WO2021204173A1 - 一种资源确定的方法、装置及终端设备 - Google Patents

一种资源确定的方法、装置及终端设备 Download PDF

Info

Publication number
WO2021204173A1
WO2021204173A1 PCT/CN2021/085871 CN2021085871W WO2021204173A1 WO 2021204173 A1 WO2021204173 A1 WO 2021204173A1 CN 2021085871 W CN2021085871 W CN 2021085871W WO 2021204173 A1 WO2021204173 A1 WO 2021204173A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
resource
resources
listening
frequency
Prior art date
Application number
PCT/CN2021/085871
Other languages
English (en)
French (fr)
Inventor
董蕾
苏宏家
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021204173A1 publication Critical patent/WO2021204173A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • This application relates to the field of mobile communication technology, and in particular to a method, device and terminal equipment for determining resources.
  • Modes For the resource allocation of the sidelink (SL), one is the resource allocation mode for the base station 1 (mode-1), a mode 2 (mode-2) for user-selected resources.
  • Mode-1 is mainly applied to V2X communication in the case of network coverage.
  • the base station uniformly allocates resources based on the buffer state report (BSR) reported by the terminal device.
  • BSR buffer state report
  • the transmission resource of the transmitting UE does not depend on the base station, and the UE selects the transmission resource for communication by itself.
  • This mode is not limited to network coverage. In the absence of network coverage, the sending end UE can also use this mode to communicate. In order to ensure transmission reliability when selecting transmission resources, users generally pre-select transmission resources.
  • the selected transmission resources are used for data transmission; of course, after the user pre-selects transmission resources, given that the selected transmission resources may be In the case of being reserved, the prior art also requires that the process of resource listening and resource exclusion be performed again at a set time, and then it is determined whether the selected transmission resource can be used for data transmission, that is, the UE can only be used at the set time Start the reselection of the transmission resource and the reselected transmission resource is close to the packet delay budget (PDB) of the data in the time domain.
  • PDB packet delay budget
  • the embodiments of the application provide a method, device and terminal equipment for determining resources, which are applicable to the fields of vehicle to everything (V2X), intelligent networked vehicles, assisted driving, and intelligent driving, etc., to solve the existing new wireless ( The new radio, NR)-V2X method for determining the resources of the side link cannot meet some V2X service delay requirements.
  • V2X vehicle to everything
  • NR new radio
  • the first aspect provides a method for determining the first resource, including:
  • the time-frequency resource used to send data is selected according to the listening result.
  • the terminal device listens in at least two time units corresponding to the first time-frequency resource set (the at least two time units may be Is before the time unit corresponding to the resource in the first time-frequency resource set), and performs resource exclusion and resource reselection according to the interception result, because the method provided in the embodiment of the present application intercepts at least two time units, That is, whether the resources in the first time resource set are reserved or not can be obtained in multiple time units, so that when selecting time-frequency resources for sending data according to the interception results, the reserved resources can be excluded in time and the processing time can be selected to satisfy
  • the time-frequency resources required by the business can provide sufficient processing time for selecting the time-frequency resources, and at the same time enable the selected resources to meet the V2X services with higher delay requirements.
  • the method may further include performing a process on any reserved resource in the resource selection window corresponding to the at least two time units. Excluding that, if any reserved resource is a resource in the first time-frequency resource set, the terminal device will be triggered to select a time-frequency resource for sending data within a preset time. Therefore, the implementation of the foregoing method of this application may also include:
  • the first resource is excluded according to the listening result; wherein the first resource is included in the first time-frequency resource set.
  • the corresponding trigger terminal device selects the time-frequency resource for sending data according to the listening result. Because in this implementation manner, any one of the at least two time units detects that the first resource is excluded, which triggers the terminal device to select the time-frequency resource, so the available time-frequency resource can be selected in time.
  • the embodiment of this application is based on at least two time units for listening, so the listening window corresponding to the time unit can be implemented in multiple ways:
  • each of the at least two time units corresponds to a listening window.
  • the excluding the first resource according to the listening result includes:
  • the first resource is excluded.
  • the method of selecting time-frequency resources for sending data according to the listening results may be:
  • a time-frequency resource for sending data is selected in the resource selection window corresponding to the last time unit of the at least two time units.
  • the solution may be that each time slot n′ in the at least one two time units can correspond to a listening window,
  • the range of the listening window is [n'–T 0 ,n'–T proc,0 ); wherein the durations of T 0 and T proc,0 correspond to the side link control information SCI decoding and resource selection requirements.
  • the implementation of excluding the first resource may be:
  • all resources in the resource selection window are excluded. That is, it is judged whether all time-frequency resources available for sending data are reserved by other UEs. If they are reserved by other UEs, they need to be excluded. Of course, if the first resource is reserved, in addition to being excluded from being used as a resource for sending data, it will also trigger the terminal device to reselect a new resource for sending data.
  • resource exclusion is performed in the resource selection window corresponding to time slot n1, it is based on multiple listening windows [n–T 0 ,n–T proc,0 ) to [n1–T 0 ,n1–T proc ,0 ) After summarizing the results of resource exclusion.
  • the first candidate resource R x1, y1 is determined as a time-frequency resource that is not available for sending data in any one of the multiple listening windows (one of the unavailable conditions may be sent by other UEs) SCI reservation), the first candidate resource R x, y is excluded from the resource selection unit.
  • the listening results corresponding to multiple listening windows are summarized in one resource selection window, so that the finally selected time-frequency resources can exclude other terminals to the greatest extent
  • the interference of resource occupation by the equipment improves the reliability of data transmission.
  • each of the at least two time units has the same start time corresponding to the listening window, and the end time of each listening window is determined by the corresponding time unit.
  • the listening window in this embodiment is to expand the time windows corresponding to multiple time units, so that the listening time of a single listening window is increased, and at least two time units are covered within the scope of the listening window, thereby It is possible to listen to more and more comprehensive resource occupancy information in the listening window.
  • the reserved resource can be excluded in the corresponding resource selection window. If it is based on the implementation of the listening window, the corresponding Excluding the first resource based on the interception result can be implemented as follows:
  • the first resource is excluded.
  • the implementation of selecting the time-frequency resource for sending data according to the listening result may be:
  • the time-frequency resource used for sending data is selected in the resource selection window corresponding to the last time unit of the at least two time units.
  • each time slot n′ in the at least two time units corresponds to a listening window [n–T 0 ,n′– T proc, 0 ); the initial time of the listening window is fixed, and the end time is determined by the corresponding time slot; that is, the listening time corresponding to the listening window changes according to the corresponding time slot.
  • the listening window corresponding to the last time slot has the longest duration.
  • the implementation of excluding the first resource may be:
  • the second candidate resource R x2, y2 is judged to be a time-frequency resource not available for sending data in the listening window [n-T 0 ,n1-T proc,0 ), then the resource corresponding to time slot n1 is selected The second candidate resource R x2,y2 is excluded from the window.
  • the resource selection window corresponding to the listening window can be at least two corresponding to the at least two time units, so that the listening result can cover A longer time-frequency resource is reserved, so that the interception result is more accurate, and the finally selected time-frequency resource for sending data is more stable.
  • selecting a time-frequency resource for sending data according to a listening result includes:
  • the multiple resources are reselected in the resource selection window corresponding to the time unit n1.
  • Resources can be:
  • the first resource is reselected in the resource selection window corresponding to the time unit n1; wherein, the other resources are the multiple resources. Resources other than the second resource among the resources.
  • the first time-frequency resource set is periodically reserved resources, and the time slot m corresponding to the first resource is the time corresponding to the first time-frequency domain resource in each cycle. Gap; the method also includes:
  • a method for determining resources includes:
  • the method for determining resources provided in this embodiment is that after the primary selection resource (ie, the first time-frequency resource set) for sending data is selected for the first time, if the resource in the first time-frequency resource is unavailable, execute the first time-frequency resource.
  • Secondary time-frequency resource selection that is, the second time-frequency resource set.
  • the method may also monitor the resource occupancy in real time after determining the time-frequency resource set, thereby triggering the selection of the second time-frequency resource set, where the triggering condition may be:
  • the first resource is excluded according to the listening result; wherein the first resource is included in the first time-frequency resource set.
  • the selection of the first time-frequency resource set, the selection of the second time-frequency resource, and the way of exclusion of resources can all use the solutions provided by the various implementations in the first aspect; for example, when selecting the second time-frequency resource Before resource collection, set up multiple listening windows; exclude the reserved resources from the multiple listening windows; when selecting the second time-frequency resource collection, select based on the listening results of the multiple listening windows.
  • selecting the second time-frequency resource set for sending data may be implemented by:
  • Manner 1 In the case that any resource in the first time-frequency resource set is excluded, it is determined that the first time-frequency resource set is unavailable, and then all the time-frequency resources used for sending data can be re-selected according to the interception result to form the first time-frequency resource set. Two time-frequency resource collections.
  • Manner 2 The second time-frequency resource set is merged with the first time-frequency resource, that is, a second time-frequency resource set is selected, where the second time-frequency resource set includes the plurality of resources except the first resource Other resources. After the first resource is excluded, if other resources in the first time-frequency resource set are not reserved, they can continue to be used and newly selected time-frequency resources to form a second time-frequency resource set for data transmission.
  • the conditions in this embodiment may include the resource time domain The location relationship, the maximum distance of resources that can be indicated by the SCI, and the interval between adjacent resources must satisfy the HARQ processing time.
  • a method for determining resources includes:
  • the first resource is included in the time-frequency resource set, and the first resource is a periodic resource;
  • the time-frequency resource used to send data is selected according to the listening result.
  • the resource will be listened to in units of each period, and based on The result of the interception then selects the time-frequency resource for sending data in the current period, and does not adjust the time-frequency resources that have been selected in other periods in the time-frequency resource set. Therefore, if it is determined that the first resource is reserved in the current period, it will be based on the result of the interception. After selecting the time-frequency resource used for sending data in the current period, the method further includes:
  • selecting the time-frequency resource for sending data will not select the first resource, so that the period length of the time-frequency resource for sending data in the time-frequency resource set changes, so the corresponding need to indicate The period length field is adjusted.
  • the field indicating the period length may be Resource reservation period. If the time-frequency resource is re-selected in the current period, the resource of the period is no longer periodic, so this field can be set 0 indicates that the period length is 0.
  • each resource cycle is regarded as an independent resource selection and use process, so the interception, exclusion and reselection of resources can be performed based on each resource cycle.
  • the operation, and the resource interception to exclude dissident re-selection operations can all be the same as the various implementation manners provided in the first aspect.
  • a device for determining resources including:
  • a processing module configured to determine the first time-frequency resource set to be used for sending data
  • a transceiver module configured to listen in at least two time units corresponding to the first time-frequency resource set
  • the processing module is also used to select time-frequency resources for sending data according to the listening result.
  • the processing module is further configured to exclude the first resource according to the interception result; wherein the first resource is included in the first time-frequency resource set.
  • each of the at least two time units corresponds to a listening window.
  • the listening window corresponding to each of the at least two time units has the same starting time, and the ending time of each listening window is determined by the corresponding time unit.
  • the processing module is specifically configured to exclude the first resource when it is heard that the first resource is reserved in at least one listening window.
  • the processing module is specifically configured to select from the resource selection window corresponding to the last time unit of the at least two time units according to the listening results of the at least two listening windows The time-frequency resource used to send data.
  • the processing module is specifically configured to detect that the first resource is reserved in the target listening window corresponding to the last time unit of the at least two time units, Exclude the first resource.
  • the processing module is specifically configured to select from the resource selection window corresponding to the last time unit of the at least two time units according to the listening result of the target listening window The time-frequency resource used to send data.
  • a device for determining a resource includes:
  • a determining unit configured to determine a first time-frequency resource set to be used for sending data
  • the determining unit is further configured to select a second time-frequency resource set for sending data.
  • the first time-frequency resource set includes multiple resources, and the first resource among the multiple resources is reserved; then the determining unit is specifically configured to select the second time-frequency resource A set, where the second set of time-frequency resources includes other resources among the plurality of resources except the first resource.
  • a device for determining resources including:
  • a determining unit configured to determine a set of time-frequency resources to be used for sending data
  • a transceiver unit configured to listen in at least one time unit corresponding to the time-frequency resource set
  • the processing unit is configured to configure or select a first resource, where the first resource is included in the set of time-frequency resources, and the first resource is a periodic resource; Time-frequency resources.
  • a terminal device including:
  • a processor configured to determine a first time-frequency resource set to be used for sending data
  • a transceiver configured to listen in at least two time units corresponding to the first time-frequency resource set
  • the processor is further configured to select a time-frequency resource for sending data according to the listening result.
  • the processor is further configured to exclude the first resource according to the interception result; wherein the first resource is included in the first time-frequency resource set.
  • each of the at least two time units corresponds to a listening window.
  • the start time corresponding to the listening window corresponding to each of the at least two time units is the same, and the end time of each listening window is determined by the corresponding time unit .
  • the processor is specifically configured to exclude the first resource when it hears that the first resource is reserved in at least one listening window.
  • the processor is specifically configured to select from the resource selection window corresponding to the last time unit of the at least two time units according to the listening results of the at least two listening windows The time-frequency resource used to send data.
  • the processor is specifically configured to detect that the first resource is reserved in the target listening window corresponding to the last time unit of the at least two time units, Exclude the first resource.
  • the processor is specifically configured to select from the resource selection window corresponding to the last time unit of the at least two time units according to the listening result of the target listening window The time-frequency resource used to send data.
  • the devices provided in the fourth and seventh aspects described above correspond to the methods provided in the first aspect
  • the devices provided in the fifth and sixth aspects correspond to the methods provided in the second and third aspects, respectively, so the first
  • the beneficial effects of the implementation manners described in the method from the aspect to the third aspect are also applicable to the devices of the fourth aspect to the seventh aspect.
  • the specific implementation details corresponding to each implementation manner in the methods of the first aspect to the third aspect are also applicable to the specific implementation description of the device results in the fourth aspect to the seventh aspect.
  • a chip in an eighth aspect, includes a processor and a communication interface, and the processor is coupled to the communication interface and configured to implement the first, second, third, and first aspects described above.
  • the method provided by any optional implementation manner in the third aspect.
  • the chip may further include a memory.
  • the processor may read and execute a software program stored in the memory to implement the first aspect, the second aspect, the third aspect, and the first aspect.
  • the memory may not be included in the chip, but located outside the chip, which is equivalent to that the processor can read and execute the software program stored in the external memory to implement the first aspect, The method provided by the second aspect, the third aspect, and any one of the optional implementation manners of the first aspect to the third aspect.
  • a computer-readable storage medium is provided, and the computer-readable storage medium is used to store a computer program.
  • the computer program When the computer program is run on a computer, the computer can execute the first and second aspects above. , The method described in the third aspect and any one of the possible implementation manners of the first aspect to the third aspect.
  • a computer program product containing instructions is provided, the computer program product is used to store a computer program, and when the computer program runs on a computer, the computer executes the first aspect, second aspect, and The method described in the third aspect and any one of the possible implementations from the first aspect to the third aspect.
  • a communication device including: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method described in any one of the possible implementation manners of the first aspect, the second aspect, the third aspect, and the first aspect to the third aspect.
  • the terminal device After the terminal device determines the first time-frequency resource set to be used for sending data, it listens in at least two time units corresponding to the first time-frequency resource set (the at least two time units may be Before the time unit corresponding to the resource in the first time-frequency resource set), and perform resource exclusion and resource reselection according to the interception result, because the method provided in this embodiment of the application intercepts at least two time units, that is, It is possible to obtain whether the resources in the first time resource set are reserved in multiple time units, so that when selecting time-frequency resources for sending data according to the interception results, the reserved resources can be excluded in time and the processing time can be selected to meet the business requirements.
  • the required time-frequency resources can not only provide sufficient processing time for selecting time-frequency resources, but also effectively reduce the time delay related to the selection of side-link resources in the existing NR-V2X, so that the selected resources can meet the time-frequency requirements. Extend the V2X business with higher requirements.
  • FIG. 1 is a schematic diagram of several application scenarios of V2X
  • Figure 2 is a schematic diagram of a time sequence of the base station allocating resources to the transmitting end terminal device through DCI in the dynamic mode of mode-1;
  • Figure 3 is a schematic diagram of frequency domain resources corresponding to a time slot
  • Figure 4 is a schematic diagram of a resource selection window and a resource listening window when a terminal device in mode-2 selects a resource
  • FIG. 5 is a schematic diagram of a network architecture applied by an embodiment of this application.
  • FIG. 6 is a schematic flowchart of a method for determining resources according to an embodiment of this application.
  • FIG. 7 is a schematic flowchart of an implementation manner for determining a first time-frequency resource set
  • FIG. 8 is a schematic diagram of multiple listening windows in an embodiment of the present application.
  • Fig. 9 is a schematic diagram of resource interception in the prior art.
  • FIG. 10 is a schematic diagram of multiple interception windows implementing interception in an embodiment of the application.
  • FIG. 11 is a schematic diagram of an interception window in an embodiment of the application implementing interception
  • FIG. 12 is a schematic diagram of resource reselection in an embodiment of this application.
  • FIG. 13 is a schematic diagram of another resource reselection in an embodiment of the application.
  • FIG. 14 is a schematic diagram of periodic resource reselection in an embodiment of this application.
  • 15 is a schematic flowchart of a method for determining resources in an embodiment of this application.
  • FIG. 16 is a schematic flowchart of a method for determining resources in an embodiment of this application.
  • FIG. 17 is a schematic structural diagram of a device for determining resources in an embodiment of this application.
  • FIG. 18 is a schematic structural diagram of a communication device in an embodiment of this application.
  • FIG. 19 is a schematic block diagram of a terminal device in an embodiment of this application.
  • FIG. 20 is another schematic block diagram of a terminal device in an embodiment of this application.
  • FIG. 21 is still another schematic block diagram of a terminal device in an embodiment of this application.
  • Terminal devices including devices that provide users with voice and/or data connectivity, specifically, include devices that provide users with voice, or include devices that provide users with data connectivity, or include devices that provide users with voice and data connectivity Sexual equipment.
  • it may include a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN), exchange voice or data with the RAN, or exchange voice and data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle to everything (V2X) terminal equipment , Machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit, subscriber station (subscriber) station), mobile station (mobile station), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user Agent (user agent), or user equipment (user device), etc.
  • UE user equipment
  • M2M/MTC Machine-to-machine/machine-type communications
  • IoT Internet of things
  • subscriber unit subscriber station (subscriber) station)
  • mobile station mobile station
  • remote station remote station
  • access point access point
  • AP remote terminal
  • remote terminal remote terminal
  • access terminal access terminal
  • user terminal user terminal
  • user Agent
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, hand-held, mobile devices with built-in computers, and so on.
  • PCS personal communication service
  • PCS cordless phones
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be implemented without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be regarded as vehicle-mounted terminal equipment, for example, the vehicle-mounted terminal equipment is also called on-board unit (OBU). ).
  • OBU on-board unit
  • the terminal device may also include a relay. Or it can be understood that everything that can communicate with the base station can be regarded as a terminal device.
  • the device for realizing the function of the terminal device may be a terminal device, or a device capable of supporting the terminal device to realize the function, such as a chip system, and the device may be installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal is a terminal device as an example to describe the technical solutions provided in the embodiments of the present application.
  • Network equipment including, for example, access network (AN) equipment, such as a base station (e.g., access point), which may refer to equipment that communicates with wireless terminal equipment through one or more cells on the air interface in the access network
  • AN access network
  • a base station e.g., access point
  • IP internet protocol
  • the base station can be used to convert received air frames and internet protocol (IP) packets to each other, and serve as a router between the terminal device and the rest of the access network, where the rest of the access network may include an IP network.
  • the RSU can be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include the evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in the LTE system or the long term evolution-advanced (LTE-A), or may also include the fifth-generation mobile Communication technology (the 5th generation, 5G) NR system (also referred to as NR system) next generation node B (next generation node B, gNB) or may also include cloud radio access network (cloud radio access network, Cloud RAN) system Centralized unit (CU) and distributed unit (DU) in, the embodiment of the present application is not limited.
