WO2021208415A1 - 从机的开环控制方法及主从机并联*** - Google Patents

从机的开环控制方法及主从机并联*** Download PDF

Info

Publication number
WO2021208415A1
WO2021208415A1 PCT/CN2020/128584 CN2020128584W WO2021208415A1 WO 2021208415 A1 WO2021208415 A1 WO 2021208415A1 CN 2020128584 W CN2020128584 W CN 2020128584W WO 2021208415 A1 WO2021208415 A1 WO 2021208415A1
Authority
WO
WIPO (PCT)
Prior art keywords
slave
open
attribute value
loop
master
Prior art date
Application number
PCT/CN2020/128584
Other languages
English (en)
French (fr)
Inventor
石少鹏
王伟
张驰
孟涛
周超伟
陈文佳
钟小帆
Original Assignee
科华恒盛股份有限公司
漳州科华技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科华恒盛股份有限公司, 漳州科华技术有限责任公司 filed Critical 科华恒盛股份有限公司
Publication of WO2021208415A1 publication Critical patent/WO2021208415A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/10Control circuit supply, e.g. means for supplying power to the control circuit

Definitions

  • This application belongs to the technical field of power supply control, and in particular relates to an open-loop control method of a slave machine and a master-slave machine parallel system.
  • a closed-loop sampling control method is currently used to achieve the current sharing effect of all modules corresponding to the closed-loop control.
  • the pulse width modulation (Pulse Width Modulation, PWM) of the multiple closed loop loops are respectively processed into an analog-to-digital converter (Analog-to-Digital) Converter, ADC) sampling, an ADC sampling module collects a closed loop current, and then performs respective closed loop adjustments according to the collected current, so that all hardware currents are the same.
  • PWM Pulse Width Modulation
  • ADC Analog-to-Digital Converter
  • the embodiments of the present application provide an open-loop control method for a slave machine and a parallel master-slave machine system, aiming to solve the problem that due to the use of closed-loop control in the prior art, the current sharing of all closed-loop control modules cannot be quickly achieved, resulting in relatively low adjustment efficiency. Low problem.
  • the first aspect of the embodiments of the present application provides an open-loop control method for slaves, which is applied to a master-slave parallel system composed of multiple power modules and controllers connected in parallel. Any power module Is the master and the other power modules are slaves. At least one first slave among the slaves executes an open-loop control method, and the open-loop control method executed by the first slave includes:
  • the controller calculates the relative attribute value according to the absolute attribute value of the machine and the absolute attribute value of the host, and converts the relative attribute value to obtain the corresponding The fine-tuning amount of the slave of the local machine; the absolute attribute value is used to characterize the inherent attribute of the power module;
  • the reference control quantity and the slave fine-tuning quantity are input into the open loop control loop corresponding to the local machine and then output the slave control quantity, and the slave control quantity is used to control the local machine.
  • the conversion of the relative attribute value to obtain the fine adjustment value of the slave machine corresponding to the local machine includes:
  • the relative attribute value is converted into a value with the same attribute or format as the reference control value of the host, and this value is used as the fine adjustment value of the slave corresponding to the host.
  • the inputting the reference control quantity and the slave machine fine-tuning quantity into the open-loop control loop corresponding to the local machine and then outputting the slave machine control quantity includes:
  • the reference control quantity and the slave fine-tuning quantity are superimposed and input into the open-loop control loop corresponding to the local machine, and then the slave control quantity is output.
  • the method before the parallel system formed by multiple power modules and controllers connected in parallel, the method further includes:
  • the electrical parameters of all power modules are detected respectively, and the electrical parameters are converted into absolute attribute values and stored in the corresponding power modules.
  • the electrical parameter includes a voltage parameter, a current parameter, or a power parameter.
  • the second aspect of the embodiments of the present application provides a master-slave parallel system, which includes a plurality of power modules and controllers connected in parallel, any one of the power modules is a master, the other power modules are slaves, and at least one of the slaves
  • the first slave executes any one of the above-mentioned open-loop control methods for the slave, and the power module pre-stores the absolute attribute value of the local machine, and the absolute attribute value is used to characterize the inherent attribute of the power module;
  • the controller obtains the absolute attribute values of all power modules, and calculates the relative attribute value of the any first slave relative to the host according to the absolute attribute value of the any first slave and the absolute attribute value of the master , Convert the obtained relative attribute value to obtain the fine adjustment value of the slave machine, and send the fine adjustment value of the slave machine to the corresponding first slave machine;
  • the host outputs a reference control variable according to the closed-loop control loop, and sends the reference control variable to any of the first slaves, and the reference control variable is used to control the host;
  • Said any first slave inputs the reference control quantity and the local slave fine-tuning quantity into the corresponding open-loop control loop of the local machine, and then outputs the slave control quantity, and the slave control quantity is used to control the local machine .
  • the power circuits of the power supply modules are all the same.
  • the first slave includes a CPLD unit or an FPGA unit, which is used to input the reference control value and the local slave fine-tuning value into the corresponding open-loop control loop of the local machine and then output Slave control amount.
  • the open loop control loops of the at least two slave machines are the same.
  • the third aspect of the embodiments of the present application provides a power supply module, which is applied to the master-slave parallel system described in any one of the above.
  • the embodiment of the present application has the beneficial effect that: compared with the prior art, the present application sends the absolute attribute value of the local machine to the controller through the first slave that executes the open-loop control method, so that the controller
  • the relative attribute value is calculated according to the absolute attribute value of the machine and the absolute attribute value of the host, and the relative attribute value is converted to obtain the slave fine-tuning value corresponding to the machine;
  • the first slave sends the reference control value sent by the host to the controller
  • the sent slave machine fine-tuning quantity is input to the corresponding open-loop control loop of the machine, and the slave machine control quantity is output, so that the adjusted first slave machine follows the master to realize hardware current or power equalization, and the first slave through open-loop control
