WO2021209000A1 - Method and system for processing glass - Google Patents

Method and system for processing glass Download PDF

Info

Publication number
WO2021209000A1
WO2021209000A1 PCT/CN2021/087476 CN2021087476W WO2021209000A1 WO 2021209000 A1 WO2021209000 A1 WO 2021209000A1 CN 2021087476 W CN2021087476 W CN 2021087476W WO 2021209000 A1 WO2021209000 A1 WO 2021209000A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
soldered
optical property
heating
change
Prior art date
Application number
PCT/CN2021/087476
Other languages
French (fr)
Inventor
Tao He
Huanhuan Wu
Ce Shi
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Publication of WO2021209000A1 publication Critical patent/WO2021209000A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/007Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/241Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet by photoelastic stress analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0047Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to residual stresses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8411Application to online plant, process monitoring
    • G01N2021/8416Application to online plant, process monitoring and process controlling, not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/02Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering
    • G01N25/04Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering of melting point; of freezing point; of softening point

Definitions

  • Embodiments of the present disclosure generally relate to method and system for processing a glass, and more specifically, to a method and a system for eliminating residual stress in a glass.
  • soldering it is usually necessary to attach the electrical parts to a soldering area of the glass (i.e., a region to which the electrical parts are about to be attached) and make the high-temperature molten tin solder located between the electrical parts and the glass.
  • the electrical parts can be firmly soldered to a predetermined position of a glass product after the tin solder is cooled and solidified.
  • the present disclosure provides an apparatus and a method for processing a glass to solve or at least partially solve the above or other potential problems existing in the conventional soldered glass.
  • a method for processing a glass comprises: heating a soldered area of the glass with initial heating parameters; determining a change in an optical property of a section of the glass at a soldered section part corresponding to the soldered area; and adjusting at least one of the heating parameters based on the change in the optical property, such that the change in the optical property at the soldered section part reaches or exceeds a predetermined degree.
  • the relation between the residual stress and the optical property of the soldered section part can be explored in a cost-effective way.
  • the heating parameters can be adjusted even when the residual stress is not effective eliminated until a majority of the residual stress in the glass is effectively eliminated. Accordingly, the risk of glass breakage is significantly reduced and the quality of the glass and the glass article is improved.
  • the heating parameters comprise a heating temperature, a heating duration and a heating rate. In this way, the heating parameters that may possibly affect the residual stress are adjusted comprehensively, to more effectively eliminate the residual stress.
  • the heating temperature is less than a solid-liquid transition temperature of a solder used in the soldered area. Based on the above configuration, the residual stress can be significantly eliminated without compromising the soldering effect.
  • the heating temperature is 0.9 to 0.99 times the solid-liquid transition temperature. In this way, the residual stress can be at least partially eliminated in an efficient manner.
  • the optical property comprises at least one of brightness and color.
  • determining the change in the optical property comprises determining a brightness change or a color change of bright fringes in interference fringes induced by a birefringence phenomenon of light at the soldered section part. Accordingly, the magnitude of the residual stress can be determined simply through obtaining the brightness changes. The operability of the apparatus is further improved.
  • an apparatus for processing a glass comprises a heating component configured to heat a soldered area of a glass with initial heating parameters; a detecting component configured to detect a change in an optical property of a section of the glass at a soldered section part corresponding to the soldered area; and a control component configured to adjust at least one of the heating parameters based on the change in the optical property, such that the change in the optical property at the soldered section part reaches or exceeds a predetermined degree.
  • the detecting component comprises a light source arranged at a further section opposing to the section of the glass.
  • an electronic device at least comprises a processor configured to execute the method according to the above first aspect.
  • a system for processing a glass comprises a heating component configured to at least heat a soldered area of the glass; and a control component configured to control the heating component to heat the soldered area of the glass in accordance with adjusted heating parameters determined by the method according to the first aspect.
  • a computer-readable storage medium storing computer-executable instructions.
  • the computer-executable instructions when being executed by at least one processor, cause the at least one processor to perform the method according to the above first aspect.
  • a glass is provided.
  • a value of an optical property of a section of the glass at a soldered section part corresponding to a soldered area is 1.1 to 5 times a reference optical property value, wherein the reference optical property value is indicated by an optical property of a section of a glass that has not been soldered.
  • a brightness maximum value of the glass at the soldered section part is 1.1 to 3 times a reference brightness value, wherein the reference brightness value is indicated by a brightness of a section of a glass that has not been soldered.
  • a maximum lightness value of a color at the soldered section part of the glass is 1.1 to 3 times a reference lightness value, wherein the reference lightness value is indicated by a color of a section of a glass that has not been soldered.
  • FIG. 1 illustrates a schematic diagram of a glass and electrical parts attached thereon in accordance embodiments of the present disclosure
  • FIG. 2 illustrates a schematic diagram of an apparatus for processing a glass in accordance with embodiments of the present disclosure
  • FIG. 3 illustrates a side view of a glass when observed from a section in accordance with embodiments of the present disclosure
  • FIG. 4 illustrates a schematic diagram of an apparatus for processing a glass in accordance with embodiments of the present disclosure
  • FIG. 5 illustrates a solid-liquid transition curve of an example solder used in the soldered area
  • the common approach is to break the glass and determine the residual stress by calculating the force required for breaking the glass. It should be understood that such method of determining the residual stress is not applicable to the soldered area of the glass which is generally attached with electrical parts. When breaking this area, the force required for the breaking may be affected due to the tin solder and the electrical parts, and thus accuracy of the detected residual stress may be affected.
  • the brightness at the section of the soldered area is much higher than that at the section of the glass that has not been soldered. Accordingly, the inventors have discovered that the residual stress in the glass may be determined by detecting the optical properties of the glass. Moreover, it also has been discovered by the inventors that heat treatment of the soldered area of the glass can effectively release the residual stress in the glass. As demonstrated by a large amount of experimentations conducted on the basis of the above findings, the optical properties of the soldered area of the heated glass gradually approach the optical properties of the glass that has not been soldered along with the relief of the residual stress.
  • heating parameters for reducing or eliminating the residual stress in the glass can be obtained with a small amount of damage to the glass, and targeted adjustments can be performed on the heating parameters, e.g., a heating temperature, a heating duration, and/or a heating rate, to effectively eliminate the residual stress.
  • FIG. 2 illustrates a schematic diagram of an apparatus 100 for processing the glass in accordance with the present disclosure.
  • the apparatus 100 With the apparatus 100, the inventors investigated the relation between the elimination ratio of the residual stress and the heating parameters and further obtained the heating parameters that can effectively eliminate the residual stress under same or similar soldering conditions.
  • the apparatus 100 generally comprises a heating component 101, a detecting component 102 and a control component 103.
  • the control component 103 may be any currently known or to be developed processor or controller that can control the heating component 101 to at least heat a soldered area 203 of the glass 200.
  • the soldered area 203 herein refers to an area and/or neighboring areas of the glass where residual stress is generated due to the impact of the mismatch shrinkage rate.
  • the heating component 101 may be arranged at any suitable positions and perform a heat treatment in any appropriate ways as long as the soldered area can be heated with predetermined heating parameters.
