WO2021208605A1 - 一种变频空调压缩机频率快速稳定方法、***及空调装置 - Google Patents

一种变频空调压缩机频率快速稳定方法、***及空调装置 Download PDF

Info

Publication number
WO2021208605A1
WO2021208605A1 PCT/CN2021/077915 CN2021077915W WO2021208605A1 WO 2021208605 A1 WO2021208605 A1 WO 2021208605A1 CN 2021077915 W CN2021077915 W CN 2021077915W WO 2021208605 A1 WO2021208605 A1 WO 2021208605A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
coil temperature
interval
value
adjustment
Prior art date
Application number
PCT/CN2021/077915
Other languages
English (en)
French (fr)
Inventor
孙超
安超
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021208605A1 publication Critical patent/WO2021208605A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This specification belongs to the technical field of inverter air conditioner compressors, and in particular relates to a method, system and air conditioner for rapid frequency stabilization of an inverter air conditioner compressor.
  • the required air conditioner heating capacity is small, and the compressor frequency is low .
  • the outdoor environment temperature is low, such as the minimum cooling condition (indoor: 21/15, outdoor: 10/6, etc. under the test conditions specified by the national standard)
  • the required cooling capacity of the air conditioner is also small.
  • the compressor frequency is also low.
  • the maximum frequency of air-conditioning operation is adjusted by the coil temperature of the indoor evaporator.
  • the compressor frequency will be rapidly reduced due to high pressure protection, due to low load In the state, the frequency range corresponding to each temperature value is narrow, and more accurate frequency operation is required.
  • the anti-freezing protection of the inner coil temperature is too low (for example, when the outdoor temperature is high, the compression
  • the operating frequency of the machine is in the range [20,40], and the corresponding coil temperature range may be [40,60].
  • the coil may increase by 1 degree; and when the outdoor temperature is low (for example, -10°C) ), the compressor operating frequency is in the range [20,110], corresponding to the coil temperature range [25,45], the frequency is increased by 10Hz, and the coil may only increase by 1 degree), therefore, the frequency adjustment is required to be more accurate at this time), In order to make the machine run in the best state without exceeding the operating limit.
  • the outdoor temperature for example, -10°C
  • the compressor frequency is adjusted too fast, the temperature sensor response is slow (for example, if the compressor frequency rises by 1Hz, it may take 30 seconds for the temperature to rise to the corresponding temperature, and the temperature change has a hysteresis relative to the frequency change), so,
  • the compressor has a fast rise and fall frequency, and the temperature protection and control can easily make the compressor frequency rise and fall, oscillate up and down, and cannot be stabilized. Therefore, in the low-load operation state, due to the excessively fast adjustment of the air conditioner frequency, the air conditioner's operating frequency fluctuates and cannot be stabilized, and even causes repeated shutdowns.
  • the existing detection of the coil temperature value and the set value The method of controlling the frequency up and down speed to make the machine run stably has great limitations and uncertainties.
  • the present invention is proposed to solve or at least partially solve the problem of how to dynamically control the state and speed of the compressor frequency adjustment by detecting the coil temperature in a low-load operation state, so as to stabilize and quickly adjust the frequency in a short time.
  • the technical problem is to avoid the situation that the frequency of the inverter air conditioner is adjusted too fast and the operating frequency of the air conditioner fluctuates and cannot be stabilized under low load conditions, and even causes repeated shutdowns.
  • the present invention provides a method, system and air-conditioning device for quickly stabilizing the frequency of a frequency conversion air-conditioning compressor to solve the above-mentioned technical problems.
  • a method for quickly stabilizing the frequency of the inverter air conditioner compressor is provided to obtain the coil temperature detection value in real time; based on the preset coil temperature setting value and its adjustment error range, it is determined whether the coil temperature detection value is at Maintain the compressor frequency operation within the holding frequency temperature range; determine whether to control the compression according to whether the coil temperature detection value is within the holding frequency temperature range, and the current compressor frequency adjustment is in the state of increasing, decreasing or ending The machine frequency adjustment status changes.
  • the "real-time acquisition of coil temperature detection value” specifically includes: continuous real-time detection and acquisition of the coil temperature value of the inverter air conditioner at a fixed or non-fixed frequency; "based on preset coil temperature settings Value and its adjustment error range, to determine whether the coil temperature detection value is within the holding frequency temperature range for maintaining compressor frequency operation” specifically includes: adding the coil temperature setting value plus the adjustment error range as the holding The interval maximum value of the frequency temperature range, the coil temperature setting value minus the adjustment error range is taken as the interval minimum value of the maintaining green temperature range, and the interval formed according to the interval maximum value and the interval minimum value is taken as the The holding frequency temperature range; the coil temperature detection value is compared with the minimum value of the interval and the maximum value of the interval; when the detection value of the coil temperature is greater than the minimum value of the interval and less than the maximum value of the interval When the coil temperature detection value is within the holding frequency temperature range; when the coil temperature detection value is greater than or equal to the maximum value of the interval or less than or equal to the minimum value of the interval, the
  • determining whether to control the compressor frequency adjustment state to change according to whether the detection value of the coil temperature is within the holding frequency temperature range and the current compressor frequency adjustment is in the state of increasing, decreasing or ending specifically includes: The current compressor frequency is adjusted to the end state, and the coil temperature detection value is within the holding frequency temperature range, and the state does not change, the compressor keeps running at the current frequency; the current compressor frequency is adjusted to the end state, and so The coil temperature detection value is greater than or equal to the maximum value of the interval in the holding frequency temperature range, and the compressor frequency adjustment is controlled to decrease at a predetermined speed; the current compressor frequency adjustment is in an end state, and the coil temperature detection If the value is less than or equal to the minimum value of the interval in the maintaining frequency temperature range, the compressor frequency adjustment is controlled to increase at a predetermined speed; the current compressor frequency is adjusted to an increase or decrease state, and the coil temperature detection value Within the holding frequency temperature range, the compressor frequency adjustment is controlled to end; the current compressor frequency is adjusted to an elevated state, and the coil temperature detection value is greater than or
  • the coil temperature setting value is the highest in the air conditioning system The saturation temperature of the refrigerant that can withstand the pressure value is related; the adjustment error range is set to 1°C; wherein, when the power is turned on, the coil temperature detection value is less than or equal to the minimum value of the interval in the holding frequency temperature range, and the control The compressor is increased at the frequency adjustment speed v; wherein, “the number of frequency oscillations is increased by one time” specifically includes: the number of oscillations n is increased by one; wherein, “a speed lower than the predetermined speed” is specifically: the frequency of the compressor 1/n of the adjusted predetermined speed v.
  • a system for quickly stabilizing the frequency of an inverter air conditioner compressor which includes: a detection module for obtaining the detection value of the coil temperature in real time; a comparison module for obtaining a preset coil temperature setting value and its adjustment error Range, to determine whether the coil temperature detection value is within the holding frequency temperature range for maintaining compressor frequency operation; an adjustment module is used to determine whether the coil temperature detection value is within the holding frequency temperature range and the current compression When the frequency adjustment of the compressor is in the state of increasing, decreasing or ending, it is determined whether to control the frequency adjustment state of the compressor to change.
  • the detection module specifically includes: continuously detecting and obtaining the coil temperature value of the inverter air conditioner in real time at a fixed or unfixed frequency;
  • the comparison module specifically includes: adding the coil temperature setting value to the The adjustment error range is taken as the interval maximum value of the maintaining frequency temperature range, and the coil temperature setting value minus the adjustment error range is taken as the interval minimum value of the maintaining green temperature range, according to the interval maximum value and interval
  • the interval formed by the minimum value is used as the holding frequency temperature range; the detection value of the coil temperature is compared with the minimum value of the interval and the maximum value of the interval; when the detection value of the coil temperature is greater than the minimum value of the interval And is less than the maximum value of the interval, the coil temperature detection value is within the holding frequency temperature range; when the coil temperature detection value is greater than or equal to the maximum value of the interval or less than or equal to the minimum value of the interval, The detection value of the coil temperature is not within the temperature range of the holding frequency.
  • the adjustment module specifically includes: the current compressor frequency is adjusted to an end state, and the coil temperature detection value is within the holding frequency temperature range, and the state does not change, the compressor keeps running at the current frequency; the current compressor The frequency adjustment is in an end state, and the coil temperature detection value is greater than or equal to the maximum value of the interval in the holding frequency temperature range, and the compressor frequency adjustment is controlled to decrease at a predetermined speed; the current compressor frequency adjustment is ended State, and the coil temperature detection value is less than or equal to the minimum value of the interval in the holding frequency temperature range, the compressor frequency adjustment is controlled to increase at a predetermined speed; the current compressor frequency is adjusted to an increase or decrease state , And the coil temperature detection value is within the holding frequency temperature range, the compressor frequency adjustment is controlled to end; the current compressor frequency is adjusted to an elevated state, and the coil temperature detection value is greater than or equal to the holding frequency The maximum value of the interval in the temperature range, the compressor frequency adjustment is controlled to decrease at the predetermined speed; the current compressor frequency is adjusted to an increased state, and the coil temperature temperature
  • the adjustment module specifically further includes: when starting up, the number of initial frequency oscillations n is 1, where n is a natural number representing the number of times, and the predetermined speed v for initializing the compressor frequency adjustment is 1 Hz/s; the coil temperature setting The fixed value is related to the saturation temperature of the refrigerant under the maximum pressure value that the air conditioning system can withstand; the adjustment error range is set to 1°C; where the coil temperature detection value is less than or equal to the temperature range of the holding frequency when starting up.
  • the minimum value of the interval is controlled to increase the frequency of the compressor at a predetermined speed v; wherein, "the number of frequency oscillations increases by one time” specifically includes: the number of oscillations n increases by one time; wherein, "a speed lower than the predetermined speed "Specifically: 1/n of the predetermined speed v of the compressor frequency adjustment.
