WO2021208349A1 - 一种积分球光度计光谱响应测量方法和*** - Google Patents

一种积分球光度计光谱响应测量方法和*** Download PDF

Info

Publication number
WO2021208349A1
WO2021208349A1 PCT/CN2020/115829 CN2020115829W WO2021208349A1 WO 2021208349 A1 WO2021208349 A1 WO 2021208349A1 CN 2020115829 W CN2020115829 W CN 2020115829W WO 2021208349 A1 WO2021208349 A1 WO 2021208349A1
Authority
WO
WIPO (PCT)
Prior art keywords
integrating sphere
light source
photometer
spectral
reference light
Prior art date
Application number
PCT/CN2020/115829
Other languages
English (en)
French (fr)
Inventor
潘建根
黄艳
毛之江
李倩
Original Assignee
杭州远方光电信息股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202020542118.8U external-priority patent/CN211824735U/zh
Priority claimed from CN202010288898.2A external-priority patent/CN111442840A/zh
Application filed by 杭州远方光电信息股份有限公司 filed Critical 杭州远方光电信息股份有限公司
Priority to US18/249,739 priority Critical patent/US20230408330A1/en
Publication of WO2021208349A1 publication Critical patent/WO2021208349A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0254Spectrometers, other than colorimeters, making use of an integrating sphere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0474Diffusers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/08Arrangements of light sources specially adapted for photometry standard sources, also using luminescent or radioactive material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J2001/0481Preset integrating sphere or cavity