  • the heating component 101 may be disposed at the same side of the electrical parts or a side opposing to the electrical parts with respect to the glass.
  • the heating component 101 may also heat the soldered area by radiation with or without contact.
  • the detecting component 102 is used to detect a change in the optical property of a section 201 of the glass 200 at a soldered section part 2011 corresponding to the soldered area 203.
  • the section 201 herein means a section of the glass 200 in a thickness direction, which may be formed by cutting or refers to a section of the glass after being formed.
  • the soldered section part 2011 is a portion of the section 201 corresponding to the soldered area 203 as indicated by FIGs. 2 and 3. Based on research and experimentations, the inventors have discovered that the magnitude of the residual stress in the glass can be effectively determined by at least detecting the change of the optical property at the soldered section part 2011.
  • section 201 of the glass in the X direction is illustrated in FIG. 2 for demonstrating the relation with the detecting component 102.
  • the section of the glass 200 in Y direction in FIG. 2 may also be used for detecting the optical property.
  • soldered section part 2011 there is also a soldered section part 2011 corresponding to the soldered area in the section in Y direction or any other directions.
  • the control component 103 is configured to control the heating component 101 to heat the soldered area 203, at a given heating rate, to a heating temperature which is maintained for the heating duration.
  • the apparatus 100 may obtain the relation between the residual stress and the optical parameters of the soldered section part and finally obtain or enable those skilled in the art to obtain the heating parameters that can effectively eliminate the residual stress.
  • the change in the optical property at the soldered section part 2011 is detected after the heating component 101 is controlled to heat to the heating temperature which is maintained for the heating duration, and the soldered area 203 of the glass 200 is cooled. If the change in the optical property fails to reach a predetermined degree, it means that the residual stress is not effectively eliminated yet. Then, at least one of the heating temperature, the heating duration and the heating rate is adjusted until the residual stress is effectively eliminated.
  • the heating parameters that can effectively eliminate the residual stress are obtained by using the method and apparatus 100. Therefore, the heating parameters can significantly improve the reliability of the glass 200 and further improve the user’s experience in a cost-effective way.
  • the apparatus 100 may automatically process until the residual stress in the soldered area 203 of the glass 200 is effectively eliminated, and then output the heating parameters that can effectively eliminate the residual stress.
  • the detecting component 102 may acquire an image about the change in the optical property at the soldered section part 2011.
  • the control component 103 may analyze the image in accordance with an image processing algorithm or a convolutional neural network to acquire the change in the optical property at the soldered section part 2011. To this end, the control component 103, for example, may compare the images of the soldered section part 2011 before and after the heating to determine the change in the optical property. If the determined change in the optical property fails to reach a predetermined degree, the heating parameters for the heating operation of the heating component 101 are adjusted. The above steps are repeated until the determined change in the optical property reaches or exceeds the predetermined degree.
  • the predetermined degree may be a quantitative indicator.
  • the predetermined degree may be a predetermined threshold.
  • the predetermined degree may be defined as 50%of L. In other words, if the change in the brightness value at the processed soldered section part 2011 reaches 0.5L, it means that the residual stress is effectively eliminated.
  • the predetermined degree may be a quantitative indicator, without suggesting any limitation as to the scope of the present disclosure.
  • the predetermined degree may also be a qualitative indicator. For example, if obvious or significant changes are observed for the brightness of the soldered section part 2011 of the glass 200 before and after the processing, it means that the residual stress is effectively eliminated.
  • the processing procedure of the glass 200 may be further simplified by using the qualitative indicator.
  • the apparatus 100 may also support manual operation based on the actual requirements.
  • the change in the optical property at the soldered section part 2011 detected by the detecting component 102 may be displayed to an operator via a screen or a window.
  • the operator may quantitatively or qualitatively determine whether the residual stress is effectively eliminated based on the observed change in the optical property at the soldered section part 2011 before and after the processing. For example, in the qualitative analysis, if the optical property does not significantly change, the heating parameters are adjusted until the optical property remarkably changes and such a change reaches a predetermined degree, which means that the residual stress in the glass 200 is effectively eliminated. In this way, the heating parameters that can effectively eliminate the residual stress can be determined in a cost-effective manner.
  • the change in the optical property at the soldered section part 2011 is because of the birefringence phenomenon of light generated under a polarized condition. Interference fringes displayed by the birefringence phenomenon can be observed. In some embodiments, brightness changes in the bright fringe of the interference fringes induced by the birefringence phenomenon may be detected to help lower the difficulty and complexity of the detection.
  • the area having the residual stress will give a higher brightness to the bright fringe at the corresponding section 201 because of the optical path difference induced by the birefringence phenomenon. If the residual stress is effectively eliminated, the brightness of the bright fringe will be significantly reduced. That is, the brightness of the bright fringe at the soldered section part 2011 is basically proportional to the magnitude of the residual stress of the corresponding area. As a result, the detection of the residual stress is further simplified.
  • the apparatus 100 may also comprise a light source 1021 to provide sufficient brightness.
  • FIG. 4 illustrates a schematic diagram of an example of the detecting component 102. It can be seen from FIG. 4 that the light source 1021 may be arranged at a further section 202 of the glass 200 opposing to the section 201 to be detected. In this way, the brightness change at the soldered section part 2011 could be observed or detected more easily, thereby improving the accuracy of the detection.
  • the light source 1021 may be provided in any suitable way.
  • the light source 1021 may be a part of a detection assembly.
  • the detection assembly also comprises the above mentioned detecting component 102.
  • the light source 1021 may also be a separate component independent of the detecting component 102, so as to flexibly adjust the light source 1021.
  • the detecting component 102 may also comprise polarizers 1022 disposed between the detecting component 102 and the detected section 201 and between the light source 1021 and the further section 202.
  • the polarizers 1022 may deflect the light emitted from the light source 1021 to facilitate detection or observation of the birefringence phenomenon.
  • the degree of the change in the brightness of the bright fringes before and after processing may be enhanced, so that the change can be more easily detected.
  • the reliability of the apparatus 100 is further improved.
  • the apparatus 100 may also comprise a compensation sheet 1023 to increase the optical path difference, such that the birefringence phenomenon could be more easily detected or observed.
  • the compensation sheet 1023 can assist in measuring the magnitude of the residual stress more accurately, thereby further improving the detection effectiveness of the apparatus 100.
  • the optical property may also comprise a color in addition to the brightness.
  • the heating parameters capable of effectively eliminating the residual stress may be determined by analyzing the changes in the shade of the color.
  • a color filter may be provided at a suitable position (e.g., between the detecting component 102 and the section 201 and/or between the light source and the further section) .
  • the heating parameters for eliminating the residual stress are also intensively studied.
  • the study shows if the heating temperature is sufficiently high but does not exceed a solid-liquid transition temperature of the solder used in the soldered area (i.e., the solder is not melted) , the efficiency of eliminating the residual stress is the highest.
  • the heating temperature is selected to be close to, but lower than the solid-liquid transition temperature of the solder used in the soldered area. In other words, the solder will not melt at the heating temperature. Therefore, it is effectively ensured that the adhesion effect of the soldered area remain unaffected after the residual stress is eliminated.
  • the solid-liquid transition temperature of the solder may be obtained depending on the solder used in the soldered area.