  • NodeB or eNB or e-NodeB, evolutional Node B in the LTE system or the long term evolution-advanced (LTE-A)
  • 5G 5th generation
  • NR system next generation node B
  • cloud radio access network cloud radio access network
  • Cloud RAN Centralized unit
  • DU distributed unit
  • the network equipment may also include core network equipment.
  • the core network equipment includes, for example, access and mobility management functions (AMF). Since the embodiments of this application mainly involve access networks, unless otherwise specified in the following text, all the network devices mentioned refer to access network devices.
  • AMF access and mobility management functions
  • the device used to implement the function of the network device may be a network device, or a device capable of supporting the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the device used to implement the functions of the network equipment is a network device as an example to describe the technical solutions provided in the embodiments of the present application.
  • V2X is the interconnection between vehicles and the outside world. This is the foundation and key technology of future smart cars, autonomous driving, and smart transportation systems. V2X will optimize the specific application requirements of V2X based on the existing device-to-device (D2D) technology. It is necessary to further reduce the access delay of V2X devices and solve the problem of resource conflicts.
  • D2D device-to-device
  • V2X specifically includes vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-pedestrian (V2P) direct communication, and There are several application requirements such as vehicle-to-network (V2N) communication and interaction.
  • V2V refers to the communication between vehicles
  • V2P refers to the communication between vehicles and people (including pedestrians, cyclists, drivers, or passengers)
  • V2I refers to the communication between vehicles and network equipment, such as RSU
  • V2N refers to the communication between the vehicle and the base station/network.
  • V2P can be used as a safety warning for pedestrians or non-motorized vehicles on the road.
  • vehicles can communicate with roads and even other infrastructure, such as traffic lights, roadblocks, etc., to obtain road management information such as traffic light signal timing.
  • V2V can be used for information interaction and reminding between vehicles, and the most typical application is for the anti-collision safety system between vehicles.
  • V2N is currently the most widely used form of Internet of Vehicles. Its main function is to enable vehicles to connect to a cloud server through a mobile network, and use the navigation, entertainment, or anti-theft application functions provided by the cloud server.
  • At least one of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, and c can be single or multiple.
  • first and second are used to distinguish multiple objects, and are not used to limit the size, content, order, and timing of multiple objects. , Priority or importance, etc.
  • first interval and the second interval are only for distinguishing different time domain intervals, but do not indicate the difference in length, priority, or importance of the two intervals.
  • D2D technology can reduce the burden on cellular networks, reduce battery power consumption of user equipment, increase data rates, and meet the needs of proximity services.
  • the D2D technology allows multiple UEs supporting the D2D function to perform direct discovery and direct communication with or without network infrastructure.
  • an application scenario for the Internet of Vehicles based on the D2D technology has been proposed. However, due to security considerations, the delay requirements in this scenario are very high, and the existing D2D technology cannot be implemented.
  • V2X communication refers to the communication between the vehicle and anything outside, including V2V, V2P, V2I, and V2N. Refer to Figure 1.
  • V2X communication is aimed at high-speed devices represented by vehicles. It is the basic technology and key technology applied in scenarios with very high communication delay requirements in the future, such as smart cars, autonomous driving, intelligent transportation systems and other scenarios.
  • LTE-V2X communication can support communication scenarios with and without network coverage, and its resource allocation method can adopt network access equipment scheduling mode, such as E-UTRAN Node B (eNB) scheduling Mode and UE optional mode.
  • eNB E-UTRAN Node B
  • UE optional mode UE optional mode.
  • vehicle user equipment (V-UE) can trigger some of its own information, such as position, speed, or intent (turning, merging, or reversing) in a periodic or aperiodic manner. Send to the surroundings to other V-UEs, and similarly V-UEs will also receive information from surrounding users in real time.
  • 5G NR-V2X With the development of 5G NR technology in the 3GPP standard organization, 5G NR-V2X will be further developed, for example, it can support lower transmission delay, more reliable communication transmission, higher throughput, better user experience, etc. To meet the needs of a wider range of application scenarios.
  • NR-V2X there are mainly two modes for resource allocation related to sidelink, one is the mode of resource allocation for the base station (mode-1), and the other is the mode of user-selected resources (mode-2).
  • Mode1 is mainly applied to V2X communication in the case of network coverage.
  • the base station uniformly allocates resources according to the BSR report status of the terminal equipment.
  • the allocation of resources in mode-1 can be allocated according to a dynamic mode or a pre-configuration mode.
  • the resources allocated by the base station include initial resources and/or retransmission resources, or include initial resources and retransmission resources.
  • the base station allocates resources to the sending end terminal device through downlink control information (DCI).
  • DCI downlink control information
  • the sending end terminal device After receiving the DCI, the sending end terminal device sends data to the receiving end terminal device on the resource. .
  • the receiving end terminal device After the receiving end terminal device decodes the data from the sending end terminal device, it sends feedback information corresponding to the data to the sending end terminal device.
  • the feedback information is an acknowledgment (ACK) or negative answer (NACK), and the sending end terminal The device then forwards the feedback information to the base station.
  • ACK acknowledgment
  • NACK negative answer
  • the receiving end terminal device sends a hybrid automatic repeat request (hybrid automatic repeat request) corresponding to the PSSCH or PSCCH to the sending end terminal device, HARQ) information (that is, feedback information); at time t4, the transmitting terminal terminal device forwards the HARQ information to the base station.
  • HARQ hybrid automatic repeat request
  • the base station will configure related time-frequency resources for sidelink transmission through high-level signaling.
  • the sending end terminal device can directly send sideline data (type (type)-1) on the resource configured by high-level signaling; or the base station will send DCI to activate the configured resource, and the sending end terminal device is receiving the DCI Later, the sideline data (type-2) can be sent on the resources configured by the high-level signaling.
  • the receiving end terminal device After receiving the side line data from the sending end terminal device, the receiving end terminal device decodes the side line data, and then sends the HARQ information (that is, feedback information) of the side line data to the sending end terminal device, and the sending end terminal device then The HARQ information from the terminal device at the receiving end is forwarded to the base station.
  • the transmission resource of the terminal device at the sending end does not depend on the base station.
  • This mode is not limited to network coverage, regardless of whether there is network coverage, the sending end terminal device can use this mode to communicate.
  • the resources selected by the user include initial resources or retransmission resources, or include initial resources and retransmission resources.
  • the sending end terminal device selects resources in the resource selection window to send data according to the result of resource monitoring (monitor) in the listening window (the size of the listening window and the resource selection window in the prior art) And the positional relationship is fixed).
  • the listening window can be defined as T time slots before resource selection is triggered.
  • the resource selection window is the time slot corresponding to [n+T 1 ,n+T 2 ] after the resource selection is triggered.
  • the resource selection window includes multiple time slots.
  • the total number of subchannels included in the frequency domain resources belonging to the sidelink resource pool corresponding to the time slot is N subCH
  • the frequency domain resources corresponding to the time slot include
  • the set of sub-channels corresponding to the sub-channels of is A candidate resource R x, y is defined as a time slot belonging to the sidelink resource pool in the resource selection window [n+T_1,n+T_2] in the time domain
  • the set of subchannels located in the subchannel x+j in the frequency domain, where j 0,...,L subCH -1, which is embodied in the frequency domain as a set of continuous subchannels with a length equal to L subCH , L subCH
  • Any set of contiguous subchannel sets with a length equal to L subCH that meets the above conditions is regarded as
  • FIG. 3 is a schematic diagram of frequency domain resources corresponding to a time slot.
  • the number of subchannels occupied by the PSSCH corresponding to the data to be transmitted is L subCH , and L subCH is, for example, 2.
  • the listening window can be defined as [n–T 0 ,n–T proc,0 ), where T 0 is configured by the high-level parameter t0_SensingWindow.
  • the overall process of resource determination for the transmitting end terminal equipment in mode-2 is: the transmitting end UE continuously listens to all the time slots belonging to the sidelink resource pool in the window, except for the time slots where the transmitting end UE itself has transmitted. All time slots. According to the results of the interception, the candidate resources that have been reserved by other UEs are excluded from the resource selection window to obtain the resource exclusion result, and then the resource for sending data is selected according to the resource exclusion result.
  • the reservation here can be indicated by the SCI. In this way, when the SCI containing resource reservation information is heard, it can be known that the reserved resource may be occupied by other UEs at some point in the future.
  • the higher level of the UE at the sending end first selects the time-frequency resources that can be used to send data in the resource selection window [n+T 1 ,n+T 2] (For example, select three resources R1, R2, and R3).
  • the time domain resource here is any one of the above-mentioned candidate resources.
  • Case 1 After the sending end UE has selected the resource, it may not send relevant information to indicate the current resource selection results of other UEs. Other UEs do not know the selection of the sending end UE, and may reserve that the sending end UE has been selected (pre-selected) H. In this implementation manner, the resource selected by the sending end UE may be defined as a preselected resource.
  • the sending end UE may also send an SCI to indicate the resources that have been selected.
  • other UEs can judge the priority of the resource indicated by the SCI and compare it with the priority of the data to be sent by itself. If the priority of the data to be sent by other UEs is higher than the priority indicated by the SCI sent by the sender UE, other UEs can reserve the resources already reserved by the sender UE again, that is, other UEs can pre-emption the sender The resource that the UE has reserved.
  • the resource selected by the sending end UE may be defined as a reserved resource.
  • the sender UE may not send relevant information to indicate the current resource selection results of other UEs after selecting resources (the resource selection in this embodiment includes reservation and preselection), in this case, other UEs may reserve the resources of the sender UE. Pre-selected resources; even if an SCI is sent to indicate resource selection, other UEs with higher priority may preempt the selected resources. Therefore, in order to prevent the occurrence of the above situation, the sender UE also needs to perform the resource listening and resource exclusion process again before the time of data transmission corresponding to each resource (R1, R2, and R3) that has been selected. To determine that the selected resource has been reserved by other UEs, it is necessary to trigger the higher layer to reselect the resource again.
  • the sending end UE sends or does not send the SCI instruction to select the resource, it needs to perform the resource listening, resource exclusion and reselection process for the selected resource again.
  • the above process is unified in this article It is called re-evaluation.
  • the listening window and resource selection window corresponding to the resource re-evaluation can be defined as [n1–T 0 ,n1–T proc,0 ) and [n1+T1,n1+T2], respectively.
  • the sending UE hears the SCI(S1) sent by other UEs in the listening window [n1–T 0 ,n1–T proc,0 ) and also reserves the first resource R1, then send The end UE needs to trigger the higher layer again to reselect resources.
  • the sender UE can directly access the selected resource Send data on the Internet.
  • embodiments of the present application provide a method for determining resources.
  • the first set of time-frequency resources ie, preselected resources or reserved resources
  • select the time-frequency resource for sending data according to the interception result ie, preselected resources or reserved resources
  • the number of interceptions is increased, thereby increasing the probability of resource discovery being reserved, and avoiding erroneous selection of reserved resources when reselecting; in addition, because it can also detect that the selected resources are reserved by other UEs in a more timely manner, it can be
  • the terminal device is triggered in time to reselect, and the data transmission is completed in the resource selection window farther from the PDB as soon as possible, which can minimize the time delay.
  • the technical solutions provided in the embodiments of this application can be applied to D2D scenarios, which can be NR D2D scenarios or LTE D2D scenarios, etc., or can be applied to V2X scenarios, which can be NR V2X scenarios or LTE V2X scenarios, etc., for example, applicable In the Internet of Vehicles, such as V2X, LTE-V, V2V, etc., or can be used in intelligent driving, intelligent networked vehicles and other fields. Or it can also be applied to other scenarios or other communication systems, for example, it can also be used for resource selection of the Uu interface of the LTE system or the NR system, which is not specifically limited.
  • Figure 5 includes a network device and two terminal devices, namely a first terminal device and a second terminal device. Both of these two terminal devices may be in the coverage area of the network device; or the two terminal devices may only have the first terminal device in the coverage area of the network device, and the second terminal device may not be in the coverage area of the network device ⁇ ; or the two terminal devices are not in the coverage of the network device.
  • the two terminal devices can communicate through sidelink.
  • Figure 5 takes as an example that neither of these two terminal devices are within the coverage of the network device.
  • the number of terminal devices in FIG. 5 is only an example. In practical applications, a network device can provide services for multiple terminal devices.
  • the network device in FIG. 5 is, for example, an access network device, such as a base station.
  • the access network equipment corresponds to different equipment in different systems.
  • the 4th generation mobile communication technology (the 4th generation, 4G) system it can correspond to the eNB
  • the 5G system corresponds to the access network equipment in 5G, for example, gNB, or access network equipment in the subsequent evolution of the communication system.
  • the terminal device in FIG. 5 is a vehicle-mounted terminal device or a car as an example, but the terminal device in the embodiment of the present application is not limited to this.
  • the embodiment of the present application provides the first method for determining resources. Please refer to FIG. 6, which is a flowchart of this method. In the following introduction process, the application of this method to the network architecture shown in FIG. 5 is taken as an example.
  • the method executed by the first terminal device and the second terminal device is taken as an example. Because this embodiment is applied to the network architecture shown in FIG. 5 as an example, in addition, because the resource determination method provided by this embodiment is to determine the resource selection and determination as a terminal device at the sending end, the first The terminal device is used as the sender device to illustrate the method of the embodiment of the present application.
  • the first terminal device may be the first terminal device in the network architecture shown in FIG. 5, or may be a chip system set in the first terminal device.
  • the second terminal device described below may be the second terminal device in the network architecture shown in FIG. 5, or may be a chip system set in the second terminal device.
  • Step 601 The first terminal device determines a first set of time-frequency resources to be used for sending data
  • the first terminal device first performs resource selection (which may include: resource preselection without sending SCI after resource selection; or sending resource reservation for SCI after resource selection), that is, the first terminal device determines the first time-frequency resource set, which determines the
  • resource selection which may include: resource preselection without sending SCI after resource selection; or sending resource reservation for SCI after resource selection
  • the first terminal device determines the first time-frequency resource set, which determines the
  • the implementation of the first time-frequency resource set may be the process shown in FIG. 7, which may be:
  • Step 701 The first terminal device listens to the SCI sent by other terminal devices in the resource pool in the listening window.
  • listening may include a process of detecting SCI, or may include a process of detecting SCI, decoding SCI, and measuring reference signal receiving power (RSRP) of the resource according to the instructions of the SCI.
  • RSRP reference signal receiving power
  • Step 702 If the monitored SCI includes resources that have been reserved by other terminal devices, and the reserved resources are located in the resource selection window, the reserved resources are excluded; the process of excluding resources that have been reserved by other UEs from the resource selection window is as follows :
  • the first terminal device does not listen to the time slot That is, the first terminal device itself is in the time slot Have been transmitted;
  • the first terminal device is in the time slot Receive the SCI, and decode P rsvp_RX and prio RX , where P rsvp_RX and prio RX are the physical cycle and priority of the PSSCH corresponding to the SCI.
  • the RSRP measurement result of the PSSCH determined by the SCI is greater than the threshold Th prioTX, prioRX , where the threshold Th prioTX, prioRX is the priority corresponding to the data indicated in the received SCI and the priority corresponding to the data to be sent by the first terminal device.
  • P′ rsvp_TX is the physical period of the first terminal device
  • the time slot n belongs to the sidelink resource pool, otherwise Is the first time slot belonging to the sidelink resource pool after time slot n;
  • the time window on the left represents the listening window
  • the time window on the right represents the resource selection window.
  • UE1 represents the resource used by UE1
  • UE2 represents the resource used by UE2
  • UE3 represents the resource used by UE3.
  • UE1 indicates the reserved resources of UE1
  • UE2 indicates the reserved resources of UE2
  • UE3 indicates the reserved resources of UE3.
  • UE2 and UE2 and The reserved resources corresponding to UE3 will be excluded.
  • Step 703 The first terminal device reports the set of candidate resources remaining after excluding the reserved resources to the higher layer, so that the first terminal device can select resources from the remaining candidate resources.
  • Step 704 The higher layer receives the candidate resource set from the physical layer, and then selects the final resource for sending data from it.
  • the number of transmission resources that can be selected by the upper layer is MaxTxTransNumPSSCH.
  • MaxTxTransNumPSSCH N MAX
  • N MAX indicates that the frequency domain resource assignment field "Frequency resource assignment" and the time domain resource assignment field "Time resource assignment" in an SCI can indicate at most The number of sidelink resources, one of which is used for current sidelink transmission, and the remaining number is used to indicate previous sidelink transmission and/or future scheduled sidelink transmission.
  • the high-level parameter N MAX 2
  • the time-frequency resource allocation field in one SCI can only indicate two PSSCH resources.
  • the high-level parameter N MAX 3
  • the time-frequency resource allocation field in one SCI can only indicate three PSSCH resources at most. PSSCH resources.
  • Step 602 Perform listening in at least two time units corresponding to the first time-frequency resource set.
  • the embodiment of the present application also performs resource listening and resource exclusion at least twice, and the resource listening and exclusion process can be implemented in the manner shown in FIG. 7.
  • the first terminal device can trigger resource selection in time slot n, and the corresponding listening window and resource selection window can be defined as [n–T0, n–Tp0) and [n +T1,n+T2], the selected resource (that is, the first time-frequency resource set) is located in the time slot m;
  • periodic The time slot interval can be configured by a higher layer, specifically, it can be through radio resource control (Radio Resource Control, RRC) dedicated signaling, system information block (System Information Block, SIB) messages, or pre-configuration methods.
  • RRC Radio Resource Control
  • SIB System Information Block
  • the SCI sent by other UEs on resource S3 indicates that the selected resource is reserved (occupancy in this embodiment refers to: other
  • the resource selection windows corresponding to time slots n1 and n2 are [n+T1,n+T2] and [n2+T1,n2+T2] respectively.
  • time slot n1 and the corresponding resource selection window [n1+T1,n1+ T2] is more advanced in the time domain than time slot n2 and the corresponding resource selection window [n2+T1,n2+T2], so it can be reselected in the earlier resource selection window in time slot n1 earlier
  • the earlier resource reselection is started, the more likely it is to complete data transmission in the resource selection window farther from the PDB as soon as possible to meet the delay requirement.
  • the resource listening and selection process shown in Figure 7 it can be determined that when a terminal device is listening for a resource, if it hears that other terminal device has reserved a certain resource, it will get the final candidate resource set by excluding the resource. (I.e. intercepting the reported content), so the first terminal device also excludes any reserved resource in the resource selection window corresponding to each time unit according to the result of the interception;
  • the selected resource is reserved by other UEs, it will trigger the first terminal device to reselect the time-frequency resource for sending data, that is, exclude the first resource based on the listening result; where the first resource is included in the first time Frequency resource collection.
  • the first terminal will be triggered to execute step 603.
  • Step 603 Select a time-frequency resource for sending data according to the listening result.
  • the first terminal device may again select the time-frequency resource for sending data according to the interception result.
  • the first terminal device in step 602 can perform resource listening in multiple time units, the corresponding listening window can be set in a variety of ways, and the corresponding implementation of selecting time-frequency resources based on the listening results is also the same.
  • the specific implementation can be:
  • the SCI sent by other terminal devices on the resource S1 in the first listening window [n-T 0 ,n-TP0) indicates the first resource
  • the resource R2 in the overlapping part of the selection window [n+T1, n+T2] and the second resource selection window [n1+T1, n1+T2] is reserved by other UEs.
  • this embodiment of the application will analyze the listening results of multiple listening windows (the listening result refers to each
  • the resource exclusion situation in the resource window corresponding to a listening window) is summarized, which can also be understood as a summary of the results of multiple resource selection windows, thereby increasing the coverage of the listening duration and avoiding missing some resource occupancy conditions.
  • the specific implementation can be:
  • Each of the at least two time units corresponds to a listening window.
  • the implementation of resource exclusion can be:
  • any one of the candidate resources in the set of all candidate resources in the corresponding resource selection window is excluded; suppose that the resource 1 in the resource selection window is intercepted by other resources in the listening window 1. If the UE makes a reservation, resource 1 will be excluded; and the result of resource 1 being excluded is recorded for the listening window. That is to record all the excluded candidate resources in the resource selection window corresponding to each listening window.
  • the first resource that has been selected by the first terminal may also be reserved by other terminals, and the first resource is excluded according to the interception result:
  • the specific implementation of the exclusion of any one of the candidate resources is: when the reservation of any one of the candidate resources is heard in at least one listening window, the candidate resource is excluded.
  • the listening result (that is, the situation in which the resource is excluded in each listening window) will be recorded, and the listening results of at least one listening window will be summarized, and then based on the summary
  • the subsequent interception result selects the time-frequency resource used to send the data, and the specific implementation can be as follows:
  • a time-frequency resource for sending data is selected in the resource selection window corresponding to the last time unit of the at least two time units.
  • the resource exclusions corresponding to multiple listening windows will be summarized in the last resource selection window corresponding to multiple time units, for example:
  • the listening window resource R1 is excluded, the second listening window resource R2 is excluded, and the third window resource R3 is excluded; R1, R2, and R3 need to be excluded even if there is no listening in the last listening window, through this implementation
  • the example method will also exclude R1, R2, and R3 in the last resource selection window. So that the finally selected time-frequency resources can eliminate the interference of other terminal equipment occupying resources to the greatest extent, and improve the reliability of data transmission.
  • the listening window [n′-T0,n′-TP0) listens to the SCI sent by other UEs, that is, a fixed-length listening window is used to implement resource listening for multiple time units, which can be regarded as increasing with time Sliding a fixed-length listening window realizes resource listening in multiple time units.
