WO2021206026A1 - 硬化性組成物 - Google Patents

硬化性組成物 Download PDF

Info

Publication number
WO2021206026A1
WO2021206026A1 PCT/JP2021/014374 JP2021014374W WO2021206026A1 WO 2021206026 A1 WO2021206026 A1 WO 2021206026A1 JP 2021014374 W JP2021014374 W JP 2021014374W WO 2021206026 A1 WO2021206026 A1 WO 2021206026A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
weight
curable composition
parts
polymer
Prior art date
Application number
PCT/JP2021/014374
Other languages
English (en)
French (fr)
Inventor
ウェンディ スミッツ
達郎 春増
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2022514049A priority Critical patent/JPWO2021206026A1/ja
Priority to EP21783817.6A priority patent/EP4134390A4/en
Priority to CN202180026743.4A priority patent/CN115380081B/zh
Publication of WO2021206026A1 publication Critical patent/WO2021206026A1/ja
Priority to US18/045,136 priority patent/US20230076565A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/49Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes
    • C04B41/4905Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon
    • C04B41/4988Organosilicium-organic copolymers, e.g. olefins with terminal silane groups
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/62Coating or impregnation with organic materials
    • C04B41/64Compounds having one or more carbon-to-metal of carbon-to-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/27Water resistance, i.e. waterproof or water-repellent materials