  • the machine performs respective adjustment and calibration, which makes the adjustment method more flexible, easier to control, and can improve the efficiency of calibration.
  • FIG. 1 is a schematic flowchart of an open-loop control method for a slave provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of a master-slave parallel system provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the connection between at least one slave machine and the master machine provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an open-loop control method of a slave provided by an embodiment of the application.
  • the open-loop control method of the slave is applied to a master-slave parallel system composed of multiple power modules and controllers connected in parallel, as shown in the figure
  • multiple parallel power modules can form an uninterruptible power supply (Uninterruptible Power System, UPS), where the power module can be an AC-AC, DC-AC or DC-DC converter.
  • UPSs can be connected in parallel to form a large parallel system.
  • the parallel system includes multiple small parallel systems, and each small parallel system includes multiple parallel power modules.
  • any power module in the master-slave parallel system can be the master, and the remaining power modules can be slaves.
  • the power circuits of the power supply modules are all the same.
  • the host executes a closed-loop control method. Part of all slaves can execute the open-loop control method, some of the slaves execute the closed-loop control method, or all the slaves can execute the open-loop control method.
  • at least one slave that executes the open-loop control method is named the first slave for distinction.
  • the same test conditions can be used to detect the electrical parameters of all power modules separately, and the electrical parameters
  • the converted absolute attribute value is stored in the corresponding power module, so that the first slave that performs open-loop control can be adjusted subsequently, so that the adjusted first slave follows the host to achieve hardware current sharing or power sharing.
  • the electrical parameters may include voltage parameters, current parameters, or power parameters.
  • the open-loop control method executed by the first slave includes the following steps:
  • Step 101 Send the absolute attribute value of the local machine to the controller.
  • the controller receives the absolute attribute value sent by the first slave, and also receives the absolute attribute value sent by the host, and then calculates the relative attribute value according to the absolute attribute value of the local machine and the absolute attribute value of the host. And the relative attribute value is converted to obtain the slave fine-tuning amount corresponding to the local machine.
  • the absolute attribute value is used to characterize the inherent attribute of the power module.
  • the controller calculates the relative attribute value according to the absolute attribute value of the local machine and the absolute attribute value of the master, that is, calculates the difference between the absolute attribute value of the first slave and the absolute attribute value of the master, and The obtained difference is used as the relative attribute value.
  • the controller converts the relative attribute value to obtain the slave fine-tuning value corresponding to the local machine, that is, converts the relative attribute value into a value with the same attribute or format as the reference control value of the host, and uses this value as the corresponding value.
  • the reference control quantity of the master is the control quantity issued when the master executes the closed-loop control method, and this control quantity is used as the reference control quantity to regulate and control the first slave.
  • control quantity sent by the host may be a PWM signal, that is, the reference control quantity is a PWM signal. Therefore, it is necessary to convert the relative attribute value so that it has the same attribute or the same format as the reference control value of the master, that is, convert the relative attribute value into a PWM signal form, which is convenient for subsequent direct adjustment of the slave.
  • control quantity sent by the host can also be the signal before input to the pulse modulation unit. After the signal is input to the pulse modulation unit, the PWM signal is output. You only need to convert the relative attribute value to the corresponding attribute or the same value in the format. .
  • Step 102 Receive a fine adjustment value sent by the controller from the slave, and receive a reference control value sent by the host.
  • the first slave first obtains the slave fine-tuning value calculated by the receiving controller before performing the fine-tuning, and receives the reference control value issued by the master when the master executes the closed-loop control method, and then continues to perform step 103.
  • Step 103 Input the reference control quantity and the slave machine fine-tuning quantity into the open loop control loop corresponding to the local machine and then output the slave machine control quantity, and the slave machine control quantity is used to control the local machine.
  • this step may include: the first slave machine superimposes the reference control quantity and the slave machine fine-tuning quantity, and then inputs it into the open loop control loop corresponding to the local machine and then outputs the slave machine control quantity.
  • the first slave includes a complex programmable logic device Complex Programmable Logic Device, CPLD) unit or Field-Programmable Gate Array (Field-Programmable Gate Array) Array, FPGA) unit, which is used to input the reference control quantity and the local slave fine-tuning quantity into the corresponding open-loop control loop of the local machine and then output the slave control quantity. That is, the CPLD unit or FPGA unit in the first slave machine adjusts the duty cycle of the converted PWM signal of the local machine according to the reference PWM signal sent by the host, so that it is the same as the reference PWM signal of the host, and realizes the master-slave operation. Hardware current or power sharing.
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the absolute attribute value of the machine is sent to the controller through the first slave machine.
  • the attribute value is converted to obtain the slave fine-tuning quantity corresponding to the local machine; then the first slave machine inputs the slave fine-tuning quantity sent by the receiving controller and the reference control quantity sent by the receiving host into the corresponding open-loop control loop of the machine, and then outputs the slave fine-tuning quantity.
  • the control quantity of the machine makes the control quantity of the first slave after adjustment the same as the control quantity of the master, and realizes hardware current sharing or power sharing.
  • All the first slaves controlled by the open loop are adjusted and calibrated individually, making the adjustment method more flexible and easier to control, avoiding that all masters and slaves in the prior art adopt a closed-loop control method, which makes it difficult to realize the hardware
