WO2021206358A1 - 복합 부직포 및 이를 포함하는 물품 - Google Patents

복합 부직포 및 이를 포함하는 물품 Download PDF

Info

Publication number
WO2021206358A1
WO2021206358A1 PCT/KR2021/003984 KR2021003984W WO2021206358A1 WO 2021206358 A1 WO2021206358 A1 WO 2021206358A1 KR 2021003984 W KR2021003984 W KR 2021003984W WO 2021206358 A1 WO2021206358 A1 WO 2021206358A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
fabric layer
layer
composite
spunbond
Prior art date
Application number
PCT/KR2021/003984
Other languages
English (en)
French (fr)
Inventor
윤제득
김대희
Original Assignee
도레이첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210038973A external-priority patent/KR102571796B1/ko
Application filed by 도레이첨단소재 주식회사 filed Critical 도레이첨단소재 주식회사
Publication of WO2021206358A1 publication Critical patent/WO2021206358A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B23/00Filters for breathing-protection purposes
    • A62B23/02Filters for breathing-protection purposes for respirators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments

Definitions

  • Composite nonwoven fabrics and articles comprising the same are disclosed. More specifically, a composite nonwoven fabric having excellent mechanical properties and fine dust removal function, and an article including the same are disclosed.
  • a mask for removing fine dust In the case of a mask for removing fine dust, it is composed of an inner and outer skin material and a filter material that filters fine dust in the center in multiple layers.
  • melt-blown nonwoven fabric As the filter layer, a melt-blown nonwoven fabric that has been treated is mainly used.
  • Meltblown nonwoven fabric has low shape stability due to low mechanical strength and high flexibility, so structural deformation easily occurs due to external impact or friction. Therefore, in order to protect the melt-blown non-woven fabric layer and provide shape stability, a mask is formed by laminating a non-woven fabric having high mechanical properties such as shape stability and tensile strength on both sides or one side of the melt-blown non-woven fabric layer, mainly spunbond.
  • the nonwoven fabric is laminated through a separate laminating process.
  • the spunbond nonwoven fabric which is generally applied as an inner and outer skin material on one or both sides of the electrostatically treated meltblown material, has only a function of imparting shape stability with little fine dust removal efficiency because the filaments are thick and the pores are large. Therefore, among the multi-layered mask nonwoven fabric composition, since fine dust is filtered only in the filter layer located in the central part, there is a problem in that the fine dust is intensively stacked on the filter layer, so that the filtering efficiency decreases with time of use. In some countries, these issues may also affect the respiratory safety of users.
  • the nonwoven fabric used as the inner and outer skin layer is mainly laminated by ultrasonic welding along the outline of the mask, the structure of the meltblown nonwoven fabric charged with the inner layer during the fusion process is changed, so that the filtering performance may be deteriorated.
  • One embodiment of the present invention provides a composite nonwoven fabric having excellent mechanical properties and fine dust removal function.
  • Another aspect of the present invention provides an article comprising the composite nonwoven fabric.
  • One aspect of the present invention is
  • the melt blown nonwoven layer is at least partially charged
  • the ratio of the filament fineness of the first spunbond nonwoven fabric layer to the filament fineness of the melt blown nonwoven fabric layer and the ratio of the filament fineness of the second spunbonded nonwoven fabric layer to the filament fineness of the meltblown nonwoven fabric layer are each other Independently provides a composite nonwoven fabric of 20 to 210.
  • the filament fineness of the first spunbond nonwoven fabric layer and the filament fineness of the second spunbond nonwoven fabric layer are each independently 0.3 to 2.1 denier, and the filament fineness of the melt blown nonwoven fabric layer may be 0.01 to 0.06 denier.
  • the basis weight of the first spunbond nonwoven fabric layer and the basis weight of the second spunbonded nonwoven fabric layer are each independently 5 to 30g/m 2 , and the basis weight of the melt blown nonwoven fabric layer is 5 to 50g/m 2 can be
  • the composite nonwoven fabric may include the first spunbond nonwoven fabric layer, the melt blown nonwoven fabric layer, and the second spunbonded nonwoven fabric layer in this order.
  • the first spunbond nonwoven fabric layer and the second spunbond nonwoven fabric layer may each include a plurality of spunbond nonwoven fabric sublayers.
  • the melt-blown non-woven fabric layer may further include at least one non-electrostatically-treated melt-blown non-woven fabric sub-layer in addition to the at least one electrostatically treated melt-blown non-woven fabric sub-layer.
  • the composite nonwoven fabric may further include at least one additional layer.
  • the composite nonwoven fabric has a water pressure resistance of 75 to 165 mmH 2 O measured according to WSP 80.6 (09), an air permeability measured according to WSP 70.1 (08) of 170 to 392 ccs, and a KES-MMD (MD direction) of 0.003 to 0.014 , the fine dust removal efficiency is higher than 80%, and the pressure loss may be 1 to 5 mmH 2 O.
  • the composite nonwoven fabric may have a QF factor of 0.15 to 0.90 represented by the following Equation 1:
  • the composite nonwoven fabric may have a tensile strength of 0.1 to 0.3 kgf/5 cm/gsm in an MD direction, a stiffness in the MD direction of 20 mm or more, and a stiffness in the CD direction of 10 mm or more.
  • the composite nonwoven fabric may have a fine dust removal efficiency of 20 to 99.9%.
  • Another aspect of the present invention is
  • An article comprising the composite nonwoven fabric is provided.
  • the article may be a health care article.
  • the composite nonwoven fabric according to an embodiment of the present invention has excellent mechanical properties and fine dust removal function.
  • the composite nonwoven fabric may be used for the purpose of removing various kinds of dust, fine dust, bacteria, and the like, and may be applied to various health or medical articles.
  • FIG. 1 is a view schematically showing a composite nonwoven fabric according to an embodiment of the present invention.
  • FIG. 2 is a view schematically showing an apparatus for manufacturing a composite nonwoven used to continuously manufacture a composite nonwoven according to an embodiment of the present invention.
  • non-woven fabric composite is not a non-woven fabric laminate manufactured through a separate lamination (lamination) post-process after two or more kinds of non-woven fabrics are individually prepared, but two or more kinds of non-woven fabrics are one It means a nonwoven fabric that is manufactured in a continuous process in each device and integrated with each other. Therefore, in this specification, “composite non-woven fabric” may also be referred to as “monolithic non-woven fabric”.
  • the composite nonwoven fabric has a strong interlayer bonding and excellent morphological stability and filtration performance compared to the nonwoven fabric laminate.
  • the “electrostatically treated melt blown nonwoven fabric layer” or the “electrostatically treated melt blown nonwoven fabric sub layer” may be manufactured by a continuous process.
  • the "electrostatically-treated melt-blown non-woven fabric layer” or “pre-charged melt-blown non-woven fabric sub-layer” is manufactured by sequentially or simultaneously performing "preparation of melt-blown non-woven fabric” and "electro-treatment" in a continuous process. it may have been
  • charged means a state in which electric charges are semi-permanently applied to the non-woven fabric fibers to form an electrostatic field between adjacent fibers, and the charged non-woven fabric has a charge compared to the non-electrostatically-treated non-woven fabric. It has high density and fine dust removal efficiency.
  • water pressure resistance is measured using TEXTEST (Switzerland) according to Worldwide Strategic Partners (hereinafter simply referred to as "WSP”) 80.6.
  • air permeability is measured using Air Permeability FX-3000 (Switzerland) according to WSP 70.1 (08).
  • the measurement area is 38 cm 2
  • the pressure is 125 Pascal
  • the measurement unit is ccs (cm 3 /cm 2 /sec).
  • KES-MMD (MD direction)
  • KES-FB4-A the average deviation of the friction coefficient
  • tensile strength refers to a test piece with a width of 5 cm (grip interval of 10 cm during evaluation) with a tensile speed of 500 mm/min through a tensile strength elongator (Instron) according to KSK 0520. The tensile strength in the mechanical direction was measured, respectively.
  • “strength” refers to 16 samples (25 mm ⁇ 150 mm) in MD and CD directions according to the measurement standard WSP 90.1, placed on the stiffness measuring machine, and when the specimen touches the inclined surface in the inclined direction. The length of the sample from the point of bending to the point of contact with the inclined surface was measured in mm.
  • the composite nonwoven fabric according to an embodiment of the present invention includes a first spunbonded nonwoven fabric layer, a melt blown nonwoven fabric layer, and a second spunbonded nonwoven fabric layer.
  • the composite nonwoven fabric includes a first spunbond nonwoven fabric layer, a meltblown nonwoven fabric layer, and a second spunbond nonwoven fabric layer, each of which is manufactured by a continuous process in one device and integrated with each other.
  • the melt blown nonwoven layer is at least partially charged.
  • the composite nonwoven fabric comprises at least a partially charged melt blown nonwoven fabric layer, characterized in that it has a fine particle collecting function.
  • the conventional spunbond-meltblown multilayer nonwoven fabric has an average pore size of several to several tens of micrometers ( ⁇ m), there is little function of removing fine particles of 0.1 to 0.6 ⁇ m level.
  • the ratio of the filament fineness of the first spunbond nonwoven fabric layer to the filament fineness of the melt blown nonwoven fabric layer and the ratio of the filament fineness of the second spunbonded nonwoven fabric layer to the filament fineness of the meltblown nonwoven fabric layer are each other independently 20-210, 22.0-200, 22.5-180, 23.0-160, 23.5-140, 24.0-140, 24.5-120, 25.0-100, 24.5-80, 25.0-60, 27.5-52.5, 32.5-47.5 or It can be 37.5-42.5.
  • the ratio of the filament fineness of the first spunbonded nonwoven fabric layer to the filament fineness of the melt blown nonwoven fabric layer and the ratio of the filament fineness of the second spunbonded nonwoven fabric layer to the filament fineness of the meltblown nonwoven fabric layer is If it is less than 20, the differential pressure of the composite nonwoven fabric itself increases, and if it exceeds 210, the performance as a pretreatment filter is insignificant and does not significantly affect filtration efficiency and collection amount, or spinning in a continuous process is difficult and the total thickness of the composite nonwoven fabric is increased too much, the workability deteriorates when working with the finished product, and the stability and lifespan of the finished product are reduced.
  • the filament fineness of the first spunbond nonwoven fabric layer and the filament fineness of the second spunbond nonwoven fabric layer may each independently be 0.3 to 2.1 denier.
  • the filament fineness of the melt-blown nonwoven fabric layer may be 0.01 to 0.06 denier or 0.01 to 0.04 denier.
  • the basis weight of the first spunbond nonwoven fabric layer and the basis weight of the second spunbond nonwoven fabric layer may each independently be 5 to 30g/m 2 .
  • the basis weight of the first spunbond nonwoven fabric layer and the basis weight of the second spunbond nonwoven fabric layer are within the above ranges, respectively, it is possible to obtain a composite nonwoven fabric having the effect of increasing the amount of dust filtration by improving the filtration efficiency.
  • the basis weight of the melt-blown nonwoven fabric layer may be 5 to 50 g/m 2 .
  • the basis weight of the melt blown nonwoven fabric layer is within the above range, the filtration efficiency is excellent and the differential pressure is low, so that it is suitable for use in a mask or an air filter.
  • the composite nonwoven fabric may include the first spunbond nonwoven fabric layer, the melt blown nonwoven fabric layer, and the second spunbonded nonwoven fabric layer in this order.
  • the present invention is not limited thereto, and the composite nonwoven fabric may include the first spunbond nonwoven fabric layer, the melt blown nonwoven fabric layer, and the second spunbonded nonwoven fabric layer in a different order.
  • the first spunbond nonwoven fabric layer and the second spunbond nonwoven fabric layer may each include a plurality of spunbond nonwoven fabric sublayers.
  • the first spunbond nonwoven fabric layer and the second spunbond nonwoven fabric layer may each include a plurality of spunbond nonwoven fabric sub-layers that are each manufactured in a continuous process in one device and integrated with each other.
  • the melt-blown non-woven fabric layer may include at least one pre-treated melt-blown non-woven sub-layer.
  • the melt-blown non-woven fabric layer includes only one electrostatically treated melt-blown non-woven fabric sub-layer, or a plurality of electro-treated melt-blown non-woven non-woven sub-layers each manufactured in a continuous process in one device and integrated with each other. may include.
  • the melt-blown non-woven fabric layer may further include at least one non-electrostatically-treated melt-blown non-woven fabric sub-layer in addition to the at least one electrostatically treated melt-blown non-woven fabric sub-layer.
  • the melt-blown non-woven fabric layer includes at least one uncharged melt-blown non-woven fabric sub-layer in addition to at least one pre-charged melt-blown non-woven fabric sub-layer, or each of the melt-blown non-woven fabric sub-layers in one device is manufactured in a continuous process. It may further include a plurality of non-electrostatically treated meltblown nonwoven sub-layers integrated with each other.
  • At least one spunbond nonwoven fabric, at least one electrostatically treated meltblown nonwoven fabric and/or at least one uncharged meltblown nonwoven fabric included in the composite nonwoven fabric may each independently comprise a non-conductive polymer.
  • the non-conductive polymer may include polyolefin, polystyrene, polycarbonate, polyester, polyamide, a copolymer thereof, or a combination thereof.
  • the polyolefin may include polyethylene, polypropylene, poly-4-methyl-1-pentene, polyvinyl chloride, or a combination thereof.
  • the polyester may include polyethylene terephthalate, polylactic acid, or a combination thereof.
  • Each of the spunbond nonwoven fabrics, each of the electrostatically treated meltblown nonwoven fabrics and/or each of the uncharged meltblown nonwoven fabrics may each independently include an additive.
  • the additives include pigments, light stabilizers, primary antioxidants, secondary antioxidants, metal deactivators, hindered amines, hindered phenols, fatty acid metal salts, triester phosphites, phosphates, fluorine-containing compounds, nucleants or these may include a combination of
  • the antioxidant may function as a charge enhancer.
  • charge enhancers include thermally stable organic triazine compounds, oligomers or combinations thereof, wherein these compounds or oligomers further contain at least one nitrogen atom in addition to the nitrogen in the triazine ring.
  • charge increasing agents for improving charging characteristics are disclosed in US Patent Nos. 6,268,495, 5,976,208, 5,968,635, 5,919,847, and 5,908,598.
  • the charge increasing agent may include a hindered amine-based additive, a triazine additive, or a combination thereof.