Definitions

  • the present invention relates to a curable composition containing a hydrolyzable silyl group-containing polyoxyalkylene polymer.
  • Polymers with hydrolyzable silyl groups are known as moisture-reactive polymers, and their curable compositions are used in many industrial products such as adhesives, sealants, coatings, paints, adhesives and the like. It is used in a wide range of fields.
  • polymers such as polyoxyalkylene-based polymers, saturated hydrocarbon-based polymers, and (meth) acrylic acid ester-based copolymers are known as the main chain skeleton of polymers having such a hydrolyzable silyl group.
  • the polyoxyalkylene polymer has a wide range of application because it has a relatively low viscosity at room temperature and is easy to handle, and the cured product obtained after the reaction also exhibits good elasticity.
  • Patent Documents 1 and 2 contain curable compositions containing a hydrolyzable silyl group-containing polyoxyalkylene polymer, silica, and a compound obtained by condensing a silyl group of aminosilane alone or partially with another alkoxysilane compound. The thing is disclosed. Further, Patent Documents 3 and 4 disclose curable compositions containing a hydrolyzable silyl group-containing polyoxyalkylene polymer, silica, and a long-chain alkylsilane.
  • An object of the present invention is to provide a curable composition that improves water resistance to concrete without applying a primer and gives a cured product having a low water absorption rate.
  • the present inventors have completed the following inventions as a result of diligent studies to solve the above problems.
  • the present invention relates to a curable composition containing a compound (D) in which an aminosilane and another alkoxysilane compound are partially condensed.
  • the hydrolyzable silyl group of the hydrolyzable silyl group-containing polyoxyalkylene polymer (A) is the general formula (1): -Si (R 1 ) 3-a (X) a (1)
  • R 1 represents a hydrocarbon group having 1 to 10 carbon atoms which may independently have a substituent consisting of a hetero atom-containing group or a halogen atom.
  • X is an independent hydroxyl group. Alternatively, it represents a hydrolyzable group.
  • A indicates 1, 2 or 3).
  • a silane compound (C) 0.5 containing 10 to 300 parts by weight of silica (B) and an alkyl group having 4 or more carbon atoms with respect to 100 parts by weight of the hydrolyzable silyl group-containing polyoxyalkylene polymer (A). It contains ⁇ 20 parts by weight and 0.5 to 20 parts by weight of the compound (D) in which the silyl group of aminosilane is used alone or a part of aminosilane and another alkoxysilane compound are condensed (1) to (1). 7) The curable composition according to any one of.
  • the present invention relates to a cured product obtained by curing the curable composition according to any one of (1) to (8).
  • the present invention relates to a waterproof coating film for concrete containing the curable composition according to any one of (1) to (8).
  • the present invention uses a hydrolyzable silyl group-containing polyoxyalkylene polymer (A), silica (B), a silane compound (C) containing an alkyl group having 4 or more carbon atoms, and an aminosilane silyl group alone.
  • the present invention relates to a curable composition containing a compound (D) in which an aminosilane and another alkoxysilane compound are partially condensed.
  • the curable composition according to the present invention improves the water resistance to concrete without applying a primer. Further, the cured product obtained from the curable composition has a low water absorption rate.
  • the curable composition contains a "polyoxyalkylene polymer (A) having a hydrolyzable silyl group” (hereinafter, also referred to as “polymer (A)").
  • the number average molecular weight of the polymer (A) is preferably 1,000 to 50,000, more preferably 2,000 to 30,000, and particularly preferably 3,000 to 30,000 in terms of polystyrene-equivalent molecular weight in GPC. Is.
  • the number average molecular weight is 1,000 or more, the amount of the reactive silicon group introduced is appropriately controlled, which is advantageous in terms of production cost. Further, when it is 50,000 or less, the polymer has a low viscosity, which is advantageous in terms of workability.
  • the organic polymer precursor before the introduction of the hydrolyzable silyl group is used in the method for measuring the hydroxyl value of JIS K 1557 and the method for measuring the iodine value as specified in JIS K 0070. It is also possible to directly measure the terminal group concentration by titration analysis based on the principle and indicate the terminal group equivalent molecular weight obtained in consideration of the structure of the organic polymer (the degree of branching determined by the polymerization initiator used).
  • the molecular weight distribution (Mw / Mn) of the polymer (A) is not particularly limited, but it is preferably narrow because it enables low viscosity, preferably less than 2.0, more preferably 1.6 or less. 4 or less is more preferable, and 1.3 or less is particularly preferable. Further, from the viewpoint of improving various mechanical characteristics such as improving the durability and elongation of the cured product, 1.2 or less is preferable.
  • the molecular weight distribution of the polyoxyalkylene polymer (A) having a hydrolyzable silyl group can be determined from the number average molecular weight and the weight average molecular weight obtained by GPC measurement.
  • the hydrolyzable silyl group of the polymer (A) is preferably represented by the following general formula (1).
  • R 1 represents a hydrocarbon group having 1 to 10 carbon atoms, which may independently have a substituent consisting of a hetero atom-containing group or a halogen atom.
  • X independently represents a hydroxyl group or a hydrolyzable group.
  • a indicates 1, 2, or 3.
  • R 1 examples include an alkyl group such as a methyl group and an ethyl group; a cycloalkyl group; an aryl group; an aralkyl group; a halogenated methyl group such as a chloromethyl group; and an alkoxymethyl group such as a methoxymethyl group.
  • a methyl group, a chloromethyl group, a methoxymethyl group is preferable, and a methyl group is more preferable.
  • Examples of X include hydroxyl groups, halogens, alkoxy groups, acyloxy groups, ketoximate groups, amino groups, amide groups, acid amide groups, aminooxy groups, mercapto groups, alkenyloxy groups and the like.
  • an alkoxy group such as a methoxy group or an ethoxy group is preferable, and a methoxy group or an ethoxy group is more preferable, because the hydrolyzability is mild and easy to handle.
  • A indicates any one of 1, 2 and 3, but 2 or 3 is preferable, and 3 is more preferable.
  • hydrolyzable silyl group examples include a trimethoxysilyl group, a triethoxysilyl group, a tris (2-propenyloxy) silyl group, a triacetoxysilyl group, a dimethoxymethylsilyl group, a diethoxymethylsilyl group and a dimethoxyethylsilyl group.
  • examples thereof include a (chloromethyl) dimethoxysilyl group, a (methoxymethyl) dimethoxysilyl group, and a (N, N-diethylaminomethyl) dimethoxysilyl group.
  • a trimethoxysilyl group, a triethoxysilyl group, a dimethoxymethylsilyl group, and a (methoxymethyl) dimethoxysilyl group are preferable.
  • the number of hydrolyzable silyl groups contained in one molecule of the polymer (A) is preferably 0.5 or more, more preferably 1.0 or more, and 1.2. The above is more preferable.
  • the upper limit is preferably 4 or less, and more preferably 3 or less.
  • polymer (A) a polymer having a plurality of hydrolyzable silyl groups in one terminal structure can also be used.
  • a typical example is the terminal structure represented by the following general formula (2).
  • R 2 represents a direct bond or a divalent hydrocarbon group having 1 to 4 carbon atoms.
  • R 3 represents hydrogen or an alkyl group having 1 to 6 carbon atoms.
  • R 4 represents a direct bond or a divalent bonding group having 1 to 6 carbon atoms.
  • R 5 represents hydrogen or a hydrocarbon group having 1 to 6 carbon atoms.
  • n is an integer from 1 to 10.
  • the oxygen at the left end indicates oxygen in the repeating unit located at the end of the polymer skeleton formed by connecting a plurality of repeating units, or oxygen bonded to the repeating unit located at the end of the polymer skeleton.
  • R 1 , X, and a are the same as those described above for equation (1).
  • the R 2 preferably a hydrocarbon group having 1 to 3 carbon atoms, more preferably a hydrocarbon group having 1 to 2 carbon atoms.
  • the hydrocarbon group is preferably an alkylene group.
  • the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group and the like. Methylene groups are particularly preferred.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group and the like.
  • a hydrogen, a methyl group are preferred ethyl group, hydrogen, and more preferably a methyl group, hydrogen is more preferable.
  • R 4 may be a divalent organic group having 1 to 6 carbon atoms.
  • the organic group is preferably a hydrocarbon group or a hydrocarbon group containing an oxygen atom.
  • the number of carbon atoms is preferably 1 to 4, more preferably 1 to 3, and even more preferably 1 to 2.
  • the R 4, -CH 2 OCH 2 - , - CH 2 O -, - CH 2 - are preferred, -CH 2 OCH 2 - is more preferable.
  • the R 5 hydrogen, or, preferably a hydrocarbon group of 1 to 5 carbon atoms, hydrogen, or, more preferably a hydrocarbon group having 1 to 3 carbon atoms, hydrogen, or, a hydrocarbon having 1 to 2 carbon atoms Groups are even more preferred. Particularly preferred is hydrogen, a methyl group, and most preferably hydrogen.
  • the main chain structure of the polymer (A) may be linear or may have a branched chain.
  • the main chain of the polymer (A) is preferably a polymer having a repeating unit represented by -R 6-O-.
  • R 6 preferably represents a linear or branched alkylene group having 1 to 14 carbon atoms, and more preferably a linear or branched alkylene group having 2 to 4 carbon atoms.
  • Specific examples of the repeating unit indicated by -R 6- O- include -CH 2 O- , -CH 2 CH 2 O-, -CH 2 CH (CH 3 ) O-, and -CH 2 C (CH 3 ). (CH 3 ) O-, -CH 2 CH 2 CH 2 CH 2 O- and the like can be mentioned.
  • the polymer (A) may have any one of the various main chain skeletons as described above, and may be a mixture of two or more kinds of polymers having different main chain skeletons. There may be.
  • ⁇ Synthesis method> As a method for synthesizing the polymer (A), (i) a composite metal cyanide complex catalyst is used, and a hydroxyl group-terminated polyoxyalkylene polymer is obtained by polymerizing an epoxy compound with an initiator having a hydroxyl group. A method of converting the hydroxyl group of the obtained hydroxyl group-terminated polyoxyalkylene polymer into a carbon-carbon unsaturated group and then adding a hydrosilane compound by a hydrosilylation reaction.
  • hydroxyl group-containing initiator used in the methods (i) and (ii) examples include ethylene glycol, propylene glycol, glycerin, pentaerythritol, low molecular weight polypropylene glycol, polyoxypropylene triol, allyl alcohol, methanol, ethanol, propanol, and the like.
  • examples thereof include compounds or polymers having one or more hydroxyl groups, such as butanol, pentanol, hexanol, polypropylene monoallyl ether, and polypropylene monoalkyl ether.
  • Examples of the epoxy compound used in the methods (i) and (ii) include alkylene oxides such as ethylene oxide and propylene oxide; glycidyl ethers such as methyl glycidyl ether and allyl glycidyl ether; and the like. Of these, propylene oxide is preferable.
  • Examples of the carbon-carbon unsaturated group used in the method (i) include a vinyl group, an allyl group, a metallicyl group, a propargyl group and the like. Of these, an allyl group is preferable.
  • an alkali metal salt is allowed to act on the hydroxyl group terminal-containing polymer, and then a halogenated hydrocarbon compound having a carbon-carbon unsaturated bond is reacted. It is preferable to use the method of causing.
  • halogenated hydrocarbon compound used in the method (i) examples include vinyl chloride, allyl chloride, methallyl chloride, provalgyl chloride, vinyl bromide, allyl bromide, methallyl bromide, provalgyl bromide, vinyl iodide, and allyl iodide. , Allyl iodide, Provalgill iodide, etc.
  • hydrosilane compound used in the method (i) examples include trimethoxysilane, triethoxysilane, tris (2-propenyloxy) silane, triacetoxysilane, dimethoxymethylsilane, (chloromethyl) dimethoxysilane, and (methoxymethyl) dimethoxysilane. , (N, N-diethylaminomethyl) dimethoxysilane and the like.
  • the hydrosilylation reaction used in method (i) is accelerated by a hydrosilylation catalyst.
  • a hydrosilylation catalyst a known catalyst may be used.
  • a carrier in which platinum is supported such as alumina, silica, and carbon black, platinum chloride acid; a platinum chloride acid complex composed of platinum chloride acid and alcohol, aldehyde, ketone, etc .; a platinum-olefin complex [for example, Pt (CH).
  • Examples of the compound having both a group that reacts with a hydroxyl group and a hydrolyzable silyl group that can be used in the method (ii) include 3-isocyanappropyltrimethoxysilane, 3-isocyanuppropyldimethoxymethylsilane, and 3-isocyanuppropyltri.
  • Isocyanate silanes such as ethoxysilane, isocyanatemethyltrimethoxysilane, isocyanatemethyltriethoxysilane, isocyanatemethyldimethoxymethylsilane; 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyldimethoxymethylsilane, 3-mercaptopropyltriethoxysilane, etc.
  • Mercaptosilanes such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyldimethoxymethylsilane, 3-glycidoxypropyltriethoxysilane and the like.
  • polyisocyanate compound examples include aromatic polyisocyanates such as toluene (trilen) diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate; and aliphatic polyisocyanates such as isophorone diisocyanate and hexamethylene diisocyanate. Can be mentioned.
  • Examples of the compound having both a group that reacts with an isocyanate group and a hydrolyzable silyl group that can be used in the method (iii) include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyldimethoxymethylsilane, and ⁇ -aminopropyltriethoxy.
  • Silane N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyldimethoxymethylsilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltri Ethoxysilane, ⁇ - (N-phenyl) aminopropyltrimethoxysilane, ⁇ - (N-phenyl) aminopropyldimethoxymethylsilane, N-ethylaminoisobutyltrimethoxysilane, N-ethylaminoisobutyldimethoxymethylsilane, N-cyclohexyl Amino group-containing silanes such as aminomethyltrimethoxysilane and N-cyclohexylaminomethyldimethoxymethylsilane; hydroxy group-containing silanes such as ⁇ -hydroxypropyltrimethoxy
  • a polyoxyalkylene polymer having a plurality of hydrolyzable silyl groups in one terminal structure as represented by the above formula (2) can also be used.
  • a method for synthesizing such a polyoxyalkylene polymer a composite metal cyanide complex catalyst is used, and an epoxy compound is polymerized with an initiator having a hydroxyl group to obtain a hydroxyl group-terminated polyoxyalkylene polymer.
  • An alkali metal salt is allowed to act on the hydroxyl group of the obtained hydroxyl group-terminated polyoxyalkylene polymer, and then an allylglycidyl ether is reacted.
  • an alkali metal salt is allowed to act on the generated hydroxyl group terminal, and then carbon-carbon unsaturated.
  • a method in which a halogenated hydrocarbon compound having a saturated bond is reacted to obtain a polyoxyalkylene polymer having a plurality of carbon-carbon unsaturated groups in one terminal structure, and then a hydrosilane compound is added by a hydrosilylation reaction. Can be mentioned.
  • the curable composition according to this embodiment contains silica (B). By containing silica (B), the water resistance of the curable composition to concrete can be improved.
  • silica (B) examples include wet silica such as precipitated silica, dry silica such as fumed silica, crystalline silica, molten silica, silicic acid anhydride, and hydrous silicic acid. Of these, crystalline silica is preferable.
  • the specific surface area (BET adsorption method) of the silica (B) is preferably 0.1 ⁇ 10m 2 / g, more preferably 0.5 ⁇ 5m 2 / g.
  • the median diameter (D50) of silica (B) is preferably 1 to 50 ⁇ m, more preferably 2 to 30 ⁇ m, and even more preferably 5 to 20 ⁇ m.
  • the blending amount of silica (B) is preferably 10 to 400 parts by weight, more preferably 30 to 300 parts by weight, and even more preferably 50 to 250 parts by weight with respect to 100 parts by weight of the polymer (A).
  • the blending amount of silica (B) is 10 parts by weight or more, the water resistance and adhesion of the curable composition to concrete can be further improved.
  • the blending amount of silica (B) is 400 parts by weight or less, the mechanical properties of the cured product obtained from the curable composition can be improved.
  • Silane compound (C) containing an alkyl group having 4 or more carbon atoms contains "silane compound (C) containing an alkyl group having 4 or more carbon atoms" (hereinafter, also referred to as “silane compound (C)").
  • silane compound (C) By containing the silane compound (C), the water resistance of the curable composition to concrete can be improved, and a cured product having a low water absorption rate can be obtained.
  • the silane compound (C) contains an alkyl group having 4 or more carbon atoms on the silicon atom.
  • the alkyl group is preferably an alkyl group having 6 or more carbon atoms, more preferably an alkyl group having 7 or more carbon atoms, and further preferably an alkyl group having 8 or more carbon atoms.
  • the upper limit of the number of carbon atoms of the alkyl group is not particularly limited, but may be, for example, 20 or less, preferably 18 or less.
  • the alkyl group in the silane compound (C) may have a branch, but is preferably a straight chain alkyl group.
  • alkyl group having 4 or more carbon atoms include a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group and a cetyl group.
  • Okudadecyl group eicosyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, dodecenyl group, tetradecenyl group, hexadecenyl group, octadecenyl group, eicosenyl group, octadecadienyl group, 9 , 12,15-Octadecatorienyl group, 9,11,13-octadecatrienyl group and the like.
  • a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group and an octadecyl group are preferable, and an octyl group, a decyl group, an undecyl group and a dodecyl group.
  • Tridecyl group, tetradecyl group, octadecyl group are more preferable.
  • the silane compound (C) preferably has a hydrolyzable silyl group.
  • the hydrolyzable silyl group include the groups already exemplified as the hydrolyzable silyl group of the polymer (A).
  • silane compound (C) examples include n-butyltrimethoxysilane, n-pentyltrimethoxysilane, n-hexyltrimethoxysilane, n-heptiltrimethoxysilane, n-octyltrimethoxysilane, and n.
  • Silane, n-dodecyltriethoxysilane, n-octadecyltriethoxysilane, n-heptylmethyldimethoxysilane, n-octylmethyldimethoxysilane, n-dodecylmethyldimethoxysilane, n-octadecylmethyldimethoxysilane are preferable, and n-octylmethyldimethoxysilane is preferable. More preferred are methoxysilane, n-decyltrimethoxysilane, n-dodecyltrimethoxysilane, and n-octadecyltrimethoxysilane.
  • the blending amount of the silane compound (C) is preferably 0.5 to 20 parts by weight, more preferably 1 to 15 parts by weight, and 5 to 12 parts by weight with respect to 100 parts by weight of the polymer (A). More preferred.
  • the blending amount of the silane compound (C) is 0.5 parts by weight or more, the water resistance of the curable composition to concrete is further improved, and the water absorption rate of the cured product obtained from the curable composition is increased. It can be further reduced.
  • the blending amount of the silane compound (C) is 20 parts by weight or less, the curability of the curable composition can be improved.
  • the curable composition according to the present embodiment is "a compound (D) in which the silyl group of aminosilane is used alone or a aminosilane is partially condensed with another alkoxysilane compound (D)" (hereinafter, "silane compound (D)). Also referred to as).
  • silane compound (D) By containing the silane compound (D), the water resistance of the curable composition to concrete can be improved.
  • the silane compound (D) is "silane compound (D1) in which the silyl group of aminosilane is partially condensed alone” (hereinafter, also referred to as “silane compound (D1)”), or “aminosilane compound and other alkoxy. It contains any one or both of “silane compound (D2)” (hereinafter, also referred to as “silane compound (D2)” which is partially condensed with silane compound).
  • the aminosilane in the silane compound (D1) one type may be used, or two or more types may be used in combination.
  • the aminosilane in the silane compound (D1) is preferably an aminosilane having a hydrolyzable silyl group.
  • the hydrolyzable silyl group is preferably represented by the above-mentioned formula (1).
  • the silane compound (D1) is preferably a partial condensate of the hydrolyzable silyl groups of the aminosilane compound having a hydrolyzable silyl group.
  • the aminosilane in the silane compound (D2) one type may be used, or two or more types may be used in combination.
  • the aminosilane in the silane compound (D2) is preferably an aminosilane having a hydrolyzable silyl group.
  • the hydrolyzable silyl group is preferably represented by the above-mentioned formula (1).
  • the other alkoxysilane compound in the silane compound (D2) may be used alone or in combination of two or more.
  • the silane compound (D2) is preferably a compound in which the hydrolyzable silyl group of the aminosilane compound having a hydrolyzable silyl group and the alkoxy group of the other alkoxysilane compound are partially condensed.
  • the silane compound (D) is a compound obtained by partially condensing the hydrolyzable silyl groups of an aminosilane compound having a hydrolyzable silyl group represented by the above-mentioned formula (1), or the above-mentioned formula (1).
  • a compound obtained by partially condensing the hydrolyzable silyl group of the aminosilane compound having the represented hydrolyzable silyl group and the alkoxy group of the other alkoxysilane compound is preferable.
  • aminosilane examples include N-2-aminoethyl-3-aminopropyltrimethoxysilane, N-2-aminoethyl-3-aminopropyltriethoxysilane, and N-2-aminoethyl-3-aminopropylmethyldimethoxy.
  • Silane 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl Examples thereof include -1-aminomethyltriethoxysilane and Nn-butyl-3-aminopropyltrimethoxysilane. As the aminosilane, one of these may be used, or two or more thereof may be used in combination.
  • Examples of the other alkoxysilane compound include (a) methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, and n-propyltriethoxy.
  • Hydrocarbon group-containing silanes such as silane, hexyltrimethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, methyltriacetoxysilane; (b) orthosilicic acid.
  • Silate compounds such as tetramethyl (tetramethoxysilane or methylsilicate), tetraethyl orthosilicate (tetraethoxysilane or ethylsilicate), tetrapropyl orthosilicate, tetrabutyl orthosilicate; (c) 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, etc.
  • silane compound (D) Commercially available products of the silane compound (D) include, for example, X-40-2651 (manufactured by Shin-Etsu Chemical Co., Ltd.), MS3301 (manufactured by JNC Corporation), MS3302 (manufactured by JNC Corporation), Dynasylan 1146, Dynasylan VPS SIVO 260, Examples include Dynasilan VPS SIVO 280 (manufactured by Evonik).
  • the blending amount of the silane compound (D) is preferably 0.5 to 20 parts by weight, more preferably 1 to 10 parts by weight, based on 100 parts by weight of the polymer (A).
  • the blending amount of the silane compound (D) is 0.5 parts by weight or more, the water resistance of the curable composition to concrete can be further improved.
  • the blending amount of the silane compound (D) is 20 parts by weight or less, the mechanical properties of the cured product obtained from the curable composition can be improved.
  • Epoxy Silane (E) The curable composition according to this embodiment may contain epoxysilane (E). By containing the epoxy silane (E), the water resistance of the curable composition to concrete can be further improved, and a cured product having a low water absorption rate can be obtained.
  • the epoxy silane (E) is not particularly limited as long as it is a silane coupling agent having an epoxy group, and specific examples thereof include ⁇ -glycidoxypropyldimethylethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, and ⁇ .
  • ⁇ -glycidoxypropyltrimethoxysilane and ⁇ -glycidoxypropylmethyldiethoxysilane are preferable.
  • epoxysilane (E) examples include ⁇ -glycidoxypropylmethyldiethoxysilane (KBE402, manufactured by Shin-Etsu Chemical Co., Ltd.), ⁇ -glycidoxypropyltrimethoxysilane (Dynasylan GLYMO, manufactured by Evonik), SH6040. (Toray Dow Corning Co., Ltd.), SILQUESTA-187, TSL8350 (all manufactured by Momentive Performance Materials Japan Co., Ltd.) and the like.
  • the blending amount of the epoxysilane (E) is not particularly limited, but is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the polymer (A). preferable.
  • the curable composition according to the present embodiment includes a silanol condensation catalyst as an additive other than the polymer (A), silica (B), silane compound (C), silane compound (D), and epoxy silane (E). Fillers other than the component (B), adhesiveness-imparting agents other than the components (D) and (E), plasticizers, sagging inhibitors, antioxidants, light stabilizers, ultraviolet absorbers, physical property adjusting agents, and tackifiers. Resins, photocurable substances, oxygen curable substances, epoxy resins, other resins and the like may be blended.