  • an air conditioner including: a controller and a coil temperature sensor connected to the controller; the coil temperature sensor is arranged near the coil of the air conditioner, and the steps of the aforementioned method are executed to obtain the disk in real time. Tube temperature detection value; the controller executes the steps of the aforementioned method to determine whether the coil temperature detection value is within the holding frequency temperature range of the maintenance compressor frequency end frequency adjustment, and based on the coil temperature detection value Whether it is within the maintaining frequency temperature range and the current compressor frequency adjustment is in a state of increasing, decreasing or ending, it is determined whether to control the compressor frequency adjustment state to change.
  • an air conditioner which includes: the aforementioned inverter air conditioner compressor frequency rapid stabilization system.
  • the technical scheme of the present invention by determining whether the coil temperature detection value is within the holding frequency temperature range determined according to the preset coil temperature setting value and its adjustment error range, the compressor frequency adjustment is dynamically controlled to end, increase or decrease The state and the speed of its rise and fall, because the state and speed of the frequency adjustment are controlled according to the state and temperature changes in a larger area, avoiding excessive state switching and speed changes caused by the fixed small area temperature setting, reducing The number of oscillations of the frequency of the inverter air conditioner compressor is avoided, and the situation of the air conditioner compressor operating frequency fluctuating high and low or even repeated shutdowns is avoided, and rapid stability is achieved.
  • the frequency modulation (frequency adjustment) speed of the scheme of the present invention dynamically changes with the number of occurrences of oscillation, and the system will not oscillate indefinitely due to improper setting of the frequency modulation speed, and it also avoids setting the frequency modulation speed to ensure stability. Slowness causes the adjustment time to be too long.
  • FIG. 1 shows a schematic diagram of an embodiment in which the prior art controls the frequency rise and fall speed by detecting the difference between the coil temperature value and the set value, so as to stabilize the operation of the inverter air conditioner compressor;
  • Figure 2 shows a main flow chart of an embodiment of a method for rapid frequency stabilization of an inverter air conditioner compressor according to the present invention
  • Fig. 3 shows a structural block diagram of an embodiment of a system for rapid frequency stabilization of an inverter air conditioner compressor according to the present invention
  • Fig. 4 shows a flowchart of an embodiment of a specific application of the method according to the present invention.
  • module and “processor” may include hardware, software, or a combination of both.
  • a module can include hardware circuits, various suitable sensors, communication ports, and memory, and can also include software parts, such as program codes, or a combination of software and hardware.
  • the processor may be a central processing unit, a microprocessor, an image processor, a digital signal processor, or any other suitable processor.
  • the processor has data and/or signal processing functions.
  • the processor can be implemented in software, hardware, or a combination of the two.
  • the non-transitory computer-readable storage medium includes any suitable medium that can store program code, such as magnetic disks, hard disks, optical disks, flash memory, read-only memory, random access memory, and so on.
  • a and/or B means all possible combinations of A and B, such as only A, only B, or A and B.
  • the term "at least one of A or B” or “at least one of A and B” has a meaning similar to “A and/or B” and may include only A, only B, or A and B.
  • the terms “a” and “this” in the singular form may also include the plural form.
  • FIG. 1 An example of a method for controlling the frequency of the compressor to adjust the rising and falling state and the frequency modulation speed in a low-load state is shown in FIG. 1.
  • the coil temperature Tcm is less than Tset-b or far below the limit value, the frequency rises rapidly (v1 speed).
  • the method of controlling the frequency rise and fall speed by detecting the difference between the coil temperature value and the set value to make the machine run stably has great limitations and uncertainties: 1) Because b reflects the adjustment range, If the b value is set too large, the machine will take longer to increase the frequency at a slow speed, and the coil temperature will be given sufficient response time, but if the adjustment time is too long, the adjustment speed will be too slow; if the b value is set too small, the machine will not be stable. Or repeatedly shut down; 2) The coil sensor cannot reflect the temperature of the coil in real time. The speed of the coil sensor to the temperature of the coil is different under different ambient temperatures. It is not possible to set each working condition to the same in the program parameter setting.
  • a value of a, b, the sensitivity and hysteresis time of low load and high load temperature with respect to frequency changes are different. If only the same a, b value is set, it will inevitably lead to slow adjustment under some working conditions. It cannot be stable under the working conditions, which leads to oscillation. Therefore, the setting values of a and b and the frequency change value of the press are not all applicable, and it cannot guarantee that the frequency can be kept stable under all working conditions.
  • Figure 2 is a main flow chart of an embodiment of a method for rapid frequency stabilization of an inverter air conditioner compressor according to the present invention.
  • step S110 a detection value of the coil temperature is obtained in real time.
  • the coil temperature detection value of the inverter air conditioner is monitored and acquired in real time, for example, a coil temperature sensor installed near the coil of the air conditioner is used to detect the real-time coil temperature. Further, it is possible to continuously detect and obtain the coil temperature detection value of the inverter air conditioner at a fixed or non-fixed frequency. For example, as long as the compressor is turned on, it will be detected every 30 seconds or every one minute. Wait.
  • Step S120 based on the preset coil temperature setting value and its adjustment error range, it is determined whether the coil temperature detection value is within the holding frequency temperature range for maintaining the compressor frequency operation.
  • the holding frequency temperature range for maintaining the compressor frequency operation means that if the coil temperature detection value is within the holding frequency temperature range, the current compressor frequency operation is maintained without adjusting the compressor frequency, and there will be no The state of FM (frequency adjustment/frequency adjustment) changes (that is, it does not increase or decrease), and there is no corresponding speed change, that is, the speed of FM increases or decreases at a predetermined speed.
  • the coil temperature setting value plus the adjustment error range is taken as the interval maximum value of the holding frequency temperature range
  • the coil temperature setting value minus the adjustment error range is taken as the holding frequency
  • the interval minimum value of the temperature range is an interval formed according to the interval maximum value and the interval minimum value as the maintaining frequency temperature range.
  • the detection value of the coil temperature is compared with the minimum value of the interval and the maximum value of the interval; when the detection value of the coil temperature is greater than the minimum value of the interval and less than the maximum value of the interval, the The detection value of the coil temperature is within the temperature range of the holding frequency; when the detection value of the coil temperature is greater than or equal to the maximum value of the interval or less than or equal to the minimum value of the interval, the detection value of the coil temperature is not within the Keep the frequency within the temperature range.
  • the preset coil temperature setting value Tset is added to the value a (a is an absolute value) of the adjustment error range, that is, Tset+a, as the maximum value of the interval, and subtracted, that is, Tset-a is the minimum value of the interval.
  • a-2a is the coil temperature adjustment error range. It depends on the situation. Generally, it can be set to 1 degree. The smaller the a, the more precise the adjustment and the longer the adjustment time.
  • Step S130 Determine whether to control the compressor frequency adjustment state to change according to whether the coil temperature detection value is within the holding frequency temperature range, and the current compressor frequency adjustment is in a state of increasing, decreasing, or ending.
  • the current compressor frequency adjustment is in the finished state, that is, the frequency adjustment phase is not performed: (1) If the coil temperature detection value is within the holding frequency temperature range, and the state does not change, the compressor still maintains the current frequency Operation, for example, the compressor keeps the current frequency running, and the detected coil temperature detection value Tset-a ⁇ Tcm ⁇ Tset+a, the current frequency will not be adjusted, such as adjusting to increase or decrease at a certain speed Etc., that is, the current state is not changed; (2) If the detection value of the coil temperature is greater than or equal to the maximum value of the interval in the holding frequency temperature range, control the compressor frequency adjustment to decrease at a predetermined speed, for example, the compressor Maintain the detected coil temperature value Tcm ⁇ Tset+a in the current frequency operation, control the state of the compressor frequency adjustment to change, adjust the frequency to decrease, and reduce at a predetermined speed v according to the demand when it is turned on; (3) If The coil temperature detection value is less than or equal to the minimum value of the interval in the holding frequency temperature range
  • the coil temperature detection is detected while the compressor is running at the current frequency.
  • the value Tcm ⁇ Tset-a the state of controlling the frequency adjustment of the compressor is changed, the adjustment frequency is increased, and the speed v is increased at a predetermined speed v according to the demand when the compressor is turned on.
  • the current compressor frequency is adjusted to an increased or decreased state, and the coil temperature detection value is always within the holding frequency temperature range, and the compressor frequency adjustment is controlled to end. For example, if the current compressor adjustment frequency increases or the adjustment frequency decreases, if Tset-a ⁇ Tcm ⁇ Tset+a, the compressor frequency adjustment is controlled to end, that is, the adjustment frequency is no longer increased or decreased, and the compressor maintains the current state Frequency operation.
  • the current compressor frequency is adjusted to an elevated state: (1) If the coil temperature detection value is greater than or equal to the maximum value of the interval in the holding frequency temperature range, control the compressor frequency to the The predetermined speed decreases until the coil temperature detection value returns to the holding frequency temperature range.
  • the current compressor adjustment frequency is increasing at a predetermined speed v, when Tcm reaches this interval (Tset-a, Tset +a), keep the current frequency running, but if Tcm ⁇ Tset+a subsequently obtained, it cannot be increased any more and should be converted to a state where the frequency is reduced, and the compressor frequency adjustment is controlled to reduce the frequency at a predetermined speed v until Tcm It is in (Tset-a, Tset+a) and is still in this interval afterwards, and the frequency adjustment ends; (2) If the coil temperature detection value is less than or equal to the minimum value of the interval in the holding frequency temperature range , Do not change the state, for example, when the coil temperature is low when the coil is turned on, that is, Tcm ⁇ Tset-a, the compressor frequency adjustment always keeps the predetermined speed v rising, that is, the state does not change, and the frequency is still adjusted at the speed v until it is detected that Tcm is at In the case of Tset-a ⁇ Tcm ⁇ Tset+a and T
  • the current compressor frequency is adjusted to a reduced state, (1) If the coil temperature detection value is greater than or equal to the maximum value of the interval in the holding frequency temperature range, the state is not changed, for example, the current compression
  • the machine adjustment frequency is decreasing at a predetermined speed v. If Tcm ⁇ Tset+a, you need to continue to adjust the frequency decrease at speed v until it is detected that Tcm is always in the situation of Tset-a ⁇ Tcm ⁇ Tset+a, then the adjustment is finished. The frequency is no longer reduced; (2) If the coil temperature detection value is less than or equal to the minimum value of the interval in the holding frequency temperature range, control the compressor frequency adjustment to increase at a speed lower than the predetermined speed , The number of frequency oscillations increases once.
  • the current compressor adjustment frequency is decreasing at a predetermined speed v.
  • Tcm reaches this interval (Tset-a, Tset+a)