  • the current or power is equalized, and the open-loop control method of the slave provided in this application can improve the calibration efficiency.
  • This embodiment also provides a master-slave parallel system. As shown in Figure 2, it includes a plurality of power modules and controllers connected in parallel. At least one first slave machine executes the open-loop control method of the slave machine provided in any of the above embodiments, and the power supply module pre-stores the absolute attribute value of the machine, and the absolute attribute value is used to characterize the power supply module Inherent attributes.
  • the power supply module may be an AC-AC, DC-AC, or DC-DC converter, and the power circuits of the power supply modules are all the same.
  • some of the slaves can execute the open-loop control method, some of the slaves execute the closed-loop control method, or all the slaves can execute the open-loop control method.
  • at least one slave that executes the open-loop control method is named the first slave for distinction.
  • the open loop control loops of the at least two slaves are the same.
  • the absolute attribute value is obtained by using the same test conditions to detect the electrical parameters of all power modules and converting the electrical parameters.
  • the absolute attribute value is stored in the corresponding power module so that subsequent executions can be performed.
  • the first slave of the open-loop control performs regulation, so that the adjusted first slave follows the master to realize hardware current sharing or power sharing.
  • the electrical parameters may include voltage parameters, current parameters, or power parameters.
  • the controller obtains the absolute attribute values of all power modules, and calculates the absolute attribute value of any first slave and the absolute attribute value of the host. For the relative attribute value of any first slave relative to the master, the obtained relative attribute value is converted to obtain the slave fine-tuning value, and the slave fine-tuning value is sent to the corresponding first slave.
  • the controller calculates the relative attribute value of any first slave relative to the master according to the absolute attribute value of any first slave and the absolute attribute value of the master, that is, calculates the absolute attribute value of any first slave And the difference between the absolute attribute values of the host, and use the difference as the relative attribute value.
  • the controller converts the relative attribute value to obtain the fine-tuning value of the slave, that is, converts the relative attribute value to a value with the same attribute or format as the reference control value of the host, and this value is regarded as the first slave corresponding to the host
  • the amount of fine-tuning from the machine is the control quantity issued when the master executes the closed-loop control method, and this control quantity is used as the reference control quantity to regulate and control the first slave.
  • control quantity sent by the host may be a PWM signal, that is, the reference control quantity is a PWM signal. Therefore, it is necessary to convert the relative attribute value so that it has the same attribute or the same format as the reference control value of the master, that is, convert the relative attribute value into a PWM signal form, which is convenient for subsequent direct adjustment of the slave.
  • the host computer outputs a reference control variable according to the closed-loop control loop, and sends the reference control variable to any of the first slaves, and the reference control variable is used to control the host.
  • Any one of the first slaves inputs the reference control quantity and the local slave fine-tuning quantity into the corresponding open-loop control loop of the local machine, and then outputs the slave control quantity, and the slave control quantity is used to control the local machine .
  • any first slave machine superimposes the reference control quantity and the local slave fine-tuning quantity, and then inputs the corresponding open-loop control loop of the local machine to output the slave control quantity.
  • the first slave includes a CPLD unit or an FPGA unit, which is used to input the reference control quantity and the local slave fine-tuning quantity into the corresponding open-loop control loop of the local machine and then output the slave control quantity . That is, the CPLD unit or FPGA unit in the first slave machine adjusts the duty cycle of the converted PWM signal of the local machine according to the reference PWM signal sent by the host, so that it is the same as the reference PWM signal of the host, and realizes the master-slave Hardware current or power sharing.
  • FIG. 3 a schematic diagram of the connection between the master and the slave as shown in FIG. 3.
  • the host includes a first interface and a second interface; each slave includes a third interface and a fourth interface;
  • the first interface of the host is connected to the third interface of each slave; the second interface of the host is connected to the fourth interface of each slave, wherein the first interface and the third interface are used for parallel connection of power modules For the connected input, the second interface and the fourth interface are used for the output of the parallel connection of the power supply modules.
  • the slave machine When the slave machine needs to be adjusted, the slave machine can be connected to the master machine through the above-mentioned connection relationship between the master machine and the slave machine, which is plug-and-play and easy to operate.
  • the absolute attribute value of all power modules is obtained through the controller, and the relative attribute value of any first slave relative to the host is calculated according to the absolute attribute value of any first slave and the absolute attribute value of the master.
  • the master outputs the reference control quantity according to the closed-loop control loop, and sends the reference control quantity to the Any first slave;
  • any first slave inputs the reference control value and the local slave fine-tuning value into the corresponding open-loop control loop of the local machine, and then outputs the slave control value, so that the adjusted first slave
  • the control amount of is the same as that of the host, which realizes current sharing or power sharing of hardware.
  • All the first slaves controlled by the open loop are adjusted and calibrated individually, making the adjustment method more flexible and easier to control, avoiding that all masters and slaves in the prior art adopt a closed-loop control method, which makes it difficult to realize the hardware
  • the current or power is equalized, and the open-loop control method of the slave provided in this application can improve the calibration efficiency.
  • the embodiment of the present application also provides a power supply module, which is applied to the master-slave parallel system described in any of the above embodiments, and has all the beneficial effects brought by the above-mentioned master-slave parallel system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