  • additives may be added to the curable composition according to the present embodiment, if necessary, for the purpose of adjusting various physical properties of the curable composition or the cured product.
  • additives include, for example, surface improvers, foaming agents, curability modifiers, flame retardants, silicates, radical inhibitors, metal deactivators, ozone degradation inhibitors, phosphorus peroxide decomposing agents. , Lubricants, pigments, fungicides and the like.
  • a silanol condensation catalyst may be added to the curable composition for the purpose of promoting the reaction of hydrolyzing and condensing the hydrolyzable silyl group of the polymer (A) and extending or cross-linking the polymer. ..
  • silanol condensation catalyst examples include organic tin compounds, carboxylic acid metal salts, amine compounds, carboxylic acids, and alkoxy metals.
  • organic tin compound examples include dibutyl tin dilaurate, dibutyl tin dioctanoate, dibutyl tin bis (butyl maleate), dibutyl tin diacetate, dibutyl tin oxide, dibutyl tin bis (acetylacetonate), and dioctyl tin bis (acetylacetate).
  • dioctyl tin dilaurate dioctyl tin distearate, dioctyl tin diacetate, dioctyl tin diketanoate, dioctyl tin oxide, reaction product of dibutyl tin oxide and silicate compound, reaction product of dioctyl tin oxide and silicate compound, dibutyl tin oxide and Examples thereof include a reaction product with a phthalate ester.
  • metal carboxylate salt examples include tin carboxylate, bismuth carboxylate, titanium carboxylate, zirconium carboxylate, iron carboxylate and the like.
  • carboxylic acid group the following carboxylic acids and various metals can be combined.
  • amine compounds include amines such as octylamine, 2-ethylhexylamine, laurylamine, stearylamine, etc .; pyridine, 1,8-diazabicyclo [5,4,0] undecene-7 (DBU), 1, Nitrogen-containing heterocyclic compounds such as 5-diazabicyclo [4,3,0] nonen-5 (DBN); guanidines such as guanidine, phenylguanidine, diphenylguanidine; butylbiguanide, 1-o-tolylbiguanide and 1- Biganides such as phenylbiguanide; amino group-containing silane coupling agents; ketimine compounds and the like can be mentioned.
  • amines such as octylamine, 2-ethylhexylamine, laurylamine, stearylamine, etc .
  • DBU 1,8-diazabicyclo [5,4,0] undecene-7
  • DBN Nitrogen-
  • carboxylic acid examples include acetic acid, propionic acid, butyric acid, 2-ethylhexanoic acid, lauric acid, stearic acid, oleic acid, linoleic acid, neodecanoic acid, and versatic acid.
  • the alkoxy metal include titanium compounds such as tetrabutyl titanate titanium tetrakis (acetylacetonate) and diisopropoxytitanium bis (ethylacetatete), aluminum tris (acetylacetonate), and diisopropoxyaluminum ethylacetate acetate.
  • titanium compounds such as tetrabutyl titanate titanium tetrakis (acetylacetonate) and diisopropoxytitanium bis (ethylacetatete), aluminum tris (acetylacetonate), and diisopropoxyaluminum ethylacetate acetate.
  • aluminum compounds such as, and zirconium compounds such as zirconium tetrakis (acetylacetonate).
  • silanol condensation catalysts fluorine anion-containing compounds, photoacid generators and photobase generators can also be used.
  • the silanol condensation catalyst may be used in combination with two or more different catalysts.
  • the amount of the silanol condensation catalyst used is preferably 0.001 to 20 parts by weight, more preferably 0.01 to 15 parts by weight, and 0.01 to 10 parts by weight with respect to 100 parts by weight of the polymer (A). Is particularly preferable.
  • fillers other than silica (B) can be added to the curable composition according to the present embodiment.
  • fillers heavy calcium carbonate, calcium carbonate, magnesium carbonate, silica soil, clay, talc, titanium oxide, carbon black, ferric oxide, fine aluminum powder, zinc oxide, active zinc flower, PVC powder, PMMA Examples include powder, glass fiber and filament.
  • the amount of the filler used is preferably 1 to 300 parts by weight, particularly preferably 10 to 250 parts by weight, based on 100 parts by weight of the polymer (A).
  • An organic balloon or an inorganic balloon may be added for the purpose of reducing the weight (reducing the specific density) of the composition.
  • the balloon is a spherical filler with a hollow inside, and the material of this balloon is an inorganic material such as glass or shirasu, or an organic material such as phenol resin, urea resin, polystyrene or saran. Materials can be mentioned.
  • the amount of the balloon used is preferably 0.1 to 100 parts by weight, particularly preferably 1 to 20 parts by weight, based on 100 parts by weight of the polymer (A).
  • Adhesive imparting agent An adhesive-imparting agent other than the silane compound (D) and the epoxy silane (E) can be added to the curable composition according to the present embodiment.
  • a silane coupling agent and a reaction product of the silane coupling agent can be added.
  • silane coupling agent examples include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ -aminoethyl- ⁇ -aminopropyltrimethoxysilane, and N- ⁇ -aminoethyl- ⁇ -.
  • Amino group-containing silanes such as aminopropylmethyldimethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, (2-aminoethyl) aminomethyltrimethoxysilane; ⁇ -isocyanpropyltrimethoxysilane, ⁇ -isocyanuppropyltri Isois group-containing silanes such as ethoxysilane, ⁇ -isocyanuppropylmethyldimethoxysilane, ⁇ -isocyanatemethyltrimethoxysilane, ⁇ -isocyanatemethyldimethoxymethylsilane; ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, Examples thereof include mercapto group-containing silanes such as ⁇ -mercaptopropylmethyldimethoxysilane.
  • the above adhesive-imparting agent may be used alone or in combination of two or more. Further, reactants of various silane coupling agents can also be used.
  • the amount of the silane coupling agent used is preferably 0.1 to 20 parts by weight, particularly preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the polymer (A).
  • a plasticizer can be added to the curable composition according to the present embodiment.
  • the plasticizer include phthalate compounds such as dibutylphthalate, diisononylphthalate (DINP), diheptylphthalate, di (2-ethylhexyl) phthalate, diisodecylphthalate (DIDP), and butylbenzylphthalate; bis (2-ethylhexyl).
  • a polymer plasticizer can be used.
  • the polymer plasticizer include vinyl polymers; polyester plasticizers; polyether polyols such as polyethylene glycol and polypropylene glycol having a number average molecular weight of 500 or more, and the hydroxy groups of these polyether polyols are ester groups and ether groups.
  • examples thereof include polyethers such as derivatives converted into the above; polystyrenes; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile, polychloroprene and the like.
  • the amount of the plasticizer used is preferably 5 to 150 parts by weight, more preferably 10 to 120 parts by weight, and particularly preferably 20 to 100 parts by weight, based on 100 parts by weight of the polymer (A).
  • the plasticizer may be used alone or in combination of two or more.
  • a sagging inhibitor may be added to the curable composition according to the present embodiment in order to prevent sagging and improve workability.
  • the sagging inhibitor is not particularly limited, and examples thereof include polyamide waxes; hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate, and barium stearate. These anti-sauce agents may be used alone or in combination of two or more.
  • the amount of the sagging inhibitor used is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the polymer (A).
  • antioxidant can be used in the curable composition according to the present embodiment.
  • the use of antioxidants can enhance the weather resistance of the cured product.
  • examples of the antioxidant include hindered phenol-based, monophenol-based, bisphenol-based, and polyphenol-based. Specific examples of the antioxidant are also described in JP-A-4-283259 and JP-A-9-194731.
  • the amount of the antioxidant used is preferably 0.1 to 10 parts by weight, particularly preferably 0.2 to 5 parts by weight, based on 100 parts by weight of the polymer (A).
  • a light stabilizer can be used in the curable composition according to the present embodiment.
  • the use of a light stabilizer can prevent photooxidation deterioration of the cured product.
  • Examples of the light stabilizer include benzotriazole-based compounds, hindered amine-based compounds, and benzoate-based compounds, but hindered amine-based compounds are particularly preferable.
  • the amount of the light stabilizer used is preferably 0.1 to 10 parts by weight, particularly preferably 0.2 to 5 parts by weight, based on 100 parts by weight of the polymer (A).
  • UV absorber can be used in the curable composition according to the present embodiment.
  • the use of UV absorbers can enhance the surface weather resistance of the cured product.
  • examples of the ultraviolet absorber include benzophenone-based, benzotriazole-based, salicylate-based, substituted acrylonitrile-based compounds, and metal chelate-based compounds.
  • the benzotriazole type is preferable, and commercially available names such as chinubin P, chinubin 213, chinubin 234, chinubin 326, chinubin 327, chinubin 328, chinubin 329, and chinubin 571 (all manufactured by BASF) can be mentioned.
  • the amount of the ultraviolet absorber used is preferably 0.1 to 10 parts by weight, particularly preferably 0.2 to 5 parts by weight, based on 100 parts by weight of the polymer (A).
  • a physical property adjusting agent for adjusting the tensile properties of the cured product produced may be added to the curable composition of the present invention.
  • the physical property adjusting agent is not particularly limited, but for example, alkylalkoxysilanes such as phenoxytrimethylsilane, methyltrimethoxysilane, dimethyldimethoxysilane and trimethylmethoxysilane; arylalkoxysilanes such as diphenyldimethoxysilane and phenyltrimethoxysilane; Alkylisopropenoxysilanes such as dimethyldiisopropenoxysilane, methyltriisopropenoxysilane, ⁇ -glycidoxypropylmethyldiisopropenoxysilane; trialkyls such as tris (trimethylsilyl) borate, tris (triethylsilyl) borate Examples thereof include silylbolates; silicone varnishes;
  • the hardness of the curable composition according to the present embodiment when cured can be increased, or conversely, the hardness can be decreased to achieve elongation at break.
  • the above-mentioned physical property adjusting agent may be used alone or in combination of two or more.
  • a compound that produces a compound having a monovalent silanol group in the molecule by hydrolysis has an action of lowering the modulus of the cured product without aggravating the stickiness of the surface of the cured product.
  • a compound that produces trimethylsilanol is preferable.
  • Compounds that produce compounds having a monovalent silanol group in the molecule by hydrolysis are derivatives of alcohols such as hexanol, octanol, phenol, trimethylolpropane, glycerin, pentaerythritol, and sorbitol, and are silane monomono by hydrolysis.
  • a silicon compound that produces oars can be mentioned. Specific examples thereof include phenoxytrimethylsilane and tris ((trimethylsiloxy) methyl) propane.
  • the amount of the physical property adjusting agent used is preferably 0.1 to 10 parts by weight, particularly preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the polymer (A).
  • a tackifier resin can be added for the purpose of enhancing the adhesiveness and adhesion to the substrate, or if necessary.
  • the adhesive-imparting resin is not particularly limited, and a commonly used resin can be used.
  • terpen-based resins aromatic-modified terpene resins, hydrocarbon-modified terpene resins, terpen-phenol resins, phenol resins, modified phenol resins, xylene-phenol resins, cyclopentadiene-phenol resins, kumaron inden resins, and rosin-based resins.
  • the amount of the tackifier resin used is preferably 2 to 100 parts by weight, more preferably 5 to 50 parts by weight, and further preferably 5 to 30 parts by weight with respect to 100 parts by weight of the polymer (A). preferable.
  • a photocurable substance can be used in the curable composition according to the present embodiment.
  • a photocurable substance is used, a film of the photocurable substance is formed on the surface of the cured product, and the stickiness of the cured product and the weather resistance of the cured product can be improved.
  • Many known compounds of this type include organic monomers, oligomers, resins, and compositions containing them.
  • a monomer having one or several acrylic or methacrylic unsaturated groups, an unsaturated acrylic compound which is an oligomer or a mixture thereof, vinyl polysilicate dermatates, an azide resin, or the like can be used. ..
  • the photocurable substance is preferably used in the range of 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the polymer (A). ..
  • An oxygen-curable substance can be used in the curable composition according to the present embodiment.
  • the oxygen-curable substance include unsaturated compounds that can react with oxygen in the air. It reacts with oxygen in the air to form a cured film near the surface of the cured product, and acts to prevent the surface from stickiness and the adhesion of dust and dirt to the surface of the cured product.
  • Specific examples of the oxygen-curable substance include dry oils such as diene oil and linseed oil, and various alkyd resins obtained by modifying the compounds; acrylic polymers and epoxy resins modified with the dry oils.
  • Silicone resin 1,2-polybutadiene, 1,4-polybutadiene, C5-C8 diene polymers obtained by polymerizing or copolymerizing diene compounds such as butadiene, chloroprene, isoprene, 1,3-pentadiene, etc.
  • diene compounds such as butadiene, chloroprene, isoprene, 1,3-pentadiene, etc.
  • liquid polymers These may be used alone or in combination of two or more.
  • the amount of the oxygen-curable substance used is preferably in the range of 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the polymer (A). As described in Japanese Patent Application Laid-Open No. 3-160053, the oxygen-curable substance is preferably used in combination with the photo-curable substance.
  • Epoxy resin can be used in combination with the curable composition according to the present embodiment.
  • the composition to which the epoxy resin is added is particularly preferable as an adhesive, particularly an adhesive for outer wall tiles.
  • the epoxy resin include bisphenol A type epoxy resins and novolac type epoxy resins.
  • the ratio of (A) / epoxy resin is 1/100 or more, the effect of improving the impact strength and toughness of the cured epoxy resin product can be easily obtained, and the ratio of (A) / epoxy resin is 100/1 or less. Then, the strength of the cured product can be improved.
  • a curing agent that cures the epoxy resin can be used in combination with the curable composition according to the present embodiment.
  • the epoxy resin curing agent that can be used is not particularly limited, and a generally used epoxy resin curing agent can be used.
  • the amount used is preferably in the range of 0.1 to 300 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • the curable composition of the present invention can also be prepared as a one-component type in which all the compounding components are previously compounded, sealed and stored, and then cured by the humidity in the air after construction. Further, it is also possible to separately blend components such as a curing catalyst, a filler, a plasticizer, and water as a curing agent, and prepare a two-component type in which the compounding material and the organic polymer composition are mixed before use. From the viewpoint of workability, the one-component type is preferable.
  • the moist-containing compounding components are either dehydrated and dried in advance before use, or dehydrated by decompression or the like during compounding kneading. It is preferable to do so.
  • dehydrating agents especially n-propyltrimethoxysilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, ⁇ -mercaptopropylmethyldiethoxysilane, and ⁇ -gly.
  • Storage stability can be further improved by adding an alkoxysilane compound such as sidoxylpropyltrimethoxysilane.
  • the amount of the dehydrating agent, particularly the silicon compound capable of reacting with water such as vinyltrimethoxysilane, is preferably 0.1 to 20 parts by weight, preferably 0.5 parts by weight, based on 100 parts by weight of the polymer (A). To 10 parts by weight is more preferable.
  • the curable composition according to the present embodiment can be used as a sealing material, an adhesive, a coating film waterproofing material, an adhesive, a paint, a molding agent, and the like. Of these, it is preferably used as a sealing material, an adhesive, and a waterproofing material for coating films, and more preferably used as a waterproofing material for coating films. In particular, it is preferably used as a coating film waterproofing material for concrete.
  • the coating film waterproofing material for concrete refers to a material formed on the surface of concrete for forming a coating film for the purpose of waterproofing.
  • the curable composition according to the present embodiment can be directly applied to the surface of concrete without applying a primer.
  • the number average molecular weight in the examples is the GPC molecular weight measured under the following conditions.
  • Liquid transfer system Tosoh HLC-8220GPC Column: TSKgel SuperH series manufactured by Tosoh Solvent: THF Molecular weight: Polystyrene conversion Measurement temperature: 40 ° C
  • the obtained unpurified polyoxypropylene is mixed and stirred with n-hexane and water, then water is removed by centrifugation, and hexane is devolatile from the obtained hexane solution under reduced pressure to remove metal salts in the polymer. bottom.
  • polyoxypropylene (Q-1) having a plurality of carbon-carbon unsaturated bonds at the terminal was obtained. It was found that the polymer (Q-1) had an average of 2.0 carbon-carbon unsaturated bonds introduced at one end.
  • Example 1 75 parts by weight of DINP (ExxonMobile: diisononyl phthalate) and Sibelite M3000 (Sibelco Speciality Minerals): median diameter (D50) 17 ⁇ m with respect to 100 parts by weight of the polymer (A-1) described in Synthesis Example 1.
  • DINP ExxonMobile: diisononyl phthalate
  • Sibelite M3000 Sibelco Speciality Minerals
  • the obtained curable composition was applied to a concrete base material (manufactured by ROCHOLL: ISO 13640 Method 1 compliant, 71x12x25 mm), cured at 23 ° C. and 50% relative humidity for 7 days, and then immersed in water for 7 days. After taking out from water, a 90 ° hand peel test was performed on the cured product, and the adhesiveness was evaluated based on the cohesive fracture rate at the adhesive interface (water resistance evaluation 1). Further, as described above, after taking out from water and further curing at 23 ° C. and 50% relative humidity for 3 days, a hand peel test was similarly carried out to evaluate the adhesiveness (water resistance evaluation 2). The results are shown in Table 1. The evaluation criteria are as follows. A: Aggregate fracture rate 80% or more B: Aggregate fracture rate 50% or more and less than 80% C: Aggregate fracture rate 5% or more and less than 50% D: Interfacial fracture 100%
  • a 2 mm thick sheet was prepared using the obtained curable composition and cured at 23 ° C. for 3 days and then at 50 ° C. for 4 days.
  • Two samples of 5 ⁇ 5 cm were cut from the obtained sheet, weighed, and then immersed in water at 23 ° C. for 4 weeks. Weigh the sample after removing it from water and removing the water on the surface with paper, and measure the water absorption rate [(weight of sample after immersion in water-weight of sample before immersion in water) / before immersion in water. The weight of the sample ⁇ 100] was obtained, and the average value of the water absorption rates of the two samples was obtained.
  • Example 2 Same as in Example 1 except that the amount of Dynasylan OCTMO added was changed to 7 parts by weight and 2 parts by weight of Dynasylan GLYMO (manufactured by Evonik: 3- (2,3-epoxypropoxy) propyl) trimethoxysilane) was added. Evaluation was performed. The results are shown in Table 1.
  • Example 3 Using the polymer (A-2) described in Synthesis Example 2 instead of the polymer (A-1), the amount of Dynasylan OCTMO added to 7 parts by weight and the amount of TIB KAT223 added to 0.5 parts by weight. The same evaluation as in Example 1 was carried out except that 2 parts by weight of Dynasylan GLYMO was added. The results are shown in Table 1.
  • Example 1 Comparative Example 1 The same evaluation as in Example 2 was performed except that Southern U1S2 (manufactured by Imerys: precipitated calcium carbonate) was added instead of Sibelite M3000. The results are shown in Table 1.
  • Example 2 The same evaluation as in Example 1 was performed except that Dynasylan 1146 was not added and the amount of Dynasylan GLYMO added was changed to 5.2 parts by weight. The results are shown in Table 1.
  • Example 3 The same evaluation as in Example 1 was performed except that Dynasylan OCTMO was not added. The results are shown in Table 1.
  • Example 4 With respect to 100 parts by weight of the polymer (A-1) described in Synthesis Example 1, 75 parts by weight of DINP, 150 parts by weight of Sibelite M3000, 150 parts by weight of Imperial 36S, and 1.7 parts by weight of Eversorb HP-1. , Eversorb HP-4 by 3 parts by weight, Irganox 245FF by 1 part by weight, Dynasylan VTMO by 5 parts by weight, Dynasylan 1146 by 5.2 parts by weight, Dynasylan OCTMO by 7 parts by weight, TIB KAT223 by 4 parts by weight. After sufficiently mixing with a spatula, the mixture was uniformly mixed and defoamed using a rotation / revolution mixer to obtain a curable composition. The same evaluation as in Example 1 was performed using the obtained curable composition. The results are shown in Table 2.
  • Example 5 The same evaluation as in Example 4 was performed except that the amount of Dynasylan 1146 added was changed to 3.2 parts by weight and the amount of Dynasylan OCTMO added was changed to 9 parts by weight. The results are shown in Table 2.
  • Example 4 The same evaluation as in Example 4 was performed except that Dynasylan 1146 was changed to Dynasylan DAMO (manufactured by Evonik: N- (3- (trimethoxysilyl) propylethylenediamine). The results are shown in Table 2.
  • Example 5 The same evaluation as in Example 5 was performed except that Dynasylan 1146 was changed to Dynasylan DAMO. The results are shown in Table 2.
  • the obtained unpurified polyoxypropylene is mixed and stirred with n-hexane and water, then water is removed by centrifugation, and hexane is devolatile from the obtained hexane solution under reduced pressure to remove metal salts in the polymer. bottom.
  • polyoxypropylene (Q-3) having a plurality of carbon-carbon unsaturated bonds at the terminal was obtained. It was found that the polymer (Q-3) had an average of 2.0 carbon-carbon unsaturated bonds introduced at one end.
  • Example 6 75 parts by weight of DINP, 100 parts by weight of Sibelite M3000, 200 parts by weight of Imperial 36S, and Tinuvin 770 (manufactured by BASF: light stabilizer) with respect to 100 parts by weight of the polymer (A-3) described in Synthesis Example 3.
  • Is 1.7 parts by weight Tinuvin 326 (manufactured by BASF: light stabilizer) is 3 parts by weight
  • Irganox245FF is 1 part by weight
  • Dynasylan VTMO is 5 parts by weight
  • Dynasylan 1146 is 3.2 parts by weight
  • Dynasylan OCTMO is 7.
  • Example 6 (Comparative Example 6) The same evaluation as in Example 6 was performed except that Dynasylan OCTMO and Dynasylan GLYMO were not added. The results are shown in Table 3.
  • Example 7 The same evaluation as in Example 6 was performed except that Dynasylan OCTMO and Dynasylan GLYMO were not added and the amount of TIB KAT223 added was changed to 4 parts by weight. The results are shown in Table 3.
  • the obtained unpurified polyoxypropylene is mixed and stirred with n-hexane and water, then water is removed by centrifugation, and hexane is devolatile from the obtained hexane solution under reduced pressure to remove metal salts in the polymer. bottom.
  • polyoxypropylene (Q-6) having an allyl group at the terminal was obtained.
  • 50 ⁇ l of a platinum divinyldisiloxane complex solution (3 wt% isopropanol solution in terms of platinum
  • trimethoxysilane was slowly added dropwise with stirring. After reacting the mixed solution at 90 ° C.
  • polyoxypropylene (A-7) having a trimethoxysilyl group and a number average molecular weight of 28,500. Got It was found that the polymer (A-7) had an average of 0.8 trimethoxysilyl groups at one terminal and an average of 1.6 trimethoxysilyl groups in one molecule.
  • Example 7 With respect to 100 parts by weight of the polymer shown in Table 4, 75 parts by weight of DINP, 100 parts by weight of Sibelite M3000, 200 parts by weight of Imperial 36S, and 1.7 parts by weight of Tinuvin 770 (manufactured by BASF: light stabilizer).
  • Tinuvin 326 (BASF: light stabilizer) by 3 parts by weight, Irganox245FF by 1 part by weight, Dynasylan VTMO by 5 parts by weight, Dynasylan 1146 by 3.2 parts by weight, Dynasylan OCTMO by 7 parts by weight, DynaLy 0.5 parts by weight of TIB KAT223 was added by weight, and the mixture was sufficiently mixed with a spatula, and then uniformly mixed and defoamed using a rotation / revolution mixer to obtain a curable composition. The same evaluation as in Example 1 was performed using the obtained curable composition. The results are shown in Table 4.
  • Examples 7 to 9 containing all of silica (B), silane compound (C), and silane compound (D) have good water resistance and low water absorption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

