個の(メタ)アクリロイル基を導入したものは、3官能のウレタンアクリレートとして使用される。
Therefore, a urethane acrylate having trifunctionality or less has at most three (meth) acryloyl groups. For example, a pentaerythritol mono (meth) acrylate is reacted with a terminal isocyanate compound at both ends. Urethane acrylates into which one (meth) acryloyl group is introduced into each are used as bifunctional urethane acrylates.
Further, pentaerythritol mono (meth) acrylate and pentaerythritol di (meth) acrylate are reacted with a terminal isocyanate compound to introduce one (meth) acryloyl group at one end of the isocyanate compound, and the other end. Introduced with two (meth) acryloyl groups is used as a trifunctional urethane acrylate.
 さらに、ペンタエリスリトールジ(メタ)アクリレートを、末端イソシアネート化合物と反応させ、イソシアネート化合物の両末端に、それぞれ2個の(メタ)アクリロイル基を導入したものは、4官能のウレタンアクリレートとして使用される。
 勿論、上記の例は一例であり、3官能以下である限り、他のウレタンアクリレートも使用することができる。例えば、エチレングリコール、ジエチレングリコール、および3価以上の多価アルコールの(メタ)アクリル酸のモノエステル、ジエステル等の水酸基含有(メタ)アクリル酸エステルを使用し、所望の数の(メタ)アクリロイル基を導入することにより、3官能以下のウレタンアクリレートを得ることもできる。
Further, pentaerythritol di (meth) acrylate is reacted with a terminal isocyanate compound, and two (meth) acryloyl groups are introduced at both ends of the isocyanate compound, which is used as a tetrafunctional urethane acrylate.
Of course, the above example is an example, and other urethane acrylates can be used as long as they are trifunctional or less. For example, hydroxyl group-containing (meth) acrylic acid esters such as ethylene glycol, diethylene glycol, and monoesters of (meth) acrylic acids of trihydric or higher polyhydric alcohols, and diesters are used to obtain the desired number of (meth) acryloyl groups. By introducing it, urethane acrylate having trifunctionality or less can be obtained.
 4官能以上のウレタンアクリレートも同様であり、例えば、ペンタエリスリトールトリ(メタ)アクリレートに、両末端イソシアネート(例えばトリヘキサジエチレンジイソシアネート)を反応させることにより、分子鎖末端のそれぞれに3個の(メタ)アクリロイル基を有する6官能のウレタンアクリレートを得ることができる。 The same applies to urethane acrylates having four or more functionalities. For example, by reacting pentaerythritol tri (meth) acrylate with both terminal isocyanates (for example, trihexadiethylene diisocyanate), three (meth) acrylates are formed at each end of the molecular chain. A hexafunctional urethane acrylate having an acryloyl group can be obtained.
 本発明において、上記の3官能以下のウレタンアクリレートと4官能以上のウレタンアクリレートとは、2/98~70/30、特に10/90~60/40の重量比で使用されていることが好ましい。3官能以下のウレタンアクリレートの使用量が多すぎると、得られるハードコート層(HC)の硬度が損なわれ、ハードコート層(HC)としての基本的な性能が低下するおそれがある。 In the present invention, it is preferable that the above trifunctional or lower functional urethane acrylate and the tetrafunctional or higher functional urethane acrylate are used in a weight ratio of 2/98 to 70/30, particularly 10/90 to 60/40. If the amount of the trifunctional or lower urethane acrylate used is too large, the hardness of the obtained hard coat layer (HC) may be impaired, and the basic performance of the hard coat layer (HC) may be deteriorated.
(シランカップリング成分)
 ハードコート層(HC)は、シランカップリング成分を含有することが好ましい。シランカップリング成分は、このハードコート層(HC)に後述するシリカ粒子を脱落することなく安定に分散して保持すると同時に、反射防止層(AR)との密着性を確保するために使用される成分である。
(Silane coupling component)
The hard coat layer (HC) preferably contains a silane coupling component. The silane coupling component is used to stably disperse and hold silica particles, which will be described later, in the hard coat layer (HC) without falling off, and at the same time, to secure adhesion to the antireflection layer (AR). It is an ingredient.
 即ち、シランカップリング成分は、下記式で表される化合物(シランカップリング剤)またはその加水分解物であることが好ましい。
    R -Si(OR4-n 
(式中、Rは、アルキル基またはアルケニル基であり、Rは、アルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子であり、nは1または2の数である。)
 前記式における基Rとしては、メチル基、エチル基、プロピル基等のアルキル基、ビニル基等のアルケニル基が挙げられ、このアルキル基は、塩素等のハロゲン原子、メルカプト基、アミノ基、(メタ)アクリロイル基、オキシラン環含有基等の官能基で置換されていてもよい。
 また、基Rは、アルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子であり、ケイ素原子に結合している基ORは加水分解性の基となっている。
That is, the silane coupling component is preferably a compound represented by the following formula (silane coupling agent) or a hydrolyzate thereof.
R 3 n- Si (OR 1 ) 4-n
(In the formula, R 3 is an alkyl group or an alkenyl group, R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom, and n is a number of 1 or 2.)
Examples of the group R 3 in the above formula include an alkyl group such as a methyl group, an ethyl group and a propyl group, and an alkenyl group such as a vinyl group, and the alkyl group includes a halogen atom such as chlorine, a mercapto group and an amino group. Meta) It may be substituted with a functional group such as an acryloyl group or an oxylan ring-containing group.
Further, the group R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom, and the group OR 1 bonded to the silicon atom is a hydrolyzable group.
 上記のようなシランカップリング剤の具体例としては、ビニルトリクロロシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-(N-スチリルメチル-β-アミノエチルアミノ)プロピルトリメトキシシラン塩酸塩、γ-クロロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、メチルトリメトキシシラン、メチルトリクロロシラン、ジメチルジクロロシラン等を挙げることができる。
 このようなシランカップリング剤の加水分解物は、加水分解と同時に重縮合し、Si-O-Si結合によりネットワーク状に連なった重合物を形成する。従って、このようなシランカップリング剤の加水分解物の使用により、ハードコート層(HC)を緻密なものとすることもできる。
Specific examples of the above-mentioned silane coupling agent include vinyltrichlorosilane, vinyltris (β-methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltriacetoxysilane, and γ- (meth) acryloxipropyl. Trimethoxysilane, γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-aminopropyltriethoxysilane, γ- Aminopropylmethyldimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, γ-anilinopropyltrimethoxysilane, γ- (N-styrylmethyl-β-aminoethylamino) propyltrimethoxysilane Examples thereof include hydrochloride, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, methyltrimethoxysilane, methyltrichlorosilane, dimethyldichlorosilane and the like.
The hydrolyzate of such a silane coupling agent is polycondensed at the same time as the hydrolysis to form a polymer connected in a network by a Si—O—Si bond. Therefore, the hard coat layer (HC) can be made dense by using the hydrolyzate of such a silane coupling agent.
 本発明において、ハードコート層(HC)中の上記化合物またはその加水分解物の含有割合は、前述したウレタンアクリレートから形成された樹脂成分100質量部当り、好ましくは1~30質量部、より好ましくは5~20質量部の範囲に設定される。 In the present invention, the content ratio of the above compound or its hydrolyzate in the hard coat layer (HC) is preferably 1 to 30 parts by mass, more preferably 1 to 30 parts by mass, per 100 parts by mass of the resin component formed from the above-mentioned urethane acrylate. It is set in the range of 5 to 20 parts by mass.
(中実シリカ粒子)
 ハードコート層(HC)は、中実シリカ粒子を含有することが好ましい。ハードコート層(HC)中の中実シリカ粒子としては、粒径が5~500nmで屈折率が1.44~1.5の範囲にあるものが好ましい。即ち、このような酸化物微粒子を使用することにより、ハードコート層(HC)の全体にわたって硬度等の基本的な特性を均一に付与することができる。
(Solid silica particles)
The hard coat layer (HC) preferably contains solid silica particles. The solid silica particles in the hard coat layer (HC) preferably have a particle size of 5 to 500 nm and a refractive index in the range of 1.44 to 1.5. That is, by using such oxide fine particles, it is possible to uniformly impart basic characteristics such as hardness over the entire hard coat layer (HC).
 このような中実シリカ粒子の含有量は、前述したウレタンアクリレートから形成される樹脂成分100質量部当り、好ましくは10~80質量部、さらに好ましくは20~60質量部である。かかるシリカ粒子が、このような範囲でハードコート層(HC)中に含まれていることにより、ハードコート層(HC)の基本特性を維持しつつ、反射防止層(AR)との密着性を高め、割れ等を有効に防止することができる。 The content of such solid silica particles is preferably 10 to 80 parts by mass, more preferably 20 to 60 parts by mass, per 100 parts by mass of the resin component formed from the urethane acrylate described above. By including such silica particles in the hard coat layer (HC) in such a range, the adhesion with the antireflection layer (AR) is maintained while maintaining the basic characteristics of the hard coat layer (HC). It can be raised and cracks can be effectively prevented.
(金属キレート化合物)
 ハードコート層(HC)は、金属キレート化合物を含有することが好ましい。金属キレート化合物は、ハードコート層(HC)中に架橋構造を導入し、ハードコート層(HC)をより緻密なものとするために使用される。即ち、前述したウレタンアクリレートによる樹脂成分でも架橋構造は形成されているが、柔軟性を付与するために低官能性のウレタンアクリレートの使用により、その緻密性は低下している。即ち、金属キレート化合物は、ハードコート層(HC)の柔軟性を損なわずに、その緻密性の低下を補うために、換言すると、膜の緻密性に影響される硬度等の機械的特性を調整するために、使用されるものである。また、このような金属キレート化合物は、反射防止層(AR)にも含まれているため、金属キレート化合物の使用により、ハードコート層(HC)と反射防止層(AR)との密着性がより高められ、成形時の割れ等を有効に防止することができる。
(Metal chelate compound)
The hard coat layer (HC) preferably contains a metal chelate compound. The metal chelate compound is used to introduce a crosslinked structure into the hard coat layer (HC) to make the hard coat layer (HC) more dense. That is, although the crosslinked structure is formed even with the above-mentioned resin component made of urethane acrylate, its denseness is lowered by using low-functional urethane acrylate in order to impart flexibility. That is, the metal chelate compound adjusts mechanical properties such as hardness, which is affected by the density of the film, in order to compensate for the decrease in the density of the hard coat layer (HC) without impairing the flexibility of the hard coat layer (HC). Is what is used to do. Further, since such a metal chelate compound is also contained in the antireflection layer (AR), the use of the metal chelate compound improves the adhesion between the hard coat layer (HC) and the antireflection layer (AR). It is enhanced and can effectively prevent cracking during molding.
 このような金属キレート化合物としては、二座配位子を含むチタン、ジルコニウム、アルミニウム、スズ、ニオブ、タンタル或いは鉛の化合物が好適である。
 二座配位子とは、配位座数が2、すなわち金属に配位しうる原子数が2であるようなキレート剤であり、一般にO、N、S原子によって、5乃至7員環を形成して、キレート化合物を形成する。これらの二座配位子の例として、アセチルアセトナート、エチルアセトアセテート、ジエチルマロナト、ジベンゾイルメタナト、サリチラト、グリコラト、カテコラト、サリチルアルデヒダト、オキシアセトフェノナト、ビフェノラト、ピロメコナト、オキシナフトキノナト、オキシアントラキノナト、トロポロナト、ビノキチラト、グリシナト、アラニナト、アントロニナト、ピコリナト、アミノフェノラト、エタノールアミナト、メルカプトエチルアミナト、8-オキシキノリナト、サリチルアルジミナト、ベンゾインオキシマト、サリチルアルドキシマト、オキシアゾベンゼナト、フェニルアゾナフトラト、β-ニトロソ-α-ナフトラト、ジアゾアミノベンゼナト、ビウレタト、ジフェニルカルバゾナト、ジフェニルチオカルバゾナト、ビグアニダト、ジメチルグリオキシマトなどを挙げることができる。
As such a metal chelate compound, a compound of titanium, zirconium, aluminum, tin, niobium, tantalum or lead containing a bidentate ligand is suitable.
A bidentate ligand is a chelating agent having two coordination denticities, that is, two atoms that can coordinate to a metal, and generally has a 5- to 7-membered ring depending on O, N, and S atoms. Form to form a chelate compound. Examples of these bidentate ligands are acetylacetonate, ethylacetacetate, diethylmalonato, dibenzoylmethanato, salicilato, glycolat, catecholat, salicylaldehyde, oxyacetophenonato, biphenolato, pyromeconato, oxynaphthoquinonato. , Oxyanthraquinonato, Tropolonato, Binokichirat, Glycinato, Alaninato, Antroninato, Picolinato, Aminophenorato, Ethanolaminat, Mercaptoethylaminoto, 8-oxyquinolinato, Salicylargiminato, Benzoinoxymato, Salicylaldoxymato, Oxyazo Examples thereof include benzenato, phenylazonaftrato, β-nitroso-α-naphthrato, diazoaminobenzenato, biuretato, diphenylcarbazonato, diphenylthiocarbazonato, biguanidato, and dimethylglioxymate.
 本発明において、好適に使用される金属キレート化合物は、下記式:
   M(Li)(X)m-k  
 式中、Mは、チタン、ジルコニウム、アルミニウム、スズ、ニオブ、タンタル或いは鉛であり、
 Liは二座配位子であり、
 Xは、1価の基、好適には加水分解可能な基であり、
 mは、金属Mの原子価であり、
 kは、金属Mの原子価を超えない範囲で1以上の数である、
で表される。
The metal chelate compound preferably used in the present invention has the following formula:
M (Li) k (X) mk
In the formula, M is titanium, zirconium, aluminum, tin, niobium, tantalum or lead.
Li is a bidentate ligand,
X is a monovalent group, preferably a hydrolyzable group.
m is the valence of the metal M,
k is a number of 1 or more as long as the valence of the metal M is not exceeded.
It is represented by.
 これらの中でも、金属Mとしては、チタン、ジルコニウム、アルミニウムが好ましく、基Xとしては、アルコキシ基が好ましい。このような金属キレート化合物の具体例としては、以下のTiキレート化合物、Zrキレート化合物およびAlキレート化合物を例示することができる。 Among these, the metal M is preferably titanium, zirconium, or aluminum, and the group X is preferably an alkoxy group. Specific examples of such a metal chelate compound include the following Ti chelate compounds, Zr chelate compounds, and Al chelate compounds.
Tiキレート化合物;
  トリエトキシ・モノ(アセチルアセトナート)チタン
  トリ-n-プロポキシ・モノ(アセチルアセトナート)チタン
  トリ-i-プロポキシ・モノ(アセチルアセトナート)チタン
  トリ-n-ブトキシ・モノ(アセチルアセトナート)チタン
  トリ-sec-ブトキシ・モノ(アセチルアセトナート)チタン
  トリ-t-ブトキシ・モノ(アセチルアセトナート)チタン
  ジエトキシ・ビス(アセチルアセトナート)チタン
  ジ-n-プロポキシ・ビス(アセチルアセトナート)チタン
  ジ-i-プロポキシ・ビス(アセチルアセトナート)チタン
  ジ-n-ブトキシ・ビス(アセチルアセトナート)チタン
  ジ-sec-ブトキシ・ビス(アセチルアセトナート)チタン
  ジ-t-ブトキシ・ビス(アセチルアセトナート)チタン
  モノエトキシ・トリス(アセチルアセトナート)チタン
  モノ-n-プロポキシ・トリス(アセチルアセトナート)チタン
  モノ-i-プロポキシ・トリス(アセチルアセトナート)チタン
  モノ-n-ブトキシ・トリス(アセチルアセトナート)チタン
  モノ-sec-ブトキシ・トリス(アセチルアセトナート)チタン
  モノ-t-ブトキシ・トリス(アセチルアセトナート)チタン
  テトラキス(アセチルアセトナート)チタン
  トリエトキシ・モノ(エチルアセトアセテート)チタン
  トリ-n-プロポキシ・モノ(エチルアセトアセテート)チタン
  トリ-i-プロポキシ・モノ(エチルアセトアセテート)チタン
  トリ-n-ブトキシ・モノ(エチルアセトアセテート)チタン
  トリ-sec-ブトキシ・モノ(エチルアセトアセテート)チタン
  トリ-t-ブトキシ・モノ(エチルアセトアセテート)チタン
  ジエトキシ・ビス(エチルアセトアセテート)チタン
  ジ-n-プロポキシ・ビス(エチルアセトアセテート)チタン
  ジ-i-プロポキシ・ビス(エチルアセトアセテート)チタン
  ジ-n-ブトキシ・ビス(エチルアセトアセテート)チタン
  ジ-sec-ブトキシ・ビス(エチルアセトアセテート)チタン
  ジ-t-ブトキシ・ビス(エチルアセトアセテート)チタン
  モノエトキシ・トリス(エチルアセトアセテート)チタン
  モノ-n-プロポキシ・トリス(エチルアセトアセテート)チタン
  モノ-i-プロポキシ・トリス(エチルアセトアセテート)チタン
  モノ-n-ブトキシ・トリス(エチルアセトアセテート)チタン
  モノ-sec-ブトキシ・トリス(エチルアセトアセテート)チタン
  モノ-t-ブトキシ・トリス(エチルアセトアセテート)チタン
  テトラキス(エチルアセトアセテート)チタン
  モノ(アセチルアセトナート)トリス(エチルアセトアセテート)チタン
  ビス(アセチルアセトナート)ビス(エチルアセトアセテート)チタン
  トリス(アセチルアセトナート)モノ(エチルアセトアセテート)チタン
Ti chelate compound;
Triethoxy mono (acetylacetonate) titanium tri-n-propoxymono (acetylacetonate) titanium tri-i-propoxymono (acetylacetonate) titanium tri-n-butoxymono (acetylacetonate) titanium tri- sec-Butoxy Mono (Acetylacetonate) Titanium Trit-Butoxy Mono (Acetylacetonate) Titanium Diethoxy Bis (Acetylacetonate) Titanium Di-n-Propoxy Bis (Acetylacetonate) Titanium Di-i- Propoxy bis (acetylacetonate) titanium di-n-butoxy bis (acetylacetonate) titanium di-sec-butoxy bis (acetylacetonate) titanium di-t-butoxy bis (acetylacetonate) titanium monoethoxy・ Tris (Acetylacetonate) Titanium Mono-n-Propoxy Tris (Acetylacetonate) Titanium Mono-i-Propoxy Tris (Acetylacetonate) Titanium Mono-n-Butoxy Tris (Acetylacetonate) Titanium Mono-sec -Butoxy Tris (Acetylacetonate) Titanium Mono-t-Butoxy Tris (Acetylacetonate) Titanium Tetrakiss (Acetylacetonate) Titanium Triethoxy Mono (Ethylacetacetate) Titanium Tri-n-Propoxy Mono (Ethylacetacetate) ) Titanium Tri-i-propoxymono (ethylacetate acetate) Titanium Tri-n-butoxymono (ethylacetoacetate) Titanium Tri-sec-butoxymono (ethylacetoacetate) Titanium Tri-t-butoxymono (ethyl) Acetacetate) Titanium Diethoxybis (Ethylacetacetate) Titanium Di-n-propoxybis (Ethylacetacetate) Titanium Di-i-Propoxybis (Ethylacetacetate) Titanium Di-n-butoxybis (Ethylacetacetate) ) Titanium Di-sec-Butoxy bis (Ethylacetacetate) Titanium Di-t-Butoxybis (Ethylacetacetate) Titanium Monoethoxytris (Ethylacetacetate) Titanium Mono-n-propoxytris (Ethylacetacetate) Titanium Mono-i-Propoxy Tris (Ethylacet Acetate) Titanium Mono-n- Butoxy Tris (Ethylacet Acetate) Titanium Mono-sec-Butoxy Tris (Ethylacetone Acetate) Titanium Mono-t-Butoxy Tris (Ethylacet Acetate) Titanium Tetrakiss (Ethylacet Acetate) Titanium Mono (Acetylacetoneate) Tris ( Ethylacetacetate) Titanium Bis (Acetylacetoneate) Bis (Ethylacetoneacetate) Titanium Tris (Acetylacetoneate) Mono (Ethylacetoneacetate) Titanium