一种从机的开环控制方法及主从机并联***,上述方法包括:第一从机向控制器发送本机的绝对属性值,以控制器根据本机的绝对属性值以及主机的绝对属性值计算得到相对属性值,将相对属性值进行转换得到对应本机的从机微调量;第一从机将接收从机微调量以及接收主机发送的基准控制量输入本机对应的开环控制环路后输出从机控制量,使调节后的第一从机的控制量与主机的控制量相同,实现硬件均流或均功率。通过开环控制的所有第一从机进行各自调节校准,使得调节方式更加灵活,更易控制,且可以提高校准工作效率。

Description

从机的开环控制方法及主从机并联***
本申请要求于2020年04月14日提交中国专利局、申请号为202010290841.6、发明名称为“从机的开环控制方法及主从机并联***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于电源控制技术领域,尤其涉及一种从机的开环控制方法及主从机并联***。
背景技术
在对大功率变换器扩展功率的电路进行采样时,目前采用闭环回路采样控制的方法实现所有闭环控制对应的模块的均流效果。将多闭环回路的脉冲宽度调制(Pulse Width Modulation,PWM)分别进行模拟/数字转换器(Analog-to-Digital Converter,ADC)采样,一个ADC采样模块采集一个闭环回路的电流,然后根据采集到的电流进行各自的闭环调节,使得所有的硬件的电流均相同。然而,采用现有技术进行采样调节时由于采用闭环控制,不能快速达到所有闭环回路均流,导致调节工作效率较低。
技术问题
本申请实施例提供了一种从机的开环控制方法及主从机并联***,旨在解决现有技术中由于采用闭环控制,不能快速达到所有闭环控制的模块均流,导致调节工作效率较低的问题。
技术解决方案
为解决上述技术问题,本申请实施例的第一方面提供了一种从机的开环控制方法,应用于多个并联连接的电源模块和控制器构成的主从机并联***,任一电源模块为主机,其余电源模块为从机,所述从机中至少一个第一从机执行开环控制方法,第一从机执行的开环控制方法包括:
向所述控制器发送本机的绝对属性值,以所述控制器根据本机的绝对属性值以及所述主机的绝对属性值计算得到相对属性值,并将所述相对属性值进行转换得到对应本机的从机微调量;所述绝对属性值用于表征所述电源模块的固有属性;
接收所述控制器发送的从机微调量,以及接收所述主机发送的基准控制量;
将所述基准控制量和所述从机微调量输入所述本机对应的开环控制环路后输出从机控制量,所述从机控制量用于控制所述本机。
作为本申请另一实施例,所述将所述相对属性值进行转换得到对应本机的从机微调量,包括:
将所述相对属性值转换为与所述主机的基准控制量具有相同属性或者格式的值,将此值作为对应本机的从机微调量。
作为本申请另一实施例,所述将所述基准控制量和所述从机微调量输入所述本机对应的开环控制环路后输出从机控制量,包括:
将所述基准控制量和所述从机微调量进行叠加处理后输入所述本机对应的开环控制环路后输出从机控制量。
作为本申请另一实施例,在将多个并联连接的电源模块和控制器构成的并联***前,还包括:
采用相同的测试条件,分别检测所有电源模块的电参数,并将所述电参数转换为绝对属性值存储于对应的电源模块内。
作为本申请另一实施例,所述电参数包括电压参数、电流参数或者功率参数。
本申请实施例的第二方面提供一种主从机并联***,包括多个并联连接的电源模块和控制器,任一电源模块为主机,其余电源模块为从机,所述从机中至少一个第一从机执行上述任一项所述从机的开环控制方法,所述电源模块内均预先存储本机的绝对属性值,所述绝对属性值用于表征所述电源模块的固有属性;
所述控制器获取全部电源模块的绝对属性值,根据所述任一第一从机的绝对属性值以及所述主机的绝对属性值计算得到所述任一第一从机相对主机的相对属性值,将得到的相对属性值进行转换得到从机微调量,并将从机微调量发送给对应的第一从机;
所述主机根据闭环控制环路输出基准控制量,并将所述基准控制量发送至所述任一第一从机,所述基准控制量用于控制主机;
所述任一第一从机将所述基准控制量和本机的从机微调量输入本机对应的开环控制环路后输出从机控制量,所述从机控制量用于控制本机。
作为本申请另一实施例,所述电源模块的功率电路均相同。
作为本申请另一实施例,所述第一从机包括CPLD单元或者FPGA单元,用于实现将所述基准控制量和本机的从机微调量输入本机对应的开环控制环路后输出从机控制量。
作为本申请另一实施例,当从机的数量为至少两个时,至少两个从机的开环控制环路相同。
本申请实施例的第三方面提供一种电源模块,应用于上述任一项所述的主从机并联***。
有益效果