  • resource reselection can be triggered at that time, according to time slot n to time slot n1
  • the multiple listening windows (n-T0,n-TP0) to (n1-T0,n1-TP0) in the multiple listening windows are jointly obtained to determine a certain resource candidate resource R in the resource selection window corresponding to the last time slot unit x,y (the resource can be any resource that appears in the resource selection window that can be used to send data) whether it needs to be excluded, specifically, if a candidate resource R x,y is based on the listening result of any of the above listening windows If it is judged to be reserved by other UEs (or called occupied by other UEs), that is, it cannot be used for data transmission of the first terminal device, the resource R x,y needs to be excluded from the resource selection window [n1+T1,n2+T2]
  • the embodiment of the present application combines multiple The two listening windows jointly determine whether a certain resource should be excluded, which can eliminate the interference of other UEs occupying resources to the greatest extent and improve the reliability of data transmission.
  • the listening window corresponding to each of the at least two time units has the same start time, and the end time of each listening window is determined by the corresponding time unit.
  • the listening window in this embodiment adjusts the corresponding window duration according to the time corresponding to multiple time units. For example, the time window can be gradually enlarged so that the listening time of each listening window is different.
  • the target listening window corresponding to the last time unit in two time units covers the time of the listening window corresponding to each time unit in at least two time units, so that more changes can be heard in the last listening window.
  • the target listening window corresponding to the last time unit hears that any candidate resource is reserved, and the reserved resource can be excluded in the corresponding resource selection window.
  • the implementation of resource exclusion can be :
  • the target listening window can listen The resource exclusion situation of each time unit in at least two time units, so the resource exclusion is performed through the listening result of this listening window, and the situation of all the excluded resources in the at least two time units can be determined.
  • the first resource that has been selected by the first terminal may also be reserved by other UEs.
  • the specific implementation of excluding the first resource according to the interception result may be:
  • the first resource is excluded.
  • the implementation of selecting the time-frequency resource for sending data according to the listening result may be:
  • the time-frequency resource used for sending data is selected in the resource selection window corresponding to the last time unit of the at least two time units.
  • the listening time corresponding to the target listening window can cover at least two time units, so that the result of the interception can cover the scheduled time. Long time-frequency resources, so that the interception results are more accurate, and the time-frequency resources finally selected for sending data are more stable.
  • the listening windows [n–T0,n'–TP0) of at least two time slots n′ of the time slot listen to the SCI sent by other UEs.
  • the initial time (ie, the lower bound) of the listening window remains unchanged, while As the time increases, the end time (that is, the upper bound) of the sliding listening window, the length of the listening window increases as the listening time increases.
  • n1 if in a certain time slot n1, if other UEs reserve some or all of the resources selected by the first terminal, it will trigger the first terminal device according to the listening window [n–T0, n1–TP0) Determine whether a certain resource R x, y in the resource selection window [n1+T1,n2+T2] (the resource can be any resource in the resource selection window, and it is not limited to the resource selected by the first terminal device) Need to be excluded.
  • the first terminal device before using the selected resource to send data, it will listen on multiple time units, so that the first terminal device can start resource reselection as soon as possible, and as soon as possible, the farther away the PDB is.
  • the data transmission is completed within the resource selection window, which can minimize the time delay.
  • multiple listening windows can also be combined to determine whether resources in a resource selection window should be excluded, which can exclude other UEs to the greatest extent.
  • the interference of resources improves the reliability of data transmission.
  • the first time-frequency resource set is determined in step 601 (it can also be understood that the first time-frequency resource selection, or called pre-selection or reservation of resources), if the first time-frequency resource set is determined Before the first resource in the resource set is used, if the first resource in the first time-frequency resource set is reserved by other terminal devices, it can trigger the terminal device to reselect resources through step 603 to realize data transmission.
  • the exclusion of resources reserved by other terminals can also be realized through interception. This exclusion operation can be directed to any resource in the resource selection window corresponding to each time unit (the exclusion operation of specific resources uses the above method The way described).
  • the implementation method can also be used when reselecting resources in step 603 include:
  • step 603 the reservation of resources in the first resource set is not considered. If the first terminal triggers resource reselection, the resource is selected for transmission from the time-frequency resources available for sending data according to the listening result.
  • the first time-frequency resource set selected by the first terminal device in time slot n includes resources R1, R2, and R3, and continues to listen to the SCI sent by other UEs after time slot n. Hearing that other UEs have reserved resource R2, it triggers the first terminal device to reselect all resources (R4, R5, and R6) for sending data.
  • the implementation method can be applied to resource preselection scenarios where SCI is not sent to indicate preselected resources. Because the first terminal device does not send SCI, other UEs do not know the resource selection situation of the first terminal device, so the first terminal device can reselect freely All resources, and there is no need to retain the results of the first time-frequency resource set during the resource reselection process, and there is no need to perform resource reselection under the restrictions of the first time-frequency resource set, which can realize resource development more quickly, efficiently, and with higher freedom. Re-elect.
  • a certain resource in the first resource set is reserved, and when the time-frequency resource is selected in step 603, a resource is selected from the time-frequency resources available for sending data according to the interception result to perform the reservation of the reserved resource data transmission.
  • the first terminal device selects resources R1, R2, and R3 in time slot n, and continues to listen to the SCI sent by other terminal devices after time slot n, if it detects other terminals in time slot n1
  • the device reserves the resource R2, and the first terminal device only reselects the resource R2 (for example, selects the resource R4 after the reselection), and the resources R1 and R3 that are not reserved by other UEs do not need to be reselected;
  • the condition can be: (1) the position of the resource R4 and the resources R1 and R3 in the time domain satisfies the conditions specified in the agreement; (2) the time domain and/or frequency domain distance between the resources R1, R4 and R3 satisfies one The maximum time-domain and/or frequency-domain distance of resources that can be indicated by SCI, (3) The time-domain distance between two consecutive resources should be greater than or equal to the minimum processing delay of HARQ retransmission; for example, R4 and R1 are two consecutive Resource, the time domain distance between R4 and R1 is greater than or equal to the minimum processing delay of HARQ retransmission.
  • the solution provided by way a2 can be applied to the resource reservation scenario where the SCI instruction has been sent to preselect resources. Because the first terminal device has already sent the SCI and other UEs have already determined the resource selection of the first terminal device, the first terminal device does not need to be re-selected. Select all resources to avoid excessive reservations and waste of resources.
  • the first terminal device when selecting resources, can also select periodic resources to implement data transmission in periodic services. For periodic services, select a time-frequency resource set that includes periodic resources. Later, because the use of all resources is periodic, when the periodic reservation is enabled (enabled), the resources that have been selected in the upcoming period should be re-evaluated before each period. Therefore, the method provided by the embodiment of the present application can use the resource selected in each period of the periodic resources (one or more resources can be selected in a period) as a unit of resource primary selection and reselection, and each The resources selected in a period are processed independently and do not affect the reselection and use of resources selected in other periods.
  • step 601 After the first time-frequency resource set is determined in step 601, the resources selected in each period are selected according to the period of the periodic resource. At least two time units before the resource are listened, and when the selected resource is reselected according to the listening result, the operation is only performed on the selected resource in a cycle, which can be regarded as repeated execution for each cycle.
  • the method of step 601 to step 603 can be specifically implemented as follows:
  • the time slot corresponding to the resource) in each or more of the previous time slots at least two randomly or periodically selected time slots to listen to the SCI sent by other UEs, if they hear other UE reservations part or all of the preselection Resource, the resource is excluded from the resource selection window, and the resource reselection is triggered at the current time or the set time after detecting that the selected resource is reserved. Since the resource selection window during resource reselection will be later than the first resource selection window in time, the reselected resource will be more likely to be later than the first selected resource in time. Guaranteed the delay requirement.
  • time-frequency resources used to send data are periodic, the resources selected in each cycle are listened to, and based on the results of the listening, it is determined whether to reselect the data sent in the next cycle.
  • Time-frequency resources and will not adjust the time-frequency resources that have been selected in all periods after the next period. Therefore, if it is determined that the selected resources in the next period are reserved, only re-select the resources used in the next period according to the listening results. Time-frequency resources for sending data;
  • the field indicating the period length can be Resource reservation period.
  • the field "Resource reservation period" in the SCI indicating the period length is set to 0, indicating that the period length of the resource is 0.
  • the time delay can be reduced to a greater extent, and periodic reservations can be temporarily interrupted.
  • resource R1#2 is reserved by SCI S1 sent by other UEs.
  • the selected resource R1#1 is re-evaluated, the reservation of the resource R1#2 by other UEs has been detected, but the reselection of the resource R1#2 will not be triggered at this time. Only when the resource R1#2 is re-evaluated, will the resource R1#2 be reselected. Assume that the reselected resource is R2#1, which is located in period #2.
  • the first terminal device continues to reselect and evaluate the previously selected resources R1#3, R1#4.... And when the UE sends data and/or control messages on the resource R2#1 reselected in period #2, it will set the field "Resource reservation period" in the SCI to zero, that is, notify other UEs.
  • a terminal device only reselects the resource R2#1, and the reselection of the resource R2#1 does not mean that a new group of periodic resources R2#1, R2#2, R2#3... is selected.
  • the first terminal device will continue to re-evaluate the previously reserved resources R1#3, R1#4... in the next time. If the reservation of the selected resource by other UEs is not detected, the selected resource R1#3 , R1#4... for data transmission.
  • the embodiment of the present application also provides another method for determining resources, and the method may specifically include the following implementation steps:
  • Step 1501 Determine a first set of time-frequency resources to be used for sending data
  • Step 1502 Select a second set of time-frequency resources for sending data.
  • the method for determining resources provided in this embodiment is that after the primary selection resource (ie, the first time-frequency resource set) for sending data is selected for the first time, if the resource in the first time-frequency resource is unavailable, execute the first time-frequency resource.
  • Secondary time-frequency resource selection that is, the second time-frequency resource set.
  • the method may also monitor the resource occupancy in real time after determining the time-frequency resource set, thereby triggering the selection of the second time-frequency resource set, where the triggering condition may be:
  • the first resource is excluded according to the listening result; wherein the first resource is included in the first time-frequency resource set.
  • the selection of the first time-frequency resource set, the selection of the second time-frequency resource set, and the way of exclusion of resources can all use the solutions provided by the various implementations in the first aspect; for example, when the second time-frequency resource set is selected Before the collection of frequency resources, multiple listening windows are set; the reserved resources are excluded from the multiple listening windows; when the second time-frequency resource collection is selected, the selection is made based on the listening results of the multiple listening windows.
  • the implementation manner of selecting the second time-frequency resource set for sending data may include:
  • Manner 1 When any resource in the first time-frequency resource set is excluded, it is determined that the first time-frequency resource set is unavailable, and then all the time-frequency resources used for sending data can be reselected according to the interception result to form the first time-frequency resource set. Two time-frequency resource collections.
  • the second time-frequency resource set may include part of the resources in the first time-frequency resource set, that is, when the first resource is excluded, other resources in the first time-frequency resource set that are not reserved can continue to be used, and no The other reserved resources and the reselected time-frequency resources can form a second time-frequency resource set for data transmission.
  • the conditions in this embodiment may be: ( 1) The position of the resources in the second time-frequency resource set in the time domain satisfies the conditions specified in the agreement; (2) The time-domain and/or frequency-domain distance between the resources in the second time-frequency resource set satisfies an SCI location The maximum time domain and/or frequency domain distance of the resource that can be indicated, (3) the time domain distance between two consecutive resources in the second time-frequency resource set should be greater than or equal to the minimum processing delay of HARQ retransmission.
  • the embodiment of the present application also provides another method for determining resources, and the method may specifically include the following implementation steps:
  • Step 1601 Determine a set of time-frequency resources to be used for sending data
  • Step 1602 Perform listening in at least one time unit corresponding to the time-frequency resource set
  • Step 1603 Configure or select a first resource, where the first resource is included in the time-frequency resource set, and the first resource is a periodic resource;
  • Step 1604 Select a time-frequency resource for sending data according to the listening result.
  • time-frequency resources used to send data are periodic, the resources selected in each cycle are listened to, and based on the results of the listening, it is determined whether to reselect the data sent in the next cycle.
  • Time-frequency resources and will not adjust the time-frequency resources that have been selected in all periods after the next period. Therefore, if it is determined that the selected resources in the next period are reserved, only re-select the resources used in the next period according to the listening results. Time-frequency resources for sending data;
  • the field indicating the period length here can be the Resource reservation period field in the SCI.
  • the field "resource reservation period" (Resource reservation period) indicating the period length in the SCI can be set to 0, indicating that the period length of the resource is 0.
  • each resource cycle is regarded as an independent resource selection and use process, so the interception, exclusion and reselection of resources can be performed based on each resource cycle.
  • the operation, and the resource interception to exclude dissident re-selection operations can all be the same as the various implementation manners provided in the first aspect.
  • an embodiment of the present application further provides an apparatus for determining a resource
  • the apparatus 1700 may include:
  • the processing module 1701 is configured to determine the first time-frequency resource set to be used for sending data
  • the transceiver module 1702 is configured to listen in at least two time units corresponding to the first time-frequency resource set;
  • the processing module 1701 is further configured to select time-frequency resources for sending data according to the listening result.
  • the processing module is further configured to exclude the first resource according to the interception result; wherein the first resource is included in the first time-frequency resource set.
  • each of the at least two time units corresponds to a listening window.
  • the start time corresponding to the listening window corresponding to each of the at least two time units is the same, and the end time of each listening window is determined by the corresponding time unit .
  • the processing module is specifically configured to exclude the first resource when it is heard that the first resource is reserved in at least one listening window.
  • the processing module is specifically configured to select from the resource selection window corresponding to the last time unit of the at least two time units according to the listening results of the at least two listening windows The time-frequency resource used to send data.
  • the processing module is specifically configured to detect that the first resource is reserved in the target listening window corresponding to the last time unit of the at least two time units, Exclude the first resource.
  • the processing module is specifically configured to select from the resource selection window corresponding to the last time unit of the at least two time units according to the listening result of the target listening window The time-frequency resource used to send data.
  • the functions of the processing module 1701 and the transceiver module 1702 shown in FIG. 17 may be executed by the processor reading a program in the memory, or executed by the processor alone.
  • the processing module 1701 and the transceiving module 1702 may execute the method procedure executed by the first terminal device in S601-S603 as shown in FIG. 6; or execute, for example, as shown in FIG. The flow of the method executed by the terminal device in step 701-step 704 is shown.
  • the transceiver module 1702 may include different communication units corresponding to different communication interfaces.
  • the communication device may be a terminal device, and the communication device includes a processor 1800, a memory 1801, and a communication interface 1802.
  • the processor 1800 is responsible for managing the bus architecture and general processing, and the memory 1801 can store data used by the processor 1800 when performing operations.
  • the communication interface 1802 is used for receiving and sending data under the control of the processor 1800 for data communication with the memory 1801.
  • the processor 1800 may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • the processor 1800 may further include a hardware chip.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL), or any combination thereof.
  • the memory 1801 may include: a U disk, a mobile hard disk, a read-only memory (read-only memory, ROM), a random access memory (random access memory, RAM), a magnetic disk, or an optical disk and other media that can store program codes.
  • the processor 1800, the memory 1801, and the communication interface 1802 are connected to each other.
  • the processor 1800, the memory 1801, and the communication interface 1802 may be connected to each other through a bus 1803; the bus 1803 may be a peripheral component interconnect (PCI) bus or an extended industry Standard structure (extended industry standard architecture, EISA) bus, etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of presentation, only one thick line is used in FIG. 18 to represent it, but it does not mean that there is only one bus or one type of bus.
  • the processor 1800 is configured to read the program in the memory 1801 and execute the method flow executed by the first terminal device in S601-S603 shown in FIG. 6; or execute, for example, step 701- shown in FIG.
  • An embodiment of the present application also provides a device for determining a resource, and the device includes:
  • a determining unit configured to determine a first time-frequency resource set to be used for sending data
  • the selection unit is used to select the second set of time-frequency resources for sending data.
  • the first time-frequency resource set includes multiple resources, and the first resource of the multiple resources is reserved; then the selection unit is specifically configured to select the second time-frequency resource A set, where the second set of time-frequency resources includes other resources among the plurality of resources except the first resource.
  • the embodiment of the present application also provides another device for determining resources, including:
  • a determining unit configured to determine a set of time-frequency resources to be used for sending data
  • a listening unit configured to listen in at least one time unit corresponding to the time-frequency resource set
  • a configuration unit configured to configure or select a first resource, the first resource is included in the time-frequency resource set, and the first resource is a periodic resource;
  • the selection unit is used to select the time-frequency resource for sending data according to the listening result.
  • the foregoing device for determining resources corresponds to the method described in FIGS. 6-15, so the implementation manner and corresponding beneficial effects described in the foregoing method are also applicable to the device embodiments.
  • the terminal device may include corresponding hardware structures and/or software modules for performing various functions.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the terminal device into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the embodiment of the present application also provides a terminal device, which may be a circuit.
  • the terminal device may be used to perform the actions performed by the first terminal device in the foregoing method embodiments.
  • Figure 19 shows a simplified structural diagram of a terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 19 only one memory and processor are shown in FIG. 19. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with transceiving functions can be regarded as the transceiving unit of the terminal device (the transceiving unit can be a functional unit that can realize the sending and receiving functions; or the transceiving unit can also be It includes two functional units, namely a receiving unit capable of realizing the receiving function and a transmitting unit capable of realizing the transmitting function), and the processor with the processing function is regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1910 and a processing unit 1920.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1910 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1910 as the sending unit, that is, the transceiver unit 1910 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1910 is used to perform sending and receiving operations on the terminal device side in the foregoing method embodiment
  • processing unit 1920 is used to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • the processing unit 1920 may be used to perform all operations performed by the first terminal device in the embodiment shown in FIG. 6 except for receiving and sending operations, such as steps 601 to 603, and/ Or other processes used to support the technology described in this article.
  • the transceiving unit 1910 may be used for all the transceiving operations performed by the first terminal device in the foregoing embodiment, or for other processes supporting the technology described herein.
  • the processing unit 1920 may be configured to perform all operations except for the receiving and sending operations performed by the first terminal device in the embodiment shown in FIG. 15 or FIG. 16, such as steps 1501 to 1502, step 1601 to step 1604, and/or other processes used to support the techniques described herein.
  • the transceiving unit 1910 may be used to perform all the transceiving operations performed by the first terminal device in the embodiments shown in FIG. 15 and FIG. 16, or used to support other processes of the technology described herein.
  • the device can perform functions similar to the processing module 1701 and the transceiver module 1702 in Fig. 17.
  • the device includes a processor 2010, a sending data processor 2020, and a receiving data processor 2030.
  • the processing module 1701 in the foregoing embodiment may be the processor 2010 in FIG. 20 and complete corresponding functions; the transceiving module 1702 in the foregoing embodiment may be the sending data processor 2020 in FIG. 20, and/or receiving data The processor 2030, and complete the corresponding function.
  • the processing module 2010 in the foregoing embodiment may be the processor 2010 in FIG. 20 and complete corresponding functions; although the channel encoder and channel decoder are shown in FIG. 20, it is understood that these modules are not relevant to the original
  • the examples constitute a restrictive illustration and are only illustrative.
  • the processing device 2100 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as the modulation subsystem therein.
  • the modulation subsystem may include a processor 2102 and an interface 2104.
  • the processor 2102 completes the function of the aforementioned processing module 1701
  • the interface 2104 completes the function of the aforementioned transceiver module 1702.
  • the modulation subsystem includes a memory 2106, a processor 2102, and a program stored on the memory 2106 and running on the processor. When the processor 2102 executes the program, the terminal device side in the above method embodiment is implemented. Methods.
  • the memory 2106 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 2100, as long as the memory 2106 can be connected to the The processor 2102 is sufficient.
  • processors mentioned in the embodiments of this application may be a CPU, other general-purpose processors, digital signal processors (digital signal processors, DSP), application specific integrated circuits (ASICs), ready-made Field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种资源确定的方法、装置及终端设备,该方法包括:确定待用于发送数据的第一时频资源集合;在所述第一时频资源集合对应的至少两个时间单元进行侦听;根据侦听结果选择用于发送数据的时频资源。本申请提供的方法适用于车联网(vehicle to everything,V2X)、智能网联车、辅助驾驶以及智能驾驶等领域,用以解决现有NR-V2X中有关侧行链路的资源确定的方法不能保证一些V2X业务时延要求的问题,能够有效减小现有NR-V2X中有关侧行链路资源选择的时延。