Zrキレート化合物;
  トリエトキシ・モノ(アセチルアセトナート)ジルコニウム
  トリ-n-プロポキシ・モノ(アセチルアセトナート)ジルコニウム
  トリ-i-プロポキシ・モノ(アセチルアセトナート)ジルコニウム
  トリ-n-ブトキシ・モノ(アセチルアセトナート)ジルコニウム
  トリ-sec-ブトキシ・モノ(アセチルアセトナート)ジルコニウム
  トリ-t-ブトキシ・モノ(アセチルアセトナート)ジルコニウム
  ジエトキシ・ビス(アセチルアセトナート)ジルコニウム
  ジ-n-プロポキシ・ビス(アセチルアセトナート)ジルコニウム
  ジ-i-プロポキシ・ビス(アセチルアセトナート)ジルコニウム
  ジ-n-ブトキシ・ビス(アセチルアセトナート)ジルコニウム
  ジ-sec-ブトキシ・ビス(アセチルアセトナート)ジルコニウム
  ジ-t-ブトキシ・ビス(アセチルアセトナート)ジルコニウム
  モノエトキシ・トリス(アセチルアセトナート)ジルコニウム
  モノ-n-プロポキシ・トリス(アセチルアセトナート)ジルコニウム
  モノ-i-プロポキシ・トリス(アセチルアセトナート)ジルコニウム
  モノ-n-ブトキシ・トリス(アセチルアセトナート)ジルコニウム
  モノ-sec-ブトキシ・トリス(アセチルアセトナート)ジルコニウム
  モノ-t-ブトキシ・トリス(アセチルアセトナート)ジルコニウム
  テトラキス(アセチルアセトナート)ジルコニウム
  トリエトキシ・モノ(エチルアセトアセテート)ジルコニウム
  トリ-n-プロポキシ・モノ(エチルアセトアセテート)ジルコニウム
  トリ-i-プロポキシ・モノ(エチルアセトアセテート)ジルコニウム
  トリ-n-ブトキシ・モノ(エチルアセトアセテート)ジルコニウム
  トリ-sec-ブトキシ・モノ(エチルアセトアセテート)ジルコニウム
  トリ-t-ブトキシ・モノ(エチルアセトアセテート)ジルコニウム
  ジエトキシ・ビス(エチルアセトアセテート)ジルコニウム
  ジ-n-プロポキシ・ビス(エチルアセトアセテート)ジルコニウム
  ジ-i-プロポキシ・ビス(エチルアセトアセテート)ジルコニウム
  ジ-n-ブトキシ・ビス(エチルアセトアセテート)ジルコニウム
  ジ-sec-ブトキシ・ビス(エチルアセトアセテート)ジルコニウム
  ジ-t-ブトキシ・ビス(エチルアセトアセテート)ジルコニウム
  モノエトキシ・トリス(エチルアセトアセテート)ジルコニウム
  モノ-n-プロポキシ・トリス(エチルアセトアセテート)ジルコニウム
  モノ-i-プロポキシ・トリス(エチルアセトアセテート)ジルコニウム
  モノ-n-ブトキシ・トリス(エチルアセトアセテート)ジルコニウム
  モノ-sec-ブトキシ・トリス(エチルアセトアセテート)ジルコニウム
  モノ-t-ブトキシ・トリス(エチルアセトアセテート)ジルコニウム
  テトラキス(エチルアセトアセテート)ジルコニウム
  モノ(アセチルアセトナート)トリス(エチルアセトアセテート)ジルコニウム
  ビス(アセチルアセトナート)ビス(エチルアセトアセテート)ジルコニウム
  トリス(アセチルアセトナート)モノ(エチルアセトアセテート)ジルコニウム
Zr chelate compound;
Triethoxy mono (acetylacetonate) zirconium tri-n-propoxymono (acetylacetonate) zirconium tri-i-propoxymono (acetylacetonate) zirconium tri-n-butoxymono (acetylacetonate) zirconium tri- sec-butoxy mono (acetylacetonate) zirconium trit-butoxy mono (acetylacetonate) zirconium diethoxy bis (acetylacetonate) zirconium di-n-propoxybis (acetylacetonate) zirconium di-i- Propoxy bis (acetylacetonate) zirconium di-n-butoxy bis (acetylacetonate) zirconium di-sec-butoxy bis (acetylacetonate) zirconium di-t-butoxy bis (acetylacetonate) zirconium monoethoxy Tris (acetylacetonate) zirconium mono-n-propoxytris (acetylacetonate) zirconium mono-i-propoxytris (acetylacetonate) zirconium mono-n-butoxy tris (acetylacetonate) zirconium mono-sec -Butoxy tris (acetylacetonate) zirconium mono-t-butoxytris (acetylacetonate) zirconium tetrakis (acetylacetonate) zirconium triethoxy mono (ethylacetacetate) zirconium tri-n-propoxymono (ethylacetacetate) ) Zirconium Tri-i-propoxy mono (ethylacetate acetate) zirconium tri-n-butoxy mono (ethylacetate acetate) zirconium tri-sec-butoxy mono (ethylacetoacetate) zirconium tri-t-butoxy mono (ethyl) Acetoacetate) Zirconium Diethoxybis (Ethylacetacetate) Zirconium Di-n-propoxybis (Ethylacetacetate) Zirconium Di-i-Propoxybis (Ethylacetacetate) Zirconium Di-n-butoxybis (Ethylacetacetate) ) Zirconium Di-sec-Butoxy bis (Ethylacetacetate) Zirconium Zirconium Di-sec-Butoxybis (Ethylacetacetate) Zirconium Monoet Kishi Tris (Ethyl Acet Acetate) Zirconium Mono-n-Propoxy Tris (Ethyl Acet Acetate) Zirconium Mono-i-Propoxy Tris (Ethyl Acet Acetate) Zirconium Mono-n-Butoxy Tris (Ethyl Acet Acetate) Zirconium Mono- sec-Butoxy Tris (Ethylacet Acetate) Zirconium Mono-t-Butoxy Tris (Ethylacet Acetate) Zirconium Tetrakiss (Ethylacet Acetate) Zirconium Mono (Acetylacetonate) Tris (Ethylacetacetate) Zirconium Bis (Acetylacetonate) Bis (Ethylacetacetate) Zirconium Tris (Acetylacetonate) Mono (Ethylacetacetate) Zirconium
Alキレート化合物;
  ジエトキシ・モノ(アセチルアセトナート)アルミニウム
  モノエトキシ・ビス(アセチルアセトナート)アルミニウム
  ジ-i-プロポキシ・モノ(アセチルアセトナート)アルミニウム
  モノ-i-プロポキシ・ビス(アセチルアセトナート)アルミニウム
  モノ-i-プロポキシ・ビス(エチルアセトアセテート)アルミニウム
  モノエトキシ・ビス(エチルアセトアセテート)アルミニウム
  ジエトキシ・モノ(エチルアセトアセテート)アルミニウム
  ジ-i-プロポキシ・モノ(エチルアセトアセテート)アルミニウム
  トリス(アセチルアセトナート)アルミニウム
  ビス(エチルアセトアセテート)モノ(アセチルアセトナート)アルミニウム
Al chelate compound;
Diethoxy mono (acetylacetonate) aluminum monoethoxybis (acetylacetoneate) aluminum di-i-propoxymono (acetylacetoneate) aluminum mono-i-propoxybis (acetylacetoneate) aluminum mono-i-propoxy -Bis (Ethylacetone Acetate) Aluminum Monoethoxy Bis (Ethylacetone Acetate) Aluminum Diethoxy Mono (Ethylacetone Acetate) Aluminum Di-i-Propoxy Mono (Ethylacetone Acetate) Aluminum Tris (Acetylacetoneate) Aluminum Bis (Ethyl) Acetylacetone) Mono (Acetylacetoneate) Aluminum
 上述した金属キレート化合物は、ウレタンアクリレートから形成される樹脂成分100質量部当り、好ましくは0.1~30質量部、より好ましくは0.5~15質量部の量で使用される。この範囲内で金属キレート化合物が使用されることにより、このハードコート層(HC)上に形成される反射防止層(AR)との間の密着性を向上することができる。 The above-mentioned metal chelate compound is used in an amount of preferably 0.1 to 30 parts by mass, more preferably 0.5 to 15 parts by mass, per 100 parts by mass of the resin component formed from urethane acrylate. By using the metal chelate compound within this range, the adhesion with the antireflection layer (AR) formed on the hard coat layer (HC) can be improved.
(ハードコート層(HC)の形成)
 ハードコート層(HC)は、樹脂成分形成用のモノマーまたはオリゴマーを含む塗液を基材(B)上に塗布し、基材(B)上に塗膜を形成し、該塗膜に対し、必要に応じて乾燥をおこない、その後、紫外線、電子線といった電離放射線を照射することにより樹脂成分形成用のモノマーまたはオリゴマーの硬化反応をおこなうことにより、ハードコート層(HC)とすることができる。
(Formation of hard coat layer (HC))
In the hard coat layer (HC), a coating liquid containing a monomer or an oligomer for forming a resin component is applied onto the base material (B) to form a coating film on the base material (B), and the coating film is subjected to a coating liquid. The hard coat layer (HC) can be formed by drying if necessary and then irradiating with ionizing radiation such as ultraviolet rays and electron beams to carry out a curing reaction of the monomer or oligomer for forming the resin component.
<反射防止層(AR)>
 反射防止層(AR)は、低屈折率層(L)と、高屈折率層(H)と、中屈折率層(M)と、中低屈折率層(ML)とを含む。各層は、ハードコート層(HC)側から、中低屈折率層(ML)、中屈折率層(M)、高屈折率層(H)、低屈折率層(L)の順に配置される。
 反射防止層(AR)は、各層の屈折率が、RI(L)<RI(ML)<RI(M)≦RI(H)の条件を満たす。
  ここで、
  RI(L)は、低屈折率層(L)の屈折率、
  RI(ML)は、中低屈折率層(ML)の屈折率、
  RI(M)は、中屈折率層(M)の屈折率、
  RI(H)は、高屈折率層(H)の屈折率を表す。
 本発明では、RI(M)=RI(H)を満たす態様と、RI(M)<RI(H)を満たす態様とがある。
<Anti-reflective layer (AR)>
The antireflection layer (AR) includes a low refractive index layer (L), a high refractive index layer (H), a medium refractive index layer (M), and a medium and low refractive index layer (ML). Each layer is arranged in the order of the medium-low refractive index layer (ML), the medium-refractive index layer (M), the high-refractive index layer (H), and the low-refractive index layer (L) from the hard coat layer (HC) side.
In the antireflection layer (AR), the refractive index of each layer satisfies the condition of RI (L) <RI (ML) <RI (M) ≤ RI (H).
here,
RI (L) is the refractive index of the low refractive index layer (L).
RI (ML) is the refractive index of the medium-low refractive index layer (ML).
RI (M) is the refractive index of the medium refractive index layer (M).
RI (H) represents the refractive index of the high refractive index layer (H).
In the present invention, there are a mode in which RI (M) = RI (H) is satisfied and a mode in which RI (M) <RI (H) is satisfied.
〔中低屈折率層(ML)〕
 中低屈折率層(ML)の屈折率は1.500~1.650である。屈折率の下限は、好ましくは1.51、より好ましくは1.55である。屈折率の上限は、好ましくは1.61、より好ましくは1.60である。
 中低屈折率層(ML)の膜厚は10~230nmである。膜厚の下限は、好ましくは15nm、より好ましくは45nmである。膜厚の上限は、好ましくは190nm、より好ましくは175nmである。
 中低屈折率層(ML)は、バインダー成分および金属酸化物粒子を含む組成物の硬化物からなることが好ましい。また中低屈折率層(ML)は、バインダー成分、金属酸化物粒子および金属キレート化合物を含む組成物の硬化物からなることが好ましい。中低屈折率層(ML)は、バインダー成分100質量部に対して、金属酸化物粒子を40~500質量部、金属キレート化合物を10質量部以下含む組成物の硬化物からなることが好ましい。
[Medium and low refractive index layer (ML)]
The refractive index of the medium-low refractive index layer (ML) is 1.500 to 1.650. The lower limit of the refractive index is preferably 1.51 and more preferably 1.55. The upper limit of the refractive index is preferably 1.61 and more preferably 1.60.
The film thickness of the medium-low refractive index layer (ML) is 10 to 230 nm. The lower limit of the film thickness is preferably 15 nm, more preferably 45 nm. The upper limit of the film thickness is preferably 190 nm, more preferably 175 nm.
The medium-low refractive index layer (ML) is preferably composed of a cured product of a composition containing a binder component and metal oxide particles. The medium-low refractive index layer (ML) is preferably composed of a cured product of a composition containing a binder component, metal oxide particles, and a metal chelate compound. The medium-low refractive index layer (ML) is preferably composed of a cured product of a composition containing 40 to 500 parts by mass of metal oxide particles and 10 parts by mass or less of a metal chelate compound with respect to 100 parts by mass of the binder component.
(バインダー成分)
 バインダー成分として、(i)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物、(ii)下記式(2)で表されるアルコキシシラン化合物またはその加水分解物、また(iii)電離放射線硬化樹脂が挙げられる。
(Binder component)
As the binder component, (i) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof, (ii) an alkoxysilane compound represented by the following formula (2) or a hydrolyzate thereof, or (iii). Examples include ionizing radiation curable resins.
(式(1))
 バインダー成分として、(i)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物が挙げられる。
Figure JPOXMLDOC01-appb-C000021
 式中、Rはアルキレン基である。アルキレン基の炭素原子数は、好ましくは1~9、より好ましくは1~5である。アルキレン基として、メチレン基、エチレン基、トリメチレン基、プロピレン基、ブチレン基、テトラメチレン基、ペンチレン基、ヘキシレン基などが挙げられる。
 Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子である。
 アルキル基の炭素原子数は、好ましくは1~9、より好ましくは1~5である。アルキル基として、メチル基、エチル基、トリメチル基、プロピル基、ブチル基、テトラメチル基、ペンチル基、ヘキシル基などが挙げられる。
 アルコキシアルキル基の炭素原子数は、好ましくは1~9、より好ましくは1~5である。アルコキシアルキル基のアルコキシ基として、メトキシ基、エトキシ基、プロポキシ基などが挙げられる。アルコキシアルキル基のアルキル基として、メチル基、エチル基、トリメチル基、プロピル基、ブチル基、テトラメチル基、ペンチル基、ヘキシル基などが挙げられる。
 アシルオキシ基の炭素原子数は、好ましくは1~9、より好ましくは1~5である。アシルオキシ基として、アセチルオキシ基、ベンゾイルオキシ基などが挙げられる。
 ハロゲン原子として、フッ素、塩素、臭素、ヨウ素などが挙げられる。
(Equation (1))
Examples of the binder component include (i) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof.
Figure JPOXMLDOC01-appb-C000021
In the formula, R is an alkylene group. The number of carbon atoms of the alkylene group is preferably 1 to 9, more preferably 1 to 5. Examples of the alkylene group include a methylene group, an ethylene group, a trimethylene group, a propylene group, a butylene group, a tetramethylene group, a pentylene group and a hexylene group.
R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom.
The number of carbon atoms of the alkyl group is preferably 1 to 9, more preferably 1 to 5. Examples of the alkyl group include a methyl group, an ethyl group, a trimethyl group, a propyl group, a butyl group, a tetramethyl group, a pentyl group, a hexyl group and the like.
The number of carbon atoms of the alkoxyalkyl group is preferably 1 to 9, more preferably 1 to 5. Examples of the alkoxy group of the alkoxyalkyl group include a methoxy group, an ethoxy group, a propoxy group and the like. Examples of the alkyl group of the alkoxyalkyl group include a methyl group, an ethyl group, a trimethyl group, a propyl group, a butyl group, a tetramethyl group, a pentyl group, a hexyl group and the like.
The number of carbon atoms of the acyloxy group is preferably 1 to 9, more preferably 1 to 5. Examples of the acyloxy group include an acetyloxy group and a benzoyloxy group.
Examples of the halogen atom include fluorine, chlorine, bromine and iodine.
(式(2))
 バインダー成分として、(ii)下記式(2)で表されるアルコキシシラン化合物またはその加水分解物が挙げられる。
Figure JPOXMLDOC01-appb-C000022
 式(2)中、Rは式(1)と同じである。nは1または2である。
 Rはアルキル基、アルケニル基またはアルコキシアルキル基である。
 アルキル基の炭素原子数は、好ましくは1~9、より好ましくは1~5である。アルキル基として、メチル基、エチル基、トリメチル基、プロピル基、ブチル基、テトラメチル基、ペンチル基、ヘキシル基などが挙げられる。
 アルケニル基の炭素原子数は、好ましくは1~9、より好ましくは1~5である。アルケニル基として、エテニル基、プロペニル基、ブテニル基、ペンニル基、ヘキセニル基などが挙げられる。
 アルコキシアルキル基の炭素原子数は、好ましくは1~9、より好ましくは1~5である。アルコキシアルキル基のアルコキシ基として、メトキシ基、エトキシ基、プロポキシ基などが挙げられる。アルコキシアルキル基のアルキル基として、メチル基、エチル基、トリメチル基、プロピル基、ブチル基、テトラメチル基、ペンチル基、ヘキシル基などが挙げられる。
(Equation (2))
Examples of the binder component include (ii) an alkoxysilane compound represented by the following formula (2) or a hydrolyzate thereof.
Figure JPOXMLDOC01-appb-C000022
In equation (2), R 1 is the same as equation (1). n is 1 or 2.
R 2 is an alkyl group, an alkenyl group or an alkoxyalkyl group.
The number of carbon atoms of the alkyl group is preferably 1 to 9, more preferably 1 to 5. Examples of the alkyl group include a methyl group, an ethyl group, a trimethyl group, a propyl group, a butyl group, a tetramethyl group, a pentyl group, a hexyl group and the like.
The number of carbon atoms of the alkenyl group is preferably 1 to 9, more preferably 1 to 5. Examples of the alkenyl group include an ethenyl group, a propenyl group, a butenyl group, a pennyl group, a hexenyl group and the like.
The number of carbon atoms of the alkoxyalkyl group is preferably 1 to 9, more preferably 1 to 5. Examples of the alkoxy group of the alkoxyalkyl group include a methoxy group, an ethoxy group, a propoxy group and the like. Examples of the alkyl group of the alkoxyalkyl group include a methyl group, an ethyl group, a trimethyl group, a propyl group, a butyl group, a tetramethyl group, a pentyl group, a hexyl group and the like.
(電離放射線硬化樹脂)
 バインダー成分として、(iii)電離放射線硬化樹脂が挙げられる。電離放射線硬化樹脂として、ウレタンアクリレートが挙げられる。ウレタンアクリレートは、多価イソシアネート化合物と複数の水酸基を有するポリオール化合物とを反応して得られる末端イソシアネート化合物に、さらに水酸基含有(メタ)アクリレートを反応させて得られるものである。ウレタンアクリレート中の(メタ)アクリロイル基が官能基であり、例えば(メタ)アクリロイル基を2個有するウレタンアクリレートは2官能であり、3個有するものは3官能である。ウレタンアクリレートとして、2官能から6官能のウレタンアクリレートが挙げられる。
 2官能のウレタンアクリレートとして、ペンタエリスリトールモノ(メタ)アクリレートに末端イソシアネート化合物を反応させ、両末端のそれぞれに1個の(メタ)アクリロイル基が導入したものが挙げられる。
(Ionizing radiation curable resin)
Examples of the binder component include (iii) ionizing radiation curable resin. Examples of the ionizing radiation curable resin include urethane acrylate. Urethane acrylate is obtained by further reacting a hydroxyl group-containing (meth) acrylate with a terminal isocyanate compound obtained by reacting a polyhydric isocyanate compound with a polyol compound having a plurality of hydroxyl groups. The (meth) acryloyl group in the urethane acrylate is a functional group. For example, a urethane acrylate having two (meth) acryloyl groups is bifunctional, and one having three is trifunctional. Examples of urethane acrylates include bifunctional to hexafunctional urethane acrylates.