  • the charge increasing agent is poly[((6-(1,1,3,3-tetramethylbutyl)imino-1,3,5-triazine-2,4-diyl)((2, 2,6,6-tetramethyl-4-piperidyl)imino)hexamethylene ((2,2,6,6-tetramethyl-4-piperidyl)imino)] (manufactured by BASF, CHIMASSORB 944) , (1,6-hexanediamine with 2,4,6-trichloro-1,3,5-triazineN,N'-bis(2,2,6,6-tetramethyl-4-piperidinyl) -polymer, N-butyl-1-butanamine, reaction product with N-butyl-2,2,6,6-tetramethyl-4-piperidinamine) (manufactured by BASF, CHIMASSORB 2020) or a combination thereof may include
  • the charge increasing agent is an N-substituted amino aromatic compound, in particular a tri-amino substituted compound such as 2,4,6-trianilino-p-(carbo-2′-ethylhexyl-1′-oxy)- 1,3,5-triazine (manufactured by BASF, UVINUL T-150) may be used.
  • Another charge enhancer is 2,4,6-tris-(octadecylamino)-triazine, also known as tristearyl melamine (“TSM”).
  • the content of the charge increasing agent may be 0.25 to 5 parts by weight based on 100 parts by weight of the total weight of each electrostatically treated melt blown nonwoven fabric. If the content of the charge increasing agent is within the above range, it is possible to obtain a high level of charging performance targeted by the present invention, as well as good spinnability, high strength of the nonwoven fabric, and advantageous in terms of cost.
  • the composite nonwoven fabric may further include generally known additives such as heat stabilizers and weathering agents in addition to the additives.
  • the total content of the electrostatically treated melt blown nonwoven fabric in the composite nonwoven fabric may be 3 to 50 parts by weight based on 100 parts by weight of the total weight of the composite nonwoven fabric.
  • a composite nonwoven fabric having excellent filtration performance, shape stability and durability may be obtained.
  • the composite nonwoven fabric may have a basis weight (mass per unit area) of 10 to 500 g/m 2 , for example, 20 to 100 g/m 2 .
  • a plurality of nonwoven fabrics included in the composite nonwoven fabric may be integrated (ie, bonded) to each other by thermal fusion rather than ultrasonic fusion.
  • the composite nonwoven fabric may further include at least one additional layer.
  • each of the additional layers may include at least one separate nonwoven fabric that is neither a spunbond nonwoven fabric nor a meltblown nonwoven fabric.
  • each of the additional layers may include one or more layers made of a material other than the non-woven fabric.
  • the composite nonwoven fabric may not include any adhesive including a hot melt adhesive.
  • the composite nonwoven fabric may have a water pressure resistance of 75 to 165 mmH 2 O, 81 to 140 mmH 2 O, or 88 to 138 mmH 2 O, measured according to WSP 80.6 (09).
  • the composite nonwoven fabric may have an air permeability measured according to WSP 70.1 (08) of 170 to 392 ccs, 190 to 390 ccs, 240 to 385 ccs, or 246 to 362 ccs.
  • the composite nonwoven fabric may have a KES-MMD (MD direction) of 0.003 to 0.014, 0.008 to 0.013, or 0.010 to 0.011.
  • KES-MMD MD direction
  • the composite nonwoven fabric may have a fine dust removal efficiency of 80% or more, 85% or more, 90% or more, 95% or more, or 99% or more.
  • the composite nonwoven fabric may have a pressure loss of 1 to 5 mmH 2 O, 1-3 mmH 2 O, or 3 to 4 mmH 2 O.
  • the composite nonwoven fabric according to an embodiment of the present invention having the above configuration is (i) the ratio of the filament fineness of the first spunbond nonwoven fabric layer to the filament fineness of the meltblown nonwoven fabric layer, (ii) the meltblown nonwoven fabric layer The ratio of the filament fineness of the second spunbond nonwoven layer to the filament fineness of the raw nonwoven layer, (iii) the filament fineness of the first spunbond nonwoven layer, (iv) the filament fineness of the second spunbond nonwoven layer, ( v) having a special combination of the basis weight of the first spunbond nonwoven layer, (vi) the basis weight of the meltblown nonwoven layer, and (vii) the basis weight of the second spunbond nonwoven layer, whereby water pressure resistance, air permeability and fine dust removal efficiency are both excellent and KES-MMD (MD direction) is low.
  • KES-MMD MD direction
  • the composite nonwoven fabric may have a QF factor of 0.15 to 0.90 represented by Equation 1 below:
  • the QF factor may be 0.20 to 0.90, 0.25 to 0.90, 0.30 to 0.90, 0.35 to 0.90, 0.40 to 0.90, 0.50 to 0.90, 0.60 to 0.90, 0.70 to 0.90, or 0.8 to 0.90.
  • the composite nonwoven fabric may have a tensile strength of 0.1 to 0.3 kgf/5 cm/gsm, 0.15 to 0.3 kgf/5 cm/gsm, 0.20 to 0.3 kgf/5 cm/gsm, or 0.25 to 0.30 kgf/5 cm/gsm in the MD direction.
  • gsm is an abbreviation of g/m 2 , which means the weight per unit area of the composite nonwoven fabric.
  • the composite nonwoven fabric may have a stiffness in the MD direction of 20 mm or more, 25 mm or more, 30 mm or more, or 35 mm or more.
  • the composite nonwoven fabric may have a stiffness of 10 mm or more, 15 mm or more, 20 mm or more, 25 mm or more, or 30 mm or more in the CD direction.
  • the composite nonwoven fabric has a fine dust removal efficiency of 20 to 99.9%, 30 to 99.9%, 40 to 99.9%, 50 to 99.9%, 60 to 99.9%, 70 to 99.9%, 80 to 99.9%, or 90 to 99.9% can be
  • a method for manufacturing a composite nonwoven fabric according to an embodiment of the present invention includes the steps of continuously forming a spunbonded nonwoven layer (S10) and continuously forming a melt blown nonwoven layer on the spunbonded nonwoven layer (S20) do.
  • the continuous forming step (S10) of the spunbond non-woven fabric layer is to melt extruded, cooled and stretched a thermoplastic non-conductive polymer to form a fiber yarn, and then laminated the fiber yarn on a screen belt to form a web (web forming).
  • the continuous forming step (S20) of the melt-blown non-woven fabric layer is performed by melt-extruding, hot-air stretching and cooling a thermoplastic non-conductive polymer (additional charging performance enhancer) to form a fiber yarn, and then forming the fiber yarn into the spunbond non-woven fabric layer.
  • a thermoplastic non-conductive polymer additional charging performance enhancer
  • it may be laminated on the web-formed spunbond to form a web.
  • the continuous formation of the melt blown nonwoven layer (S20) includes the steps of continuously forming free fibers with a non-conductive polymer (S20-1), continuously spinning the free fibers (S20-2), and Continuously spraying a polar solvent (for example, water) onto the free fibers to continuously charge the free fibers (S20-3) and continuously integrating the free fibers to continuously form a melt-blown nonwoven fabric (S20-4) may be included.
  • a polar solvent for example, water
  • the free fiber continuous charging step (S20-3) may be performed by continuously spraying the polar solvent together with a gas (eg, air).
  • a gas eg, air
  • the free fiber continuous charging step (S20-3) has a heterogeneous or significant effect compared to the prior art.
  • U.S. Patent No. 5,227,172 discloses a method in which a high potential difference is applied between a melt blown die and a collector so that the melt-spun resin is filamentized and inductively charged by the surrounding electric field.
  • a melt-blown nonwoven fabric that has been electrostatically treated can be obtained without a separate post-processing treatment.
  • the non-woven fabric that has been inductively charged by the potential difference has a phenomenon that the charging efficiency is rapidly reduced depending on heat or the surrounding environment, it requires long-term storage in the sales process, such as a mask for removing fine dust, or with an air purifier filter. It has a disadvantage that it is difficult to apply it to a purpose where a long service life is guaranteed.
  • U.S. Patent No. 5,227,172 is incorporated herein by reference in its entirety.
  • the present inventors spray a polar solvent together with air on the melt-blown nonwoven fabric layer in the form of a two-fluid body, and friction the polar solvent particles with sufficient kinetic energy with a small injection amount to the filament being melt-spun to have a high-efficiency triboelectric effect.
  • a pretreatment device to do this, and this pretreatment device is characterized in that it does not require a separate drying facility because it is sufficiently heated and evaporated by the heated air within the DCD (Die to collector distance) section due to a small injection amount. Due to these characteristics, the pretreatment device has a feature that can compound the nonwoven fabric by continuous lamination in combination with the nonwoven fabric manufacturing process.
  • the nonwoven fabric obtained by electrostatically treating the melt blown nonwoven fabric is continuously polarized so that negative and positive charges exist semi-permanently, and this nonwoven fabric is referred to as an electret nonwoven fabric.
  • the method for manufacturing the composite nonwoven fabric may not include a separate drying step for removing the polar solvent sprayed in the free fiber continuous charging step (S20-3).
  • the polar solvent continuously sprayed in the free fiber continuous charging step (S20-3) is continuously heated by heated air within the DCD (Die to collector distance) section of the composite nonwoven fabric manufacturing apparatus. may evaporate.
  • the manufacturing method of the composite nonwoven fabric may further include a step (S30) of continuously forming another spunbond nonwoven fabric layer on the melt blown nonwoven fabric layer in the same manner as the continuous forming step (S10) of the spunbonded nonwoven fabric layer. .
  • the manufacturing method of the composite nonwoven fabric is the melt blown nonwoven fabric layer continuous forming step (S20) or the other spunbond nonwoven fabric layer continuous forming step (S30) on one or both sides of the melt blown nonwoven fabric layer after each spunbond layer
  • the step of continuously thermocompressing the nonwoven layer (S40) may be further included.
  • FIG. 1 is a view schematically showing a composite nonwoven fabric 10 according to an embodiment of the present invention.
  • the composite nonwoven fabric 10 includes a first spunbonded nonwoven fabric layer 11 , a melt blown nonwoven fabric layer 12 , and a second spunbonded nonwoven fabric layer 13 .
  • a composite nonwoven fabric having various structures and/or configurations may be manufactured.
  • Another aspect of the present invention provides an article comprising the composite nonwoven fabric.
  • the article may be a health care article.
  • a composite nonwoven fabric was prepared using the apparatus shown in FIG. 2 . Specifically, polypropylene having a melt index (MFR) of 34 g/10 min was used as a raw material for manufacturing the spunbond nonwoven fabric, and the constantly supplied raw material was melt-kneaded in an extruder to form a filament through a spinneret, and then cooled air A first spunbond nonwoven fabric layer (S1) and a second spunbond nonwoven fabric layer (S2) were respectively formed on a continuously driven conveyor belt by furnace cooling and stretching with suction air below the belt.
  • MFR melt index
  • the fineness of the spunbond is adjusted by adjusting the pump discharge amount and the cooling air speed of the first spunbond nonwoven fabric layer (S1) and the second spunbond nonwoven fabric layer (S2) in the case of the first spunbond nonwoven fabric layer (S1) was adjusted to 0.4 denier, and in the case of the second spunbond nonwoven fabric layer (S2), it was adjusted to 2.1 denier.
  • Polypropylene having a melt index (MFR) of 1100 g/10 min was used as a raw material for manufacturing melt blown nonwoven fabric. Fineness was adjusted to 0.02 denier.
  • the basis weight of the first spunbond nonwoven fabric layer (S1) and the second spunbond nonwoven fabric layer (S2) was 20 g/m 2 , respectively, and the basis weight of the melt blown nonwoven fabric layer was 12 g/m 2 .
  • the charging effect as in US Patent No. 6,375,886, a method of charging through friction between a polar solvent and a filament being melt-spun was used.
  • the filament fineness ratio (S1/M) of the first spunbond nonwoven fabric layer (S1) and the spunbond and meltblown nonwoven fabric layer was 20, and the filaments of the second spunbond nonwoven fabric layer (S2) and the meltblown nonwoven fabric layer
  • the fineness ratio (S2/M) was 105.
  • the filament fineness ratio (S1/M) of the first spunbond nonwoven fabric layer (S1) and the spunbond nonwoven fabric layer is changed to 105, and the filaments of the second spunbond nonwoven fabric layer (S2) and the meltblown nonwoven fabric layer are A composite nonwoven fabric was prepared in the same manner as in Example 1, except that the fineness ratio (S2/M) was maintained at 105.
  • the filament fineness ratio (S1/M) of the first spunbond nonwoven fabric layer (S1) and the spunbond and meltblown nonwoven fabric layer is changed to 105, and the filaments of the second spunbond nonwoven fabric layer (S2) and the meltblown nonwoven fabric layer
  • S2/M fineness ratio
  • the filament fineness ratio (S1/M) of the first spunbond nonwoven fabric layer (S1) and the spunbond and meltblown nonwoven fabric layer is changed to 105, and the filaments of the second spunbond nonwoven fabric layer (S2) and the meltblown nonwoven fabric layer A composite nonwoven fabric was prepared in the same manner as in Example 1, except that the fineness ratio (S2/M) was changed to 210.
  • the filament fineness ratio (S1/M) of the first spunbond nonwoven fabric layer (S1) and the spunbond nonwoven fabric layer was changed to 15, and the filaments of the second spunbond nonwoven fabric layer (S2) and the meltblown nonwoven fabric layer were changed to 15.
  • a composite nonwoven fabric was prepared in the same manner as in Example 1, except that the fineness ratio (S2/M) was maintained at 105.
  • the filament fineness ratio (S1/M) of the first spunbond nonwoven fabric layer (S1) and the spunbond nonwoven fabric layer is changed to 105, and the filaments of the second spunbond nonwoven fabric layer (S2) and the meltblown nonwoven fabric layer are A composite nonwoven fabric was prepared in the same manner as in Example 1, except that the fineness ratio (S2/M) was changed to 15.
  • the filament fineness ratio (S1/M) of the first spunbond nonwoven fabric layer (S1) and the spunbond nonwoven fabric layer is changed to 105, and the filaments of the second spunbond nonwoven fabric layer (S2) and the meltblown nonwoven fabric layer are A composite nonwoven fabric was prepared in the same manner as in Example 1, except that the fineness ratio (S2/M) was changed to 215.
  • the filament fineness ratio (S2/M) of the nonwoven fabric layer (S2) and the melt blown nonwoven fabric layer is summarized in Table 1 below.
  • Example comparative example One 2 3 4 5 One 2 3 4 S1/M 20 210 105 105 105 15 215 105 105 S2/M 105 105 105 20 210 105 105 15 215
  • Air permeability was evaluated according to WSP 70.1 (08).
  • KES-MMD (MD direction): evaluated according to KES-F7 Labo.
  • Measurement device TSI-8130 model from TSI was used.
  • Aerosol Formation The measuring device evaporated the water of the sodium chloride aqueous solution mist generated by the fine aerosol generating device to form a sodium chloride aerosol dispersed in the air.
  • the average particle diameter of sodium chloride particles in the formed sodium chloride aerosol is 0.3 ⁇ m, and the concentration of sodium chloride in the aerosol is 18.5 mg/m 3 .
  • the composite nonwoven fabrics prepared in Examples 1 to 5 had a water pressure resistance of 75 to 165 mmH 2 O, an air permeability of 170 to 392 ccs, and a KES-MMD (MD direction) of 0.003 to 0.014, and fine dust.
  • the removal efficiency is higher than 80%, and the pressure loss is 1 ⁇ 5mmH 2 O, which is KF80 or KF94 standard level.
  • the composite nonwoven fabric prepared in Comparative Examples 1 to 4 has an air permeability lower than 170ccs or higher than 392ccs, KES-MMD (MD direction) lower than 0.003 or higher than 0.014, or a pressure loss of 5mmH 2 It was found to be higher than O, or the fine dust removal efficiency was lower than 80%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