Description

一种资源确定的方法、装置及终端设备
相关申请的交叉引用
本申请要求在2020年04月10日提交中国专利局、申请号为202010281203.8、申请名称为“一种资源确定的方法、装置及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种资源确定的方法、装置及终端设备。
背景技术
在新无线(new radio,NR)-车到一切(vehicle to everything,V2X)中有关侧行链路(sidelink,SL)的资源分配存在两种传输模式(mode),一种为基站分配资源模式1(mode-1),一种为用户自选资源模式2(mode-2)。mode-1主要应用于有网络覆盖的情形下的V2X通信,基站统一根据终端设备上报的缓存状态报告(buffer state report,BSR),集中进行资源分配。
在用户自选资源模式(mode-2)下,发送端UE的传输资源不依赖于基站,UE自己选择传输资源进行通信。该模式不受限于网络覆盖,在没有网络覆盖情况下,发送端UE也可以用该模式进行通信。用户在选择传输资源时为了保证传输可靠性一般是会预选传输资源,在确定需要进行数据传输时候,则使用选择的传输资源进行数据传输;当然用户在预选传输资源之后,鉴于被选择传输资源可能会被预约的情况,现有技术还要求在一个设定时刻再次执行资源侦听及资源排除的过程,然后确定被选择的传输资源是否可以用于进行数据传输,即UE只能在设定时刻开始重选传输资源并且重选的传输资源在时域上距离该数据的包时延预算(packet delay buget,PDB)很近。对于一些时延有较高要求的V2X业务,根据上述现有技术选择的传输资源无法保证在较低时延内完成数据的传输。
发明内容
本申请实施例提供一种资源确定的方法、装置及终端设备,适用于车联网(vehicle to everything,V2X)、智能网联车、辅助驾驶以及智能驾驶等领域,用以解决现有新无线(new radio,NR)-V2X中有关侧行链路的资源确定的方法不能满足一些V2X业务时延要求的问题。
第一方面,提供第一资源确定的方法,包括:
确定待用于发送数据的第一时频资源集合;
在所述第一时频资源集合对应的至少两个时间单元进行侦听;
根据侦听结果选择用于发送数据的时频资源。
在本申请实施例中,终端设备在确定待用于发送数据的第一时频资源集合后,在第一时频资源集合对应的至少两个时间单元进行侦听(该至少两个时间单元可以是在第一时频 资源集合中资源所对应的时间单元之前),并根据侦听结果进行资源排除及资源重选,因为本申请实施例所提供的方法在至少两个时间单元进行侦听,即可以在多个时间单元获得第一时间资源集合中资源是否被预约的情况,从而使得根据侦听结果选择用于发送数据的时频资源时,能够及时的排除被预约资源并选择处理时间满足业务需求的时频资源,在能够为选择时频资源提供充足的处理时间的同时,也使得被选择的资源能够满足时延有较高要求的V2X业务。
在一种的可选的实现方式中,在选择用于发送数据的时频资源之前,该所述方法还可以包括对至少两个时间单元所对应的资源选择窗口中任一被预约的资源进行排除,如果任一被预约的资源是第一时频资源集合中的资源,则会在预设时间内触发终端设备选择用于发送数据的时频资源,所以本申请上述方法实现还可以包括:
根据所述侦听结果排除第一资源;其中,所述第一资源包含在所述第一时频资源集合中。
在该实现方式中,如果排除的第一资源是第一时频资源集合中的,则对应触发终端设备根据侦听结果选择用于发送数据的时频资源。因为本实现方式中是至少两个时间单元中的任何一个时间单元侦听到第一资源被排除,则会触发终端设备进行时频资源的选择,所以能够及时的选择可用的时频资源。
本申请实施例是基于至少两个时间单元进行侦听,所以对应于时间单元的侦听窗口可以有多种实现方式:
第一种方式,所述至少两个时间单元中的每个时间单元都对应一个侦听窗口。
根据上述时间单元与侦听窗口的实现方式,进一步的实施方式中,所述根据所述侦听结果排除第一资源,包括:
至少一个侦听窗口中侦听到所述第一资源被预约时,排除所述第一资源。
与上述至少两个侦听窗口对应的,根据侦听结果选择用于发送数据的时频资源的方式可以是:
根据至少两个侦听窗口的侦听结果,在所述至少两个时间单元中最后一个时间单元所对应的资源选择窗口中选择用于发送数据的时频资源。
基于第一种侦听窗口的设置方式,如果所述时间单元为时隙,则该方案可以是所述至少一个两个时间单元中的每个时隙n′都可以对应一个侦听窗口,侦听窗口的范围是[n′–T 0,n′–T proc,0);其中,所述T 0和T proc,0的时长分别对应侧行链路控制信息SCI译码和资源选择所需要的UE处理时间;
对应的,排除所述第一资源的实现可以是:
若在时隙n1侦听到所述第一资源被预约,则根据当前时隙n到时隙n1内的多个侦听窗口[n–T 0,n–T proc,0)至[n1–T 0,n1–T proc,0)的侦听结果,对时隙n1所对应资源选择窗口中的资源进行排除;
在多个侦听窗口中排除资源时,是对资源选择窗口中所有的资源进行排除判断,即判断所有可用于发送数据的时频资源是否被其他UE预约,如果被其他UE预约则需要排除。当然如果第一资源被预约除了要被排除不能作为发送数据的资源外,还会触发终端设备重新再选择新的资源用于发送数据。并且,在时隙n1所对应的资源选择窗口中进行资源排除的时候,是基于多个侦听窗口[n–T 0,n–T proc,0)至[n1–T 0,n1–T proc,0)对资源排除的结果汇总后进行的。
进一步,若第一候选资源R x1,y1在所述多个侦听窗口中的任意一个被判断为不可用于发送数据的时频资源(不可用的其中一种情况可以是被其他UE发送的SCI预约),则将所述第一候选资源R x,y从资源选择单元中排除。
在该实施方式中,根据侦听结果选择时频资源时,会在一个资源选择窗口中汇总多个侦听窗口所对应的侦听结果,使得最终选择的时频资源可以最大程度的排除其他终端设备占用资源的干扰,提高数据传输的可靠性。
第二种方式,所述至少两个时间单元中的每个时间单元对应侦听窗口所对应的起始时间相同,并且每个侦听窗口的终止时间由对应的时间单元确定。该实施方式中的侦听窗口是将多个时间单元所对应的时间窗口进行扩充,使得单个侦听窗口的侦听时间增加,至少两个时间单元都涵盖在该侦听窗口的范围内,从而能够在该侦听窗口中侦听到更多更全面的资源占用信息。
与第一种方式相同,在该侦听窗口侦听到任一资源被预约都可以在对应的资源选择窗口中对被预约的资源进行排除,如果基于该侦听窗口实现方式,对应的所述根据所述侦听结果排除第一资源,的实现方式可以是:
在所述至少两个时间单元中最后一个时间单元所对应的目标侦听窗口中侦听到所述第一资源被预约时,排除所述第一资源。
与该侦听窗口实现方式对应的,根据侦听结果选择用于发送数据的时频资源实现方式可以是:
根据所述目标侦听窗口的侦听结果,在所述至少两个时间单元中最后一个时间单元所对应的资源选择窗口中选择用于发送数据的时频资源。
基于第二种侦听窗口的设置方式,如果所述时间单元为时隙,所述至少两个时间单元中的每个时隙n′都对应一个侦听窗口[n–T 0,n′–T proc,0);该侦听窗口的初始时间是固定的,终止时间由对应的时隙确定;即所述侦听窗口所对应的侦听时长会根据对应的时隙变化而变化。多个时隙所对应的侦听窗口中,最后一个时隙所对应的侦听窗口时长最长。
对应的,排除所述第一资源的实现可以是:
若在时隙n1侦听到所述第一资源被预约,则根据侦听窗口[n–T 0,n1–T proc,0)对应的侦听结果,对时隙n1对应的资源选择窗口中的资源进行排除;
若第二候选资源R x2,y2在所述侦听窗口[n–T 0,n1–T proc,0)被判断为不可用于发送数据的时频资源,则将时隙n1对应的资源选择窗口中排除所述第二候选资源R x2,y2
因为该方式中侦听窗口的时间是涵盖至少两个时间单元的,所以该侦听窗口所对应的资源选择窗口可以是至少两个时间单元对应的至少两个,从而侦听到的结果可以覆盖预约时间更长的时频资源,从而使得侦听结果更为正确保证最终选择的用于发送数据的时频资源稳定性更高。
在一种的可选的实现方式中,若所述第一时频资源集合包括多个资源,根据侦听结果选择用于发送数据的时频资源包括:
若在时间单元n1侦听到所述多个资源中的第一资源被预约,在时间单元n1所对应的资源选择窗口中重新选择所述多个资源。
在一种的可选的实现方式中,上述多个资源中的只是一部分被预约,还可以只是重新选择被预约的部分,则在时间单元n1所对应的资源选择窗口中重新选择所述多个资源可以是:
根据其他资源在时域上的位置和一个SCI所能指示的资源的最大距离,在时间单元n1所对应的资源选择窗口中重新选择所述第一资源;其中,所述其他资源为所述多个资源中除所述第二资源外的资源。
在一种的可选的实现方式中,所述第一时频资源集合为周期性预约的资源,所述第一资源所对应时隙m为每一个周期内第一时频域资源对应的时隙;该方法还包括:
按照第一时频资源集合中资源的周期为单位,确定所述至少两个时间单元,在进行侦听和资源选择时,如果某一个资源周期中的某个资源被预约,则该资源周期内的资源进行重选,下一周如果没有出现资源被预约情况则沿用已选择的周期资源进行数据发送。
在该实现方式中,根据侦听的结果确定任一资源周期的已选择的资源被预约,则对该任一资源周期中的已选择的资源进行重新选择,并不会调整该任一资源周期以外资源周期的选择的资源;所以对于周期资源的重新选择操作只会对某一个资源周期造成影响,所以为了保证周期性预约的连续性,可以将指示所述任一资源周期为周期性预约的标识调整为非周期预约。
第二方面,提供一种资源确定的方法,所述方法包括:
确定待用于发送数据的第一时频资源集合;
选择用于发送数据的第二时频资源集合。
该实施例所提供的资源确定方法是在初次选择用于发送数据的初选资源(即第一时频资源集合)之后,如果出现第一时频资源中的资源不可用的情况,则执行第二次时频资源选择(即第二时频资源集合)。
在一种可选的实现方式中,所述方法还可以在确定时频资源集合之后,实时的侦听资源占用情况,从而触发选择第二时频资源集合,其中触发的条件可以是:
根据所述侦听结果排除第一资源;其中,所述第一资源包含在所述第一时频资源集合中。
该实施例中第一时频资源集合的选择、第二时频资源的选择以及资源的排除方式,都可以使用第一方面中各种实现方式所提供的方案;例如:在选择第二时频资源集合之前,设置多个侦听窗口;并在多个侦听窗口中排除被预约的资源;在选择第二时频资源集合时,再根据多个侦听窗口的侦听结果进行选择。
进一步,因为第一时频资源集合中可以包括多个资源,所以在第一资源被排除的情况下,则对应的,选择用于发送数据的第二时频资源集合,的实现方式可以包括:
方式一,在第一时频资源集合中任一资源被排除的情况下,则确定第一时频资源集合不可用,则可以根据侦听结果重新选择所有用于发送数据的时频资源形成第二时频资源集合。
方式二,第二时频资源集合与第一时频资源进行融合,即选择第二时频资源集合,其中,第二时频资源集合包括所述多个资源中除所述第一资源外的其他资源。第一资源被排除后第一时频资源集合中的其他资源如果没有被预约,则可以继续使用和新选择的时频资源组成第二时频资源集合用于数据的发送。
当然,先选择的资源和第一时频资源集合中原有选择的时频资源组合形成第二时频资源的时候,需要符合谁当的资源选择条件,该实施例中的条件可以包括资源时域位置关系、SCI能指示的资源的最大距离以及相邻资源之间的间隔要满足HARQ处理时长等。
第三方面,提供一种资源确定的方法,该方法包括:
确定待用于发送数据的时频资源集合;
在所述时频资源集合对应的至少一个时间单元进行侦听;
配置或选择第一资源,所述第一资源包含在所述时频资源集合中,且所述第一资源为周期资源;
根据侦听结果选择用于发送数据的时频资源。
在一种可选的实现方式中,如果用于发送数据的时频资源是周期性的(即视频资源集合包括多个周期的资源),则会按照每个周期为单位侦听资源,并根据侦听的结果再选择当前周期发送数据的时频资源,并不会调整时频资源集合中其他周期已经选择的时频资源,所以如果在当前周期确定第一资源被预约,则根据侦听结果选择当前周期用于发送数据的时频资源之后,所述方法还包括:
配置指示所述周期资源的周期长度的字段。
因为第一资源被预约后,再选择用于发送数据的时频资源则不会选择第一资源,使得时频资源集合中发送数据的时频资源的周期长度发生变化,所以对应的需要对指示周期长度的字段进行调整。
在一种可选的实施方式中,指示周期长度的字段可以是Resource reservation period,在当前周期如果重新选择了时频资源,则该周期的资源不再是周期性的,所以可以将该字段设为0指示周期长度为0。
当然上述方式中,因为第一资源是周期性的资源,所以在每一个资源周期都视为独立的资源选择和使用过程,所以可以基于每个资源周期为单位执行资源的侦听排除以及重新选择操作,并且该资源侦听排除异己重新选择的操作都可以与第一方面所提供的各种实现方式相同。
第四方面、提供一种资源确定的装置,包括:
处理模块,用于确定待用于发送数据的第一时频资源集合;
收发模块,用于在所述第一时频资源集合对应的至少两个时间单元进行侦听;
所述处理模块,还用于根据侦听结果选择用于发送数据的时频资源。
在一种可选的实现方式中,所述处理模块还用于根据所述侦听结果排除第一资源;其中,所述第一资源包含在所述第一时频资源集合中。
在一种可选的实现方式中,所述至少两个时间单元中的每个时间单元都对应一个侦听窗口。
在一种可选的实现方式中,所述至少两个时间单元中的每个时间单元对应的侦听窗口所对应的起始时刻相同,并且每个侦听窗口的终止时刻由对应的时间单元确定。
在一种可选的实现方式中,所述处理模块具体用于在至少一个侦听窗口中侦听到所述第一资源被预约时,排除所述第一资源。
在一种可选的实现方式中,所述处理模块具体用于根据至少两个侦听窗口的侦听结果,在所述至少两个时间单元中最后一个时间单元所对应的资源选择窗口中选择用于发送数据的时频资源。
在一种可选的实现方式中,所述处理模块具体用于在所述至少两个时间单元中最后一个时间单元所对应的目标侦听窗口中侦听到所述第一资源被预约时,排除所述第一资源。
在一种可选的实现方式中,所述处理模块具体用于根据所述目标侦听窗口的侦听结果,在所述至少两个时间单元中最后一个时间单元所对应的资源选择窗口中选择用于发送数据的时频资源。
第五方面,提供一种资源确定的装置,所述装置包括:
确定单元,用于确定待用于发送数据的第一时频资源集合;
所述确定单元,还用于选择用于发送数据的第二时频资源集合。
在一种可选的实现方式中,所述第一时频资源集合包括多个资源,所述多个资源中的第一资源被预约;则所述确定单元具体用于选择第二时频资源集合,其中,第二时频资源集合包括所述多个资源中除所述第一资源外的其他资源。
第六方面,提供一种资源确定的装置,包括:
确定单元,用于确定待用于发送数据的时频资源集合;
收发单元,用于在所述时频资源集合对应的至少一个时间单元进行侦听;
所述处理单元,用于配置或选择第一资源,所述第一资源包含在所述时频资源集合中,且所述第一资源为周期资源;以及根据侦听结果选择用于发送数据的时频资源。
第七方面,提供一种终端设备,包括:
处理器,用于确定待用于发送数据的第一时频资源集合;
收发器,用于在所述第一时频资源集合对应的至少两个时间单元进行侦听;
所述处理器,还用于根据侦听结果选择用于发送数据的时频资源。
在一种可选的实现方式中,所述处理器还用于根据所述侦听结果排除第一资源;其中,所述第一资源包含在所述第一时频资源集合中。
在一种可选的实现方式中,所述至少两个时间单元中的每个时间单元都对应一个侦听窗口。
在一种可选的实现方式中,所述至少两个时间单元中的每个时间单元对应侦听窗口所对应的起始时间相同,并且每个侦听窗口的终止时间由对应的时间单元确定。
在一种可选的实现方式中,所述处理器具体用于在至少一个侦听窗口中侦听到所述第一资源被预约时,排除所述第一资源。
在一种可选的实现方式中,所述处理器具体用于根据至少两个侦听窗口的侦听结果,在所述至少两个时间单元中最后一个时间单元所对应的资源选择窗口中选择用于发送数据的时频资源。
在一种可选的实现方式中,所述处理器具体用于在所述至少两个时间单元中最后一个时间单元所对应的目标侦听窗口中侦听到所述第一资源被预约时,排除所述第一资源。
在一种可选的实现方式中,所述处理器具体用于根据所述目标侦听窗口的侦听结果,在所述至少两个时间单元中最后一个时间单元所对应的资源选择窗口中选择用于发送数据的时频资源。
上述第四方面和第七方面所提供的装置与第一方面提供的方法对应,第五方面和第六方面提供的装置分别与前述第二方面和第三方面所提供方法对应,所以上述第一方面到第三方面方法中所描述的实现方式的有益效果同样适用于第四方面到第七方面的装置。并且第一方面到第三方面方法中各实现方式所对应的具体实现细节同样适用于第四方面到第七方面中个装置结果的具体实现说明。
第八方面,提供一种芯片,所述芯片包括处理器和通信接口,所述处理器与所述通信 接口耦合,用于实现上述第一方面、第二方面、第三方面以及第一方面到第三方面中任一种可选的实施方式所提供的方法。
可选的,所述芯片还可以包括存储器,例如,所述处理器可以读取并执行所述存储器所存储的软件程序,以实现上述第一方面、第二方面、第三方面以及第一方面到第三方面中任一种可选的实施方式所提供的方法。或者,所述存储器也可以不包括在所述芯片内,而是位于所述芯片外部,相当于,所述处理器可以读取并执行外部存储器所存储的软件程序,以实现上述第一方面、第二方面、第三方面以及第一方面到第三方面中任一种可选的实施方式所提供的方法。
第九方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第一方面、第二方面、第三方面以及第一方面到第三方面中任意一种可能的实施方式中所述的方法。
第十方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第一方面、第二方面、第三方面以及第一方面到第三方面中的任意一种可能的实施方式中所述的方法。
第十一方面,提供一种通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行上述第一方面、第二方面、第三方面以及第一方面到第三方面中的任意一种可能的实施方式中所述的方法。
本申请实施例中,终端设备在确定待用于发送数据的第一时频资源集合后,在第一时频资源集合对应的至少两个时间单元进行侦听(该至少两个时间单元可以是在第一时频资源集合中资源所对应的时间单元之前),并根据侦听结果进行资源排除及资源重选,因为本申请实施例所提供的方法在至少两个时间单元进行侦听,即可以在多个时间单元获得第一时间资源集合中资源是否被预约的情况,从而使得根据侦听结果选择用于发送数据的时频资源时,能够及时的排除被预约资源并选择处理时间满足业务需求的时频资源,在能够为选择时频资源提供充足的处理时间的同时,也有效减小现有NR-V2X中有关侧行链路资源选择的时延,使得被选择的资源能够满足时延有较高要求的V2X业务。
附图说明
图1为V2X的几种应用场景示意图;
图2为mode-1的动态模式下,基站通过DCI向发送端终端设备分配资源的时序示意图;
图3为一个时隙所对应的频域资源的示意图;
图4为mode-2下终端设备进行资源选择时的资源选择窗和资源侦听窗的示意图;
图5为本申请实施例所应用的一种网络架构的示意图;
图6为本申请实施例提供的一种资源确定的方法的流程示意图;
图7为确定第一时频资源集合的实现方式流程示意图;
图8本申请实施例中多个侦听窗口的示意图;
图9为现有技术中资源侦听的示意图;
图10为本申请实施例中多个侦听窗口实现侦听的示意图;
图11为本申请实施例中一个侦听窗口实现侦听的示意图;
图12为本申请实施例中资源重选的示意图;
图13为本申请实施例中另一种资源重选的示意图;
图14为本申请实施例中周期资源重选的示意图;
图15为本申请实施例中一种资源确定的方法的流程示意图;
图16为本申请实施例中一种资源确定的方法的流程示意图;
图17为本申请实施例中一种资源确定的装置的结构示意图;
图18为本申请实施例中一种通信装置的结构示意图;
图19为本申请实施例中终端设备的一种示意性框图;
图20为本申请实施例中终端设备的另一种示意性框图;
图21为本申请实施例中终端设备的再一种示意性框图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音或数据,或与RAN交互语音和数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位***(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如: 智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片***,该装置可以被安装在终端设备中。本申请实施例中,芯片***可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
2)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种V2X技术中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与互联网协议(internet protocol,IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括LTE***或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)NR***(也简称为NR***)中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)***中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
网络设备还可以包括核心网设备,核心网设备例如包括访问和移动管理功能(access and mobility management function,AMF)等。本申请实施例由于主要涉及接入网,因此在后文中如无特殊说明,则所述的网络设备均是指接入网设备。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片***,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
3)V2X,就是车与外界进行互联互通,这是未来智能汽车、自动驾驶、智能交通运输***的基础和关键技术。V2X将在已有的设备到设备(device-to-device,D2D)技术的基础上对V2X的具体应用需求进行优化,需要进一步减少V2X设备的接入时延,解决资源冲突问题。
V2X具体又包括车与车(vehicle-to-vehicle,V2V)、车与路侧基础设施(vehicle-to-infrastructure,V2I)、车与行人(vehicle-to-pedestrian,V2P)的直接通信,以及车与网络(vehicle-to-network,V2N)的通信交互等几种应用需求。如图1所示。V2V指的是车辆间的通信;V2P指的是车辆与人(包括行人、骑自行车的人、司机、或乘客)的通信;V2I指的是车辆与网络设备的通信,网络设备例如RSU,另外还有一种V2N可以包括在V2I中,V2N指的是车辆与基站/网络的通信。
其中,V2P可以用做给道路上行人或非机动车安全警告。通过V2I,车辆可以与道路甚至其他基础设施,例如交通灯、路障等,进行通信,获取交通灯信号时序等道路管理信息。V2V可以用做车辆间信息交互和提醒,最典型的应用是用于车辆间防碰撞安全***。V2N是目前应用最为广泛的车联网形式,其主要功能是使车辆通过移动网络,连接到云服务器,使用云服务器提供的导航、娱乐、或防盗等应用功能。
4)本申请实施例中的术语“***”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一间隔和第二间隔,只是为了区分不同的时域间隔,而并不是表示这两个间隔的长度、优先级或者重要程度等的不同。
前文介绍了本申请实施例所涉及到的一些名词概念,下面介绍本申请实施例涉及的技术特征。
随着无线通信技术的发展,人们对高数据速率和用户体验的需求日益增长,同时人们对了解周边人或事物并与之通信的邻近服务的需求逐渐增加,因此D2D技术应运而生。D2D技术的应用,可以减轻蜂窝网络的负担,减少用户设备的电池功耗,提高数据速率,并能很好地满足邻近服务的需求。D2D技术允许多个支持D2D功能的UE在有网络基础设施或无网络基础设施的情况下进行直接发现和直接通信。鉴于D2D技术的特点和优势,基于D2D技术的车联网应用场景被提出,但是因涉及安全性的考虑,这种场景下对时延的要求非常高,现有的D2D技术无法实现。