Examples of the bifunctional urethane acrylate include those obtained by reacting a pentaerythritol mono (meth) acrylate with a terminal isocyanate compound and introducing one (meth) acryloyl group at each of both terminals.
 3官能のウレタンアクリレートとして、ペンタエリスリトールモノ(メタ)アクリレートとペンタエリスリトールジ(メタ)アクリレートとを、末端イソシアネート化合物と反応させ、イソシアネート化合物の一方の末端に1個の(メタ)アクリロイル基を導入し、且つ他方の末端に2個の(メタ)アクリロイル基を導入したものが挙げられる。
 4官能のウレタンアクリレートとして、ペンタエリスリトールジ(メタ)アクリレートを、末端イソシアネート化合物と反応させ、イソシアネート化合物の両末端に、それぞれ2個の(メタ)アクリロイル基を導入したものが挙げられる。
 6官能のウレタンアクリレートとして、ペンタエリスリトールトリ(メタ)アクリレートに、両末端イソシアネート(例えばトリヘキサジエチレンジイソシアネート)を反応させることにより、分子鎖末端のそれぞれに3個の(メタ)アクリロイル基を導入したものが挙げられる。
 また、エチレングリコール、ジエチレングリコール、または3価以上の多価アルコールの(メタ)アクリル酸のモノエステル、ジエステル等の水酸基含有(メタ)アクリル酸エステルに、所望の数の(メタ)アクリロイル基を導入したウレタンアクリレートが挙げられる。
 3官能以下のウレタンアクリレートと4官能以上のウレタンアクリレートとを併用することもできる。3官能以下のウレタンアクリレートと4官能以上のウレタンアクリレートとは、2/98~70/30、特に10/90~60/40の重量比で使用することが好ましい。
As a trifunctional urethane acrylate, pentaerythritol mono (meth) acrylate and pentaerythritol di (meth) acrylate are reacted with a terminal isocyanate compound, and one (meth) acryloyl group is introduced into one terminal of the isocyanate compound. , And two (meth) acryloyl groups are introduced at the other end.
Examples of the tetrafunctional urethane acrylate include those obtained by reacting pentaerythritol di (meth) acrylate with a terminal isocyanate compound and introducing two (meth) acryloyl groups at both ends of the isocyanate compound.
As a hexafunctional urethane acrylate, pentaerythritol tri (meth) acrylate is reacted with both terminal isocyanates (for example, trihexadiethylene diisocyanate) to introduce three (meth) acryloyl groups at each of the molecular chain ends. Can be mentioned.
Further, a desired number of (meth) acryloyl groups were introduced into a hydroxyl group-containing (meth) acrylic acid ester such as ethylene glycol, diethylene glycol, or a monoester of (meth) acrylic acid of a trihydric or higher polyhydric alcohol, or a diester. Urethane acrylate can be mentioned.
A urethane acrylate having trifunctionality or less and a urethane acrylate having four or more functionalities can be used in combination. The trifunctional or lower functional urethane acrylate and the tetrafunctional or higher functional urethane acrylate are preferably used in a weight ratio of 2/98 to 70/30, particularly 10/90 to 60/40.
(金属酸化物粒子)
 金属酸化物粒子は、屈折率が1.50以上のものを用いることができる。例えば、酸化チタン、酸化ジルコニウム、五酸化ニオブ、アンチモンドープ酸化錫(ATO)、酸化インジウム-酸化錫(ITO)、リンドープ酸化錫(PTO)、フッ素ドープ酸化錫(FTO)および五酸化アンチモンからなる群より選ばれる少なくとも一種の酸化物粒子であることが好ましい。
 さらに具体的には、金属酸化物粒子としては、酸化ジルコニウム粒子(屈折率=2.40)、酸化ジルコニウムと酸化ケイ素等の他の酸化物とを分子レベルで複合化させて屈折率を調整した複合ジルコニウム金属酸化物粒子、酸化チタニウム粒子(屈折率=2.71)、酸化チタニウムと酸化ケイ素や酸化ジルコニウム等の他の酸化物とを分子レベルで複合化させて屈折率を調整した複合チタニウム金属酸化物粒子などが使用される。これらの金属酸化物粒子を適宜組み合わせて、所望の屈折率の層に調整する。このような粒子はそれ自体公知であり、市販されている。
 金属酸化物粒子の平均粒径は、好ましくは1~100nm、より好ましくは1~70nmである。金属酸化物粒子の屈折率は、好ましくは1.70~2.80、より好ましくは1.90~2.50である。
 中低屈折率層(ML)形成用溶液中の金属酸化物粒子の含有量は、バインダー成分100質量部に対して、好ましくは40~500質量部である。
(Metal oxide particles)
As the metal oxide particles, those having a refractive index of 1.50 or more can be used. For example, a group consisting of titanium oxide, zirconium oxide, niobium pentoxide, antimony-doped tin oxide (ATO), indium oxide-tin oxide (ITO), phosphorus-doped tin oxide (PTO), fluorine-doped tin oxide (FTO) and antimony pentoxide. It is preferably at least one kind of oxide particles more selected.
More specifically, as the metal oxide particles, zirconium oxide particles (refractive coefficient = 2.40), zirconium oxide and other oxides such as silicon oxide are composited at the molecular level to adjust the refractive index. Composite Zirconium Metal Oxide Particles, Titanium Oxide Particles (Reflectivity = 2.71), Titanium Oxide and other oxides such as silicon oxide and zirconium oxide are composited at the molecular level to adjust the refractive index. Oxide particles and the like are used. These metal oxide particles are appropriately combined to prepare a layer having a desired refractive index. Such particles are known in their own right and are commercially available.
The average particle size of the metal oxide particles is preferably 1 to 100 nm, more preferably 1 to 70 nm. The refractive index of the metal oxide particles is preferably 1.70 to 2.80, more preferably 1.90 to 2.50.
The content of the metal oxide particles in the medium-low refractive index layer (ML) forming solution is preferably 40 to 500 parts by mass with respect to 100 parts by mass of the binder component.
(帯電防止機能)
 中低屈折率層(ML)に、アンチモンドープ酸化錫(ATO)、酸化インジウム-酸化錫(ITO)、リンドープ酸化錫(PTO)、フッ素ドープ酸化錫(FTO)および五酸化アンチモンからなる群より選ばれる少なくとも一種の導電粒子を含有させると、中低屈折率層(ML)に帯電防止機能を付与することができる。
 この場合、導電粒子の含有量は、バインダー成分100質量部に対して、好ましくは100~500質量部、より好ましくは200~500質量部、さらに好ましくは300~500質量部である。導電粒子の平均粒径は、好ましくは1~50nm、より好ましくは1~30nmである。
 中低屈折率層(ML)に帯電防止機能を付与する場合、中低屈折率層(ML)の膜厚は好ましくは10~50nmである。膜厚の下限は、好ましくは15nm、より好ましくは20nmである。膜厚の上限は、好ましくは50nm、より好ましくは48nmである。
(Antistatic function)
The medium-low refractive index layer (ML) is selected from the group consisting of antimony-doped tin oxide (ATO), indium oxide-tin oxide (ITO), phosphorus-doped tin oxide (PTO), fluorine-doped tin oxide (FTO), and antimony pentoxide. By containing at least one kind of conductive particles, the medium-low refractive index layer (ML) can be provided with an antimony function.
In this case, the content of the conductive particles is preferably 100 to 500 parts by mass, more preferably 200 to 500 parts by mass, and further preferably 300 to 500 parts by mass with respect to 100 parts by mass of the binder component. The average particle size of the conductive particles is preferably 1 to 50 nm, more preferably 1 to 30 nm.
When an antistatic function is imparted to the medium-low refractive index layer (ML), the film thickness of the medium-low refractive index layer (ML) is preferably 10 to 50 nm. The lower limit of the film thickness is preferably 15 nm, more preferably 20 nm. The upper limit of the film thickness is preferably 50 nm, more preferably 48 nm.
 中低屈折率層(ML)に帯電防止機能が不必要な場合は、酸化チタン、酸化ジルコニウムおよび五酸化ニオブからなる群より選ばれる少なくとも一種の酸化物粒子を含有させることもできる。この場合、金属酸化物粒子の含有量は、バインダー成分100質量部に対して、好ましくは10~100質量部、より好ましくは20~60質量部、さらに好ましくは30~60質量部である。金属酸化物粒子の平均粒径は、好ましくは10~100nm、より好ましくは20~80nmである。
 中低屈折率層(ML)の膜厚は、好ましくは50~200nmである。膜厚の下限は、好ましくは60nm、より好ましくは80nmである。膜厚の上限は、好ましくは200nm、より好ましくは180nmである。
If the medium-low refractive index layer (ML) does not require an antistatic function, it may contain at least one oxide particle selected from the group consisting of titanium oxide, zirconium oxide and niobium pentoxide. In this case, the content of the metal oxide particles is preferably 10 to 100 parts by mass, more preferably 20 to 60 parts by mass, and further preferably 30 to 60 parts by mass with respect to 100 parts by mass of the binder component. The average particle size of the metal oxide particles is preferably 10 to 100 nm, more preferably 20 to 80 nm.
The film thickness of the medium-low refractive index layer (ML) is preferably 50 to 200 nm. The lower limit of the film thickness is preferably 60 nm, more preferably 80 nm. The upper limit of the film thickness is preferably 200 nm, more preferably 180 nm.
(金属キレート化合物)
 金属キレート化合物は、層の緻密性や強度、更には硬度を高める目的で含有させる。該金属キレート化合物は、二座配位子を代表例とするキレート剤が、チタン、ジルコニウム、アルミニウムなどの金属に配位した化合物である。
(Metal chelate compound)
The metal chelate compound is contained for the purpose of increasing the density and strength of the layer, as well as the hardness. The metal chelate compound is a compound in which a chelating agent typified by a bidentate ligand is coordinated to a metal such as titanium, zirconium, or aluminum.
 具体的には、トリエトキシ・モノ(アセチルアセトナート)チタン、トリ-n-プロポキシ・モノ(アセチルアセトナート)チタン、ジエトキシ・ビス(アセチルアセトナート)チタン、モノエトキシ・トリス(アセチルアセトナート)チタン、テトラキス(アセチルアセトナート)チタン、トリエトキシ・モノ(エチルアセトアセテート)チタン、ジエトキシ・ビス(エチルアセトアセテート)チタン、モノエトキシ・トリス(エチルアセトアセテート)チタン、モノ(アセチルアセトナート)トリス(エチルアセトアセテート)チタン、ビス(アセチルアセトナート)ビス(エチルアセトアセテート)チタン、トリス(アセチルアセトナート)モノ(エチルアセトアセテート)チタン等のチタンキレート化合物;
 トリエトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ-n-プロポキシ・モノ(アセチルアセトナート)ジルコニウム、ジエトキシ・ビス(アセチルアセトナート)ジルコニウム、モノエトキシ・トリス(アセチルアセトナート)ジルコニウム、テトラキス(アセチルアセトナート)ジルコニウム、トリエトキシ・モノ(エチルアセトアセテート)ジルコニウム、ジエトキシ・ビス(エチルアセトアセテート)ジルコニウム、モノエトキシ・トリス(エチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウム、モノ(アセチルアセトナート)トリス(エチルアセトアセテート)ジルコニウム、ビス(アセチルアセトナート)ビス(エチルアセトアセテート)ジルコニウム、トリス(アセチルアセトナート)モノ(エチルアセトアセテート)ジルコニウム等のジルコニウムキレート化合物;
 ジエトキシ・モノ(アセチルアセトナート)アルミニウム、モノエトキシ・ビス(アセチルアセトナート)アルミニウム、ジ-i-プロポキシ・モノ(アセチルアセトナート)アルミニウム、モノ-i-プロポキシ・ビス(エチルアセトアセテート)アルミニウム、モノエトキシ・ビス(エチルアセトアセテート)アルミニウム、ジエトキシ・モノ(エチルアセトアセテート)アルミニウム、トリス(アセチルアセトナート)アルミニウム、ビス(エチルアセトアセテート)モノ(アセチルアセトナート)アルミニウム等のアルミニウムキレート化合物が挙げられる。
Specifically, triethoxy mono (acetylacetonet) titanium, tri-n-propoxymono (acetylacetoneate) titanium, diethoxybis (acetylacetonetate) titanium, monoethoxytris (acetylacetonate) titanium, Tetrakiss (acetylacetonetate) titanium, triethoxy mono (ethylacetone acetate) titanium, diethoxy bis (ethylacetone acetate) titanium, monoethoxy tris (ethylacetone acetate) titanium, mono (acetylacetoneate) tris (ethylacetone acetate) ) Titanium chelate compounds such as titanium, bis (acetylacetoneate) bis (ethylacetoneacetate) titanium, tris (acetylacetoneate) mono (ethylacetoneacetate) titanium;
Triethoxy mono (acetylacetonate) zirconium, tri-n-propoxymono (acetylacetonate) zirconium, diethoxybis (acetylacetonate) zirconium, monoethoxytris (acetylacetonate) zirconium, tetrakis (acetylacetonate) ) Zirconium, triethoxy mono (ethylacetate acetate) zirconium, diethoxy bis (ethylacetacetate) zirconium, monoethoxy tris (ethylacetacetate) zirconium, tetrakis (ethylacetacetate) zirconium, mono (acetylacetonate) tris ( Zirconium chelating compounds such as ethylacetacetate) zirconium, bis (acetylacetonate) bis (ethylacetate acetate) zirconium, tris (acetylacetonate) mono (ethylacetacetate) zirconium;
Diethoxy mono (acetylacetonate) aluminum, monoethoxybis (acetylacetonate) aluminum, di-i-propoxymono (acetylacetonate) aluminum, mono-i-propoxybis (ethylacetonate) aluminum, mono Examples thereof include aluminum chelate compounds such as ethoxy bis (ethyl acetoacetate) aluminum, diethoxy mono (ethyl acetoacetate) aluminum, tris (acetylacetonate) aluminum, and bis (ethylacetate acetate) mono (acetylacetonate) aluminum.
 中低屈折率層(ML)形成用溶液中の金属キレート化合物の含有量は、バインダー成分100質量部に対して、好ましくは10質量部以下である。含有量の下限は、バインダー成分100質量部に対して、好ましくは1質量部、より好ましくは3質量部である。含有量の上限は、バインダー成分100質量部に対して、好ましくは8質量部、より好ましくは6質量部である。
 中低屈折率層(ML)に、アンチモンドープ酸化錫(ATO)、酸化インジウム-酸化錫(ITO)、リンドープ酸化錫(PTO)、フッ素ドープ酸化錫(FTO)および五酸化アンチモンからなる群より選ばれる少なくとも一種の導電粒子を含有させ、帯電防止機能を付与する場合には、金属キレート化合物を含有させなくても良い。
The content of the metal chelate compound in the medium-low refractive index layer (ML) forming solution is preferably 10 parts by mass or less with respect to 100 parts by mass of the binder component. The lower limit of the content is preferably 1 part by mass, more preferably 3 parts by mass with respect to 100 parts by mass of the binder component. The upper limit of the content is preferably 8 parts by mass, more preferably 6 parts by mass with respect to 100 parts by mass of the binder component.
The medium-low refractive index layer (ML) is selected from the group consisting of antimony-doped tin oxide (ATO), indium oxide-tin oxide (ITO), phosphorus-doped tin oxide (PTO), fluorine-doped tin oxide (FTO), and antimony pentoxide. When at least one kind of conductive particles is contained to impart an antimony function, it is not necessary to contain a metal chelate compound.
(中低屈折率層(ML)の形成)
 中低屈折率層(ML)は、上記各成分を特定量、更には任意成分を、粘度調整や易塗布性の目的で、下記溶剤に溶解して中低屈折率層(ML)用コーティング溶液とし、この溶液をハードコート層(HC)に塗布した後、乾燥し、次いで加熱、硬化させて形成される。硬化は、紫外線(UV)、電子線(EB)といった電離放射線を照射することにより行うことが出来る。
(Formation of medium and low refractive index layer (ML))
The medium-low refractive index layer (ML) is a coating solution for the medium-low refractive index layer (ML) in which each of the above components is dissolved in a specific amount and an arbitrary component is dissolved in the following solvent for the purpose of viscosity adjustment and easy coating. After applying this solution to the hard coat layer (HC), it is dried, and then heated and cured to form the solution. Curing can be performed by irradiating ionizing radiation such as ultraviolet rays (UV) and electron beams (EB).
 中低屈折率層(ML)用コーティング溶液に使用される溶剤は、メチルアルコール、エチルアルコール、プロピルアルコールなどのアルコール化合物;トルエン、キシレン等の芳香族化合物;酢酸エチル、酢酸ブチル、酢酸イソブチルなどのエステル化合物;アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、ジアセトンアルコール等のケトン化合物等が適している。その他、メチレングリコールモノメチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、更にはメチルセロソルブやエチルセロソルブ、プロピレングリコールモノメチルエーテル等のセロソルブ化合物などの溶剤も使用できる。
 中低屈折率層(ML)用コーティング溶液を構成する上記各成分は、通常、室温付近で任意に混合攪拌されて溶液とされる。なお、市販の粒子分散体を使用した時は、分散媒である溶媒が溶液中に必然的に混入することになる。中低屈折率層(ML)用コーティング溶液中の溶媒並びに別途配合される溶剤は、前記乾燥並びに硬化工程において除去される。
Solvents used in the coating solution for medium and low refractive index layers (ML) are alcohol compounds such as methyl alcohol, ethyl alcohol and propyl alcohol; aromatic compounds such as toluene and xylene; ethyl acetate, butyl acetate, isobutyl acetate and the like. Ester compounds; ketone compounds such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and diacetone alcohol are suitable. In addition, solvents such as methylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, and cellosolve compounds such as methyl cellosolve, ethyl cellosolve, and propylene glycol monomethyl ether can also be used.
Each of the above components constituting the coating solution for the medium-low refractive index layer (ML) is usually mixed and stirred arbitrarily near room temperature to obtain a solution. When a commercially available particle dispersion is used, a solvent as a dispersion medium is inevitably mixed in the solution. The solvent in the coating solution for the medium-low refractive index layer (ML) and the solvent to be separately blended are removed in the drying and curing steps.