本申请实施例与现有技术相比存在的有益效果是:与现有技术相比,本申请通过执行开环控制方法的第一从机向控制器发送本机的绝对属性值,使控制器根据本机的绝对属性值以及主机的绝对属性值计算得到相对属性值,并将相对属性值进行转换得到对应本机的从机微调量;第一从机将主机发送的基准控制量和控制器发送的从机微调量输入到本机对应的开环控制环路,输出从机控制量,使调节后的第一从机跟随主机实现硬件均流或均功率,通过开环控制的第一从机进行各自调节校准,使得调节方式更灵活,更易控制,且可以提高校准工作效率高。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的从机的开环控制方法的流程示意图;
图2是本申请实施例提供的主从机并联***的示意图;
图3是本申请实施例提供的至少一个从机分别与主机的连接示意图。
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定***结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的***、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
为了说明本申请所述的技术方案,下面通过具体实施例来进行说明。
图1为本申请实施例提供的一种从机的开环控制方法的示意图,从机的开环控制方法应用于多个并联连接的电源模块和控制器构成的主从机并联***,如图2所示主从机并联***,多个并联的电源模块可以组成一台不间断电源(Uninterruptible Power System ,UPS),其中这里电源模块可以为AC-AC、DC-AC或者DC-DC等变换器。进一步的,还可以将多个UPS并联构成一个大的并联***,这个并联***内包括多个小的并联***,每个小并联***中包括多个并联的电源模块。
可选的,主从机并联***中的任一电源模块可以为主机,其余电源模块可以为从机。所述电源模块的功率电路均相同。其中,主机执行闭环控制方法。所有从机中可以部分从机执行开环控制方法,部分从机执行闭环控制方法,也可以全部从机均执行开环控制方法。在本实施例中,不论全部从机执行开环控制方法还是部分从机执行开环控制方法,均将执行开环控制方法的至少一个从机命名为第一从机,以进行区分。
可选的,在将多个并联连接的电源模块和控制器构成的图2所示的并联***前,还可以采用相同的测试条件,分别检测所有电源模块的电参数,并将所述电参数转换为绝对属性值存储于对应的电源模块内,以便后续可以对执行开环控制的第一从机进行调控,使调节后的第一从机跟随主机实现硬件均流或均功率。这里电参数可以包括电压参数、电流参数或者功率参数。
第一从机执行的开环控制方法包括以下步骤:
步骤101,向所述控制器发送本机的绝对属性值。
可选的,控制器接收到第一从机发送的绝对属性值,同时也接收主机发送的绝对属性值,然后根据本机的绝对属性值以及所述主机的绝对属性值计算得到相对属性值,并将所述相对属性值进行转换得到对应本机的从机微调量。所述绝对属性值用于表征所述电源模块的固有属性。
可选的,控制器根据本机的绝对属性值以及所述主机的绝对属性值计算得到相对属性值,即计算第一从机的绝对属性值以及所述主机的绝对属性值的差值,将得到的差值作为相对属性值。
可选的,控制器将相对属性值进行转换得到对应本机的从机微调量,即将相对属性值转换为与所述主机的基准控制量具有相同属性或者格式的值,将此值作为对应本机的从机微调量。主机的基准控制量即主机执行闭环控制方法时发出的控制量,将此控制量作为基准控制量进行第一从机的调控。
例如,主机发出的控制量可以为PWM信号,即基准控制量为PWM信号。因此需要将相对属性值进行转换使之与主机的基准控制量具备相同的属性或者相同的格式,即将相对属性值转换为PWM信号形式,便于后续直接对从机进行调整。当然,主机发出的控制量也可以是输入脉冲调制单元之前的信号,该信号输入脉冲调制单元后输出PWM信号,只需要将相对属性值转换为与之相对应的属性或格式相同的值即可。
步骤102,接收所述控制器发送的从机微调量,以及接收所述主机发送的基准控制量。
可选的,第一从机在进行微调前首先获接收控制器计算得到的从机微调量,并接收主机执行闭环控制方法时发出的基准控制量,然后继续执行步骤103。
步骤103,将所述基准控制量和所述从机微调量输入所述本机对应的开环控制环路后输出从机控制量,所述从机控制量用于控制所述本机。
可选的,本步骤可以包括:第一从机将所述基准控制量和所述从机微调量进行叠加处理后输入所述本机对应的开环控制环路后输出从机控制量。