  • the current frequency operation is maintained, but if Tcm is subsequently detected ⁇ Tset-a, indicating that the frequency can no longer be reduced and should be turned to a state where the frequency is adjusted to increase, then an oscillation will be recorded, the number of oscillations n will be increased by one (n+1), and the compressor frequency will be adjusted to a value lower than
  • the speed of the predetermined speed v for example, the speed v of 1/n increases (v/n), until Tcm is always at (Tset-a, Tset+a) and ends.
  • the frequency will not be adjusted, and the frequency will be kept running, without changing the state, and no oscillation will occur; and if it is in the stage of adjusting the frequency, there will only be a change from lower to higher. Oscillation will occur, and the frequency of frequency modulation is dynamically changed by the number of oscillations, and the frequency of frequency modulation is slowed down to prevent more oscillations and reach a stable state in a short time.
  • the initialization is completed when the device is turned on. For example, turn on; initialize the frequency oscillation number n is 1, where n is a natural number representing the number of times; initialize the compressor frequency adjustment speed v, for example, 1Hz/s; initialize the coil temperature setting value Tset, which is the highest that the system can withstand
  • the saturation temperature of the cold coal under the pressure value is related.
  • the R410A system can be set to withstand 4.15MPa pressure, 60°C is the saturation temperature of the refrigerant at this pressure; initialize a, for example 1°C, the smaller the a, the more precise the adjustment.
  • the interval (Tset-a, Tset+a) is determined according to the coil temperature adjustment error range of a-2a.
  • the real-time acquisition of the coil temperature detection value Tcm is generally less than or equal to the interval minimum value Tset-a in the holding frequency temperature range, Tcm ⁇ Tset-a, and the compressor is controlled to increase at the frequency adjustment speed v.
  • Tcm continue to detect Tcm. For example, until Tcm is detected to rise to Tset-a ⁇ Tcm, the compressor keeps running at the current frequency, and the continuously detected Tcm rise is in this interval (Tset-a, Tset+a), at this time, Tcm ⁇ Tset+a, The speed v is no longer increased, the current compressor frequency operation is maintained, and the frequency modulation state is ended. In this way, the frequency quickly stabilizes and keeps the current frequency to continue running.
  • the detected coil temperature detection value Tcm will continue to rise, and after rising, if it is always within this interval (Tset-a, Tset+a), the compressor frequency modulation ends Keep the current frequency running.
  • the compressor keeps running at the current frequency and continuously detects the Tcm, if it continues to rise to Tcm ⁇ Tset+a, the current compressor frequency needs to be reduced, and the compressor frequency is adjusted to reduce/decrease at the speed v; and continue to determine the subsequent detected Tcm Whether it starts to decrease and then returns to the interval (Tset-a, Tset+a) is to judge whether Tcm ⁇ Tset+a, if yes, keep the compressor running at the current frequency, and continue to detect Tcm at this operating frequency, if Tcm If it drops but always stays within this interval, that is, Tset-a ⁇ Tcm, the frequency modulation ends; if Tcm decreases rapidly due to the decrease in frequency modulation, and the continuous detection of Tcm reaches Tcm ⁇ Tset-a, the compressor frequency adjustment is changed to increase and needs to be increased.
  • FIG. 3 a structural block diagram of an embodiment of a system for rapid frequency stabilization of an inverter air conditioner compressor of the present invention.
  • the system includes at least:
  • the detection module 310 is used to obtain the detection value of the coil temperature in real time
  • the coil temperature detection value of the inverter air conditioner is monitored and acquired in real time, for example, a coil temperature sensor installed near the coil of the air conditioner is used to detect the real-time coil temperature. Further, it is possible to continuously detect and obtain the coil temperature detection value of the inverter air conditioner at a fixed or non-fixed frequency. For example, as long as the compressor is turned on, it will be detected every 30 seconds or every one minute. Wait.
  • the comparison module 320 is configured to determine whether the detection value of the coil temperature is within the temperature range of the holding frequency for maintaining the compressor frequency operation based on the preset coil temperature setting value and its adjustment error range;
  • the holding frequency temperature range for maintaining the compressor frequency operation means that if the coil temperature detection value is within the holding frequency temperature range, the current compressor frequency operation is maintained without adjusting the compressor frequency, and there will be no The state of FM (frequency adjustment/frequency adjustment) changes (that is, it does not increase or decrease), and there is no corresponding speed change, that is, the speed of FM increases or decreases at a predetermined speed.
  • the coil temperature setting value plus the adjustment error range is taken as the interval maximum value of the holding frequency temperature range
  • the coil temperature setting value minus the adjustment error range is taken as the holding frequency
  • the interval minimum value of the temperature range is an interval formed according to the interval maximum value and the interval minimum value as the maintaining frequency temperature range.
  • the detection value of the coil temperature is compared with the minimum value of the interval and the maximum value of the interval; when the detection value of the coil temperature is greater than the minimum value of the interval and less than the maximum value of the interval, the The detection value of the coil temperature is within the temperature range of the holding frequency; when the detection value of the coil temperature is greater than or equal to the maximum value of the interval or less than or equal to the minimum value of the interval, the detection value of the coil temperature is not within the Keep the frequency within the temperature range.
  • the preset coil temperature setting value Tset is added to the value a of the adjustment error range (a is an absolute value), that is, Tset+a, as the maximum value of the interval, and subtracted, that is, Tset-a is the minimum value of the interval.
  • a-2a is the coil temperature adjustment error range. It depends on the situation. Generally, it can be set to 1 degree. The smaller the a, the more precise the adjustment and the longer the adjustment time.
  • the adjustment module 330 is configured to determine whether to control the compressor frequency adjustment state to change according to whether the detection value of the coil temperature is within the holding frequency temperature range and the current compressor frequency adjustment is in the state of increasing, decreasing or ending.
  • the current compressor frequency adjustment is in the finished state, that is, the frequency adjustment phase is not performed: (1) If the coil temperature detection value is within the holding frequency temperature range, and the state does not change, the compressor still maintains the current frequency Operation, for example, the compressor keeps the current frequency running, and the detected coil temperature detection value Tset-a ⁇ Tcm ⁇ Tset+a, the current frequency will not be adjusted, such as adjusting to increase or decrease at a certain speed Etc., that is, the current state is not changed; (2) If the detection value of the coil temperature is greater than or equal to the maximum value of the interval in the holding frequency temperature range, control the compressor frequency adjustment to decrease at a predetermined speed, for example, the compressor Keep the current frequency running, and the detected coil temperature detection value Tcm ⁇ Tset+a, control the state of the compressor frequency adjustment to change, the adjustment frequency is reduced, and the speed v is reduced at a predetermined speed v according to the demand when it is turned on; (3 ) If the detection value of the coil temperature is less than or equal to the
  • the current compressor frequency is adjusted to an increased or decreased state, and the coil temperature detection value is always within the holding frequency temperature range, and the compressor frequency adjustment is controlled to end. For example, if the current compressor adjustment frequency increases or the adjustment frequency decreases, if Tset-a ⁇ Tcm ⁇ Tset+a, the compressor frequency adjustment is controlled to end, that is, the adjustment frequency is no longer increased or decreased, and the compressor maintains the current state Frequency operation.
  • the current compressor frequency is adjusted to an elevated state: (1) If the coil temperature detection value is greater than or equal to the maximum value of the interval in the holding frequency temperature range, control the compressor frequency to the The predetermined speed decreases until the coil temperature detection value returns to the holding frequency temperature range.
  • the current compressor adjustment frequency is increasing at a predetermined speed v, when Tcm reaches this interval (Tset-a, Tset +a), keep the current frequency running, but if Tcm ⁇ Tset+a subsequently obtained, it cannot be increased any more and should be converted to a state where the frequency is reduced, and the compressor frequency adjustment is controlled to reduce the frequency at a predetermined speed v until Tcm End at (Tset-a, Tset+a);
  • the detection value of the coil temperature is less than or equal to the minimum value of the interval in the holding frequency temperature range, the state is not changed, for example, when the coil is turned on The temperature is low, that is, Tcm ⁇ Tset-a, the compressor frequency adjustment always keeps the predetermined speed v increased, that is, the state does not change until it is detected that Tcm is in the situation of Tset-a ⁇ Tcm ⁇ Tset+a and Tcm is always in this interval. Finish adjusting the frequency and no longer increase.
  • the current compressor frequency is adjusted to a reduced state, (1) If the coil temperature detection value is greater than or equal to the maximum value of the interval in the holding frequency temperature range, the state is not changed, for example, the current compression The machine adjustment frequency is decreasing at a predetermined speed v. If Tcm ⁇ Tset+a, it needs to continue to decrease until it is detected that Tcm is always Tset-a ⁇ Tcm ⁇ Tset+a. (2) If the coil temperature detection value is less than or equal to the minimum value of the interval in the holding frequency temperature range, the compressor frequency adjustment is controlled to increase at a speed lower than the predetermined speed, and the number of frequency oscillations increases Once, for example, the current compressor adjustment frequency is decreasing at a predetermined speed v.
  • Tcm When Tcm reaches this interval (Tset-a, Tset+a), keep the current frequency running, but if Tcm ⁇ Tset-a, it cannot be reduced Instead, the frequency should be adjusted to increase, then an oscillation will be recorded, and the number of oscillations n will be increased by one (n+1), and the frequency of the compressor will be adjusted to a speed lower than the predetermined speed v, such as 1/n
  • the v speed increases (v/n) until Tcm is always at (Tset-a, Tset+a) and ends.
  • an air-conditioning device of the present invention includes: a controller and a coil temperature sensor connected to the controller; the coil temperature sensor is arranged near the coil of the air-conditioning device, and performs as described above
  • the steps of the method are to obtain the coil temperature detection value in real time; the controller executes the steps of the aforementioned method to determine whether the coil temperature detection value is within the maintenance frequency temperature range of the maintenance compressor frequency end frequency adjustment, and according to Whether the detection value of the coil temperature is within the holding frequency temperature range, and the current compressor frequency adjustment is in the state of increasing, decreasing or ending, it is determined whether to control the compressor frequency adjustment state to change.
  • an air conditioner of the present invention includes: the aforementioned inverter air conditioner compressor frequency rapid stabilization system.
  • each module is only to illustrate the functional units of the system of the present invention
  • the physical devices corresponding to these modules may be the processor itself, or part of the software in the processor, part of the hardware, or Part of the combination of software and hardware. Therefore, the number of modules in the figure is only schematic.
  • each module in the system can be adaptively split or merged. Such splitting or merging of specific modules will not cause the technical solution to deviate from the principle of the present invention. Therefore, the technical solutions after splitting or merging will fall within the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种变频空调压缩机频率快速稳定方法、***及空调装置,方法包括:实时获取盘管温度检测值;基于预设置的盘管温度设定值及其调整误差范围,确定盘管温度检测值是否处于保持压缩机频率运行的保持频率温度范围以内;根据盘管温度检测值是否处于保持频率温度范围以内、以及当前压缩机频率调整处于升高、降低或结束的状态,确定是否控制压缩机频率调整状态改变。该方法可避免空调压缩机运行频率忽高忽低甚至反复停机的情况,实现了快速稳定;调频的速度随振荡出现的次数而动态改变,不会由于调频速度设置不合适而使***无限次的振荡,同时也避免了为保证稳定而将调频速度设置过慢致使调整时间过长的情形。