加水分解性シリル基含有ポリオキシアルキレン系重合体(A)、シリカ(B)、炭素数4個以上のアルキル基を含有するシラン化合物(C)、及び、アミノシランのシリル基を単独で、又は、アミノシランとその他のアルコキシシラン化合物とを一部縮合させた化合物(D)、を含有する硬化性組成物。

Description

硬化性組成物
 本発明は、加水分解性シリル基含有ポリオキシアルキレン系重合体を含有する硬化性組成物に関する。
 加水分解性シリル基を有する重合体は、湿分反応性ポリマーとして知られており、その硬化性組成物は、接着剤、シーリング材、コーティング材、塗料、粘着剤等の多くの工業製品として、幅広い分野で利用されている。
 このような加水分解性シリル基を有する重合体の主鎖骨格としては、ポリオキシアルキレン系重合体、飽和炭化水素系重合体や(メタ)アクリル酸エステル系共重合体などの各種重合体が知られている。なかでも、ポリオキシアルキレン系重合体は、室温において比較的低粘度で取扱い易く、また反応後に得られる硬化物も良好な弾性を示すなどの特徴から、その適用範囲は広い。
 加水分解性シリル基含有ポリオキシアルキレン系重合体を含有する硬化性組成物には、様々な物性を付与するために複数の添加剤が添加される。特許文献1及び2には、加水分解性シリル基含有ポリオキシアルキレン系重合体、シリカ、およびアミノシランのシリル基を単独あるいはその他のアルコキシシラン化合物と一部縮合させた化合物、を含有する硬化性組成物が開示されている。また、特許文献3及び4には、加水分解性シリル基含有ポリオキシアルキレン系重合体、シリカ、および長鎖アルキルシランを含有する硬化性組成物が開示されている。
特表2015-508419号公報 特開2019-014885号公報 特表2013-525529号公報 特開2014-043519号公報
 本発明は、プライマーを塗布することなくコンクリートへの耐水接着性を向上させ、かつ、吸水率が低い硬化物を与える硬化性組成物を提供することを目的とする。
 本発明者らは、上記問題を解決するために鋭意検討した結果、以下の発明を完成させた。
 すなわち本発明は、
 (1).加水分解性シリル基含有ポリオキシアルキレン系重合体(A)、シリカ(B)、炭素数4個以上のアルキル基を含有するシラン化合物(C)、及び、アミノシランのシリル基を単独で、又は、アミノシランとその他のアルコキシシラン化合物とを一部縮合させた化合物(D)、を含有する硬化性組成物に関する。
 (2).さらに、エポキシシラン(E)を含有する(1)に記載の硬化性組成物に関する。
 (3).炭素数4個以上のアルキル基を含有するシラン化合物(C)が炭素数7個以上のアルキル基を含有するシラン化合物である(1)又は(2)に記載の硬化性組成物に関する。
 (4).加水分解性シリル基含有ポリオキシアルキレン系重合体(A)の加水分解性シリル基が、一般式(1):
-Si(R3-a(X) (1)
(式中、Rは、それぞれ独立に、ヘテロ原子含有基またはハロゲン原子からなる置換基を有していてもよい炭素数1~10の炭化水素基を表す。Xは、それぞれ独立に、水酸基又は加水分解性基を表す。aは1、2又は3を示す。)である(1)~(3)のいずれかに記載の硬化性組成物に関する。
 (5).aが3を示す、(4)に記載の硬化性組成物に関する。
 (6).アミノシランが加水分解性シリル基を有する(1)~(5)のいずれかに記載の硬化性組成物に関する。
 (7).加水分解性シリル基含有ポリオキシアルキレン系重合体(A)の数平均分子量が3,000~50,000である(1)~(6)のいずれかに記載の硬化性組成物に関する。
 (8).加水分解性シリル基含有ポリオキシアルキレン系重合体(A)100重量部に対し、シリカ(B)10~300重量部、炭素数4個以上のアルキル基を含有するシラン化合物(C)0.5~20重量部、及び、アミノシランのシリル基を単独で、又は、アミノシランとその他のアルコキシシラン化合物とを一部縮合させた化合物(D)0.5~20重量部を含有する(1)~(7)のいずれかに記載の硬化性組成物に関する。
 (9).(1)~(8)のいずれか一項に記載の硬化性組成物を硬化させて得られる硬化物に関する。
 (10).(1)~(8)のいずれか一項に記載の硬化性組成物を含むコンクリート用塗膜防水材に関する。
 本発明によれば、プライマーを塗布することなくコンクリートへの耐水接着性を向上させ、かつ、吸水率が低い硬化物を与える硬化性組成物を提供することができる。
 以下に、本発明の実施形態を説明する。
 本発明は、加水分解性シリル基含有ポリオキシアルキレン系重合体(A)、シリカ(B)、炭素数4個以上のアルキル基を含有するシラン化合物(C)、及び、アミノシランのシリル基を単独で、又は、アミノシランとその他のアルコキシシラン化合物とを一部縮合させた化合物(D)、を含有する硬化性組成物に関する。
 本発明に係る硬化性組成物は、前記(B)成分、(C)成分、及び(D)成分を含むことにより、プライマーを塗布することなく、コンクリートへの耐水接着性が向上する。また、該硬化性組成物から得られた硬化物は吸水率が低い。
 <<加水分解性シリル基含有ポリオキシアルキレン系重合体(A)>>
 前記硬化性組成物は、「加水分解性シリル基を有するポリオキシアルキレン系重合体(A)」(以下、「重合体(A)」とも称する。)を含有する。
 重合体(A)の数平均分子量は、GPCにおけるポリスチレン換算分子量において好ましくは1,000~50,000、より好ましくは2,000~30,000であり、特に好ましくは3,000~30,000である。数平均分子量が1,000以上であると、反応性ケイ素基の導入量が適度に制御され、製造コストの点で有利である。また、50,000以下であると、重合体が低粘度であるため、作業性の点で有利である。
 重合体(A)の分子量としては、加水分解性シリル基導入前の有機重合体前駆体を、JIS K 1557の水酸基価の測定方法と、JIS K 0070に規定されたよう素価の測定方法の原理に基づいた滴定分析により、直接的に末端基濃度を測定し、有機重合体の構造(使用した重合開始剤によって定まる分岐度)を考慮して求めた末端基換算分子量で示すこともできる。
 重合体(A)の分子量分布(Mw/Mn)は特に限定されないが、低粘度化が可能になることから狭いことが好ましく、2.0未満が好ましく、1.6以下がより好ましく、1.4以下がさらに好ましく、1.3以下が特に好ましい。また、硬化物の耐久性や伸びを向上させる等、各種機械的物性を向上させる観点からは、1.2以下が好ましい。加水分解性シリル基を有するポリオキシアルキレン系重合体(A)の分子量分布は、GPC測定により得られる数平均分子量と重量平均分子量から求めることができる。
 <加水分解性シリル基>
 重合体(A)が有する加水分解性シリル基は、下記一般式(1)で表されることが好ましい。
-Si(R3-a(X)   (1)
 式(1)中、Rは、それぞれ独立に、ヘテロ原子含有基またはハロゲン原子からなる置換基を有していてもよい炭素数1~10の炭化水素基を表す。Xは、それぞれ独立に、水酸基又は加水分解性基を表す。aは、1,2又は3を示す。
 Rとしては、メチル基、エチル基などのアルキル基;シクロアルキル基;アリール基;アラルキル基;クロロメチル基などのハロゲン化メチル基;メトキシメチル基などのアルコキシメチル基などが挙げられる。好ましくは、メチル基、クロロメチル基、メトキシメチル基であり、より好ましくはメチル基である。
 Xとしては、水酸基、ハロゲン、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基などが挙げられる。これらの中では、加水分解性が穏やかで取扱いやすいことから、メトキシ基、エトキシ基などのアルコキシ基が好ましく、メトキシ基、エトキシ基がより好ましい。
 aは1、2、3のいずれかを示すが、2または3であることが好ましく、3がより好ましい。
 加水分解性シリル基の具体例としては、トリメトキシシリル基、トリエトキシシリル基、トリス(2-プロペニルオキシ)シリル基、トリアセトキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジメトキシエチルシリル基、(クロロメチル)ジメトキシシリル基、(メトキシメチル)ジメトキシシリル基、(N,N-ジエチルアミノメチル)ジメトキシシリル基などが挙げられる。これらの中では、トリメトキシシリル基、トリエトキシシリル基、ジメトキシメチルシリル基、(メトキシメチル)ジメトキシシリル基が好ましい。
 重合体(A)1分子中に含まれる加水分解性シリル基の数は、平均して0.5個以上であることが好ましく、1.0個以上であることがより好ましく、1.2個以上であることがさらに好ましい。上限は、4個以下であることが好ましく、3個以下であることがより好ましい。
 また、重合体(A)として、1つの末端構造に複数の加水分解性シリル基を有する重合体も使用できる。代表的なものとして、次の一般式(2)で表される末端構造が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 
 式(2)中、Rは、直接結合、又は、炭素数1~4の2価の炭化水素基を表す。Rは、水素、又は、炭素数1~6のアルキル基を表す。Rは、直接結合、又は、炭素数1~6の2価の結合基を表す。Rは、水素、又は、炭素数1~6の炭化水素基を表す。nは1~10の整数である。左端の酸素は、複数の繰り返し単位が連結して構成される重合体骨格の末端に位置する繰り返し単位中の酸素、又は、前記重合体骨格の末端に位置する繰り返し単位に結合した酸素を示す。R、X、及びaは、式(1)について上述したものと同じである。
 Rとしては、炭素数1~3の炭化水素基が好ましく、炭素数1~2の炭化水素基がより好ましい。該炭化水素基としては、アルキレン基が好ましい。該アルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基等が挙げられる。メチレン基が特に好ましい。
 Rとしては、水素、又は、炭素数1~4のアルキル基が好ましく、水素、又は、炭素数1~3のアルキル基がより好ましい。該アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。Rとしては、水素、メチル基、エチル基が好ましく、水素、メチル基がより好ましく、水素がさらに好ましい。
 Rは、炭素数1~6の2価の有機基であってよい。該有機基は、炭化水素基、又は、酸素原子を含む炭化水素基が好ましい。前記炭素数は1~4が好ましく、1~3がより好ましく、1~2がさらに好ましい。Rとしては、-CHOCH-、-CHO-、-CH-が好ましく、-CHOCH-がより好ましい。
 Rとしては、水素、又は、炭素数1~5の炭化水素基が好ましく、水素、又は、炭素数1~3の炭化水素基がより好ましく、水素、又は、炭素数1~2の炭化水素基がさらに好ましい。特に好ましくは、水素、メチル基であり、最も好ましくは水素である。
 <主鎖構造>
 重合体(A)の主鎖構造は、直鎖状であってもよいし、分岐鎖を有していてもよい。
 重合体(A)の主鎖は、-R-O-で示される繰り返し単位を有する重合体であることが好ましい。Rは、炭素数1~14の直鎖状又は分岐状アルキレン基を表すことが好ましく、炭素数2~4の直鎖状又は分岐状アルキレン基がより好ましい。-R-O-で示される繰り返し単位の具体例としては、-CHO-、-CHCHO-、-CHCH(CH)O-、-CHC(CH)(CH)O-、-CHCHCHCHO-などが挙げられる。
 重合体(A)は、前述のような様々な主鎖骨格のうち、いずれか1種の主鎖骨格を有していてもよく、異なる主鎖骨格を有する2種以上の重合体の混合物であってもよい。
 <合成方法>
 重合体(A)の合成方法としては、(i)複合金属シアン化物錯体触媒を用い、水酸基を有する開始剤にエポキシ化合物を重合させる方法によって水酸基末端ポリオキシアルキレン系重合体を得た後、得られた水酸基末端ポリオキシアルキレン系重合体の水酸基を、炭素-炭素不飽和基に変換した後、ヒドロシラン化合物をヒドロシリル化反応により付加させる方法、(ii)複合金属シアン化物錯体触媒を用い、水酸基を有する開始剤にエポキシ化合物を重合させる方法によって水酸基末端ポリオキシアルキレン系重合体を得た後、得られた水酸基末端ポリオキシアルキレン系重合体と、水酸基と反応する基および加水分解性シリル基の両方を有する化合物とを反応させる方法、(iii)水酸基末端ポリオキシアルキレン系重合体と過剰のポリイソシアネート化合物を反応させて、末端にイソシアネート基を有する重合体とした後、イソシアネート基と反応する基および加水分解性シリル基の両方を有する化合物を反応させる方法、が好ましい。
 (i)及び(ii)の方法で用いる水酸基を有する開始剤としては、エチレングリコール、プロピレングリコール、グリセリン、ペンタエリスリトール、低分子量のポリプロピレングリコール、ポリオキシプロピレントリオール、アリルアルコール、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ポリプロピレンモノアリルエーテル、ポリプロピレンモノアルキルエーテル等の、水酸基を1個以上有する化合物又は重合体が挙げられる。
 (i)及び(ii)の方法で用いるエポキシ化合物としては、エチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイド類;メチルグリシジルエーテル、アリルグリシジルエーテル等のグリシジルエーテル類;等が挙げられる。なかでもプロピレンオキサイドが好ましい。
 (i)の方法で用いる炭素-炭素不飽和基としては、ビニル基、アリル基、メタリル基、プロパルギル基などが挙げられる。なかでもアリル基が好ましい。
 (i)の水酸基を炭素-炭素不飽和基に変換する方法としては、水酸基末端含有重合体に、アルカリ金属塩を作用させた後、炭素-炭素不飽和結合を有するハロゲン化炭化水素化合物を反応させる方法を用いるのが好ましい。
 (i)の方法で用いるハロゲン化炭化水素化合物としては、塩化ビニル、塩化アリル、塩化メタリル、塩化プロバルギル、臭化ビニル、臭化アリル、臭化メタリル、臭化プロバルギル、ヨウ化ビニル、ヨウ化アリル、ヨウ化メタリル、ヨウ化プロバルギルなどが挙げられる。
 (i)の方法で用いるヒドロシラン化合物としては、トリメトキシシラン、トリエトキシシラン、トリス(2-プロペニルオキシ)シラン、トリアセトキシシラン、ジメトキシメチルシラン、(クロロメチル)ジメトキシシラン、(メトキシメチル)ジメトキシシラン、(N,N-ジエチルアミノメチル)ジメトキシシランなどが挙げられる。
 (i)の方法で用いるヒドロシリル化反応は、ヒドロシリル化触媒によって加速される。ヒドロシリル化触媒としては、公知の触媒を用いればよい。例えば、アルミナ、シリカ、カーボンブラックなどの担体に白金を担持させたもの、塩化白金酸;塩化白金酸とアルコールやアルデヒドやケトンなどとからなる塩化白金酸錯体;白金-オレフィン錯体[例えばPt(CH=CH(PPh)、Pt(CH=CHCl];白金-ビニルシロキサン錯体[Pt{(vinyl)MeSiOSiMe(vinyl)}、Pt{Me(vinyl)SiO}];白金-ホスフィン錯体[Ph(PPh、Pt(PBu];白金-ホスファイト錯体[Pt{P(OPh)]などが挙げられる。
 (ii)の方法で使用できる水酸基と反応する基および加水分解性シリル基の両方を有する化合物としては、例えば、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルジメトキシメチルシラン、3-イソシアネートプロピルトリエトキシシラン、イソシアネートメチルトリメトキシシラン、イソシアネートメチルトリエトキシシラン、イソシアネートメチルジメトキシメチルシランなどのイソシアネートシラン類;3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルジメトキシメチルシラン、3-メルカプトプロピルトリエトキシシランなどのメルカプトシラン類;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルジメトキシメチルシラン、3-グリシドキシプロピルトリエトキシシランなどのエポキシシラン類などが挙げられる。
 (iii)の方法で使用できるポリイソシアネート化合物としては、トルエン(トリレン)ジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族系ポリイソシアネート;イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族系ポリイソシアネートなどが挙げられる。
 (iii)の方法で使用できるイソシアネート基と反応する基および加水分解性シリル基の両方を有する化合物としては、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルジメトキシメチルシラン、γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルジメトキシメチルシラン、N-(β-アミノエチル)-γ-アミノプロピルトリエトキシシラン、γ-(N-フェニル)アミノプロピルトリメトキシシラン、γ-(N-フェニル)アミノプロピルジメトキシメチルシラン、N-エチルアミノイソブチルトリメトキシシラン、N-エチルアミノイソブチルジメトキシメチルシラン、N-シクロヘキシルアミノメチルトリメトキシシラン、N-シクロヘキシルアミノメチルジメトキシメチルシラン等のアミノ基含有シラン類;γ-ヒドロキシプロピルトリメトキシシラン、γ-ヒドロキシプロピルジメトキシメチルシラン等のヒドロキシ基含有シラン類;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルジメトキシメチルシラン等のメルカプト基含有シラン類;等が挙げられる。
 また、重合体(A)として、前記式(2)で表されるような1つの末端構造に複数の加水分解性シリル基を有するポリオキシアルキレン系重合体も使用することができる。このようなポリオキシアルキレン系重合体の合成方法としては、複合金属シアン化物錯体触媒を用い、水酸基を有する開始剤にエポキシ化合物を重合させる方法によって水酸基末端ポリオキシアルキレン系重合体を得た後、得られた水酸基末端ポリオキシアルキレン系重合体の水酸基にアルカリ金属塩を作用させた後、アリルグリシジルエーテルを反応させ、さらに、生成した水酸基末端にアルカリ金属塩を作用させた後、炭素-炭素不飽和結合を有するハロゲン化炭化水素化合物を反応させ、1つの末端構造に複数の炭素-炭素不飽和基を有するポリオキシアルキレン系重合体を得た後、ヒドロシラン化合物をヒドロシリル化反応により付加させる方法を挙げることができる。
 <<シリカ(B)>>
 本実施形態に係る硬化性組成物は、シリカ(B)を含有する。シリカ(B)を含有することによって、硬化性組成物のコンクリートへの耐水接着性を向上させることができる。
 シリカ(B)としては、沈降性シリカ等の湿式シリカ、フュームドシリカ等の乾式シリカ、結晶性シリカ、溶融シリカ、無水ケイ酸、含水ケイ酸等が挙げられる。なかでも、結晶性シリカが好ましい。
 シリカ(B)の比表面積(BET吸着法)は0.1~10m/gが好ましく、0.5~5m/gがより好ましい。
 シリカ(B)のメジアン径(D50)は1~50μmであることが好ましく、2~30μmであることがより好ましく、5~20μmであることがさらに好ましい。
 シリカ(B)の配合量は、重合体(A)100重量部に対して、10~400重量部であることが好ましく、30~300重量部がより好ましく、50~250重量部がさらに好ましい。シリカ(B)の配合量が10重量部以上であると、硬化性組成物のコンクリートへの耐水接着性がより向上し得る。また、シリカ(B)の配合量が400重量部以下であると、硬化性組成物から得られる硬化物の機械物性がより良好になり得る。
 <<炭素数4個以上のアルキル基を含有するシラン化合物(C)>>
 本実施形態に係る硬化性組成物は、「炭素数4個以上のアルキル基を含有するシラン化合物(C)」(以下、「シラン化合物(C)」とも称する。)を含有する。シラン化合物(C)を含有することによって、硬化性組成物のコンクリートへの耐水接着性を向上させることができ、また、吸水率が低い硬化物を得ることができる。
 シラン化合物(C)は、炭素数4個以上のアルキル基をケイ素原子上に含有する。該アルキル基は、炭素数6個以上のアルキル基であることが好ましく、炭素数7個以上のアルキル基であることがより好ましく、炭素数8個以上のアルキル基であることがさらに好ましい。前記アルキル基の炭素数の上限は特に限定されないが、例えば、20以下であってよく、18以下であることが好ましい。シラン化合物(C)中のアルキル基は分岐を有していても良いが、直鎖のアルキル基であることが好ましい。
 炭素数4個以上のアルキル基の具体例としては、例えば、ブチル基、ペンチル基、へキシル基、ヘプチル基、オクチル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、セチル基、オクダデシル基、エイコシル基、ブテニル基、ペンテニル基、へキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ドデセニル基、テトラデセニル基、ヘキサデセニル基、オクタデセニル基、エイコセニル基、オクタデカジエニル基、9,12,15-オクタデカトリエニル基、9,11,13-オクタデカトリエニル基等が挙げられる。