可选的,所述第一从机包括复杂可编程逻辑器件Complex Programmable Logic Device,CPLD)单元或者现场可编程门阵列(Field-Programmable Gate Array,FPGA)单元,用于实现将所述基准控制量和本机的从机微调量输入本机对应的开环控制环路后输出从机控制量。即第一从机中的CPLD单元或FPGA单元根据主机发出的基准PWM信号,将转换的到的本机的PWM信号进行占空比调节,达到与主机的基准PWM信号相同,实现主从机的硬件均流或均功率。
上述从机的开环控制方法,通过第一从机向控制器发送本机的绝对属性值,以控制器根据本机的绝对属性值以及主机的绝对属性值计算得到相对属性值,并将相对属性值进行转换得到对应本机的从机微调量;然后第一从机将接收控制器发送的从机微调量以及接收主机发送的基准控制量输入本机对应的开环控制环路后输出从机控制量,使调节后的第一从机的控制量与主机的控制量相同,实现硬件均流或均功率。通过开环控制的所有第一从机进行各自调节校准,使得调节方式更加灵活,更易控制,避免现有技术中所有主从机均采用闭环控制方法使得主从机之间相互影响,难以实现硬件均流或均功率,且本申请提供的从机的开环控制方法可以提高校准工作效率。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本实施例还提供一种主从机并联***,如图2所示,包括多个并联连接的电源模块和控制器,任一电源模块为主机,其余电源模块为从机,所述从机中至少一个第一从机执行上述任一实施例提供的从机的开环控制方法,所述电源模块内均预先存储本机的绝对属性值,所述绝对属性值用于表征所述电源模块的固有属性。
其中,这里电源模块可以为AC-AC、DC-AC或者DC-DC等变换器,所述电源模块的功率电路均相同。可选的,所有从机中可以部分从机执行开环控制方法,部分从机执行闭环控制方法,也可以全部从机均执行开环控制方法。在本实施例中,不论全部从机执行开环控制方法还是部分从机执行开环控制方法,均将执行开环控制方法的至少一个从机命名为第一从机,以进行区分。可选的,当从机的数量为至少两个时,至少两个从机的开环控制环路相同。
可选的,绝对属性值为采用相同的测试条件,分别检测所有电源模块的电参数,并将所述电参数进行转换而得到,绝对属性值存储于对应的电源模块内,以便后续可以对执行开环控制的第一从机进行调控,使调节后的第一从机跟随主机实现硬件均流或均功率。这里电参数可以包括电压参数、电流参数或者功率参数。
如图 2所示的主从机并联***,所述控制器获取全部电源模块的绝对属性值,根据所述任一第一从机的绝对属性值以及所述主机的绝对属性值计算得到所述任一第一从机相对主机的相对属性值,将得到的相对属性值进行转换得到从机微调量,并将从机微调量发送给对应的第一从机。
可选的,控制器根据任一第一从机的绝对属性值以及主机的绝对属性值计算得到任一第一从机相对主机的相对属性值,即计算任一第一从机的绝对属性值以及主机的绝对属性值的差值,将得到的差值作为相对属性值。
可选的,控制器将相对属性值进行转换得到从机微调量,即将相对属性值转换为与主机的基准控制量具有相同属性或者格式的值,将此值作为对应本机的第一从机的从机微调量。主机的基准控制量即主机执行闭环控制方法时发出的控制量,将此控制量作为基准控制量进行第一从机的调控。
例如,主机发出的控制量可以为PWM信号,即基准控制量为PWM信号。因此需要将相对属性值进行转换使之与主机的基准控制量具备相同的属性或者相同的格式,即将相对属性值转换为PWM信号形式,便于后续直接对从机进行调整。
所述主机根据闭环控制环路输出基准控制量,并将所述基准控制量发送至所述任一第一从机,所述基准控制量用于控制主机。
所述任一第一从机将所述基准控制量和本机的从机微调量输入本机对应的开环控制环路后输出从机控制量,所述从机控制量用于控制本机。
可选的,任一第一从机将所述基准控制量和本机的从机微调量进行叠加处理后输入本机对应的开环控制环路后输出从机控制量。
可选的,所述第一从机包括CPLD单元或者FPGA单元,用于实现将所述基准控制量和本机的从机微调量输入本机对应的开环控制环路后输出从机控制量。即第一从机中的CPLD单元或FPGA单元根据主机发出的基准PWM信号,将转换的到的本机的PWM信号进行占空比调节,达到与主机的基准PWM信号相同,实现主从机的硬件均流或均功率。
可选的,如图3所示的主从机的连接示意图。所述主机包括第一接口和第二接口;每个从机包括第三接口和第四接口;
所述主机的第一接口与每个从机的第三接口连接;所述主机的第二接口与每个从机的第四接口连接,其中,第一接口和第三接口用于电源模块并联连接的输入,第二接口和第四接口用于电源模块并联连接的输出。
当需要对从机进行调节时,则可以通过上述主机和从机的连接关系将从机连接到主机上,即插即用,操作方便。