  • FIG. 5 illustrates changes of solid-liquid transition temperature of different solders in accordance with various contents of tin, Sn. Data involved in FIG. 5 may be stored in a storage apparatus of the control component 103 or any other suitable storage devices. As such, the control component 103 may determine the solid-liquid transition temperature of the solder on the basis of the tin content in the solder input by the operator, and set the heating temperature to be lower than the solid-liquid transition temperature.
  • SAC305 solder is the most frequently used lead-free solder in electric brazing.
  • the weight percentage of tin Sn is 96.5%
  • the weight percentage of silver Ag is 3%and the weight percentage of the copper Cu is 0.5%.
  • the sodium lime silicate glass having a thickness of 1.6mm which is now in general use in construction and vehicle industry, is described as an example in the following.
  • solder used below and the type and thickness of the glass 200 are only exemplary. All values described here are merely for illustration, without suggesting any limitation as to the scope of the present disclosure. Other types of solders and different types of glass 200 having various thickness are also applicable in accordance with the apparatus 100 and the method of the present disclosure.
  • FIG. 5 illustrates a curve indicating changes of the solid-liquid transition temperature of a variety of solders in accordance with different contents of tin Sn. Based on the curve and the content of tin Sn in SAC305 solder, it is obtained that the solid-liquid transition temperature of the solder SAC305 is 217°C. To compare effects of different temperatures on the elimination of residual stress, three temperatures lower than the solid-liquid transition temperature are respectively selected, i.e., 180°C, 200°C and 210°C. For the heating duration during which the heating is maintained, three different time lengths are separately adopted, i.e., 0.5 hour, 2 hours and 6 hours. Besides, the changes in the optical property of the section 201 are observed or detected under the above listed temperature and time lengths. Table 1 below lists the relation between the above conditions and the changes in the optical property.
  • the heating temperature may be selected as 0.9 to 0.99 times the solid-liquid transition temperature.
  • the heating temperature may be set to 0.99 times the solid-liquid transition temperature and maintained for 4-6 hours. Therefore, the residual stress in the glass 200 can be effectively eliminated.
  • the heating component 101 is configured to heat the soldered area 203 to the heating temperature at a predetermined heating rate.
  • the heating rate may be, for example, 100°C per minute or any other suitable rates.
  • heating temperature and the time lengths of the heating duration are merely illustrative and are only for explaining how to more effectively eliminate the residual stress of the glass 200 based on the determination method of the residual stress in accordance with embodiments of the present disclosure, rather than restricting embodiments of the present disclosure. Any other suitable heating temperatures or heating durations are also possible depending on the glass and the solder utilized here.
  • embodiments of the present disclosure also propose a method for processing a glass 200 to explore heating parameters capable of effectively eliminating the residual stress.
  • FIG. 6 illustrates a processing flowchart of the method. The method may be processed into program codes, which are implemented by the control component 103.
  • the soldered area 203 of the glass 200 is heated with initial heating parameters. This could be realized by controlling the heating component 101. After the soldered area 203 is heated and cooled, the change in the optical property of the section 201 of the glass 200 at the soldered section part 2011 corresponding to the soldered area is determined at block 420. In some embodiments, it could be implemented by detecting the change in brightness at the section 201, especially the soldered section part 2011, via the detecting component 102.
  • At block 403 at least one of the heating parameters is adjusted based on the determined change in the optical property, such that the change in the optical property at the soldered section part 2011 reaches or exceeds the predetermined degree.
  • the heating temperature, the heating duration and/or the heating rate is adjusted until the change in the optical property reaches or exceeds the predetermined degree.
  • the heating parameters capable of effectively eliminating the residual stress in the glass 200 can be obtained in a cost-effective manner.
  • the glass 200 with the same or similar soldering conditions may be processed using the adjusted or validated heating parameters, to effectively eliminate the residual stress.
  • a system for processing the glass 200 to eliminate the residual stress in the glass 200 comprises the heating component 101 and the control component 102 employed in the above apparatus 100.
  • the heating parameters capable of effectively eliminating the residual stress are obtained by means of the above apparatus 100 and the method, the glass 200 having the same or similar soldering conditions may be heated directly using the heating component 101 with the heating parameters to effectively eliminate the residual stress in the glass 200. In such way, the residual stress in the mass-produced glass 200 can be eliminated more cost-effectively.
  • an electronic device comprises at least a processor.
  • the processor can execute the above mentioned method to determine the heating parameters capable of effectively eliminating the residual stress.
  • a glass 200 is also provided.
  • a value of the optical property at the soldered section part 2011 of the section 201 of the glass 200 corresponding to the soldered area 203 is 1.1 to 5 times a reference optical property value, wherein the reference optical property value is indicated by the optical property of the section of the glass that has not been soldered.
  • the optical property value may refer to a quantitative indicator that can embody the optical property. For example, for brightness, its optical property value is a brightness value.
  • the soldered section part 2011 of the glass 200 Before being processed by the above system, the soldered section part 2011 of the glass 200 usually has a brightness value much higher than the reference brightness value, e.g., six times the reference brightness value or more.
  • the brightness of the soldered section part 2011 of the glass 200 processed by the above system will be greatly reduced, such that the brightness value of the soldered section part 2011 finally reaches 1.1 to 5 times the reference brightness value. Accordingly, the residual stress in the glass 200 is effectively eliminated, the risk of breakage of the glass 200 caused by the residual stress is significantly reduced, and thus the quality of the glass article is improved.
  • the multiple of the optical property value at the soldered section part 2011 over the reference optical property value varies according to glass thickness, glass material and solder. Any suitable multiple is also possible depending on the glass thickness, the glass material and the solder, e.g., two times, three times, four or five times, as long as the value can represent effective elimination of the residual stress in the glass 200.
  • the maximum brightness value at the soldered section part 2011 of the glass 200 may be 1.1 to 3 times the reference brightness value or more.
  • the reference brightness value is indicated by the brightness of the section of the glass that has not been soldered (i.e., reference glass) .
  • the glass that has not been soldered may refer to another piece of glass having equivalent material and/or thickness to the soldered glass, and may also denote a portion of the soldered glass, which is not affected by the residual stress induced by soldering, except for the soldered area.
  • the reference brightness value is L
  • the maximum brightness value at the soldered section part 2011 of the glass 200 that has not been processed by the system in accordance with embodiments of the present disclosure may reach 6L or more.
  • the brightness at the soldered section part 2011 of the glass 200 processed by the system is reduced significantly, such that the maximum brightness value reaches 1.5L or 2L, i.e., 1.5 or 2 times the reference brightness value, which means that the residual stress in the processed glass 200 is reduced remarkably.
  • the change in the brightness is also embodied in the color change.
  • the maximum lightness value of the color at the soldered section part 2011 of the glass 200 may be 1.1 to 1.3 times the reference lightness value or more.
  • the color lightness embodies brightness and darkness displayed by various colors, i.e., the degree of color depth.
  • the reference lightness value is indicated by the color of the section of the glass that has not been soldered.
  • the color at the section of the reference glass is deep blue with a reference lightness value of 50%.
  • the soldered section part of the glass 200 which is not processed by the present system yet, exhibits a light blue with the maximum lightness value close to 90%.
  • the color at the soldered section part 2011 of the glass 200, which is processed in accordance with embodiments of the present disclosure is medium blue with the maximum lightness value of 65%to 75%.
  • the image may be analyzed by an image processing algorithm or a convolutional neural network, to obtain the change in the optical property values at the soldered section part 2011, e.g., brightness value or color lightness value.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