 溶液のハードコート層(HC)上への塗工方法は特に制限されず、ディップコート法、ロールコート法、ダイコート法、フローコート法、スプレー法等の方法が採用されるが、外観品位や膜厚制御の観点からディップコート法が好適である。その後、乾燥し、次いで加熱し、熱硬化させて中低屈折率層(ML)を形成することができる。また、紫外線、電子線といった電離放射線を照射することにより硬化反応を行うことにより、中低屈折率層(ML)を形成することができる。 The method of applying the solution onto the hard coat layer (HC) is not particularly limited, and methods such as a dip coat method, a roll coat method, a die coat method, a flow coat method, and a spray method are adopted, but the appearance quality and the film are used. The dip coating method is preferable from the viewpoint of thickness control. After that, it can be dried, then heated, and thermoset to form a medium-low refractive index layer (ML). Further, a medium-low refractive index layer (ML) can be formed by performing a curing reaction by irradiating ionizing radiation such as ultraviolet rays and electron beams.
〔中屈折率層(M)〕
 中屈折率層(M)の屈折率は、1.550~1.810である。屈折率の下限は、好ましくは1.550、より好ましくは1.580である。屈折率の上限は、好ましくは1.800、より好ましくは1.770である。
 中屈折率層(M)の膜厚は20~150nmである。膜厚の下限は、好ましくは25nm、より好ましくは50nmである。膜厚の上限は、好ましくは130nm、より好ましくは110nmである。
 RI(M)<RI(H)、すなわち中屈折率層(M)の屈折率が、高屈折率層(H)の屈折率より小さい場合、中屈折率層(M)の屈折率の下限は、好ましくは1.550、より好ましくは1.580である。中屈折率層(M)の屈折率の上限は、好ましくは1.730、より好ましくは1.710、さらに好ましくは1.700である。
 RI(M)=RI(H)、すなわち中屈折率層(M)の屈折率が、高屈折率層(H)の屈折率と同じ場合、中屈折率層(M)の屈折率の下限は、好ましくは1.750、より好ましくは1.760である。中屈折率層(M)の屈折率の上限は、好ましくは1.810、より好ましくは1.790、さらに好ましくは1.770である。
[Medium refractive index layer (M)]
The refractive index of the medium refractive index layer (M) is 1.550 to 1.810. The lower limit of the refractive index is preferably 1.550, more preferably 1.580. The upper limit of the refractive index is preferably 1.800, more preferably 1.770.
The film thickness of the medium refractive index layer (M) is 20 to 150 nm. The lower limit of the film thickness is preferably 25 nm, more preferably 50 nm. The upper limit of the film thickness is preferably 130 nm, more preferably 110 nm.
When RI (M) <RI (H), that is, the refractive index of the medium refractive index layer (M) is smaller than the refractive index of the high refractive index layer (H), the lower limit of the refractive index of the medium refractive index layer (M) is , Preferably 1.550, more preferably 1.580. The upper limit of the refractive index of the medium refractive index layer (M) is preferably 1.730, more preferably 1.710, and even more preferably 1.700.
When RI (M) = RI (H), that is, the refractive index of the medium refractive index layer (M) is the same as the refractive index of the high refractive index layer (H), the lower limit of the refractive index of the medium refractive index layer (M) is , Preferably 1.750, more preferably 1.760. The upper limit of the refractive index of the medium refractive index layer (M) is preferably 1.810, more preferably 1.790, and even more preferably 1.770.
 中屈折率層(M)は、バインダー成分、金属酸化物粒子および金属キレート化合物を含む組成物の硬化物からなることが好ましい。また中屈折率層(M)は、バインダー成分100質量部に対して、金属酸化物粒子を40~500質量部、金属キレート化合物を1~20質量部含む組成物の硬化物からなることが好ましい。 The medium refractive index layer (M) is preferably composed of a cured product of a composition containing a binder component, metal oxide particles and a metal chelate compound. The medium refractive index layer (M) is preferably made of a cured product of a composition containing 40 to 500 parts by mass of metal oxide particles and 1 to 20 parts by mass of a metal chelate compound with respect to 100 parts by mass of the binder component. ..
(バインダー成分)
 バインダー成分は、(i)式(1)で表されるアルコキシシラン化合物またはその加水分解物および(ii)式(2)で表されるアルコキシシラン化合物またはその加水分解物からなる群より選ばれる少なくとも一種のバインダー成分であることが好ましい。式(1)および式(2)は、中低屈折率層(ML)の項で説明した通りである。
(Binder component)
The binder component is at least selected from the group consisting of the alkoxysilane compound represented by the formula (1) or a hydrolyzate thereof and the alkoxysilane compound represented by the formula (2) or a hydrolyzate thereof. It is preferably a kind of binder component. The formulas (1) and (2) are as described in the section of the medium-low refractive index layer (ML).
(金属酸化物粒子)
 中屈折率層(M)に用いられる金属酸化物粒子は、中低屈折率層(ML)の形成に用いられる金属酸化物粒子と同じ種類の粒子を用いることができ、この中から選択して用いることができる。
(Metal oxide particles)
As the metal oxide particles used for the medium refractive index layer (M), particles of the same type as the metal oxide particles used for forming the medium and low refractive index layer (ML) can be used, and particles of the same type can be selected from these. Can be used.
(金属キレート化合物)
 中屈折率層(M)に用いられる金属キレート化合物は、中低屈折率層(ML)の形成に用いられる金属キレート化合物と同じ種類のものを用いることができ、この中から選択して用いることができる。
(Metal chelate compound)
As the metal chelate compound used for the medium refractive index layer (M), the same type as the metal chelate compound used for forming the medium and low refractive index layer (ML) can be used, and the metal chelate compound may be selected from these. Can be done.
(中屈折率層(M)の形成)
 中屈折率層(M)は、上記の各成分を特定量、更には任意成分を、溶剤に溶解して中屈折率層(M)用溶液とし、この溶液を中低屈折率層(ML)に塗布した後、乾燥し、次いで加熱、熱硬化させて形成することができる。
 中屈折率層(M)用コーティング溶液に用いる溶剤は、中低屈折率層(ML)用コーティング溶液に使用される溶剤と同じである。該層の厚みは、反射防止性能の観点から、20~150nmの範囲に設定される。中屈折率層(M)用溶液を構成する上記各成分の混合順序や混合条件、更には、中低屈折率層(ML)上への塗工方法は特に制限されない。
(Formation of medium refractive index layer (M))
In the medium refractive index layer (M), each of the above components is dissolved in a specific amount, and an arbitrary component is dissolved in a solvent to prepare a solution for the medium refractive index layer (M), and this solution is used as the medium and low refractive index layer (ML). After being applied to, it can be dried, then heated and heat-cured to form.
The solvent used for the coating solution for the medium refractive index layer (M) is the same as the solvent used for the coating solution for the medium and low refractive index layer (ML). The thickness of the layer is set in the range of 20 to 150 nm from the viewpoint of antireflection performance. The mixing order and conditions of each of the above components constituting the solution for the medium refractive index layer (M), and the coating method on the medium and low refractive index layer (ML) are not particularly limited.
〔高屈折率層(H)〕
 反射防止層(AR)は、極めて高い反射防止効果を発現させるために、中屈折率層(M)と低屈折率層(L)との間に高屈折率層(H)を有する。
 高屈折率層(H)の屈折率は、1.700~1.850である。屈折率の下限は、好ましくは1.710、より好ましくは1.730である。屈折率の上限は、好ましくは1.830、より好ましくは1.810である。
 高屈折率層(H)の膜厚は、10~250nmである。膜厚の下限は、好ましくは15nm、より好ましくは50nmである。膜厚の上限は、好ましくは210nm、より好ましくは150nmである。
 高屈折率層(H)は、バインダー成分、金属酸化物粒子および金属キレート化合物を含む組成物の硬化物からなることが好ましい。高屈折率層(H)は、バインダー成分100質量部に対して、金属酸化物粒子を300~500質量部、金属キレート化合物を10~20質量部含む組成物の硬化物からなることが好ましい。
[High refractive index layer (H)]
The antireflection layer (AR) has a high refractive index layer (H) between the medium refractive index layer (M) and the low refractive index layer (L) in order to exhibit an extremely high antireflection effect.
The refractive index of the high refractive index layer (H) is 1.700 to 1.850. The lower limit of the refractive index is preferably 1.710, more preferably 1.730. The upper limit of the refractive index is preferably 1.830, more preferably 1.810.
The film thickness of the high refractive index layer (H) is 10 to 250 nm. The lower limit of the film thickness is preferably 15 nm, more preferably 50 nm. The upper limit of the film thickness is preferably 210 nm, more preferably 150 nm.
The high refractive index layer (H) is preferably composed of a cured product of a composition containing a binder component, metal oxide particles and a metal chelate compound. The high refractive index layer (H) is preferably composed of a cured product of a composition containing 300 to 500 parts by mass of metal oxide particles and 10 to 20 parts by mass of a metal chelate compound with respect to 100 parts by mass of the binder component.
(バインダー成分)
 バインダー成分は、(i)式(1)で表されるアルコキシシラン化合物またはその加水分解物および(ii)式(2)で表されるアルコキシシラン化合物またはその加水分解物からなる群より選ばれる少なくとも一種のバインダー成分であることが好ましい。式(1)および式(2)は、中低屈折率層(ML)の項で説明した通りである。
(Binder component)
The binder component is at least selected from the group consisting of the alkoxysilane compound represented by the formula (1) or a hydrolyzate thereof and the alkoxysilane compound represented by the formula (2) or a hydrolyzate thereof. It is preferably a kind of binder component. The formulas (1) and (2) are as described in the section of the medium-low refractive index layer (ML).
(金属酸化物粒子)
 高屈折率層(H)に用いられる金属酸化物粒子は、中低屈折率層(ML)の形成に用いられる金属酸化物粒子と同じ種類の粒子を用いることができ、この中から選択して用いることができる。
(Metal oxide particles)
As the metal oxide particles used for the high refractive index layer (H), particles of the same type as the metal oxide particles used for forming the medium and low refractive index layer (ML) can be used, and the metal oxide particles can be selected from these. Can be used.
(金属キレート化合物)
 高屈折率層(H)に用いられる金属キレート化合物は、中低屈折率層(ML)の形成に用いられる金属キレート化合物と同じ種類のものを用いることができ、この中から選択して用いることができる。
(Metal chelate compound)
As the metal chelate compound used for the high refractive index layer (H), the same type of metal chelate compound as the metal chelate compound used for forming the medium and low refractive index layer (ML) can be used, and it is selected from these. Can be done.
(高屈折率層(H)の形成)
 高屈折率層(H)は、各成分を、更には任意成分を、中低屈折率層(ML)形成時に用いた各種溶剤に溶解して高屈折率層(H)用コーティング溶液とし、この溶液を中屈折率層(M)に塗布した後乾燥し、次いで加熱、硬化させて形成することができる。該層の厚みは、反射防止性能の観点から、10~250nmの範囲に設定される。
 高屈折率層(H)用コーティング溶液を構成する上記各成分の混合順序や混合条件、更には、中屈折率層(M)上への塗工方法は特に制限されず、中低屈折率層(ML)形成時の方法を採用できる。
 上記溶液状態のコーティング溶液を使用した、いわゆる湿式法によって塗工し、次いで硬化して形成された反射防止層(中低屈折率層、中屈折率層、高屈折率層および低屈折率層)は、乾式法で形成された反射防止層に比べて、赤外線の透過性に優れる。その理由については以下の通りと考える。
 湿式法の高屈折率層はバインダー成分が存在するため乾式法と比べると屈折率の値は低くなり、その結果、可視域の低反射設計で可視光外域において急激な反射率上昇を抑えることができる。この結果、湿式法では、可視光域および可視光外域の広い範囲で低反射となり、赤外域も比較的高い透過率となる。
(Formation of high refractive index layer (H))
In the high refractive index layer (H), each component and further an arbitrary component are dissolved in various solvents used at the time of forming the medium and low refractive index layer (ML) to prepare a coating solution for the high refractive index layer (H). The solution can be applied to the medium refractive index layer (M), dried, and then heated and cured to form the solution. The thickness of the layer is set in the range of 10 to 250 nm from the viewpoint of antireflection performance.
The mixing order and conditions of each of the above components constituting the coating solution for the high refractive index layer (H), and the coating method on the medium refractive index layer (M) are not particularly limited, and the medium and low refractive index layers are not particularly limited. The method at the time of (ML) formation can be adopted.
Antireflection layers (medium-low refractive index layer, medium-refractive index layer, high-refractive index layer and low-refractive index layer) formed by coating by a so-called wet method using the coating solution in the above solution state and then curing. Is superior in transparency of infrared rays as compared with the antireflection layer formed by the dry method. The reason is as follows.
Since the high refractive index layer of the wet method has a binder component, the value of the refractive index is lower than that of the dry method. can. As a result, in the wet method, the reflection is low in a wide range of the visible light region and the visible light outer region, and the transmittance is relatively high in the infrared region as well.
〔低屈折率層(L)〕
 低屈折率層(L)の屈折率は1.450以下である。屈折率の下限は、好ましくは1.300、より好ましくは1.320である。屈折率の上限は、好ましくは1.440、より好ましくは1.430である。
 低屈折率層(L)の膜厚は70~130nmである。膜厚の下限は、好ましくは75nm、より好ましくは80nmである。膜厚の上限は、好ましくは120nm、より好ましくは110nmである。
 低屈折率層(L)は、バインダー成分、シリカ粒子および、金属キレート化合物を含む組成物の硬化物からなることが好ましい。低屈折率層(L)は、バインダー成分100質量部に対して、シリカ粒子を100~200質量部、金属キレート化合物を5~15質量部含む組成物の硬化物からなることが好ましい。
[Low refractive index layer (L)]
The refractive index of the low refractive index layer (L) is 1.450 or less. The lower limit of the refractive index is preferably 1.300, more preferably 1.320. The upper limit of the refractive index is preferably 1.440, more preferably 1.430.
The film thickness of the low refractive index layer (L) is 70 to 130 nm. The lower limit of the film thickness is preferably 75 nm, more preferably 80 nm. The upper limit of the film thickness is preferably 120 nm, more preferably 110 nm.
The low refractive index layer (L) is preferably composed of a cured product of a composition containing a binder component, silica particles, and a metal chelate compound. The low refractive index layer (L) is preferably composed of a cured product of a composition containing 100 to 200 parts by mass of silica particles and 5 to 15 parts by mass of a metal chelate compound with respect to 100 parts by mass of the binder component.
(バインダー成分)
 バインダー成分は、(i)式(1)で表されるアルコキシシラン化合物またはその加水分解物および(ii)式(2)で表されるアルコキシシラン化合物またはその加水分解物からなる群より選ばれる少なくとも一種のバインダー成分であることが好ましい。式(1)および式(2)は、中低屈折率層(ML)の項で説明した通りである。
(Binder component)
The binder component is at least selected from the group consisting of the alkoxysilane compound represented by the formula (1) or a hydrolyzate thereof and the alkoxysilane compound represented by the formula (2) or a hydrolyzate thereof. It is preferably a kind of binder component. The formulas (1) and (2) are as described in the section of the medium-low refractive index layer (ML).
(シリカ粒子)
 シリカ粒子は、反射防止効果を発現させる観点から、内部に空間を有する中空シリカ粒子を用いるのが好ましい。平均粒径は、好ましくは10~150nmである。中空シリカ粒子は、内部が空洞の粒子であるため、他のシリカ粒子に比べて、その密度は低く、例えば、通常1.5g/cm以下である。
 このような中空シリカ粒子は、それ自体公知であり、例えば、テンプレートとなる界面活性剤の存在下にシリカを合成し、最後に焼成を行って界面活性剤を分解除去することにより製造され、市販されている。なお、このような市販品は、中空シリカ粒子が水やアルコールなどの溶媒分散体を用いるので、低屈折率層(L)を形成させるために調製される低屈折率層(L)形成用溶液中には、これらの溶媒が必然的混入する。しかし、コーティング後の乾燥、および硬化過程で、コーティング溶液とするために別途配合される溶剤ともどもこれら溶媒は揮発、除去される。
 中空シリカ粒子を用いることが好ましいが、内部に空洞を有していない中実シリカ粒子を用いることもできる。
(Silica particles)
As the silica particles, it is preferable to use hollow silica particles having a space inside from the viewpoint of exhibiting an antireflection effect. The average particle size is preferably 10 to 150 nm. Since the hollow silica particles are hollow particles, their density is lower than that of other silica particles, for example, usually 1.5 g / cm 3 or less.
Such hollow silica particles are known in their own right, and are manufactured and commercially available, for example, by synthesizing silica in the presence of a surfactant as a template and finally performing calcining to decompose and remove the surfactant. Has been done. In such a commercially available product, since the hollow silica particles use a solvent dispersion such as water or alcohol, a solution for forming a low refractive index layer (L) is prepared to form a low refractive index layer (L). These solvents are inevitably mixed in. However, in the drying and curing processes after coating, these solvents are volatilized and removed together with the solvent separately added to prepare the coating solution.