Definitions

  • the invention relates to the field of photoelectric testing, in particular to a method and system for measuring the spectral response of an integrating sphere photometer.
  • Integrating sphere spectrometer and integrating sphere photometer are commonly used photometric measurement devices.
  • the integrating sphere photometer has unique advantages in the field of low light measurement due to its high sensitivity and response, large linear dynamic range, and is especially suitable for micro LEDs. And MiniLED and other low-light products measurement.
  • Integrating sphere photometers usually have spectral mismatch errors when measuring photometric values, especially for the measurement of narrow-band light sources, the measurement error caused by spectral mismatch is very large. Therefore, it is necessary to evaluate and correct the spectral mismatch error of the integrating sphere photometer system, which is also recommended by the current CIE documents and related TCs.
  • the spectral mismatch error evaluation and mismatch correction must be based on the comprehensive spectral responsivity of the entire measurement system.
  • the spectral responsivity of the entire system including the integrating sphere should be considered comprehensively, not just the photometer itself. At present, CIE and other related technical documents also have requirements for this, but there is no better method for its measurement.
  • the commonly used method for measuring the spectral responsivity of a detector is to use a spectrum comparison device based on a tunable laser or a lamp-monochromator system, such as the SIRCUS system and the SCF system of NIST.
  • a spectrum comparison device based on a tunable laser or a lamp-monochromator system, such as the SIRCUS system and the SCF system of NIST.
  • the above spectrum comparison device is used to compare with the reference detector with traceable spectral responsivity, the sensitivity of the integrating sphere photometer system may not be reached, and it will increase. The complexity of measurement correction is improved.
  • the present invention provides a method and system for measuring the spectral response of an integrating sphere photometer, which aims to solve the technical problem of the prior art in measuring the spectral response of an integrating sphere photometer.
  • the invention discloses a method for measuring the spectral responsivity of an integrating sphere photometer, which comprises an integrating sphere photometer composed of an integrating sphere and a broadband photodetector.
  • the broadband photodetector is installed on the spherical wall of the integrating sphere.
  • Characterized in that the integrating sphere photometer is used to measure three or more reference light sources with different peak wavelengths, and the integral is calculated based on the spectral radiant flux of the reference light source and the response of the integrating sphere photometer to the reference light source
  • the spectral responsivity of the spherophotometer includes the following steps:
  • Step a The emitted lights of three or more reference light sources with different peak wavelengths are respectively incident into the integrating sphere, and the product is read
  • Ball photometer response M i (i 1,2, ... n), where n is the reference number of light sources;
  • Step c Establish the following equations, where Srel( ⁇ ) is the spectral responsivity of the integrating sphere photometer
  • Step d Obtain the spectral responsivity S rel ( ⁇ ) of the integrating sphere photometer by numerical solution
  • the spectra of three or more reference light sources with different peak wavelengths overlap each other, the light emitted by the reference light source is incident into the integrating sphere, and the broadband photodetector configured on the integrating sphere is used to obtain the photometric value M of the mixed light in the integrating sphere.
  • the response of the broadband photodetector is traceable, the relative spectral responsivity curve of the broadband photodetector to the incident light unit's measured light and the human eye optical efficiency function Curve or flat straight line matching
  • the reference light source is an LED light source
  • the LED light source is composed of monochromatic LEDs and/or white LEDs with overlapping spectra.
  • the wavelength of the LED light source is distributed and covers a specified wavelength range, and the spectra overlap each other.
  • the spectral radiant flux of the LED light source can be measured in advance or obtained by configuring a spectrometer on the integrating sphere. With a series of monochromatic LEDs as the light source, the spectral responsivity measurement of the integrating sphere photometer system will be affected by factors such as the type, quantity, and bandwidth of the LED.
  • a reference light source becomes narrower the bandwidth of the light emitted, due to the spectrum of the emitted light overlap with each other needs, and therefore require more designated reference band light sources can be obtained more sets of M i and P i, based on Formula, the spectral responsivity accuracy of the integrating sphere photometer system finally obtained is higher.
  • the spectral radiant flux of P i ( ⁇ ) is an absolute value, or the spectral radiant flux of P i ( ⁇ ) is a relative value.
  • the absolute value refers to the absolute spectral radiant flux, while the relative value is a certain absolute spectral responsivity divided by a certain constant coefficient.
  • the absolute spectral radiant flux is the product of spectral irradiance and area, that is, the irradiance E i that can be measured by a traceable radiometer Calculated with the incident aperture area A.
  • the reference light source is a laser with a characteristic wavelength, or the reference light source is composed of two or more lasers with a characteristic wavelength.
  • the spectral power of the laser flux P i obtained by the known or spectrometer.
  • S rel the numerical solution formula of the spectral responsivity S rel ( ⁇ )
  • the incident light from the reference light source enters the integrating sphere through an incident window on the wall of the integrating sphere, and a calibrated detector that can cut in and out of the optical path is provided at the incident diaphragm for acquiring the The radiant flux of the reference light source.
  • the radiant flux of the reference light source is obtained by multiplying the irradiance measured by the calibrated detector and the incident aperture area.
  • the size of the incident aperture can be adjusted according to test requirements.
  • a measurement window connected to a calibrated spectroradiometer is provided on the wall of the integrating sphere to obtain the spectral radiant flux of the reference light source.
  • the reference light source is a tunable light source with a uniform light-emitting surface, and a detachable spectroradiometer is provided on the light-emitting surface of the reference light source.
  • the present invention also discloses a spectral responsivity measurement system of an integrating sphere photometer, which includes an integrating sphere photometer and three or more reference light sources with different peak wavelengths; the integrating sphere photometer consists of an integrating sphere and a broadband
  • the broadband light detector is installed on the spherical wall of the integrating sphere, and the integrating sphere is provided with an incident window; the emitted light of the reference light source is incident on the integrating sphere through the incident window.