Description

一种变频空调压缩机频率快速稳定方法、***及空调装置 技术领域
本说明书属于变频空调压缩机技术领域,尤其涉及一种变频空调压缩机频率快速稳定方法、***及空调装置。
背景技术
空调在室外环境温度较高时,例如最大制热工况(国标规定的测试工况下室内:27/18,室外:24/18等),所需空调制热量较小,压缩机频率较低,而类似的,空调在室外环境温度较低时,例如最小制冷工况(国标规定的测试工况下室内:21/15,室外:10/6等),所需空调制冷量也较小,压缩机频率也较低。通常空调运行的最大频率由室内蒸发器的盘管温度调节,在制热时,如果频率过高、盘管温度过高超过限定值时,压机频率会由于高压保护而快速降低,由于低负荷状态下,每个温度值对应的频率区间较窄,需要较为精确的频率运行,制冷时,由于内盘管温度过低的防冻结保护也会出现类似情况(例如,当室外温度较高,压缩机运行频率处于区间[20,40],对应的盘管温度区间可能为[40,60],每升高1Hz,盘管就可能升高1度;而当室外温度较低(例-10℃),压缩机运行频率在区间[20,110],对应盘管温度区间[25,45],频率升高10Hz,可能盘管才升高1度),因此,此时要求频率调节更精确了),才能使机器即运行在最佳状态又不至于超过运行限值。
但由于压机频率调整过快,温度传感器反应又较慢(例如,压缩机频率上升1Hz,可能温度要等30秒才能上升至相应的温度,温度变化相对于频率变化具有迟滞性),这样,压缩机升降频率速度快,温度保护以及控制上很容易使压机频率忽高忽低,上下振荡,无法稳定。因此,低负荷运行状态下,由于空调频率调节过快,而使空调出现运行频率忽高忽低无法稳定、甚至由此引发反复停机现象,而现有通过检测盘管温度值与设定值之间的差值大小来控制频率升降速度进而使机器稳定运行的方法有很大的局限性和不确定性。
因此,需要一种新的变频空调压缩机频率快速稳定方案。
发明内容
为了克服上述缺陷,提出了本发明,以解决或至少部分解决在低负荷运行状态下如何通过检测盘管温度以动态方式控制压缩机频率调整的状态和速度的变化而短时间稳定快速频率调整的技术问题,避免在低负荷状态下出现的由于变频空调频率调节过快而使空调出现运行频率忽高忽低无法稳定、甚至由此引发反复停机的情况。本发明为解决上述技术问题提供了一种变频空调压缩机频率快速稳定方法、***及空调装置。
第一方面,提供一种变频空调压缩机频率快速稳定方法,实时获取盘管温度检测值;基于预设置的盘管温度设定值及其调整误差范围,确定所述盘管温度检测值是否处于保持压缩机频率运行的保持频率温度范围以内;根据所述盘管温度检测值是否处于所述保持频率温度范围以内、以及当前压缩机频率调整处于升高、降低或结束的状态,确定是否控制压缩机频率调整状态改变。
其中,所述“实时获取盘管温度检测值”,具体包括:按固定或不固定的频率持续地实时检测并获得所述变频空调的盘管温度值;“基于预设置的盘管温度设定值及其调整误差范围,确定所述盘管温度检测值是否处于保持压缩机频率运行的保持频率温度范围以内”具体包括:将所述盘管温度设定值加上调整误差范围作为所述保持频率温度范围的区间最大值,将所述盘管温度设定值减去调整误差范围作为所述保持披绿温度范围的区间最小值,根据所述区间最大值和区间最小值形成的区间作为所述保持频率温度范围;所述盘管温度检测值与所述区间最小值和所述区间最大值进行大小比较;当所述盘管温度检测值大于所述区间最小值且小于所述区间最大值时,所述盘管温度检测值处于所述保持频率温度范围以内;当所述盘管温度检测值大于等于所述区间最大值或者小于等于所述区间最小值时,所述盘管温度检测值未处于所述保持频率温度范围以内。
其中,“根据所述盘管温度检测值是否处于所述保持频率温度范围以内、以及当前压缩机频率调整处于升高、降低或结束的状态,确定是否控制压缩机频率调整状态改变”具体包括:当前压缩机频率调整为结束的状态,且所述盘管温度检测值处于所述保持频率温度范围以内, 不改变状态,压缩机保持当前频率运行;当前压缩机频率调整为结束的状态,且所述盘管温度检测值大于等于所述保持频率温度范围中的所述区间最大值,控制压缩机频率调整以一预定速度降低;当前压缩机频率调整为结束的状态,且所述盘管温度检测值小于等于所述保持频率温度范围中的所述区间最小值,控制压缩机频率调整以一预定速度升高;当前压缩机频率调整为升高或降低的状态,且所述盘管温度检测值处于所述保持频率温度范围以内,控制压缩机频率调整结束;当前压缩机频率调整为升高的状态,且所述盘管温度检测值大于等于所述保持频率温度范围中的所述区间最大值,控制压缩机频率调整以所述预定速度的速度降低;当前压缩机频率调整为升高的状态,且所述盘管温度检测值小于等于所述保持频率温度范围中的所述区间最小值,不改变状态;当前压缩机频率调整为降低的状态,且所述盘管温度检测值大于等于所述保持频率温度范围中的所述区间最大值,不改变状态;当前压缩机频率调整为降低的状态,且所述盘管温度检测值小于等于所述保持频率温度范围中的所述区间最小值,控制压缩机频率调整以一低于所述预定速度的速度升高,频率振荡次数增加一次。
其中,具体还包括:开机时,初始化频率振荡次数n为1,其中,n为表示次数的自然数,初始化压缩机频率调整速度v为1Hz/s;所述盘管温度设定值与空调***最高可承受压力值下的冷媒饱和温度相关;所述调整误差范围设置为1℃;其中,开机时,实时获取盘管温度检测值小于等于所述保持频率温度范围中的所述区间最小值,控制所述压缩机以频率调整速度v升高;其中,“频率振荡次数增加一次”具体包括:振荡次数n增加1次;其中,“一低于所述预定速度的速度”具体为:压缩机频率调整的所述预定速度v的1/n。
第二方面,提供一种变频空调压缩机频率快速稳定***,包括:检测模块,用于实时获取盘管温度检测值;比较模块,用于基于预设置的盘管温度设定值及其调整误差范围,确定所述盘管温度检测值是否处于保持压缩机频率运行的保持频率温度范围以内;调节模块,用于根据所述盘管温度检测值是否处于所述保持频率温度范围以内、以及当前压缩机频率调整处于升高、降低或结束的状态,确定是否控制压缩机频率调整状态改变。
其中,所述检测模块具体包括:按固定或不固定的频率持续地实时检测并获得所述变频空调的盘管温度值;所述比较模块具体包括:将所述盘管温度设定值加上调整误差范围作为所述保持频率温度范围的区间最大值,将所述盘管温度设定值减去调整误差范围作为所述保持披绿温度范围的区间最小值,根据所述区间最大值和区间最小值形成的区间作为所述保持频率温度范围;所述盘管温度检测值与所述区间最小值和所述区间最大值进行大小比较;当所述盘管温度检测值大于所述区间最小值且小于所述区间最大值时,所述盘管温度检测值处于所述保持频率温度范围以内;当所述盘管温度检测值大于等于所述区间最大值或者小于等于所述区间最小值时,所述盘管温度检测值未处于所述保持频率温度范围以内。
其中,所述调节模块具体包括:当前压缩机频率调整为结束的状态,且所述盘管温度检测值处于所述保持频率温度范围以内,不改变状态,压缩机保持当前频率运行;当前压缩机频率调整为结束的状态,且所述盘管温度检测值大于等于所述保持频率温度范围中的所述区间最大值,控制压缩机频率调整以一预定速度降低;当前压缩机频率调整为结束的状态,且所述盘管温度检测值小于等于所述保持频率温度范围中的所述区间最小值,控制压缩机频率调整以一预定速度升高;当前压缩机频率调整为升高或降低的状态,且所述盘管温度检测值处于所述保持频率温度范围以内,控制压缩机频率调整结束;当前压缩机频率调整为升高的状态,且所述盘管温度检测值大于等于所述保持频率温度范围中的所述区间最大值,控制压缩机频率调整以所述预定速度的速度降低;当前压缩机频率调整为升高的状态,且所述盘管温度检测值小于等于所述保持频率温度范围中的所述区间最小值,不改变状态;当前压缩机频率调整为降低的状态,且所述盘管温度检测值大于等于所述保持频率温度范围中的所述区间最大值,不改变状态;当前压缩机频率调整为降低的状态,且所述盘管温度检测值小于等于所述保持频率温度范围中的所述区间最小值,控制压缩机频率调整以一低于所述预定速度的速度升高,频率振荡次数增加一次。
其中,所述调节模块具体还包括:开机时,初始化频率振荡次数n为1,其中,n为表示次数的自然数,初始化压缩机频率调整的预定速度v为1Hz/s;所述盘管温度设定值与空调***最高可承受压力值下的 冷媒饱和温度相关;所述调整误差范围设置为1℃;其中,开机时,实时获取盘管温度检测值小于等于所述保持频率温度范围中的所述区间最小值,控制所述压缩机频率调整以预定速度v升高;其中,“频率振荡次数增加一次”具体包括:振荡次数n增加1次;其中,“一低于所述预定速度的速度”具体为:压缩机频率调整的预定速度v的1/n。
第三方面,提供一种空调装置,包括:控制器、连接控制器的盘管温度传感器;所述盘管温度传感器设置在空调装置的盘管附近,执行如前述的方法的步骤,实时获取盘管温度检测值;所述控制器执行如前述的方法的步骤,确定所述盘管温度检测值是否处于保持压缩机频率结束频率调整的保持频率温度范围以内,并根据所述盘管温度检测值是否处于所述保持频率温度范围以内、以及当前压缩机频率调整处于升高、降低或结束的状态,确定是否控制压缩机频率调整状态改变。
第四方面,提供一种空调装置,包括:如前述的变频空调压缩机频率快速稳定***。
本发明上述一个或多个技术方案,至少具有如下一种或多种有益效果:
本发明的技术方案:通过确定盘管温度检测值是否处于根据预设置的盘管温度设定值及其调整误差范围确定的保持频率温度范围以内,动态控制压缩机频率调整结束、升高或降低的状态以及其升降的速度,由于根据状态和温度在更大的区域变化情况控制频率调整的状态及其速度,避免固定的小区域的温度设定带来过多的状态切换和速度改变,减少了变频空调压缩机频率的振荡次数,避免了空调压缩机运行频率忽高忽低甚至反复停机的情况,实现了快速稳定。本发明的方案的调频(频率调整)的速度随振荡出现的次数而动态改变,不会由于调频速度设置不合适而使***无限次的振荡,同时也避免了为保证稳定而将调频速度设置过慢致使调整时间过长的情形。
附图说明
下面参照附图来描述本发明的具体实施方式,附图中:
图1示出了现有技术通过检测盘管温度值与设定值之间的差值大小来控制频率升降速度进而使变频空调压缩机稳定运行的一实施例的示意图;
图2示出了根据本发明的一种变频空调压缩机频率快速稳定方法的一个实施例的主要流程图;
图3示出了根据本发明的一种变频空调压缩机频率快速稳定***的一个实施例的结构框图;
图4示出了根据本发明的方法的具体应用的一实施例的流程图。
具体实施方式
为了便于理解发明,下文将结合说明书附图和实施例对本发明作更全面、细致地描述,但本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
在本发明的描述中,“模块”、“处理器”可以包括硬件、软件或者两者的组合。一个模块可以包括硬件电路,各种合适的感应器,通信端口,存储器,也可以包括软件部分,比如程序代码,也可以是软件和硬件的组合。处理器可以是中央处理器、微处理器、图像处理器、数字信号处理器或者其他任何合适的处理器。处理器具有数据和/或信号处理功能。处理器可以以软件方式实现、硬件方式实现或者二者结合方式实现。非暂时性的计算机可读存储介质包括任何合适的可存储程序代码的介质,比如磁碟、硬盘、光碟、闪存、只读存储器、随机存取存储器等等。术语“A和/或B”表示所有可能的A与B的组合,比如只是A、只是B或者A和B。术语“至少一个A或B”或者“A和B中的至少一个”含义与“A和/或B”类似,可以包括只是A、只是B或者A和B。单数形式的术语“一个”、“这个”也可以包含复数形式。
现有低负荷状态下控制压缩机频率调整升降状态和调频速度的方法例如图1所示。通过对频率调整为升高的状态时其升高频率速度(升频速度)加以控制,一般将速度分为2档(快速v1=1Hz/s和慢速v2=1Hz/10s),盘管温度的限值(即盘管温度设定值)Tset,当盘管温度Tcm小于Tset-b还远低于限值时频率快速上升(v1速度),当盘管温度为处于[Tset-b,Tset-a]区间内接近限值时频率慢速上升(v2速度),当盘管温度处于[Tset-a,Tset]区间内频率保持,当盘管温度处于[Tset,Tset+a]区间时频率慢速下降(v2速度),当盘管温度处于[Tset+a,Tset+b]区间时频率快速下降(v1速度),大于或等于Tset+b时停机,其中,a、b为 盘管温度调整误差范围,且b绝对值大于a(|b|>|a|)a越小则越接近Tset值。通过检测盘管温度值与设定值之间的差值大小来控制频率升降速度进而使机器稳定运行的方法有很大的局限性和不确定性:1)由于b反应的是调节的范围,如果b值设定过大会使机器慢速升频的时间越长,给予盘管温度充分的反应时间,但是调节时间过长,调节速度过慢;如果b值设定过小会使机器无法稳定或者反复停机;2)盘管传感器无法实时反应盘管温度,在不同的环境温度下盘管传感器对盘管温度的反应快慢也不同,程序参数设置中不能把每一个工况都设定成同一个a,b值,低负荷和高负荷温度相对于频率变化的灵敏度、迟滞时间是不同的,如果只设定同一种a,b值,不可避免带来有的工况下调节过慢,有的工况下不能稳定从而导致振荡,因而a,b的设定值和压机的频率变化值也不是全都适用的,其不能保证在所有的工况下都能使频率保持稳定。
本发明对上述现有技术的缺陷,提出了变频空调压缩机频率快速稳定的方案。参阅附图2,图2是根据本发明的一种变频空调压缩机频率快速稳定方法的一个实施例的主要流程图。
步骤S110,实时获取盘管温度检测值。
在一个实施方式中,实时监测并获取变频空调的盘管温度检测值,比如通过设置在空调装置的盘管附近的盘管温度传感器等来对实时的盘管温度做检测。进一步,可以按固定或不固定的频率持续地实时检测并获得取所述变频空调的盘管温度检测值,例如只要启动压缩机开机运行时,就每隔30秒检测、或每隔一分钟检测等。
步骤S120,基于预设置的盘管温度设定值及其调整误差范围,确定所述盘管温度检测值是否处于保持压缩机频率运行的保持频率温度范围以内。
一个实施方式中,保持压缩机频率运行的保持频率温度范围,表示如果盘管温度检测值在该保持频率温度范围以内,保持当前压缩机频率运行而不对压缩机的频率进行调整,也不会有调频(调整频率/频率调整)的状态变化(即不会升高或降低),进而也不会有相应的速度变化,即调频的速度以某个预定速度升高或降低等。
一个实施方式中,将所述盘管温度设定值加上调整误差范围作为所述保持频率温度范围的区间最大值,将所述盘管温度设定值减去调整误差范围作为所述保持频率温度范围的区间最小值,根据所述区间最 大值和区间最小值形成的区间作为所述保持频率温度范围。进一步,所述盘管温度检测值与所述区间最小值和所述区间最大值进行大小比较;当所述盘管温度检测值大于所述区间最小值且小于所述区间最大值时,所述盘管温度检测值处于所述保持频率温度范围以内;当所述盘管温度检测值大于等于所述区间最大值或者小于等于所述区间最小值时,所述盘管温度检测值未处于所述保持频率温度范围以内。比如:预先设置的盘管温度设定值Tset与其调整误差范围的值a(a为一绝对值)相加,即Tset+a,作为区间最大值,相减即Tset-a作为区间最小值,以区间最小值和区间最大值定义保持频率温度范围,即(Tset-a,Tset+a),将盘管温度检测值Tcm与Tset-a、Tset+a进行大小比较,如果Tcm≤Tset或者Tcm≥Tset则盘管温度检测值未处于保持频率温度范围以内(即处于范围以外),而如果Tset-a<Tcm<Tset+a,就处于保持频率温度范围以内。此例子中,a-2a为盘管温度调整误差范围,依情况而定,一般可设为1度,a越小,调整越精确,所需调整时间也越长。
步骤S130,根据所述盘管温度检测值是否处于所述保持频率温度范围以内、以及当前压缩机频率调整处于升高或降低或结束的状态,确定是否控制压缩机频率调整状态改变。
一个实施方式中,当前压缩机频率调整为结束的状态即未进行调频阶段:(1)如果所述盘管温度检测值处于所述保持频率温度范围以内,不改变状态,压缩机仍然保持当前频率运行,例如,压缩机保持当前频率运行中,并且检测到的盘管温度检测值Tset-a<Tcm<Tset+a,不会将当前频率进行调整,比如调整为以某个速度升高或降低等,即不改变当前状态;(2)如果所述盘管温度检测值大于等于所述保持频率温度范围中的所述区间最大值,控制压缩机频率调整以一预定速度降低,例如,压缩机保持当前频率运行中检测到的盘管温度检测值Tcm≥Tset+a,控制压缩机频率调整的状态改变,调整频率降低,并且以一个开机时即根据需求预定的速度v降低;(3)如果所述盘管温度检测值小于等于所述保持频率温度范围中的所述区间最小值,控制压缩机频率调整以一预定速度升高,例如,压缩机保持当前频率运行中检测到盘管温度检测值Tcm≤Tset-a,控制压缩机频率调整的状态改变,调整频率升高,并且以一个开机时即根据需求预定的速度v升高。
一个实施方式中,当前压缩机频率调整为升高或降低的状态,且所述盘管温度检测值始终处于所述保持频率温度范围以内,控制压缩机频率调整结束。例如,当前压缩机调整频率升高或调整频率降低的状态,如果Tset-a<Tcm<Tset+a,控制压缩机频率调整结束,即不再调整频率升高或降低了,压缩机保持当前的频率运行。
一个实施方式中,当前压缩机频率调整为升高的状态:(1)如果所述盘管温度检测值大于等于所述保持频率温度范围中的所述区间最大值,控制压缩机频率以所述预定速度的降低,直到盘管温度检测值回到所述保持频率温度范围中,例如,当前压缩机调整频率正在以一个预定速度v升高的状态,当Tcm到达该区间(Tset-a,Tset+a),保持当前频率运行,但如果接着后续获取的Tcm≥Tset+a,则不能再升高而应当转换为调整频率降低的状态,控制压缩机频率调整以预定速度v降低频率,直到Tcm处于(Tset-a,Tset+a)且后续仍处于该区间,而结束对频率的调整;(2)如果所述盘管温度检测值小于等于所述保持频率温度范围中的所述区间最小值,不改变状态,例如,开机时盘管温度低即Tcm≤Tset-a,压缩机频率调整始终保持预定速度v升高,即状态不变,仍然是以速度v调整频率,直到检测到Tcm处于Tset-a<Tcm<Tset+a的情形且Tcm始终在该区间,才结束调整频率,不再升高。