因此在第三代合作伙伴计划(the 3rd generation partnership project,3GPP)提出的LTE技术的网络下,V2X的车联网技术被提出。V2X通信是指车辆与外界的任何事物的通信,包括V2V、V2P、V2I、V2N,可参考图1。
V2X通信针对以车辆为代表的高速设备,是未来对通信时延要求非常高的场景下应用的基础技术和关键技术,如智能汽车、自动驾驶、智能交通运输***等场景。LTE-V2X通信可以支持有网络覆盖和无网络覆盖的通信场景,其资源分配方式可以采取网络接入设备调度模式,如演进通用陆地无线接入网节点B(E-UTRAN Node B,eNB)调度模式和UE自选模式。基于V2X技术,车辆用户设备(vehicle UE,V-UE)能将自身的一些信息,例如位置、速度、或意图(转弯、并线、或倒车)等信息以周期性或非周期性触发的方式向周围发送给其他的V-UE,同样地V-UE也会实时接收周围用户的信息。
随着5G NR技术在3GPP标准组织中的开发,5G NR-V2X将进一步发展,例如可以支持更低的传输时延,更可靠的通信传输,更高的吞吐量,更好的用户体验等,以满足更加广泛的应用场景需求。
在NR-V2X中,有关sidelink的资源分配主要有两种模式,一种为基站分配资源模式(mode-1),一种为用户自选资源模式(mode-2)。mode1主要应用于有网络覆盖的情形下的 V2X通信,基站统一根据终端设备的BSR上报情况,集中进行资源分配。mode-1下资源的分配可以按照动态模式或预配置模式来分配。基站分配的资源包括初始资源和/或重传资源,或包括初始资源和重传资源。
在mode-1的动态模式下,基站会通过下行控制信息(downlink control information,DCI)向发送端终端设备分配资源,发送端终端设备接收该DCI后,在该资源上向接收端终端设备发送数据。接收端终端设备对来自发送端终端设备的数据进行译码后,向发送端终端设备发送对应于该数据的反馈信息,例如反馈信息为肯定应答(ACK)或否定应答(NACK),发送端终端设备再将该反馈信息转发给基站。对此可参考图2。在图2中,在t1时刻,发送端终端设备接收来自基站的DCI,并对该DCI进行译码;在t2时刻,发送端终端设备向接收端终端设备发送物理侧行共享信道(physical sidelink shared channel,PSSCH)或物理侧行控制信道(pysical sidelink control channel,PSCCH);在t3时刻,接收端终端设备向发送端终端设备发送对应于PSSCH或PSCCH的混合自动重传请求(hybrid automatic repeat request,HARQ)信息(即反馈信息);在t4时刻,发送端终端设备向基站转发该HARQ信息。
在mode-1的预配置模式下,基站会通过高层信令配置相关的用于侧行链路发送的时频资源。发送端终端设备可以直接在高层信令所配置的资源上发送侧行数据(类型(type)-1);或者,基站会发送DCI,以激活所配置的资源,发送端终端设备在接收该DCI后,可以在高层信令所配置的资源上发送侧行数据(type-2)。接收端终端设备接收来自发送端终端设备的侧行数据后,对该侧行数据进行译码,再向发送端终端设备发送该侧行数据的HARQ信息(即反馈信息),发送端终端设备再将来自接收端终端设备的该HARQ信息转发给基站。
在mode-2下,发送端终端设备的传输资源不依赖于基站。该模式不受限于网络覆盖,无论是否有网络覆盖,发送端终端设备都可以用该模式进行通信。用户自选的资源包括初始资源或重传资源,或包括初始资源和重传资源。
在mode-2下,发送端终端设备根据在侦听窗口进行资源侦听(monitor)的结果,在资源选择窗口内自行选择资源以发送数据(现有技术中侦听窗口和资源选择窗口的大小以及位置关系是固定的)。假设发送端终端设备在时隙n触发资源选择,侦听窗口可定义为资源选择触发之前的T个时隙。资源选择窗口为资源选择触发之后的[n+T 1,n+T 2]对应的时隙。在资源选择窗口中包括多个时隙,对于一个时隙来说,该时隙对应的属于sidelink资源池的频域资源所包括的子信道总数为N subCH,该时隙对应的频域资源包括的子信道所对应的子信道集合为
Figure PCTCN2021085871-appb-000001
一个候选资源R x,y被定义为在时域上位于资源选择窗口[n+T_1,n+T_2]内属于sidelink资源池的时隙
Figure PCTCN2021085871-appb-000002
在频域上位于子信道x+j的子信道集合,其中j=0,...,L subCH-1,即在频域上体现为长度等于L subCH的一组连续子信道集合,L subCH为待传输数据所对应的PSSCH及PSCCH占用的子信道的个数,因此每个时隙上的候选资源总数为N subCH-L subCH+1。任何一组符合上述条件的长度等于L subCH的连续子信道集合都被认为是一个候选资源R x,y,全部候选资源的总数为M total
例如可参考图3,为一个时隙所对应的频域资源的示意图。图3中方框0~方框8表示一个时隙所对应的全部sidelink子信道,即,N subCH=8,这8个子信道对应的子信道集合为
Figure PCTCN2021085871-appb-000003
待传输数据所对应的PSSCH占用的子信道的个数为L subCH,L subCH例如为2,则该时隙对应的候选资源的总数为8-2+1=7,为图3中的资源0~资源7,该时隙对应的这7个候选资源构成的集合为
Figure PCTCN2021085871-appb-000004
侦听窗口可定义为[n–T 0,n–T proc,0),其中T 0由高层参数t0_SensingWindow配置。mode-2下发送端终端设备进行资源确定的过程总体是:发送端UE持续侦听该窗口内所有属于sidelink资源池的时隙中除过发送端UE自身进行过传输的时隙之外,剩余的所有时隙。再根据侦听的结果从资源选择窗口内排除已经被其他UE预约的候选资源,得到资源排除结果,然后根据资源排除结果选择用于发送数据的资源,这里的预约可以通过在SCI指示该候选资源来体现,当侦听到包含资源预约信息的SCI,可以知道被预约的资源在将来某个时刻可能被其他UE所占用。
如图5所示在现有技术中,为了保证预约资源的传输稳定性,发送端UE高层首先在资源选择窗口[n+T 1,n+T 2]内选择可用于发送数据的时频资源(例如选择三个资源R1,R2和R3),这里的时域资源即为上述的任意一个候选资源,在发送端UE选择资源后分为两种情况:
情况1,发送端UE在选择了资源之后可以不发送相关信息指示其他UE当前的资源选择结果,其他UE并不知道发送端UE的选择,则可能会预约发送端UE已选择(pre-selected)的资源。该实现方式可以将发送端UE选择的资源定义为预选资源。
情况2,为了防止与其他UE的资源选择冲突,发送端UE还可以发送SCI指示已经选择的资源。其他UE通过侦听发送端UE发送的SCI,可以对该SCI指示的资源的优先级进行判断,并与自己待发送数据的优先级进行比较。如果其他UE待发送数据的优先级高于发送端UE发送的SCI所指示的优先级,其他UE可以对发送端UE已经预约的资源进行再次预约,即其他UE可以抢占(pre-emption)发送端UE已经预约的资源。该实现方式中可以将发送端UE选择的资源定义为预约资源。
由于发送端UE在选择资源(该实施例中的选择资源包括预约和预选两种情况)后可以不发送相关信息指示其他UE当前的资源选择结果,该情况下其他UE可能会预约发送端UE已预选(pre-selected)的资源;即使发送了SCI指示资源选择,也可能会被其他优先级更高的UE抢占已选择的资源。所以为了防止上述情况的发生,发送端UE还需要在已选择的每一个资源(R1,R2和R3)对应的数据传输的时刻之前,再次进行资源侦听及资源排除的过程,如果再次侦听确定选择的资源已被其他UE所预约,则需要再次触发高层进行资源的重新选择,假设第一个资源R1对应的时隙为m,再次进行资源侦听及资源排除的过程所对应的时隙为n1=m-T3,即与第一个资源R1间隔为T 3的时隙,T 3的时长对应从资源选择到sidelink传输所需要的UE处理时间或者从资源初次选择到重选选择的侦听时间。
在上述两种情况中,即发送端UE发送或不发送SCI指示所选择的资源,都需要对已 经选择的资源再次进行资源侦听,资源排除以及重新选择的过程,在本文中将上述过程统一称为重选评估(re-evaluation)。
资源的重新评估所对应的侦听窗口和资源选择窗口可分别定义为[n1–T 0,n1–T proc,0)和[n1+T1,n1+T2]。如图4所示,假设发送端UE在侦听窗口[n1–T 0,n1–T proc,0)内听到其他UE发送的SCI(S1)也同样预约了第一个资源R1,则发送端UE需要再次触发高层进行资源的重新选择。如果发送端UE在侦听窗口[n1–T 0,n1–T proc,0)内未侦听到其他UE对发送端UE已选择的资源的预约,则发送端UE可直接在已选择的资源上进行数据发送。
可见现有技术在预选资源后,只在时隙为m-T 3处再次完成侦听及资源排除的过程,即在能保证从资源选择到sidelink传输所需要的UE处理时间的最晚时刻触发一次资源侦听,资源排除和资源重选,因此重选对应的资源选择窗口也会在时间上顺延,即UE只能在最晚时刻开始重选资源并且重选的资源在时域上距离该数据的PDB也越近。显然,对于一些时延有较高要求的V2X业务,根据现有技术选择的资源无法保证在较低时延内完成数据的传输。
鉴于上述现有技术的问题,本申请实施例提供一种资源确定的方法,在本申请实施例中,在确定待用于发送数据的第一时频资源集合(即预选资源或预约资源)后;会在所述第一时频资源集合对应的至少两个时间单元进行侦听;并根据侦听结果选择用于发送数据的时频资源。增加了侦听的次数,从而提高了资源被预约的发现几率,避免重选的时候误选已被预约的资源;另外,因为还可以更及时的发现已选择的资源被其他UE预约,从而能够及时的触发终端设备进行重选,并且尽早在距离PDB越远的资源选择窗口内完成数据的传输,可以最大程度的减小时延。
本申请实施例提供的技术方案可以应用于D2D场景,可以是NR D2D场景也可以是LTE D2D场景等,或者可以应用于V2X场景,可以是NR V2X场景也可以是LTE V2X场景等,例如可应用于车联网,例如V2X、LTE-V、V2V等,或可用于智能驾驶,智能网联车等领域。或者还可以应用于其他的场景或其他的通信***,例如还可以用于LTE***或NR***的Uu接口的资源选择,具体的不做限制。下面介绍本申请实施例所应用的网络架构。请参考图5,为本申请实施例所应用的一种网络架构。
图5包括网络设备和两个终端设备,分别为第一终端设备和第二终端设备。这两个终端设备均可以处于该网络设备的覆盖范围内;或者这两个终端设备可以只有第一终端设备处于该网络设备的覆盖范围内,而第二终端设备不处于该网络设备的覆盖范围内;或者这两个终端设备均不处于该网络设备的覆盖范围内。这两个终端设备之间可以通过sidelink进行通信。图5以这两个终端设备均不处于该网络设备的覆盖范围内为例。当然图5中的终端设备的数量只是举例,在实际应用中,网络设备可以为多个终端设备提供服务。
图5中的网络设备例如为接入网设备,例如基站。其中,接入网设备在不同的***对应不同的设备,例如在***移动通信技术(the 4th generation,4G)***中可以对应eNB,在5G***中对应5G中的接入网设备,例如gNB,或为后续演进的通信***中的接入网设备。
其中,图5中的终端设备是以车载终端设备或车为例,但本申请实施例中的终端设备不限于此。
接下来结合附图介绍本申请实施例提供的技术方案。
本申请实施例提供第一种资源确定的方法,请参见图6,为该方法的流程图。在下文的介绍过程中,以该方法应用于图5所示的网络架构为例。
为了便于介绍,在下文中,以该方法由第一终端设备和第二终端设备执行为例。因为本实施例是以应用在图5所示的网络架构为例,另外,因为该实施例所提供的资源确定方法是作为发送端的终端设备进行资源的选择确定,因此,下文中可以将第一终端设备作为发送端设备来说明本申请实施例方法,所述的第一终端设备可以是图5所示的网络架构中的第一终端设备,或者可以是设置在第一终端设备中的芯片***;下文中所述的第二终端设备可以是图5所示的网络架构中的第二终端设备,或者可以是设置在第二终端设备中的芯片***。
步骤601,第一终端设备确定待用于发送数据的第一时频资源集合;
第一终端设备首先进行资源选择(可以包括:资源选择后未发送SCI的资源预选;或者,资源选择后发送SCI的资源预约),即第一终端设备确定第一时频资源集合,其中确定该第一时频资源集合的实现方式可以是图7所示的过程,可以是:
步骤701、第一终端设备在侦听窗口内对资源池内其他终端设备发送的SCI进行侦听。其中,侦听可以包括检测SCI的过程,或者,可以包括检测SCI、对SCI进行译码、以及根据SCI的指示测量资源的参考信号接收功率(reference signal receiving power,RSRP)的过程。
步骤702、若侦听的SCI包括其他终端设备已经预约的资源,且该预约资源位于资源选择窗口内则排除该预约资源;其中从资源选择窗口内排除已经被其他UE预约的资源的排除流程如下:
1)定义包括全部M total个候选资源的集合为S A
2)如果候选资源R x,y同时满足以下条件,则该候选资源R x,y应当从集合S A中排除:
第一终端设备没有侦听时隙
Figure PCTCN2021085871-appb-000005
即第一终端设备自身在时隙
Figure PCTCN2021085871-appb-000006
进行过传输;
存在整数j满足y+j×P′ rsvp_TX=m+q×P′ rsvp_RX,并且q=1,2,…,Q,j=1,2,…,C resel-1,
Figure PCTCN2021085871-appb-000007
为第一终端设备的资源预约间隔,单位为ms,即为物理周期(可包括非sidelink资源池内的时隙)。P′ rsvp_RX为高层参数reservationPeriodAllowed指示的所有物理周期
Figure PCTCN2021085871-appb-000008
所对应的逻辑周期,如果P rsvp_RX≤T scal并且n′-m≤P′ revp_RX
Figure PCTCN2021085871-appb-000009
否则,Q=1。其中如果时隙n属于sidelink资源池,
Figure PCTCN2021085871-appb-000010
否则
Figure PCTCN2021085871-appb-000011
为时隙n之后第一个属于sidelink资源池的时隙;
3)如果候选资源R x,y同时满足以下条件,则该候选资源R x,y应当从集合S A中排除:
该第一终端设备在时隙
Figure PCTCN2021085871-appb-000012
收到SCI,并且译码P rsvp_RX和prio RX,其中P rsvp_RX和prio RX为该SCI对应的PSSCH的物理周期和优先级。
通过该SCI确定的PSSCH的RSRP测量结果大于门限Th prioTX,prioRX,其中门限Th prioTX,prioRX为接收到的SCI中所指示的数据对应的优先级和第一终端设备的待发送数据对应的优先级的函数;
由时隙
Figure PCTCN2021085871-appb-000013
收到的SCI以及预期在
Figure PCTCN2021085871-appb-000014
时隙收到的SCI所确定的时频资源与候选资源
Figure PCTCN2021085871-appb-000015
重合,这里q=1,2,…,Q,j=1,2,…,C resel-1,P′ rsvp_TX为第一终端设备的物理周期
Figure PCTCN2021085871-appb-000016
所对应的逻辑周期,P′ rsvp_RX为接收UE的物理周期
Figure PCTCN2021085871-appb-000017
所对应的逻 辑周期,如果P rsvp_RX≤T scal并且n′-m≤P′ rsvp_RX
Figure PCTCN2021085871-appb-000018
否则,Q=1。其中如果时隙n属于sidelink资源池,
Figure PCTCN2021085871-appb-000019
否则
Figure PCTCN2021085871-appb-000020
为时隙n之后第一个属于sidelink资源池的时隙;
4)如果候选资源集合S A中剩余的候选资源少于M total的20%,则将预先设定的RSRP门限Th prioTX,prioRX升高3dB,重复步骤1)-4)。
5)第一终端设备将集合S A汇报给高层,高层再从集合S A中完成最终的资源选择。
例如可参考图5,左边的时间窗表示侦听窗口,右边的时间窗表示资源选择窗口,侦听窗口内的UE1表示UE1已使用的资源,UE2表示UE2已使用的资源,UE3表示UE3已使用的资源,资源选择窗口内的UE1表示UE1的预留资源,UE2表示UE2的预留资源,UE3表示UE3的预留资源,在该场景下,通过上述资源排除的方法在资源选择窗口中UE2和UE3对应的预留资源则会被排除。
步骤703、第一终端设备将排除被预约资源后剩余的候选资源集合汇报给高层,从而第一终端设备可以从剩余的候选资源中选择资源。
步骤704、高层收到来自物理层的候选资源集合,再从中选择最终的用于发送数据的资源。
高层可以选择的发送资源的个数为MaxTxTransNumPSSCH,当MaxTxTransNumPSSCH=N MAX时,N MAX表示一个SCI中的频域资源分配字段"Frequency resource assignment"和时域资源分配字段"Time resource assignment"最多能够指示的sidelink资源个数,其中一个资源用于当前sidelink传输,剩余的个数用于指示之前的sidelink传输和/或未来预约的sidelink传输。高层参数N MAX=2时,一个SCI中的时频资源分配字段最多只能指示两个PSSCH资源,当高层参数N MAX=3时,一个SCI中的时频资源分配字段最多只能指示三个PSSCH资源。并且SCI指示的两个或三个资源直接的最大时域距离不能超过W=32个时隙,即上述最多两个或三个sidelink资源只能位于长度为32个时隙的,属于sidelink资源池内的时域窗口内。
步骤602,在所述第一时频资源集合对应的至少两个时间单元进行侦听;
通过步骤601选择第一时频资源集合之后,本申请实施例还执行至少两次资源的侦听和资源排除,该资源侦听及排除过程都可以按图7所示的方式实现。
例如图8所示的实例,在步骤601中第一终端设备可以在时隙n触发资源选择,对应的侦听窗口和资源选择窗口可分别定义为[n–T0,n–Tp0)和[n+T1,n+T2],被选择的资源(即第一时频资源集合)位于时隙m;
该步骤602中,如图8所示第一终端设备则可以在n2=m-T3之前的至少两个时间单元上对其他UE发送的SCI进行侦听,该实例中至少两个时间单元可以是n2=m-T3之前至少两个时隙中的每个时隙,当然也可以是多个时隙中随机或周期性选择的至少两个时隙,该实施中并不做限制,周期性的时隙的间隔可由高层配置,具体可以通过无线资源控制(Radio Resource Control,RRC)专用信令,***消息块(System Information Block,SIB)消息或者预配置等方式。
假设在时隙n1对应的侦听窗口[n1–T0,n1–TP0)内侦听到了其他UE在资源S3上发送的SCI指示已选择的资源被预约(该实施例中的占用是指:其他UE发送SCI指示已选择资源被预约),第一终端设备则可以在当前时刻,或者是检测到已选择的资源被预约后的设定时刻,(设定时刻与当前时刻的间隔可由高层配置,具体可以通过RRC专用信令,SIB消 息或者预配置等方式)触发资源重选,无需等到时隙n2=m-T3再触发资源重选。时隙n1和n2对应的资源选择窗口分别为[n+T1,n+T2]和[n2+T1,n2+T2],显然,时隙n1以及对应的资源选择窗口[n1+T1,n1+T2]均比时隙n2以及对应的资源选择窗口[n2+T1,n2+T2]在时域上更加靠前,因此在时隙n1可以更早地在更靠前的资源选择窗口内重选被其他UE预约的资源,越早的开始资源重选,越有可能尽早在距离PDB越远的资源选择窗口内完成数据的传输,满足时延的需求。
根据图7所示的资源侦听和选择过程可以确定,终端设备在侦听资源时,如果侦听到其他终端设备预约了某个资源,则会采用排除该资源的方式得到最后的候选资源集合(即侦听上报的内容),所以第一终端设备还根据侦听的结果,对每个时间单元所对应的资源选择窗口中任一被预约的资源进行排除;
如果选择的资源被其他UE预约,则会触发第一终端设备重新选择用于发送数据的时频资源,即根据侦听结果排除第一资源;其中,该第一资源包含在所述第一时频资源集合中。则会触发第一终端执行步骤603。
步骤603,根据侦听结果选择用于发送数据的时频资源。
在本申请实施例中,通过步骤602在至少两个时间单元进行侦听后,第一终端设备可以根据侦听结果再次选择用于发送数据的时频资源。因为步骤602中第一终端设备可以在多个时间单元进行资源的侦听,所以对应的侦听窗口的设置方式可以包括多种,对应的根据侦听结果选择时频资源的实现方式也与之对应,具体实现可以是:
第一种方式,如图9所示的现有技术中,其他终端设备在第一个侦听窗口[n–T 0,n–TP0)内的资源S1上发送的SCI指示了第一个资源选择窗口[n+T1,n+T2]和第二个资源选择窗口[n1+T1,n1+T2]的重合部分的资源R2被其他UE预约。即根据第一个侦听窗口[n–T0,n–TP0)的结果,需要将R2从第一个资源选择窗口[n+T1,n+T2]内排除,而根据第二个侦听窗口[n1–T0,n1–TP0)的结果,不需要将R2从第二个资源选择窗口[n1+T1,n1+T2]内排除。因此在进行资源重选的时候,如果只根据第二个资源选择窗口的结果进行上报,可能会漏掉部分应该被排除的资源。
针对上述现有侦听窗口会漏掉部分资源被其他UE预约情况(或称为资源占用情况)的问题,本申请实施例会对多个侦听窗口的侦听结果(该侦听结果是指每个侦听窗口所对应资源窗口中的资源排除情况)进行汇总,也可以理解为是对多个资源选择窗口的结果进行汇总,从而增加侦听的时长覆盖范围,避免漏掉一些资源占用情况,具体实现可以是:
所述至少两个时间单元中的每个时间单元都对应一个侦听窗口。根据该时间单元与侦听窗口的对应关系,进行资源排除的实现可以是:
根据每个侦听窗口对应的侦听结果对对应资源选择窗口中的全部候选资源集合中的任意一个候选资源进行排除;假设在侦听窗口1中侦听到资源选择窗口中的资源1被其他UE预约了,则会排除资源1;并且针对该侦听窗口记录资源1被排除的结果。即记录每个侦听窗口对应的资源选择窗口中所有被排除的候选资源的情况。
当然在该实施例中,已经被第一终端选择的第一资源也可能会被其他终端预约,则根据所述侦听结果排除第一资源:
上述任意一个候选资源(包括第一资源)排除的具体实现方式是:当在至少一个侦听窗口中侦听到所述任意一个候选资源被预约时,排除所述候选资源。
并且在每个侦听窗口对资源进行排除之后,会记录侦听结果(即每个侦听窗口中资源 被排除的情况),并将至少一个侦听窗口的侦听结果进行汇总,然后根据汇总后的侦听结果选择用于发送数据的时频资源,具体实现方式可以是:
根据至少两个侦听窗口的侦听结果,在所述至少两个时间单元中最后一个时间单元所对应的资源选择窗口中选择用于发送数据的时频资源。
在该实施方式中,根据侦听结果选择时频资源时,会在多个时间单元对应的最后一个资源选择窗口中汇总多个侦听窗口所对应的资源排除情况,例如:在第一个侦听窗口资源R1被排除,在第二侦听窗口资源R2被排除,在第三个窗口资源R3被排除;在最后一个侦听窗口即使没有侦听到需要排除R1、R2和R3,通过该实施例的方式也会在最后一个资源选择窗口中排除R1、R2和R3。使得最终选择的时频资源可以最大程度的排除其他终端设备占用资源的干扰,提高数据传输的可靠性。