Hollow silica particles are preferably used, but solid silica particles having no internal cavities can also be used.
 低屈折率層(L)形成用溶液中のシリカ粒子の含有量は、バインダー成分100質量部に対して、好ましくは100~200質量部、より好ましくは110~190質量部、さらに好ましくは120~185質量部である。 The content of silica particles in the solution for forming the low refractive index layer (L) is preferably 100 to 200 parts by mass, more preferably 110 to 190 parts by mass, and further preferably 120 to 120 parts by mass with respect to 100 parts by mass of the binder component. It is 185 parts by mass.
(金属キレート化合物)
 金属キレート化合物は、層の緻密性や強度、更には硬度を高める目的で含有させる。該金属キレート化合物は、二座配位子を代表例とするキレート剤が、チタン、ジルコニウム、アルミニウムなどの金属に配位した化合物である。
(Metal chelate compound)
The metal chelate compound is contained for the purpose of increasing the density and strength of the layer, as well as the hardness. The metal chelate compound is a compound in which a chelating agent typified by a bidentate ligand is coordinated to a metal such as titanium, zirconium, or aluminum.
 具体的には、トリエトキシ・モノ(アセチルアセトナート)チタン、トリ-n-プロポキシ・モノ(アセチルアセトナート)チタン、ジエトキシ・ビス(アセチルアセトナート)チタン、モノエトキシ・トリス(アセチルアセトナート)チタン、テトラキス(アセチルアセトナート)チタン、トリエトキシ・モノ(エチルアセトアセテート)チタン、ジエトキシ・ビス(エチルアセトアセテート)チタン、モノエトキシ・トリス(エチルアセトアセテート)チタン、モノ(アセチルアセトナート)トリス(エチルアセトアセテート)チタン、ビス(アセチルアセトナート)ビス(エチルアセトアセテート)チタン、トリス(アセチルアセトナート)モノ(エチルアセトアセテート)チタン等のチタンキレート化合物;
 トリエトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ-n-プロポキシ・モノ(アセチルアセトナート)ジルコニウム、ジエトキシ・ビス(アセチルアセトナート)ジルコニウム、モノエトキシ・トリス(アセチルアセトナート)ジルコニウム、テトラキス(アセチルアセトナート)ジルコニウム、トリエトキシ・モノ(エチルアセトアセテート)ジルコニウム、ジエトキシ・ビス(エチルアセトアセテート)ジルコニウム、モノエトキシ・トリス(エチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウム、モノ(アセチルアセトナート)トリス(エチルアセトアセテート)ジルコニウム、ビス(アセチルアセトナート)ビス(エチルアセトアセテート)ジルコニウム、トリス(アセチルアセトナート)モノ(エチルアセトアセテート)ジルコニウム等のジルコニウムキレート化合物;
 ジエトキシ・モノ(アセチルアセトナート)アルミニウム、モノエトキシ・ビス(アセチルアセトナート)アルミニウム、ジ-i-プロポキシ・モノ(アセチルアセトナート)アルミニウム、モノ-i-プロポキシ・ビス(エチルアセトアセテート)アルミニウム、モノエトキシ・ビス(エチルアセトアセテート)アルミニウム、ジエトキシ・モノ(エチルアセトアセテート)アルミニウム、トリス(アセチルアセトナート)アルミニウム、ビス(エチルアセトアセテート)モノ(アセチルアセトナート)アルミニウム等のアルミニウムキレート化合物が挙げられる。
Specifically, triethoxy mono (acetylacetonet) titanium, tri-n-propoxymono (acetylacetoneate) titanium, diethoxybis (acetylacetonetate) titanium, monoethoxytris (acetylacetonate) titanium, Tetrakiss (acetylacetonetate) titanium, triethoxy mono (ethylacetone acetate) titanium, diethoxy bis (ethylacetone acetate) titanium, monoethoxy tris (ethylacetone acetate) titanium, mono (acetylacetoneate) tris (ethylacetone acetate) ) Titanium chelate compounds such as titanium, bis (acetylacetoneate) bis (ethylacetoneacetate) titanium, tris (acetylacetoneate) mono (ethylacetoneacetate) titanium;
Triethoxy mono (acetylacetonate) zirconium, tri-n-propoxymono (acetylacetonate) zirconium, diethoxybis (acetylacetonate) zirconium, monoethoxytris (acetylacetonate) zirconium, tetrakis (acetylacetonate) ) Zirconium, triethoxy mono (ethylacetate acetate) zirconium, diethoxy bis (ethylacetacetate) zirconium, monoethoxy tris (ethylacetacetate) zirconium, tetrakis (ethylacetacetate) zirconium, mono (acetylacetonate) tris ( Zirconium chelating compounds such as ethylacetacetate) zirconium, bis (acetylacetonate) bis (ethylacetate acetate) zirconium, tris (acetylacetonate) mono (ethylacetacetate) zirconium;
Diethoxy mono (acetylacetonate) aluminum, monoethoxybis (acetylacetonate) aluminum, di-i-propoxymono (acetylacetonate) aluminum, mono-i-propoxybis (ethylacetonate) aluminum, mono Examples thereof include aluminum chelate compounds such as ethoxy bis (ethyl acetoacetate) aluminum, diethoxy mono (ethyl acetoacetate) aluminum, tris (acetylacetonate) aluminum, and bis (ethylacetate acetate) mono (acetylacetonate) aluminum.
 低屈折率層(L)形成用溶液中の金属キレート化合物の含有量は、バインダー成分100質量部に対して、好ましくは5~15質量部、より好ましくは5~13質量部、さらに好ましくは5~10質量部である。 The content of the metal chelate compound in the solution for forming the low refractive index layer (L) is preferably 5 to 15 parts by mass, more preferably 5 to 13 parts by mass, and further preferably 5 with respect to 100 parts by mass of the binder component. ~ 10 parts by mass.
(低屈折率層(L)の形成)
 低屈折率層(L)は、上記各成分を特定量、更には任意成分を、粘度調整や易塗布性の目的で、下記溶剤に溶解して低屈折率層(L)用コーティング溶液とし、この溶液をハードコート層(HC)に塗布した後、乾燥し、次いで加熱し、熱硬化させて形成することができる。
(Formation of low refractive index layer (L))
In the low refractive index layer (L), each of the above components is dissolved in a specific amount, and an optional component is dissolved in the following solvent for the purpose of viscosity adjustment and easy coating to prepare a coating solution for the low refractive index layer (L). This solution can be applied to the hard coat layer (HC), then dried, then heated and heat cured to form.
 低屈折率層(L)用コーティング溶液に使用される溶剤は、メチルアルコール、エチルアルコール、プロピルアルコールなどのアルコール化合物;トルエン、キシレン等の芳香族化合物;酢酸エチル、酢酸ブチル、酢酸イソブチルなどのエステル化合物;アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、ジアセトンアルコール等のケトン化合物等が適している。その他、メチレングリコールモノメチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、更にはメチルセロソルブやエチルセロソルブ、プロピレングリコールモノメチルエーテル等のセロソルブ化合物などの溶剤も使用できる。
 低屈折率層(L)用コーティング溶液を構成する上記各成分は、通常、室温付近で任意に混合攪拌されて溶液とされる。なお、市販の粒子分散体を使用した時は、分散媒である溶媒が溶液中に必然的に混入することになる。低屈折率層(L)用コーティング溶液中の溶媒並びに別途配合される溶剤は、前記乾燥並びに硬化工程において除去される。
 溶液の高屈折率層(H)上への塗工方法は特に制限されず、ディップコート法、ロールコート法、ダイコート法、フローコート法、スプレー法等の方法が採用されるが、外観品位や膜厚制御の観点からディップコート法が好適である。
The solvent used in the coating solution for the low refractive index layer (L) is an alcohol compound such as methyl alcohol, ethyl alcohol, or propyl alcohol; an aromatic compound such as toluene or xylene; an ester such as ethyl acetate, butyl acetate, or isobutyl acetate. Compounds: Ketone compounds such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and diacetone alcohol are suitable. In addition, solvents such as methylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, and cellosolve compounds such as methyl cellosolve, ethyl cellosolve, and propylene glycol monomethyl ether can also be used.
Each of the above components constituting the coating solution for the low refractive index layer (L) is usually mixed and stirred arbitrarily near room temperature to obtain a solution. When a commercially available particle dispersion is used, a solvent as a dispersion medium is inevitably mixed in the solution. The solvent in the coating solution for the low refractive index layer (L) and the solvent to be separately blended are removed in the drying and curing steps.
The method of applying the solution onto the high refractive index layer (H) is not particularly limited, and methods such as a dip coating method, a roll coating method, a die coating method, a flow coating method, and a spray method are adopted. The dip coating method is preferable from the viewpoint of film thickness control.
<保護層(C)>
 本発明の反射防止積層体は、反射防止層(AR)の上に、保護層(C)を有することができる。
 保護層(C)の屈折率は好ましくは1.450~1.550である。屈折率の下限は、好ましくは1.460、より好ましくは1.470である。屈折率の上限は、好ましくは1.530、より好ましくは1.520である。
<Protective layer (C)>
The antireflection laminate of the present invention can have a protective layer (C) on the antireflection layer (AR).
The refractive index of the protective layer (C) is preferably 1.450 to 1.550. The lower limit of the refractive index is preferably 1.460, more preferably 1.470. The upper limit of the refractive index is preferably 1.530, more preferably 1.520.
 保護層(C)の膜厚は5~50nmである。膜厚の下限は、好ましくは10nm、より好ましくは15nmである。膜厚の上限は、好ましくは40nm、より好ましくは30nmである。
 保護層(C)は、バインダー成分、シリカ粒子および金属キレート化合物を含む組成物の硬化物からなることが好ましい。保護層(C)は、バインダー成分100質量部に対して、中実シリカ粒子を10~30質量部、金属キレート化合物を5~15質量部含む組成物の硬化物からなることが好ましい。
The film thickness of the protective layer (C) is 5 to 50 nm. The lower limit of the film thickness is preferably 10 nm, more preferably 15 nm. The upper limit of the film thickness is preferably 40 nm, more preferably 30 nm.
The protective layer (C) is preferably composed of a cured product of a composition containing a binder component, silica particles and a metal chelate compound. The protective layer (C) is preferably made of a cured product of a composition containing 10 to 30 parts by mass of solid silica particles and 5 to 15 parts by mass of a metal chelate compound with respect to 100 parts by mass of the binder component.
(バインダー成分)
 バインダー成分は、(i)式(1)で表されるアルコキシシラン化合物またはその加水分解物および(ii)式(2)で表されるアルコキシシラン化合物またはその加水分解物からなる群より選ばれる少なくとも一種のバインダー成分であることが好ましい。式(1)および式(2)は、中低屈折率層(ML)の項で説明した通りである。
(Binder component)
The binder component is at least selected from the group consisting of the alkoxysilane compound represented by the formula (1) or a hydrolyzate thereof and the alkoxysilane compound represented by the formula (2) or a hydrolyzate thereof. It is preferably a kind of binder component. The formulas (1) and (2) are as described in the section of the medium-low refractive index layer (ML).
(中実シリカ粒子)
 保護層(C)は、中実シリカ粒子を含有することが好ましい。保護層(C)中の中実シリカ粒子としては、粒径が5~500nmで屈折率が1.44~1.5の範囲にあるものが好ましい。即ち、このような酸化物微粒子を使用することにより、保護層(C)の全体にわたって硬度等の基本的な特性を均一に付与することができる。
(Solid silica particles)
The protective layer (C) preferably contains solid silica particles. The solid silica particles in the protective layer (C) preferably have a particle size of 5 to 500 nm and a refractive index in the range of 1.44 to 1.5. That is, by using such oxide fine particles, basic properties such as hardness can be uniformly imparted over the entire protective layer (C).
(金属キレート化合物)
 保護層(C)に用いられる金属キレート化合物は、中低屈折率層(ML)の形成に用いられる金属キレート化合物と同じ種類のものを用いることができ、この中から選択して用いることができる。
(Metal chelate compound)
As the metal chelate compound used for the protective layer (C), the same type as the metal chelate compound used for forming the medium-low refractive index layer (ML) can be used, and can be selected and used from these. ..
(保護層(C)の形成)
 保護層(C)は、各成分を、更には任意成分を、中低屈折率層(ML)形成時に用いた各種溶剤に溶解して保護層(C)用コーティング溶液とし、この溶液を低屈折率層(L)に塗布した後乾燥し、次いで加熱、硬化させて形成される。該層の厚みは、反射防止性能の観点から、好ましくは5~100nm、より好ましくは20~70nm、さらに好ましくは30~50nmである。
(Formation of protective layer (C))
In the protective layer (C), each component and further an arbitrary component are dissolved in various solvents used at the time of forming the medium-low refractive index layer (ML) to prepare a coating solution for the protective layer (C), and this solution is used as a low-refractive index. It is formed by applying it to the rate layer (L), drying it, and then heating and curing it. The thickness of the layer is preferably 5 to 100 nm, more preferably 20 to 70 nm, and even more preferably 30 to 50 nm from the viewpoint of antireflection performance.
 保護層(C)用コーティング溶液を構成する上記各成分の混合順序や混合条件、更には、低屈折率層(L)上への塗工方法は特に制限されず、中低屈折率層(ML)形成時の方法を採用できる。 The mixing order and mixing conditions of the above components constituting the coating solution for the protective layer (C), and the coating method on the low refractive index layer (L) are not particularly limited, and the medium and low refractive index layer (ML) is not particularly limited. ) The method at the time of formation can be adopted.
<帯電防止層(AS)>
 本発明の反射防止積層体は、ハードコート層(HC)と中低屈折率層(ML)との間に、帯電防止層(AS)を有していても良い。
 帯電防止層(AS)は、バインダー成分、および導電粒子を含む組成物の硬化物からなることが好ましい。帯電防止層(AS)は、バインダー成分100質量部に対して、導電粒子を100~500質量部含む組成物の硬化物からなることが好ましい。
 帯電防止層(AS)の厚みは、好ましくは10~200nm、より好ましくは20~150nm、さらに好ましくは30~100nm、さらにより好ましくは40~80nmである。
<Antistatic layer (AS)>
The antireflection laminate of the present invention may have an antistatic layer (AS) between the hard coat layer (HC) and the medium-low refractive index layer (ML).
The antistatic layer (AS) is preferably composed of a cured product of a composition containing a binder component and conductive particles. The antistatic layer (AS) is preferably made of a cured product of a composition containing 100 to 500 parts by mass of conductive particles with respect to 100 parts by mass of the binder component.
The thickness of the antistatic layer (AS) is preferably 10 to 200 nm, more preferably 20 to 150 nm, still more preferably 30 to 100 nm, and even more preferably 40 to 80 nm.
(導電粒子)
 導電粒子としては、酸化インジウム、酸化インジウム-酸化スズ(ITO)、酸化スズ、アンチモンドープ酸化スズ(ATO)、リンドープ酸化スズ(PTO)、フッ素ドープ酸化スズ(FTO)、酸化亜鉛、アルミニウムドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO)などを好適に用いることができる。
 なかでも酸化スズ系の導電粒子は、波長に対して正の相関の吸収を有しており、形成される反射防止積層体の光透過吸収損失をQ450<Q550<Q650と容易にすることができる。
 帯電防止層(AS)は、酸化インジウム-酸化スズ(ITO)、アンチモンドープ酸化スズ(ATO)、リンドープ酸化スズ(PTO)およびフッ素ドープ酸化スズ(FTO)からなる群より選ばれる少なくとも一種の導電粒子を含有することが好ましい。有機系導電粒子を用いることもできる。
(Conductive particles)
Conductive particles include indium oxide, indium oxide-tin oxide (ITO), tin oxide, antimony-doped tin oxide (ATO), phosphorus-doped tin oxide (PTO), fluorine-doped tin oxide (FTO), zinc oxide, and aluminum-doped zinc oxide. (AZO), gallium-doped zinc oxide (GZO) and the like can be preferably used.
Among them, tin oxide-based conductive particles have a positive correlation absorption with respect to the wavelength, and the light transmission absorption loss of the formed antireflection laminate is facilitated as Q 450 <Q 550 <Q 650. be able to.
The antistatic layer (AS) is at least one conductive particle selected from the group consisting of indium oxide-tin oxide (ITO), antimony-doped tin oxide (ATO), phosphorus-doped tin oxide (PTO), and fluorine-doped tin oxide (FTO). Is preferably contained. Organic conductive particles can also be used.
 導電粒子の含有量はバインダー成分100質量部に対して、好ましくは200~500質量部、より好ましくは300~500質量部である。導電粒子の粒径は、好ましくは1nm~100nmである。粒径は、好ましくは1~50nm、より好ましくは1~30nm、さらに好ましくは1~15nmである。 The content of the conductive particles is preferably 200 to 500 parts by mass, and more preferably 300 to 500 parts by mass with respect to 100 parts by mass of the binder component. The particle size of the conductive particles is preferably 1 nm to 100 nm. The particle size is preferably 1 to 50 nm, more preferably 1 to 30 nm, and even more preferably 1 to 15 nm.
(バインダー成分)
 帯電防止層(AS)のバインダー成分は、4官能以上のウレタンアクリレートを硬化させてなることが好ましい。
 4官能以上のウレタンアクリレートとして、ペンタエリスリトールトリ(メタ)アクリレートに、両末端イソシアネート(例えばトリヘキサジエチレンジイソシアネート)を反応させた、分子鎖末端のそれぞれに3個の(メタ)アクリロイル基を有する6官能のウレタンアクリレートを挙げることができる。
(Binder component)
The binder component of the antistatic layer (AS) is preferably formed by curing a tetrafunctional or higher functional urethane acrylate.
As a tetrafunctional or higher functional urethane acrylate, pentaerythritol tri (meth) acrylate is reacted with both terminal isocyanates (for example, trihexadiethylene diisocyanate), and each of the molecular chain ends has three (meth) acryloyl groups. Urethane acrylate can be mentioned.