  • three or more reference light sources with different peak wavelengths cover the specified wavelength range, and the emitted light of each reference light source enters the integrating sphere through the entrance port on the integrating sphere, and is obtained by a broadband photodetector arranged on the wall of the integrating sphere.
  • the incident diaphragm is arranged on the outside of the incident window of the integrating sphere, and the calibration detector is arranged on the aperture of the incident diaphragm, And can cut in or cut out the light path.
  • the calibration detector can cut in or cut out the optical path, set on the aperture, and measure the illuminance value of the reference light source.
  • the measured illuminance value is multiplied by the incident aperture area to obtain the absolute radiant flux of the reference light source. .
  • the spectrum measuring window is arranged on the wall of the integrating sphere, and the spectroradiometer is connected to the spectrum measuring window.
  • the spectroradiometer is calibrated in advance, and a spectroradiometer is provided on the wall of the integrating sphere and connected to the spectroradiometer, which can be used to obtain the spectral radiant flux of the reference light source.
  • an astigmatism device is provided in the integrating sphere, and a baffle is provided in the integrating sphere.
  • the diffuser can reduce the power density of the incident laser. , Reduce the influence of high-power laser on the optical components on the optical path, improve the accuracy of the optical components on the measurement results, and ensure the response of the integrating sphere without damaging the coating of the integrating sphere;
  • the baffle makes the measuring device avoid direct light.
  • an attenuation device is provided on the outside of the incident window.
  • a high-power laser is likely to damage the coating of the integrating sphere, and the attenuation device can reasonably attenuate the power density of the measurement beam to meet the range of the optical measurement element.
  • the ideal attenuation device is not related to the incident laser wavelength, incident angle, polarization state and other parameters, and only attenuates the incident laser amplitude accordingly, and the attenuation within a certain range is linear.
  • the optical beam splitter includes an optical beam splitter and a monitoring device, the optical beam splitter is arranged on the light path of the reference light source, and the monitoring device is used to measure the monitoring light beam split by the optical beam splitter.
  • Fig. 1 is a schematic flow chart of a method for measuring the spectral response of an integrating sphere photometer in an embodiment of the present invention
  • Figure 2 is a schematic structural diagram of an integrating sphere photometer spectral response measurement system using an LED light source in an embodiment of the present invention
  • Figure 3 is a schematic structural diagram of an integrating sphere photometer spectral response measurement system using an LED surface light source in an embodiment of the present invention
  • Figure 4 is a schematic structural diagram of an integrating sphere photometer spectral response measurement system using an LED light source in an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of an integrating sphere photometer spectral response measurement system using a laser in an example of the present invention Schematic diagram of the structure of the spectral response measurement system
  • 1 Integrating sphere
  • 2 Broadband light detector
  • 3 Entrance window
  • 4-1 LED light source
  • 4-2 Laser
  • 4-3 Integrating sphere light source
  • 5 Attenuation device
  • 6 Astigmatism device
  • 7 Spectral measurement window
  • 8 spectroradiometer
  • 9 calibration detector
  • 10-incident diaphragm 11-baffle; 12-light beam splitter; 13-monitoring device.
  • An embodiment of an integrating sphere photometer spectral response measurement system provided by the present invention includes: an LED light source 4-1, an integrating sphere 1, and a broadband light detector 2 is provided on the wall of the integrating sphere 1 , The integrating sphere 1 is also provided with an incident window 3, and the LED light source 4-1 can sequentially emit light of three or more designated wavelength bands.
  • the spectral response measurement method of integrating sphere photometer includes the following steps:
  • the LED light source 4-1 emits light with three or more specified bands and overlapping spectra
  • FIG. 1 An embodiment of an integrating sphere photometer spectral response measurement system provided by the present invention is shown in Figures 1 and 3.
  • the light source is an integrating sphere light source 4-3, and the light emitting surface of the surface light source is set With detachable spectroradiometer 8.
  • the spectral response measurement method of integrating sphere photometer includes the following steps:
  • Integrating spherical light source 4-3 emits light with three or more specified bands and overlapping spectra by adjusting;
  • FIG. 1 The embodiment of an integrating sphere photometer spectral response measurement system provided by the present invention is shown in Figs.
  • the receiving end of the spectroradiometer 8 is set on the spectrum measurement window 3.
  • the spectral response measurement method of integrating sphere photometer includes the following steps:
  • the LED light source 4-1 emits light with three or more specified bands and overlapping spectra
  • FIG. 1 The embodiment of an integrating sphere photometer spectral response measurement system provided by the present invention is shown in Figures 1 and 5.
  • the incident diaphragm 10 and the calibration detector 9 are added, and the incident diaphragm 10 is set Outside the incident window 3 of the integrating sphere 1, the calibration detector 9 can cut in and out of the optical path, and is arranged on the aperture of the incident diaphragm 10 to obtain the irradiance value of the light incident into the integrating sphere 1.
  • it also includes: a baffle 11 is arranged in the integrating sphere 1; a light beam splitter 12 is arranged in front of the LED light source 4-1;
  • the spectral response measurement method of integrating sphere photometer includes the following steps:
  • the LED light source 4-1 uses a variety of monochromatic LEDs as the reference light source, emitting light with three or more specified bands and overlapping spectra;
  • the light emitted from the LED light source 4-1 is divided into a measuring beam and a monitoring beam by the light beam splitter 12, the monitoring device 13 measures the monitoring beam, and the measuring beam is incident into the integrating sphere 1;
  • FIG. 1 An embodiment of an integrating sphere photometer spectral response measurement system provided by the present invention is shown in Figs. 1, 6.
  • the reference light source is a 4-2 laser, and an attenuation device 5 and a astigmatism device are added. 6.
  • the spectral response measurement method of integrating sphere photometer includes the following steps:
  • Laser 4-2 emits laser light with characteristic wavelength
  • the laser light emitted by the laser 4-2 enters the integrating sphere 1 after passing through the attenuation device 5, and passes through the bulk device 6 to reduce the power density of the laser;