上述主从机并联***,通过控制器获取全部电源模块的绝对属性值,根据任一第一从机的绝对属性值以及主机的绝对属性值计算得到任一第一从机相对主机的相对属性值,将得到的相对属性值进行转换得到从机微调量,并将从机微调量发送给对应的第一从机;主机根据闭环控制环路输出基准控制量,并将基准控制量发送至所述任一第一从机;任一第一从机将基准控制量和本机的从机微调量输入本机对应的开环控制环路后输出从机控制量,使调节后的第一从机的控制量与主机的控制量相同,实现硬件均流或均功率。通过开环控制的所有第一从机进行各自调节校准,使得调节方式更加灵活,更易控制,避免现有技术中所有主从机均采用闭环控制方法使得主从机之间相互影响,难以实现硬件均流或均功率,且本申请提供的从机的开环控制方法可以提高校准工作效率。
本申请实施例还提供一种电源模块,应用于上述任一实施例所述的主从机并联***,并且具有上述主从机并联***带来的所有有益效果。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种从机的开环控制方法,应用于多个并联连接的电源模块和控制器构成的主从机并联***,任一电源模块为主机,其余电源模块为从机,其特征在于,所述从机中至少一个第一从机执行开环控制方法,第一从机执行的开环控制方法包括:
    向所述控制器发送本机的绝对属性值,以所述控制器根据本机的绝对属性值以及所述主机的绝对属性值计算得到相对属性值,并将所述相对属性值进行转换得到对应本机的从机微调量;所述绝对属性值用于表征所述电源模块的固有属性;
    接收所述控制器发送的从机微调量,以及接收所述主机发送的基准控制量;
    将所述基准控制量和所述从机微调量输入所述本机对应的开环控制环路后输出从机控制量,所述从机控制量用于控制所述本机。
  2. 如权利要求1所述的从机的开环控制方法,其特征在于,所述将所述相对属性值进行转换得到对应本机的从机微调量,包括:
    将所述相对属性值转换为与所述主机的基准控制量具有相同属性或者格式的值,将此值作为对应本机的从机微调量。
  3. 如权利要求2所述的从机的开环控制方法,其特征在于,所述将所述基准控制量和所述从机微调量输入所述本机对应的开环控制环路后输出从机控制量,包括:
    将所述基准控制量和所述从机微调量进行叠加处理后输入所述本机对应的开环控制环路后输出从机控制量。
  4. 如权利要求1至3中任一项所述的从机的开环控制方法,其特征在于,在将多个并联连接的电源模块和控制器构成的并联***前,还包括:
    采用相同的测试条件,分别检测所有电源模块的电参数,并将所述电参数转换为绝对属性值存储于对应的电源模块内。
  5. 如权利要求4所述的从机的开环控制方法,其特征在于,所述电参数包括电压参数、电流参数或者功率参数。
  6. 一种主从机并联***,其特征在于,包括多个并联连接的电源模块和控制器,任一电源模块为主机,其余电源模块为从机,所述从机中至少一个第一从机执行上述权利要求1至5中任一项所述从机的开环控制方法,所述电源模块内均预先存储本机的绝对属性值,所述绝对属性值用于表征所述电源模块的固有属性;
    所述控制器获取全部电源模块的绝对属性值,根据所述任一第一从机的绝对属性值以及所述主机的绝对属性值计算得到所述任一第一从机相对主机的相对属性值,将得到的相对属性值进行转换得到从机微调量,并将从机微调量发送给对应的第一从机;
    所述主机根据闭环控制环路输出基准控制量,并将所述基准控制量发送至所述任一第一从机,所述基准控制量用于控制主机;
    所述任一第一从机将所述基准控制量和本机的从机微调量输入本机对应的开环控制环路后输出从机控制量,所述从机控制量用于控制本机。
  7. 如权利要求6所述的主从机并联***,其特征在于,所述电源模块的功率电路均相同。
  8. 如权利要求6所述的主从机并联***,其特征在于,
    所述第一从机包括CPLD单元或者FPGA单元,用于实现将所述基准控制量和本机的从机微调量输入本机对应的开环控制环路后输出从机控制量。
  9. 如权利要求6所述的主从机并联***,其特征在于,当从机的数量为至少两个时,至少两个从机的开环控制环路相同。
  10. 一种电源模块,其特征在于,应用于权利要求6至9任一项所述的主从机并联***。
PCT/CN2020/128584 2020-04-14 2020-11-13 从机的开环控制方法及主从机并联*** WO2021208415A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010290841.6A CN111555424A (zh) 2020-04-14 2020-04-14 从机的开环控制方法及主从机并联***
CN202010290841.6 2020-04-14