 バインダー成分となるモノマーまたはオリゴマーとしては、4官能以上のウレタンアクリレートが好ましい。4官能のウレタンアクリレートとして、ペンタエリスリトールジ(メタ)アクリレートを、末端イソシアネート化合物と反応させ、イソシアネート化合物の両末端に、それぞれ2個の(メタ)アクリロイル基を導入したものが挙げられる。6官能のウレタンアクリレート(a2)として、ペンタエリスリトールトリ(メタ)アクリレートに、両末端イソシアネート(例えばトリヘキサジエチレンジイソシアネート)を反応させることにより、分子鎖末端のそれぞれに3個の(メタ)アクリロイル基を導入したものが挙げられる。 As the monomer or oligomer serving as a binder component, a tetrafunctional or higher functional urethane acrylate is preferable. Examples of the tetrafunctional urethane acrylate include those obtained by reacting pentaerythritol di (meth) acrylate with a terminal isocyanate compound and introducing two (meth) acryloyl groups at both ends of the isocyanate compound. As a hexafunctional urethane acrylate (a2), pentaerythritol tri (meth) acrylate is reacted with both-terminal isocyanates (for example, trihexadiethylene diisocyanate) to form three (meth) acryloyl groups at each end of the molecular chain. The ones that have been introduced can be mentioned.
 塗液には、必要に応じて、溶媒や各種添加剤を加えることができる。溶媒としては、トルエン、キシレン、シクロヘキサン、シクロヘキシルベンゼンなどの芳香族炭化水素類、n-ヘキサンなどの炭化水素類、ジブチルエーテル、ジメトキシメタン、ジメトキシエタン、ジエトキシエタン、プロピレンオキシド、ジオキサン、ジオキソラン、トリオキサン、テトラヒドロフラン、アニソールおよびフェネトール等のエーテル類、また、メチルイソブチルケトン、メチルブチルケトン、アセトン、メチルエチルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロペンタノン、およびメチルシクロヘキサノン等のケトン類、また蟻酸エチル、蟻酸プロピル、蟻酸n-ペンチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酢酸n-ペンチル、およびγ-プチロラクトン等のエステル類、さらには、メチルセロソルブ、セロソルブ、ブチルセロソルブ、セロソルブアセテート等のセロソルブ類等の中から塗工適正等を考慮して適宜選択される。また、塗液には添加剤として、表面調整剤、屈折率調整剤、密着性向上剤、硬化剤等を加えることもできる。 Solvents and various additives can be added to the coating liquid as needed. Solvents include aromatic hydrocarbons such as toluene, xylene, cyclohexane and cyclohexylbenzene, hydrocarbons such as n-hexane, dibutyl ether, dimethoxymethane, dimethoxyethane, diethoxyethane, propylene oxide, dioxane, dioxolane and trioxane. , Tetrahydrofuran, anisole, phenetol and other ethers, as well as methylisobutylketone, methylbutylketone, acetone, methylethylketone, diethylketone, dipropylketone, diisobutylketone, cyclopentanone, cyclohexanone, methylcyclopentanone, methylcyclohexanone and the like. Ketones, and esters such as ethyl formate, propyl formate, n-pentyl formate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, n-pentyl acetate, and γ-petitolactone, as well as methyl cellosolves. It is appropriately selected from among cellosolves such as cellosolve, butyl cellosolve, and cellosolve acetate in consideration of coating suitability and the like. Further, as an additive, a surface adjusting agent, a refractive index adjusting agent, an adhesion improving agent, a curing agent and the like can be added to the coating liquid.
(帯電防止層(AS)の形成)
 帯電防止層(AS)は、導電粒子とバインダー成分形成用のモノマーまたはオリゴマーを含む塗液を基材(B)上に塗布し、基材(B)上に塗膜を形成し、該塗膜に対し、必要に応じて乾燥をおこない、その後、紫外線、電子線といった電離放射線を照射することにより樹脂成分形成用のモノマーまたはオリゴマーの硬化反応をおこなうことにより、帯電防止層(AS)とすることができる。
(Formation of antistatic layer (AS))
In the antistatic layer (AS), a coating liquid containing conductive particles and a monomer or oligomer for forming a binder component is applied onto the substrate (B) to form a coating film on the substrate (B), and the coating film is formed. On the other hand, it is dried as necessary, and then the monomer or oligomer for forming the resin component is cured by irradiating it with ionizing radiation such as ultraviolet rays and electron beams to form an antistatic layer (AS). Can be done.
 塗液の塗布方法としては、ロールコーター、リバースロールコーター、グラビアコーター、マイクログラビアコーター、ナイフコーター、バーコーター、ワイヤーバーコーター、ダイコーター、ディップコーターを用いた塗布方法を用いることができる。 As a coating method, a roll coater, a reverse roll coater, a gravure coater, a micro gravure coater, a knife coater, a bar coater, a wire bar coater, a die coater, and a dip coater can be used.
 また、帯電防止層(AS)を形成するための塗液を紫外線により硬化させる場合にあっては、帯電防止層(AS)形成用塗液に光重合開始剤を添加することが好ましい。光重合開始剤としては、紫外線が照射された際にラジカルを発生するものであれば良く、例えば、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類を用いることができる。また、光重合開始剤の添加量は、4官能以上のウレタンアクリレート100質量部に対して、好ましくは1~10質量部、より好ましくは1~7質量部である。 Further, when the coating liquid for forming the antistatic layer (AS) is cured by ultraviolet rays, it is preferable to add a photopolymerization initiator to the coating liquid for forming the antistatic layer (AS). The photopolymerization initiator may be any one that generates radicals when irradiated with ultraviolet rays, and for example, acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, and thioxanthones are used. Can be done. The amount of the photopolymerization initiator added is preferably 1 to 10 parts by mass, and more preferably 1 to 7 parts by mass with respect to 100 parts by mass of the tetrafunctional or higher functional urethane acrylate.
<防汚層(AF)>
 用途に応じて最表面に防汚層(AF)を積層しても良い。防汚層を設けると、反射防止積層体に付着した汚れ(ヒトの指紋等)を落としやすくなる。防汚層は、その機能を十分に発揮するために、機能層の最表面を構成する層であることが好ましい。
 防汚層(AF)は、フッ素樹脂系の防汚剤をコーティングすることにより形成することができる。フッ素樹脂系の化合物としては、例えば、ポリフルオロポリエーテル基、ポリフルオロアルキレン基、およびポリフルオロアルキル基からなる群から選ばれる1つ以上の基を有する有機ケイ素化合物を挙げることができる。ポリフルオロポリエーテル基とは、ポリフルオロアルキレン基とエーテル性酸素原子とが交互に結合した構造を有する2価の基のことである。
 防汚剤として具体的には、AGC社製の「SURECO(登録商標)AF」シリーズ、信越化学工業社製の「SHIN-ETSU SUBELYN(登録商標)」シリーズ、ダイキン工業社製の「オプツール」シリーズ、フロロテクノロジー社製「フロロサーフ(登録商標)」シリーズ、ハーベス社製「DURASURF」シリーズ、ネオス社製「フタージェント」シリーズが市販され、容易に入手することができる。
 防汚層(AF)の厚みは、好ましくは2~20nm、より好ましくは2~15nm、さらに好ましくは2~10nmである。
<Anti-fouling layer (AF)>
An antifouling layer (AF) may be laminated on the outermost surface depending on the application. When the antifouling layer is provided, it becomes easy to remove stains (human fingerprints, etc.) adhering to the antireflection laminate. The antifouling layer is preferably a layer constituting the outermost surface of the functional layer in order to fully exert its function.
The antifouling layer (AF) can be formed by coating with a fluororesin-based antifouling agent. Examples of the fluororesin-based compound include organosilicon compounds having one or more groups selected from the group consisting of a polyfluoropolyether group, a polyfluoroalkylene group, and a polyfluoroalkyl group. The polyfluoropolyether group is a divalent group having a structure in which polyfluoroalkylene groups and etheric oxygen atoms are alternately bonded.
Specifically, as an antifouling agent, "SURECO (registered trademark) AF" series manufactured by AGC, "SHIN-ETSU SUBELYN (registered trademark)" series manufactured by Shin-Etsu Chemical Co., Ltd., and "Optur" series manufactured by Daikin Industries, Ltd. , Fluorotechnology's "Fluorosurf (registered trademark)" series, Harves'"DURASURF" series, and Neos's "Futergent" series are commercially available and easily available.
The thickness of the antifouling layer (AF) is preferably 2 to 20 nm, more preferably 2 to 15 nm, and even more preferably 2 to 10 nm.
<本発明の反射防止積層体の層構成>
 本発明の反射防止積層体は、基材(B)/ハードコート層(HC)/中低屈折率層(ML)/中屈折率層(M)/高屈折率層(H)/低屈折率層(L)の順に配置される。低屈折率層(L)の基材(B)側とは反対側の面に保護層(C)を有していても良い。また
 ハードコート層(HC)と中低屈折率層(ML)との間に帯電防止層(AS)を有していても良い。本発明の反射防止積層体は、最表層に防汚層(AF)を有していても良い。
 本発明においては、各層は以下の特徴を有する。
 特徴1:中低屈折率層(ML)に帯電防止機能を有する。
 特徴2:中低屈折率層(ML)が帯電防止機能を有さない。
 特徴3:中屈折率層(M)の屈折率<高屈折率層(H)の屈折率
 特徴4:中屈折率層(M)の屈折率=高屈折率層(H)の屈折率
 特徴5:保護層を有する。
 特徴6:帯電防止層を有する。
 実施例で示す反射防止積層体は、以下の特徴を有する。
 実施例1~18:特徴1+特徴3
 実施例19~20:特徴2+特徴3
 実施例21:特徴1+特徴3+特徴5
 実施例22:特徴2+特徴3
 実施例23:特徴2+特徴4
 実施例24:特徴2+特徴3+特徴6
 実施例25:特徴2+特徴4+特徴6
 実施例26:特徴2+特徴4
<Layer structure of antireflection laminate of the present invention>
The antireflection laminate of the present invention has a base material (B) / hard coat layer (HC) / medium / low refractive index layer (ML) / medium refractive index layer (M) / high refractive index layer (H) / low refractive index. The layers (L) are arranged in this order. The protective layer (C) may be provided on the surface of the low refractive index layer (L) opposite to the base material (B) side. Further, an antistatic layer (AS) may be provided between the hard coat layer (HC) and the medium-low refractive index layer (ML). The antireflection laminate of the present invention may have an antifouling layer (AF) on the outermost surface layer.
In the present invention, each layer has the following characteristics.
Feature 1: The medium-low refractive index layer (ML) has an antistatic function.
Feature 2: The medium-low refractive index layer (ML) does not have an antistatic function.
Feature 3: Refractive index of medium refractive index layer (M) <Refractive index of high refractive index layer (H) Feature 4: Refractive index of medium refractive index layer (M) = Refractive index of high refractive index layer (H) Feature 5 : Has a protective layer.
Feature 6: It has an antistatic layer.
The antireflection laminate shown in the examples has the following features.
Examples 1-18: Feature 1 + Feature 3
Examples 19-20: Feature 2 + Feature 3
Example 21: Feature 1 + Feature 3 + Feature 5
Example 22: Feature 2 + Feature 3
Example 23: Feature 2 + Feature 4
Example 24: Feature 2 + Feature 3 + Feature 6
Example 25: Feature 2 + Feature 4 + Feature 6
Example 26: Feature 2 + Feature 4
<反射防止積層体の特性>
〔両面の視感平均反射率〕
 本発明の反射防止積層体表面の、波長380~780nmにおける両面の視感平均反射率は、0.6%以下である。該視感平均反射率は、好ましくは0.55%以下、より好ましくは0.5%以下である。
 図2に示す実施例1の反射防止積層体の反射率の分布と、図3に示す比較例1の反射防止積層体の反射率の分布とを対比すれば明らかなように、本発明の反射防止積層体は、広い波長の範囲で、低い反射率を示す。
<Characteristics of antireflection laminate>
[Double-sided visual average reflectance]
The visual average reflectance of both sides of the surface of the antireflection laminate of the present invention at a wavelength of 380 to 780 nm is 0.6% or less. The visual average reflectance is preferably 0.55% or less, more preferably 0.5% or less.
As is clear from comparing the reflectance distribution of the antireflection laminate of Example 1 shown in FIG. 2 with the reflectance distribution of the antireflection laminate of Comparative Example 1 shown in FIG. 3, the reflection of the present invention The preventive laminate exhibits low reflectance over a wide wavelength range.
〔視感平均透過率〕
 本発明の反射防止積層体の波長380~780nmにおける視感平均透過率は、好ましくは95%以上、より好ましくは96%以上、さらに好ましくは97%以上である。
〔赤外線透過率〕
 本発明の反射防止積層体の波長900nmにおける透過率は、好ましくは85%以上、より好ましくは87%以上、さらに好ましくは90%以上である。
[Visual average transmittance]
The visual average transmittance of the antireflection laminate of the present invention at a wavelength of 380 to 780 nm is preferably 95% or more, more preferably 96% or more, still more preferably 97% or more.
[Infrared transmittance]
The transmittance of the antireflection laminate of the present invention at a wavelength of 900 nm is preferably 85% or more, more preferably 87% or more, still more preferably 90% or more.
 実施例の表の番号において例えば、[表2-1]と[表2-2]とがあるのは、これらは[表2]を分割したもので、共に[表2]と呼ぶことがある。
<特性>
 反射防止積層体の特性は以下の方法で測定した。
(両面の視感平均反射率)
 両面の視感平均反射率は、以下の方法で測定した。日本分光(株)製 紫外可視分光光度計:V-650を使用し、380nm~780nmで測定し、重価係数を掛けることで算出した。
(視感平均透過率)
 視感平均透過率は、以下の方法で測定した。日本分光(株)製、紫外可視分光光度計:V-650を使用し、380nm~780nmで測定し、重価係数を掛けることで算出した。
(赤外線透過率)
 赤外線域の透過率は、以下の方法で測定した。日本分光(株)製、紫外可視近赤外分光光度計:V-570にPbS検出器を取り付けて使用し、380~1000nmの透過率を測定した。得られた透過率の値から、波長900nmにおける透過率の値を赤外線透過率とした。なお、得られた透過率の値とは1nm毎の各波長の透過率である。
(各層の屈折率)
 各層の屈折率は、以下の方法で測定した。アクリル基材に各層をコーティングし、日本分光(株)製 紫外可視分光光度計:V-650を使用し、ピークまたはボトムの値を測定した。また、その値を用いて、各層屈折率を算出した。
In the table numbers of the examples, for example, [Table 2-1] and [Table 2-2] are obtained by dividing [Table 2], and both may be referred to as [Table 2]. ..
<Characteristics>
The characteristics of the antireflection laminate were measured by the following method.
(Double-sided visual average reflectance)
The visual average reflectance on both sides was measured by the following method. It was calculated by measuring at 380 nm to 780 nm using an ultraviolet-visible spectrophotometer manufactured by JASCO Corporation: V-650 and multiplying by a weighting factor.
(Visual average transmittance)
The visual average transmittance was measured by the following method. It was calculated by measuring at 380 nm to 780 nm using an ultraviolet-visible spectrophotometer manufactured by JASCO Corporation: V-650 and multiplying by a weighting factor.
(Infrared transmittance)
The transmittance in the infrared region was measured by the following method. An ultraviolet-visible near-infrared spectrophotometer manufactured by JASCO Corporation: A PbS detector was attached to V-570 and used to measure the transmittance at 380 to 1000 nm. From the obtained transmittance value, the value of the transmittance at a wavelength of 900 nm was defined as the infrared transmittance. The obtained transmittance value is the transmittance of each wavelength for each 1 nm.
(Refractive index of each layer)
The refractive index of each layer was measured by the following method. Each layer was coated on an acrylic base material, and peak or bottom values were measured using an ultraviolet-visible spectrophotometer manufactured by JASCO Corporation: V-650. Moreover, the refractive index of each layer was calculated using the value.
<ハードコート層形成用溶液>
 下記表1に示す各成分を混合してハードコート層形成用溶液を調製した。
Figure JPOXMLDOC01-appb-T000023
<Solution for forming hard coat layer>
Each component shown in Table 1 below was mixed to prepare a solution for forming a hard coat layer.
Figure JPOXMLDOC01-appb-T000023
<反射防止層(AR)形成用溶液>
(中低屈折率層(ML)形成用溶液)
 下記表2に示す成分を表2に示す配合量で混合して中低屈折率層(ML)形成用溶液(ml-1からml-6およびco-ml-1からco-ml-2)を調製した。
(中屈折率層(M)形成用溶液)
 下記表3に示す各成分を表3に示す配合量で混合して中屈折率層(M)形成用溶液(m-1からm-7およびco-m-1からco-m-2)を調製した。
<Anti-reflective layer (AR) forming solution>
(Solution for forming medium and low refractive index layer (ML))
The components shown in Table 2 below are mixed in the blending amounts shown in Table 2 to prepare a solution for forming a medium-low refractive index layer (ML) (ml-1 to ml-6 and co-ml-1 to co-ml-2). Prepared.
(Solution for forming medium refractive index layer (M))
Each component shown in Table 3 below is mixed in the blending amount shown in Table 3 to prepare a solution for forming a medium refractive index layer (M) (m-1 to m-7 and com-1 to com-2). Prepared.
(高屈折率層(H)形成用溶液)
 下記表4に示す各成分を表4に示す配合量で混合して高屈折率層(H)形成用溶液(h-1からh-4およびco-h-1)を調製した。
(低屈折率層(L)形成用溶液)
 下記表5に示す各成分を表5に示す配合量で混合して低屈折率層(L)形成用溶液(l-1からl-6およびco-l-1)を調製した。
(Solution for forming high refractive index layer (H))
Each component shown in Table 4 below was mixed in the blending amount shown in Table 4 to prepare a solution for forming a high refractive index layer (H) (h-1 to h-4 and co-h-1).
(Solution for forming low refractive index layer (L))
Each component shown in Table 5 below was mixed in the blending amount shown in Table 5 to prepare a solution for forming a low refractive index layer (L) (l-1 to l-6 and col-1).
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
 