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种积分球光度计光谱响应测量方法及***,包括积分球光度计和三个及以上峰值波长不同的参考光源,积分球光度计由积分球(1)和宽带光探测器(2)组成,宽带光探测器(2)安装在积分球(1)的球壁上。参考光源出射光入射至积分球(1)内,获取积分球光度计***接收到的总光谱辐射通量P i(λ)(i=1,2,…n),且通过宽带光探测器(2)读取积分球(1)内混合光线的光度计的响应M i(i=1,2,…n),建立方程组,通过数值求解得到积分球光度计的光谱响应度Srel(λ)。

Description

一种积分球光度计光谱响应测量方法和*** 技术领域
本发明涉及光电测试领域,具体涉及一种积分球光度计光谱响应测量方法和***。
背景技术
积分球光谱仪和积分球光度计是常用的光度测量装置,其中积分球光度计因具有高灵敏响应度、大线性动态范围等优点,在弱光测量领域具有独特的应用优势,尤其适用于micro LED和MiniLED等弱光产品测量。
积分球光度计在测量光度值时通常存在光谱失匹配误差,特别是对于窄带光源的测量,由光谱失匹配所引起的测量误差则很大。因此,对积分球光度计***的光谱失匹配误差进行评估和失匹配校正是很有必要的,这也是目前的CIE文件及相关TC推荐的。光谱失匹配误差评估及失匹配校正必须基于整个测量***的综合光谱响应度,对于积分球光度计***,应综合考虑包括积分球在内的整个***的光谱响应度而不仅仅是光度计自身的,目前CIE等相关的技术文件中也有对此提出要求,但对于其测量目前还没有比较好的方法。
目前,常用的探测器光谱响应度测量方法是采用基于可调谐激光或基于灯-单色仪***的光谱比较装置,如NIST的SIRCUS***和SCF***。通过生成带宽较窄的单色光源,比较被测探测器与参考探测器的读数,以获得被测探测器的光谱响应度。此类方法对实验室环境和设备要求都较高,且从经济成本等方面考虑亦不适用于工业应用。此外,若将积分球光度计***看作一个整体,采用以上的光谱比较装置,与具有溯源光谱响应率的参考探测器相比较,积分球光度计***的灵敏度也可能达不到,并且还增加了测量校正的复杂性。
发明内容
针对现有技术的不足,本发明提供一种积分球光度计光谱响应测量方法和***,旨在解决现有技术对积分球光度计的光谱响应测量的技术难题。
本发明公开了一种积分球光度计的光谱响应度测量方法,包括由积分球和宽带光探测器组成的积分球光度计,所述的宽带光探测器安装在所述积分球的球壁上,其特征在于,使用所述的积分球光度计测量三个及以上峰值波长不同的参考光源,根据所述参考光源的光谱辐射通量和积分球光度计对所述参考光源的响应,计算积分球光度计的光谱响应度,具体包括以下步骤:
步骤a:三个及以上峰值波长不同的所述参考光源的出射光分别入射到积分球内,读取积
分球光度计的响应M i(i=1,2,…n),其中n为所述参考光源的数量;
步骤b:获取所述入射到积分球内的参考光源的光谱辐射通量P i(λ)(i=1,2,…n);
步骤c:建立如下的方程组,其中Srel(λ)为积分球光度计的光谱响应度
Figure PCTCN2020115829-appb-000001
步骤d:通过数值求解得到积分球光度计的光谱响应度S rel(λ)
具体的,三个及以上峰值波长不同的参考光源其光谱相互交叠,参考光源出射光入射至积分球内,积分球上配置的宽带光探测器用于获取述积分球内混合光线的光度值M i(i=1,2,…n),其中宽带光探测器的响应是具有溯源性的,宽带光探测器的对于入射光单元的被测光的相对光谱响应度曲线与人眼光视效率函数曲线或平坦直线匹配;参考光源出射光的光谱辐射通量P i(λ)(i=1,2,…n)为事先通过其它精度更高的***定标或后续测量获取。每个参考光源均可获取一组光度值和光谱辐射通量,因此三个及以上峰值波长不同的参考光源可获取3组及以上的M i,P i(λ)(i=1,2,…n)(n≥3)值,再根据公式得到方程组,对方程组进行数值计算,得到积分球光度计的光谱响应度值,达到对积分球光度计***的光谱响应度进行分析的目的。
作为一种技术方案,所述的参考光源为LED光源,所述LED光源由光谱相互交叠的单色光LED和/或白光LED组成。
具体的,LED光源波长分布并覆盖指定波段范围,且光谱相互交叠。LED光源的光谱辐射通量可事先测得或在积分球上配置光谱仪来获取。以系列单色LED作为光源,积分球光度计***的光谱响应度测量会受到LED种类、数量、带宽等因素的影响。在指定波段范围内,参考光源出射的光的带宽越窄,由于出射光的光谱需相互交叠,因此需要更多指定波段的参考光源,则可获得更多组的M i和P i,基于公式,最终得到的积分球光度计***的光谱响应度准确度越高。
作为一种技术方案,所述的光谱辐射通量P i(λ)是绝对值,或者所述的光谱辐射通量P i(λ)是相对值。
