WO2021204496A1 - Verfahren zur herstellung einer keramischen biegeform für glasscheiben - Google Patents

Verfahren zur herstellung einer keramischen biegeform für glasscheiben Download PDF

Info

Publication number
WO2021204496A1
WO2021204496A1 PCT/EP2021/056478 EP2021056478W WO2021204496A1 WO 2021204496 A1 WO2021204496 A1 WO 2021204496A1 EP 2021056478 W EP2021056478 W EP 2021056478W WO 2021204496 A1 WO2021204496 A1 WO 2021204496A1
Authority
WO
WIPO (PCT)
Prior art keywords
bending
ceramic
shape
contact surface
workpiece
Prior art date
Application number
PCT/EP2021/056478
Other languages
English (en)
French (fr)
Inventor
Achim ZEICHNER
Peter Schillings
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to CN202180001219.1A priority Critical patent/CN113784931A/zh
Publication of WO2021204496A1 publication Critical patent/WO2021204496A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/30Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor to form contours, i.e. curved surfaces, irrespective of the method of working used
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • C03B23/0302Re-forming glass sheets by bending by press-bending between shaping moulds between opposing full-face shaping moulds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5024Silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5027Oxide ceramics in general; Specific oxide ceramics not covered by C04B41/5029 - C04B41/5051
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5064Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates

Definitions

  • the invention relates to a method for producing a ceramic bending mold for glass panes, a correspondingly produced ceramic bending mold and the use thereof.
  • glazings typically have a bend.
  • Various methods of creating such a bend are known.
  • gravity bending or sag bending the glass pane, which is flat in its initial state, is placed on the support surface of a bending mold and heated to at least its softening temperature so that it rests against the support surface under the influence of gravity.
  • press bending process the disc is placed between two complementary tools (bending molds) which together exert a pressing effect on the disc in order to produce the bend.
  • Devices and methods for bending glass panes are sufficiently known to the person skilled in the art from a large number of publications. Purely by way of example, reference is made to EP1358131A1, EP2463247A1, WO2017178733A1, DE10314267B3, WO2007125973A1, EP0677488A2 and W09707066A1.
  • the bending molds are produced specifically for each model of a glass pane, with the contact surfaces of the bending molds defining the bend, i.e. the three-dimensional geometry of the glass pane.
  • the contact surfaces of the bending molds defining the bend, i.e. the three-dimensional geometry of the glass pane.
  • GB2320021A and EP1391433A2 disclose methods for producing a ceramic bending mold for glass panes, wherein a ceramic starting workpiece is provided as a monolithic block and the bending mold is carried out with a suitable contact surface machining processes can be worked out from the initial workpiece.
  • the production of large monolithic blocks is complex and can be associated with a high loss of material, especially if the bending shape has smaller dimensions than the monolithic block.
  • JPH08119651A discloses another method for manufacturing a ceramic bending mold for glass sheets. Ceramic blocks are arranged on a base which approximates the shape of the contact surface, that is to say in particular is curved, and connected to one another to form an initial workpiece. The contact surface is machined from this initial workpiece, opposite the base, using machining processes.
  • the choice of ceramic blocks depends on the geometry of the base or the contact surface: smaller blocks are used in areas with greater curvature than in areas with less curvature. As a result, ceramic blocks of different sizes have to be kept in stock or manufactured, which is complex.
  • the bending molds must be sufficiently temperature stable to withstand the high temperatures involved in glass bending.
  • the bending molds should be easy to manufacture, and the manufacturer should be given a great deal of freedom with regard to the design of the contact surface of the bending mold.
  • the present invention is based on the object of providing a method for producing such a bending form.
  • the method according to the invention is used to produce a ceramic bending mold for glass panes, more precisely a ceramic bending mold for bending glass panes.
  • the method according to the invention comprises at least the following method steps:
  • the method according to the invention for producing a ceramic bending mold can be produced quickly and inexpensively, in particular in comparison to metal bending molds, and is therefore particularly suitable for producing prototypes.
  • the method is also comparatively easy to carry out, so that the ceramic bending mold can be produced on site by the glass manufacturer if the necessary materials are appropriately stored and does not have to be commissioned. It is also easier to produce a series of different bending shapes for a model of a glass pane in order to compare the quality of the products made with them.
  • the ceramic bending mold is temperature-resistant to a high degree, so that it can be used for glass bending processes.
  • the ceramic bending form also has a lower weight than conventional metal bending forms.
  • the ceramic bending mold produced according to the invention is intended for bending glass panes, in particular for bending glass panes which have been heated to their softening temperature.
  • the glass panes can be plastically formed by heating.
  • the glass panes are typically heated to a temperature of over 500 ° C., in particular from 500 ° C. to 700 ° C., whereby they are softened and deformable and can be shaped by the contact surface of the bending mold.
  • Typical temperatures when bending panes made of soda-lime glass are at least 600 ° C, for example about 650 ° C.
  • the bending form has a contact surface.
  • the contact surface is that surface of the bending mold which is intended to come into direct or indirect contact with the glass pane in order to deform it and thereby bend it.
  • the bending form is a so-called full form with a full-surface contact surface which is provided for coming into contact with a large part of the surface of the glass pane.
  • a bending shape with a frame-like contact surface can also be produced using the method according to the invention.
  • Such a bending shape can also be referred to as a ring (bending ring) or frame (frame shape).
  • the frame-like contact surface is intended to come into contact only with a circumferential edge area of the glass pane, while the majority of the glass pane surface has no contact with the bending form.
  • the bending form according to the invention is not limited with regard to the type of glass bending for which it can be used.
  • the bending shape also known as the bending tool can be an upper or a lower bending shape.
  • a lower bending shape is understood to mean a shape which touches the lower surface of the glass pane facing the ground or is assigned to it and acts on it.
  • An upper bending shape is understood to mean a shape which touches the upper surface of the glass pane facing away from the ground or is assigned to it and acts on it.
  • the contact surface points downwards and faces the ground; in the case of a lower bending form, the contact surface points upwards and faces away from the ground.
  • the bending form (for use in hot bending) can be a gravity bending form, a press bending form, or a suction bending form.
  • a gravity bending mold is a lower bending mold on which the glass pane is placed and, after being heated, deforms under the influence of gravity and adapts to the shape of the contact surface.
  • press bending in the narrower sense, the pane of glass is pressed between two bending molds, typically an upper and a lower bending mold, and thus deformed.
  • press bending in which the glass pane is pressed (“blown”) against an upper bending mold by an upwardly directed air stream.
  • press bending the pane of glass is pressed against an upper bending form by an upward air flow and then pressed between this upper bending form and a complementary lower bending form.
  • suction bending the glass pane is sucked onto the contact surface, with holes typically being made in the contact surface in order to convey the suction effect in the case of full molds.
  • press and suction bending are often combined, for example, in addition to the pressing effect, the glass pane is sucked onto the upper bending mold.
  • the bending form according to the invention can be used not only for hot bending, but also as a bending form for cold bending processes.
  • the production of upper press and / or suction bending forms with full-surface contact surface, of lower press-bending forms with frame-like contact surface and of lower gravity bending forms with frame-like contact surfaces or full-surface contact surfaces for use for hot bending is preferred.
  • These bending forms have proven particularly useful for the production of optically high-quality glass panes.
  • the bending mold according to the invention is an upper press and / or suction bending mold with a full-surface contact surface.
  • Such bending shapes are common for a large number of window types in the vehicle sector and allow the realization of a wide range of window geometries with good cycle times and quality.
  • the bending mold according to the invention is provided for the production of a prototype or a small series.
  • the bending mold is only intended for the production of one or a few prototypes or a few glass panes as part of a small series, it does not have to have the long-term stability of a conventional metallic bending mold.
  • the shape of the bending shape is determined, which can also be referred to as the shape, geometric shape or geometry of the bending shape. This includes, in particular, the outlines of the desired bending shape.
  • the shape of the contact surface must be determined which the bending shape according to the invention should have.
  • the shape of the contact surface depends on the shape of the glass pane to be bent with it and is determined or determined by this.
  • the required contact area is preferably determined using computer-aided design using standard CAD methods (computer-aided design). However, other methods are also known which can do without CAD calculations. In this way, the desired contact surface can also be iteratively approximated by manual or machine-aided reworking of an initial shape.
  • the shape of the contact surface usually does not correspond exactly to the shape of the glass pane, but is a compensated shape of the contact surface, which takes into account a sagging of the glass pane under its force of gravity after the action of the bending shape or a viscoelastic springback.
  • the simulations to determine the compensated contact area are based on the bending furnace to be used and the bending method to be used.
  • the bending temperature and the dwell time in the bending furnace as well as the type of bending tools used are decisive here.
  • the compensated shape of the contact surface corresponds to the intermediate shape of the glass pane directly after the action of the bending shape, which is calculated in such a way that, taking into account the subsequent deformation of the glass pane, in particular due to sagging under the influence of gravity or through viscoelastic springback, the desired, final Shape of the glass pane results.
  • the glass pane, to the shape of which the contact surface is adapted is, in a preferred embodiment, a window pane of a vehicle, in particular a motor vehicle.
  • the dimensions of the bending form are to be understood as follows in the context of the invention.
  • the two dimensions that are visible in plan view of the contact surface are called length and width, with the larger of the two dimensions being defined as length will.
  • the height of the bending shape extends perpendicular to the height and width (that is, essentially perpendicular to the contact surface), the height dimension therefore follows the optical axis when the contact surface is viewed from above.
  • the dimensions of the contact area are to be understood in an analogous manner. When looking at the contact surface from above, the length and width are visible, with the larger of the two dimensions being defined as the length.
  • the height or depth of the contact surface results from the curved shape (depth of curvature) and can be defined as the distance between the most distant points on the contact surface measured along the height dimension of the bending shape.
  • the length and width of the bending form preferably corresponds to the length and width of the contact surface.
  • the bending shape can then be produced in a particularly material-saving manner. In principle, however, it is also possible for the (maximum occurring) length and / or width of the bending shape to be greater than the length or width of the contact surface.
  • the actual contact surface can be embedded in a surface of the bending mold (concave contact surface) or protrude from the surface of the bending mold (convex contact surface), further areas of this surface being adjacent to the contact surface or surrounding the contact surface, or the contact surface can be in be carried in the manner of a stamp on a type of base which protrudes beyond the contact surface (that is to say has a greater width and / or length.
  • the height of the bending form must at least correspond to the depth of the contact surface, i.e. the extension of the contact surface along its direction of curvature perpendicular to its length and width.
  • an additional height is preferably provided in order to ensure a minimum thickness of the bending mold.
  • the minimum thickness of the bending form ie the thickness at the thinnest point
  • the height of the bending form results from the sum of the minimum thickness and the depth of the contact surface (depth of bend).
  • the depth of the contact surface in conventional windows in the vehicle area is from 5 mm to 300 mm, in particular from 60 mm to 200 mm.
  • the height of the bending form is consequently at least 15 mm, in particular at least 70 mm and is typically in a range from 5 mm to 400 mm, in particular from 70 mm to 350 mm.
  • the bending shape has, on the one hand, a thickness that is advantageous for stability and, on the other hand, an advantageously low weight.
  • a ceramic starting workpiece is then provided which has a size which is suitable for enclosing or accommodating the entire shape of the bending mold.
  • the starting workpiece thus has a length which corresponds at least to the length of the bending form, a width which corresponds at least to the width of the bending form, and a height which corresponds at least to the height of the bending form.
  • the dimensions of the initial workpiece are defined according to those of the bending shape.
  • the starting workpiece is assembled from standard components in the required size.
  • a shape of the initial workpiece is first determined, which can also be referred to as the shape, geometric shape or geometry of the initial workpiece.
  • the shape of the starting workpiece has a size which is suitable on the one hand to include or accommodate the entire shape of the bending mold and which is suitable on the other hand to be assembled from a plurality of standard ceramic components.
  • a large number of standard components are then put together in the form of the shape of the starting workpiece, with standard components that are adjacent to one another being connected to one another with a (preferably ceramic) adhesion promoter.
  • the standard components are to be understood as meaning ceramic blocks which are available for the production of the starting workpiece.
  • the glass manufacturer will purchase the standard components from a supplier.
  • the standard component is then a ceramic block, preferably the smallest ceramic block that the supplier can deliver.
  • All of the standard components used to produce the initial workpiece preferably have the same shape and the same dimensions; essentially identical standard components are used.
  • the method is then particularly flexible and easy to carry out because only one type of standard component has to be kept in stock. In principle, however, it is also possible to build up the initial workpiece from standard components of different sizes or even different shapes (in terms of the type of geometric body).
  • the shape of the initial workpiece is in the form of a parallelepiped.
  • Usual standard components also have the shape of a parallelepiped. Available ceramic blocks are typically cuboid. Therefore, according to the invention, the standard components are essentially cuboid and the parallelepiped of the starting workpiece is essentially a cuboid.
  • a cuboid starting workpiece allows the user great freedom with regard to the design of the contact surface of the bending form, because the shape of the initial workpiece is independent of the bending form, i.e. the initial workpiece does not have to be adapted to the specific design of the bending form, in particular the contact surface.
  • Essentially here means that slight deviations from the ideal cuboid shape are permissible, as they occur with real components. This is especially true for rounded edges and corners or for slightly curved surfaces.
  • the standard components can also have depressions or passages, as long as the outline shape is cuboid.
  • the length, width and height of the parallelepiped are each an integral multiple of one of the dimensions of the standard component (each of the dimensions of the standard component being assigned to only one dimension of the parallelepiped).
  • the length of the parallelepiped is therefore an integral multiple of a first dimension of the standard component
  • the width of the parallelepiped is an integral multiple of a second dimension of the standard component
  • the height of the parallelepiped is an integral multiple of a third dimension of the standard component.
  • the length, width and height of the parallelepiped are each an integral multiple of the length, width and height of the standard component.
  • the length of the parallelepiped is the length of the standard part multiplied by n
  • the width of the parallelepiped is the width of the standard part multiplied by m
  • the height of the parallelepiped is the height of the standard part multiplied by /, where n, m and / are integers.
  • the thickness of the bonding agent layer is usually negligible, so that the real starting workpiece is only insignificantly larger than the originally calculated shape of the starting workpiece. In principle, however, it is also possible to include the thickness of the adhesion promoter layer in the planning.
  • the length of the parallelepiped corresponds to the length of the standard component multiplied by n plus the total thickness of (n-1) adhesive layers
  • the width of the parallelepiped corresponds to the width of the standard component multiplied by m plus the total thickness of (m-1) adhesive layers
  • the height of the Parallelepipeds of the height of the standard component multiplied by / plus the total thickness of (1-1) layers of adhesion promoter
  • integer multiple is to be understood in the sense of the invention in the mathematical sense, thus includes the case that the factors n, m and / are equal to 1. In the case of a “real integer multiple”, however, the respective integer factor is greater than or equal to 2.
  • At least one dimension of the cuboid starting workpiece (selected from length, width and height) must be a real one be an integer multiple of one dimension of the standard ceramic component, because otherwise the standard component would correspond to the initial workpiece and the latter could not be composed of several standard components. It is therefore possible that the standard components have the same length and width as the initial workpiece and the height of the initial workpiece is a real multiple of the height of the standard components, so that several standard components are stacked on top of one another to form the initial workpiece.