如果第一终端设备在时隙n完成第一次资源选择后,可以在n2=m-T 3之前的每个时隙或多个时隙中随机或周期性选择的至少两个时隙n′的侦听窗口[n′–T0,n′–TP0)对其他UE发送的SCI进行侦听,即使用固定长度的侦听窗口来实现多个时间单元的资源侦听,可以是视为随着时间增加滑动固定长度的侦听窗口实现多个时间单元的资源侦听。如图10所示,如果在某个时隙n1侦听到其他UE预约了第一终端设备已选择的部分或全部资源,则可以在该时刻触发资源重选,根据时隙n到时隙n1内的多个侦听窗口[n–T0,n–TP0)至[n1–T0,n1–TP0)共同得到的侦听结果在最后时隙单元所对应的资源选择窗口判断某个资源候选资源R x,y(该资源可以是资源选择窗口中出现的任一可用于发送数据的资源)是否需要排除,具体的,如果某个候选资源R x,y根据上述任意一个侦听窗口的侦听结果被判断被其他UE预约(或称为被其他UE占用),即不可用于第一终端设备的数据发送,则需要从资源选择窗口[n1+T1,n2+T2]将资源R x,y排除。上述重选过程也可以在检测到已选择的资源被预约后的设定时刻触发。
对应的第一终端在进行资源选择时,在资源选择窗口[n1+T1,n2+T2]中则不会出现被多个侦听窗口中任意一个所排除的资源;本申请实施例同时结合多个侦听窗口共同判断某个资源是否要排除,可以最大程度的排除其他UE占用资源的干扰,提高数据传输的可靠性。
第二种方式,所述至少两个时间单元中的每个时间单元对应的侦听窗口所对应的起始时间相同,并且每个侦听窗口的终止时间由对应的时间单元确定。该实施方式中的侦听窗口是根据多个时间单元所对应的时间将对应的窗口时长进行调整,例如可以将时间窗口逐步变大,使得每个侦听窗口的侦听时间都不同,至少两个时间单元中最后一个时间单元所对应的目标侦听窗口覆盖至少两个时间单元中每个时间单元所对应的侦听窗口的时间,从而能够在最后一个侦听窗口中侦听到更多更全面的资源占用信息。
与第一种方式相同,在最后一个时间单元对应的目标侦听窗口侦听到任意候选资源被预约都可以在对应的资源选择窗口中对被预约的资源进行排除,进行资源排除的实现可以是:
选择至少两个时间单元中最后一个时间单元所对应的目标侦听窗口的侦听结果,对最后一个时间单元所对应的资源选择窗口中的候选资源进行排除;因为目标侦听窗口可以侦听到至少两个时间单元中每个时间单元的资源排除情况,所以通过这个侦听窗口的侦听结果进行资源排除,则可以确定至少两个时间单元中所有被排除资源的情况。
当然在该实施例中,已经被第一终端选择的第一资源也可能会被其他UE预约,对应 根据所述侦听结果排除第一资源的具体实现可以是:
在所述至少两个时间单元中最后一个时间单元所对应的目标侦听窗口中侦听到所述第一资源被预约时,排除所述第一资源。
与上述侦听窗口的实现方式对应的,根据侦听结果选择用于发送数据的时频资源实现方式可以是:
根据目标侦听窗口的侦听结果,在所述至少两个时间单元中最后一个时间单元所对应的资源选择窗口中选择用于发送数据的时频资源。
因为该方式中目标侦听窗口的时间是涵盖至少两个时间单元的,所以该目标侦听窗口所对应的侦听时长可以涵盖至少两个时间单元,从而侦听到的结果可以覆盖预约时间更长的时频资源,从而使得侦听结果更为准确保证最终选择的用于发送数据的时频资源稳定性更高。
如果第一终端设备在时隙n完成第一次资源选择(即确定第一时频资源集合)后,在n2=m-T3之前的每个时隙或多个时隙中随机或周期性选择的至少两个时隙n′的侦听窗口[n–T0,n′–TP0)对其他UE发送的SCI进行侦听,该实例中侦听窗口的初始时间(即下界)不变,同时随着时间增加滑动侦听窗口的终止时间(即上界),侦听窗口的长度随着侦听时间的增加而增加。如图11所示,如果在某个时隙n1侦听到其他UE预约了第一终端选择的部分或全部资源,则会触发第一终端设备根据侦听窗口[n–T0,n1–TP0)判断资源选择窗口[n1+T1,n2+T2]中某个资源R x,y(该资源可以是资源选择窗口中的任一资源,并不限定只能是第一终端设备选择的资源)是否需要排除。该实例中一个侦听窗口可以覆盖多个时间单元(n2=m-T3之前的每个时隙或多个时隙中随机或周期性选择的至少两个时隙n′),所以该实例中可以将资源选择时刻到选择资源被预约时刻之间的所有资源占用情况都无间歇的侦听到,所以能够更准确全面的获取到所有资源的占用情况,使得最终选择的用于发送数据的资源的稳定性高。
在本申请实施例提供的方法中,在使用选择的资源发送数据之前会在多个时间单元上进行侦听,可以使得第一终端设备能够尽早的开始资源重选,并且尽早在距离PDB越远的资源选择窗口内完成数据的传输,可以最大程度的减小时延。
另外,基于多个时间单元对应多个侦听窗口的侦听实现方式,还可以同时结合多个侦听窗口共同判断某个资源选择窗口中的资源是否要排除,可以最大程度的排除其他UE占用资源的干扰,提高数据传输的可靠性。
基于上述图6所示的方法步骤,在步骤601进行第一时频资源集合的确定(也可以理解第一次资源的选择,或称为资源的预选或预约)后,如果在第一时频资源集合中的第一资源被使用之前,第一时频资源集合中的第一资源如果被其他终端设备预约,则可以触发终端设备通过步骤603重新选择资源来实现数据的传输,当然在实现步骤603资源的重选之前,还可以通过侦听实现对其他终端预约资源的排除,该排除操作可以针对每个时间单元所对应资源选择窗口中的任一资源(具体资源的排除操作使用上述方法中所描述的方式)。针对步骤601和步骤603中所选择的资源,如果步骤601中第一时频资源集合包括多个资源,第一资源只是其中一个或一部分,则在步骤603进行资源重新选择的时候实现方式还可以包括:
方式a1,步骤603中不考虑第一资源集合中资源的被预约情况,如果第一终端触发了资源重新选择,则根据侦听结果从可用于发送数据的时频资源中选择资源用于传输。
如图12所示,第一终端设备在时隙n选择的第一时频资源集合包括资源R1,R2和R3,并从时隙n之后继续侦听其他UE发送的SCI,如果在时隙n1侦听到了其他UE预约了资源R2,则触发第一终端设备全部重选发送数据的资源(R4,R5和R6)。
实现方式可以适用于未发送SCI指示预选资源的资源预选场景,因为第一终端设备并未发送SCI,其他UE并不知道第一终端设备的资源选择情况,所以第一终端设备可以自由的重选全部资源,而且在资源重选过程中无需保留第一时频资源集合的结果,也无需在第一时频资源集合的限制下进行资源重选,可以更快速高效自由度更高的实现资源的重选。
方式a2,第一资源集合中资源中的某一个资源被预约,步骤603再选择时频资源时,则根据侦听结果从可用于发送数据的时频资源中选择一个资源来进行被预约资源的数据传输。
如图13所示,若第一终端设备在时隙n选择了资源R1,R2和R3,并从时隙n之后继续侦听其他终端设备发送的SCI,如果在时隙n1侦听到了其他终端设备预约了资源R2,则第一终端设备只重选资源R2(例如重选之后选择资源R4),未被其他UE预约的资源R1和R3无需重选;
因为重选资源R4需要与R1和R3共同实现数据的传输,所以资源R4需要满足资源选择的条件。该条件可以是:(1)资源R4的与资源R1和R3在时域上的位置满足协议规定的条件;(2)资源R1,R4和R3之间的时域和/或频域距离满足一个SCI所能指示的资源的最大时域和/或频域距离,(3)两个连续资源之间的时域距离应该大于等于HARQ重传的最小处理时延;例如R4和R1是连续的两个资源,则R4和R1之间的时域距离大于等于HARQ重传的最小处理时延。
方式a2所提供的方案可适用于已发送SCI指示预选资源的资源预约场景,因为第一终端设备已经发送SCI,其他UE已经确定了第一终端设备的资源选择,所以第一终端设备不需要重选全部资源,以免造成过度预约,造成资源的浪费。
通过上述本申请实施例所提供的实现方式,在未发送SCI指示预选资源和已发送SCI指示预约资源两种场景下,提出了全部重选所有资源和只对被预约资源进行重选的两种方案。本发明对所述两种方案的具体使用场景不做限制,每种场景均可使用上述任意一种方案。针对不同场景的需求,简化了资源重选的流程,解决了造成过度预约造成资源的浪费问题,进一步完善了mode2机制的整体设计。
进一步的,针对周期性的业务,第一终端设备在选择资源的时候还可以对应的选择周期性的资源实现周期性业务中的数据发送,在对周期业务选择包括周期性资源的时频资源集合后,因为所有资源的使用都是周期性的,当周期预约被使能(enabled)时,应在每个周期之前重新评估即将到来的周期中已经选择的资源。所以本申请实施例所提供的方法可以将周期性资源中的每个周期内选择的资源(在一个周期内可选择一个或多个资源)作为一个资源初选和重选的单位,并且每个周期内选择的资源都独立处理并且不影响其他周期已选的资源的重选和使用,即步骤601中第一时频资源集合确定后,根据周期性资源的周期,在每个周期内选择的资源之前的至少两个时间单元进行侦听,并且根据侦听结果对已选择的资源进行重选的时候,也只针对一个周期中内选择的资源进行操作,可以视为针对每个周期重复执行上述步骤601~步骤603的方法,具体实现可以是:
如果每一个周期内被选择的资源位于时隙m(这里每一个周期可以有一个或多个被选 择的资源),然后可以在每个周期内的n2=m-T3(m是该周期中选择的资源对应的时隙)之前的每个或多个时隙中随机或周期性选择的至少两个时隙上对其他UE发送的SCI进行侦听,如果侦听到其他UE预约部分或全部预选资源,则从资源选择窗口内排除该资源,并且在当前时刻,或者是检测到已选择的资源被预约后的设定时刻,触发资源重选。由于资源重选时的资源选择窗口会在时间上晚于初次的资源选择窗口,重选的资源会较大概率的在时间上晚于初次选择的资源。保证了时延的要求。
该实例中,由于用于发送数据的时频资源是周期性的,所以会对每个周期内选择的资源进行侦听,并根据侦听的结果再决定是否重选下一个周期内发送数据的时频资源,并且不会调整下一个周期之后的所有周期内已经选择的时频资源,所以如果确定下一个周期内所选择的资源被预约,根据侦听结果只重选下一个周期内用于发送数据的时频资源;
因为只对下一个周期所选择的资源进行了重选,并没有改变下一个周期之后的所有周期内已经选择的资源,所以还需要对指示周期长度的字段进行调整。这里指示周期长度的字段可以是Resource reservation period,当只对下一个周期内所选择的资源进行了重选后,当在下一个周期内的重选资源上发送数据和/或控制消息时,可以将SCI中指示周期长度的字段“资源预约周期”(Resource reservation period)设为0,指示该资源的周期长度为0。
通过本申请实施例所提供的方法,可以更大限度的减小时延,并暂时中断周期性预约。
如图14所示,假设第一终端设备在时隙n选择了一组周期性资源R1#1(对应周期#1),R1#2(对应周期#2),R1#3(对应周期#3)…。并且资源R1#2被其他UE发送的SCI S1所预约。当对选择的资源R1#1进行重新评估时,已经检测到其他UE对资源R1#2的预约,但此时不会触发对资源R1#2的重新选择。只有当对资源R1#2进行重新评估时,才会触发对资源R1#2重新选择。假设重选的资源为R2#1,位于周期#2内。第一终端设备继续对之前选择的资源R1#3,R1#4…进行重选评估。并且UE在周期#2内重选的资源R2#1上发送数据和/或控制消息时,会将SCI中的字段“资源预约周期”(Resource reservation period)设置为零,即告知其他UE,第一终端设备仅重选了资源R2#1,并且资源R2#1的重选并不意味着选择了一组新的周期性资源R2#1,R2#2,R2#3…。第一终端设备将在接下来的时间内继续重新评估先前预约的资源R1#3,R1#4…,如果未检测到其他UE对已选择的资源的预约,则在已选择的资源R1#3,R1#4…上进行数据传输。
因此,通过本申请实施例所提供的方法,可以避免由于重新选择的资源在时间上位于更晚的资源选择窗口而导致的资源R2#2,R2#3…在时域上造成累积的延迟效应。
实施例
如图15所示,本申请实施例还提供另外一种资源确定的方法,该方法具体可以包括以下实现步骤:
步骤1501,确定待用于发送数据的第一时频资源集合;
步骤1502,选择用于发送数据的第二时频资源集合。
该实施例所提供的资源确定方法是在初次选择用于发送数据的初选资源(即第一时频资源集合)之后,如果出现第一时频资源中的资源不可用的情况,则执行第二次时频资源选择(即第二时频资源集合)。
在一种可选的实现方式中,所述方法还可以在确定时频资源集合之后,实时的侦听资源占用情况,从而触发选择第二时频资源集合,其中触发的条件可以是:
根据所述侦听结果排除第一资源;其中,所述第一资源包含在所述第一时频资源集合 中。
该实施例中第一时频资源集合的选择、第二时频资源集合的选择以及资源的排除方式,都可以使用第一方面中各种实现方式所提供的方案;例如:在选择第二时频资源集合之前,设置多个侦听窗口;并在多个侦听窗口中排除被预约的资源;在选择第二时频资源集合时,再根据多个侦听窗口的侦听结果进行选择。
进一步,因为第一时频资源集合中可以包括多个资源,所以在第一资源被排除的情况下,则对应的,选择用于发送数据的第二时频资源集合的实现方式可以包括:
方式一,在第一时频资源集合中任意一个资源被排除的情况下,则确定第一时频资源集合不可用,则可以根据侦听结果重新选择所有用于发送数据的时频资源形成第二时频资源集合。
方式二,第二时频资源集合可包括部分第一时频资源集合中的资源,即当第一资源被排除后,第一时频资源集合中没有被预约的其他资源可以继续使用,并且没有被预约的其他资源可以和重新选择的时频资源共同组成第二时频资源集合用于数据的发送。
当然,重新选择的资源和第一时频资源集合中未被预约的时频资源共同组成第二时频资源集合的时候,需要符合适当的资源选择条件,该实施例中的条件可以是:(1)第二时频资源集合中的资源在时域上的位置满足协议规定的条件;(2)第二时频资源集合中的资源之间的时域和/或频域距离满足一个SCI所能指示的资源的最大时域和/或频域距离,(3)第二时频资源集合中两个连续资源之间的时域距离应该大于等于HARQ重传的最小处理时延。
实施例
如图16所示,本申请实施例还提供另外一种资源确定的方法,该方法具体可以包括以下实现步骤:
步骤1601,确定待用于发送数据的时频资源集合;
步骤1602,在所述时频资源集合对应的至少一个时间单元进行侦听;
步骤1603,配置或选择第一资源,所述第一资源包含在所述时频资源集合中,且所述第一资源为周期资源;
步骤1604,根据侦听结果选择用于发送数据的时频资源。
该实例中,由于用于发送数据的时频资源是周期性的,所以会对每个周期内选择的资源进行侦听,并根据侦听的结果再决定是否重选下一个周期内发送数据的时频资源,并且不会调整下一个周期之后的所有周期内已经选择的时频资源,所以如果确定下一个周期内所选择的资源被预约,根据侦听结果只重选下一个周期内用于发送数据的时频资源;
因为只对下一个周期所选择的资源进行了重选,并没有改变下一个周期之后的所有周期内已经选择的资源,所以还需要对指示周期长度的字段进行调整。这里指示周期长度的字段可以是SCI中的Resource reservation period字段,当只对下一个周期内所选择的资源进行了重选后,在下一个周期内的重选资源上发送数据和/或控制消息时,可以将SCI中指示周期长度的字段“资源预约周期”(Resource reservation period)设为0,指示该资源的周期长度为0。
当然上述方式中,因为第一资源是周期性的资源,所以在每一个资源周期都视为独立的资源选择和使用过程,所以可以基于每个资源周期为单位执行资源的侦听排除以及重新 选择操作,并且该资源侦听排除异己重新选择的操作都可以与第一方面所提供的各种实现方式相同。
该实例中的资源侦听以及重选方式与图14对应实施例方式相同,此处不再赘述。
如图17所示,本申请实施例还提供一种资源确定的装置,该装置1700可以包括:
处理模块1701,用于确定待用于发送数据的第一时频资源集合;
收发模块1702,用于在所述第一时频资源集合对应的至少两个时间单元进行侦听;
所述处理模块1701,还用于根据侦听结果选择用于发送数据的时频资源。
在一种可选的实现方式中,所述处理模块还用于根据所述侦听结果排除第一资源;其中,所述第一资源包含在所述第一时频资源集合中。
在一种可选的实现方式中,所述至少两个时间单元中的每个时间单元都对应一个侦听窗口。
在一种可选的实现方式中,所述至少两个时间单元中的每个时间单元对应侦听窗口所对应的起始时间相同,并且每个侦听窗口的终止时间由对应的时间单元确定。
在一种可选的实现方式中,所述处理模块具体用于在至少一个侦听窗口中侦听到所述第一资源被预约时,排除所述第一资源。
在一种可选的实现方式中,所述处理模块具体用于根据至少两个侦听窗口的侦听结果,在所述至少两个时间单元中最后一个时间单元所对应的资源选择窗口中选择用于发送数据的时频资源。
在一种可选的实现方式中,所述处理模块具体用于在所述至少两个时间单元中最后一个时间单元所对应的目标侦听窗口中侦听到所述第一资源被预约时,排除所述第一资源。
在一种可选的实现方式中,所述处理模块具体用于根据所述目标侦听窗口的侦听结果,在所述至少两个时间单元中最后一个时间单元所对应的资源选择窗口中选择用于发送数据的时频资源。
上述图17所示的处理模块1701和收发模块1702,的功能可以由处理器读取存储器中的程序执行,或者由处理器单独执行。
可选地,当所述资源确定的装置运行时,所述处理模块1701和收发模块1702可以执行如图6所示的S601-S603中第一终端设备执行的方法流程;或执行例如图7所示的步骤701-步骤704中终端设备执行的方法流程。
需要说明的是,所述收发模块1702可以包含不同的通信单元,分别对应不同的通信接口。
关于本申请提供的资源确定的装置的功能或者执行的操作的详细描述可以参考本申请方法实施例中调度终端设备执行的步骤,在此不做赘述。
基于以上实施例,如图18所示,本申请一种通信装置,所述通信装置可以是一种终端设备,该通信装置包括处理器1800、存储器1801和通信接口1802。
处理器1800负责管理总线架构和通常的处理,存储器1801可以存储处理器1800在执行操作时所使用的数据。通信接口1802用于在处理器1800的控制下接收和发送数据与存储器1801进行数据通信。
所述处理器1800可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。所述处理器1800还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC), 可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。存储器1801可以包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
所述处理器1800、所述存储器1801以及所述通信接口1802之间相互连接。可选的,所述处理器1800、所述存储器1801以及所述通信接口1802可以通过总线1803相互连接;所述总线1803可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图18中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
具体地,所述处理器1800,用于读取存储器1801中的程序并执行如图6所示的S601-S603中第一终端设备执行的方法流程;或执行例如图7所示的步骤701-步骤704中终端设备执行的方法流程;或执行例如图15所示的步骤1501-步骤1502中终端设备执行的方法流程;或执行例如图16所示的步骤1601-步骤1604中终端设备执行的方法流程。
本申请实施例还提供一种资源确定的装置,所述装置包括:
确定单元,用于确定待用于发送数据的第一时频资源集合;
选择单元,用于选择用于发送数据的第二时频资源集合。
在一种可选的实现方式中,所述第一时频资源集合包括多个资源,所述多个资源中的第一资源被预约;则所述选择单元具体用于选择第二时频资源集合,其中,第二时频资源集合包括所述多个资源中除所述第一资源外的其他资源。
本申请实施例还提供另外一种资源确定的装置,包括:
确定单元,用于确定待用于发送数据的时频资源集合;
侦听单元,用于在所述时频资源集合对应的至少一个时间单元进行侦听;
配置单元,用于配置或选择第一资源,所述第一资源包含在所述时频资源集合中,且所述第一资源为周期资源;
选择单元,用于根据侦听结果选择用于发送数据的时频资源。
上述资源确定的装置与图6~图15所描述的方法对应,所以上述方法中所描述的实现方式以及对应的有益效果同样适用于装置实施例。
上述主要从终端设备的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,终端设备可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请的实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本申请实施例还提供一种终端设备,该终端设备可以是电路。该终端设备可以用于执行上述方法实施例中由第一终端设备所执行的动作。
图19示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图19中,终端设备以手机作为例子。如图19所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图19中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元(收发单元可以是一个功能单元,该功能单元能够实现发送功能和接收功能;或者,收发单元也可以包括两个功能单元,分别为能够实现接收功能的接收单元和能够实现发送功能的发送单元),将具有处理功能的处理器视为终端设备的处理单元。如图19所示,终端设备包括收发单元1910和处理单元1920。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1910中用于实现接收功能的器件视为接收单元,将收发单元1910中用于实现发送功能的器件视为发送单元,即收发单元1910包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1910用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1920用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,处理单元1920可以用于执行图6所示的实施例中由第一终端设备所执行的除了收发操作之外的全部操作,例如步骤601~步骤603,和/或用于支持本文所描述的技术的其它过程。收发单元1910可以用于上述实施例中由第一终端设备所执行的全部收发操作,或用于支持本文所描述的技术的其它过程。
又例如,在一种实现方式中,处理单元1920可以用于执行图15或图16所示的实施例中由第一终端设备所执行的除了收发操作之外的全部操作,例如步骤1501~步骤1502、步骤1601~步骤1604,和/或用于支持本文所描述的技术的其它过程。收发单元1910可以用于执行图15和图16所示的实施例中由第一终端设备所执行的全部收发操作,或用于支持本文所描述的技术的其它过程。
本实施例所提供的终端设备,还可以参照图20所示的设备。作为一个例子,该设备 可以完成类似于图17中处理模块1701和收发模块1702的功能。在图20中,该设备包括处理器2010,发送数据处理器2020,接收数据处理器2030。上述实施例中的处理模块1701可以是图20中的该处理器2010,并完成相应的功能;上述实施例中的收发模块1702可以是图20中的发送数据处理器2020,和/或接收数据处理器2030,并完成相应的功能。或者,上述实施例中的处理模块2010可以是图20中的该处理器2010,并完成相应的功能;虽然图20中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图21示出本实施例的另一种形式。处理装置2100中包括调制子***、中央处理子***、周边子***等模块。本实施例中的通信装置可以作为其中的调制子***。具体的,该调制子***可以包括处理器2102,接口2104。其中,处理器2102完成上述处理模块1701的功能,接口2104完成上述收发模块1702的功能。作为另一种变形,该调制子***包括存储器2106、处理器2102及存储在存储器2106上并可在处理器上运行的程序,该处理器2102执行该程序时实现上述方法实施例中终端设备侧的方法。需要注意的是,所述存储器2106可以是非易失性的,也可以是易失性的,其位置可以位于调制子***内部,也可以位于处理装置2100中,只要该存储器2106可以连接到所述处理器2102即可。
应理解,本申请实施例中提及的处理器可以是CPU,还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实 施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (32)