The present disclosure provides a method and system for processing a glass. The method comprises heating a soldered area of glass with initial heating parameters; determining a change of an optical property of a section of the glass at a soldered section part corresponding to the soldered area; and adjusting at least one of heating parameters based on change in the optical property, such that the change in the optical property at the soldered section part reaches or exceeds a predetermined degree. By determining the relation between the change in the optical property at the soldered section part and the residual stress, heating parameters suitable for reducing and even eliminating the residual stress in the glass could be explored in a cost-effective way in accordance with the change in the optical property detected by the detecting component, thereby effectively eliminating the residual stress in the glass.

Description

METHOD AND SYSTEM FOR PROCESSING GLASS FIELD
Embodiments of the present disclosure generally relate to method and system for processing a glass, and more specifically, to a method and a system for eliminating residual stress in a glass.
BACKGROUND
In industrial filed, especially vehicle industry, it is required to solder electrical parts or circuits on a glass (e.g., windshield) to implement desired functions. For example, for certain windshields, it is usually necessary to solder metal terminals on them for electrical connection with printed silver wires or transparent conductive films on the glass, so as to realize electrical connections with the heating components of the windshield. At this time, the electrical parts, such as metal terminals, should be soldered to the windshield by tin solder or the like.
During soldering, it is usually necessary to attach the electrical parts to a soldering area of the glass (i.e., a region to which the electrical parts are about to be attached) and make the high-temperature molten tin solder located between the electrical parts and the glass. The electrical parts can be firmly soldered to a predetermined position of a glass product after the tin solder is cooled and solidified.
SUMMARY
During the soldering process, because the shrinkage rate of the tin solder when cooling and solidifying does not match the shrinkage rate of the glass, residual stress will be generated in a soldered area of the glass. If left untreated, the residual stress may breakage the glass in the subsequent use. The present disclosure provides an apparatus and a method for processing a glass to solve or at least partially solve the above or other potential problems existing in the conventional soldered glass.
According to a first aspect of the present disclosure, a method for processing a glass is provided. The method comprises: heating a soldered area of the glass with initial heating parameters; determining a change in an optical property of a section of the glass at a soldered section part corresponding to the soldered area; and adjusting at least one of the heating parameters based on the change in the optical property, such that the change in the optical  property at the soldered section part reaches or exceeds a predetermined degree.
With the above method, the relation between the residual stress and the optical property of the soldered section part can be explored in a cost-effective way. In addition, by detecting the change in the optical property, the heating parameters can be adjusted even when the residual stress is not effective eliminated until a majority of the residual stress in the glass is effectively eliminated. Accordingly, the risk of glass breakage is significantly reduced and the quality of the glass and the glass article is improved.
In some embodiments, the heating parameters comprise a heating temperature, a heating duration and a heating rate. In this way, the heating parameters that may possibly affect the residual stress are adjusted comprehensively, to more effectively eliminate the residual stress.
In some embodiments, the heating temperature is less than a solid-liquid transition temperature of a solder used in the soldered area. Based on the above configuration, the residual stress can be significantly eliminated without compromising the soldering effect.
In some embodiments, the heating temperature is 0.9 to 0.99 times the solid-liquid transition temperature. In this way, the residual stress can be at least partially eliminated in an efficient manner.
In some embodiments, the optical property comprises at least one of brightness and color.
In some embodiments, determining the change in the optical property comprises determining a brightness change or a color change of bright fringes in interference fringes induced by a birefringence phenomenon of light at the soldered section part. Accordingly, the magnitude of the residual stress can be determined simply through obtaining the brightness changes. The operability of the apparatus is further improved.
According to a second aspect of the present disclosure, an apparatus for processing a glass is provided. The apparatus comprises a heating component configured to heat a soldered area of a glass with initial heating parameters; a detecting component configured to detect a change in an optical property of a section of the glass at a soldered section part corresponding to the soldered area; and a control component configured to adjust at least one of the heating parameters based on the change in the optical property, such that the change in the optical property at the soldered section part reaches or exceeds a predetermined degree.
In some embodiments, the detecting component comprises a light source arranged at a further section opposing to the section of the glass. The above arrangement can make the detection result more accurate and improve the reliability of the detection.
According to a third aspect of the present disclosure, an electronic device is provided. The electronic device at least comprises a processor configured to execute the method according to the above first aspect.
According to a fourth aspect of the present disclosure, a system for processing a glass is provided. The system comprises a heating component configured to at least heat a soldered area of the glass; and a control component configured to control the heating component to heat the soldered area of the glass in accordance with adjusted heating parameters determined by the method according to the first aspect.
According to a fifth aspect of the present disclosure, a computer-readable storage medium storing computer-executable instructions is provided. The computer-executable instructions, when being executed by at least one processor, cause the at least one processor to perform the method according to the above first aspect.
According to a sixth aspect of the present disclosure, a glass is provided. A value of an optical property of a section of the glass at a soldered section part corresponding to a soldered area is 1.1 to 5 times a reference optical property value, wherein the reference optical property value is indicated by an optical property of a section of a glass that has not been soldered.
In some embodiments, a brightness maximum value of the glass at the soldered section part is 1.1 to 3 times a reference brightness value, wherein the reference brightness value is indicated by a brightness of a section of a glass that has not been soldered.
In some embodiments, a maximum lightness value of a color at the soldered section part of the glass is 1.1 to 3 times a reference lightness value, wherein the reference lightness value is indicated by a color of a section of a glass that has not been soldered.
It should be appreciated that the contents described in this Summary are not intended to identify key or essential features of embodiments of the present disclosure, or limit the scope of the present disclosure. Other features of the present disclosure will be understood more easily through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Through the following more detailed description of example embodiments with reference to the accompanying drawings, the above and other objectives, features and advantages of the present disclosure will become more apparent. In example embodiments of the present disclosure, same reference sign usually indicates the same component.
FIG. 1 illustrates a schematic diagram of a glass and electrical parts attached thereon in accordance embodiments of the present disclosure;
FIG. 2 illustrates a schematic diagram of an apparatus for processing a glass in accordance with embodiments of the present disclosure;
FIG. 3 illustrates a side view of a glass when observed from a section in accordance with embodiments of the present disclosure;
FIG. 4 illustrates a schematic diagram of an apparatus for processing a glass in accordance with embodiments of the present disclosure;
FIG. 5 illustrates a solid-liquid transition curve of an example solder used in the soldered area; and
FIG. 6 illustrates a flowchart of a method for processing a glass.
Throughout the drawings, same or similar reference signs indicate same or similar elements.
DETAILED DESCRIPTION OF EMBODIMENTS
The present disclosure is now described with reference to several example embodiments. It should be appreciated that description of those embodiments is merely to enable those skilled in the art to better understand and further implement the present disclosure and is not intended for limiting the scope of the technical solution disclosed herein.