  • the length or width of the initial workpiece is a real multiple of a dimension of the standard component and the other dimensions of the standard component and the initial workpiece match one another.
  • two or all three of the dimensions of the cuboid starting workpiece selected from length, width and height
  • the dimensions of the standard component are referred to as length, width and height with decreasing extent.
  • the length is the longest dimension and the height the shortest dimension of the standard component.
  • the standard components are preferably assembled in such a way that side surfaces of adjacent standard components face one another, are arranged in congruence and are plane-parallel. All standard components preferably have the same orientation in space, so that the various standard components can be geometrically transferred into one another by simple displacement (simple translation symmetry). However, a different arrangement is also conceivable, particularly in the case of suitably dimensioned cuboid standard components. For example, if the width and height of the cuboids are the same and the length of the cuboids is twice the height / width, some cuboids can be placed upright and others horizontally.
  • the parallelepiped expediently has the smallest possible (minimum) size which is suitable for enclosing or accommodating the entire shape of the bending form. In this way, the starting workpiece can be produced in a particularly material-saving manner. In principle, however, it is also possible to use a larger parallelepiped, even if this requires an unnecessarily large number of standard components.
  • the ceramic adhesion promoter for connecting the standard components is preferably cement or a ceramic adhesive, for example based on micro- or nanoparticulate particles, in particular based on the ceramic of the starting workpiece.
  • the bending form with the contact surface is produced according to the invention from this starting workpiece.
  • a subtractive manufacturing process is used here, with the bending shape being worked out of the initial workpiece by removing material, in particular a cutting manufacturing process such as milling, grinding, planing, filing, rasping or chiseling, preferably milling.
  • Production is preferably automated with the aid of CAD processing, the CAD data of the bending shape being made available to a processing machine and the processing machine using the CAD data to work out the bending shape from the initial workpiece. Machining from ceramics is not very time-consuming or costly and is therefore particularly suitable.
  • the length and width of the initial workpiece correspond to the length and width of the bending form. Then only that surface of the starting workpiece has to be machined from which the contact surface is to be machined. It is also advantageous if the height of the initial workpiece corresponds to the (maximum occurring) height of the bending shape, so that the required material removal is minimal.
  • the dimensions of the bending shape can be set so that they can be assembled from standard components. Alternatively, however, it is also possible for the length, width and / or height of the starting workpiece to be greater than the length, width or height of the bending mold. This only increases the cost of machining.
  • the ceramic starting workpiece is arranged on a support plate before the bending form is produced therefrom with the aid of machining processes.
  • This provides a stable base for the initial workpiece.
  • a standardized support plate can provide orientation points for automated, CAD-supported processing.
  • the support plate can be mounted so that it can rotate, pivot and / or tilt, so that the initial workpiece can be moved by means of the support plate during processing.
  • the support plate preferably has a width and length which corresponds at least to the width and length of the initial workpiece, so that the entire initial workpiece the support plate can be placed without protruding.
  • the support plate is preferably made of metal, in particular steel, for example stainless steel.
  • oxidic ceramics oxide ceramics
  • Suitable oxide ceramics are, for example, based on aluminum oxide (Al 2 O 3 ), silicon aluminum oxide, zirconium dioxide (Zr0 2 ), titanium (IV) oxide (PO 2 ), magnesium oxide (MgO), zinc oxide (ZnO), aluminum titanate (AI 2 O 3 + T1O 2 ), barium titanate (BaO + T1O 2 ).
  • silicate ceramics can be used, especially mullite ceramics.
  • ceramics can also be used, for example other oxide or silicate ceramics or non-oxidic ceramics (in particular based on silicon carbide (SiC), boron nitride (BN), boron carbide (B 4 C), silicon nitride, aluminum nitride, molybdenum disilicide or tungsten carbide) .
  • SiC silicon carbide
  • BN boron nitride
  • B 4 C boron carbide
  • silicon nitride aluminum nitride
  • molybdenum disilicide or tungsten carbide silicon carbide
  • oxide or silicate ceramics or non-oxidic ceramics in particular based on silicon carbide (SiC), boron nitride (BN), boron carbide (B 4 C), silicon nitride, aluminum nitride, molybdenum disilicide or tungsten carbide
  • the ceramic material should have certain properties, including: a low coefficient of thermal expansion, in particular for bending molds for hot bending, so that the bending mold is subject to the least possible shape changes in the bending furnace, high thermal shock resistance, high temperature resistance, preferably up to temperatures of at least 750 ° C, a high porosity, whereby the ceramic is light in weight; an open porosity can, under certain circumstances, ensure air permeability, so that the glass pane can be subjected to an air stream or a suction effect without the need to drill through-holes for this purpose; a high mechanical stability, which in addition to a lack of susceptibility to damage also provides the possibility of the starting workpiece or the standard components used for this purpose can / can be manufactured in sufficient numbers without great effort; the mechanical stability is particularly advantageous for press bending molds on which large forces act when used as intended; good machinability with machining processes, Good availability as close as possible to the location in order to keep production costs low.
  • a low coefficient of thermal expansion in particular for bending molds for
  • ceramic refractory materials which are also used as ceramic insulating materials, are preferably used. With regard to the aforementioned parameters, these are advantageous and cost-effective compared to technical ceramics.
  • the bending form can optionally be provided with bushings, depressions, domes, threads, tongue and groove connecting elements, chamfers or other design elements. These can be used, for example, to screw or rivet the starting workpiece to the support plate or to the bending form with a connection unit.
  • feedthroughs can also be used to exert a suction effect on the glass pane during glass bending in order to suck it up to the contact surface, if the bending furnace is designed for this.
  • the bushings are distributed over the contact surface, in particular evenly distributed, and extend from the contact surface to the opposite surface of the bending mold.
  • At least the contact surface is preferably cleaned after the machining of the bending form.
  • the contact surface is refined, in particular by polishing and / or coating.
  • the coating is preferably a ceramic coating, particularly preferably based on boron nitride or an oxidic ceramic or a silicate ceramic. These coatings give the contact surface a high surface quality and produce a high level of resistance to damage and scratch resistance, which is particularly advantageous when the contact surface is to be coated with a steel mesh for bending.
  • a metal connection unit is preferably attached to the bending mold, which is used to attach the ceramic bending mold in the bending furnace or another bending device.
  • the connection unit thus provides, as it were, an interface for installation in the bending device, which in particular corresponds to the interface of conventional metal bending forms.
  • the connection unit is made of metal, in particular steel, for example stainless, temperature-resistant steel.
  • the connection unit is preferably attached to the bending mold opposite the contact surface, that is to say on that surface of the bending mold which is opposite the contact surface.
  • the surface opposite the contact area is for this purpose preferably flat.
  • the type of connection unit depends on the bending furnace used.
  • the attachment unit is preferably attached to the bending form by screwing or hanging / pushing into a receptacle provided for this purpose (for example in the manner of a drawer).
  • the connection unit preferably has a plate on which the bending form is attached, in particular a standardized plate which is suitable for attaching differently configured bending form.
  • the ceramic bending mold is intended to be installed in a glass bending device.
  • the bending mold is installed in such a glass bending device after its manufacture.
  • the glass bending device has a bending station in which the required bending molds (including at least one ceramic bending mold according to the invention) are arranged and in which the shaping of the glass pane takes place by means of the bending molds.
  • the bending device also has means for heating the glass pane to the softening temperature.
  • the bending station is arranged in a heated section of the bending device (bending chamber) (“hot bending”).
  • the heating means are either arranged in the bending chamber itself (combined heating and bending chamber) or in a separate heating chamber, for example in the form of a tunnel oven, through which the glass panes pass before entering the bending chamber.
  • the bending station is arranged in a non-heated section of the bending device (“cold bending”).
  • the glass panes then pass through a heating chamber and are then bent without further heating, although they must of course not have cooled below their softening temperature.
  • Typical bending devices also include means for moving the sheet of glass through the heating chamber and bending station.
  • the moving means can be designed, for example, as a roller or treadmill conveyor system, the glass panes either resting directly on the roller or treadmill conveyor system or on a transport form, in particular a transport frame, which is moved by the roller or treadmill conveyor system.
  • the ceramic bending form is installed in a bending device, preferably via the metal connection unit, and used there to bend one or more glass panes.
  • the contact surface is covered with a steel mesh, as is also common with conventional bending molds.
  • the steel mesh prevents direct contact between the contact surface and the glass pane, which makes the surface quality and optical quality of the curved glass pane advantageous is designed.
  • the steel mesh is particularly preferably attached to the metal connection unit, in particular the plate for fastening the bending form. Using a standardized fastening plate with fastening means for the steel mesh (for example hooks or eyes), the same steel mesh, or the same type of steel mesh, can be attached to different bending forms.
  • the invention further comprises a ceramic bending mold, manufactured or producible with the method according to the invention.
  • the ceramic bending mold is composed of a plurality of standard ceramic components which are connected to one another with an adhesion promoter.
  • the bending shape in particular its contact surface, is machined from this composite starting workpiece using a machining process.
  • the invention also includes the use of the ceramic bending mold according to the invention for bending (in particular hot bending) glass panes, in particular for producing prototypes or small series with a maximum of 1000 glass panes.
  • the glass panes are preferably window panes of rail vehicles or motor vehicles, in particular windshields, rear windows, side windows or roof panes of passenger cars.
  • the glass pane to be bent preferably contains soda-lime glass, as is customary for window panes, but can also contain other types of glass, such as borosilicate glass, aluminosilicate glass or quartz glass.
  • the thickness of the glass pane is typically from 0.5 mm to 10 mm, preferably 1 mm to 5 mm. Typical temperatures for bending
  • Glass panes are from 500 ° C to 700 ° C, in particular around 650 ° C when bending panes made of soda-lime glass.
  • the invention is explained in more detail below with reference to a drawing and exemplary embodiments.
  • the drawing is a schematic representation and is not true to scale. The drawing does not restrict the invention in any way.
  • FIG. 2 shows a cross section through an embodiment of the ceramic bending mold according to the invention during the bending of a glass pane
  • FIG. 3 shows a perspective view of an initial workpiece according to the invention
  • FIG. 5 shows a flow diagram of an embodiment of the method according to the invention.
  • FIG. 1 schematically shows various method steps of an embodiment of the method according to the invention for producing a ceramic bending mold.
  • the desired shape K 'of the bending form K is calculated using a conventional CAD method.
  • the bending form should have a contact surface F-K which is intended to come into contact with a pane of glass in order to bend it.
  • the required shape of the contact surface F-K is calculated in particular as a compensated contact surface, in the calculation of which the sagging after bending was taken into account in order to arrive at the desired final pane geometry.
  • the shape T is determined, which a ceramic starting workpiece 1 can have, so that it can enclose the entire bending shape K (FIG. 1 a).
  • the shape T of the initial workpiece 1 is cuboid in the present case.
  • a ceramic starting workpiece 1 is then produced in the shape T (FIG. 1b).
  • the starting workpiece 1 is assembled from standard components 2.
  • the standard components 2 are rectangular ceramic blocks of uniform size, which a supplier can deliver.
  • the shape T is selected such that the length L, the width B and the height H of the starting workpiece 1 are each an integral multiple of the length L ', the width B' and the height H 'of the standard ceramic component 2.
  • the initial workpiece is produced by assembling the standard components 2, with adjacent standard components 2 being connected to one another via a cement layer (not shown) will.
  • the standard components 2 are made, for example, of an oxidic material such as aluminum oxide (Al 2 O 3 ).
  • the starting workpiece 1 is then arranged for further processing on a support plate 4 which is made, for example, of stainless steel (FIG. 1c). Subsequently, the bending form K in the shape K 'with the contact surface F-K is worked out of the starting workpiece 1 by a cutting manufacturing process such as milling (FIG. 1d). The processing is preferably done automatically on the basis of the CAD data.
  • the starting workpiece 1 can now optionally be provided with passages, depressions or other functional elements which are used, for example, to fasten the bending form K.
  • a suction effect can be exerted on the glass pane later when the glass is bent through feedthroughs.
  • the contact surface F-K can optionally be ground or coated in order to increase its surface quality.
  • Glass bending devices typically have standardized receptacles for exchangeable bending forms.
  • a metal connection unit 5 for example made of stainless steel (FIG. 1e).
  • the connection unit 5 has, for example, a planar fastening plate to which the bending form K is attached (for example screwed) and, opposite this, a section which is complementary to receiving the glass bending device and can be inserted into it.
  • the fastening plate of the connection unit 5 can be equipped with hooks or other fastening means to which a steel mesh (not shown) can be fastened, with which the contact surface F-K is to be covered for glass bending.
  • FIG. 2 shows schematically the ceramic bending form K produced according to FIG. 1 with the connection unit 5 when used as intended.
  • the bending mold K is installed in a bending furnace (not shown) and is used to bend a pane of glass I.
  • the contact surface FK is covered with a steel fabric (not shown) and acts on the heated and softened glass pane I, whereby the glass pane I is bent according to the shape of the contact surface FK.
  • These It can act, for example, by blowing the glass pane I onto the contact surface FK by means of an upwardly directed air stream, or by pressing the glass pane I between the bending mold K and a complementary lower bending mold (not shown).
  • the glass pane I consists for example of soda-lime glass, has a thickness of 3.5 mm and is intended as the rear window of a passenger car.
  • FIG. 3 shows a perspective illustration of the initial workpiece 1 with the length L, the width B and the height H, which is composed of standard components 2 with the length L ', the width B' and the height H '.
  • the length L, the width B and the height H are each real integer multiples of the length L ', the width B' and the height H '.
  • FIG. 4 shows a perspective illustration of a further starting workpiece 1 according to the invention with the length L, the width B and the height H, which is composed of standard components 2 with the length L ', the width B' and the height H '.
  • the length L corresponds to the length L 'and the width B corresponds to the width B' - the length L and the width B are therefore in the mathematical sense integer multiples of the length L 'and the width B' with the factor 1.
  • the height H is on the other hand a real integer multiple of the height H '.
  • Several standard components 2 are stacked on top of one another in order to form the starting workpiece 1.
  • FIG. 5 shows an exemplary embodiment of the method according to the invention on the basis of a flow chart.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer keramischen Biegeform (K) für Glasscheiben, umfassend die folgenden Verfahrensschritte: (A) Bestimmung einer Gestalt (K') der Biegeform (K), welche eine Kontaktfläche (F-K) aufweist, (B) Bereitstellung eines quaderförmigen keramischen Ausgangswerkstücks (1) mit einer Größe, die geeignet ist, die Gestalt (K') der Biegeform (K) einzuschließen, (C) Herstellung der Biegeform (K) mit der Kontaktfläche (F-K) aus dem Ausgangswerkstück (1) durch ein spanendes Fertigungsverfahren. Das Ausgangswerkstück (1) wird aus quaderförmigen Standardbauteilen (2) zusammengesetzt, welche mittels eines keramischen Haftvermittlers miteinander verbunden werden.