  1. 一种资源确定的方法,其特征在于,包括:
    确定待用于发送数据的第一时频资源集合;
    在所述第一时频资源集合对应的至少两个时间单元进行侦听;
    根据侦听结果选择用于发送数据的时频资源。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述侦听结果排除第一资源;其中,所述第一资源包含在所述第一时频资源集合中。
  3. 如权利要求2所述的方法,其特征在于,所述至少两个时间单元中的每个时间单元都对应一个侦听窗口。
  4. 如权利要求2所述的方法,其特征在于,所述至少两个时间单元中的每个时间单元对应的侦听窗口所对应的起始时刻相同,并且每个侦听窗口的终止时刻由对应的时间单元确定。
  5. 如权利要求3所述的方法,其特征在于,所述根据所述侦听结果排除第一资源,包括:
    至少在一个侦听窗口中侦听到所述第一资源被预约时,排除所述第一资源。
  6. 如权利要求5所述的方法,其特征在于,根据侦听结果选择用于发送数据的时频资源包括:
    根据至少两个侦听窗口的侦听结果,在所述至少两个时间单元中最后一个时间单元所对应的资源选择窗口中选择用于发送数据的时频资源。
  7. 如权利要求4所述的方法,其特征在于,所述根据所述侦听结果排除第一资源,包括:
    在所述至少两个时间单元中最后一个时间单元所对应的目标侦听窗口中侦听到所述第一资源被预约时,排除所述第一资源。
  8. 如权利要求7所述的方法,其特征在于,根据侦听结果选择用于发送数据的时频资源包括:
    根据所述目标侦听窗口的侦听结果,在所述至少两个时间单元中最后一个时间单元所对应的资源选择窗口中选择用于发送数据的时频资源。
  9. 一种资源确定的方法,其特征在于,所述方法包括:
    确定待用于发送数据的第一时频资源集合;
    选择用于发送数据的第二时频资源集合。
  10. 如权利要求9所述的方法,其特征在于,所述第一时频资源集合包括多个资源,所述多个资源中的第一资源被预约;
    其中,所述选择用于发送数据的第二时频资源集合,包括:
    选择第二时频资源集合,其中,第二时频资源集合包括所述多个资源中除所述第一资源外的其他资源。
  11. 一种资源确定的方法,其特征在于,包括:
    确定待用于发送数据的时频资源集合;
    在所述时频资源集合对应的至少一个时间单元进行侦听;
    配置第一资源,所述第一资源包含在所述时频资源集合中,且所述第一资源为周期资源;
    根据侦听结果选择用于发送数据的时频资源。
  12. 一种资源确定的装置,其特征在于,包括:
    处理模块,用于确定待用于发送数据的第一时频资源集合;
    收发模块,用于在所述第一时频资源集合对应的至少两个时间单元进行侦听;
    所述处理模块,还用于根据侦听结果选择用于发送数据的时频资源。
  13. 如权利要求12所述的装置,其特征在于,所述处理模块还用于根据所述侦听结果排除第一资源;其中,所述第一资源包含在所述第一时频资源集合中。
  14. 如权利要求13所述的装置,其特征在于,所述至少两个时间单元中的每个时间单元都对应一个侦听窗口。
  15. 如权利要求13所述的装置,其特征在于,所述至少两个时间单元中的每个时间单元对应的侦听窗口所对应的起始时刻相同,并且每个侦听窗口的终止时刻由对应的时间单元确定。
  16. 如权利要求14所述的装置,其特征在于,所述处理模块具体用于在至少一个侦听窗口中侦听到所述第一资源被预约时,排除所述第一资源。
  17. 如权利要求16所述的装置,其特征在于,所述处理模块具体用于根据至少两个侦听窗口的侦听结果,在所述至少两个时间单元中最后一个时间单元所对应的资源选择窗口中选择用于发送数据的时频资源。
  18. 如权利要求15所述的装置,其特征在于,所述处理模块具体用于在所述至少两个时间单元中最后一个时间单元所对应的目标侦听窗口中侦听到所述第一资源被预约时,排除所述第一资源。
  19. 如权利要求18所述的装置,其特征在于,所述处理模块具体用于根据所述目标侦听窗口的侦听结果,在所述至少两个时间单元中最后一个时间单元所对应的资源选择窗口中选择用于发送数据的时频资源。
  20. 一种资源确定的装置,其特征在于,所述装置包括:
    确定单元,用于确定待用于发送数据的第一时频资源集合;
    所述确定单元,还用于选择用于发送数据的第二时频资源集合。
  21. 如权利要求20所述的装置,其特征在于,所述第一时频资源集合包括多个资源,所述多个资源中的第一资源被预约;则所述确定单元具体用于选择第二时频资源集合,其中,第二时频资源集合包括所述多个资源中除所述第一资源外的其他资源。
  22. 一种资源确定的装置,其特征在于,包括:
    确定单元,用于确定待用于发送数据的时频资源集合;
    收发单元,用于在所述时频资源集合对应的至少一个时间单元进行侦听;
    所述处理单元,用于配置第一资源,所述第一资源包含在所述时频资源集合中,且所述第一资源为周期资源;以及根据侦听结果选择用于发送数据的时频资源。
  23. 一种终端设备,其特征在于,包括:
    处理器,用于确定待用于发送数据的第一时频资源集合;
    收发器,用于在所述第一时频资源集合对应的至少两个时间单元进行侦听;
    所述处理器,还用于根据侦听结果选择用于发送数据的时频资源。
  24. 如权利要求23所述的终端设备,其特征在于,所述处理器还用于根据所述侦听结果排除第一资源;其中,所述第一资源包含在所述第一时频资源集合中。
  25. 如权利要求24所述的终端设备,其特征在于,所述至少两个时间单元中的每个时间单元都对应一个侦听窗口。
  26. 如权利要求25所述的终端设备,其特征在于,所述至少两个时间单元中的每个时间单元对应侦听窗口所对应的起始时间相同,并且每个侦听窗口的终止时间由对应的时间单元确定。
  27. 如权利要求25所述的终端设备,其特征在于,所述处理器具体用于在至少一个侦听窗口中侦听到所述第一资源被预约时,排除所述第一资源。
  28. 如权利要求26所述的终端设备,其特征在于,所述处理器具体用于在所述至少两个时间单元中最后一个时间单元所对应的目标侦听窗口中侦听到所述第一资源被预约时,排除所述第一资源。
  29. 一种通信装置,其特征在于,包括:处理器和存储器;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行如权利要求1至11中任一项所述的方法。
  30. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至11中任一项所述的方法。
  31. 一种可读存储介质,其特征在于,所述可读存储介质存储有指令,当所述指令被执行时,使如权利要求1至11中任一项所述的方法被实现。
  32. 一种计算机程序产品,其特征在于,存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至11中任一项所述的方法。
PCT/CN2021/085871 2020-04-10 2021-04-08 一种资源确定的方法、装置及终端设备 WO2021204173A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010281203.8 2020-04-10
CN202010281203.8A CN113518381B (zh) 2020-04-10 2020-04-10 一种资源确定的方法、装置及终端设备