一个实施方式中,当前压缩机频率调整为降低的状态,(1)如果所述盘管温度检测值大于等于所述保持频率温度范围中的所述区间最大值,不改变状态,例如,当前压缩机调整频率正在以一个预定速度v降低的状态,如果Tcm≥Tset+a,需要继续以速度v调整频率降低,直到检测到Tcm始终处于Tset-a<Tcm<Tset+a的情形,才结束调整频率,不再降低;(2)如果所述盘管温度检测值小于等于所述保持频率温度范围中的所述区间最小值,控制压缩机频率调整以一低于所述预定速度的速度升高,频率振荡次数增加一次,例如,当前压缩机调整频率正在以一个预定速度v降低的状态,当Tcm到达该区间(Tset-a,Tset+a),保持当前频率运行,但如果接着检测到Tcm≤Tset-a,表明不能再将频率降低而应当转为调整频率升高的状态,那么就会记录一次振荡,将振荡次数n增加一次(n+1),控制压缩机频率调整以一个低于该预定速度v的速度比如1/n的v速度升高(v/n),直到Tcm始终处于(Tset-a,Tset+a)而结束。
这样,盘管温度的变化只要处于一个保持频率温度范围中就不会调整频率,保持频率运行,不改变状态,不发生振荡;而如果处于调整频率阶段,也只存在从降低转为升高时会发生振荡,而由振荡次数动态改变调频的速度,放慢调频速度而防止更多的振荡,短时间内达到稳定状态。
下面结合图4所示根据本发明的方法的具体应用的一个实施例的流程图进一步对本发明的实现过程进行说明。
一个实施方式中,开机时,完成初始化。具体例如,开机;初始化频率振荡次数n为1,其中,n为表示次数的自然数;初始化压缩机频率调整速度v,例如1Hz/s;初始化盘管温度设定值Tset,其与***最高可承受压力值下的冷煤饱和温度相关,例如对于R410A***可设置为能承受4.15MPa压力,60℃即此压力下冷媒对应的饱和温度;初始化a,例如1℃,a越小,调整越精确,所需调整时间也越长;根据a——2a的盘管温度调整误差范围,确定区间(Tset-a,Tset+a)。开机时,实时获取盘管温度检测值Tcm一般小于等于所述保持频率温度范围中的所述区间最小值Tset-a,Tcm≤Tset-a,控制所述压缩机以频率调整速度v升高。
进一步,持续检测Tcm。具体例如,直到检测到Tcm上升到Tset-a<Tcm,压缩机保持当前频率运行,持续检测的Tcm上升都处于该区间(Tset-a,Tset+a),此时,Tcm<Tset+a,不再以速度v升高,保持当前压缩机频率运行,结束调频状态。这样,频率快速稳定下来,保持当前频率继续运行。这里,由于盘管传感器等温度检测设备反应较慢,检测到的盘管温度检测值Tcm会继续上升,而上升后如果始终处于该区间(Tset-a,Tset+a)以内,压缩机调频结束保持当前频率运行。而压缩机保持当前频率运行持续检测的Tcm如果继续上升,到Tcm≥Tset+a,需要降低当前的压缩机频率,则以压缩机频率调整以速度v降低/下降;并继续判断后续检测的Tcm是否开始降低进而回到该区间(Tset-a,Tset+a)以内即判断是否Tcm<Tset+a,是则保持压缩机以当前频率运行,并在该运行频率下,持续检测Tcm,若Tcm下降但始终处于该区间以内即Tset-a<Tcm,则结束调频;如果由于调频下降导致Tcm降低快,持续检测Tcm达到Tcm≤Tset-a,则压缩机频率调整改为上升,需要升高,那么振荡次数n=n+1,比如为2,调频速度为原来的n分之一即v/n,本例子中如1/2(Hz/s),压缩机频率调整速度为1/2,调频以该新的速度v=1/2升高,直到稳定。
需要指出的是,尽管上述实施例中将各个步骤按照特定的先后顺序进行了描述,但是本领域技术人员可以理解,为了实现本发明的效果,不同的步骤之间并非必须按照这样的顺序执行,其可以同时(并行)执行或以其他顺序执行,这些变化都在本发明的保护范围之内。
下面参见图3所示,本发明的变频空调压缩机频率快速稳定***的一个实施例的结构框图。该***至少包括:
检测模块310,用于实时获取盘管温度检测值;
在一个实施方式中,实时监测并获取变频空调的盘管温度检测值,比如通过设置在空调装置的盘管附近的盘管温度传感器等来对实时的盘管温度做检测。进一步,可以按固定或不固定的频率持续地实时检测并获得取所述变频空调的盘管温度检测值,例如只要启动压缩机开机运行时,就每隔30秒检测、或每隔一分钟检测等。
比较模块320,用于基于预设置的盘管温度设定值及其调整误差范围,确定所述盘管温度检测值是否处于保持压缩机频率运行的保持频率温度范围以内;
一个实施方式中,保持压缩机频率运行的保持频率温度范围,表示如果盘管温度检测值在该保持频率温度范围以内,保持当前压缩机频率运行而不对压缩机的频率进行调整,也不会有调频(调整频率/频率调整)的状态变化(即不会升高或降低),进而也不会有相应的速度变化,即调频的速度以某个预定速度升高或降低等。
一个实施方式中,将所述盘管温度设定值加上调整误差范围作为所述保持频率温度范围的区间最大值,将所述盘管温度设定值减去调整误差范围作为所述保持频率温度范围的区间最小值,根据所述区间最大值和区间最小值形成的区间作为所述保持频率温度范围。进一步,所述盘管温度检测值与所述区间最小值和所述区间最大值进行大小比较;当所述盘管温度检测值大于所述区间最小值且小于所述区间最大值时,所述盘管温度检测值处于所述保持频率温度范围以内;当所述盘管温度检测值大于等于所述区间最大值或者小于等于所述区间最小值时,所述盘管温度检测值未处于所述保持频率温度范围以内。比如,预先设置的盘管温度设定值Tset与其调整误差范围的值a(a为一绝对值)相加,即Tset+a,作为区间最大值,相减即Tset-a作为区间最小值,以区间最小值和区间最大值定义保持频率温度范围,即(Tset-a,Tset+a),将盘管温度检 测值Tcm与Tset-a、Tset+a进行大小比较,如果Tcm≤Tset或者Tcm≥Tset则盘管温度检测值未处于保持频率温度范围以内(即处于范围以外),而如果Tset-a<Tcm<Tset+a,就处于保持频率温度范围以内。此例子中,a-2a为盘管温度调整误差范围,依情况而定,一般可设为1度,a越小,调整越精确,所需调整时间也越长。
调节模块330,用于根据所述盘管温度检测值是否处于所述保持频率温度范围以内、以及当前压缩机频率调整处于升高、降低或结束的状态,确定是否控制压缩机频率调整状态改变。
一个实施方式中,当前压缩机频率调整为结束的状态即未进行调频阶段:(1)如果所述盘管温度检测值处于所述保持频率温度范围以内,不改变状态,压缩机仍然保持当前频率运行,例如,压缩机保持当前频率运行中,并且检测到的盘管温度检测值Tset-a<Tcm<Tset+a,不会将当前频率进行调整,比如调整为以某个速度升高或降低等,即不改变当前状态;(2)如果所述盘管温度检测值大于等于所述保持频率温度范围中的所述区间最大值,控制压缩机频率调整以一预定速度降低,例如,压缩机保持当前频率运行中,并且检测到的盘管温度检测值Tcm≥Tset+a,控制压缩机频率调整的状态改变,调整频率降低,并且以一个开机时即根据需求预定的速度v降低;(3)如果所述盘管温度检测值小于等于所述保持频率温度范围中的所述区间最小值,控制压缩机频率调整以一预定速度升高,例如,压缩机保持当前频率运行中,并且检测到盘管温度检测值Tcm≤Tset-a,控制压缩机频率调整的状态改变,调整频率升高,并且以一个开机时即根据需求预定的速度v升高。
一个实施方式中,当前压缩机频率调整为升高或降低的状态,且所述盘管温度检测值始终处于所述保持频率温度范围以内,控制压缩机频率调整结束。例如,当前压缩机调整频率升高或调整频率降低的状态,如果Tset-a<Tcm<Tset+a,控制压缩机频率调整结束,即不再调整频率升高或降低了,压缩机保持当前的频率运行。
一个实施方式中,当前压缩机频率调整为升高的状态:(1)如果所述盘管温度检测值大于等于所述保持频率温度范围中的所述区间最大值,控制压缩机频率以所述预定速度的降低,直到盘管温度检测值回到所述保持频率温度范围中,例如,当前压缩机调整频率正在以一个 预定速度v升高的状态,当Tcm到达该区间(Tset-a,Tset+a),保持当前频率运行,但如果接着后续获取的Tcm≥Tset+a,则不能再升高而应当转换为调整频率降低的状态,控制压缩机频率调整以预定速度v降低频率,直到Tcm处于(Tset-a,Tset+a)而结束;(2)如果所述盘管温度检测值小于等于所述保持频率温度范围中的所述区间最小值,不改变状态,例如,开机时盘管温度低即Tcm≤Tset-a,压缩机频率调整始终保持预定速度v升高,即状态不变,直到检测到Tcm处于Tset-a<Tcm<Tset+a的情形且Tcm始终在该区间,才结束调整频率,不再升高。
一个实施方式中,当前压缩机频率调整为降低的状态,(1)如果所述盘管温度检测值大于等于所述保持频率温度范围中的所述区间最大值,不改变状态,例如,当前压缩机调整频率正在以一个预定速度v降低的状态,如果Tcm≥Tset+a,需要继续降低,直到检测到Tcm始终处于Tset-a<Tcm<Tset+a的情形,才结束调整频率,不再降低;(2)如果所述盘管温度检测值小于等于所述保持频率温度范围中的所述区间最小值,控制压缩机频率调整以一低于所述预定速度的速度升高,频率振荡次数增加一次,例如,当前压缩机调整频率正在以一个预定速度v降低的状态,当Tcm到达该区间(Tset-a,Tset+a),保持当前频率运行,但如果Tcm≤Tset-a,不能再降低而应当转为调整频率升高的状态,那么就会记录一次振荡,将振荡次数n增加一次(n+1),控制压缩机频率调整以一个低于该预定速度v的速度比如1/n的v速度升高(v/n),直到Tcm始终处于(Tset-a,Tset+a)而结束。