Description

Verfahren zur Herstellung einer keramischen Biegeform für Glasscheiben
Die Erfindung betrifft ein Verfahren zur Herstellung einer keramischen Biegeform für Glasscheiben, eine dementsprechend hergestellte keramische Biegeform sowie deren Verwendung.
Insbesondere im Bereich der Kraftfahrzeuge weisen Verglasungen typischerweise eine Biegung auf. Es sind verschiedene Verfahren zur Erzeugung einer solchen Biegung bekannt. Beim sogenannten Schwerkraftbiegen (auch gravity bending oder sag bending) wird die im Ausgangszustand plane Glasscheibe auf der Auflagefläche einer Biegeform angeordnet und auf mindestens ihre Erweichungstemperatur erwärmt, so dass sie sich unter dem Einfluss der Schwerkraft an die Auflagefläche anlegt. Bei den sogenannten Pressbiegeverfahren wird die Scheibe zwischen zwei komplementären Werkzeugen (Biegeformen) angeordnet, die gemeinsam auf die Scheibe eine Presswirkung ausüben, um die Biegung zu erzeugen. Vorrichtungen und Verfahren zum Biegen von Glasscheiben sind dem Fachmann hinlänglich aus einer Vielzahl von Veröffentlichungen bekannt. Lediglich beispielhaft sei auf EP1358131A1, EP2463247A1, WO2017178733A1, DE10314267B3, WO2007125973A1 , EP0677488A2 und W09707066A1 verwiesen.
Herkömmliche Biegeformen sind aus Metall gefertigt, wobei die Kontaktfläche optional mit einem Stahlgewebe überzogen wird, um die Glasoberfläche zu schonen. Metallene Biegeformen sind stabil und haben sich für den Einsatz in der industriellen Massenfertigung bewährt. Ihre Herstellung ist aber recht aufwändig und kostenintensiv.
Die Biegeformen werden für jedes Modell einer Glasscheibe spezifisch hergestellt, wobei die Kontaktflächen der Biegeformen die Biegung, also die dreidimensionale Geometrie der Glasscheibe festlegt. Bevor ein bestimmtes Modell einer Glasscheibe in die Massenfertigung eintritt, ist es häufig erforderlich oder gewünscht, einen Prototypen herzustellen, an dem beispielsweise Tests durchgeführt werden können oder der potentiellen Kunden präsentiert werden kann. Bislang wurde typischerweise zur Herstellung des Prototyps ebenfalls eine oder mehrere metallene Biegeformen gefertigt. Dadurch dauert die Herstellung des Prototyps lange und ist kostspielig.
GB2320021A und EP1391433A2 offenbaren Verfahren zur Herstellung einer keramischen Biegeform für Glasscheiben, wobei ein keramisches Ausgangswerkstück als monolithischer Block bereitgestellt wird und die Biegeform mit einer geeigneten Kontaktfläche durch spanende Fertigungsverfahren aus dem Ausgangswerkstück herausgearbeitet werden. Die Herstellung großer monolithischer Blöcke ist aber aufwändig und kann mit einem hohen Materialverlust einhergehen, insbesondere wenn die Biegeform kleinere Dimensionen aufweist als der monolithische Block.
JPH08119651A offenbart ein weiteres Verfahren zur Herstellung einer keramischen Biegeform für Glasscheiben. Auf einer Unterlage, welche an die Form der Kontaktfläche angenähert ist, also insbesondere gebogen ist, werden keramische Blöcke angeordnet und miteinander zu einem Ausgangswerkstück verbunden. Aus diesem Ausgangswerkstück wird, der Unterlage gegenüberliegend, die Kontaktfläche durch spanende Fertigungsverfahren herausgearbeitet. Die Wahl der keramischen Blöcke richtet sich dabei nach der Geometrie der Unterlage beziehungsweise der Kontaktfläche: in Bereichen mit starker Krümmung werden kleinere Blöcke eingesetzt als in Bereichen mit geringerer Krümmung. Dadurch müssen keramische Blöcke unterschiedlicher Größe vorrätig gehalten oder hergestellt werden, was aufwändig ist.
Es besteht daher Bedarf an Biegeformen zum Biegen von Glasscheiben, insbesondere zur Prototypenherstellung, die schnell und kostengünstig herstellbar sind. Die Biegeformen müssen ausreichend temperaturstabil sein, um die hohen Temperaturen beim Glasbiegen zu überstehen. Die Biegeformen sollen einfach herstellbar sein, wobei dem Hersteller eine große Freiheit hinsichtlich der Gestaltung der Kontaktfläche der Biegeform ermöglicht werden soll. Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung einer solchen Biegeform bereitzustellen.
Die Aufgabe der Erfindung wird erfindungsgemäß gelöst durch ein Verfahren gemäß dem unabhängigen Anspruch 1. Bevorzugte Ausführungen gehen aus den abhängigen Ansprüchen hervor.
Das erfindungsgemäße Verfahren dient der Herstellung einer keramischen Biegeform für Glasscheiben, genauer gesagt einer keramischen Biegeform zum Biegen von Glasscheiben. Das erfindungsgemäße Verfahren umfasst zumindest die folgenden Verfahrensschritte:
(A) Bestimmung der Gestalt der Biegeform, welche eine Kontaktfläche aufweist,
(B) Bereitstellung eines keramischen Ausgangswerkstücks mit einer Größe, die geeignet ist, die gesamte Gestalt der Biegeform einzuschließen,
(C) Herstellung der Biegeform mit der Kontaktfläche aus dem Ausgangswerkstück durch ein spanendes Fertigungsverfahren. Das erfindungsgemäße Verfahren zur Herstellung einer keramischen Biegeform ist schnell und kostengünstig herstellbar, insbesondere im Vergleich zu metallenen Biegeformen, und daher zur Herstellung von Prototypen in besonderem Maße geeignet. Das Verfahren ist zudem vergleichsweise einfach durchführbar, so dass die keramische Biegeform bei geeigneter Bevorratung der erforderlichen Materialien vom Glashersteller selbst vor Ort hergestellt werden kann, und nicht in Auftrag gegeben werden muss. Es ist so auch einfacher, eine Serie von verschiedenen Biegeformen für ein Modell einer Glasscheibe herzustellen, um die Güte der damit hergestellten Produkte zu vergleichen. Die keramische Biegeform ist in hohem Maße temperaturbeständig, so dass sie für Glasbiegeverfahren einsetzbar ist. Die keramische Biegeform weist zudem ein geringeres Gewicht auf als herkömmliche metallene Biegeformen. Das sind große Vorteile der vorliegenden Erfindung.
Die erfindungsgemäß hergestellte keramische Biegeform ist zum Biegen von Glasscheiben vorgesehen, insbesondere zum Biegen von Glasscheiben, die auf ihre Erweichungstemperatur erhitzt wurden. Durch das Erhitzen sind die Glasscheiben plastisch formbar. Bei solchen Verfahren werden die Glasscheiben typischerweise auf einer Temperatur von über 500°C, insbesondere von 500°C bis 700°C erhitzt, wodurch sie erweicht und verformbar wird und durch die Kontaktfläche der Biegeform geformt werden kann. Typische Temperaturen beim Biegen von Scheiben aus Kalk-Natron-Glas betragen mindestens 600°C, beispielsweise etwa 650°C.
Die Biegeform weist eine Kontaktfläche auf. Die Kontaktfläche ist diejenige Oberfläche der Biegeform, welche bestimmungsgemäß dafür vorgesehen ist, unmittelbar oder mittelbar mit der Glasscheibe in Kontakt zu kommen, um sie zu verformen und dadurch zu biegen. In einer bevorzugten Ausführung ist die Biegeform eine sogenannte Vollform mit einer vollflächigen Kontaktfläche, die dafür vorgesehen ist, mit einem Großteil der Glasscheibenoberfläche in Kontakt zu kommen. Grundsätzlich kann aber auch eine Biegeform mit einer rahmenartigen Kontaktfläche mit dem erfindungsgemäßen Verfahren hergestellt werden. Eine solche Biegeform kann auch als Ring (Biegering) oder Rahmen (Rahmenform) bezeichnet werden. Die rahmenartige Kontaktfläche ist dafür vorgesehen, nur mit einem umlaufenden Randbereich der Glasscheibe in Kontakt zu kommen, während der Großteil der Glasscheibenoberfläche keinen Kontakt zur Biegeform hat.
Die erfindungsgemäße Biegeform ist nicht beschränkt hinsichtlich der Art des Glasbiegens, für das sie eingesetzt werden kann. Die Biegeform, die auch als Biegewerkzeug bezeichnet werden kann, kann eine obere oder eine untere Biegeform sein. Unter einer unteren Biegeform wird im Sinne der Erfindung eine Form verstanden, welche die untere, dem Erdboden zugewandten Oberfläche der Glasscheibe berührt beziehungsweise ihr zugeordnet ist und auf sie wirkt. Unter einer oberen Biegeform wird eine Form verstanden, die die obere, vom Erdboden abgewandte Oberfläche der Glasscheibe berührt beziehungsweise ihr zugeordnet ist und auf sie wirkt. Bei einer oberen Biegeform weist die Kontaktfläche nach unten und ist dem Erdboden zugewandt, bei einer unteren Biegeform weist die Kontaktfläche nach oben und ist vom Erdboden abgewandt. Die Biegeform (für den Einsatz zum Heißbiegen) kann eine Schwerkraftbiegeform, eine Pressbiegeform oder eine Saugbiegeform sein. Eine Schwerkraftbiegeform ist eine untere Biegeform, auf welche die Glasscheibe aufgelegt wird und sich nach Erwärmung unter dem Einfluss der Schwerkraft verformt und an die Form der Kontaktfläche anpasst. Beim Pressbiegen im engeren Sinne wird die Glasscheibe zwischen zwei Biegeformen, typischerweise einer oberen und einer unteren Biegeform, gepresst und dadurch verformt. Im weiteren Sinne werden auch solche Verfahren als Pressbiegen bezeichnet, bei denen die Glasscheibe durch einen aufwärts gerichteten Luftstrom an eine obere Biegeform angepresst („angeblasen“) wird. Häufig werden beide Varianten des Pressbiegens kombiniert: die Glasscheibe wird durch einen aufwärts gerichteten Luftstrom an eine obere Biegeform angepresst und anschließend zwischen dieser oberen Biegeform und einer komplementären unteren Biegeform gepresst. Beim Saugbiegen wird die Glasscheibe an die Kontaktfläche angesaugt, wobei zur Übermittlung der Saugwirkung bei Vollformen typischerweise Löcher in die Kontaktfläche eingebracht sind. Insbesondere Press- und Saugbiegen werden häufig kombiniert, wobei beispielsweise zusätzlich zur Presswirkung die Glasscheibe an die obere Biegeform angesaugt wird. Wie bereits erwähnt kann die erfindungsgemäße Biegeform nicht nur zum Heißbiegen, sondern auch als Biegeform für Kaltbiegeprozesse eingesetzt werden.
Bevorzugt ist die Herstellung von oberen Press- und/oder Saugbiegeformen mit vollflächiger Kontaktfläche, von unteren Pressbiegeformen mit rahmenartiger Kontaktfläche und von unteren Schwerkraftbiegeformen mit rahmenartigen Kontaktflächen oder vollflächigen Kontaktflächen für den Einsatz zum Heißbiegen. Diese Biegeformen haben sich zur Herstellung optisch hochwertiger Glasscheiben besonders bewährt. Die erfindungsgemäße Biegeform ist in einer besonders bevorzugten Ausgestaltung eine obere Press- und/oder Saugbiegeform mit vollflächiger Kontaktfläche. Solche Biegeformen sind gängig für eine Vielzahl von Scheibentypen im Fahrzeugbereich und erlauben die Realisierung einer großen Bandbreite von Scheibengeometrien bei guter Taktzeit und Qualität. In einer besonders vorteilhaften Ausführung ist die erfindungsgemäße Biegeform vorgesehen zur Fertigung eines Prototyps oder einer Kleinserie. Hierfür ist sie aufgrund der schnellen, einfachen und kostengünstigen Herstellung besonders geeignet. Wenn die Biegeform nur zur Herstellung eines oder einiger weniger Prototypen oder weniger Glasscheiben im Rahmen einer Kleinserie vorgesehen ist, muss sie auch nicht die Langzeitstabilität einer herkömmlichen metallischen Biegeform aufweisen.