복합 부직포 및 이를 포함하는 물품이 개시된다. 개시된 복합 부직포는 제1 스펀본드 부직포층, 멜트블로운 부직포층 및 제2 스펀본드 부직포층을 포함하고, 상기 멜트블로운 부직포층은 적어도 부분적으로 대전처리된 것이고, 상기 멜트블로운 부직포층의 필라멘트 섬도에 대한 상기 제1 스펀본드 부직포층의 필라멘트 섬도의 비율 및 상기 멜트블로운 부직포층의 필라멘트 섬도에 대한 상기 제2 스펀본드 부직포층의 필라멘트 섬도의 비율은 각각 서로 독립적으로 20~210이다.

Description

복합 부직포 및 이를 포함하는 물품
복합 부직포 및 이를 포함하는 물품이 개시된다. 보다 상세하게는 기계적 물성 및 미세먼지 제거 기능이 우수한 복합 부직포, 및 이를 포함하는 물품이 개시된다.
미세먼지 제거용 마스크의 경우 내외피 소재와 중앙부의 미세먼지를 걸러주는 필터소재가 다층으로 복합화되어 구성되어 있다.
필터층으로는 주로 대전처리된 멜트블로운(Meltblown) 부직포가 사용되고 있다. 멜트블로운 부직포는 낮은 기계적 강도와 높은 유연성으로 인해 형태 안정성이 낮아 외부 충격이나 마찰에 의해 쉽게 구조 변형이 발생한다. 따라서, 멜트블로운 부직포층을 보호하고 형태 안정성을 부여하기 위해 멜트블로운 부직포층의 양면 또는 일면에 형태 안정성과 인장강도 등의 기계적 물성이 높은 부직포를 적층하여 마스크를 구성하게 되며, 주로 스펀본드 부직포가 별도의 라미네이팅 공정을 거쳐 적층된다.
또한, 일반적으로 대전처리된 멜트블로운 소재의 일면이나 양면에 내외피용 소재로 적용되고 있는 스펀본드 부직포는 필라멘트가 굵고 기공이 크기 때문에 미세먼지 제거효율이 거의 없이 형태 안정성을 부여하는 기능만을 갖는다. 따라서, 다층의 마스크 부직포 구성 중 중앙부에 위치한 필터층에서만 미세먼지를 걸러주기 때문에 미세먼지가 필터층에 집중적으로 적층되어 필터링 효율이 사용시간에 따라 감소하는 문제점이 있으며, 특히 장시간 마스크를 착용해야 하는 산업현장에서는 이러한 문제가 사용자의 호흡기 안전에도 영향을 미칠 수 있다.
또한, 내외피층으로 사용되는 부직포는 주로 마스크의 외형을 따라 초음파 융착에 의해 합지되기 때문에, 융착 공정시 내층의 대전처리된 멜트블로운 부직포의 구조가 변경되어 필터링 성능이 저하될 수 있다.
본 발명의 일 구현예는 기계적 물성 및 미세먼지 제거 기능이 우수한 복합 부직포를 제공한다.
본 발명의 다른 측면은 상기 복합 부직포를 포함하는 물품을 제공한다.
본 발명의 일 측면은,
제1 스펀본드 부직포층, 멜트블로운 부직포층 및 제2 스펀본드 부직포층을 포함하고,
상기 멜트블로운 부직포층은 적어도 부분적으로 대전처리된 것이고,
상기 멜트블로운 부직포층의 필라멘트 섬도에 대한 상기 제1 스펀본드 부직포층의 필라멘트 섬도의 비율 및 상기 멜트블로운 부직포층의 필라멘트 섬도에 대한 상기 제2 스펀본드 부직포층의 필라멘트 섬도의 비율은 각각 서로 독립적으로 20~210인 복합 부직포를 제공한다.
상기 제1 스펀본드 부직포층의 필라멘트 섬도 및 상기 제2 스펀본드 부직포층의 필라멘트 섬도는 각각 서로 독립적으로 0.3~2.1 데니어이고, 상기 멜트블로운 부직포층의 필라멘트 섬도는 0.01~0.06 데니어일 수 있다.
상기 제1 스펀본드 부직포층의 기본 중량 및 상기 제2 스펀본드 부직포층의 기본 중량은 각각 서로 독립적으로 5~30g/m2이고, 상기 멜트블로운 부직포층의 기본 중량은 5~50g/m2일 수 있다.
상기 복합 부직포는 상기 제1 스펀본드 부직포층, 상기 멜트블로운 부직포층 및 상기 제2 스펀본드 부직포층을 이 순서대로 포함할 수 있다.
상기 제1 스펀본드 부직포층 및 상기 제2 스펀본드 부직포층은 각각 복수의 스펀본드 부직포 서브층을 포함할 수 있다.
상기 멜트블로운 부직포층은 적어도 하나의 대전처리된 멜트블로운 부직포 서브층 외에 적어도 하나의 대전처리되지 않은 멜트블로운 부직포 서브층을 더 포함할 수 있다.
상기 복합 부직포는 적어도 하나의 추가층을 더 포함할 수 있다.
상기 복합 부직포는 WSP 80.6 (09)에 따라 측정된 내수압이 75~165mmH2O이고, WSP 70.1 (08)에 따라 측정된 공기 투과도가 170~392ccs이고, KES-MMD(MD 방향)가 0.003~0.014이고, 미세먼지 제거효율이 80% 보다 높고, 압력 손실이 1~5mmH2O일 수 있다.
상기 복합 부직포는 하기 수학식 1로 표시되는 QF factor가 0.15~0.90일 수 있다:
[수학식 1]
QF factor = -ln(미세먼지 투과율/압력손실)
상기 식에서, 심볼 "ln"은 자연로그를 의미한다.
상기 복합 부직포는 MD 방향 인장강도가 0.1~0.3kgf/5cm/gsm이고, MD 방향 강연도가 20mm 이상이고, CD 방향 강연도가 10mm 이상일 수 있다.
상기 복합 부직포는 미세먼지 제거효율이 20~99.9%일 수 있다.
본 발명의 다른 측면은,
상기 복합 부직포를 포함하는 물품을 제공한다.
상기 물품은 보건용 물품일 수 있다.
본 발명의 일 구현예에 따른 복합 부직포는 기계적 물성 및 미세먼지 제거 기능이 우수한 이점을 갖는다.
또한, 상기 복합 부직포는 각종 먼지, 미세먼지, 세균 등의 제거 목적으로 활용될 수 있으며, 각종 보건용 또는 의료용 물품에 적용될 수 있다.
도 1은 본 발명의 일 구현예에 따른 복합 부직포를 개략적으로 나타낸 도면이다.
도 2는 본 발명의 일 구현예에 따른 복합 부직포를 연속적으로 제조하기 위해 사용되는 복합 부직포의 제조장치를 개략적으로 나타낸 도면이다.
이하, 본 발명의 일 구현예에 따른 복합 부직포를 상세히 설명한다.
본 명세서에서, "복합 부직포(non-woven fabric composite)"는 2종 이상의 부직포가 개별적으로 제조된 후 별도의 라미네이팅(합지) 후공정을 거쳐 제조된 부직포 적층체가 아니라, 2종 이상의 부직포가 하나의 장치에서 각각 연속공정으로 제조되어 서로 일체화된 부직포를 의미한다. 따라서 본 명세서에서,"복합 부직포"는 "모놀리식 부직포(monolithic non-woven fabric)"로 지칭될 수도 있다. 상기 복합 부직포는 상기 부직포 적층체에 비해 층간 결합이 강하고, 형태 안정성 및 여과성능이 우수하다는 특징을 갖는다.
또한 본 명세서에서, "대전처리된 멜트블로운 부직포층" 또는 "대전처리된 멜트블로운 부직포 서브층"은 연속공정으로 제조된 것일 수 있다. 구체적으로, "대전처리된 멜트블로운 부직포층" 또는 "대전처리된 멜트블로운 부직포 서브층"은 연속공정으로 "멜트블로운 부직포의 제조"와 "대전처리"를 순차적으로 또는 동시에 실시함으로써 제조된 것일 수 있다.
또한 본 명세서에서, "대전처리되었다"는 것은 부직포 섬유상에 전하가 반영구적으로 부여되어 인접한 섬유들간에 정전기장을 형성할 수 있는 상태를 의미하며, 대전처리된 부직포는 대전처리되지 않은 부직포에 비해 전하밀도 및 미세먼지 제거효율이 높은 특징이 있다.
또한 본 명세서에서, "내수압"은 Worldwide Strategic Partners(이하, 간단히 "WSP"라고 지칭함) 80.6에 따라 TEXTEST(스위스)를 사용하여 측정된 것이다.
또한 본 명세서에서, "공기 투과도"는 WSP 70.1 (08)에 따라 Air Permeability FX-3000(스위스)를 사용하여 측정된 것이다. 공기 투과도 측정시, 측정면적은 38cm2 이고, 압력은 125Pascal이고, 측정단위는 ccs(cm3/cm2/sec)이다.
또한 본 명세서에서, "KES-MMD(MD 방향)"는 마찰계수의 평균편차로서 KES-FB4-A를 사용하여 측정된 것이다(https://www.keskato.co.jp/archives/products/kes-fb4-a 참조). KES-MMD(MD 방향) 측정시, 시험편의 크기는 100mm×100mm이고, 마찰 정하중은 50g이고, 마찰 장력은 400g이다.
또한 본 명세서에서, "인장강도"는 인장강신도기(Instron)을 통해 KSK 0520에 의거하여 폭 5㎝의 시험 편(평가시 grip 간격 10㎝)을 인장속도 500㎜/min의 조건으로 인장하여 MD 방향(mechanical direction)의 인장강도를 각각 측정하였다.
또한 본 명세서에서, "강연도"는 측정 표준 WSP 90.1에 의거하여 MD, CD 방향 시료 (25㎜ × 150㎜) 16 개를 채취하여 시료를 강연도 측정기 위에 놓고 경사면 방향으로 시편이 경사면에 닿을 때까지 밀어, 구부러지는 지점에서 경사면에 닿는 지점까지의 시료의 길이를 측정하는 방법으로 mm단위로 측정하였다.
본 발명의 일 구현예에 따른 복합 부직포는 제1 스펀본드 부직포층, 멜트블로운 부직포층 및 제2 스펀본드 부직포층을 포함한다. 구체적으로, 상기 복합 부직포는 하나의 장치에서 각각 연속 공정으로 제조되어 서로 일체화된 제1 스펀본드 부직포층, 멜트블로운 부직포층 및 제2 스펀본드 부직포층을 포함한다.
상기 멜트블로운 부직포층은 적어도 부분적으로 대전처리된 것이다.