As used herein, the term “comprises” and its variants are to be read as open-ended terms that mean “comprises, but is not limited to. ” The term “based on” is to be read as “based at least in part on. ” The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “a further embodiment” is to be read as “at least one further embodiment. ” The terms “first” , “second” and so on may refer to same or different objects. The following text may comprise other explicit and implicit definitions. The definitions of the terms shall remain consistent throughout the entire description unless indicated otherwise in the context.
It is usually necessary to solder electrical parts 210 onto a glass to fulfill various desired functions as indicated in FIG. 1. For example, during the process of soldering electrical parts 210 and circuits to the glass, because the shrinkage rate of the tin solder when cooling and solidifying does not match the shrinkage rate of the glass, residual stress will be generated in a soldered area 203 of the glass. In the subsequent use, the glass may break due to the residual stress and further injure people or damage objects and thus impact user’s experience. Therefore, if the residual stress in each piece of glass could be reduced after soldering, the quality of the product and the user’s experience will be effectively improved.
In a conventional solution, to determine the residual stress in the glass, the common approach is to break the glass and determine the residual stress by calculating the force required for breaking the glass. It should be understood that such method of determining the residual stress is not applicable to the soldered area of the glass which is generally attached with electrical parts. When breaking this area, the force required for the breaking may be affected due to the tin solder and the electrical parts, and thus accuracy of the detected residual stress may be affected.
In addition, due to the lack of effective means to obtain the residual stress in time, it is difficult for those skilled in the art to know whether the residual stress has been effectively eliminated after performing the stress relief operation. Therefore, there is a need for a method of obtaining operating parameters for reducing the residual stress of a glass.
To solve or at least partially solve the above and other potential problems in the prior art, the inventors, through research, have discovered: the residual stress generated in the glass during the soldering will impact optical properties of the glass at the section, including level of brightness, shade of color and the like. This is because the residual stress in the glass caused by the difference between the shrinkage rates of the solder and the glass during the soldering process will cause the glass to transform from a homogeneous body to an anisotropic one. For example, factors such as uneven thickness of the tin solder, uneven temperature distribution and excessive cooling rate may aggravate the transformation. The appearance or increased proportion of the anisotropic body will lead to changes in the optical properties at the section of soldered area. For example, the brightness at the section of the soldered area is much higher than that at the section of the glass that has not been soldered. Accordingly, the inventors have discovered that the residual stress in the glass may be determined by detecting the optical properties of the glass. Moreover, it also has been discovered by the inventors that heat treatment of the soldered area of the glass can effectively  release the residual stress in the glass. As demonstrated by a large amount of experimentations conducted on the basis of the above findings, the optical properties of the soldered area of the heated glass gradually approach the optical properties of the glass that has not been soldered along with the relief of the residual stress.
In view of the above findings and experimentations, a method and a system for processing a glass has been proposed here. Through the method and the system, heating parameters for reducing or eliminating the residual stress in the glass can be obtained with a small amount of damage to the glass, and targeted adjustments can be performed on the heating parameters, e.g., a heating temperature, a heating duration, and/or a heating rate, to effectively eliminate the residual stress.
FIG. 2 illustrates a schematic diagram of an apparatus 100 for processing the glass in accordance with the present disclosure. With the apparatus 100, the inventors investigated the relation between the elimination ratio of the residual stress and the heating parameters and further obtained the heating parameters that can effectively eliminate the residual stress under same or similar soldering conditions. As shown, the apparatus 100 generally comprises a heating component 101, a detecting component 102 and a control component 103. The control component 103 may be any currently known or to be developed processor or controller that can control the heating component 101 to at least heat a soldered area 203 of the glass 200. The soldered area 203 herein refers to an area and/or neighboring areas of the glass where residual stress is generated due to the impact of the mismatch shrinkage rate. The heating component 101 may be arranged at any suitable positions and perform a heat treatment in any appropriate ways as long as the soldered area can be heated with predetermined heating parameters. For example, the heating component 101 may be disposed at the same side of the electrical parts or a side opposing to the electrical parts with respect to the glass. The heating component 101 may also heat the soldered area by radiation with or without contact.
The detecting component 102 is used to detect a change in the optical property of a section 201 of the glass 200 at a soldered section part 2011 corresponding to the soldered area 203. The section 201 herein means a section of the glass 200 in a thickness direction, which may be formed by cutting or refers to a section of the glass after being formed. The soldered section part 2011 is a portion of the section 201 corresponding to the soldered area 203 as indicated by FIGs. 2 and 3. Based on research and experimentations, the inventors have discovered that the magnitude of the residual stress in the glass can be effectively determined  by at least detecting the change of the optical property at the soldered section part 2011.
It should be understood that only the section 201 of the glass in the X direction is illustrated in FIG. 2 for demonstrating the relation with the detecting component 102. The section of the glass 200 in Y direction in FIG. 2 may also be used for detecting the optical property. In fact, there is also a soldered section part 2011 corresponding to the soldered area in the section in Y direction or any other directions.
Based on the above finding that the glass residual stress is reduced by heating, an in-depth research is carried out to seek an effective approach for eliminating the residual stress in the glass. In the research, it is discovered that the residual stress in the glass 200 can be eliminated by heating the soldered area 203 with certain heating parameters, and that the elimination ratio of the residual stress is associated with the heating parameters and also embodied in the degree of change in the optical property. The research also shows that the heating parameters may include a heating temperature, a heating duration and a heating rate, wherein the heating rate represents a rate at which the soldered area 203 is heated to the heating temperature and will further discussed in the following. Accordingly, in accordance with embodiments of the present disclosure, the control component 103 is configured to control the heating component 101 to heat the soldered area 203, at a given heating rate, to a heating temperature which is maintained for the heating duration.
In accordance with embodiments of the present disclosure, the apparatus 100 may obtain the relation between the residual stress and the optical parameters of the soldered section part and finally obtain or enable those skilled in the art to obtain the heating parameters that can effectively eliminate the residual stress. Specifically, the change in the optical property at the soldered section part 2011 is detected after the heating component 101 is controlled to heat to the heating temperature which is maintained for the heating duration, and the soldered area 203 of the glass 200 is cooled. If the change in the optical property fails to reach a predetermined degree, it means that the residual stress is not effectively eliminated yet. Then, at least one of the heating temperature, the heating duration and the heating rate is adjusted until the residual stress is effectively eliminated. Finally, the heating parameters that can effectively eliminate the residual stress are obtained by using the method and apparatus 100. Therefore, the heating parameters can significantly improve the reliability of the glass 200 and further improve the user’s experience in a cost-effective way.
In some embodiments, advantageously, the apparatus 100 may automatically process  until the residual stress in the soldered area 203 of the glass 200 is effectively eliminated, and then output the heating parameters that can effectively eliminate the residual stress. For example, in some embodiments, the detecting component 102 may acquire an image about the change in the optical property at the soldered section part 2011. The control component 103 may analyze the image in accordance with an image processing algorithm or a convolutional neural network to acquire the change in the optical property at the soldered section part 2011. To this end, the control component 103, for example, may compare the images of the soldered section part 2011 before and after the heating to determine the change in the optical property. If the determined change in the optical property fails to reach a predetermined degree, the heating parameters for the heating operation of the heating component 101 are adjusted. The above steps are repeated until the determined change in the optical property reaches or exceeds the predetermined degree.