Zunächst wird die Gestalt der Biegeform bestimmt, die auch als Form, geometrische Form oder Geometrie der Biegeform bezeichnet werden kann. Darunter sind insbesondere die Umrisse der gewünschten Biegeform zu verstehen. Dazu muss insbesondere die Form der Kontaktfläche bestimmt werden, welche die erfindungsgemäße Biegeform aufweisen soll. Die Form der Kontaktfläche hängt ab von der Form der damit zu biegenden Glasscheibe und wird durch diese bestimmt oder festgelegt. Die Bestimmung der erforderlichen Kontaktfläche erfolgt bevorzugt computergestützt mit fachüblichen CAD-Methoden (computer-aided design, rechnerunterstützte Konstruktion). Es sind aber auch andere Methoden bekannt, welche ohne CAD-Berechnungen auskommen. So kann die gewünschte Kontaktfläche auch iterativ durch manuelle oder maschinengestützte Überarbeitung einer Ausgangsform angenähert werden. Die Form der Kontaktfläche entspricht im Falle des Heißbiegens üblicherweise nicht genau der Form der Glasscheibe, sondern ist eine kompensierte Form der Kontaktfläche, welche ein Sacken der Glasscheibe unter ihrer Schwerkraft nach der Einwirkung der Biegeform oder ein viskoelastisches Rückfedern einkalkuliert. Bei den Simulationen zur Bestimmung der kompensierten Kontaktfläche wird der zu verwendende Biegeofen und das zu verwendende Biegeverfahren zugrunde gelegt. Hierbei sind neben der gewünschten Scheibenform beispielsweise die Biegetemperatur und die Verweildauer im Biegeofen sowie die Art der verwendeten Biegewerkzeuge entscheidend. Die kompensierte Form der Kontaktfläche entspricht der zwischenzeitlichen Form der Glasscheibe direkt nach dem Einwirken der Biegeform, die derart berechnet ist, dass sich unter Berücksichtigung der nachträglichen Verformung der Glasscheibe, insbesondere durch Sacken unter dem Einfluss der Schwerkraft oder durch viskoelastisches Rückfedern, die gewünschte, finale Form der Glasscheibe ergibt. Die Glasscheibe, an deren Form die Kontaktfläche angepasst ist, ist in einer bevorzugten Ausführung eine Fensterscheibe eines Fahrzeugs, insbesondere Kraftfahrzeugs.
Die Dimensionen der Biegeform sind im Sinne der Erfindung wie folgt zu verstehen. Die beiden Dimensionen, die in Draufsicht auf die Kontaktfläche sichtbar sind, werden als Länge und Breite bezeichnet, wobei die größere der beiden Dimensionen als Länge festgelegt wird. Die Höhe der Biegeform erstreckt sich senkrecht zu Höhe und Breite (also im Wesentlichen senkrecht zur Kontaktfläche), die Höhendimension folgt bei Draufsicht auf die Kontaktfläche also der optischen Achse. Die Dimensionen der Kontaktfläche sind in analoger Weise zu verstehen. Bei Draufsicht auf die Kontaktfläche sind die Länge und Breite sichtbar, wobei die größere der beiden Dimensionen als Länge festgelegt wird. Die Höhe beziehungsweise Tiefe der Kontaktfläche ergibt sich aus der gebogenen Form (Krümmungstiefe) und kann als Abstand der am weitesten voneinander beanstandeten Punkte der Kontaktfläche gemessen entlang der Höhendimension der Biegeform definiert werden.
Die Länge und Breite des Biegeform entspricht bevorzugt der Länge und Breite der Kontaktfläche. Dann ist die Biegeform besonders materialsparend herstellbar. Grundsätzlich ist es aber auch möglich, dass die (maximal auftretende) Länge und/oder Breite der Biegeform größer ist als die Länge beziehungsweise Breite der Kontaktfläche. So kann die eigentliche Kontaktfläche beispielsweise in eine Oberfläche der Biegeform eingelassen sein (konkave Kontaktfläche) oder sich aus der Oberfläche der Biegeform erheben (konvexe Kontaktfläche), wobei weitere Bereiche dieser Oberfläche der Kontaktfläche benachbart oder die Kontaktfläche umgebend vorhanden sind, oder die Kontaktfläche kann in der Art eines Stempels auf einer Art Sockel getragen sein, welche über die Kontaktfläche hinausragt (also eine größere Breite und/oder Länge aufweist.
Die Höhe der Biegeform muss mindestens der Tiefe der Kontaktfläche entsprechend, also der Ausdehnung der Kontaktfläche entlang ihrer Krümmungsrichtung senkrecht zu ihrer Länge und Breite. Da diese minimal gewählte Höhe allerdings lokal zu einer sehr geringen Dicke der Biegeform führen würde, was der Stabilität abträglich ist, wird bevorzugt eine Zusatzhöhe vorgesehen, um eine Mindestdicke der Biegeform zu gewährleisten. Die Mindestdicke der Biegeform (also die Dicke an der dünnsten Stelle) beträgt bevorzugt mindestens 10 mm, besonders bevorzugt mindestens 15 mm, ganz besonders bevorzugt mindestens 20 mm. Die Höhe der Biegeform ergibt sich aus der Summe der Mindestdicke und der Tiefe der Kontaktfläche ( depth of bend). Die Tiefe der Kontaktfläche beträgt bei üblichen Scheiben im Fahrzeugbereich von 5 mm bis 300 mm, insbesondere von 60 mm bis 200 mm. Die Höhe der Biegeform beträgt folglich mindestens 15 mm, insbesondere mindestens 70 mm und liegt typischerweise in einem Bereich von 5 mm bis 400 mm, insbesondere von 70 mm bis 350 mm. In diesem Bereich verfügt die Biegeform einerseits eine für die Stabilität vorteilhafte Dicke und andererseits über ein vorteilhaft geringes Gewicht. Anschließend wird ein keramisches Ausgangswerkstück bereitgestellt, das eine Größe aufweist, welche geeignet ist, die gesamte Gestalt der Biegeform einzuschließen beziehungsweise aufzunehmen. Das Ausgangswerkstück weist also eine Länge auf, die mindestens der Länge der Biegeform entspricht, eine Breite, die mindestens der Breite der Biegeform entspricht, und eine Höhe, die mindestens der Höhe der Biegeform entspricht. Die Dimensionen des Ausgangswerkstücks sind entsprechend derer der Biegeform definiert.
Erfindungsgemäß wird das Ausgangswerkstück in der erforderlichen Größe aus Standardbauteilen zusammengesetzt. Dazu wird zunächst eine Gestalt des Ausgangswerkstücks bestimmt, die auch als Form, geometrische Form oder Geometrie des Ausgangswerkstücks bezeichnet werden kann. Die Gestalt des Ausgangswerkstücks weist eine Größe auf, die zum einen geeignet ist, die gesamte Gestalt der Biegeform einzuschließen beziehungsweise aufzunehmen, und die zum anderen geeignet ist, aus einer Mehrzahl von keramischen Standardbauteilen zusammengesetzt zu werden. Eine Vielzahl von Standardbauteilen wird dann in Form der Gestalt des Ausgangswerkstücks zusammengesetzt, wobei einander benachbarte Standardbauteile mit einem (bevorzugt keramischen) Haftvermittler miteinander verbunden werden.
Unter den Standardbauteilen sind im Sinne der Erfindung keramische Blöcke zu verstehen, die zur Herstellung des Ausgangswerkstücks zur Verfügung stehen. Typischerweise wird der Glashersteller die Standardbauteile von einem Zulieferer beziehen. Das Standardbauteil ist dann ein keramischer Block, bevorzugt der kleinste keramische Block, den der Zulieferer liefern kann. Alle zur Herstellung des Ausgangswerkstück verwendeten Standardbauteile weisen bevorzugt die gleicher Form und die gleichen Abmessungen auf; es werden also im Wesentlichen identische Standardbauteile verwendet. Das Verfahren ist dann besonders flexibel und einfach durchführbar, weil nur eine Art von Standardbauteil vorrätig gehalten werden muss. Grundsätzlich ist es aber auch möglich, das Ausgangswerkstück aus Standardbauteilen unterschiedlicher Größe oder sogar unterschiedlicher Form (im Sinne der Art des geometrischen Körpers) aufzubauen.
Die Gestalt des Ausgangswerkstücks ist in Form eines Parallelepipeds ausgebildet. Übliche Standardbauteile weisen ebenfalls die Form eines Parallelepipeds auf. Verfügbare keramische Blöcke sind typischerweise quaderförmig. Daher sind die Standardbauteile erfindungsgemäß im Wesentlichen quaderförmig und das Parallelepiped des Ausgangswerkstücks im Wesentlichen ein Quader. Ein quaderförmiges Ausgangswerkstück ermöglicht dem Nutzer eine große Freiheit hinsichtlich der Gestaltung der Kontaktfläche der Biegeform, weil die Form des Ausgangswerkstücks unabhängig von der Biegeform ist, das Ausgangswerkstück also nicht an die konkrete Ausgestaltung der Biegeform, insbesondere der Kontaktfläche, angepasst werden muss. Mit „im Wesentlichen“ ist hier gemeint, das leichte Abweichungen von der idealen Quaderform zulässig sind, wie sie bei realen Bauteilen auftreten. Dies gilt insbesondere für abgerundete Kanten und Ecken oder für leicht gekrümmte Oberflächen. Die Standardbauteile können auch Vertiefungen oder Durchführungen ausweisen, solange die Umrissform quaderförmig ist.
Bevorzugt sind die Länge, Breite und Höhe des Parallelepipeds jeweils ein ganzzahliges Vielfaches der einer der Dimensionen des Standardbauteils (wobei jede der Dimensionen des Standardbauteils nur einer Dimension des Parallelepipeds zugeordnet ist). Die Länge des Parallelepipeds ist also ein ganzzahliges Vielfaches einer ersten Dimension des Standardbauteils, die Breite des Parallelepipeds ein ganzzahliges Vielfaches einer zweiten Dimension des Standardbauteils und die Höhe des Parallelepipeds ein ganzzahliges Vielfaches einer dritten Dimension des Standardbauteils. In einer vorteilhaften Ausgestaltung sind die Länge, Breite und Höhe des Parallelepipeds jeweils ein ganzzahliges Vielfaches der Länge, Breite und Höhe des Standardbauteils. Genauer gesagt entspricht die Lände des Parallelepipeds der Länge des Standardbauteils multipliziert mit n, die Breite des Parallelepipeds der Breite des Standardbauteils multipliziert mit m , und die Höhe des Parallelepipeds der Höhe des Standardbauteils multipliziert mit /, wobei n, m und / ganze Zahlen sind. Die Dicke der Haftvermittlerschicht ist üblicherweise vernachlässigbar, so dass das reale Ausgangswerkstück nur unwesentlich größer ist als die ursprünglich errechnete Gestalt des Ausgangswerkstücks. Prinzipiell ist es aber auch möglich, die Dicke der Haftvermittlerschicht bei der Planung miteinzubeziehen. Dann entspricht die Lände des Parallelepipeds der Länge des Standardbauteils multipliziert mit n zuzüglich der Gesamtdicke von (n-1) Haftvermittlerschichten, die Breite des Parallelepipeds der Breite des Standardbauteils multipliziert mit m zuzüglich der Gesamtdicke von (m-1) Haftvermittlerschichten, und die Höhe des Parallelepipeds der Höhe des Standardbauteils multipliziert mit / zuzüglich der Gesamtdicke von (1-1) Haftvermittlerschichten.