绝对值是指绝对光谱辐射通量,而相对值则是某一个绝对光谱响应度除以某个不变的系数。例如当参考光源的光通过一个固定光阑入射到积分球内时,其绝对光谱辐射通量为光谱辐射照度与面积的乘积,即可以通过有溯源的辐射度计测得的辐照度E i与入光孔径面积A计算得到。
作为一种技术方案,所述参考光源为具有特征波长的激光器,或者所述参考光源有两个及以上具有特征波长的激光器组成。
具体的,激光光谱功率通量P i已知或者通过光谱仪测量得到。根据光谱响应度S rel(λ)数值求解公式可知,采用激光作为参考光源可得到较好的结果,但成本较高,且激光功率的大小需根据积分球的尺寸进行调整。
作为一种技术方案,所述参考光源的入射光通过所述积分球壁上的入射窗口进入积分球,所述入射光阑处设置有可切入切出光路的校准探测器,用于获取所述参考光源的辐射通量。
具体的,参考光源的辐射通量由所述的校准探测器测量的辐射照度与所述的入射光阑面积相乘获得。
可选的,所述入射光阑的尺寸可根据测试需求调整。
作为一种技术方案,在积分球壁上设置与校准过的光谱辐射计相连接的测量窗口,用于获取所述参考光源的光谱辐射通量。
作为一种技术方案,所述的参考光源较为具有均匀出光面的可调光源,并在参考光源的出光面设具有可拆卸的光谱辐射度计。
另一方面,本发明还公开了一种积分球光度计的光谱响应度测量***,包括积分球光度计和三个及以上峰值波长不同的参考光源;所述积分球光度计由积分球和宽带光探测器组成,所述的宽带光探测器安装在所述积分球的球壁上,所述积分球上设置有入射窗口;所述参考光源的出射光通过所述入射窗口入射到所述积分球内。
具体的,三个及以上峰值波长不同的参考光源覆盖指定波段范围,每个参考光源的出射光通过积分球上的入射口入射到积分球内,设置在积分球壁上的宽带光探测器获取所述积分球内混合光线的光度值M i
作为一种技术方案,还包括入射光阑和校准探测器,所述入射光阑设置在积分球的所述入射窗口的外侧,所述校准探测器设置在所述入射光阑的光阑口上,并可切入或切出光路。
具体的,校准探测器可切入或切出光路,设置在光阑口上,可测量参考光源照度值,测得的照度值乘以入射光阑面积,便可获取所述参考光源的绝对辐射通量。
作为一种技术方案,包括光谱测量窗口和光谱辐射计,光谱测量窗口设置在积分球壁上,光谱辐射计与光谱测量窗口相连。
具体的,光谱辐射计事先经过校准,积分球壁上设置光谱测量窗口并连接光谱辐射计,可用于获取所述参考光源的光谱辐射通量。
作为一种技术方案,所述积分球内设置有散光装置,所述积分球内设有挡板。
具体的,以激光器作为光源,大功率激光容易对积分球的涂层产生损坏需对测量光束的功率密度进行合理的衰减,以满足光学测量元件的量程范围,散光器可降低入射激光的功率密度,减少大功率激光对光路上的光学元件的影响,提高光学元件对测量结果的准确性,在 保证积分球响应的同时,不损伤积分球涂层;
具体的,挡板使得测量装置避免光线直射。
作为一种技术方案,所述的入射窗口处的外侧设有衰减装置。
具体的,以激光器作为光源,大功率激光容易对积分球的涂层产生损坏,衰减装置可对测量光束的功率密度进行合理的衰减,以满足光学测量元件的量程范围。理想的衰减装置与入射激光的波长、入射角度和偏振态等参数不相关,仅仅对入射激光的幅值进行相应的衰减,并且在一定范围内的衰减是线性的。
作为一种技术方案,包括光分束器和监测装置,光分束器设置在参考光源出射光光路上,监测装置用于测量光分束器分出的监测光束。
附图说明
附图1为本发明实施例中一种积分球光度计光谱响应测量方法的流程示意图;
附图2为本发明实施例中采用LED光源的一种积分球光度计光谱响应测量***的结构示意图;
附图3为本发明实施例中采用LED面光源的一种积分球光度计光谱响应测量***的结构示意图;
附图4为本发明实施例中采用LED光源的一种积分球光度计光谱响应测量***的结构示意图
[根据细则91更正 18.11.2020] 
附图5为本发明实例中用于采用激光器的一种积分球光度计光谱响应测量***的结构示意图
附图6为本发明实施例中采用激光器及衰减装置和散光装置的一种积分球光度计光谱响应测量***的结构示意图
1—积分球;2—宽带光探测器;3—入射窗口;4-1—LED光源;4-2—激光器;4-3—积分球面光源;5—衰减装置;6-散光装置;7—光谱测量窗口;8—光谱辐射计;9—校准探测器;10-入射光阑;11-挡板;12-光分束器;13-监测装置。
具体实施方式
实施例一
本发明提供的一种积分球光度计光谱响应测量***的实施例,如图1,2所示,包括:LED光源4-1、积分球1,积分球1壁上设置有宽带光探测器2,积分球1上还设有入射窗口3,LED光源4-1可依次出射三个及以上指定波段的光线。
积分球光度计光谱响应测量方法包括以下步骤:
(1)LED光源4-1出射三个及以上指定波段,且光谱相互交叠的光线;
(2)事先获取LED光源4-1出射光线的光谱辐射通量P i(λ)(i=1,2,…n);
(3)LED光源4-1依次出射的光线通过入射窗口3入射至积分球1内;
(4)通过宽带光探测器2获取积分球内混合光线的光度值M i(i=1,2,…n);