Figure JPOXMLDOC01-appb-T000025
 
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
<実施例1>
 厚み1mmのポリメチルメタクリレート(PMMA)基材(B)に、ハードコート層(HC)および反射防止層(AR)を、この順序に、以下の方法で形成した。膜厚は、ディップした層形成用溶液からの引き上げ速度により調整した。各層の組成、膜厚、屈折率、波長380~780nm視感平均反射率、波長380~780nmにおける視感平均透過率、波長900nmにおける赤外線透過率を表6に示す。
<Example 1>
A hard coat layer (HC) and an antireflection layer (AR) were formed on a polymethylmethacrylate (PMMA) substrate (B) having a thickness of 1 mm in this order by the following method. The film thickness was adjusted by the rate of withdrawal from the dip layer-forming solution. Table 6 shows the composition, film thickness, refractive index, visual average reflectance at a wavelength of 380 to 780 nm, visual average transmittance at a wavelength of 380 to 780 nm, and infrared transmittance at a wavelength of 900 nm.
〔ハードコート層(HC)の形成〕
 ハードコート層形成用溶液に、基材(B)をディップした後、80℃で、10分間乾燥し、条件500mJでUV硬化して、基材(B)上に、厚み2μmのハードコート層(HC)が形成された積層体(HC)を得た。
[Formation of hard coat layer (HC)]
After dipping the base material (B) into the solution for forming the hard coat layer, the base material (B) is dried at 80 ° C. for 10 minutes, UV-cured under the condition of 500 mJ, and the hard coat layer (B) having a thickness of 2 μm is placed on the base material (B). A laminate (HC) on which HC) was formed was obtained.
〔反射防止層(AR)の形成〕
 積層体(HC)上に、以下の手順で、中低屈折率層(ML)、中屈折率層(M)、高屈折率層(H)、低屈折率層(L)を形成した。
(中低屈折率層(ML)の形成)
 積層体(HC)を中低屈率層形成用溶液(ml-1)にディップした後80℃で10分間乾燥し、条件500mJでUV硬化して、中低屈折率層(ML)を形成した積層体(ML)を得た。
(中屈折率層(M)の形成)
 積層体(ML)を、中屈折率層形成用溶液(m-1)にディップした後、100℃で、60分間、加熱処理して、中屈折率層(M)を形成した積層体(MLM)を得た。
(高屈折率層(H)の形成)
 次いで積層体(MLM)を、高屈折率層形成用溶液(h-1)にディップした後、100℃で、60分間、加熱処理して、高屈折率層(H)を形成した積層体(MLMH)を得た。
(低屈折率層(L)の形成)
 続いて積層体(MLMH)を、低屈折率層形成用溶液(l-1)にディップした後、100℃で、120分間、加熱処理して、低屈折率層(L)を形成した積層体(AR)を得た。図2に視感平均反射率の分布を示す。
[Formation of antireflection layer (AR)]
A medium-low refractive index layer (ML), a medium-refractive index layer (M), a high-refractive index layer (H), and a low-refractive index layer (L) were formed on the laminated body (HC) by the following procedure.
(Formation of medium and low refractive index layer (ML))
The laminate (HC) was dipped in a solution for forming a medium-low refractive index layer (ml-1), dried at 80 ° C. for 10 minutes, and UV-cured under the condition of 500 mJ to form a medium-low refractive index layer (ML). A laminate (ML) was obtained.
(Formation of medium refractive index layer (M))
The laminate (ML) was dipped in a solution for forming a medium refractive index layer (m-1) and then heat-treated at 100 ° C. for 60 minutes to form a laminate (MLM) having a medium refractive index layer (M). ) Was obtained.
(Formation of high refractive index layer (H))
Next, the laminate (MLM) was dipped in a solution for forming a high refractive index layer (h-1) and then heat-treated at 100 ° C. for 60 minutes to form a laminate (H) (high refractive index layer (H)). MLMH) was obtained.
(Formation of low refractive index layer (L))
Subsequently, the laminate (MLMH) was dipped in a solution for forming a low refractive index layer (l-1) and then heat-treated at 100 ° C. for 120 minutes to form a laminate with a low refractive index layer (L). (AR) was obtained. FIG. 2 shows the distribution of the visual average reflectance.
<実施例2>
 各層の膜厚と屈折率を表6に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。
<Example 2>
An antireflection laminate was produced by the same method as in Example 1 except that the film thickness and the refractive index of each layer were shown in Table 6.
<実施例3>
 各層の膜厚と屈折率を表6に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。
<Example 3>
An antireflection laminate was produced by the same method as in Example 1 except that the film thickness and the refractive index of each layer were shown in Table 6.
<実施例4~7>
 各層の膜厚を表6に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。
<Examples 4 to 7>
An antireflection laminate was produced in the same manner as in Example 1 except that the film thickness of each layer was shown in Table 6.
<実施例8>
 各層の膜厚を表6に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。
<Example 8>
An antireflection laminate was produced in the same manner as in Example 1 except that the film thickness of each layer was shown in Table 6.
<実施例9>
 各層の膜厚を表6に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。
<Example 9>
An antireflection laminate was produced in the same manner as in Example 1 except that the film thickness of each layer was shown in Table 6.
<実施例10>
 低屈折率層形成用溶液としてl-2を使用し、各層の膜厚と屈折率を表6に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。
<Example 10>
An antireflection laminate was produced in the same manner as in Example 1 except that l-2 was used as a solution for forming a low refractive index layer and the film thickness and refractive index of each layer were shown in Table 6.
<実施例11>
 低屈折率層形成用溶液としてl-3を使用し、各層の膜厚と屈折率を表6に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。
<Example 11>
An antireflection laminate was produced in the same manner as in Example 1 except that l-3 was used as a solution for forming a low refractive index layer and the film thickness and refractive index of each layer were shown in Table 6.
<実施例12>
 高屈折率層形成用溶液としてh-2を、各層の膜厚と屈折率を表6に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。
<Example 12>
An antireflection laminate was produced by the same method as in Example 1 except that h-2 was used as a solution for forming a high refractive index layer and the film thickness and refractive index of each layer were shown in Table 6.
<実施例13>
 高屈折率層形成用溶液としてh-3を使用し、各層の膜厚と屈折率を表6に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。
<Example 13>
An antireflection laminate was produced by the same method as in Example 1 except that h-3 was used as a solution for forming a high refractive index layer and the film thickness and refractive index of each layer were shown in Table 6.
<実施例14>
 中屈折率層形成用溶液としてm-2を使用し、各層の膜厚と屈折率を表6に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。
<Example 14>
An antireflection laminate was produced in the same manner as in Example 1 except that m-2 was used as the solution for forming the medium refractive index layer and the film thickness and refractive index of each layer were shown in Table 6.
<実施例15>
 中屈折率層形成用溶液としてm-3を使用し、各層の膜厚と屈折率を表6に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。
<Example 15>
An antireflection laminate was produced in the same manner as in Example 1 except that m-3 was used as the solution for forming the medium refractive index layer and the film thickness and refractive index of each layer were shown in Table 6.
<実施例16>
 中低屈折率層形成用溶液としてml-2を使用し、各層の膜厚と屈折率を表6に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。
<Example 16>
An antireflection laminate was produced in the same manner as in Example 1 except that ml-2 was used as a solution for forming a medium-low refractive index layer and the film thickness and refractive index of each layer were shown in Table 6.
<実施例17>
 中低屈折率層形成用溶液としてml-3を使用し、各層の膜厚と屈折率を表6に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。
<Example 17>
An antireflection laminate was produced in the same manner as in Example 1 except that ml-3 was used as a solution for forming a medium-low refractive index layer and the film thickness and refractive index of each layer were shown in Table 6.
<実施例18>
 中低屈折率層形成用溶液としてml-4を、中屈折率層形成用溶液としてm-4を、低屈折率層形成用溶液としてl-4を使用し、各層の膜厚と屈折率を表6に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。
<Example 18>
Using ml-4 as a solution for forming a medium-low refractive index layer, m-4 as a solution for forming a medium-low refractive index layer, and l-4 as a solution for forming a low-refractive index layer, the film thickness and refractive index of each layer were determined. An antireflection laminate was produced in the same manner as in Example 1 except as shown in Table 6.
<実施例19>
 中低屈折率層形成用溶液としてml-5をディップした後、100℃で、60分間、加熱処理して、中低屈折率層(ML)を形成した積層体(ML)を得た。中屈折率層形成用溶液としてm-5を、高屈折率層形成用溶液としてh-4を、低屈折率層形成用溶液としてl-5を使用し、各層の膜厚と屈折率を表6に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。
<Example 19>
After dipping ml-5 as a solution for forming a medium-low refractive index layer, heat treatment was performed at 100 ° C. for 60 minutes to obtain a laminate (ML) on which a medium-low refractive index layer (ML) was formed. Using m-5 as the medium refractive index layer forming solution, h-4 as the high refractive index layer forming solution, and l-5 as the low refractive index layer forming solution, the film thickness and refractive index of each layer are shown. An antireflection laminate was produced in the same manner as in Example 1 except as shown in FIG.
<実施例20>
 中低屈折率層形成用溶液としてml-5をディップした後、100℃で、60分間、加熱処理して、中低屈折率層(ML)を形成した積層体(ML)を得た。各層の膜厚と屈折率を表6に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。
 実施例1~20の各層の組成、膜厚、屈折率、波長380~780nmにおける視感平均反射率、波長380~780nmにおける視感平均透過率、波長900nmにおける赤外線透過率を表6に示す。表中の略号は以下の通りである。
 γ-GPS:3-グリシドキシプロピルトリメトキシシラン
 ATAA:アルミニウムトリス(アセチルアセトナート)
 PEA:ペンタエリスリトールアクリレート
<Example 20>
After dipping ml-5 as a solution for forming a medium-low refractive index layer, heat treatment was performed at 100 ° C. for 60 minutes to obtain a laminate (ML) on which a medium-low refractive index layer (ML) was formed. An antireflection laminate was produced by the same method as in Example 1 except that the film thickness and the refractive index of each layer were shown in Table 6.
Table 6 shows the composition, film thickness, refractive index, visual average reflectance at a wavelength of 380 to 780 nm, visual average transmittance at a wavelength of 380 to 780 nm, and infrared transmittance at a wavelength of 900 nm of each layer of Examples 1 to 20. The abbreviations in the table are as follows.
γ-GPS: 3-glycidoxypropyltrimethoxysilane AAA: aluminum tris (acetylacetonate)
PEA: Pentaerythritol acrylate
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
<実施例21>保護層付き
(保護層形成用溶液)
 保護層形成用溶液として表7に示す組成のc-1を調製した。
<Example 21> With protective layer (solution for forming a protective layer)
As a solution for forming a protective layer, c-1 having the composition shown in Table 7 was prepared.
Figure JPOXMLDOC01-appb-T000036
 厚み1mmのポリメチルメタクリレート(PMMA)基材(B)に、ハードコート層(HC)、反射防止層(AR)および保護層(C)を、この順序に、以下の方法で形成した。膜厚は、ディップした層形成用溶液からの引き上げ速度により調整した。
Figure JPOXMLDOC01-appb-T000036
A hard coat layer (HC), an antireflection layer (AR) and a protective layer (C) were formed on a polymethylmethacrylate (PMMA) substrate (B) having a thickness of 1 mm in this order by the following method. The film thickness was adjusted by the rate of withdrawal from the dip layer-forming solution.
〔ハードコート層(HC)の形成〕
 ハードコート層形成用溶液に、基材(B)をディップした後、80℃で、10分間乾燥し、条件500mJでUV硬化して、基材(B)上に、厚み2μmのハードコート層(HC)が形成された積層体(HC)を得た。
〔反射防止層(AR)の形成〕
 低屈折率層形成用溶液としてl-6を使用し、各層の膜厚と屈折率を表8に示すようにした以外は、実施例1と同じ方法で積層体(AR)を作製した。
〔保護層(C)の形成〕
 積層体(AR)を、保護層形成用溶液(c-1)にディップした後、100℃、120分間、加熱処理して、積層体(AR)上に保護層(C)を形成させた積層体(C)を作製した。
[Formation of hard coat layer (HC)]
After dipping the base material (B) into the solution for forming the hard coat layer, the base material (B) is dried at 80 ° C. for 10 minutes, UV-cured under the condition of 500 mJ, and the hard coat layer (B) having a thickness of 2 μm is placed on the base material (B). A laminate (HC) on which HC) was formed was obtained.
[Formation of antireflection layer (AR)]
A laminate (AR) was prepared in the same manner as in Example 1 except that l-6 was used as the solution for forming the low refractive index layer and the film thickness and the refractive index of each layer were shown in Table 8.
[Formation of protective layer (C)]
The laminate (AR) was dipped in the protective layer forming solution (c-1) and then heat-treated at 100 ° C. for 120 minutes to form the protective layer (C) on the laminate (AR). Body (C) was made.
<実施例22>
 中低屈折率層形成用溶液としてml-6をディップした後、100℃で、60分間、加熱処理して、中低屈折率層(ML)を形成した積層体(ML)を得た。中屈折率層形成用溶液としてm-6を、高屈折率層形成用溶液としてh-4を、低屈折率層形成用溶液としてl-6を使用し、各層の膜厚と屈折率を表8に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。
<Example 22>
After dipping ml-6 as a solution for forming a medium-low refractive index layer, heat treatment was performed at 100 ° C. for 60 minutes to obtain a laminate (ML) on which a medium-low refractive index layer (ML) was formed. Using m-6 as the medium refractive index layer forming solution, h-4 as the high refractive index layer forming solution, and l-6 as the low refractive index layer forming solution, the film thickness and refractive index of each layer are shown. An antireflection laminate was produced in the same manner as in Example 1 except as shown in FIG.
<実施例23>中屈折率層(M)=高屈折率層(H)
 中低屈折率層形成用溶液としてml-6を用い、中低屈折率層(ML)を形成し、中屈折率層形成用溶液としてm-7を用い、中屈折率層(M)を形成し、その上にさらに高屈折率層形成用溶液h-4を用い、層を形成し高屈折率層(H)とした。即ち、中屈折率層(M)と高屈折率層(H)とは、全く同じ層とした。なお中屈折率層形成用溶液m-7と、高屈折率層形成用溶液h-4とは溶媒以外は同じ組成である。さらに、低屈折率層形成用溶液としてl-6を使用し、低屈折率層(L)を形成した。各層の膜厚と屈折率を表8に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。
 実施例21~23の各層の組成、膜厚、屈折率、波長380~780nmにおける視感平均反射率、波長380~780nmにおける視感平均透過率、波長900nmにおける赤外線透過率を表8に示す。表8中の略号は以下の通りである。
  γ-GPS:3-グリシドキシプロピルトリメトキシシラン
  ATAA:アルミニウムトリス(アセチルアセトナート)
  PEA:ペンタエリスリトールアクリレート
<Example 23> Medium refractive index layer (M) = high refractive index layer (H)
A medium-low refractive index layer (ML) is formed using ml-6 as a solution for forming a medium-low refractive index layer, and m-7 is used as a solution for forming a medium-low refractive index layer to form a medium-refractive index layer (M). Then, a solution for forming a high refractive index layer h-4 was further used on the layer to form a layer to form a high refractive index layer (H). That is, the medium refractive index layer (M) and the high refractive index layer (H) are exactly the same layer. The medium refractive index layer forming solution m-7 and the high refractive index layer forming solution h-4 have the same composition except for the solvent. Further, l-6 was used as a solution for forming a low refractive index layer to form a low refractive index layer (L). An antireflection laminate was produced by the same method as in Example 1 except that the film thickness and the refractive index of each layer were shown in Table 8.
Table 8 shows the composition, film thickness, refractive index, visual average reflectance at a wavelength of 380 to 780 nm, visual average transmittance at a wavelength of 380 to 780 nm, and infrared transmittance at a wavelength of 900 nm of each layer of Examples 21 to 23. The abbreviations in Table 8 are as follows.
γ-GPS: 3-glycidoxypropyltrimethoxysilane AAA: aluminum tris (acetylacetonate)
PEA: Pentaerythritol acrylate
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
<実施例24>帯電防止層(AS)付き
(帯電防止層形成用溶液)
 下記表9に示す各成分を混合して帯電防止層形成用溶液as-1を調製した。
<Example 24> With antistatic layer (AS) (solution for forming antistatic layer)
Each component shown in Table 9 below was mixed to prepare an antistatic layer forming solution as-1.
Figure JPOXMLDOC01-appb-T000038
 厚み1mmのポリメチルメタクリレート(PMMA)基材(B)に、ハードコート層(HC)、帯電防止層(AS)、反射防止層(AR)を、この順序に、以下の方法で形成した。膜厚は、ディップした層形成用溶液からの引き上げ速度により調整した。
Figure JPOXMLDOC01-appb-T000038
A hard coat layer (HC), an antistatic layer (AS), and an antireflection layer (AR) were formed in this order on a polymethylmethacrylate (PMMA) base material (B) having a thickness of 1 mm by the following method. The film thickness was adjusted by the rate of withdrawal from the dip layer-forming solution.
〔ハードコート層(HC)の形成〕
 ハードコート層形成用溶液に、基材(B)をディップした後、80℃で、10分間乾燥し、条件500mJでUV硬化して、基材(B)上に、厚み2μmのハードコート層(HC)が形成された積層体(HC)を得た。
〔帯電防止層(AS)の形成〕
 得られた溶液に、積層体(HC)をディップした後、80℃で、10分間、加熱処理して、積層体(HC)上に厚み50nmの帯電防止層(AS)が形成された積層体(AS)を得た。
〔反射防止層(AR)の形成〕
 積層体(AS)を、中低屈折率層形成用溶液(ml-6)にディップした後、100℃で、60分間、加熱処理して、中低屈折率層(ML)を形成した積層体(ASML)を得た。
 中屈折率層形成用溶液(m-6)にディップした後、100℃で、60分間、加熱処理して、中屈折率層(M)を形成した積層体(ASMLM)を得た。
 次いで、高屈折率層形成用溶液(h-4)に積層体(ASMLM)をディップした後、100℃で、60分間、加熱処理して、高屈折率層(H)を形成した積層体(ASMLMH)を得た。
 続いて、低屈折率層形成用溶液(l-6)に積層体(ASMLMH)をディップした後、100℃で、120分間、加熱処理して、低屈折率層(L)を形成した積層体(ASAR)を得た。
[Formation of hard coat layer (HC)]
After dipping the base material (B) into the solution for forming the hard coat layer, the base material (B) is dried at 80 ° C. for 10 minutes, UV-cured under the condition of 500 mJ, and the hard coat layer (B) having a thickness of 2 μm is placed on the base material (B). A laminate (HC) on which HC) was formed was obtained.
[Formation of antistatic layer (AS)]
After dipping the laminate (HC) into the obtained solution, the laminate (HC) was heat-treated at 80 ° C. for 10 minutes to form an antistatic layer (AS) having a thickness of 50 nm on the laminate (HC). (AS) was obtained.
[Formation of antireflection layer (AR)]
The laminate (AS) was dipped in a solution for forming a medium-low refractive index layer (ml-6) and then heat-treated at 100 ° C. for 60 minutes to form a medium-low refractive index layer (ML). (ASML) was obtained.
After dipping into the medium refractive index layer forming solution (m-6), heat treatment was performed at 100 ° C. for 60 minutes to obtain a laminated body (ASMLM) on which the medium refractive index layer (M) was formed.
Next, after dipping the laminate (ASMLM) into the solution for forming the high refractive index layer (h-4), the laminate (ASMLM) was heat-treated at 100 ° C. for 60 minutes to form the laminate (H). ASMLMH) was obtained.
Subsequently, after dipping the laminate (ASMLMH) into the solution for forming the low refractive index layer (l-6), the laminate was heat-treated at 100 ° C. for 120 minutes to form the laminate (L). (ASAR) was obtained.
<実施例25>帯電防止層(AS)付き、中屈折率層(M)=高屈折率層(H)
 中低屈折率層形成用溶液としてml-6を用い、中低屈折率層(M)を形成し、中屈折率層形成用溶液としてm-7を用い、中屈折率層(M)を形成し、その上にさらに高屈折率層形成用溶液h-4を用い、層を形成し高屈折率層(H)とした。即ち、中屈折率層(M)と高屈折率層(H)とは、全く同じ層とした。なお中屈折率層形成用溶液m-7と、高屈折率層形成用溶液h-4とは溶媒以外は同じ組成である。さらに、低屈折率層形成用溶液としてl-6を使用し、低屈折率層(L)を形成した。各層の膜厚と屈折率を表10に示すようにした以外は、実施例24と同じ方法で、反射防止積層体を製造した。
<Example 25> With antistatic layer (AS), medium refractive index layer (M) = high refractive index layer (H)
A medium-low refractive index layer (M) is formed using ml-6 as a solution for forming a medium-low refractive index layer, and m-7 is used as a solution for forming a medium-low refractive index layer to form a medium-refractive index layer (M). Then, a solution for forming a high refractive index layer h-4 was further used on the layer to form a layer to form a high refractive index layer (H). That is, the medium refractive index layer (M) and the high refractive index layer (H) are exactly the same layer. The medium refractive index layer forming solution m-7 and the high refractive index layer forming solution h-4 have the same composition except for the solvent. Further, l-6 was used as a solution for forming a low refractive index layer to form a low refractive index layer (L). An antireflection laminate was produced in the same manner as in Example 24 except that the film thickness and the refractive index of each layer were shown in Table 10.
 実施例24~25の各層の組成、膜厚、屈折率、波長380~780nmにおける視感平均反射率、波長380~780nmにおける視感平均透過率、波長900nmにおける赤外線透過率を表10に示す。表10中の略号は以下の通りである。
  γ-GPS:3-グリシドキシプロピルトリメトキシシラン
  ATAA:アルミニウムトリス(アセチルアセトナート)
  PEA:ペンタエリスリトールアクリレート
Table 10 shows the composition, film thickness, refractive index, visual average reflectance at a wavelength of 380 to 780 nm, visual average transmittance at a wavelength of 380 to 780 nm, and infrared transmittance at a wavelength of 900 nm of each layer of Examples 24 to 25. The abbreviations in Table 10 are as follows.
γ-GPS: 3-glycidoxypropyltrimethoxysilane AAA: aluminum tris (acetylacetonate)
PEA: Pentaerythritol acrylate
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
<実施例26>中屈折率層(M)=高屈折率層(H)
 中低屈折率層形成用溶液としてml-6を用い、中低屈折率層(ML)を形成し、中屈折率層形成用溶液としてm-7を用い、中屈折率層(M)を形成し、その上にさらに高屈折率層形成用溶液h-1を用い、層を形成し高屈折率層(H)とした。中屈折率層(M)と高屈折率層(H)は、全く同じ屈折率と膜厚とした。さらに、低屈折率層形成用溶液としてl-6を使用し、低屈折率層(L)を形成した。各層の膜厚と屈折率を表8に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。
 実施例26の各層の組成、膜厚、屈折率、波長380~780nmにおける視感平均反射率、波長380~780nmにおける視感平均透過率、波長900nmにおける赤外線透過率を表8に示す。
<Example 26> Medium refractive index layer (M) = high refractive index layer (H)
A medium-low refractive index layer (ML) is formed using ml-6 as a solution for forming a medium-low refractive index layer, and m-7 is used as a solution for forming a medium-low refractive index layer to form a medium-refractive index layer (M). Then, a solution h-1 for forming a high refractive index layer was further used on the layer to form a layer to form a high refractive index layer (H). The medium refractive index layer (M) and the high refractive index layer (H) had exactly the same refractive index and film thickness. Further, l-6 was used as a solution for forming a low refractive index layer to form a low refractive index layer (L). An antireflection laminate was produced by the same method as in Example 1 except that the film thickness and the refractive index of each layer were shown in Table 8.
Table 8 shows the composition, film thickness, refractive index, visual average reflectance at a wavelength of 380 to 780 nm, visual average transmittance at a wavelength of 380 to 780 nm, and infrared transmittance at a wavelength of 900 nm of each layer of Example 26.
<比較例1>
 各層の膜厚と屈折率を表11に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。低屈折率層(L)の膜厚を大きくした例である。図3に視感平均反射率の分布を示す。
<Comparative example 1>
An antireflection laminate was produced in the same manner as in Example 1 except that the film thickness and the refractive index of each layer were shown in Table 11. This is an example in which the film thickness of the low refractive index layer (L) is increased. FIG. 3 shows the distribution of the average visual reflectance.
<比較例2>
 各層の膜厚と屈折率を表11に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。低屈折率層(L)の膜厚を小さくした例である。
<Comparative example 2>
An antireflection laminate was produced in the same manner as in Example 1 except that the film thickness and the refractive index of each layer were shown in Table 11. This is an example in which the film thickness of the low refractive index layer (L) is reduced.
<比較例3>
 各層の膜厚と屈折率を表11に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。高屈折率層(H)の膜厚を大きくした例である。
<Comparative example 3>
An antireflection laminate was produced in the same manner as in Example 1 except that the film thickness and the refractive index of each layer were shown in Table 11. This is an example in which the film thickness of the high refractive index layer (H) is increased.
<比較例4>
 各層の膜厚と屈折率を表11に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。高屈折率層(H)の膜厚を小さくした例である。
<Comparative example 4>
An antireflection laminate was produced in the same manner as in Example 1 except that the film thickness and the refractive index of each layer were shown in Table 11. This is an example in which the film thickness of the high refractive index layer (H) is reduced.
<比較例5>
 各層の膜厚と屈折率を表11に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。中屈折率層(M)の膜厚を大きくした例である。
<Comparative example 5>
An antireflection laminate was produced in the same manner as in Example 1 except that the film thickness and the refractive index of each layer were shown in Table 11. This is an example in which the film thickness of the medium refractive index layer (M) is increased.
<比較例6>
 各層の膜厚と屈折率を表11に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。中屈折率層(M)の膜厚を小さくした例である。
<Comparative Example 6>
An antireflection laminate was produced in the same manner as in Example 1 except that the film thickness and the refractive index of each layer were shown in Table 11. This is an example in which the film thickness of the medium refractive index layer (M) is reduced.
<比較例7>
 各層の膜厚と屈折率を表11に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。中低屈折率層(ML)の膜厚を大きくした例である。
<Comparative Example 7>
An antireflection laminate was produced in the same manner as in Example 1 except that the film thickness and the refractive index of each layer were shown in Table 11. This is an example in which the film thickness of the medium-low refractive index layer (ML) is increased.
<比較例8>
 各層の膜厚と屈折率を表11に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。中低屈折率層(ML)の膜厚を小さくした例である。
<Comparative Example 8>
An antireflection laminate was produced in the same manner as in Example 1 except that the film thickness and the refractive index of each layer were shown in Table 11. This is an example in which the film thickness of the medium-low refractive index layer (ML) is reduced.
<比較例9>
 低屈折率層形成用溶液としてco-l-1を使用し、各層の膜厚と屈折率を表11に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。低屈折率層(L)の屈折率を大きくした例である。
<Comparative Example 9>
An antireflection laminate was produced in the same manner as in Example 1 except that coll-1 was used as a solution for forming a low refractive index layer and the film thickness and refractive index of each layer were shown in Table 11. .. This is an example in which the refractive index of the low refractive index layer (L) is increased.
<比較例10>
 高屈折率層形成用溶液としてco-h-1を使用し、各層の膜厚と屈折率を表11に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。高屈折率層(H)の屈折率を小さくした例である。
<Comparative Example 10>
An antireflection laminate was produced in the same manner as in Example 1 except that coh-1 was used as a solution for forming a high refractive index layer and the film thickness and refractive index of each layer were shown in Table 11. .. This is an example in which the refractive index of the high refractive index layer (H) is reduced.
<比較例11>
 中屈折率層形成用溶液としてco-m-1を使用し、各層の膜厚と屈折率を表11に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。中屈折率層の屈折率を大きくした例である。
<Comparative Example 11>
An antireflection laminate was produced by the same method as in Example 1 except that com-1 was used as a solution for forming a medium refractive index layer and the film thickness and refractive index of each layer were shown in Table 11. .. This is an example in which the refractive index of the medium refractive index layer is increased.
<比較例12>
 中屈折率層形成用溶液としてco-m-2を使用し、各層の膜厚と屈折率を表11に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。中屈折率層の屈折率を小さくした例である。
<Comparative Example 12>
An antireflection laminate was produced in the same manner as in Example 1 except that com-2 was used as a solution for forming a medium refractive index layer and the film thickness and refractive index of each layer were shown in Table 11. .. This is an example in which the refractive index of the medium refractive index layer is reduced.
<比較例13>
 中低屈折率層形成用溶液としてco-ml-1を使用し、各層の膜厚と屈折率を表11に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。中低屈折率層の屈折率を大きくした例である。
<Comparative Example 13>
An antireflection laminate was produced by the same method as in Example 1 except that co-ml-1 was used as a solution for forming a medium-low refractive index layer and the film thickness and refractive index of each layer were shown in Table 11. bottom. This is an example in which the refractive index of the medium-low refractive index layer is increased.
<比較例14>
 中低屈折率層形成用溶液としてco-ml-2を使用し、各層の膜厚と屈折率を表11に示すようにした以外は、実施例1と同じ方法で、反射防止積層体を製造した。中低屈折率層の屈折率を小さくした例である。
<Comparative Example 14>
An antireflection laminate was produced by the same method as in Example 1 except that co-ml-2 was used as a solution for forming a medium-low refractive index layer and the film thickness and refractive index of each layer were shown in Table 11. bottom. This is an example in which the refractive index of the medium-low refractive index layer is reduced.
 比較例1~14の各層の組成、膜厚、屈折率、波長380~780nmにおける視感平均反射率、波長380~780nmにおける視感平均透過率、波長900nmにおける赤外線透過率を表11に示す。表11中の略号は以下の通りである。
  γ-GPS:3-グリシドキシプロピルトリメトキシシラン
  ATAA:アルミニウムトリス(アセチルアセトナート)
  PEA:ペンタエリスリトールアクリレート
Table 11 shows the composition, film thickness, refractive index, visual average reflectance at a wavelength of 380 to 780 nm, visual average transmittance at a wavelength of 380 to 780 nm, and infrared transmittance at a wavelength of 900 nm of each layer of Comparative Examples 1 to 14. The abbreviations in Table 11 are as follows.
γ-GPS: 3-glycidoxypropyltrimethoxysilane AAA: aluminum tris (acetylacetonate)
PEA: Pentaerythritol acrylate
 実施例1~26、比較例1~14の反射防止積層体の波長380~780nmにおける視感平均反射率、波長380~780nmにおける視感平均透過率、波長900nmにおける赤外線透過率、各層の膜厚、屈折率を表12に示す。 Visual average reflectance at wavelengths of 380 to 780 nm, visual average transmittance at wavelengths of 380 to 780 nm, infrared transmittance at wavelength of 900 nm, and film thickness of each layer of the antireflection laminates of Examples 1 to 26 and Comparative Examples 1 to 14. , The refractive index is shown in Table 12.
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
 本発明の反射防止積層体は、LEDディスプレイ(LED、OLED)、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)などの光表示装置の前面パネル、赤外線カメラや赤外線レーザーを使った安全センサーの前面パネルやカバー材、自動車のインストルメントパネル、カーナビや電化製品のタッチパネルに用いることが出来る。 The antireflection laminate of the present invention is a front panel of an optical display device such as an LED display (LED, OLED), a liquid crystal display (LCD), or a plasma display (PDP), and a front panel of a safety sensor using an infrared camera or an infrared laser. It can be used as a cover material, an instrument panel for automobiles, a touch panel for car navigation systems and electrical appliances.
L: 低屈折率層
H: 高屈折率層
M: 中屈折率層
ML: 中低屈折率層
HC: ハードコート層
B: 基材
L: Low refractive index layer H: High refractive index layer M: Medium refractive index layer ML: Medium and low refractive index layer HC: Hard coat layer B: Base material