Der Ausdruck „ganzzahliges Vielfaches“ ist im Sinne der Erfindung im mathematischen Sinne zu verstehen, schließt also den Fall mit ein, dass die Faktoren n, m und / gleich 1 sind. Bei einem „echten ganzzahligen Vielfachen“ ist der jeweilige ganzzahlige Faktor dagegen größer oder gleich 2. Zumindest eine Dimension des quaderförmigen Ausgangswerkstücks (ausgewählt aus Länge, Breite und Höhe) muss ein echtes ganzzahliges Vielfaches einer Dimension des keramischen Standardbauteils sein, weil ansonsten das Standardbauteil dem Ausgangswerkstück entsprechen würde und letztes nicht aus mehreren Standardbauteilen zusammengesetzt werden könnte. Es ist also möglich, dass die Standardbauteile die gleiche Länge und Breite ausweisen weisen wie das Ausgangswerkstück und die Höhe des Ausgangswerkstücks ein echtes Vielfaches der Höhe der Standardbauteile ist, so dass mehrere Standardbauteile übereinandergestapelt werden, um das Ausgangswerkstück zu bilden. Statt übereinander können auch mehrere Standardbauteile nebeneinander angeordnet werden, wenn die Länge oder Breite des Ausgangswerkstücks ein echtes Vielfaches einer Dimension des Standardbauteils ist und die anderen Dimensionen von Standardbauteil und Ausgangswerkstück miteinander übereinstimmen. Es ist aber auch möglich, dass zwei oder alle drei der Dimension des quaderförmigen Ausgangswerkstücks (ausgewählt aus Länge, Breite und Höhe) ein echtes ganzzahliges Vielfaches der jeweiligen Dimension des keramischen Standardbauteils ist. Im Sinne der Erfindung werden die Dimensionen des Standardbauteils mit abnehmender Ausdehnung als Länge, Breite und Höhe bezeichnet. Die Länge ist also die längste Dimension, die Höhe die kürzeste Dimension des Standardbauteils.
Die Standardbauteile werden bevorzugt so zusammengesetzt, dass Seitenflächen benachbarter Standardbauteile einander zugewandt sind, in Deckung angeordnet sind und planparallel sind. Bevorzugt weisen sämtliche Standardbauteile die gleiche Ausrichtung im Raum auf, so dass die verschiedenen Standardbauteile geometrisch durch einfache Verschiebung ineinander überführbar sind (einfache Translationssymmetrie). Insbesondere bei geeignet bemessenen quaderförmigen Standardbauteilen ist aber auch eine andere Anordnung denkbar. So können beispielsweise, wenn die Breite und Höhe der Quader gleich sind und die Länge der Quader der zweifachen Höhe/Breite entspricht, einige Quader aufrecht stehend und andere horizontal liegend angeordnet werden.
Sinnvollerweise weist das Parallelepiped die geringstmögliche (minimale) Größe auf, welche geeignet ist, die gesamte Gestalt der Biegeform einzuschließen beziehungsweise aufzunehmen. So kann das Ausgangswerkstück besonders materialsparend hergestellt werden. Grundsätzlich ist es aber auch möglich, ein größeres Parallelepiped zu verwenden, auch wenn hierfür unnötig viele Standardbauteile erforderlich sind. Der keramische Haftvermittler zur Verbindung der Standardbauteile ist bevorzugt Zement oder ein keramischer Klebstoff, beispielsweise basierend auf mikro- oder nanopartikulären Partikeln, insbesondere auf Basis der Keramik des Ausgangswerkstücks.
Nachdem das keramische Ausgangswerkstück bereitgestellt wurde, wird erfindungsgemäß aus diesem Ausgangswerkstück die Biegeform mit der Kontaktfläche hergestellt. Hierbei kommt ein subtraktives Fertigungsverfahren zum Einsatz, wobei aus dem Ausgangswerkstück die Biegeform durch Materialabtrag herausgearbeitet wird, insbesondere ein spanendes Fertigungsverfahren wie Fräsen, Schleifen, Hobeln, Feilen, Raspeln oder Meißeln, bevorzugt Fräsen. Die Fertigung erfolgt bevorzugt automatisiert mit Hilfe von CAD-Verarbeitung, wobei einer Verarbeitungsmaschine die CAD-Daten der Biegeform bereitgestellt werden und die Verarbeitungsmaschine mittels der CAD-Daten die Biegeform aus dem Ausgangswerkstück herausarbeitet. Die spanende Verarbeitung aus Keramik ist wenig zeit- und kostenintensiv und daher besonders geeignet.
Es ist vorteilhaft, wenn die Länge und Breite des Ausgangswerkstücks der Länge und Breite der Biegeform entspricht. Es muss dann nur diejenige Oberfläche des Ausgangswerkstücks spanend bearbeitet werden, aus der die Kontaktfläche herausgearbeitet werden soll. Ebenso ist es vorteilhaft, wenn die Höhe des Ausgangswerkstücks der (maximal auftretenden) Höhe der Biegeform entspricht, so dass der erforderliche Materialabtrag minimal ist. Die Dimensionen der Biegeform können so festgelegt werden, dass sie sich aus Standardbauteilen zusammensetzen lassen. Es ist alternativ aber auch möglich, dass die Länge, Breite und/oder Höhe des Ausgangswerkstücks größer sind als die Länge, Breite beziehungsweise Höhe der Biegeform. Dies erhöht nur den Aufwand der spanenden Bearbeitung.
In einer vorteilhaften Ausführung wird das keramische Ausgangswerkstücks auf einer Stützplatte angeordnet, bevor daraus die Biegeform mit Hilfe spanender Fertigungsverfahren hergestellt wird. Dadurch wird ein stabiler Untergrund für das Ausgangswerkstück bereitgestellt. Außerdem kann eine standardisierte Stützplatte Orientierungspunkte für eine automatisierte, CAD-gestützte Bearbeitung liefern. Die Stützplatte kann dreh-, schwenk- und/oder kippbar gelagert sein, so dass das Ausgangswerkstück während der Bearbeitung mittels der Stützplatte bewegt werden kann. Die Stützplatte weist bevorzugt eine Breite und Länge auf, die mindestens der Breite und Länge des Ausgangswerkstücks entspricht, so dass das gesamte Ausgangswerkstück auf der Stützplatte angeordnet werden kann, ohne überzustehen. Die Stützplatte ist bevorzugt aus Metall gefertigt, insbesondere aus Stahl, beispielsweise rostfreier Stahl.
Das keramische Material des Ausgangswerkstücks und der Biegeform kann vom Fachmann grundsätzlich frei gewählt werden. In einer bevorzugten Ausführung werden oxidische Keramiken (Oxidkeramiken) eingesetzt, welche aufgrund ihrer Härte, Verschleißfestigkeit und Wärmebeständigkeit besonders für die Fertigung von Biegeformen geeignet sind. Geeignete Oxidkeramiken sind beispielsweise auf Basis von Aluminiumoxid (AI2O3), Siliziumaluminiumoxid, Zirconiumdioxid (Zr02), Titan(IV)-oxid (PO2), Magnesiumoxid (MgO), Zinkoxid (ZnO), Aluminiumtitanat (AI2O3 + T1O2), Bariumtitanat (BaO + T1O2) ausgebildet. Alternativ können Silikat.Keramiken verwendet werden, insbesondere Mullit-Keramik. Es können aber auch andere Keramiken verwendet werden, beispielsweise andere Oxid- oder Silikat-Keramiken oder nichtoxidische Keramiken (insbesondere auf Basis von Siliciumcarbid (SiC), Bornitrid (BN), Borcarbid (B4C), Siliciumnitrid, Aluminiumnitrid, Molybdändisilicid oder Wolframcarbid).
In besonders vorteilhaften Ausführungen sollte das keramische Material bestimmte Eigenschaften aufweisen, darunter: einen geringen thermischen Ausdehnungskoeffizienten, insbesondere für Biegeformen zum Heißbiegen, damit die Biegeform im Biegeofen möglichst geringen Formänderungen unterworfen ist, eine hohe thermische Schockresistenz, eine hohe Temperaturbeständigkeit, bevorzugt bis zu Temperaturen von mindestens 750°C, eine hohe Porosität, wodurch die Keramik ein geringes Gewicht aufweist; eine offene Porosität kann unter Umständen eine Luftpermeabilität gewährleisten, so dass die Glasscheibe mit einem Luftstrom oder einer Saugwirkung beaufschlagt werden kann, ohne dass hierfür Durchführungen gebohrt werden müssten; eine hohe mechanische Stabilität, wodurch neben einer mangelnden Anfälligkeit für Beschädigungen auch die Möglichkeit bereitgestellt wird, das Ausgangswerkstück beziehungsweise die hierfür verwendeten Standardbauteile ohne großen Aufwand in ausreichender Zahl hergestellt werden kann/können; die mechanische Stabilität ist insbesondere für Pressbiegeformen vorteilhaft, auf welche im bestimmungsgemäßen Einsatz große Kräfte wirken; eine gute Bearbeitbarkeit mit spanenden Fertigungsverfahren, eine gute und möglichst ortsnahe Verfügbarkeit, um die Produktionskosten gering zu halten.
Bevorzugt werden herkömmliche, keramische Refraktärwerkstoffe eingesetzt, die auch als keramische Isolierwerkstoffe gebräuchlich sind. Diese sind im Hinblick auf die vorgenannten Parameter vorteilhaft und im Vergleich zu technischen Keramiken kostengünstig.
Die Biegeform kann optional mit Durchführungen, Vertiefungen, Domen, Gewinden, Nut- Feder-Verbindungselementen, Abfasungen oder anderen Gestaltungselementen versehen werden. Diese können beispielsweise dem Verschrauben oder Vernieten des Ausgangswerkstücks mit der Stützplatte oder der Biegeform mit einer Anbindungseinheit dienen. Alternativ können Durchführungen auch dazu dienen, während des Glasbiegens eine Saugwirkung auf die Glasscheibe auszuüben, um sie an die Kontaktfläche anzusaugen, wenn der Biegeofen hierfür ausgelegt ist. In diesem Falle sind die Durchführungen über die Kontaktfläche verteilt, insbesondere gleichmäßig verteilt, und erstrecken sich von der Kontaktfläche bis zur gegenüberliegenden Oberfläche der Biegeform.
Zumindest die Kontaktfläche wird nach der spanenden Herstellung der Biegeform bevorzugt gereinigt. In einer vorteilhaften Ausführung wird die Kontaktfläche veredelt, insbesondere durch Polieren und/oder Beschichten. Die Beschichtung ist bevorzugt eine keramische Beschichtung, besonders bevorzugt auf Basis von Bornitrid oder einer oxidischen Keramik oder einer Silikatkeramik. Diese Beschichtungen verleihen der Kontaktfläche eine hohe Oberflächengüte und bewirken eine hohe Widerstandsfähigkeit gegen Beschädigungen und Kratzfestigkeit, was insbesondere dann vorteilhaft ist, wenn die Kontaktfläche zum Biegen mit einem Stahlgewebe überzogen werden soll.
Bevorzugt wird an der Biegeform eine metallene Anbindungseinheit angebracht, welche dazu dient, die keramische Biegeform im Biegeofen oder einer anderen Biegevorrichtung anzubringen. Die Anbindungseinheit stellt also gleichsam eine Schnittstelle (Interface) zur Installation in der Biegevorrichtung bereit, welches insbesondere der Schnittstelle der herkömmlichen metallenen Biegeformen entspricht. Die Anbindungseinheit ist aus Metall gefertigt, insbesondere aus Stahl, beispielsweise rostfreiem, temperaturbeständigem Stahl. Die Anbindungseinheit wird bevorzugt der Kontaktfläche gegenüberliegend an der Biegeform angebracht, also an derjenigen Oberfläche der Biegeform, welche der Kontaktfläche gegenüberliegt. Die der Kontaktfläche gegenüberliegende Oberfläche ist dazu bevorzugt plan ausgebildet. Die Art der Anbindungseinheit richtet sich nach dem verwendeten Biegeofen. Das Anbringen der Anbindungseinheit an der Biegeform erfolgt bevorzugt durch Schrauben oder Einhängen/Einschieben in eine dafür vorgesehene Aufnahme (beispielsweise nach Art einer Schublade). Die Anbindungseinheit verfügt bevorzugt über eine Platte, auf welcher die Biegeform angebracht wird, insbesondere eine standardisierte Platte, welche zur Anbringung verschieden ausgestalteter Biegeform geeignet ist.