Publications (1)

Publication Number Publication Date
WO2021204173A1 true WO2021204173A1 (zh) 2021-10-14

Family

ID=78024023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085871 WO2021204173A1 (zh) 2020-04-10 2021-04-08 一种资源确定的方法、装置及终端设备

Country Status (2)

Country Link
CN (1) CN113518381B (zh)
WO (1) WO2021204173A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023078038A1 (zh) * 2021-11-05 2023-05-11 华为技术有限公司 侧行传输方法以及通信装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118044300A (zh) * 2021-12-29 2024-05-14 Oppo广东移动通信有限公司 资源排除方法、装置、设备、存储介质及程序产品
CN117042140A (zh) * 2022-04-29 2023-11-10 华为技术有限公司 时间单元确定的方法和通信装置
CN117750522A (zh) * 2022-09-20 2024-03-22 华为技术有限公司 一种资源确定方法及通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024292A (zh) * 2016-11-04 2018-05-11 电信科学技术研究院 一种资源排除方法及装置
US20190208504A1 (en) * 2016-08-10 2019-07-04 Ntt Docomo, Inc. User equipment and signal transmission method
CN110972102A (zh) * 2018-09-28 2020-04-07 维沃移动通信有限公司 资源选择方法及终端

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105101300A (zh) * 2014-05-09 2015-11-25 中兴通讯股份有限公司 基于竞争的资源选择方法及装置
KR20180132712A (ko) * 2016-04-11 2018-12-12 가부시키가이샤 엔티티 도코모 유저장치 및 신호 송신 방법
WO2018021803A1 (en) * 2016-07-29 2018-02-01 Samsung Electronics Co., Ltd. Data transmission method and device
EP4161201A1 (en) * 2016-08-11 2023-04-05 Huawei Technologies Co., Ltd. Resource energy determining method and apparatus
EP3672338B1 (en) * 2017-09-29 2022-11-30 LG Electronics Inc. Method for transmitting v2x message by terminal in wireless communication system, and terminal using same method
CN111567121B (zh) * 2018-02-05 2021-11-19 Oppo广东移动通信有限公司 一种资源选择方法及装置、计算机存储介质
WO2020033088A1 (en) * 2018-08-09 2020-02-13 Convida Wireless, Llc Resource management for 5g ev2x
CN110972273B (zh) * 2018-09-28 2022-03-25 北京紫光展锐通信技术有限公司 传输资源配置选择方法、装置及终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190208504A1 (en) * 2016-08-10 2019-07-04 Ntt Docomo, Inc. User equipment and signal transmission method
CN108024292A (zh) * 2016-11-04 2018-05-11 电信科学技术研究院 一种资源排除方法及装置
CN110972102A (zh) * 2018-09-28 2020-04-07 维沃移动通信有限公司 资源选择方法及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on co-existence for NR-V2X and LTE-V2X", 3GPP DRAFT; R1-1812215, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20181112 - 20181116, 11 November 2018 (2018-11-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051554087 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023078038A1 (zh) * 2021-11-05 2023-05-11 华为技术有限公司 侧行传输方法以及通信装置

Also Published As

Publication number Publication date
CN113518381B (zh) 2023-11-14
CN113518381A (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2021204173A1 (zh) 一种资源确定的方法、装置及终端设备
WO2018030541A1 (ja) ユーザ装置及び信号送信方法
WO2021026703A1 (zh) 信息传输方法、装置、设备及存储介质
US10728881B2 (en) User equipment and signal transmission method
WO2020238428A1 (zh) 一种通信方法及装置
WO2021031043A1 (zh) 一种通信方法及装置
US11665674B2 (en) Direct link data transmission method, terminal device, and network device
WO2021203379A1 (zh) 边链路资源的重选方法以及装置
WO2021057564A1 (zh) 信道状态信息的优先级发送、确定方法及装置、存储介质、用户设备
WO2021026738A1 (zh) 无线通信的方法、终端设备和网络设备
US20230362895A1 (en) Communication method and system, and terminal apparatus
WO2021212510A1 (zh) 一种通信方法及装置
WO2021212505A1 (zh) 一种通信方法、装置及***
WO2022077877A1 (zh) 侧行传输方法和通信装置
WO2021184386A1 (zh) 一种通信方法及装置
WO2022077453A1 (zh) 一种通信方法及通信装置
WO2021087963A1 (zh) 一种资源选择方法及装置
WO2023274030A1 (zh) 一种通信方法及装置
RU2802679C1 (ru) Способ выбора ресурсов и устройство
WO2023030208A1 (zh) 一种资源确定的方法和装置
US20240260064A1 (en) Sidelink coordination between a transmitting device and a receiving device
WO2022141443A1 (zh) 一种指示信息传输的方法、装置及***
WO2023165468A9 (zh) 一种资源确定方法及装置
WO2024140322A1 (zh) 波束测量方法、装置及***
WO2021212261A1 (zh) 一种通信方法以及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21784161

Country of ref document: EP

Kind code of ref document: A1