 なかでも、ブチル基、ペンチル基、へキシル基、ヘプチル基、オクチル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、オクタデシル基が好ましく、オクチル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、オクタデシル基がより好ましい。
 シラン化合物(C)は、加水分解性シリル基を有していることが好ましい。当該加水分解性シリル基としては、重合体(A)の加水分解性シリル基として既に例示した基が挙げられる。
 シラン化合物(C)の具体例としては、例えば、n-ブチルトリメトキシシラン、n-ペンチルトリメトキシシラン、n-へキシルトリメトキシシラン、n-ヘプチルトリメトキシシラン、n-オクチルトリメトキシシラン、n-デシルトリメトキシシラン、n-ドデシルトリメトキシシラン、n-オクタデシルトリメトキシシラン、n-ブチルトリエトキシシラン、n-ペンチルトリエトキシシラン、n-へキシルトリエトキシシラン、n-ヘプチルトリエトキシシラン、n-オクチルトリエトキシシラン、n-ドデシルトリエトキシシラン、n-オクタデシルトリエトキシシラン、n-ブチルメチルジメトキシシラン、n-ペンチルメチルジメトキシシラン、n-へキシルメチルジメトキシシラン、n-ヘプチルメチルジメトキシシラン、n-オクチルメチルジメトキシシラン、n-ドデシルメチルジメトキシシラン、n-オクタデシルメチルジメトキシシラン、n-オクチルメチルジエトキシシラン、1,8-ビス(トリメトキシシリル)オクタン、1,12-ビス(トリメトキシシリル)ドデカン、1,8-ビス(トリエトキシシリル)オクタン、1,12-ビス(トリエトキシシリル)ドデカン、1,8-ビス(メチルジメトキシシリル)オクタン等が挙げられる。
 なかでも、n-ヘプチルトリメトキシシラン、n-オクチルトリメトキシシラン、n-デシルトリメトキシシラン、n-ドデシルトリメトキシシラン、n-オクタデシルトリメトキシシラン、n-ヘプチルトリエトキシシラン、n-オクチルトリエトキシシラン、n-ドデシルトリエトキシシラン、n-オクタデシルトリエトキシシラン、n-ヘプチルメチルジメトキシシラン、n-オクチルメチルジメトキシシラン、n-ドデシルメチルジメトキシシラン、n-オクタデシルメチルジメトキシシランが好ましく、n-オクチルトリメトキシシラン、n-デシルトリメトキシシラン、n-ドデシルトリメトキシシラン、n-オクタデシルトリメトキシシランがより好ましい。
 シラン化合物(C)の配合量は、重合体(A)100重量部に対して、0.5~20重量部であることが好ましく、1~15重量部がより好ましく、5~12重量部がさらに好ましい。シラン化合物(C)の配合量が0.5重量部以上であると、硬化性組成物のコンクリートへの耐水接着性がより向上し、また、硬化性組成物から得られる硬化物の吸水率をより低減することができる。また、シラン化合物(C)の配合量が20重量部以下であると、硬化性組成物の硬化性がより良好になり得る。
 <<アミノシランのシリル基を単独で、又は、アミノシランとその他のアルコキシシラン化合物とを一部縮合させた化合物(D)>>
 本実施形態に係る硬化性組成物は、「アミノシランのシリル基を単独で、又は、アミノシランとその他のアルコキシシラン化合物とを一部縮合させた化合物(D)」(以下、「シラン化合物(D)」とも称する。)を含有する。シラン化合物(D)を含有することによって、硬化性組成物のコンクリートへの耐水接着性を向上させることができる。
 シラン化合物(D)は、「アミノシランのシリル基を単独で一部縮合させたシラン化合物(D1)」(以下、「シラン化合物(D1)」とも称する。)、又は、「アミノシラン化合物とその他のアルコキシシラン化合物とを一部縮合させたシラン化合物(D2)」(以下、「シラン化合物(D2)」とも称する。)の何れか1つ又は双方を含む。
 シラン化合物(D1)におけるアミノシランは1種類の使用でもよく、2種類以上を併用してもよい。シラン化合物(D1)におけるアミノシランは、加水分解性シリル基を有するアミノシランであることが好ましい。当該加水分解性シリル基は、前述した式(1)で表されることが好ましい。シラン化合物(D1)は、加水分解性シリル基を有するアミノシラン化合物の加水分解性シリル基同士の一部縮合物であることが好ましい。
 シラン化合物(D2)におけるアミノシランは1種類の使用でもよく、2種類以上を併用してもよい。シラン化合物(D2)におけるアミノシランは、加水分解性シリル基を有するアミノシランであることが好ましい。当該加水分解性シリル基は、前述した式(1)で表されることが好ましい。シラン化合物(D2)における前記その他のアルコキシシラン化合物は1種類の使用でもよく、2種類以上を併用してもよい。シラン化合物(D2)は、加水分解性シリル基を有するアミノシラン化合物の加水分解性シリル基と、前記その他のアルコキシシラン化合物のアルコキシ基とを一部縮合させた化合物であることが好ましい。
 シラン化合物(D)は、前述した式(1)で表される加水分解性シリル基を有するアミノシラン化合物の加水分解性シリル基同士を一部縮合させた化合物、又は、前述した式(1)で表される加水分解性シリル基を有するアミノシラン化合物の加水分解性シリル基と、前記その他のアルコキシシラン化合物のアルコキシ基とを一部縮合させた化合物であることが好ましい。
 前記アミノシランとしては、例えば、N-2-アミノエチル-3-アミノプロピルトリメトキシシラン、N-2-アミノエチル-3-アミノプロピルトリエトキシシラン、N-2-アミノエチル-3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-1-アミノメチルトリエトキシシラン、N-n-ブチル-3-アミノプロピルトリメトキシシラン等が挙げられる。アミノシランとしては、これらの中から1種を使用してもよく、また、2種以上を併用することもできる。
 前記その他のアルコキシシラン化合物としては、例えば、(a)メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、メチルトリアセトキシシランなどの炭化水素基含有シラン類;(b)オルトケイ酸テトラメチル(テトラメトキシシランないしはメチルシリケート)、オルトケイ酸テトラエチル(テトラエトキシシランないしはエチルシリケート)、オルトケイ酸テトラプロピル、オルトケイ酸テトラブチルなどのシリケート化合物類;(c)3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシランなどのエポキシ基含有シラン類;(d)ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルメチルジメトキシシラン、3-アクリロオキシプロピルトリメトキシシラン、メタクリロイルオキシメチルトリメトキシシランなどのビニル型不飽和基含有シラン類;(e)3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシランなどのメルカプト基含有シラン類;(f)1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレートなどのイソシアヌレートシラン類;(g)これらの部分加水分解縮合物;等が挙げられる。前記その他のアルコキシシラン化合物としては、これらの中から1種を使用してもよく、また、2種以上を併用することもできる。
 シラン化合物(D)の市販品としては、例えば、X-40-2651(信越化学工業株式会社製)、MS3301(JNC株式会社製)、MS3302(JNC株式会社製)、Dynasylan1146、Dynasylan VPS SIVO 260、Dynasylan VPS SIVO 280(Evonik社製)などが挙げられる。
 シラン化合物(D)の配合量は、重合体(A)100重量部に対して、0.5~20重量部であることが好ましく、1~10重量部がより好ましい。シラン化合物(D)の配合量が0.5重量部以上であると、硬化性組成物のコンクリートへの耐水接着性がより向上し得る。また、シラン化合物(D)の配合量が20重量部以下であると、硬化性組成物から得られる硬化物の機械物性がより良好になり得る。
 <<エポキシシラン(E)>>
 本実施形態に係る硬化性組成物は、エポキシシラン(E)を含有しても良い。エポキシシラン(E)を含有させることによって、硬化性組成物のコンクリートへの耐水接着性をさらに向上させることができ、また、吸水率が低い硬化物を得ることができる。
 エポキシシラン(E)は、エポキシ基を有するシランカップリング剤であれば特に限定されず、その具体例としては、γ-グリシドキシプロピルジメチルエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルメチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、エポキシ基変性シリコーン樹脂、シリル基変性エポキシ樹脂、エポキシ樹脂とシリコーン樹脂とからなる共重合体等が挙げられる。
 これらのうち、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシランが好ましい。
 エポキシシラン(E)の市販品としては、γ-グリシドキシプロピルメチルジエトキシシラン(KBE402、信越化学工業社製)、γ-グリシドキシプロピルトリメトキシシラン(Dynasylan GLYMO、Evonik社製)、SH6040(東レ・ダウコーニング社製)、SILQUESTA-187、TSL8350(いずれもモメンティブ・パフォーマンス・マテリアルズ・ジャパン社製))等が挙げられる。
 エポキシシラン(E)の配合量としては、特に限定されないが、重合体(A)100重量部に対して、0.1~20重量部であることが好ましく、0.5~10重量部がより好ましい。
 <<その他の添加剤>>
 本実施形態に係る硬化性組成物には、重合体(A)、シリカ(B)、シラン化合物(C)、シラン化合物(D)、エポキシシラン(E)以外の添加剤として、シラノール縮合触媒、(B)成分以外の充填剤、(D)成分と(E)成分以外の接着性付与剤、可塑剤、タレ防止剤、酸化防止剤、光安定剤、紫外線吸収剤、物性調整剤、粘着付与樹脂、光硬化性物質、酸素硬化性物質、エポキシ樹脂、その他の樹脂などを配合してもよい。
 また、本実施形態に係る硬化性組成物には、硬化性組成物又は硬化物の諸物性の調整を目的として、必要に応じて各種添加剤を配合してもよい。そのような添加剤としては、例えば、表面性改良剤、発泡剤、硬化性調整剤、難燃剤、シリケート、ラジカル禁止剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、防かび剤などが挙げられる。
 <シラノール縮合触媒>
 前記硬化性組成物には、重合体(A)の加水分解性シリル基を加水分解・縮合させる反応を促進し、重合体を鎖延長または架橋させる目的で、シラノール縮合触媒を配合しても良い。
 シラノール縮合触媒としては、例えば、有機錫化合物、カルボン酸金属塩、アミン化合物、カルボン酸、アルコキシ金属などが挙げられる。
 有機錫化合物の具体例としては、ジブチル錫ジラウレート、ジブチル錫ジオクタノエート、ジブチル錫ビス(ブチルマレエート)、ジブチル錫ジアセテート、ジブチル錫オキサイド、ジブチル錫ビス(アセチルアセトナート)、ジオクチル錫ビス(アセチルアセトナート)、ジオクチル錫ジラウレート、ジオクチル錫ジステアレート、ジオクチル錫ジアセテート、ジオクチル錫ジケタノエート、ジオクチル錫オキサイド、ジブチル錫オキサイドとシリケート化合物との反応物、ジオクチル錫オキサイドとシリケート化合物との反応物、ジブチル錫オキサイドとフタル酸エステルとの反応物などが挙げられる。
 カルボン酸金属塩の具体例としては、カルボン酸錫、カルボン酸ビスマス、カルボン酸チタン、カルボン酸ジルコニウム、カルボン酸鉄などが挙げられる。カルボン酸基としては下記のカルボン酸と各種金属を組み合わせることができる。
 アミン化合物の具体例としては、オクチルアミン、2-エチルヘキシルアミン、ラウリルアミン、ステアリルアミン、などのアミン類;ピリジン、1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4,3,0]ノネン-5(DBN)、などの含窒素複素環式化合物;グアニジン、フェニルグアニジン、ジフェニルグアニジンなどのグアニジン類;ブチルビグアニド、1-o-トリルビグアニドや1-フェニルビグアニドなどのビグアニド類;アミノ基含有シランカップリング剤;ケチミン化合物などが挙げられる。
 カルボン酸の具体例としては、酢酸、プロピオン酸、酪酸、2-エチルヘキサン酸、ラウリン酸、ステアリン酸、オレイン酸、リノール酸、ネオデカン酸、バーサチック酸などが挙げられる。
 アルコキシ金属の具体例としては、テトラブチルチタネートチタンテトラキス(アセチルアセトナート)、ジイソプロポキシチタンビス(エチルアセトセテート)などのチタン化合物や、アルミニウムトリス(アセチルアセトナート)、ジイソプロポキシアルミニウムエチルアセトアセテートなどのアルミニウム化合物類、ジルコニウムテトラキス(アセチルアセトナート)などのジルコニウム化合物類が挙げられる。
 その他のシラノール縮合触媒として、フッ素アニオン含有化合物、光酸発生剤や光塩基発生剤も使用できる。
 シラノール縮合触媒は、異なる2種類以上の触媒を併用して使用してもよい。
 シラノール縮合触媒の使用量は、重合体(A)100重量部に対して、0.001~20重量部が好ましく、更には0.01~15重量部がより好ましく、0.01~10重量部が特に好ましい。
 <充填剤>
 本実施形態に係る硬化性組成物には、シリカ(B)以外の種々の充填剤を配合することができる。充填剤としては、重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、クレー、タルク、酸化チタン、カーボンブラック、酸化第二鉄、アルミニウム微粉末、酸化亜鉛、活性亜鉛華、PVC粉末、PMMA粉末、ガラス繊維およびフィラメント等が挙げられる。
 充填剤の使用量は、重合体(A)100重量部に対して、1~300重量部が好ましく、特に10~250重量部が好ましい。
 組成物の軽量化(低比重化)の目的で、有機バルーン、無機バルーンを添加してもよい。バルーンは、球状体充填剤で内部が中空のものであり、このバルーンの材料としては、ガラス、シラス、などの無機系の材料、および、フェノール樹脂、尿素樹脂、ポリスチレン、サランなどの有機系の材料が挙げられる。
 バルーンの使用量は、重合体(A)100重量部に対して、0.1~100重量部が好ましく、特に1~20重量部が好ましい。
 <接着性付与剤>
 本実施形態に係る硬化性組成物には、シラン化合物(D)とエポキシシラン(E)以外の接着性付与剤を添加することができる。
 接着性付与剤としては、シランカップリング剤、シランカップリング剤の反応物を添加することができる。
 シランカップリング剤の具体例としては、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-β-アミノエチル-γ-アミノプロピルトリメトキシシラン、N-β-アミノエチル-γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、(2-アミノエチル)アミノメチルトリメトキシシランなどのアミノ基含有シラン類;γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、α-イソシアネートメチルトリメトキシシラン、α-イソシアネートメチルジメトキシメチルシラン等のイソシアネート基含有シラン類;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等のメルカプト基含有シラン類、が挙げられる。
 上記接着性付与剤は1種類のみで使用しても良いし、2種類以上混合使用しても良い。また、各種シランカップリング剤の反応物も使用できる。
 シランカップリング剤の使用量は、重合体(A)100重量部に対して、0.1~20重量部が好ましく、特に0.5~10重量部が好ましい。
 <可塑剤>
 本実施形態に係る硬化性組成物には、可塑剤を添加することができる。可塑剤の具体例としては、ジブチルフタレート、ジイソノニルフタレート(DINP)、ジヘプチルフタレート、ジ(2-エチルヘキシル)フタレート、ジイソデシルフタレート(DIDP)、ブチルベンジルフタレートなどのフタル酸エステル化合物;ビス(2-エチルヘキシル)-1,4-ベンゼンジカルボキシレートなどのテレフタル酸エステル化合物;1,2-シクロヘキサンジカルボン酸ジイソノニルエステルなどの非フタル酸エステル化合物;アジピン酸ジオクチル、セバシン酸ジオクチル、セバシン酸ジブチル、コハク酸ジイソデシル、アセチルクエン酸トリブチルなどの脂肪族多価カルボン酸エステル化合物;オレイン酸ブチル、アセチルリシノール酸メチルなどの不飽和脂肪酸エステル化合物;アルキルスルホン酸フェニルエステル;リン酸エステル化合物;トリメリット酸エステル化合物;塩素化パラフィン;アルキルジフェニル、部分水添ターフェニルなどの炭化水素系油;プロセスオイル;エポキシ化大豆油、エポキシステアリン酸ベンジル、ビス(2-エチルヘキシル)-4,5-エポキシシクロヘキサン-1,2-ジカーボキシレート(E-PS)、エポキシオクチルステアレ-ト、エポキシブチルステアレ-トなどのエポキシ可塑剤、などをあげることができる。
 また、高分子可塑剤を使用することができる。高分子可塑剤の具体例としては、ビニル系重合体;ポリエステル系可塑剤;数平均分子量500以上のポリエチレングリコール、ポリプロピレングリコール等のポリエーテルポリオール、これらポリエーテルポリオールのヒドロキシ基をエステル基、エーテル基などに変換した誘導体等のポリエーテル類;ポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン-アクリロニトリル、ポリクロロプレン等が挙げられる。
 可塑剤の使用量は、重合体(A)100重量部に対して、5~150重量部が好ましく、10~120重量部がより好ましく、特に20~100重量部が好ましい。可塑剤は、単独で使用してもよく、2種以上を併用してもよい。
 <タレ防止剤>
 本実施形態に係る硬化性組成物には、必要に応じてタレを防止し、作業性を良くするためにタレ防止剤を添加しても良い。また、タレ防止剤としては特に限定されないが、例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類等が挙げられる。これらタレ防止剤は単独で用いてもよく、2種以上併用してもよい。
 タレ防止剤の使用量は、重合体(A)100重量部に対して、0.1~20重量部が好ましい。
 <酸化防止剤>
 本実施形態に係る硬化性組成物には、酸化防止剤(老化防止剤)を使用することができる。酸化防止剤を使用すると硬化物の耐候性を高めることができる。酸化防止剤としてはヒンダードフェノール系、モノフェノール系、ビスフェノール系、ポリフェノール系が例示できる。酸化防止剤の具体例は特開平4-283259号公報や特開平9-194731号公報にも記載されている。
 酸化防止剤の使用量は、重合体(A)100重量部に対して、0.1~10重量部が好ましく、特に0.2~5重量部が好ましい。
 <光安定剤>
 本実施形態に係る硬化性組成物には、光安定剤を使用することができる。光安定剤を使用すると硬化物の光酸化劣化を防止できる。光安定剤としてベンゾトリアゾール系、ヒンダードアミン系、ベンゾエート系化合物等が例示できるが、特にヒンダードアミン系が好ましい。
 光安定剤の使用量は、重合体(A)100重量部に対して、0.1~10重量部が好ましく、特に0.2~5重量部が好ましい。
 <紫外線吸収剤>
 本実施形態に係る硬化性組成物には、紫外線吸収剤を使用することができる。紫外線吸収剤を使用すると硬化物の表面耐候性を高めることができる。紫外線吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、サリチレート系、置換アクリロニトリル系及び金属キレート系化合物等が例示できる。特に、ベンゾトリアゾール系が好ましく、市販名チヌビンP、チヌビン213、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン329、チヌビン571(以上、BASF製)が挙げられる。
 紫外線吸収剤の使用量は、重合体(A)100重量部に対して、0.1~10重量部が好ましく、特に0.2~5重量部が好ましい。
 <物性調整剤>
 本発明の硬化性組成物には、必要に応じて生成する硬化物の引張特性を調整する物性調整剤を添加しても良い。物性調整剤としては特に限定されないが、例えば、フェノキシトリメチルシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン等のアルキルアルコキシシラン類;ジフェニルジメトキシシラン、フェニルトリメトキシシランなどのアリールアルコキシシラン類;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシラン、γ-グリシドキシプロピルメチルジイソプロペノキシシラン等のアルキルイソプロペノキシシラン;トリス(トリメチルシリル)ボレート、トリス(トリエチルシリル)ボレートなどのトリアルキルシリルボレート類;シリコーンワニス類;ポリシロキサン類等が挙げられる。前記物性調整剤を用いることにより、本実施形態に係る硬化性組成物を硬化させた時の硬度を上げたり、逆に硬度を下げ、破断伸びを出したりし得る。上記物性調整剤は単独で用いてもよく、2種以上併用してもよい。