Die keramische Biegeform ist dafür vorgesehen, in einer Glasbiegevorrichtung installiert zu werden. In einer bevorzugten Ausführung des Verfahrens wird die Biegeform nach ihrer Herstellung in einer solchen Glasbiegevorrichtung installiert. Die Glasbiegevorrichtung weist eine Biegestation auf, in der die erforderlichen Biegeformen (darunter mindestens eine erfindungsgemäße keramische Biegeform) angeordnet sind und in der das Formen der Glasscheibe mittels der Biegeformen stattfindet. Die Biegevorrichtung weist außerdem Mittel zum Heizen der Glasscheibe auf Erweichungstemperatur auf. In einer Ausgestaltung ist die Biegestation in einem beheizten Abschnitt der Biegevorrichtung (Biegekammer) angeordnet („Heißbiegen“). Die Heizmittel sind dabei entweder in der Biegekammer selbst angeordnet (kombinierte Heiz- und Biegekammer) oder in einer gesonderten Heizkammer, beispielsweise in Form eines Tunnelofens, welchen die Glasscheiben vor Eintritt in die Biegekammer durchlaufen. In einerweiteren Ausgestaltung der ist die Biegestation in einem nicht-beheizten Abschnitt der Biegevorrichtung angeordnet („Kaltbiegen“). Die Glasscheibe durchlaufen dann eine Heizkammer und werden im Anschluss ohne weitere Beheizung gebogen, wobei sie natürlich noch nicht unter ihre Erweichungstemperatur abgekühlt sein dürfen. Typische Biegevorrichtungen umfassen außerdem Mittel zum Bewegen der Glasscheibe durch die Heizkammer und die Biegestation hindurch. Die Bewegungsmittel können beispielsweise als Rollen- oder Laufbandfördersystem ausgebildet sein, wobei die Glasscheiben entweder direkt auf dem Rollen- oder Laufbandfördersystem aufliegen oder auf einer Transportform, insbesondere einem Transportrahmen, welche durch das Rollen oder Laufbandfördersystem bewegt wird.
Die keramische Biegeform wird, bevorzugt über die metallene Anbindungseinheit, in einer Biegevorrichtung eingebaut und dort zum Biegen einer oder mehrerer Glasscheiben eingesetzt. Dazu wird in einer vorteilhaften Ausführung die Kontaktfläche mit einem Stahlgewebe überzogen, wie es auch bei herkömmlichen Biegeformen üblich ist. Das Stahlgewebe verhindert den direkten Kontakt zwischen Kontaktfläche und Glasscheibe, wodurch die Oberflächengüte und optische Qualität der gebogenen Glasscheibe vorteilhaft gestaltet wird. Das Stahlgewebe wird besonders bevorzugt an der metallenen Anbindungseinheit angebracht, insbesondere der Platte zur Befestigung der Biegeform. Durch eine standardisierte Befestigungsplatte mit Befestigungsmitteln für das Stahlgewebe (beispielsweise Haken oder Ösen) kann dasselbe Stahlgewebe, oder derselbe Typ von Stahlgewebe, an unterschiedlichen Biegeformen angebracht werden.
Die Erfindung umfasst weiter eine keramische Biegeform, hergestellt oder herstellbar mit dem erfindungsgemäßen Verfahren. Die keramische Biegeform ist einer Mehrzahl von keramischen Standardbauteilen zusammengesetzt, welche untereinander mit einem Haftvermittler verbunden sind. Die Biegeform, insbesondere ihre Kontaktfläche, ist durch ein spanendes Fertigungsverfahren aus diesem zusammengesetzten Ausgangswerkstück herausgearbeitet. Die Erfindung umfasst außerdem die Verwendung der erfindungsgemäßen keramischen Biegeform zum Biegen (insbesondere Heißbiegen) von Glasscheiben, insbesondere zur Fertigung von Prototypen oder Kleinserien mit höchstens 1000 Glasscheiben. Die Glasscheiben sind bevorzugt Fensterscheiben von Schienenfahrzeugen oder Kraftfahrzeugen, insbesondere Windschutzscheiben, Heckscheiben, Seitenscheiben oder Dachscheiben von Personenkraftwagen.
Die zu biegende Glasscheibe enthält bevorzugt Kalk-Natron-Glas, wie es für Fensterscheiben üblich ist, kann aber auch andere Glassorten enthalten, wie Borsilikatglas, Aluminosilikatglas oder Quarzglas. Die Dicke der Glasscheibe beträgt typischerweise von 0,5 mm bis 10 mm, bevorzugt 1 mm bis 5 mm. Typische Temperaturen zum Biegen von
Glasscheiben betragen von 500 °C bis 700 °C, insbesondere etwa 650 °C beim Biegen von Scheiben aus Kalk-Natron-Glas. Im Folgenden wird die Erfindung anhand einer Zeichnung und Ausführungsbeispielen näher erläutert. Die Zeichnung ist eine schematische Darstellung und nicht maßstabsgetreu. Die Zeichnung schränkt die Erfindung in keiner Weise ein.
Es zeigen:
Fig. 1 Querschnitte während einer Ausführungsform des erfindungsgemäßen Verfahrens zur Herstellung einer keramischen Biegeform,
Fig. 2 einen Querschnitt durch eine Ausgestaltung der erfindungsgemäßen keramischen Biegeform während des Biegens einer Glasscheibe,
Fig. 3 eine perspektivische Ansicht eines erfindungsgemäßen Ausgangswerkstücks,
Fig. 4 eine perspektivische Ansicht eines weiteren erfindungsgemäßen Ausgangswerkstücks,
Fig. 5 ein Flussdiagramm einer Ausführungsform des erfindungsgemäßen Verfahrens.
Figur 1 zeigt schematisch verschiedene Verfahrensschritte einer Ausführungsform des erfindungsgemäßen Verfahrens zur Herstellung einer keramischen Biegeform.
Zunächst wird die gewünschte Gestalt K' der Biegeform K mit einem fachüblichen CAD- Verfahren berechnet. Die Biegeform soll eine Kontaktfläche F-K aufweisen, welche dazu vorgesehen ist, mit einer Glasscheibe in Kontakt zu kommen, um sie zu biegen. Die erforderliche Form der Kontaktfläche F-K wird insbesondere als kompensierte Kontaktfläche berechnet, bei deren Berechnung das Sacken nach dem Biegen einkalkuliert wurde, um zur gewünschten finalen Scheibengeometrie zu gelangen. Dann wird die Gestalt T bestimmt, welche ein keramisches Ausgangswerkstück 1 aufweisen kann, so dass es die gesamte Biegeform K einschließen kann (Fig. 1a). Die Gestalt T des Ausgangswerkstücks 1 ist im vorliegenden Fall quaderförmig.
Anschließend wird ein keramisches Ausgangswerkstück 1 hergestellt in der Gestalt T (Fig. 1b). Das Ausgangswerkstück 1 wird aus Standardbauteilen 2 zusammengesetzt. Die Standardbauteile 2 sind quaderförmige Keramikblöcke einheitlicher Größe, welche ein Zulieferer liefern kann. Die Gestalt T ist so gewählt, dass die Länge L, die Breite B und die Höhe H des Ausgangswerkstücks 1 jeweils ein ganzzahliges Vielfaches der Länge L', der Breite B' und Höhe H' des keramischen Standardbauteils 2 sind. Das Ausgangswerkstück wird durch Zusammensetzten der Standardbauteile 2 hergestellt, wobei benachbarte Standardbauteile 2 über eine nicht dargestellte Zementschicht miteinander verbunden werden. Die Standardbauteile 2 sind beispielsweise aus einer oxidischen Material wie Aluminiumoxid (AI2O3) gefertigt.
Das Ausgangswerkstück 1 wird dann zur weiteren Bearbeitung auf einer Stützplatte 4 angeordnet, die beispielsweise aus rostfreiem Stahl gefertigt ist (Fig. 1c). Anschließend wird durch ein spanendes Fertigungsverfahren wie Fräsen die Biegeform K in der Gestalt K' mit der Kontaktfläche F-K aus dem Ausgangswerkstück 1 herausgearbeitet (Fig. 1d). Die Bearbeitung erfolgt bevorzugt automatisiert auf Grundlage der CAD-Daten.
Das Ausgangswerkstück 1 kann nun optional mit Durchführungen, Vertiefungen oder anderen funktionalen Elementen versehen werden, welche beispielsweise der Befestigung der Biegeform K dienen. Durch Durchführungen kann später beim Glasbiegen eine Saugwirkung auf die Glasscheibe ausgeübt werden. Ebenso kann die Kontaktfläche F-K optional geschliffen oder beschichtet werden, um ihre Oberflächengüte zu erhöhen.
Glasbiegevorrichtungen weisen typischerweise standardisierte Aufnahmen für wechselbare Biegeformen auf. Um die keramische Biegeform K in die Glasbiegevorrichtung einbauen zu können, wird sie mit einer metallenen Anbindungseinheit 5, beispielsweise aus rostfreiem Stahl, ausgestattet (Fig. 1e). Die Anbindungseinheit 5 weist beispielhaft eine plane Befestigungsplatte auf, an der die Biegeform K angebracht (beispielsweise verschraubt) wird, und dieser gegenüberliegend einen Abschnitt, der zur Aufnahme der Glasbiegevorrichtung komplementär ist und in diese eingesetzt werden kann.
Die Befestigungsplatte der Anbindungseinheit 5 kann mit Haken oder anderen Befestigungsmitteln ausgestattet sein, an denen ein nicht dargestelltes Stahlgewebe befestigt werden kann, mit dem die Kontaktfläche F-K zum Glasbiegen überzogen werden soll. Eine standardisierte Befestigungsplatte, die für verschiedene ausgestaltete Biegeformen K geeignet ist, ermöglicht so, die gleichen Stahlgewebe für unterschiedliche Biegeformen K zu verwenden.
Figur 2 zeigt schematisch die gemäß Figur 1 hergestellte keramische Biegeform K mit den Anbindungseinheit 5 bei der bestimmungsgemäßen Verwendung. Die Biegeform K ist in einem nicht dargestellten Biegeofen installiert und wird zum Biegen einer Glasscheibe I eingesetzt. Die Kontaktfläche F-K ist zur Schonung der Glasscheibe I mit einem nicht dargestellten Stahlgewebe überzogen und wirkt auf die erhitzte und erweichte Glasscheibe I ein, wodurch die Glasscheibe I gemäß der Form der Kontaktfläche F-K gebogen wird. Diese Einwirkung kann beispielsweise durch Anblasen der Glasscheibe I an die Kontaktfläche F-K mittels eines aufwärts gerichteten Luftstroms, oder durch Pressen der Glasscheibe I zwischen der Biegeform K und einer nicht dargestellten, komplementären unteren Biegeform.
Die Glasscheibe I ist besteht beispielsweise aus Kalk-Natron-Glas, weist eine Dicke von 3,5 mm auf und ist als Heckscheibe eines Personenkraftwagens vorgesehen.
Figur 3 zeigt eine perspektivische Darstellung des Ausgangswerkstücks 1 mit der Länge L, der Breite B und der Höhe H, welches zusammengesetzt ist aus Standardbauteilen 2 mit der Länge L', der Breite B' und der Höhe H'. Die Länge L, die Breite B und die Höhe H sind jeweils echte ganzzahlige Vielfache der Länge L', der Breite B' und der Höhe H'.
Figur 4 zeigt eine perspektivische Darstellung eines weiteren erfindungsgemäßen Ausgangswerkstücks 1 mit der Länge L, der Breite B und der Höhe H, welches zusammengesetzt ist aus Standardbauteilen 2 mit der Länge L', der Breite B' und der Höhe H'. Die Länge L entspricht der Länge L' und die Breite B entspricht der Breite B' - die Länge L und die Breite B sind also im mathematischen Sinne ganzzahlige Vielfache der Länge L' und der Breite B' mit dem Faktor 1. Die Höhe H ist dagegen ein echtes ganzzahliges Vielfaches der Höhe H'. Es werden mehrere Standardbauteile 2 übereinandergestapelt, um das Ausgangswerkstücks 1 zu bilden.
Figur 5 zeigt ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens anhand eines Flussdiagramms.
Bezugszeichenliste:
(K) keramische Biegeform
(K') berechnete Gestalt/Form der keramischen Biegeform K
(1) keramisches Ausgangswerkstück
(1‘) berechnete Gestalt/Form des keramischen Ausgangswerkstücks 1
(2) keramisches Standardbauteil (4) Stützplatte
(5) metallene Anbindungseinheit
(F-K) Kontaktfläche der keramischen Biegeform K (L) Länge des Ausgangswerkstücks 1
(B) Breite des Ausgangswerkstücks 1
(H) Höhe des Ausgangswerkstücks 1
(L1) Länge des Standardbauteils 2
(B') Breite des Standardbauteils 2 (H') Höhe des Standardbauteils 2
(I) Glasscheibe