(5)根据LED光源4-1所出射光线的光度值Mi和光谱辐射通量P i(λ),数值求解得到积分球光度计的光谱响应度S rel(λ)(i=1,2,…n):
Figure PCTCN2020115829-appb-000002
实施例二
本发明提供的一种积分球光度计光谱响应测量***的实施例,如图1,3所示,与实施例一相比,光源为积分球面光源4-3,且在面光源的出光面设具有可拆卸的光谱辐射计8。
积分球光度计光谱响应测量方法包括以下步骤:
(1)积分球面光源4-3通过调节出射三个及以上指定波段,且光谱相互交叠的光线;
(2)位于积分球面光源4-3出光面上可拆卸的辐射度计,用于获取积分球面光源4-3出射光线的光谱辐射通量P i(λ)(i=1,2,…n);
(3)积分球面光源4-3出射的光线通过入射窗口3入射至积分球1内;
(4)通过宽带光探测器2获取积分球内混合光线的光度值M i(i=1,2,…n);
(5)根据积分球面光源4-3所出射光线的光度值Mi和光谱辐射通量P i(λ),数值求解得到积分球光度计的光谱响应度S rel(λ)(i=1,2,…n):
Figure PCTCN2020115829-appb-000003
实施例三
本发明提供的一种积分球光度计光谱响应测量***的实施例,如图1,4所示,与实施例一相比,增加了光谱测量窗口7及光谱辐射计8,光谱测量窗口7设置在积分球1壁上,光谱辐射计8的接收端设置于光谱测量窗口3上。
积分球光度计光谱响应测量方法包括以下步骤:
(1)LED光源4-1出射三个及以上指定波段,且光谱相互交叠的光线;
(2)光源模块4-1依次出射的光线入射至积分球1内;
(3)通过宽带光探测器2获取积分球1内混合光线的光度值M i(i=1,2,…n);
(4)通过光谱辐射计8获取LED光源4-1出射光线的光谱辐射通量P i(λ)(i=1,2,…n)
(5)根据LED光源4-1所出射光线的光度值Mi和光谱辐射通量P i(λ),数值求解得到积分球光度计的光谱响应度S rel(λ)(i=1,2,…n):
Figure PCTCN2020115829-appb-000004
实施例四
本发明提供的一种积分球光度计光谱响应测量***的实施例,如图1,5所示,与实施例三相比,增加了入射光阑10及校准探测器9,入射光阑10设置在积分球1的入射窗口3外侧,校准探测器9可切入切出光路,设置在入射光阑10的光阑口上,用于获取入射至积分球1内的光的辐射照度值。同时还包括:积分球1内设有挡板11;LED光源4-1前设有光分束器12;监测装置13用于测量光分束器12分出的监测光束。
积分球光度计光谱响应测量方法包括以下步骤:
(1)LED光源4-1采用多种单色LED作为参考光源,出射三个及以上指定波段,且光谱相互交叠的光线;
(2)LED光源4-1依次出射的光线经过光分束器12分为测量光束和监测光束,监测装置13测量监测光束,测量光束入射至积分球1内;
(3)通过宽带光探测器2获取积分球内混合光线的光度值M i(i=1,2,…n);
(4)通过光谱辐射计8获取LED光源4-1出射光线的相对光谱辐射通量;
(5)通过校准探测器9获取辐照度E i并结合入射光阑10的面积A,计算得到LED光源4-1入射至积分球内的光线的绝对光谱辐射通量P i(i=1,2,…n)=E i·A,并对光谱辐射计8获取 相对光谱辐射通量值进行校准,得到积分球光度计***接收到的总光谱辐射通量P i(λ)(i=1,2,…n);
(6)根据LED光源4-1所出射光线的光度值Mi和校准后的总光谱辐射通量P i(λ)(i=1,2,…n),数值求解得到积分球光度计的光谱响应度S rel(λ)(i=1,2,…n):
Figure PCTCN2020115829-appb-000005
实施例五
本发明提供的一种积分球光度计光谱响应测量***的实施例,如图1,6所示,与实施例一相比,参考光源为4-2激光器,且增加了衰减装置5和散光装置6。
积分球光度计光谱响应测量方法包括以下步骤:
(1)激光器4-2出射具有特征波长的激光;;
(2)事先获取激光器4-2出射光的光谱功率通量P i(λ)(i=1,2,…n)
(3)激光器4-2出射的激光经过衰减装置5后入射至积分球1内,并经过散装装置6降低激光的功率密度;
(4)通过宽带光探测器2获取积分球内光线的光度值M i(i=1,2,…n);
(5)根据激光器4-2所出射光线的光度值Mi和光谱辐射通量P i(λ),数值求解得到积分球光度计的光谱响应度S rel(λ)(i=1,2,…n):
Figure PCTCN2020115829-appb-000006
以上结合附图对本发明的具体实施方式作了说明,但本领域技术人员应当理解,以上实施例仅是为了进行说明,而不是为了限制本发明的范围。本领域技术人员应当理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的保护范围由所附的权 利要求来限定。