 特に、加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物は、硬化物の表面のべたつきを悪化させずに硬化物のモジュラスを低下させる作用を有する。特にトリメチルシラノールを生成する化合物が好ましい。加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物としては、ヘキサノール、オクタノール、フェノール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ソルビトールなどのアルコールの誘導体であって加水分解によりシランモノオールを生成するシリコン化合物を挙げることができる。具体的には、フェノキシトリメチルシラン、トリス((トリメチルシロキシ)メチル)プロパン等が挙げられる。
 物性調整剤の使用量は、重合体(A)100重量部に対して、0.1~10重量部が好ましく、特に0.5~5重量部が好ましい。
 <粘着付与樹脂>
 本発明には、基材への接着性や密着性を高める目的、あるいはその他必要に応じて粘着付与樹脂を添加できる。粘着付与樹脂としては、特に制限はなく通常使用されているものを使うことができる。
 具体例としては、テルペン系樹脂、芳香族変性テルペン樹脂、水素添加テルペン樹脂、テルペン-フェノール樹脂、フェノール樹脂、変性フェノール樹脂、キシレン-フェノール樹脂、シクロペンタジエン-フェノール樹脂、クマロンインデン樹脂、ロジン系樹脂、ロジンエステル樹脂、水添ロジンエステル樹脂、キシレン樹脂、低分子量ポリスチレン系樹脂、スチレン共重合体樹脂、スチレン系ブロック共重合体及びその水素添加物、石油樹脂(例えば、C5炭化水素樹脂、C9炭化水素樹脂、C5C9炭化水素共重合樹脂等)、水添石油樹脂、DCPD樹脂等が挙げられる。これらは単独で用いても良く、2種以上を併用しても良い。
 粘着付与樹脂の使用量は、重合体(A)100重量部に対して、2~100重量部が好ましく、5~50重量部であることがより好ましく、5~30重量部であることがさらに好ましい。
 <光硬化性物質>
 本実施形態に係る硬化性組成物には光硬化性物質を使用できる。光硬化性物質を使用すると硬化物表面に光硬化性物質の皮膜が形成され、硬化物のべたつきや硬化物の耐候性を改善できる。この種の化合物には有機単量体、オリゴマー、樹脂或いはそれらを含む組成物等多くのものが知られている。代表的なものとしては、アクリル系又はメタクリル系不飽和基を1ないし数個有するモノマー、オリゴマー或いはそれ等の混合物である不飽和アクリル系化合物、ポリケイ皮酸ビニル類あるいはアジド化樹脂等が使用できる。
 光硬化性物質は、重合体(A)100重量部に対して、0.1~20重量部の範囲で使用することが好ましく、0.5~10重量部の範囲で使用することがより好ましい。
 <酸素硬化性物質>
 本実施形態に係る硬化性組成物には酸素硬化性物質を使用することができる。酸素硬化性物質には空気中の酸素と反応し得る不飽和化合物を例示できる。空気中の酸素と反応して硬化物の表面付近に硬化皮膜を形成し、表面のべたつきや硬化物表面へのゴミやホコリの付着を防止するなどの作用をする。酸素硬化性物質の具体例には、キリ油、アマニ油などで代表される乾性油や、該化合物を変性して得られる各種アルキッド樹脂;乾性油により変性されたアクリル系重合体、エポキシ系樹脂、シリコーン樹脂;ブタジエン、クロロプレン、イソプレン、1,3-ペンタジエンなどのジエン系化合物を重合または共重合させて得られる1,2-ポリブタジエン、1,4-ポリブタジエン、C5~C8ジエンの重合体などの液状重合体などが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。
 酸素硬化性物質の使用量は、重合体(A)100重量部に対して、0.1~20重量部の範囲で使用するのが好ましく、より好ましくは0.5~10重量部である。特開平3-160053号公報に記載されているように酸素硬化性物質は光硬化性物質と併用して使用するのがよい。
 <エポキシ樹脂>
 本実施形態に係る硬化性組成物にはエポキシ樹脂を併用することができる。エポキシ樹脂を添加した組成物は特に接着剤、殊に外壁タイル用接着剤として好ましい。エポキシ樹脂としてはビスフェノールA型エポキシ樹脂類またはノボラック型エポキシ樹脂などが挙げられる。
 これらのエポキシ樹脂と、重合体(A)の使用割合は、重量比で(A)/エポキシ樹脂=100/1~1/100の範囲であることが好ましい。(A)/エポキシ樹脂の割合が1/100以上であると、エポキシ樹脂硬化物の衝撃強度や強靱性の改良効果が得られやすく、(A)/エポキシ樹脂の割合が100/1以下であると、硬化物の強度が良好になり得る。
 エポキシ樹脂を添加する場合、本実施形態に係る硬化性組成物には、エポキシ樹脂を硬化させる硬化剤を併用できる。使用し得るエポキシ樹脂硬化剤としては、特に制限はなく、一般に使用されているエポキシ樹脂硬化剤を使用できる。
 エポキシ樹脂の硬化剤を使用する場合、その使用量はエポキシ樹脂100重量部に対し、0.1~300重量部の範囲であることが好ましい。
 <<硬化性組成物の調製>>
 本発明の硬化性組成物は、すべての配合成分を予め配合密封保存し、施工後空気中の湿気により硬化する1成分型として調製することも可能である。また、硬化剤として別途硬化触媒、充填材、可塑剤、水等の成分を配合しておき、該配合材と有機重合体組成物を使用前に混合する2成分型として調製することもできる。作業性の点からは、1成分型が好ましい。
 前記硬化性組成物が1成分型の場合、すべての配合成分が予め配合されるため、水分を含有する配合成分は予め脱水乾燥してから使用するか、または、配合混練中に減圧などにより脱水するのが好ましい。また、脱水乾燥法に加えて、脱水剤、特にn-プロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシランなどのアルコキシシラン化合物を添加することにより、さらに貯蔵安定性を改善し得る。
 脱水剤、特にビニルトリメトキシシランなどの水と反応し得るケイ素化合物の使用量は、重合体(A)100重量部に対して、0.1~20重量部であることが好ましく、0.5~10重量部がより好ましい。
 <<用途>>
 本実施形態に係る硬化性組成物は、シーリング材、接着剤、塗膜防水材、粘着剤、塗料、および型取剤などに使用することができる。なかでも、シーリング材、接着剤、塗膜防水材として使用されることが好ましく、塗膜防水材として使用されることがより好ましい。特に、コンクリート用の塗膜防水材として使用されることが好ましい。コンクリート用の塗膜防水材とは、コンクリートの表面に形成される、防水を目的とした塗膜を構成するための材料をいう。本実施形態に係る硬化性組成物は、コンクリートの表面に、プライマーを塗布することなく、直接塗布することができる。
 以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 (数平均分子量)
 実施例中の数平均分子量は以下の条件で測定したGPC分子量である。
  送液システム:東ソー製HLC-8220GPC
  カラム:東ソー製TSKgel SuperHシリーズ
  溶媒:THF
  分子量:ポリスチレン換算
  測定温度:40℃
 (シリル基の平均導入数)
 実施例に示す重合体の末端1個あたり、または1分子あたりのシリル基の平均導入数はNMR測定により算出した。
 (合成例1)
 数平均分子量が約4,500のポリオキシプロピレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、両末端に水酸基を有する数平均分子量27,500、分子量分布Mw/Mn=1.26のポリオキシプロピレン(P-1)を得た。続いてこの水酸基末端ポリオキシプロピレン(P-1)の水酸基に対して1.0モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-1)の水酸基に対して、1.0モル当量のアリルグリシジルエーテルを添加して130℃で2時間反応を行った。その後、0.28モル当量のナトリウムメトキシドのメタノール溶液を添加してメタノールを除去し、さらに1.8モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。得られた未精製のポリオキシプロピレンをn-ヘキサン及び水と混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端に複数の炭素-炭素不飽和結合を有するポリオキシプロピレン(Q-1)を得た。重合体(Q-1)は1つの末端に炭素-炭素不飽和結合が平均2.0個導入されていることがわかった。
 得られた(Q-1)500gに対し白金ジビニルジシロキサン錯体溶液(白金換算で3重量%のイソプロパノール溶液)50μlを加え、撹拌しながらジメトキシメチルシラン9.6gをゆっくりと滴下した。その混合溶液を100℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去することにより、末端に複数のジメトキシメチルシリル基を有する数平均分子量28,200のポリオキシプロピレン(A-1)を得た。重合体(A-1)はジメトキシメチルシリル基を1つの末端に平均1.7個、一分子中に平均3.4個有することが分かった。
 (合成例2)
 数平均分子量が約4,500のポリオキシプロピレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、両末端に水酸基を有する数平均分子量14,300、分子量分布Mw/Mn=1.21のポリオキシプロピレン(P-2)を得た。得られた水酸基末端ポリオキシプロピレン(P-2)の水酸基に対して1.2モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-2)の水酸基に対して、さらに1.5モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のポリオキシプロピレンをn-ヘキサン及び水と混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端にアリル基を有するポリオキシプロピレン(Q-2)を得た。この重合体(Q-2)500gに対して白金ジビニルジシロキサン錯体溶液(白金換算で3重量%のイソプロパノール溶液)50μlを加え、撹拌しながら、トリメトキシシラン13.5gをゆっくりと滴下した。100℃で2時間反応させた後、未反応のトリメトキシシランを減圧下留去することにより、末端にトリメトキシシリル基を有する数平均分子量14,600のポリオキシプロピレン(A-2)を得た。重合体(A-2)はトリメトキシシリル基を1つの末端に平均0.8個、1分子中に平均1.5個有することが分かった。
 (実施例1)
 合成例1に記載の重合体(A-1)100重量部に対して、DINP(ExxonMobil社製:フタル酸ジイソノニル)を75重量部、Sibelite M3000(Sibelco Speciality Minerals社製:メジアン径(D50)17μm、比表面積(BET吸着法)1.5m/gのシリカ)を100重量部、Imerseal 36S(Imerys社製:重質炭酸カルシウム)を200重量部、Eversorb HP1(Everlight Chemical社製:光安定剤)を1.7重量部、Eversorb HP4(Everlight Chemical社製:光安定剤)を3重量部、Irganox245FF(BASF製:ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオン酸][エチレンビス(オキシエチレン)])を1重量部、Dynasylan VTMO(Evonik社製:ビニルトリメトキシシラン)を5重量部、Dynasylan 1146(Evonik社製:ジアミノシラン含有シランオリゴマー)を3.2重量部、Dynasylan OCTMO(Evonik社製:トリメトキシオクチルシラン)を9重量部、TIB KAT223(TIB CHEMICALS社製:ジオクチル錫ジケタノエート)を4重量部添加し、スパチュラで十分混合した後、自転公転ミキサーを用いて均一に混合脱泡し、硬化性組成物を得た。以下に記載のように、硬化性組成物の耐水接着性評価を行い、吸水率を測定した。結果を表1に示す。
 (耐水接着性評価)
 得られた硬化性組成物をコンクリート基材(ROCHOLL社製:ISO13640 Method1準拠、71x12x25mm)に塗布し、23℃、相対湿度50%下で7日間硬化させた後、水に7日間浸漬させた。水から取り出した後、硬化物の90°ハンドピール試験を行い、接着界面の凝集破壊率に基づいて接着性を評価した(耐水接着性評価1)。
 また、前述のように水から取り出した後にさらに23℃、相対湿度50%下で3日間養生した後、同様にハンドピール試験を行い、接着性を評価した(耐水接着性評価2)。結果を表1に示す。評価基準は以下の通りである。
A:凝集破壊率80%以上
B:凝集破壊率50%以上80%未満
C:凝集破壊率5%以上50%未満
D:界面破壊100%
 (吸水率)
 得られた硬化性組成物を用いて2mm厚のシートを作成し、23℃で3日間、次いで50℃で4日間養生した。得られたシートから5×5cmの2個のサンプルを切り取り重量を測定した後、23℃の水に4週間浸漬した。サンプルを水から取り出して表面の水分をペーパーで取り除いた後の重量を測定し、吸水率[(水に浸漬後のサンプルの重さ-水に浸漬前のサンプルの重さ)/水に浸漬前のサンプルの重さ×100]を求め、2個のサンプルの吸水率の平均値を求めた。
 (実施例2)
 Dynasylan OCTMOの添加量を7重量部に変更し、Dynasylan GLYMO(Evonik社製:3-(2,3-エポキシプロポキシ)プロピル)トリメトキシシラン)を2重量部添加した以外は実施例1と同様の評価を行った。結果を表1に示す。
 (実施例3)
 重合体(A-1)の代わりに合成例2に記載の重合体(A-2)を使用し、Dynasylan OCTMOの添加量を7重量部に、TIB KAT223の添加量を0.5重量部に変更し、Dynasylan GLYMOを2重量部添加した以外は実施例1と同様の評価を行った。結果を表1に示す。
 (比較例1)
 Sibelite M3000の代わりにSocal U1S2(Imerys社製:沈降炭酸カルシウム)を添加した以外は実施例2と同様の評価を行った。結果を表1に示す。
 (比較例2)
 Dynasylan 1146を添加せず、Dynasylan GLYMOの添加量を5.2重量部に変更した以外は実施例1と同様の評価を行った。結果を表1に示す。
 (比較例3)
 Dynasylan OCTMOを添加しなかった以外は実施例1と同様の評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 
 表1より、シリカ(B)、シラン化合物(C)、シラン化合物(D)のどれか1つが含まれていない比較例1~3は、耐水接着性評価の結果がすべて界面破壊100%であるのに対し、シリカ(B)、シラン化合物(C)、シラン化合物(D)のすべてを含む実施例1~3は、凝集破壊が起こり、耐水接着性が向上していることが分かる。また、実施例1~3は、比較例1~3と吸水率が同等であるか、又は、より低いことも分かる。
 (実施例4)
 合成例1に記載の重合体(A-1)100重量部に対して、DINPを75重量部、Sibelite M3000を150重量部、Imerseal 36Sを150重量部、Eversorb HP-1を1.7重量部、Eversorb HP-4を3重量部、イルガノックス245FFを1重量部、Dynasylan VTMOを5重量部、Dynasylan 1146を5.2重量部、Dynasylan OCTMOを7重量部、TIB KAT223を4重量部添加し、スパチュラで十分混合した後、自転公転ミキサーを用いて均一に混合脱泡し、硬化性組成物を得た。得られた硬化性組成物を用いて実施例1と同様の評価を行った。結果を表2に示す。
 (実施例5)
 Dynasylan 1146の添加量を3.2重量部に、Dynasylan OCTMOの添加量を9重量部に変更した以外は実施例4と同様の評価を行った。結果を表2に示す。
 (比較例4)
 Dynasylan 1146をDynasylan DAMO(Evonik社製:N-(3-(トリメトキシシリル)プロピルエチレンジアミン)に変更した以外は実施例4と同様の評価を行った。結果を表2に示す。
 (比較例5)
 Dynasylan 1146をDynasylan DAMOに変更した以外は実施例5と同様の評価を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 
 表2より、シラン化合物(D)をアミノシランに置き換えた比較例4及び5は、耐水接着性評価の結果がすべて界面破壊100%であるのに対し、シリカ(B)、シラン化合物(C)、シラン化合物(D)のすべてを含む実施例4及び5は、凝集破壊が起こり、耐水接着性が向上していることが分かる。また、実施例4及び5は、比較例4及び5より吸水率が低いことも分かる。
 (合成例3)
 合成例1で得られた(Q-1)500gに対し白金ジビニルジシロキサン錯体溶液(白金換算で3重量%のイソプロパノール溶液)50μlを加え、撹拌しながらトリメトキシシラン9.5gをゆっくりと滴下した。その混合溶液を100℃で2時間反応させた後、未反応のトリメトキシシランを減圧下留去することにより、末端に複数のトリメトキシシリル基を有する数平均分子量28,000のポリオキシプロピレン(A-3)を得た。重合体(A-3)はトリメトキシシリル基を1つの末端に平均1.7個、一分子中に平均3.4個有することが分かった。
 (合成例4)
 合成例2で得られた水酸基末端ポリオキシプロピレン(P-2)の水酸基に対して1.0モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-2)の水酸基に対して、1.0モル当量のアリルグリシジルエーテルを添加して130℃で2時間反応を行った。その後、0.28モル当量のナトリウムメトキシドのメタノール溶液を添加してメタノールを除去し、さらに1.8モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。得られた未精製のポリオキシプロピレンをn-ヘキサン及び水と混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端に複数の炭素-炭素不飽和結合を有するポリオキシプロピレン(Q-3)を得た。重合体(Q-3)は1つの末端に炭素-炭素不飽和結合が平均2.0個導入されていることがわかった。
 得られた(Q-3)500gに対し白金ジビニルジシロキサン錯体溶液(白金換算で3重量%のイソプロパノール溶液)50μlを加え、撹拌しながらジメトキシメチルシラン18.2gをゆっくりと滴下した。その混合溶液を100℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去することにより、末端に複数のジメトキシメチルシリル基を有する数平均分子量14,500のポリオキシプロピレン(A-4)を得た。重合体(A-4)はジメトキシメチルシリル基を1つの末端に平均1.6個、一分子中に平均3.2個有することが分かった。
 (実施例6)
 合成例3に記載の重合体(A-3)100重量部に対して、DINPを75重量部、Sibelite M3000を100重量部、Imerseal 36Sを200重量部、Tinuvin 770(BASF社製:光安定剤)を1.7重量部、Tinuvin 326(BASF社製:光安定剤)を3重量部、Irganox245FFを1重量部、Dynasylan VTMOを5重量部、Dynasylan 1146を3.2重量部、Dynasylan OCTMOを7重量部、Dynasylan GLYMOを2重量部、TIB KAT223を0.4重量部添加し、スパチュラで十分混合した後、自転公転ミキサーを用いて均一に混合脱泡し、硬化性組成物を得た。得られた硬化性組成物を用いて、実施例1と同様に耐水接着性評価を行った。また、以下に記載のように硬化性組成物の吸水率を測定し、結果を表3に示す。
 (吸水率)
 得られた硬化性組成物を用いて2mm厚のシートを作成し、23℃で3日間、次いで50℃で4日間養生した。得られたシートから5×5cmの2個のサンプルを切り取り重量を測定した後、50℃の水に4日間浸漬した。サンプルを水から取り出して表面の水分をペーパーで取り除いた後の重量を測定し、吸水率[(水に浸漬後のサンプルの重さ-水に浸漬前のサンプルの重さ)/水に浸漬前のサンプルの重さ×100]を求め、2個のサンプルの吸水率の平均値を求めた。
 (比較例6)
 Dynasylan OCTMOとDynasylan GLYMOを添加しなかった以外は実施例6と同様の評価を行った。結果を表3に示す。
 (比較例7)
 Dynasylan OCTMOとDynasylan GLYMOを添加せず、TIB KAT223の添加量を4重量部に変更した以外は実施例6と同様の評価を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
 