상기 복합 부직포는 적어도 부분적으로 대전처리된 멜트블로운 부직포층을 포함함으로써, 미세입자 포집 기능을 가짐을 특징으로 한다. 그러나, 종래의 스펀본드-멜트블로운 다층 부직포는 평균기공이 수 내지 수십 마이크로미터(㎛) 수준이기 때문에, 0.1~0.6㎛ 수준의 미세입자를 제거하는 기능이 거의 없다.
상기 멜트블로운 부직포층의 필라멘트 섬도에 대한 상기 제1 스펀본드 부직포층의 필라멘트 섬도의 비율 및 상기 멜트블로운 부직포층의 필라멘트 섬도에 대한 상기 제2 스펀본드 부직포층의 필라멘트 섬도의 비율은 각각 서로 독립적으로 20~210, 22.0~200, 22.5~180, 23.0~160, 23.5~140, 24.0~140, 24.5~120, 25.0~100, 24.5~80, 25.0~60, 27.5~52.5, 32.5~47.5 또는 37.5~42.5일 수 있다. 또한, 상기 멜트블로운 부직포층의 필라멘트 섬도에 대한 상기 제1 스펀본드 부직포층의 필라멘트 섬도의 비율 및 상기 멜트블로운 부직포층의 필라멘트 섬도에 대한 상기 제2 스펀본드 부직포층의 필라멘트 섬도의 비율이 각각 20 미만이면 복합 부직포 자체의 차압이 증가하고, 210을 초과하면 전처리 필터로서의 성능이 미미하여 여과 효율과 포집량 등에 큰 영향을 주지 못하거나, 연속 공정에서의 방사가 어려울 뿐만 아니라 복합 부직포의 총 두께가 너무 증가하여 완제품 작업시 작업성이 나빠지며, 완제품의 안정성 및 수명이 감소한다.
상기 제1 스펀본드 부직포층의 필라멘트 섬도 및 상기 제2 스펀본드 부직포층의 필라멘트 섬도는 각각 서로 독립적으로 0.3~2.1데니어일 수 있다.
또한, 상기 멜트블로운 부직포층의 필라멘트 섬도는 0.01~0.06 데니어 또는 0.01~0.04데니어일 수 있다.
또한, 상기 제1 스펀본드 부직포층의 기본 중량 및 상기 제2 스펀본드 부직포층의 기본 중량은 각각 서로 독립적으로 5~30g/m2일 수 있다. 상기 제1 스펀본드 부직포층의 기본 중량 및 상기 제2 스펀본드 부직포층의 기본 중량이 각각 상기 범위이내이면, 여과 효율이 향상되어 먼지 여과량이 증가하는 효과가 있는 복합 부직포를 얻을 수 있다.
또한, 상기 멜트블로운 부직포층의 기본 중량은 5~50g/m2일 수 있다. 상기 멜트블로운 부직포층의 기본 중량이 상기 범위이내이면, 여과 효율이 우수하고, 차압이 낮아 마스크 또는 공기 필터에 사용하기 적당하다.
상기 복합 부직포는 상기 제1 스펀본드 부직포층, 상기 멜트블로운 부직포층 및 상기 제2 스펀본드 부직포층을 이 순서대로 포함할 수 있다. 그러나, 본 발명이 이에 한정되는 것은 아니며, 상기 복합 부직포는 상기 제1 스펀본드 부직포층, 상기 멜트블로운 부직포층 및 상기 제2 스펀본드 부직포층을 다른 순서대로 포함할 수도 있다.
상기 제1 스펀본드 부직포층 및 상기 제2 스펀본드 부직포층은 각각 복수의 스펀본드 부직포 서브층을 포함할 수 있다. 구체적으로, 상기 제1 스펀본드 부직포층 및 상기 제2 스펀본드 부직포층은 각각 하나의 장치에서 각각 연속 공정으로 제조되어 서로 일체화된 복수의 스펀본드 부직포 서브층을 포함할 수 있다.
상기 멜트블로운 부직포층은 적어도 하나의 대전처리된 멜트블로운 부직포 서브층을 포함할 수 있다. 구체적으로, 상기 멜트블로운 부직포층은 오직 하나의 대전처리된 멜트블로운 부직포 서브층을 포함하거나, 하나의 장치에서 각각 연속 공정으로 제조되어 서로 일체화된 복수의 대전처리된 멜트블로운 부직포 서브층을 포함할 수 있다.
상기 멜트블로운 부직포층은 적어도 하나의 대전처리된 멜트블로운 부직포 서브층 외에 적어도 하나의 대전처리되지 않은 멜트블로운 부직포 서브층을 더 포함할 수 있다. 구체적으로, 상기 멜트블로운 부직포층은 적어도 하나의 대전처리된 멜트블로운 부직포 서브층 외에 오직 하나의 대전처리되지 않은 멜트블로운 부직포 서브층을 포함하거나, 하나의 장치에서 각각 연속 공정으로 제조되어 서로 일체화된 복수의 대전처리되지 않은 멜트블로운 부직포 서브층을 더 포함할 수 있다.
상기 복합 부직포에 포함된 적어도 하나의 스펀본드 부직포, 적어도 하나의 대전처리된 멜트블로운 부직포 및/또는 적어도 하나의 대전처리되지 않은 멜트블로운 부직포는 각각 서로 독립적으로 비전도성 중합체를 포함할 수 있다.
상기 비전도성 중합체는 폴리올레핀, 폴리스티렌, 폴리카보네이트, 폴리에스테르, 폴리아미드, 이들의 공중합체 또는 이들의 조합을 포함할 수 있다.
상기 폴리올레핀은 폴리에틸렌, 폴리프로필렌, 폴리-4-메틸-1-펜텐, 폴리비닐 클로라이드 또는 이들의 조합을 포함할 수 있다.
상기 폴리에스테르는 폴리에틸렌테레프탈레이트, 폴리락트산 또는 이들의 조합을 포함할 수 있다.
상기 각각의 스펀본드 부직포, 상기 각각의 대전처리된 멜트블로운 부직포 및/또는 상기 각각의 대전처리되지 않은 멜트블로운 부직포는 각각 서로 독립적으로 첨가제를 더 포함할 수 있다.
상기 첨가제는 안료, 광 안정제, 1차 산화방지제, 2차 산화방지제, 금속 불활성화제, 장애 아민, 장애 페놀, 지방산 금속염, 트리에스테르 포스파이트, 인산염, 불소-함유 화합물, 핵화제(nucleant) 또는 이들의 조합을 포함할 수 있다.
또한, 일 구현예에서 산화방지제가 전하 증가제로서 기능할 수 있다. 가능한 전하 증가제는 열 안정성 유기 트리아진 화합물, 올리고머 또는 이들의 조합을 포함하며, 이들 화합물 또는 올리고머는 트리아진 고리 내의 질소 외에 적어도 하나의 질소 원자를 추가로 함유한다.
예를 들어, 대전 특성 향상 목적의 전하 증가제는 미국등록특허 제6,268,495호, 제5,976,208호, 제5,968,635호, 제5,919,847호 및 제5,908,598호에 개시되어 있다. 예를 들어, 상기 전하 증가제는 힌더드아민계 첨가제(hindered amine-based additive), 트리아진계 첨가제(triazine additive) 또는 이들의 조합을 포함할 수 있다.
다른 예로서, 상기 전하 증가제는 폴리[((6-(1,1,3,3-테트라메틸부틸)이미노-1,3,5-트리아진-2,4-디일)((2,2,6,6-테트라메틸-4-피페리딜)이미노)헥사메틸렌((2,2,6,6-테트라메틸-4-피페리딜)이미노)](BASF제조, CHIMASSORB 944), (2,4,6-트리클로로-1,3,5-트리아진과의 1,6-헥산디아민N,N'-비스(2,2,6,6-테트라메틸-4-피페리디닐)-중합체, N-부틸-1-부탄아민, N-부틸-2,2,6,6-테트라메틸-4-피페리딘아민과의 반응 생성물)(BASF제조, CHIMASSORB 2020) 또는 이들의 조합을 포함할 수 있다.
상기 전하 증가제는 N-치환된 아미노 방향족 화합물, 특히 트리-아미노 치환된 화합물, 예컨대 2,4,6-트리아닐리노-p-(카르보-2'-에틸헥실-1'-옥시)-1,3,5-트리아진 (BASF제조, UVINUL T-150)일 수 있다. 다른 전하 증가제로는 트리스테아릴 멜라민 ("TSM")으로도 알려진 2,4,6-트리스-(옥타데실아미노)-트리아진이 있다.
상기 전하 증가제의 함량은 각각의 대전처리된 멜트블로운 부직포의 충중량 100중량부에 대하여 0.25~5중량부일 수 있다. 상기 전하 증가제의 함량이 상기 범위이내이면, 본 발명이 목표로 하는 높은 수준의 대전 성능을 얻을 수 있을 뿐만 아니라 방사성이 양호하고 부직포의 강도가 높게 유지되며 비용 측면에서도 유리하다.
상기 복합 부직포는 상기 첨가제 외에 열안정제, 내후제(weathering agent) 등의 일반적으로 알려진 공지의 첨가제를 더 포함할 수 있다.
상기 복합 부직포에서 대전처리된 멜트블로운 부직포의 총 함량은 상기 복합 부직포의 총중량 100중량부에 대하여 3~50중량부일 수 있다. 상기 대전처리된 멜트블로운 부직포의 총 함량이 상기 범위이내이면, 여과 성능, 형태 안정성 및 내구성이 우수한 복합 부직포를 얻을 수 있다.
상기 복합 부직포는 평량(단위 면적당 질량)이 10~500g/m2, 예를 들어, 20~100 g/m2의 범위일 수 있다.
상기 복합 부직포에 포함된 복수의 부직포들은 초음파 융착이 아닌 열융착에 의해 서로 일체화(즉, 결합)된 것일 수 있다.
상기 복합 부직포는 적어도 하나의 추가층을 더 포함할 수 있다.
일례로서, 상기 각 추가층은 스펀본드 부직포도 아니고 멜트블로운 부직포도 아닌 별개의 부직포를 1개 이상 포함할 수 있다.
다른 예로서, 상기 각 추가층은 부직포가 아닌 다른 재질의 층을 1개 이상 포함할 수 있다.
상기 복합 부직포는 핫멜트 접착제를 비롯한 어떠한 접착제도 포함하지 않을 수 있다.
또한, 상기 복합 부직포는 WSP 80.6 (09)에 따라 측정된 내수압이 75~165mmH2O, 81~140mmH2O 또는 88~138mmH2O일 수 있다.
또한, 상기 복합 부직포는 WSP 70.1 (08)에 따라 측정된 공기 투과도가 170~392ccs, 190~390ccs, 240~385ccs 또는 246~362ccs일 수 있다.
또한, 상기 복합 부직포는 KES-MMD(MD 방향)가 0.003~0.014, 0.008~0.013 또는 0.010~0.011일 수 있다.