In some embodiments, the predetermined degree may be a quantitative indicator. For example, the predetermined degree may be a predetermined threshold. For example, in the case where the optical property is a brightness value, on the assumption that the brightness value of the glass 200 is L at the soldered section part 2011 before processing, the predetermined degree may be defined as 50%of L. In other words, if the change in the brightness value at the processed soldered section part 2011 reaches 0.5L, it means that the residual stress is effectively eliminated.
Of course, the above embodiments regarding the predetermined degree are merely an example to illustrate that the predetermined degree may be a quantitative indicator, without suggesting any limitation as to the scope of the present disclosure. In some alternative embodiments, the predetermined degree may also be a qualitative indicator. For example, if obvious or significant changes are observed for the brightness of the soldered section part 2011 of the glass 200 before and after the processing, it means that the residual stress is effectively eliminated. The processing procedure of the glass 200 may be further simplified by using the qualitative indicator.
Alternatively, the apparatus 100 may also support manual operation based on the actual requirements. For example, in some embodiments, the change in the optical property at the soldered section part 2011 detected by the detecting component 102 may be displayed to an operator via a screen or a window. The operator may quantitatively or qualitatively determine whether the residual stress is effectively eliminated based on the observed change in the optical property at the soldered section part 2011 before and after the processing. For  example, in the qualitative analysis, if the optical property does not significantly change, the heating parameters are adjusted until the optical property remarkably changes and such a change reaches a predetermined degree, which means that the residual stress in the glass 200 is effectively eliminated. In this way, the heating parameters that can effectively eliminate the residual stress can be determined in a cost-effective manner.
It also has been discovered that the change in the optical property at the soldered section part 2011 is because of the birefringence phenomenon of light generated under a polarized condition. Interference fringes displayed by the birefringence phenomenon can be observed. In some embodiments, brightness changes in the bright fringe of the interference fringes induced by the birefringence phenomenon may be detected to help lower the difficulty and complexity of the detection. When a greater residual stress is present in the glass 200, the area having the residual stress will give a higher brightness to the bright fringe at the corresponding section 201 because of the optical path difference induced by the birefringence phenomenon. If the residual stress is effectively eliminated, the brightness of the bright fringe will be significantly reduced. That is, the brightness of the bright fringe at the soldered section part 2011 is basically proportional to the magnitude of the residual stress of the corresponding area. As a result, the detection of the residual stress is further simplified.
In some embodiments, to improve the accuracy of the detection, the apparatus 100 may also comprise a light source 1021 to provide sufficient brightness. FIG. 4 illustrates a schematic diagram of an example of the detecting component 102. It can be seen from FIG. 4 that the light source 1021 may be arranged at a further section 202 of the glass 200 opposing to the section 201 to be detected. In this way, the brightness change at the soldered section part 2011 could be observed or detected more easily, thereby improving the accuracy of the detection.
The light source 1021 may be provided in any suitable way. For example, in some embodiments, the light source 1021 may be a part of a detection assembly. Besides the light source 1021, the detection assembly also comprises the above mentioned detecting component 102. Such arrangement can enhance integration of the apparatus 100. Additionally, in some alternative embodiments, the light source 1021 may also be a separate component independent of the detecting component 102, so as to flexibly adjust the light source 1021.
In some embodiments, to facilitate detecting or observing the birefringence  phenomenon, the detecting component 102 may also comprise polarizers 1022 disposed between the detecting component 102 and the detected section 201 and between the light source 1021 and the further section 202. The polarizers 1022 may deflect the light emitted from the light source 1021 to facilitate detection or observation of the birefringence phenomenon. As a result, the degree of the change in the brightness of the bright fringes before and after processing may be enhanced, so that the change can be more easily detected. Hence, the reliability of the apparatus 100 is further improved.
Moreover, in some embodiments, the apparatus 100 may also comprise a compensation sheet 1023 to increase the optical path difference, such that the birefringence phenomenon could be more easily detected or observed. The compensation sheet 1023 can assist in measuring the magnitude of the residual stress more accurately, thereby further improving the detection effectiveness of the apparatus 100.
Alternatively or additionally, the optical property may also comprise a color in addition to the brightness. For example, in the case where the glass itself is colored, the heating parameters capable of effectively eliminating the residual stress may be determined by analyzing the changes in the shade of the color. Furthermore, to facilitate the detection of the color, a color filter may be provided at a suitable position (e.g., between the detecting component 102 and the section 201 and/or between the light source and the further section) .
To exploit the relation between the residual stress and the change in the optical property at the soldered section part 2011, the heating parameters for eliminating the residual stress, especially the value of the heating temperature and heating period as well as the time length of the heating duration, are also intensively studied. The study shows if the heating temperature is sufficiently high but does not exceed a solid-liquid transition temperature of the solder used in the soldered area (i.e., the solder is not melted) , the efficiency of eliminating the residual stress is the highest.
Accordingly, in some embodiments, the heating temperature is selected to be close to, but lower than the solid-liquid transition temperature of the solder used in the soldered area. In other words, the solder will not melt at the heating temperature. Therefore, it is effectively ensured that the adhesion effect of the soldered area remain unaffected after the residual stress is eliminated.
In some embodiments, the solid-liquid transition temperature of the solder may be obtained depending on the solder used in the soldered area. FIG. 5 illustrates changes of  solid-liquid transition temperature of different solders in accordance with various contents of tin, Sn. Data involved in FIG. 5 may be stored in a storage apparatus of the control component 103 or any other suitable storage devices. As such, the control component 103 may determine the solid-liquid transition temperature of the solder on the basis of the tin content in the solder input by the operator, and set the heating temperature to be lower than the solid-liquid transition temperature.
To facilitate the description of how to determine the means to eliminate stress based on the above determination method of the residual stress, the following will take the common SAC305 solder as an example to describe the whole procedure. SAC (Sn-Ag-Cu) solder is the most frequently used lead-free solder in electric brazing. For the SAC305 solder, the weight percentage of tin Sn is 96.5%, the weight percentage of silver Ag is 3%and the weight percentage of the copper Cu is 0.5%. Furthermore, the sodium lime silicate glass having a thickness of 1.6mm, which is now in general use in construction and vehicle industry, is described as an example in the following.
However, it should be understood that the solder used below and the type and thickness of the glass 200 are only exemplary. All values described here are merely for illustration, without suggesting any limitation as to the scope of the present disclosure. Other types of solders and different types of glass 200 having various thickness are also applicable in accordance with the apparatus 100 and the method of the present disclosure.
FIG. 5 illustrates a curve indicating changes of the solid-liquid transition temperature of a variety of solders in accordance with different contents of tin Sn. Based on the curve and the content of tin Sn in SAC305 solder, it is obtained that the solid-liquid transition temperature of the solder SAC305 is 217℃. To compare effects of different temperatures on the elimination of residual stress, three temperatures lower than the solid-liquid transition temperature are respectively selected, i.e., 180℃, 200℃ and 210℃. For the heating duration during which the heating is maintained, three different time lengths are separately adopted, i.e., 0.5 hour, 2 hours and 6 hours. Besides, the changes in the optical property of the section 201 are observed or detected under the above listed temperature and time lengths. Table 1 below lists the relation between the above conditions and the changes in the optical property.
Table 1
  0.5 hour 2 hours 6 hours