 表3より、シラン化合物(C)を含まない比較例6及び7に比べ、シリカ(B)、シラン化合物(C)、シラン化合物(D)のすべてを含む実施例6は、耐水接着性が向上し、また、比較例6よりも吸水率が低いことが分かる。
 (合成例5)
 数平均分子量が約4,500のポリオキシプロピレントリオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、末端に水酸基を有する数平均分子量24,600、分子量分布Mw/Mn=1.31のポリオキシプロピレン(P-3)を得た。得られた水酸基末端ポリオキシプロピレン(P-3)の水酸基に対して1.2モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、水酸基末端ポリオキシプロピレンの水酸基に対して、1.5モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。得られた未精製のポリオキシプロピレンをn-ヘキサン及び水と混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端にアリル基を有するポリオキシプロピレン(Q-4)を得た。この重合体(Q-4)500gに対し白金ジビニルジシロキサン錯体溶液(白金換算で3重量%のイソプロパノール溶液)50μlを加え、撹拌しながらトリメトキシシラン6.9gをゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のトリメトキシシランを減圧下留去することにより、トリメトキシシリル基を有する数平均分子量26,200のポリオキシプロピレン(A-5)を得た。重合体(A-5)はトリメトキシシリル基を1つの末端に平均0.7個、一分子中に平均2.1個有することが分かった。
 (合成例6)
 数平均分子量が約4,500のポリオキシプロピレントリオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、末端に水酸基を有する数平均分子量16400、分子量分布Mw/Mn=1.31のポリオキシプロピレン(P-4)を得た。得られた水酸基末端ポリオキシプロピレン(P-4)の水酸基に対して1.2モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-4)の水酸基に対して、さらに1.5モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換し、未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のポリオキシプロピレンをn-ヘキサン及び水と混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端にアリル基を有するポリオキシプロピレン(Q-5)を得た。この重合体(Q-5)500gに対して白金ジビニルジシロキサン錯体溶液(白金換算で3重量%のイソプロパノール溶液)50μlを加え、撹拌しながら、トリメトキシシラン10.9gをゆっくりと滴下した。100℃で2時間反応させた後、未反応のトリメトキシシランを減圧下留去することにより、末端にトリメトキシシリル基を有する数平均分子量約16400のポリオキシプロピレン(A-6)を得た。重合体(A-6)はトリメトキシシリル基を1つの末端に平均0.7個、1分子中に平均2.2個有することが分かった。
 (合成例7)
 合成例1で得られた水酸基末端ポリオキシプロピレン(P-1)の水酸基に対して1.0モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、水酸基末端ポリオキシプロピレンの水酸基に対して、1.79モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。得られた未精製のポリオキシプロピレンをn-ヘキサン及び水と混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端にアリル基を有するポリオキシプロピレン(Q-6)を得た。この重合体(Q-6)500gに対し白金ジビニルジシロキサン錯体溶液(白金換算で3重量%のイソプロパノール溶液)50μlを加え、撹拌しながらトリメトキシシラン5.4gをゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のトリメトキシシランを減圧下留去することにより、トリメトキシシリル基を有する数平均分子量28,500のポリオキシプロピレン(A-7)を得た。重合体(A-7)はトリメトキシシリル基を1つの末端に平均0.8個、一分子中に平均1.6個有することが分かった。
 (実施例7~9)
 表4に示す重合体100重量部に対して、DINPを75重量部、Sibelite M3000を100重量部、Imerseal 36Sを200重量部、Tinuvin 770(BASF社製:光安定剤)を1.7重量部、Tinuvin 326(BASF社製:光安定剤)を3重量部、Irganox245FFを1重量部、Dynasylan VTMOを5重量部、Dynasylan 1146を3.2重量部、Dynasylan OCTMOを7重量部、Dynasylan GLYMOを2重量部、TIB KAT223を0.5重量部添加し、スパチュラで十分混合した後、自転公転ミキサーを用いて均一に混合脱泡し、硬化性組成物を得た。得られた硬化性組成物を用いて実施例1と同様の評価を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000005
 