进一步,在本发明的一种空调装置的一个实施例中,其包括:控制器、连接控制器的盘管温度传感器;所述盘管温度传感器设置在空调装置的盘管附近,执行如前述的方法的步骤,实时获取盘管温度检测值;所述控制器执行如前述的方法的步骤,确定所述盘管温度检测值是否处于保持压缩机频率结束频率调整的保持频率温度范围以内,并根据所述盘管温度检测值是否处于所述保持频率温度范围以内、以及当前压缩机频率调整处于升高、降低或结束的状态,确定是否控制压缩机频率调整状态改变。
进一步,在本发明的一种空调装置的一个实施例中,其包括:如前述的变频空调压缩机频率快速稳定***。
进一步,应该理解的是,由于各个模块的设定仅仅是为了说明本发明的***的功能单元,这些模块对应的物理器件可以是处理器本身,或者处理器中软件的一部分,硬件的一部分,或者软件和硬件结合的一部分。因此,图中的各个模块的数量仅仅是示意性的。
本领域技术人员能够理解的是,可以对***中的各个模块进行适应性地拆分或合并。对具体模块的这种拆分或合并并不会导致技术方案偏离本发明的原理,因此,拆分或合并之后的技术方案都将落入本发明的保护范围内。
至此,已经结合附图所示的一个实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种变频空调压缩机频率快速稳定方法,其特征在于,
    实时获取盘管温度检测值;
    基于预设置的盘管温度设定值及其调整误差范围,确定所述盘管温度检测值是否处于保持压缩机频率运行的保持频率温度范围以内;
    根据所述盘管温度检测值是否处于所述保持频率温度范围以内、以及当前压缩机频率调整处于升高、降低或结束的状态,确定是否控制压缩机频率调整状态改变。
  2. 根据权利要求1所述的方法,其中,
    所述“实时获取盘管温度检测值”,具体包括:按固定或不固定的频率持续地实时检测并获得所述变频空调的盘管温度值;
    “基于预设置的盘管温度设定值及其调整误差范围,确定所述盘管温度检测值是否处于保持压缩机频率运行的保持频率温度范围以内”具体包括:
    将所述盘管温度设定值加上调整误差范围作为所述保持频率温度范围的区间最大值,将所述盘管温度设定值减去调整误差范围作为所述保持披绿温度范围的区间最小值,根据所述区间最大值和区间最小值形成的区间作为所述保持频率温度范围;
    所述盘管温度检测值与所述区间最小值和所述区间最大值进行大小比较;当所述盘管温度检测值大于所述区间最小值且小于所述区间最大值时,所述盘管温度检测值处于所述保持频率温度范围以内;当所述盘管温度检测值大于等于所述区间最大值或者小于等于所述区间最小值时,所述盘管温度检测值未处于所述保持频率温度范围以内。
  3. 根据权利要求2所述的方法,其中,“根据所述盘管温度检测值是否处于所述保持频率温度范围以内、以及当前压缩机频率调整处于升高、降低或结束的状态,确定是否控制压缩机频率调整状态改变”具体包括:
    当前压缩机频率调整为结束的状态,且所述盘管温度检测值处于所述保持频率温度范围以内,不改变状态,压缩机保持当前频率运行;
    当前压缩机频率调整为结束的状态,且所述盘管温度检测值大于等于所述保持频率温度范围中的所述区间最大值,控制压缩机频率调整以一预定速度降低;
    当前压缩机频率调整为结束的状态,且所述盘管温度检测值小于等于所述保持频率温度范围中的所述区间最小值,控制压缩机频率调整以一预定速度升高;
    当前压缩机频率调整为升高或降低的状态,且所述盘管温度检测值处于所述保持频率温度范围以内,控制压缩机频率调整结束;
    当前压缩机频率调整为升高的状态,且所述盘管温度检测值大于等于所述保持频率温度范围中的所述区间最大值,控制压缩机频率调整以所述预定速度的速度降低;
    当前压缩机频率调整为升高的状态,且所述盘管温度检测值小于等于所述保持频率温度范围中的所述区间最小值,不改变状态;
    当前压缩机频率调整为降低的状态,且所述盘管温度检测值大于等于所述保持频率温度范围中的所述区间最大值,不改变状态;
    当前压缩机频率调整为降低的状态,且所述盘管温度检测值小于等于所述保持频率温度范围中的所述区间最小值,控制压缩机频率调整以一低于所述预定速度的速度升高,频率振荡次数增加一次。
  4. 根据权利要求3所述的方法,其中,具体还包括:
    开机时,初始化频率振荡次数n为1,其中,n为表示次数的自然数,初始化压缩机频率调整速度v为1Hz/s;
    所述盘管温度设定值与空调***最高可承受压力值下的冷媒饱和温度相关;
    所述调整误差范围设置为1℃;
    其中,开机时,实时获取盘管温度检测值小于等于所述保持频率温度范围中的所述区间最小值,控制所述压缩机以频率调整速度v升高;
    其中,“频率振荡次数增加一次”具体包括:振荡次数n增加1次;
    其中,“一低于所述预定速度的速度”具体为:压缩机频率调整的所述预定速度v的1/n。
  5. 一种变频空调压缩机频率快速稳定***,其特征在于,包括:
    检测模块,用于实时获取盘管温度检测值;
    比较模块,用于基于预设置的盘管温度设定值及其调整误差范围,确定所述盘管温度检测值是否处于保持压缩机频率运行的保持频率温度范围以内;
    调节模块,用于根据所述盘管温度检测值是否处于所述保持频率温度范围以内、以及当前压缩机频率调整处于升高、降低或结束的状态,确定是否控制压缩机频率调整状态改变。
  6. 根据权利要求5所述的***,其中,
    所述检测模块具体包括:按固定或不固定的频率持续地实时检测并获得所述变频空调的盘管温度值;
    所述比较模块具体包括:
    将所述盘管温度设定值加上调整误差范围作为所述保持频率温度范围的区间最大值,将所述盘管温度设定值减去调整误差范围作为所述保持披绿温度范围的区间最小值,根据所述区间最大值和区间最小值形成的区间作为所述保持频率温度范围;
    所述盘管温度检测值与所述区间最小值和所述区间最大值进行大小比较;当所述盘管温度检测值大于所述区间最小值且小于所述区间最大值时,所述盘管温度检测值处于所述保持频率温度范围以内;当所述盘管温度检测值大于等于所述区间最大值或者小于等于所述区间最小值时,所述盘管温度检测值未处于所述保持频率温度范围以内。
  7. 根据权利要求6所述的***,其中,所述调节模块具体包括:
    当前压缩机频率调整为结束的状态,且所述盘管温度检测值处于所述保持频率温度范围以内,不改变状态,压缩机保持当前频率运行;
    当前压缩机频率调整为结束的状态,且所述盘管温度检测值大于等于所述保持频率温度范围中的所述区间最大值,控制压缩机频率调整以一预定速度降低;
    当前压缩机频率调整为结束的状态,且所述盘管温度检测值小于等于所述保持频率温度范围中的所述区间最小值,控制压缩机频率调整以一预定速度升高;
    当前压缩机频率调整为升高或降低的状态,且所述盘管温度检测值 处于所述保持频率温度范围以内,控制压缩机频率调整结束;
    当前压缩机频率调整为升高的状态,且所述盘管温度检测值大于等于所述保持频率温度范围中的所述区间最大值,控制压缩机频率调整以所述预定速度的速度降低;
    当前压缩机频率调整为升高的状态,且所述盘管温度检测值小于等于所述保持频率温度范围中的所述区间最小值,不改变状态;
    当前压缩机频率调整为降低的状态,且所述盘管温度检测值大于等于所述保持频率温度范围中的所述区间最大值,不改变状态;
    当前压缩机频率调整为降低的状态,且所述盘管温度检测值小于等于所述保持频率温度范围中的所述区间最小值,控制压缩机频率调整以一低于所述预定速度的速度升高,频率振荡次数增加一次。
  8. 如权利要求7所述的***,其中,所述调节模块具体还包括:
    开机时,初始化频率振荡次数n为1,其中,n为表示次数的自然数,初始化压缩机频率调整的预定速度v为1Hz/s;
    所述盘管温度设定值与空调***最高可承受压力值下的冷媒饱和温度相关;
    所述调整误差范围设置为1℃;
    其中,开机时,实时获取盘管温度检测值小于等于所述保持频率温度范围中的所述区间最小值,控制所述压缩机频率调整以预定速度v升高;
    其中,“频率振荡次数增加一次”具体包括:振荡次数n增加1次;
    其中,“一低于所述预定速度的速度”具体为:压缩机频率调整的预定速度v的1/n。
  9. 一种空调装置,其特征在于,包括:
    控制器、连接控制器的盘管温度传感器;
    所述盘管温度传感器设置在空调装置的盘管附近,执行如权利要求1至4所述的方法中实时获取盘管温度检测值;
    所述控制器执行如权利要求1至4所述的方法的步骤,确定所述盘管温度检测值是否处于保持压缩机频率结束频率调整的保持频率温度范围以内,并根据所述盘管温度检测值是否处于所述保持频率温度范围以内、以及当前压缩机频率调整处于升高、降低或结束的状态,确定是否控制 压缩机频率调整状态改变。
  10. 一种空调装置,其特征在于,包括:如权利要求5至8所述的变频空调压缩机频率快速稳定***。
PCT/CN2021/077915 2020-04-13 2021-02-25 一种变频空调压缩机频率快速稳定方法、***及空调装置 WO2021208605A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010286588.7A CN111426041B (zh) 2020-04-13 2020-04-13 一种变频空调压缩机频率快速稳定方法、***及空调装置
CN202010286588.7 2020-04-13