Claims (13)

  1. 一种积分球光度计的光谱响应度测量方法,包括由积分球和宽带光探测器组成的积分球光度计,所述的宽带光探测器安装在所述积分球的球壁上,其特征在于,使用所述的积分球光度计测量三个及以上峰值波长不同的参考光源,根据所述参考光源的光谱辐射通量和积分球光度计对所述参考光源的响应,计算积分球光度计的光谱响应度,具体包括以下步骤:
    步骤a:三个及以上峰值波长不同的所述参考光源的出射光分别入射到积分球内,读取积分球光度计的响应M i(i=1,2,…n),其中n为所述参考光源的数量;
    步骤b:获取入射到积分球内的参考光源的光谱辐射通量P i(λ)(i=1,2,…n);
    步骤c:建立如下的方程组,其中S rel(λ)为积分球光度计的光谱响应度,
    Figure PCTCN2020115829-appb-100001
    步骤d:通过数值求解得到积分球光度计的光谱响应度S rel(λ)。
  2. 如权利要求1所述的积分球光度计的光谱响应度测量方法,其特征在于,所述的参考光源为LED光源,所述LED光源由光谱相互交叠的单色光LED和/或白光LED组成。
  3. 如权利要求1所述的积分球光度计的光谱响应度测量方法,其特征在于,所述的光谱辐射通量P i(λ)是绝对值,或者所述的光谱辐射通量P i(λ)是相对值。
  4. 如权利要求1所述的积分球光度计的光谱响应度测量方法,其特征在于,所述参考光源为具有特征波长的激光器,或者所述参考光源有两个及以上具有特征波长的激光器组成。
  5. 如权利要求1所述的积分球光度计的光谱响应度测量方法,其特征在于,所述参考光源的入射光通过所述积分球壁上的入射窗口进入积分球,所述入射光阑处设置有可切入切出光路的校准探测器,用于获取所述参考光源的辐射通量。
  6. 如权利要求1所述的积分球光度计的光谱响应度测量方法,其特征在于,在积分球壁上设置与校准过的光谱辐射计相连接的测量窗口,用于获取所述参考光源的光谱辐射通量。
  7. 如权利要求1或4所述的积分球光度计的光谱响应度测量方法,其特征在于,所述的参考光源为具有均匀出光面的可调光源,并在参考光源的出光面设具有可拆卸的光谱辐射度计。
  8. 一种积分球光度计的光谱响应度测量***,其特征在于,包括积分球光度计和三个及以上峰值波长不同的参考光源;所述积分球光度计由积分球和宽带光探测器组成,所述的宽带光探测器安装在所述积分球的球壁上,所述积分球上设置有入射窗口;所述参考光源的出 射光通过所述入射窗口入射到所述积分球内。
  9. 如权利要求8所述的积分球光度计光谱响应测量***,其特征在于,还包括入射光阑和校准探测器,所述入射光阑设置在所述积分球的所述入射窗口的外侧,所述校准探测器设置在所述入射光阑的光阑口上,并可切入或切出光路。
  10. 如权利要求8所述的积分球光度计光谱响应测量***,其特征在于,包括光谱测量窗口和光谱辐射计,光谱测量窗口设置在积分球壁上,光谱辐射计与光谱测量窗口相连。
  11. 如权利要求8所述的积分球光度计光谱响应测量***,其特征在于,所述积分球内设置有散光装置,所述积分球内设有挡板。
  12. 如权利要求8所述的积分球光度计光谱响应测量***,其特征在于,所述的入射窗口处的外侧设有衰减装置。
  13. 如权利要求8所述的积分球光度计光谱响应测量***,其特征在于,包括光分束器和监测装置,光分束器设置在参考光源出射光光路上,监测装置用于测量光分束器分出的监测光束。
PCT/CN2020/115829 2020-04-14 2020-09-17 一种积分球光度计光谱响应测量方法和*** WO2021208349A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/249,739 US20230408330A1 (en) 2020-04-14 2020-09-17 Integrating sphere photometer spectral response measurement method and system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202020542118.8U CN211824735U (zh) 2020-04-14 2020-04-14 一种积分球光度计的光谱响应度测量***
CN202010288898.2 2020-04-14
CN202010288898.2A CN111442840A (zh) 2020-04-14 2020-04-14 一种积分球光度计光谱响应测量方法和***
CN202020542118.8 2020-04-14

Publications (1)

Publication Number Publication Date
WO2021208349A1 true WO2021208349A1 (zh) 2021-10-21

Family

ID=78084846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115829 WO2021208349A1 (zh) 2020-04-14 2020-09-17 一种积分球光度计光谱响应测量方法和***

Country Status (2)