또한, 상기 복합 부직포는 미세먼지 제거효율이 80% 이상, 85% 이상, 90% 이상, 95% 이상 또는 99% 이상일 수 있다.
또한, 상기 복합 부직포는 압력 손실이 1~5mmH2O, 1~3mmH2O 또는 3~4mmH2O일 수 있다.
상기와 같은 구성을 갖는 본 발명의 일 구현예에 따른 복합 부직포는 (i) 상기 멜트블로운 부직포층의 필라멘트 섬도에 대한 상기 제1 스펀본드 부직포층의 필라멘트 섬도의 비율, (ii) 상기 멜트블로운 부직포층의 필라멘트 섬도에 대한 상기 제2 스펀본드 부직포층의 필라멘트 섬도의 비율, (iii) 상기 제1 스펀본드 부직포층의 필라멘트 섬도, (iv) 상기 제2 스펀본드 부직포층의 필라멘트 섬도, (v) 상기 제1 스펀본드 부직포층의 기본 중량, (vi) 상기 멜트블로운 부직포층의 기본 중량 및 (vii) 상기 제2 스펀본드 부직포층의 기본 중량의 특별한 조합을 가짐으로써, 내수압, 공기 투과도 및 미세먼지 제거효율이 모두 우수하고 KES-MMD(MD 방향)가 낮은 효과를 얻을 수 있다.
또한, 상기 복합 부직포는 하기 수학식 1로 표시되는 QF factor가 0.15~0.90일 수 있다:
[수학식 1]
QF factor = -ln(미세먼지 투과율/압력손실)
상기 식에서, 심볼 "ln"은 자연로그를 의미한다.
예를 들어, 상기 QF factor는 0.20~0.90, 0.25~0.90, 0.30~0.90, 0.35~0.90, 0.40~0.90, 0.50~0.90, 0.60~0.90, 0.70~0.90 또는 0.8~0.90일 수 있다.
상기 QF factor가 높을수록 여과 성능이 높은 것을 의미한다.
상기 복합 부직포는 MD 방향 인장강도가 0.1~0.3kgf/5cm/gsm, 0.15~0.3kgf/5cm/gsm, 0.20~0.3kgf/5cm/gsm 또는 0.25~0.30kgf/5cm/gsm일 수 있다. 여기서, gsm은 g/m2의 약어로서, 상기 복합 부직포의 단위면적당 중량을 의미한다.
또한, 상기 복합 부직포는 MD 방향 강연도가 20mm 이상, 25mm 이상, 30mm 이상 또는 35mm 이상일 수 있다.
또한, 상기 복합 부직포는 CD 방향 강연도가 10mm 이상, 15mm 이상, 20mm 이상, 25mm 이상 또는 30mm 이상일 수 있다.
또한, 상기 복합 부직포는 미세먼지 제거효율이 20~99.9%, 30~99.9%, 40~99.9%, 50~99.9%, 60~99.9%, 70~99.9%, 80~99.9% 또는 90~99.9%일 수 있다.
이하, 본 발명의 일 구현예에 따른 복합 부직포의 제조방법을 상세히 설명한다.
본 발명의 일 구현예에 따른 복합 부직포의 제조방법은 스펀본드 부직포층을 연속적으로 형성하는 단계(S10) 및 상기 스펀본드 부직포층상에 멜트블로운 부직포층을 연속적으로 형성하는 단계(S20)를 포함한다.
상기 스펀본드 부직포층 연속 형성단계(S10)는 열가소성인 비전도성 중합체를 용융압출, 냉각 및 연신하여 섬유 원사를 형성한 후, 상기 섬유 원사를 스크린벨트 상에 적층하여 웹화(web forming)하는 것일 수 있다.
상기 멜트블로운 부직포층 연속 형성단계(S20)는 열가소성인 비전도성 중합체(대전 성능 향상제 추가 가능)를 용융 압출, 열풍 연신 및 냉각하여 섬유 원사를 형성한 후, 상기 섬유 원사를 상기 스펀본드 부직포층 연속 형성단계(S10)에서 웹화된 스펀본드 상에 적층하여 웹화하는 것일 수 있다.
구체적으로, 상기 멜트블로운 부직포층 연속 형성단계(S20)는 비전도성 중합체로 자유 섬유를 연속적으로 형성하는 단계(S20-1), 상기 자유 섬유를 연속적으로 방사하는 단계(S20-2), 상기 자유 섬유에 극성용매(예를 들어, 물)를 연속적으로 분사하여 상기 자유 섬유를 연속적으로 대전시키는 단계(S20-3) 및 상기 자유 섬유를 연속적으로 집적하여 멜트블로운 부직포를 연속적으로 형성하는 단계(S20-4)를 포함할 수 있다.
상기 자유 섬유 연속 대전 단계(S20-3)는 상기 극성용매를 기체(예를 들어, 공기)와 함께 연속적으로 분사함으로써 수행될 수 있다.
이하, 상기 자유 섬유 연속 대전 단계(S20-3)가 종래기술에 비해 이질적이거나 현저한 효과를 가짐을 상세히 설명한다.
(1) 일반적으로 멜트블로운 공정 중에 대전처리할 수 있는 방법으로는 미국등록특허 제6,375,886호와 같이 극성용매와 용융 방사중인 필라멘트와의 마찰을 통해 대전처리하는 것과 미국등록특허 제6,969,484호와 같이 멜트블로운 부직포를 극성용매에 침지시키고 석션(suction) 장치로 부직포 사이로 물이 투과되면서 물과 부직포 사이의 마찰을 통해 대전처리하는 방법이 산업계에서 주로 적용되어 대전처리된 멜트블로운 부직포를 제조하였다. 이와 같이 극성용매를 이용한 대전처리 방법은 대전처리후 극성용매를 건조시키는 후공정이 별도로 필요하며, 따라서 연속공정으로 부직포를 적층하거나 복합화하는 것이 원천적으로 불가능하다. 미국등록특허 제6,375,886호 및 미국등록특허 제6,969,484호는 그 전체가 인용에 의하여 본 명세서에 통합된다.
(2) 미국등록특허 제5,227,172호는 멜트블로운 구금(Die)과 포집체(Collector) 사이에 높은 전위차를 인가하여, 용융 방사되는 수지가 필라멘트화되면서 주위 전기장에 의해서 유도대전처리되도록 하는 방법을 개시하고 있는데, 이 방법은 별도의 후가공처리 없이 대전처리된 멜트블로운 부직포를 수득할 수 있다. 그러나, 이렇게 전위차에 의해 유도대전처리된 부직포는 열이나 주위 환경에 따라 대전 처리 효율이 급격이 감소하는 현상이 나타나기 때문에 미세먼지 제거용 마스크와 같이 판매 과정에서 장기 보관이 필요하거나 공기청정기용 필터와 같이 장시간 사용 수명이 보장되어야 하는 용도로는 적용하기 어려운 단점이 있다. 미국등록특허 제5,227,172호는 그 전체가 인용에 의하여 본 명세서에 통합된다.
본 발명자들은 멜트블로운 부직포층에 극성용매를 공기와 함께 이류체의 형태로 분사하여 적은 분사량으로 충분한 운동에너지를 가진 극성용매 입자를 용융방사 중인 필라멘트에 마찰시켜 높은 효율의 마찰대전 효과를 가질 수 있도록 대전처리 장치를 개발하였으며, 이러한 대전처리 장치는 적은 분사량으로 인하여 DCD(Die to collector distance) 구간내에서 가열된 공기에 의해 충분히 가열 증발되기 때문에 별도의 건조설비가 필요 없는 것이 그 특징이다. 이러한 특징으로 인하여 상기 대전처리 장치는 부직포 제조공정과 결합하여 연속 적층에 의해 부직포를 복합화할 수 있는 특징이 있다.
상기 멜트블로운 부직포를 대전처리하여 얻어진 부직포는 음전하와 양전하가 반영구적으로 존재하도록 지속적으로 분극된 상태가 되며 이러한 부직포를 일렉트렛(electret) 부직포라 한다.
상술한 바와 같이, 상기 복합 부직포의 제조방법은 상기 자유 섬유 연속 대전 단계(S20-3)에서 분사된 상기 극성용매를 제거하기 위한 별도의 건조단계를 포함하지 않을 수 있다.
또한 상술한 바와 같이, 상기 자유 섬유 연속 대전 단계(S20-3)에서 연속적으로 분사된 상기 극성용매는 복합 부직포 제조장치의 DCD(Die to collector distance) 구간내에서 가열된 공기에 의해 연속적으로 가열되어 증발될 수 있다.
상기 복합 부직포의 제조방법은 상기 스펀본드 부직포층 연속 형성단계(S10)와 동일한 방식으로 상기 멜트블로운 부직포층상에 또 다른 스펀본드 부직포층을 연속적으로 형성하는 단계(S30)를 더 포함할 수 있다.
상기 복합 부직포의 제조방법은 상기 멜트블로운 부직포층 연속 형성단계(S20) 또는 상기 또 다른 스펀본드 부직포층 연속 형성단계(S30) 이후에 상기 멜트블로운 부직포층의 일면 또는 양면에 상기 각 스펀본드 부직포층을 연속적으로 열압착하는 단계(S40)를 더 포함할 수 있다.
도 1은 본 발명의 일 구현예에 따른 복합 부직포(10)를 개략적으로 나타낸 도면이다.
본 발명의 일 구현예에 따른 복합 부직포(10)는 제1 스펀본드 부직포층(11), 멜트블로운 부직포층(12) 및 제2 스펀본드 부직포층(13)을 포함한다.
또한, 상기 복합 부직포의 제조방법을 변형함으로써 다양한 구조 및/또는 구성을 갖는 복합 부직포가 제조될 수 있다.
본 발명의 다른 측면은 상기 복합 부직포를 포함하는 물품을 제공한다.
상기 물품은 보건용 물품일 수 있다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 본 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: 복합 부직포의 제조
