WO2021203994A1 - 一种参数的获取方法及装置、参数的确定方法及装置 - Google Patents

一种参数的获取方法及装置、参数的确定方法及装置 Download PDF

Info

Publication number
WO2021203994A1
WO2021203994A1 PCT/CN2021/083368 CN2021083368W WO2021203994A1 WO 2021203994 A1 WO2021203994 A1 WO 2021203994A1 CN 2021083368 W CN2021083368 W CN 2021083368W WO 2021203994 A1 WO2021203994 A1 WO 2021203994A1
Authority
WO
WIPO (PCT)
Prior art keywords
time unit
uplink
channel
parameter
target element
Prior art date
Application number
PCT/CN2021/083368
Other languages
English (en)
French (fr)
Inventor
张淑娟
鲁照华
高波
蒋创新
何震
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021203994A1 publication Critical patent/WO2021203994A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present disclosure relates to the field of communications, and in particular to a method and device for acquiring parameters, and a method and device for determining parameters.
  • the update speed of the beam is very fast, which affects the interaction of data, and the beam change cannot be quickly tracked in related technologies.
  • the embodiments of the present disclosure provide a method and device for acquiring parameters, and a method and device for determining parameters.
  • a method for obtaining parameters including: determining an uplink target element group, wherein the uplink target element group includes one or more uplink target elements, and the uplink target element includes at least the following One: uplink control channel resources, uplink signal resources, and uplink data channels; determine the downlink channel element corresponding to the uplink target element group; obtain the parameters of the uplink target element group according to the determined downlink channel element.
  • a method for determining a parameter including: determining a second parameter of a second channel or signal in a second time unit according to a first parameter corresponding to the first time unit, wherein: The second time unit belongs to N time units occupied by the second channel or signal, where N is a positive integer greater than or equal to 1, and the first parameter includes one of the following:
  • the parameters and signaling information are the second parameters activated by the second channel or signal.
  • an apparatus for obtaining parameters including: a first determining module configured to determine an uplink target element group, wherein the uplink target element group includes one or more uplink target elements ,
  • the uplink target element includes at least one of the following: an uplink control channel resource, an uplink signal resource, an uplink data channel;
  • a second determining module configured to determine a downlink channel element corresponding to the uplink target element group;
  • an acquiring module configured to Acquiring the parameter of the uplink target element group according to the determined downlink channel element.
  • a parameter determining device including: a determining module configured to determine the second channel or signal in the second time unit according to the first parameter corresponding to the first time unit Two parameters, where the second time unit belongs to N time units occupied by the second channel or signal, and N is a positive integer greater than or equal to 1, and the first parameter includes one of the following: Or the first parameter of the signal and the second parameter activated by the second channel or signal in the signaling information.
  • a computer-readable storage medium in which a computer program is stored, wherein the computer program is configured to execute any of the foregoing when running. Steps in the embodiment of the method for obtaining item parameters.
  • an electronic device including a memory and a processor, the memory is stored with a computer program, and the processor is configured to run the computer program to execute any of the above Steps in the embodiment of the method for obtaining parameters.
  • a computer-readable storage medium in which a computer program is stored, wherein the computer program is configured to execute any of the foregoing when running. Steps in the embodiment of the method for determining item parameters.
  • an electronic device including a memory and a processor, the memory is stored with a computer program, and the processor is configured to run the computer program to execute any of the above Steps in the embodiment of the method for determining parameters.
  • FIG. 1 is a block diagram of the hardware structure of a mobile terminal of a method for acquiring parameters according to an embodiment of the present disclosure
  • Fig. 2 is a flowchart of a method for acquiring parameters according to an embodiment of the present disclosure
  • Fig. 3 is a flowchart of a method for determining a parameter according to an embodiment of the present disclosure
  • Fig. 4 is a structural block diagram of a parameter acquisition device according to an embodiment of the present disclosure.
  • Fig. 5 is a structural block diagram of an apparatus for determining parameters according to an embodiment of the present disclosure
  • FIG. 6 shows the MAC-CE updating the TCI state 2 of CORESET0 according to an exemplary embodiment of the present disclosure.
  • the available time of the TCI state2 indicated in the MAC-CE is located in the slot after the first slot of the 8 slots occupied by the PUCCH Schematic diagram;
  • FIG. 7 is a schematic diagram of the PUCCH parameters obtained according to the activated TCI state of CORESET0 in the first slot of the 8 slots occupied by the PUCCH according to an exemplary embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of PUCCH parameters obtained according to the activated TCI state of CORESET0 in each of the 8 slots occupied by the PUCCH according to an exemplary embodiment of the present disclosure