Claims (9)

  1.  基材(B)、ハードコート層(HC)および反射防止層(AR)をこの順序に含む反射防止積層体であって、
     前記反射防止層(AR)は、
     屈折率が1.450以下で、膜厚が70~130nmの低屈折率層(L)と、
     屈折率が1.700~1.850で、膜厚が10~250nmの高屈折率層(H)と、
     屈折率が1.550~1.810で、膜厚が20~150nmの中屈折率層(M)と、
     屈折率が1.500~1.650で、膜厚が10~230nmの中低屈折率層(ML)とを含み、
     前記反射防止層(AR)の前記各層の屈折率が、RI(L)<RI(ML)<RI(M)≦RI(H)の条件を満たし、
      ここで、
      RI(L)は、低屈折率層(L)の屈折率、
      RI(ML)は、中低屈折率層(ML)の屈折率、
      RI(M)は、中屈折率層(M)の屈折率、
      RI(H)は、高屈折率層(H)の屈折率を表す、
     かつ、前記各層がハードコート層(HC)側から、中低屈折率層(ML)、中屈折率層(M)、高屈折率層(H)、低屈折率層(L)の順に配置され、
     波長380~780nmにおける両面の視感平均反射率が0.6%以下である前記反射防止積層体。
    An antireflection laminate containing a base material (B), a hard coat layer (HC) and an antireflection layer (AR) in this order.
    The antireflection layer (AR) is
    A low refractive index layer (L) having a refractive index of 1.450 or less and a film thickness of 70 to 130 nm.
    A high-refractive index layer (H) having a refractive index of 1.700 to 1.850 and a film thickness of 10 to 250 nm.
    A medium refractive index layer (M) having a refractive index of 1.550 to 1.810 and a film thickness of 20 to 150 nm.
    It contains a medium-low refractive index layer (ML) having a refractive index of 1.500 to 1.650 and a film thickness of 10 to 230 nm.
    The refractive index of each layer of the antireflection layer (AR) satisfies the condition of RI (L) <RI (ML) <RI (M) ≤ RI (H).
    here,
    RI (L) is the refractive index of the low refractive index layer (L).
    RI (ML) is the refractive index of the medium-low refractive index layer (ML).
    RI (M) is the refractive index of the medium refractive index layer (M).
    RI (H) represents the refractive index of the high refractive index layer (H).
    In addition, each of the layers is arranged in the order of the medium-low refractive index layer (ML), the medium-refractive index layer (M), the high-refractive index layer (H), and the low-refractive index layer (L) from the hard coat layer (HC) side. ,
    The antireflection laminate having a visual average reflectance of 0.6% or less on both sides at a wavelength of 380 to 780 nm.
  2.  前記中低屈折率層(ML)は、(i)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物、(ii)下記式(2)で表されるアルコキシシラン化合物またはその加水分解物および(iii)電離放射線硬化樹脂からなる群より選ばれる少なくとも一種のバインダー成分100質量部に対して、
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rはアルキレン基であり、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子である。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子である。Rはアルキル基、アルケニル基またはアルコキシアルキル基である。nは1または2である。)
     金属酸化物粒子を40~500質量部、金属キレート化合物を10質量部以下含む組成物の硬化物からなる請求項1に記載の反射防止積層体。
    The medium-low refractive index layer (ML) is (i) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof, and (ii) an alkoxysilane compound represented by the following formula (2) or water thereof. With respect to 100 parts by mass of at least one binder component selected from the group consisting of the hydrolyzate and the (iii) ionizing radiation curable resin.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R is an alkylene group and R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom.)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom. R 2 is an alkyl group, an alkenyl group or an alkoxyalkyl group. N is 1 or 2.)
    The antireflection laminate according to claim 1, which comprises a cured product of a composition containing 40 to 500 parts by mass of metal oxide particles and 10 parts by mass or less of a metal chelate compound.
  3.  前記中屈折率層(M)は、(i)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物および(ii)下記式(2)で表されるアルコキシシラン化合物またはその加水分解物からなる群より選ばれる少なくとも一種のバインダー成分100質量部に対して、
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rはアルキレン基であり、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子である。)
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子である。Rはアルキル基、アルケニル基またはアルコキシアルキル基である。nは1または2である。)
     金属酸化物粒子を40~500質量部、金属キレート化合物を1~20質量部含む組成物の硬化物からなる請求項1に記載の反射防止積層体。
    The medium refractive index layer (M) is (i) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof, and (ii) an alkoxysilane compound represented by the following formula (2) or a hydrolysis thereof. For 100 parts by mass of at least one kind of binder component selected from the group consisting of substances
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R is an alkylene group and R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom.)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom. R 2 is an alkyl group, an alkenyl group or an alkoxyalkyl group. N is 1 or 2.)
    The antireflection laminate according to claim 1, which comprises a cured product of a composition containing 40 to 500 parts by mass of metal oxide particles and 1 to 20 parts by mass of a metal chelate compound.
  4.  前記高屈折率層(H)は、(i)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物および(ii)下記式(2)で表されるアルコキシシラン化合物またはその加水分解物からなる群より選ばれる少なくとも一種のバインダー成分100質量部に対して、
    Figure JPOXMLDOC01-appb-C000005
    (式中、Rはアルキレン基であり、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子である。)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子である。Rはアルキル基、アルケニル基またはアルコキシアルキル基である。nは1または2である。)
     金属酸化物粒子を300~500質量部、金属キレート化合物を10~20質量部含む組成物の硬化物からなる請求項1に記載の反射防止積層体。
    The high-refractive-index layer (H) is composed of (i) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof, and (ii) an alkoxysilane compound represented by the following formula (2) or a hydrolysis thereof. For 100 parts by mass of at least one kind of binder component selected from the group consisting of substances
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, R is an alkylene group and R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom.)
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom. R 2 is an alkyl group, an alkenyl group or an alkoxyalkyl group. N is 1 or 2.)
    The antireflection laminate according to claim 1, which comprises a cured product of a composition containing 300 to 500 parts by mass of metal oxide particles and 10 to 20 parts by mass of a metal chelate compound.
  5.  前記低屈折率層(L)は、(i)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物および(ii)下記式(2)で表されるアルコキシシラン化合物またはその加水分解物からなる群より選ばれる少なくとも一種のバインダー成分100質量部に対して、
    Figure JPOXMLDOC01-appb-C000007
    (式中、Rはアルキレン基であり、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子である。)
    Figure JPOXMLDOC01-appb-C000008
    (式中、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子である。Rはアルキル基、アルケニル基またはアルコキシアルキル基である。nは1または2である。)
     シリカ粒子を100~200質量部、金属キレート化合物を5~15質量部含む組成物の硬化物からなる請求項1に記載の反射防止積層体。
    The low refractive index layer (L) is composed of (i) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof, and (ii) an alkoxysilane compound represented by the following formula (2) or a hydrolysis thereof. For 100 parts by mass of at least one kind of binder component selected from the group consisting of substances
    Figure JPOXMLDOC01-appb-C000007
    (In the formula, R is an alkylene group and R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom.)
    Figure JPOXMLDOC01-appb-C000008
    (In the formula, R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom. R 2 is an alkyl group, an alkenyl group or an alkoxyalkyl group. N is 1 or 2.)
    The antireflection laminate according to claim 1, which comprises a cured product of a composition containing 100 to 200 parts by mass of silica particles and 5 to 15 parts by mass of a metal chelate compound.
  6.  前記金属酸化物粒子が、酸化チタン、酸化ジルコニウム、五酸化ニオブ、アンチモンドープ酸化錫(ATO)、酸化インジウム-酸化錫(ITO)、リンドープ酸化錫(PTO)、フッ素ドープ酸化錫(FTO)および五酸化アンチモンからなる群より選ばれる少なくとも一種の酸化物粒子である請求項1~5のいずれか一項に記載の反射防止積層体。 The metal oxide particles are titanium oxide, zirconium oxide, niobium pentoxide, antimony-doped tin oxide (ATO), indium oxide-tin oxide (ITO), phosphorus-doped tin oxide (PTO), fluorine-doped tin oxide (FTO), and five. The antireflection laminate according to any one of claims 1 to 5, which is at least one kind of oxide particles selected from the group consisting of antimon oxide.
  7.  前記反射防止層(AR)の上に、保護層(C)を有し、前記保護層(C)は、(i)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物および(ii)下記式(2)で表されるアルコキシシラン化合物またはその加水分解物からなる群より選ばれる少なくとも一種のバインダー成分100質量部に対して、
    Figure JPOXMLDOC01-appb-C000009
    (式中、Rはアルキレン基であり、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子である。)
    Figure JPOXMLDOC01-appb-C000010
    (式中、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子である。Rはアルキル基、アルケニル基またはアルコキシアルキル基である。nは1または2である。)
     シリカ粒子を10~30質量部、金属キレート化合物を5~15質量部含む組成物の硬化物からなる請求項1に記載の反射防止積層体。
    A protective layer (C) is provided on the antireflection layer (AR), and the protective layer (C) is (i) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof, and ( ii) With respect to 100 parts by mass of at least one binder component selected from the group consisting of the alkoxysilane compound represented by the following formula (2) or a hydrolyzate thereof.
    Figure JPOXMLDOC01-appb-C000009
    (In the formula, R is an alkylene group and R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom.)
    Figure JPOXMLDOC01-appb-C000010
    (In the formula, R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom. R 2 is an alkyl group, an alkenyl group or an alkoxyalkyl group. N is 1 or 2.)
    The antireflection laminate according to claim 1, which comprises a cured product of a composition containing 10 to 30 parts by mass of silica particles and 5 to 15 parts by mass of a metal chelate compound.
  8.  波長380~780nmにおける視感平均透過率が、95%以上である請求項1~7のいずれか一項に記載の反射防止積層体。 The antireflection laminate according to any one of claims 1 to 7, wherein the visual average transmittance at a wavelength of 380 to 780 nm is 95% or more.
  9.  波長900nmにおける赤外線透過率が、85%以上である請求項1~8のいずれか一項に記載の反射防止積層体。 The antireflection laminate according to any one of claims 1 to 8, wherein the infrared transmittance at a wavelength of 900 nm is 85% or more.
PCT/JP2021/013132 2020-04-14 2021-03-26 Anti-reflection laminate WO2021210371A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022515275A JPWO2021210371A1 (en) 2020-04-14 2021-03-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-072175 2020-04-14
JP2020072175 2020-04-14

Publications (1)

Publication Number Publication Date
WO2021210371A1 true WO2021210371A1 (en) 2021-10-21

Family

ID=78084233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013132 WO2021210371A1 (en) 2020-04-14 2021-03-26 Anti-reflection laminate

Country Status (2)

Country Link
JP (1) JPWO2021210371A1 (en)
WO (1) WO2021210371A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058454A1 (en) * 2021-10-05 2023-04-13 フクビ化学工業株式会社 Antireflection laminate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03256003A (en) * 1990-03-07 1991-11-14 Mitsubishi Rayon Co Ltd Formation of antireflection layer
JPH04191801A (en) * 1990-11-27 1992-07-10 Hoya Corp Optical parts
JPH0760855A (en) * 1993-08-30 1995-03-07 Toray Ind Inc Reflection-preventing article
JP2006206832A (en) * 2005-01-31 2006-08-10 Jsr Corp Method for producing laminate
JP2006343495A (en) * 2005-06-08 2006-12-21 Fujifilm Holdings Corp Antireflection film, its producing method, polarizing plate and image display device using the film or the plate
WO2013018187A1 (en) * 2011-08-01 2013-02-07 フクビ化学工業株式会社 Anti-reflective film and anti-reflective plate
JP2016177185A (en) * 2015-03-20 2016-10-06 大日本印刷株式会社 Antireflection film, display unit using antireflection film and selection method of antireflection film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03256003A (en) * 1990-03-07 1991-11-14 Mitsubishi Rayon Co Ltd Formation of antireflection layer
JPH04191801A (en) * 1990-11-27 1992-07-10 Hoya Corp Optical parts
JPH0760855A (en) * 1993-08-30 1995-03-07 Toray Ind Inc Reflection-preventing article
JP2006206832A (en) * 2005-01-31 2006-08-10 Jsr Corp Method for producing laminate
JP2006343495A (en) * 2005-06-08 2006-12-21 Fujifilm Holdings Corp Antireflection film, its producing method, polarizing plate and image display device using the film or the plate
WO2013018187A1 (en) * 2011-08-01 2013-02-07 フクビ化学工業株式会社 Anti-reflective film and anti-reflective plate
JP2016177185A (en) * 2015-03-20 2016-10-06 大日本印刷株式会社 Antireflection film, display unit using antireflection film and selection method of antireflection film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058454A1 (en) * 2021-10-05 2023-04-13 フクビ化学工業株式会社 Antireflection laminate

Also Published As

Publication number Publication date
JPWO2021210371A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
JP4918101B2 (en) Optical article comprising a two-layered scratch and abrasion resistant coating and method of producing the same
KR101062564B1 (en) An article having an antireflection film, a coating composition for forming an antireflection film, and an antireflection film
JP4126545B2 (en) Coated article and multilayer laminate
KR20140058565A (en) Anti-reflective film and anti-reflective plate
JP5236374B2 (en) Thermosetting hard coat agent composition, molded article, and lens
JP2003025510A (en) Multilayered laminate having reflection preventing properties and scratch resistance
JP5598448B2 (en) Scratch resistant silicone coating composition, coated article and method for producing the same
JP2018077279A (en) Transparent substrate having antiglare properties and antireflection properties and method for producing the same
JP7268006B2 (en) Antireflection plate
JPH11258403A (en) Antireflection film and display device arranged with the film
JP4462421B2 (en) UV-absorbing group-containing organosilicon compound, method for producing the same, coating composition, and coated article
EP1895333B1 (en) Hard coating composition and plastic optical product
WO2021210371A1 (en) Anti-reflection laminate
JP2000275403A (en) Antireflection film and display device with antireflection film arranged thereon
JP3944957B2 (en) Fluorine-containing compound, optical thin film and antireflection article
CA2421465A1 (en) Coating compositions
JPH1152103A (en) Antireflection film and display arranged the film
KR20070022311A (en) Siloxane coating material, optical articles and process for the production of siloxane coating materials
JP5176265B2 (en) Coating material and optical article using the same
JP2008139526A (en) Antireflection film
JP2021004963A (en) Antireflection film
EP1666552A1 (en) Coating composition and resin product having light-transmitting property
JP3849232B2 (en) Optical thin film, antireflection article and antireflection method
WO2023058454A1 (en) Antireflection laminate
JPH11106704A (en) Reflection reducing film and display unit using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21789080

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022515275

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21789080

Country of ref document: EP

Kind code of ref document: A1