 表4より、シリカ(B)、シラン化合物(C)、シラン化合物(D)のすべてを含む実施例7~9は、耐水接着性が良好で、吸水率が低いことが分かる。

Claims (10)

  1.  加水分解性シリル基含有ポリオキシアルキレン系重合体(A)、
     シリカ(B)、
     炭素数4個以上のアルキル基を含有するシラン化合物(C)、及び、
     アミノシランのシリル基を単独で、又は、アミノシランとその他のアルコキシシラン化合物とを一部縮合させた化合物(D)、を含有する硬化性組成物。
  2.  さらに、エポキシシラン(E)を含有する、請求項1に記載の硬化性組成物。
  3.  炭素数4個以上のアルキル基を含有するシラン化合物(C)が炭素数7個以上のアルキル基を含有するシラン化合物である、請求項1又は2に記載の硬化性組成物。
  4.  加水分解性シリル基含有ポリオキシアルキレン系重合体(A)の加水分解性シリル基が、一般式(1):
    -Si(R3-a(X) (1)
    (式中、Rは、それぞれ独立に、ヘテロ原子含有基またはハロゲン原子からなる置換基を有していてもよい炭素数1~10の炭化水素基を表す。Xは、それぞれ独立に、水酸基又は加水分解性基を表す。aは、1、2又は3を示す。)
    である、請求項1~3のいずれか一項に記載の硬化性組成物。
  5.  aが3を示す、請求項4に記載の硬化性組成物。
  6.  前記アミノシランが加水分解性シリル基を有する、請求項1~5のいずれか一項に記載の硬化性組成物。
  7.  加水分解性シリル基含有ポリオキシアルキレン系重合体(A)の数平均分子量が3,000~50,000である、請求項1~6のいずれか一項に記載の硬化性組成物。
  8.  加水分解性シリル基含有ポリオキシアルキレン系重合体(A)100重量部に対し、シリカ(B)10~300重量部、炭素数4個以上のアルキル基を含有するシラン化合物(C)0.5~20重量部、及び、アミノシランのシリル基を単独で、又は、アミノシランとその他のアルコキシシラン化合物とを一部縮合させた化合物(D)0.5~20重量部を含有する、請求項1~7のいずれか一項に記載の硬化性組成物。
  9.  請求項1~8のいずれか一項に記載の硬化性組成物を硬化させて得られる硬化物。
  10.  請求項1~8のいずれか一項に記載の硬化性組成物を含むコンクリート用塗膜防水材。
PCT/JP2021/014374 2020-04-09 2021-04-02 硬化性組成物 WO2021206026A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022514049A JPWO2021206026A1 (ja) 2020-04-09 2021-04-02
EP21783817.6A EP4134390A4 (en) 2020-04-09 2021-04-02 CURABLE COMPOSITION
CN202180026743.4A CN115380081B (zh) 2020-04-09 2021-04-02 固化性组合物
US18/045,136 US20230076565A1 (en) 2020-04-09 2022-10-07 Curable composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-070592 2020-04-09
JP2020070592 2020-04-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/045,136 Continuation US20230076565A1 (en) 2020-04-09 2022-10-07 Curable composition

Publications (1)

Publication Number Publication Date
WO2021206026A1 true WO2021206026A1 (ja) 2021-10-14

Family

ID=78023137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014374 WO2021206026A1 (ja) 2020-04-09 2021-04-02 硬化性組成物

Country Status (5)

Country Link
US (1) US20230076565A1 (ja)
EP (1) EP4134390A4 (ja)
JP (1) JPWO2021206026A1 (ja)
CN (1) CN115380081B (ja)
WO (1) WO2021206026A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04283259A (ja) 1991-03-11 1992-10-08 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH09194731A (ja) 1996-01-23 1997-07-29 Asahi Glass Co Ltd 硬化性組成物
WO2012057281A1 (ja) * 2010-10-27 2012-05-03 セメダイン株式会社 硬化性組成物
JP2013525529A (ja) 2010-04-23 2013-06-20 ワッカー ケミー アクチエンゲゼルシャフト 表面シールのためのコーティング組成物
JP2014043519A (ja) 2012-08-27 2014-03-13 Cemedine Co Ltd 硬化性組成物
JP2014510816A (ja) * 2011-03-31 2014-05-01 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド コンクリートに対する接着性が改善された湿気硬化型シリル化ポリマー組成物
WO2014192914A1 (ja) * 2013-05-30 2014-12-04 株式会社カネカ 硬化性組成物およびその硬化物
JP2015508419A (ja) 2011-12-20 2015-03-19 株式会社カネカ 塗膜防水材および本塗膜が形成された建築物の屋根
JP2019014885A (ja) 2017-07-05 2019-01-31 積水フーラー株式会社 硬化性組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2011834B1 (en) * 2006-04-20 2012-07-25 Kaneka Corporation Curable composition
CN102712814B (zh) * 2010-01-19 2015-08-26 株式会社钟化 固化性组合物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04283259A (ja) 1991-03-11 1992-10-08 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH09194731A (ja) 1996-01-23 1997-07-29 Asahi Glass Co Ltd 硬化性組成物
JP2013525529A (ja) 2010-04-23 2013-06-20 ワッカー ケミー アクチエンゲゼルシャフト 表面シールのためのコーティング組成物
WO2012057281A1 (ja) * 2010-10-27 2012-05-03 セメダイン株式会社 硬化性組成物
JP2014510816A (ja) * 2011-03-31 2014-05-01 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド コンクリートに対する接着性が改善された湿気硬化型シリル化ポリマー組成物
JP2015508419A (ja) 2011-12-20 2015-03-19 株式会社カネカ 塗膜防水材および本塗膜が形成された建築物の屋根
JP2014043519A (ja) 2012-08-27 2014-03-13 Cemedine Co Ltd 硬化性組成物
WO2014192914A1 (ja) * 2013-05-30 2014-12-04 株式会社カネカ 硬化性組成物およびその硬化物
JP2019014885A (ja) 2017-07-05 2019-01-31 積水フーラー株式会社 硬化性組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4134390A4

Also Published As

Publication number Publication date
CN115380081B (zh) 2024-05-24
JPWO2021206026A1 (ja) 2021-10-14
US20230076565A1 (en) 2023-03-09
EP4134390A4 (en) 2024-05-01
CN115380081A (zh) 2022-11-22
EP4134390A1 (en) 2023-02-15

Similar Documents

Publication Publication Date Title
JP6527589B2 (ja) 硬化性組成物
JP6356123B2 (ja) 硬化性組成物
JP6475615B2 (ja) 硬化性組成物およびその硬化物
JP5744759B2 (ja) 硬化性組成物
EP3115419B1 (en) Curable composition
JP6682227B2 (ja) 硬化性組成物
JP7249998B2 (ja) 反応性ケイ素基含有重合体、および硬化性組成物
JP7073167B2 (ja) 硬化性組成物
JP2014234396A (ja) 室温硬化性組成物およびその硬化物
JP7285247B2 (ja) 反応性ケイ素基含有重合体、および硬化性組成物
JP2018197329A (ja) 室温硬化性組成物
WO2023085269A1 (ja) ポリエステル用接着剤組成物
WO2022163563A1 (ja) ポリオキシアルキレン系重合体及びその混合物
WO2022163562A1 (ja) ポリオキシアルキレン系重合体の混合物及び硬化性組成物
CN113166395B (zh) 聚氧化烯系聚合物及固化性组合物
WO2021200342A1 (ja) ポリオキシアルキレン系重合体の混合物及び硬化性組成物
WO2021206026A1 (ja) 硬化性組成物
JP2021075722A (ja) 硬化性組成物
JP2021055017A (ja) 硬化性組成物
JP7469875B2 (ja) 硬化性組成物及びその硬化物
CN113795547B (zh) 固化性组合物及固化物
WO2023162664A1 (ja) 硬化性組成物およびその利用
WO2023171425A1 (ja) ポリオキシアルキレン系重合体の混合物および硬化性組成物
WO2022024997A1 (ja) 有機重合体、硬化性組成物、及び硬化物
JP2021055010A (ja) 硬化性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21783817

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022514049

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021783817

Country of ref document: EP

Effective date: 20221109