Publications (1)

Publication Number Publication Date
WO2021208605A1 true WO2021208605A1 (zh) 2021-10-21

Family

ID=71553987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077915 WO2021208605A1 (zh) 2020-04-13 2021-02-25 一种变频空调压缩机频率快速稳定方法、***及空调装置

Country Status (2)

Country Link
CN (1) CN111426041B (zh)
WO (1) WO2021208605A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115164354A (zh) * 2022-07-08 2022-10-11 宁波奥克斯电气股份有限公司 一种降频保护控制方法、装置、空调器、存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111426041B (zh) * 2020-04-13 2022-08-19 青岛海尔空调电子有限公司 一种变频空调压缩机频率快速稳定方法、***及空调装置
CN113958997B (zh) * 2021-11-08 2022-10-28 珠海格力电器股份有限公司 多联机空调的频率控制方法、装置和空调***

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134430A (ja) * 1989-10-19 1991-06-07 Matsushita Electric Ind Co Ltd 空気調和機の圧縮機周波数制御装置
CN103115417A (zh) * 2013-03-19 2013-05-22 海尔集团公司 低温环境空调器的制冷方法
CN104697118A (zh) * 2015-03-11 2015-06-10 广东美的制冷设备有限公司 空调器的调节方法、空调器的调节装置和空调器
CN105157172A (zh) * 2015-08-31 2015-12-16 Tcl空调器(中山)有限公司 空调器的控制方法及装置
CN106152382A (zh) * 2015-04-01 2016-11-23 青岛海尔空调器有限总公司 一种防止空调压缩机频率波动的控制方法及***
CN107525234A (zh) * 2017-08-17 2017-12-29 青岛海尔空调器有限总公司 一种空调压缩机变频保护的方法及装置
CN108224704A (zh) * 2017-12-25 2018-06-29 青岛海尔空调电子有限公司 空调的控制方法
CN109059184A (zh) * 2018-06-27 2018-12-21 奥克斯空调股份有限公司 温度保护控制方法及空调器
CN111426041A (zh) * 2020-04-13 2020-07-17 青岛海尔空调电子有限公司 一种变频空调压缩机频率快速稳定方法、***及空调装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107178873B (zh) * 2017-05-26 2019-12-06 青岛海尔空调器有限总公司 变频空调器及其控制方法
CN109855186A (zh) * 2019-01-23 2019-06-07 青岛海尔空调器有限总公司 空调器及其除湿控制方法
CN110030688B (zh) * 2019-03-21 2020-09-25 青岛海尔空调器有限总公司 空调器的控制方法及控制装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134430A (ja) * 1989-10-19 1991-06-07 Matsushita Electric Ind Co Ltd 空気調和機の圧縮機周波数制御装置
CN103115417A (zh) * 2013-03-19 2013-05-22 海尔集团公司 低温环境空调器的制冷方法
CN104697118A (zh) * 2015-03-11 2015-06-10 广东美的制冷设备有限公司 空调器的调节方法、空调器的调节装置和空调器
CN106152382A (zh) * 2015-04-01 2016-11-23 青岛海尔空调器有限总公司 一种防止空调压缩机频率波动的控制方法及***
CN105157172A (zh) * 2015-08-31 2015-12-16 Tcl空调器(中山)有限公司 空调器的控制方法及装置
CN107525234A (zh) * 2017-08-17 2017-12-29 青岛海尔空调器有限总公司 一种空调压缩机变频保护的方法及装置
CN108224704A (zh) * 2017-12-25 2018-06-29 青岛海尔空调电子有限公司 空调的控制方法
CN109059184A (zh) * 2018-06-27 2018-12-21 奥克斯空调股份有限公司 温度保护控制方法及空调器
CN111426041A (zh) * 2020-04-13 2020-07-17 青岛海尔空调电子有限公司 一种变频空调压缩机频率快速稳定方法、***及空调装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115164354A (zh) * 2022-07-08 2022-10-11 宁波奥克斯电气股份有限公司 一种降频保护控制方法、装置、空调器、存储介质
CN115164354B (zh) * 2022-07-08 2023-09-22 宁波奥克斯电气股份有限公司 一种降频保护控制方法、装置、空调器、存储介质

Also Published As

Publication number Publication date
CN111426041A (zh) 2020-07-17
CN111426041B (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
WO2021208605A1 (zh) 一种变频空调压缩机频率快速稳定方法、***及空调装置
CN107606830B (zh) 一种电子膨胀阀调节方法
CN106152382B (zh) 一种防止空调压缩机频率波动的控制方法及***
CN103486689B (zh) 空调器的控制方法及装置
CN107676939B (zh) 一种定频空调的控制方法、控制***及控制装置
CN111271836B (zh) 一种控制方法、装置、空调器及计算机可读存储介质
CN109539380B (zh) 一种热泵热水器压缩机频率控制方法
CN114234383B (zh) 空调控制方法及装置
WO2023066315A1 (zh) 空调器及空调器的控制方法
CN111720981A (zh) 空调器压缩机的控制方法以及空调器
WO2021042666A1 (zh) 空调器中间能力的控制方法、空调器和存储器
CN113719987A (zh) 电子膨胀阀的控制方法、装置及空调器
JPH04240355A (ja) 空気調和装置における電子膨脹弁の制御方法
CN114893896B (zh) 一种空调器的控制方法及装置
CN115200163A (zh) 一种空调器控制方法、控制装置以及空调器
US20190257564A1 (en) Refrigeration cycle apparatus
CN114370727A (zh) 压缩机控制方法、控制装置及空调器
CN109612049B (zh) 压缩机输出功率的控制方法及装置
CN107355951B (zh) 空调制冷模式控制方法、装置以及空调
CN108954699B (zh) 一种空调运行频率调节方法及空调***
WO2020062936A1 (zh) 一种空调压缩机控制方法及***
CN117450623B (zh) 压缩机频率控制方法及空调机组
WO2011105489A1 (ja) 冷設機器の制御装置
CN113864971B (zh) 空调***的调节方法、装置、设备和空调***
CN116989441A (zh) 变频空调器的控制方法、装置及变频空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21788283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21788283

Country of ref document: EP

Kind code of ref document: A1