180℃ No significant changes No significant changes No significant changes
200℃ No significant changes No significant changes No significant changes
210℃ No significant changes Slight changes Significant changes
It can be seen from the above table that the closer the heating temperature is to the solid-liquid transition temperature and the longer the time, the more obvious the changes in the optical property at the section 201 induced by the residual stress. In some embodiments, the heating temperature may be selected as 0.9 to 0.99 times the solid-liquid transition temperature.
In addition, the closer the heating temperature is to the solid-liquid transition temperature, the shorter the heating duration required for effectively eliminating the residual stress. As a result, a balance may be pursued between the cost and efficiency of stress elimination. For example, in some embodiments, to effectively eliminate the residual stress in the glass 200, the heating temperature may be set to 0.99 times the solid-liquid transition temperature and maintained for 4-6 hours. Therefore, the residual stress in the glass 200 can be effectively eliminated.
Furthermore, to lower the possible influence of sudden heat on the strength of the glass 200, in some embodiments, the heating component 101 is configured to heat the soldered area 203 to the heating temperature at a predetermined heating rate. The heating rate may be, for example, 100℃ per minute or any other suitable rates.
Of course, it should be understood that the above mentioned values of the heating temperature and the time lengths of the heating duration are merely illustrative and are only for explaining how to more effectively eliminate the residual stress of the glass 200 based on the determination method of the residual stress in accordance with embodiments of the present disclosure, rather than restricting embodiments of the present disclosure. Any other suitable heating temperatures or heating durations are also possible depending on the glass and the solder utilized here.
In addition, embodiments of the present disclosure also propose a method for processing a glass 200 to explore heating parameters capable of effectively eliminating the residual stress. FIG. 6 illustrates a processing flowchart of the method. The method may be processed into program codes, which are implemented by the control component 103.
At block 410, the soldered area 203 of the glass 200 is heated with initial heating parameters. This could be realized by controlling the heating component 101. After the soldered area 203 is heated and cooled, the change in the optical property of the section 201 of the glass 200 at the soldered section part 2011 corresponding to the soldered area is determined at block 420. In some embodiments, it could be implemented by detecting the change in brightness at the section 201, especially the soldered section part 2011, via the detecting component 102.
At block 403, at least one of the heating parameters is adjusted based on the determined change in the optical property, such that the change in the optical property at the soldered section part 2011 reaches or exceeds the predetermined degree. In other words, if the determined change in the optical property is smaller than the predetermined change, the heating temperature, the heating duration and/or the heating rate is adjusted until the change in the optical property reaches or exceeds the predetermined degree.
With such a method, the heating parameters capable of effectively eliminating the residual stress in the glass 200 can be obtained in a cost-effective manner. Besides, the glass 200 with the same or similar soldering conditions may be processed using the adjusted or validated heating parameters, to effectively eliminate the residual stress.
In accordance with a further aspect of the present disclosure, a system for processing the glass 200 to eliminate the residual stress in the glass 200 is also provided. The system comprises the heating component 101 and the control component 102 employed in the above apparatus 100. When the heating parameters capable of effectively eliminating the residual stress are obtained by means of the above apparatus 100 and the method, the glass 200 having the same or similar soldering conditions may be heated directly using the heating component 101 with the heating parameters to effectively eliminate the residual stress in the glass 200. In such way, the residual stress in the mass-produced glass 200 can be eliminated more cost-effectively.
In accordance with a further aspect of the present disclosure, an electronic device is also provided. The electronic device comprises at least a processor. The processor can  execute the above mentioned method to determine the heating parameters capable of effectively eliminating the residual stress.
In accordance with a further aspect of the present disclosure, a glass 200 is also provided. A value of the optical property at the soldered section part 2011 of the section 201 of the glass 200 corresponding to the soldered area 203 is 1.1 to 5 times a reference optical property value, wherein the reference optical property value is indicated by the optical property of the section of the glass that has not been soldered. The optical property value may refer to a quantitative indicator that can embody the optical property. For example, for brightness, its optical property value is a brightness value. Before being processed by the above system, the soldered section part 2011 of the glass 200 usually has a brightness value much higher than the reference brightness value, e.g., six times the reference brightness value or more. The brightness of the soldered section part 2011 of the glass 200 processed by the above system will be greatly reduced, such that the brightness value of the soldered section part 2011 finally reaches 1.1 to 5 times the reference brightness value. Accordingly, the residual stress in the glass 200 is effectively eliminated, the risk of breakage of the glass 200 caused by the residual stress is significantly reduced, and thus the quality of the glass article is improved. The multiple of the optical property value at the soldered section part 2011 over the reference optical property value varies according to glass thickness, glass material and solder. Any suitable multiple is also possible depending on the glass thickness, the glass material and the solder, e.g., two times, three times, four or five times, as long as the value can represent effective elimination of the residual stress in the glass 200.
In some embodiments, the maximum brightness value at the soldered section part 2011 of the glass 200 may be 1.1 to 3 times the reference brightness value or more. The reference brightness value is indicated by the brightness of the section of the glass that has not been soldered (i.e., reference glass) . The glass that has not been soldered may refer to another piece of glass having equivalent material and/or thickness to the soldered glass, and may also denote a portion of the soldered glass, which is not affected by the residual stress induced by soldering, except for the soldered area.
For example, in some embodiments, the reference brightness value is L, while the maximum brightness value at the soldered section part 2011 of the glass 200 that has not been processed by the system in accordance with embodiments of the present disclosure may reach 6L or more. The brightness at the soldered section part 2011 of the glass 200 processed by the system is reduced significantly, such that the maximum brightness value reaches 1.5L or  2L, i.e., 1.5 or 2 times the reference brightness value, which means that the residual stress in the processed glass 200 is reduced remarkably.
Similarly, regarding the case where colored glass or glass provided with color filter is detected, the change in the brightness is also embodied in the color change. For example, in some embodiments, the maximum lightness value of the color at the soldered section part 2011 of the glass 200 may be 1.1 to 1.3 times the reference lightness value or more. The color lightness embodies brightness and darkness displayed by various colors, i.e., the degree of color depth. The reference lightness value is indicated by the color of the section of the glass that has not been soldered. For example, in some embodiments, the color at the section of the reference glass is deep blue with a reference lightness value of 50%. The soldered section part of the glass 200, which is not processed by the present system yet, exhibits a light blue with the maximum lightness value close to 90%. The color at the soldered section part 2011 of the glass 200, which is processed in accordance with embodiments of the present disclosure, is medium blue with the maximum lightness value of 65%to 75%.
Specifically how to determine the change in the optical property value of the glass, it has been described above that the image may be analyzed by an image processing algorithm or a convolutional neural network, to obtain the change in the optical property values at the soldered section part 2011, e.g., brightness value or color lightness value.
It should be appreciated that the above description of the various embodiments of the present disclosure have been presented for purposes of illustration or explanation about principles of the present disclosure, without suggesting limitations to the present disclosure. Hence, any modification, equivalent substitution, improvement, and the like, within the spirit and principles of the present disclosure shall fall into the protection scope of the present disclosure. Furthermore, the appended claims are intended to cover all changes and modifications falling into the scope and boundaries equivalent to the scope and boundary thereof.