도 2에 도시된 장치를 사용하여 복합 부직포를 제조하였다. 구체적으로, 스펀본드 부직포 제조용 원료로는 용융지수(MFR)가 34g/10min인 폴리프로필렌을 사용하였으며, 일정하게 공급되는 원료를 압출기에서 용융혼련시켜, 방사 구금을 통해 필라멘트를 형성시킨 후, 냉각공기로 냉각 및 벨트 하부 흡입 에어로 연신시키고, 연속 구동되는 컨베이어 벨트상에 제 1스펀본드 부직포층(S1) 및 제 2 스펀본드 부직포층(S2)을 각각 형성시켰다. 필라멘트 형성시에는 제 1스펀본드 부직포층(S1) 및 제 2 스펀본드 부직포층(S2)의 펌프 토출량 및 냉각공기 속도의 조절을 통해 스펀본드의 섬도를 제 1 스펀본드 부직포층(S1)의 경우에는 0.4 데니어로 조절하고, 제 2 스펀본드 부직포층(S2)의 경우에는 2.1 데니어로 조절하였다. 멜트블로운 부직포 제조용 원료로는 용융지수(MFR)가 1100g/10min인 폴리프로필렌을 사용하였으며, 상기의 멜트블로운 필라멘트를 형성하기 위해 펌프 토출량, Hot air 용량 및 온도의 조절을 통해 멜트블로운의 섬도를 0.02 데니어로 조절하였다. 이때, 제 1스펀본드 부직포층(S1) 및 제 2 스펀본드 부직포층(S2)의 기본 중량은 각각 20g/m2이었고, 멜트블로운 부직포층의 기본 중량은 12g/m2이었다. 대전 효과 발현을 위하여 미국등록특허 제 6,375,886 호와 같이 극성용매와 용융 방사중인 필라멘트와의 마찰을 통해 대전처리하는 방법을 사용하였다. 이때, 제 1스펀본드 부직포층(S1)과 스펀본드와 멜트블로운 부직포층의 필라멘트 섬도비(S1/M)은 20이었고, 제 2 스펀본드 부직포층(S2)과 멜트블로운 부직포층의 필라멘트 섬도비(S2/M)은 105이었다.
실시예 2: 복합 부직포의 제조
제 1스펀본드 부직포층(S1)과 스펀본드와 멜트블로운 부직포층의 필라멘트 섬도비(S1/M)를 210으로 변경하고, 제 2 스펀본드 부직포층(S2)과 멜트블로운 부직포층의 필라멘트 섬도비(S2/M)를 105로 유지한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 복합 부직포를 제조하였다.
실시예 3: 복합 부직포의 제조
제 1스펀본드 부직포층(S1)과 스펀본드와 멜트블로운 부직포층의 필라멘트 섬도비(S1/M)를 105로 변경하고, 제 2 스펀본드 부직포층(S2)과 멜트블로운 부직포층의 필라멘트 섬도비(S2/M)를 105로 유지한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 복합 부직포를 제조하였다.
실시예 4: 복합 부직포의 제조
제 1스펀본드 부직포층(S1)과 스펀본드와 멜트블로운 부직포층의 필라멘트 섬도비(S1/M)를 105로 변경하고, 제 2 스펀본드 부직포층(S2)과 멜트블로운 부직포층의 필라멘트 섬도비(S2/M)를 20으로 변경한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 복합 부직포를 제조하였다.
실시예 5: 복합 부직포의 제조
제 1스펀본드 부직포층(S1)과 스펀본드와 멜트블로운 부직포층의 필라멘트 섬도비(S1/M)를 105로 변경하고, 제 2 스펀본드 부직포층(S2)과 멜트블로운 부직포층의 필라멘트 섬도비(S2/M)를 210으로 변경한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 복합 부직포를 제조하였다.
비교예 1: 복합 부직포의 제조
제 1스펀본드 부직포층(S1)과 스펀본드와 멜트블로운 부직포층의 필라멘트 섬도비(S1/M)를 15로 변경하고, 제 2 스펀본드 부직포층(S2)과 멜트블로운 부직포층의 필라멘트 섬도비(S2/M)를 105로 유지한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 복합 부직포를 제조하였다.
비교예 2: 복합 부직포의 제조
제 1스펀본드 부직포층(S1)과 스펀본드와 멜트블로운 부직포층의 필라멘트 섬도비(S1/M)를 215로 변경하고, 제 2 스펀본드 부직포층(S2)과 멜트블로운 부직포층의 필라멘트 섬도비(S2/M)를 105로 유지한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 복합 부직포를 제조하였다.
비교예 3: 복합 부직포의 제조
제 1스펀본드 부직포층(S1)과 스펀본드와 멜트블로운 부직포층의 필라멘트 섬도비(S1/M)를 105로 변경하고, 제 2 스펀본드 부직포층(S2)과 멜트블로운 부직포층의 필라멘트 섬도비(S2/M)를 15로 변경한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 복합 부직포를 제조하였다.
비교예 4: 복합 부직포의 제조
제 1스펀본드 부직포층(S1)과 스펀본드와 멜트블로운 부직포층의 필라멘트 섬도비(S1/M)를 105로 변경하고, 제 2 스펀본드 부직포층(S2)과 멜트블로운 부직포층의 필라멘트 섬도비(S2/M)를 215로 변경한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 복합 부직포를 제조하였다.
상기 실시예 1~5 및 비교예 1~4에서 제조된 복합 부직포의 제 1스펀본드 부직포층(S1)과 스펀본드와 멜트블로운 부직포층의 필라멘트 섬도비(S1/M) 및 제 2 스펀본드 부직포층(S2)과 멜트블로운 부직포층의 필라멘트 섬도비(S2/M)를 정리하여 하기 표 1에 나타내었다.
실시예 비교예
1 2 3 4 5 1 2 3 4
S1/M 20 210 105 105 105 15 215 105 105
S2/M 105 105 105 20 210 105 105 15 215
평가예: 복합 부직포의 물성 평가
상기 실시예 1~5 및 비교예 1~4에서 제조된 복합 부직포의 물성을 하기와 같은 방법으로 평가하여, 그 결과를 하기 표 2에 나타내었다.
(1) 내수압(Hydrostatic Pressure): WSP 80.6 (09)에 따라 평가하였다.
(2) 공기투과도(Air Permeability): WSP 70.1 (08)에 따라 평가하였다.
(3) KES-MMD(MD 방향): KES-F7 Labo 에 따라 평가하였다.
(4) "미세먼지 제거효율", "QF Factor" 및 "압력손실"은 제작후 사용전 복합 부직포에 대하여 하기 방법으로 평가하였다:
1) 측정 장치: TSI사의 TSI-8130 모델을 사용하였다.
2) 에어로졸 형성: 상기 측정 장치는 미세 에어로졸 생성장치에서 발생한 염화나트륨 수용액 미스트의 물을 증발시켜 공기 중에 분산된 염화나트륨 에어로졸을 형성하였다. 상기 형성된 염화나트륨 에어로졸 중 염화나트륨 입자의 평균입경이 0.3㎛이고, 에어로졸 내 염화나트륨의 농도는 18.5mg/m3이다.
3) 에어로졸 제거효율 평가: 에어로졸의 투과 면속도는 16cm/sec이고, 부직포의 평가면적은 100cm2이었다. 상기 에어로졸 제거효율을 미세먼지 제거효율로 기록하였다.
4) 압력손실 평가: 에어로졸의 투과 면속도는 16cm/sec이고, 부직포의 평가면적은 100cm2이었다.
5) QF Factor 평가: 미세먼제 제거효율 및 압력손실을 이용하여 상기 수학식 1에 따라 계산하였다.
(5) MD 및 CD 인장강도: WSP110.1 (09) 에 따라 평가하였다.
(6) MD 및 CD 강연도: WSP 90.1 (09)에 따라 평가하였다.
실시예 비교예
1 2 3 4 5 1 2 3 4
내수압
(mmH2O)
163 143 152 159 145 526 138 513 139
공기 투과도(ccs) 186 387 231 176 377 79 402 88 430
KES-MMD(MD 방향) 0.077 0.011 0.008 0.067 0.010 0.002 0.012 0.054 0.011
QF factor 0.67 0.59 0.61 0.64 0.71 0.77 0.50 0.59 0.63
미세먼지 제거효율(%) 89 81 85 88 83 98 65 96 78
압력손실(mmH2O) 3.3 2.8 3.1 3.3 2.5 5.1 2.1 5.5 2.4
MD 인장강도(kgf/5cm/g/m2) 0.22 0.18 0.20 0.24 0.19 0.31 0.16 0.28 0.17
CD 인장강도(kgf/5cm/g/m2) 0.15 0.12 0.13 0.15 0.11 0.17 0.10 0.20 0.12
MD 강연도(mm) 66 57 62 64 55 68 54 67 56
CD 강연도(mm) 56 42 54 57 47 59 41 60 44
상기 표 1을 참조하면, 실시예 1~5 에서 제조된 복합부직포는 내수압이 75~165mmH2O이고, 공기 투과도가 170~392ccs이고, KES-MMD(MD 방향)가 0.003~0.014이고, 미세먼지 제거효율이 80%보다 높고, 압력 손실은 1~5mmH2O로서 KF80 또는 KF94 규격 수준으로 나타났다. 반면에, 비교예 1~4에서 제조된 복합 부직포는 공기투과도가 170ccs 보다 낮거나 또는 392ccs 보다 높거나, KES-MMD(MD 방향)가 0.003 보다 낮거나 또는 0.014 보다 높거나, 압력손실이 5mmH2O보다 높거나, 미세먼지 제거효율이 80% 보다 낮은 것으로 나타났다.
본 발명은 도면 및 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 구현예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (10)