Publications (1)

Publication Number Publication Date
WO2021208415A1 true WO2021208415A1 (zh) 2021-10-21

Family

ID=72007419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128584 WO2021208415A1 (zh) 2020-04-14 2020-11-13 从机的开环控制方法及主从机并联***

Country Status (2)

Country Link
CN (1) CN111555424A (zh)
WO (1) WO2021208415A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111555424A (zh) * 2020-04-14 2020-08-18 科华恒盛股份有限公司 从机的开环控制方法及主从机并联***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101521454A (zh) * 2009-03-31 2009-09-02 中兴通讯股份有限公司 并联均流的实现方法和电源装置
US20150130426A1 (en) * 2012-11-12 2015-05-14 Zte Corporation Digital current equalizing device, analog current equalizing device, current equalizing method and system
CN105990999A (zh) * 2015-01-27 2016-10-05 台达电子工业股份有限公司 电源供应装置及其控制方法
CN106020304A (zh) * 2016-07-08 2016-10-12 广东工业大学 一种自适应主从多模式并机均流控制方法
CN111555424A (zh) * 2020-04-14 2020-08-18 科华恒盛股份有限公司 从机的开环控制方法及主从机并联***

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100356654C (zh) * 2005-07-08 2007-12-19 浙江大学 一种逆变电源的自动主从并联装置
CN104578125B (zh) * 2015-01-08 2019-03-19 国家电网公司 一种用于储能电站的大容量储能变流器的并联控制方法
JP2016187290A (ja) * 2015-03-27 2016-10-27 パナソニックIpマネジメント株式会社 電力供給システム及び電力変換装置
CN104914908B (zh) * 2015-06-25 2016-05-04 湖南丰日电源电气股份有限公司 一种基于can总线通信的自主均流数字控制方法
CN105391089B (zh) * 2015-12-21 2018-06-26 中国西电电气股份有限公司 一种逆变器的并联控制方法和电路
CN105406513B (zh) * 2015-12-28 2019-01-04 新疆希望电子有限公司 光伏并网逆变器并联运行中均流控制指令电流生成方法
CN106230277A (zh) * 2016-08-16 2016-12-14 株洲变流技术国家工程研究中心有限公司 基于晶闸管整流的多机组并联电源***的控制方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101521454A (zh) * 2009-03-31 2009-09-02 中兴通讯股份有限公司 并联均流的实现方法和电源装置
US20150130426A1 (en) * 2012-11-12 2015-05-14 Zte Corporation Digital current equalizing device, analog current equalizing device, current equalizing method and system
CN105990999A (zh) * 2015-01-27 2016-10-05 台达电子工业股份有限公司 电源供应装置及其控制方法
CN106020304A (zh) * 2016-07-08 2016-10-12 广东工业大学 一种自适应主从多模式并机均流控制方法
CN111555424A (zh) * 2020-04-14 2020-08-18 科华恒盛股份有限公司 从机的开环控制方法及主从机并联***

Also Published As

Publication number Publication date
CN111555424A (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
US9608518B2 (en) Power supply device and control method thereof
CN102684464B (zh) 谐振变换器装置及用于谐振变换器装置的方法
CN104917414A (zh) 逆变装置及其控制方法
WO2015176533A1 (zh) 一种电池板接入模式的判断方法及逆变器
CN102739052B (zh) 控制方法和装置
TW201440408A (zh) 疊接橋式直流/交流電力轉換方法及其裝置
CN107453403A (zh) 一种光伏发电***及其控制方法
WO2021088491A1 (zh) 一种光伏控制装置、方法及***
JPWO2021044485A1 (ja) インバータ装置の試験装置
WO2021208415A1 (zh) 从机的开环控制方法及主从机并联***
CN103713563B (zh) 一种兆瓦级变流器并联控制方法及***
CN115117876A (zh) 一种基于柴油发电车接口的负荷功率平滑转移方法
CN105141043B (zh) 无线充电控制方法和装置
CN111884493B (zh) 一种多电源的主从式多机通信方法及多电源***
CN117175575A (zh) 一种光伏构网***故障限流控制方法及装置
CN112242712A (zh) 用于两级式光伏逆变***的功率控制方法
CN112803813B (zh) 模块化多电平换流器电容静态电压平衡控制方法及***
CN106300985A (zh) 一种控制输入电流的均流方法及电路
US20220103064A1 (en) Multi-phase voltage regulator and temperature monitoring method thereof
CN110601567B (zh) 一种基于维也纳三电平整流器的载波同步控制方法
CN107612328A (zh) 一种直流电源并联的数字均流方法
CN107681911A (zh) 一种z源三电平四桥臂光伏逆变器控制方法
KR101034257B1 (ko) 직렬입력구조의 컨버터에서 입력전압의 보정 방법
CN205610477U (zh) 一种数控动态调压装置
US20050068699A1 (en) Power-supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931435

Country of ref document: EP

Kind code of ref document: A1