Country Link
US (1) US20230408330A1 (zh)
WO (1) WO2021208349A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230280212A1 (en) * 2022-03-04 2023-09-07 Datacolor Inc. Instrument monitoring

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2718553Y (zh) * 2003-12-25 2005-08-17 中国科学院西安光学精密机械研究所 Ccd像元光谱响应均匀性定标装置
JP2006133146A (ja) * 2004-11-09 2006-05-25 National Institute Of Advanced Industrial & Technology 光検出器の分光応答度測定装置、その測定方法及び光源の分光放射照度校正方法
CN101650225A (zh) * 2009-09-16 2010-02-17 中国科学院安徽光学精密机械研究所 利用宽可调谐激光的绝对光谱辐亮度响应度定标***
WO2015110868A1 (en) * 2014-01-24 2015-07-30 Tubitak (Turkiye Bilimsel Ve Teknolojik Arastirma Kurumu) Fiber coupled integrating sphere based-laser energy meter
CN110749424A (zh) * 2019-11-27 2020-02-04 中国工程物理研究院激光聚变研究中心 一种光学电荷耦合器件绝对光谱响应标定***及标定方法
CN111442840A (zh) * 2020-04-14 2020-07-24 杭州远方光电信息股份有限公司 一种积分球光度计光谱响应测量方法和***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2718553Y (zh) * 2003-12-25 2005-08-17 中国科学院西安光学精密机械研究所 Ccd像元光谱响应均匀性定标装置
JP2006133146A (ja) * 2004-11-09 2006-05-25 National Institute Of Advanced Industrial & Technology 光検出器の分光応答度測定装置、その測定方法及び光源の分光放射照度校正方法
CN101650225A (zh) * 2009-09-16 2010-02-17 中国科学院安徽光学精密机械研究所 利用宽可调谐激光的绝对光谱辐亮度响应度定标***
WO2015110868A1 (en) * 2014-01-24 2015-07-30 Tubitak (Turkiye Bilimsel Ve Teknolojik Arastirma Kurumu) Fiber coupled integrating sphere based-laser energy meter
CN110749424A (zh) * 2019-11-27 2020-02-04 中国工程物理研究院激光聚变研究中心 一种光学电荷耦合器件绝对光谱响应标定***及标定方法
CN111442840A (zh) * 2020-04-14 2020-07-24 杭州远方光电信息股份有限公司 一种积分球光度计光谱响应测量方法和***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230280212A1 (en) * 2022-03-04 2023-09-07 Datacolor Inc. Instrument monitoring
US12007282B2 (en) * 2022-03-04 2024-06-11 Datacolor Inc. Instrument monitoring

Also Published As

Publication number Publication date
US20230408330A1 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
US10302562B2 (en) Gloss evaluation method and gloss evaluation device
CN104062010B (zh) 一种优化定标算法的分光光源颜色照度测量仪器
CN111442840A (zh) 一种积分球光度计光谱响应测量方法和***
JP2011013201A (ja) 三刺激値直読型測色装置,その測色方法、およびそのキャリブレーション方法
WO2021208349A1 (zh) 一种积分球光度计光谱响应测量方法和***
JP2010048640A (ja) 絶対分光放射計
CN211824735U (zh) 一种积分球光度计的光谱响应度测量***
US9347823B2 (en) Absolute measurement method and apparatus thereof for non-linear error
JPH0546885B2 (zh)
Liu et al. Impact of detector spatial uniformity on the measurement of averaged led intensity
Vijeta et al. Traceability of Total Spectral Radiant Flux (TSRF) Scale Using Spectral Irradiance and Total Luminous Flux Scale at CSIR-NPL, India
Zong et al. Measurement of total radiant flux of UV LEDs
Plag et al. Comprehensive analysis of a pulsed solar simulator to determine measurement uncertainty components
Baribeau et al. Comparison of NRC goniometric and integrating sphere methods for realizing an absolute diffuse reflectance scale
CN110487404A (zh) 一种消除光栅光谱仪高级衍射影响的方法
Eppeldauer et al. Improved accuracy photometric and tristimulus-color scales based on spectral irradiance responsivity
Mueller et al. Characterization of oceanographic and atmospheric radiometers
Zong et al. Correction of stray light in spectroradiometers and imaging instruments
JP7286014B2 (ja) 高感度非接触式色度測定装置
Forment et al. Stray light performance of a combined monochromator–spectrograph UV irradiance measuring instrument
KR20240071738A (ko) 듀얼 포토 다이오드 복사계
Schwind et al. A portable LED-based source for monitoring spectral responsivity changes of the AERONET Europe radiometers
US11598668B2 (en) Method and apparatus for monitoring a spectral radiometer
Markov et al. Integral measurements of the color of nanodimensional radiators
Fusette et al. Characterization of instruments for the measurement of optical radiation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931685

Country of ref document: EP

Kind code of ref document: A1