  1. 제1 스펀본드 부직포층, 멜트블로운 부직포층 및 제2 스펀본드 부직포층을 포함하고,
    상기 멜트블로운 부직포층은 적어도 부분적으로 대전처리된 것이고,
    상기 멜트블로운 부직포층의 필라멘트 섬도에 대한 상기 제1 스펀본드 부직포층의 필라멘트 섬도의 비율 및 상기 멜트블로운 부직포층의 필라멘트 섬도에 대한 상기 제2 스펀본드 부직포층의 필라멘트 섬도의 비율은 각각 서로 독립적으로 20~210인 복합 부직포.
  2. 제1항에 있어서,
    상기 제1 스펀본드 부직포층의 필라멘트 섬도 및 상기 제2 스펀본드 부직포층의 필라멘트 섬도는 각각 서로 독립적으로 0.3~2.1 데니어이고, 상기 멜트블로운 부직포층의 필라멘트 섬도는 0.01~0.06 데니어인 복합 부직포.
  3. 제1항에 있어서,
    상기 제1 스펀본드 부직포층의 기본 중량 및 상기 제2 스펀본드 부직포층의 기본 중량은 각각 서로 독립적으로 5~30g/m2이고, 상기 멜트블로운 부직포층의 기본 중량은 5~50g/m2인 복합 부직포.
  4. 제1항에 있어서,
    상기 복합 부직포는 상기 제1 스펀본드 부직포층, 상기 멜트블로운 부직포층 및 상기 제2 스펀본드 부직포층을 이 순서대로 포함하는 복합 부직포.
  5. 제1항에 있어서,
    상기 제1 스펀본드 부직포층 및 상기 제2 스펀본드 부직포층은 각각 복수의 스펀본드 부직포 서브층을 포함하는 복합 부직포.
  6. 제1항에 있어서,
    상기 멜트블로운 부직포층은 적어도 하나의 대전처리된 멜트블로운 부직포 서브층 외에 적어도 하나의 대전처리되지 않은 멜트블로운 부직포 서브층을 더 포함하는 복합 부직포.
  7. 제1항에 있어서,
    적어도 하나의 추가층을 더 포함하는 복합 부직포.
  8. 제1항에 있어서,
    WSP 80.6 (09)에 따라 측정된 내수압이 75~165mmH2O이고, WSP 70.1 (08)에 따라 측정된 공기 투과도가 170~392ccs이고, KES-MMD(MD 방향)가 0.003~0.014이고, 미세먼지 제거효율이 80% 보다 높고, 압력 손실이 1~5mmH2O인 복합 부직포.
  9. 제1항 내지 제8항 중 어느 한 항에 따른 복합 부직포를 포함하는 물품.
  10. 제9항에 있어서,
    상기 물품은 보건용 물품인 물품.
PCT/KR2021/003984 2020-04-09 2021-03-31 복합 부직포 및 이를 포함하는 물품 WO2021206358A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200043515 2020-04-09
KR10-2020-0043515 2020-04-09
KR10-2021-0038973 2021-03-25
KR1020210038973A KR102571796B1 (ko) 2020-04-09 2021-03-25 복합 부직포 및 이를 포함하는 물품