Claims (14)

  1. A method for processing a glass, comprising:
    heating a soldered area (203) of the glass (200) with initial heating parameters;
    determining a change in an optical property of a section (201) of the glass (200) at a soldered section part (2011) corresponding to the soldered area (203) ; and
    adjusting at least one of the heating parameters based on the change in the optical property, such that the change in the optical property at the soldered section part (2011) reaches or exceeds a predetermined degree.
  2. The method of claim 1, wherein the heating parameters comprise a heating temperature, a heating duration and a heating rate.
  3. The method of claim 2, wherein the heating temperature is less than a solid-liquid transition temperature of a solder used in the soldered area (203) .
  4. The method of claim 2, wherein the heating temperature is 0.9 to 0.99 times the solid-liquid transition temperature.
  5. The method of claim 1, wherein the optical property comprises at least one of brightness and color.
  6. The method of claim 1, wherein determining the change in the optical property comprises determining a brightness change or a color change of bright fringes in interference fringes induced by a birefringence phenomenon of light at the soldered section part (2011) .
  7. An apparatus for processing a glass, comprising:
    a heating component (101) configured to heat a soldered area (203) of the glass (200) with initial heating parameters;
    a detecting component (102) configured to detect a change in an optical property of a section (201) of the glass (200) at a soldered section part (2011) corresponding to the soldered area (203) ; and
    a control component (103) configured to adjust at least one of the heating parameters based on the change in the optical property, such that the change in the optical property at the  soldered section part (2011) reaches or exceeds a predetermined degree.
  8. The apparatus of claim 7, wherein the detecting component (102) comprises a light source (1021) arranged at a further section (202) opposing to the section (201) of the glass (200) .
  9. An electronic device at least comprising a processor configured to execute a method of any of claims 1-6.
  10. A system for processing a glass, comprising:
    a heating component (101) configured to at least heat a soldered area (203) of the glass (200) ; and
    a control component (103) configured to control the heating component (101) to heat the soldered area (203) of the glass (200) in accordance with adjusted heating parameters determined by a method of any of claims 1-6.
  11. A computer-readable storage medium storing computer-executable instructions, when the computer-executable instructions are executed by at least one processor, which cause the at least one processor to perform the method of any of claims 1-6.
  12. A glass, wherein a value of an optical property of a section (201) of the glass (200) at a soldered section part (2011) corresponding to a soldered area (203) is 1.1 to 5 times a reference optical property value, wherein the reference optical property value is indicated by an optical property of a section of a glass that has not been soldered.
  13. The glass of claim 12, wherein a maximum brightness value of the glass (200) at the soldered section part (2011) is 1.1 to 3 times a reference brightness value, wherein the reference brightness value is indicated by a brightness of a section of a glass that has not been soldered.
  14. The glass of claim 12, wherein a maximum lightness value of a color of the glass (200) at the soldered section part (2011) is 1.1 to 3 times a reference lightness value, wherein the reference lightness value is indicated by a color of a section of a glass that has not been soldered.
PCT/CN2021/087476 2020-04-16 2021-04-15 Method and system for processing glass WO2021209000A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010299073.0A CN112811801A (en) 2020-04-16 2020-04-16 Method and system for treating glass
CN202010299073.0 2020-04-16

Publications (1)

Publication Number Publication Date
WO2021209000A1 true WO2021209000A1 (en) 2021-10-21

Family

ID=75854360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087476 WO2021209000A1 (en) 2020-04-16 2021-04-15 Method and system for processing glass

Country Status (2)

Country Link
CN (1) CN112811801A (en)
WO (1) WO2021209000A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023128260A1 (en) 2022-10-17 2024-04-18 AGC Inc. Method for producing a windshield for a vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3174795B2 (en) * 1992-04-30 2001-06-11 ホーヤ株式会社 Glass body manufacturing method, glass body strain removing method, glass body heat treatment apparatus, and glass body strain removing apparatus
CN101506112A (en) * 2006-08-21 2009-08-12 康宁股份有限公司 Process and apparatus for thermal edge finishing a glass sheet with reduced residual stress
JP2015178422A (en) * 2014-03-18 2015-10-08 信越石英株式会社 Method for heat-treating synthetic quartz glass
CN107406292A (en) * 2014-10-31 2017-11-28 康宁股份有限公司 The glass-encapsulated and manufacture method of laser welding
EP3395773A1 (en) * 2017-04-24 2018-10-31 Shin-Etsu Quartz Products Co., Ltd. Process for producing synthetic quartz glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3174795B2 (en) * 1992-04-30 2001-06-11 ホーヤ株式会社 Glass body manufacturing method, glass body strain removing method, glass body heat treatment apparatus, and glass body strain removing apparatus
CN101506112A (en) * 2006-08-21 2009-08-12 康宁股份有限公司 Process and apparatus for thermal edge finishing a glass sheet with reduced residual stress
JP2015178422A (en) * 2014-03-18 2015-10-08 信越石英株式会社 Method for heat-treating synthetic quartz glass
CN107406292A (en) * 2014-10-31 2017-11-28 康宁股份有限公司 The glass-encapsulated and manufacture method of laser welding
EP3395773A1 (en) * 2017-04-24 2018-10-31 Shin-Etsu Quartz Products Co., Ltd. Process for producing synthetic quartz glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023128260A1 (en) 2022-10-17 2024-04-18 AGC Inc. Method for producing a windshield for a vehicle

Also Published As

Publication number Publication date
CN112811801A (en) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2021209000A1 (en) Method and system for processing glass
US8203606B2 (en) Gradient image processing
CN105679215B (en) Display screen and its crack detecting method
US20200031282A1 (en) Vehicle Driving Shading Device, Vehicle and Vehicle Driving Shading Method
CA2671278C (en) Laser welding quality evaluation method and apparatus therefor
KR101702841B1 (en) Method for monitoring defect in polaroid films
US9501689B2 (en) Image processing apparatus and image processing method
Levichev et al. Coaxial camera-based monitoring of fiber laser cutting of thick plates
CN109014202A (en) A kind of melt-processed process bath temperature real-time monitoring device in selective laser and method
CN106442625A (en) Rear windshield glass heating wire detecting system and method based on infrared thermal imaging technology
CN104713486A (en) Width on-line detection device and method for palm folding product
CN208772455U (en) A kind of melt-processed process bath temperature real-time monitoring device in selective laser
DE10225450B4 (en) Method for error detection in laser processing processes
JP6754557B2 (en) Display device and its brightness defect correction method
KR102119981B1 (en) Method and apparatus for controlling temperature of continuous annealing furnace
CN204128721U (en) New automatic glass surface stress ga(u)ge
KR101440975B1 (en) Automatic inspection apparatus for stain in the polarizing plate using color difference analysis
CN103185661A (en) Lens inspection method of rearview mirror
CN109741311B (en) Aluminum alloy fusion welding back face fusion width detection method with false edge
US10254594B2 (en) Liquid crystal drop filling system and control method
CN106920218B (en) A kind of method and device of image procossing
US20210032151A1 (en) Methods of fabricating glass substrates with reduced birefringence
KR102063984B1 (en) Apparatus for inspecting defect and method for correcting distortion the same
CN116297478A (en) Method, device and system for detecting coating defects of photovoltaic glass
JP2000215310A (en) Picture quality evaluating method and picture quality evaluating device utilizing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21787927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21787927

Country of ref document: EP

Kind code of ref document: A1