Claims

Patentansprüche
1. Verfahren zur Herstellung einer keramischen Biegeform (K) für Glasscheiben, umfassend die folgenden Verfahrensschritte: (A) Bestimmung einer Gestalt (K') der Biegeform (K), welche eine Kontaktfläche (F-K) aufweist,
(B) Bereitstellung eines keramischen Ausgangswerkstücks (1) mit einer Größe, die geeignet ist, die Gestalt (K') der Biegeform (K) einzuschließen, umfassend die folgenden Verfahrensschritte: (i) Bestimmung einer Gestalt (T) des Ausgangswerkstücks (1) mit einer Größe, die geeignet ist, die Gestalt (K') der Biegeform (K) einzuschließen sowie aus einer Mehrzahl von keramischen Standardbauteilen (2) zusammengesetzt zu werden,
(ii) Zusammensetzen von keramischen Standardbauteilen (2) in Form der Gestalt (1') des Ausgangswerkstücks (1), wobei benachbarte Standardbauteile (2) mittels eines Haftvermittlers miteinander verbunden werden,
(C) Herstellung der Biegeform (K) mit der Kontaktfläche (F-K) aus dem Ausgangswerkstück (1) durch ein spanendes Fertigungsverfahren, wobei die Gestalt (1') des Ausgangswerkstücks (1) und die Standardbauteile (2) quaderförmig sind.
2. Verfahren nach Anspruch 1, wobei die Länge (L), Breite (B) und Höhe (H) des Quaders jeweils ein ganzzahliges Vielfaches der Länge (L1), Breite (B') und Höhe (H') des keramischen Standardbauteils (2) sind.
3. Verfahren nach Anspruch 1 oder 2, wobei sämtliche Standardbauteile (2) identisch ausgebildet sind.
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei der Haftvermittler ein keramischer Haftvermittler ist, bevorzugt Zement oder ein keramischer Klebstoff ist.
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die Höhe der Biegeform (1) mindestens 70 mm beträgt, bevorzugt von 70 mm bis 350 mm.
6. Verfahren nach einem der Ansprüche 1 bis 5, wobei das keramische
Ausgangswerkstück (1) auf einer Stützplatte (4) angeordnet wird, bevor daraus die Biegeform (K) hergestellt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, wobei das Ausgangswerkstück (1) aus einer oxidischen Keramik oder Silikat-Keramik gefertigt ist.
8. Verfahren nach einem der Ansprüche 1 bis 7, wobei die Biegeform (K) mit
Durchführungen oder Vertiefungen versehen wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, wobei die Kontaktfläche (F-K) poliert und/oder beschichtet wird, insbesondere mit einer Beschichtung auf Basis einer oxidischen Keramik.
10. Verfahren nach einem der Ansprüche 1 bis 9, wobei eine metallene Anbindungseinheit
(5) an der Biegeform (K) angebracht wird, die dazu geeignet ist, die Biegeform (K) in einer Biegevorrichtung anzubringen.
11. Verfahren nach Anspruch 10, wobei die Anbindungseinheit (5) eine Befestigungsplatte aufweist, auf der die Biegeform (K) angebracht wird, und wobei die Befestigungsplatte mit Mitteln zur Befestigung eines Stahlgewebes ausgestattet ist.
12. Keramische Biegeform (K), hergestellt nach dem Verfahren nach einem der Ansprüche 1 bis 11.
13. Verwendung einer keramische Biegeform (K) nach Anspruch 12 zum Biegen von Glasscheiben (I), insbesondere zur Fertigung von Prototypen oder Kleinserien mit höchstens 1000 Glasscheiben (I).
PCT/EP2021/056478 2020-04-06 2021-03-15 Verfahren zur herstellung einer keramischen biegeform für glasscheiben WO2021204496A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180001219.1A CN113784931A (zh) 2020-04-06 2021-03-15 用于制造用于玻璃片材的陶瓷的弯曲模具的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20168224.2 2020-04-06
EP20168224 2020-04-06

Publications (1)

Publication Number Publication Date
WO2021204496A1 true WO2021204496A1 (de) 2021-10-14

Family

ID=70224251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/056478 WO2021204496A1 (de) 2020-04-06 2021-03-15 Verfahren zur herstellung einer keramischen biegeform für glasscheiben

Country Status (2)

Country Link
CN (1) CN113784931A (de)
WO (1) WO2021204496A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115519683A (zh) * 2022-09-26 2022-12-27 深圳市埃芯半导体科技有限公司 曲面弯晶制备装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170241A (ja) * 1993-05-26 1994-06-21 Ngk Insulators Ltd セラミックハニカム構造体の製造方法
EP0677488A2 (de) 1994-04-15 1995-10-18 Flachglas Aktiengesellschaft Pressbiegestation für das Biegen van Glasscheiben
JPH08119651A (ja) * 1994-10-28 1996-05-14 Asahi Glass Co Ltd 板ガラス曲げ成形用型及びその製造方法
WO1997007066A1 (en) 1995-08-14 1997-02-27 Libbey-Owens-Ford Co. Glass sheet conveying and bending apparatus
GB2320021A (en) 1996-12-03 1998-06-10 Design A Glass Ltd Frame and oven for sag-bending glass
EP1358131A2 (de) 2001-02-06 2003-11-05 Saint-Gobain Glass France Verfahren und vorrichtung zum paarweisen biegen von zwei glasscheiben
EP1391433A2 (de) 2002-08-16 2004-02-25 Schott Glaswerke Verfahren zur Formung von Glas oder Glaskeramik und zur Herstellung einer dafür geeigneten Form
DE10314267B3 (de) 2003-03-29 2004-08-19 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Verfahren und Vorrichtung zum Biegen von Glasscheiben
US20050202207A1 (en) * 2004-03-15 2005-09-15 Ngk Insulators, Ltd. Method of manufacturing ceramic honeycomb structure
WO2007125973A1 (ja) 2006-04-25 2007-11-08 Asahi Glass Company, Limited ガラス板の曲げ成形方法及びガラス板の曲げ成形装置
EP2463247A1 (de) 2010-12-13 2012-06-13 Saint-Gobain Glass France Verfahren und Vorrichtung zum Biegen von Scheiben
US20140200130A1 (en) * 2013-01-14 2014-07-17 Coi Ceramics, Inc. Methods of forming ceramic matrix composite structures, and related systems, apparatuses, and ceramic matrix composite structures
WO2017178733A1 (fr) 2016-04-13 2017-10-19 Saint-Gobain Glass France Bombage de feuilles de verre
US20190202746A1 (en) * 2016-02-26 2019-07-04 Kyocera Corporation Ceramic bonded body
US10478996B1 (en) * 2015-12-30 2019-11-19 Lancer Systems L.P. Method of making ceramic composite bearings

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170241A (ja) * 1993-05-26 1994-06-21 Ngk Insulators Ltd セラミックハニカム構造体の製造方法
EP0677488A2 (de) 1994-04-15 1995-10-18 Flachglas Aktiengesellschaft Pressbiegestation für das Biegen van Glasscheiben
JPH08119651A (ja) * 1994-10-28 1996-05-14 Asahi Glass Co Ltd 板ガラス曲げ成形用型及びその製造方法
WO1997007066A1 (en) 1995-08-14 1997-02-27 Libbey-Owens-Ford Co. Glass sheet conveying and bending apparatus
GB2320021A (en) 1996-12-03 1998-06-10 Design A Glass Ltd Frame and oven for sag-bending glass
EP1358131A2 (de) 2001-02-06 2003-11-05 Saint-Gobain Glass France Verfahren und vorrichtung zum paarweisen biegen von zwei glasscheiben
EP1391433A2 (de) 2002-08-16 2004-02-25 Schott Glaswerke Verfahren zur Formung von Glas oder Glaskeramik und zur Herstellung einer dafür geeigneten Form
DE10314267B3 (de) 2003-03-29 2004-08-19 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Verfahren und Vorrichtung zum Biegen von Glasscheiben
US20050202207A1 (en) * 2004-03-15 2005-09-15 Ngk Insulators, Ltd. Method of manufacturing ceramic honeycomb structure
WO2007125973A1 (ja) 2006-04-25 2007-11-08 Asahi Glass Company, Limited ガラス板の曲げ成形方法及びガラス板の曲げ成形装置
EP2463247A1 (de) 2010-12-13 2012-06-13 Saint-Gobain Glass France Verfahren und Vorrichtung zum Biegen von Scheiben
US20140200130A1 (en) * 2013-01-14 2014-07-17 Coi Ceramics, Inc. Methods of forming ceramic matrix composite structures, and related systems, apparatuses, and ceramic matrix composite structures
US10478996B1 (en) * 2015-12-30 2019-11-19 Lancer Systems L.P. Method of making ceramic composite bearings
US20190202746A1 (en) * 2016-02-26 2019-07-04 Kyocera Corporation Ceramic bonded body
WO2017178733A1 (fr) 2016-04-13 2017-10-19 Saint-Gobain Glass France Bombage de feuilles de verre

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115519683A (zh) * 2022-09-26 2022-12-27 深圳市埃芯半导体科技有限公司 曲面弯晶制备装置
CN115519683B (zh) * 2022-09-26 2023-08-25 深圳市埃芯半导体科技有限公司 曲面弯晶制备装置

Also Published As

Publication number Publication date
CN113784931A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
EP3600882B1 (de) Vorrichtung und verfahren zum aufnehmen, verformen und ablegen einer dünnen glasscheibe
EP2406192B1 (de) Verfahren zur herstellung von abgewinkelten glaskeramikbauteilen
EP2651837B1 (de) Verfahren und vorrichtung zum biegen von scheiben
EP3544809B1 (de) Verfahren zur herstellung einer gebogenen verbundglasscheibe mit einer dünnen glasscheibe
EP2632617B1 (de) Verfahren und anlage zur herstellung eines bauteils aus magnesiumblech
DE102009036164A1 (de) Verfahren zum Biegen und thermischen Vorspannen von Strahlenschutzglas
EP3212584B1 (de) Biegewerkzeug für glasscheiben
EP2463248A1 (de) Verfahren und Vorrichtung zum Biegen von Scheiben
WO2021204496A1 (de) Verfahren zur herstellung einer keramischen biegeform für glasscheiben
DE602004002767T2 (de) Verfahren und vorrichtung zum biegen von glasscheiben
DE102014200921A1 (de) Verfahren zur formfreien Herstellung eines geformten Glasartikels mit vorbestimmter Geometrie, Verwendung eines verfahrensgemäß hergestellten Glasartikels und geformter Glasartikel
DE10147648B4 (de) Verfahren zur Ausbildung von Durchbrüchen in einer Glasscheibe.
WO2021204468A1 (de) Verfahren zur herstellung einer keramischen biegeform für glasscheiben
DE102016105004A1 (de) Optische Komponente sowie Verfahren zu deren Herstellung
EP2738636B1 (de) Verfahren zum Herstellen von Flachglasscheiben und Flachglasscheibenfertigungsanlage
EP1112974A2 (de) Verfahren zum Herstellen vorgespannter oder gebogener Gläser
DE102005018658B3 (de) Verfahren und Vorrichtung zum Kapseln und Warmumformen von Rohlingen aus metallischen Hochtemperatur-Legierungen
DE60014692T2 (de) Formende bearbeitung von glasscheiben
DE202021004140U1 (de) Vorrichtung zum Biegen von flachen Glasscheiben
WO2014169399A1 (de) Herstellung einer scheibe aus keramischem glas
EP3609848B1 (de) Schwerkraftbiegeform zum biegen von glasscheiben mit gekrümmter auflagefläche
DD262422A5 (de) Verfahren und vorrichtung zum formen von glas
DE202018006731U1 (de) Vorrichtung zum Pressbiegen von Glasscheiben
DE19732320A1 (de) Durchlauf- bzw. Taktofen, insbesondere als Email-Einbrennofen
WO2020216829A1 (de) Glas- oder glaskeramikplatte und verfahren zur herstellung derartiger platten

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21710529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21710529

Country of ref document: EP

Kind code of ref document: A1