Publications (1)

Publication Number Publication Date
WO2021206358A1 true WO2021206358A1 (ko) 2021-10-14

Family

ID=78022612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003984 WO2021206358A1 (ko) 2020-04-09 2021-03-31 복합 부직포 및 이를 포함하는 물품

Country Status (1)

Country Link
WO (1) WO2021206358A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001020A (ja) * 2000-04-10 2002-01-08 Toray Ind Inc 濾 材
JP2002316010A (ja) * 2001-04-20 2002-10-29 Japan Vilene Co Ltd 帯電フィルタ及びそれを用いたマスク
JP2004066026A (ja) * 2002-08-01 2004-03-04 Toyobo Co Ltd エレクトレット濾材の製造方法
US20040127132A1 (en) * 2002-10-23 2004-07-01 Bba Nonwovens Simpsonville, Inc. Nonwoven protective fabrics with conductive fiber layer
KR20190128647A (ko) * 2017-03-24 2019-11-18 니혼 바이린 가부시키가이샤 대전 여재 및 대전 여재의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001020A (ja) * 2000-04-10 2002-01-08 Toray Ind Inc 濾 材
JP2002316010A (ja) * 2001-04-20 2002-10-29 Japan Vilene Co Ltd 帯電フィルタ及びそれを用いたマスク
JP2004066026A (ja) * 2002-08-01 2004-03-04 Toyobo Co Ltd エレクトレット濾材の製造方法
US20040127132A1 (en) * 2002-10-23 2004-07-01 Bba Nonwovens Simpsonville, Inc. Nonwoven protective fabrics with conductive fiber layer
KR20190128647A (ko) * 2017-03-24 2019-11-18 니혼 바이린 가부시키가이샤 대전 여재 및 대전 여재의 제조 방법

Similar Documents

Publication Publication Date Title
WO2012002754A2 (ko) 전기방사된 나노 섬유 웹을 이용한 액체 필터용 필터여재와 그 제조방법 및 이를 이용한 액체 필터
JP4518724B2 (ja) フリー繊維および極性液体による不織繊維エレクトレットウェブを製造するための方法
WO2021194248A1 (ko) 복합 부직포 및 이를 포함하는 물품
WO2016099147A1 (ko) 투습방수원단 및 그의 제조방법
WO2020261034A1 (en) Filter assembly, prefilter assembly, and respirator including the same
WO2021206312A1 (ko) 복합 부직포 및 이를 포함하는 물품
WO2021206349A1 (ko) 복합 부직포 및 이를 포함하는 물품
WO2021206358A1 (ko) 복합 부직포 및 이를 포함하는 물품
KR20210125909A (ko) 복합 부직포 및 이를 포함하는 물품
WO2022191398A1 (ko) 부직포용 방충제 마스터배치의 제조방법, 부직포용 방충제 마스터배치, 부직포 및 물품
KR102571796B1 (ko) 복합 부직포 및 이를 포함하는 물품
WO2021194189A1 (ko) 복합 부직포의 제조방법, 복합 부직포 및 물품
WO2021206348A1 (ko) 공기 필터용 복합 부직포 및 이를 포함하는 물품
WO2021206359A1 (ko) 친환경 부직포, 복합 부직포 및 이를 포함하는 물품
WO2021206313A1 (ko) 복합 부직포 및 이를 포함하는 물품
KR20210125906A (ko) 복합 부직포 및 물품
KR102571795B1 (ko) 피부 자극이 적은 복합 부직포, 및 이를 포함하는 물품
WO2021206320A1 (ko) 의료용 복합 부직포와 그의 제조방법, 및 물품
WO2013066022A1 (ko) 적층형 나노섬유 웹 및 그 제조방법, 그리고 이를 이용한 나노섬유 복합재
KR102576247B1 (ko) 복합 부직포의 제조방법, 복합 부직포 및 물품
KR20210125907A (ko) 공기 필터용 복합 부직포 및 이를 포함하는 물품
KR102576246B1 (ko) 복합 부직포 및 이를 포함하는 물품
KR102594148B1 (ko) 복합 부직포 및 이를 포함하는 물품
WO2021251678A1 (ko) 공기 필터용 부직포와 그의 제조방법, 및 물품
KR102642485B1 (ko) 친환경 부직포, 복합 부직포 및 이를 포함하는 물품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21785360

Country of ref document: EP

Kind code of ref document: A1