  • FIG. 11 is a time unit before the available time of the TCI state of CORESET0 is located in the middle of N time units according to an exemplary embodiment of the present disclosure, and the parameters of PUCCH are obtained according to the quasi co-location reference signal before the update of CORESET0 in the first half time unit , A schematic diagram of the second half of the time unit obtained according to the updated quasi co-location reference signal of CORESET0;
  • FIG. 12 is a schematic diagram of acquiring the parameters of each time unit of PUCCH according to the quasi co-located reference signal of CORESET0 in the time unit closest to the time unit where PUCCH is located and including the closest time unit of CORESET0 according to an exemplary embodiment of the present disclosure;
  • FIG. 13 is a schematic diagram 1 showing that the TCI states of CORESET0 before and after the update are both 2 according to an exemplary embodiment of the present disclosure, and the number of time units after the update does not include an integer multiple of time unit groups;
  • TCI states of CORESET0 before and after the update are both 2 according to an exemplary embodiment of the present disclosure, and the number of time units after the update does not include an integer multiple of time unit groups;
  • 15 is a third schematic diagram showing that the TCI states of CORESET0 before and after the update are both 2 according to an exemplary embodiment of the present disclosure, and the number of time units after the update does not include an integer multiple of time unit groups;
  • FIG. 16 is a schematic diagram showing that the TCI state of CORESET0 before the update is 2 and the TCI state of CORESET0 after the update is 1 according to an exemplary embodiment of the present disclosure
  • FIG. 17 is a schematic diagram of a MAC-CE signaling manner in which reference signals in a spatial relationship of different SRS resources in an SRS resource set correspond to a frequency domain bandwidth information;
  • FIG. 18 is a schematic diagram of a MAC-CE signaling manner in which reference signals in spatial relationship parameters of different SRS resources in an SRS resource set share one frequency domain bandwidth information according to an exemplary embodiment of the present disclosure.
  • FIG. 1 is a hardware structural block diagram of a mobile terminal of a method for acquiring parameters according to an embodiment of the present disclosure.
  • the mobile terminal may include one or more (only one is shown in FIG. 1) processor 102 (the processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA) And the memory 104 configured to store data.
  • processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA
  • the memory 104 configured to store data.
  • the above-mentioned mobile terminal may further include a transmission device 106 and an input/output device 108 configured as a communication function.
  • a transmission device 106 and an input/output device 108 configured as a communication function.
  • the structure shown in FIG. 1 is only for illustration, and does not limit the structure of the above-mentioned mobile terminal.
  • the mobile terminal may also include more or fewer components than shown in FIG. 1, or have a different configuration from that shown in FIG.
  • the memory 104 may be configured to store computer programs, for example, software programs and modules of application software, such as the computer programs corresponding to the parameter acquisition method in the embodiments of the present disclosure.
  • the processor 102 runs the computer programs stored in the memory 104, thereby Execute various functional applications and data processing, that is, realize the above-mentioned methods.
  • the memory 104 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include a memory remotely provided with respect to the processor 102, and these remote memories may be connected to the mobile terminal through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the transmission device 106 is configured to receive or transmit data via a network.
  • the above-mentioned specific examples of the network may include a wireless network provided by a communication provider of a mobile terminal.
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, referred to as RF) module, which is configured to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • the network device involved in the embodiments of the present disclosure may be a base station, and the base station may be set to communicate with one or more terminal devices, or it may be set to communicate with one or more base stations with partial terminal functions ( For example, the communication between a macro base station and a micro base station, such as an access point).
  • the base station can be a base station in a 5G system or an NR system.
  • the base station may also be an access point (AP), a transport point (TRP), a central unit (CU), or other network entities, and may include some or some of the functions of the above network entities. All functions.
  • the terminal equipment involved in the embodiments of the present disclosure may be stationary or mobile.
  • the terminal device may be a mobile device, a mobile station (mobile station), a mobile unit (mobile unit), an M2M terminal, a wireless unit, a remote unit, a user agent, a mobile client, a user equipment (UE), etc.
  • FIG. 2 is a flowchart of a method for acquiring parameters according to an embodiment of the present disclosure. As shown in FIG. 2, the process includes the following steps:
  • Step S202 Determine an uplink target element group, where the uplink target element group includes one or more uplink target elements, and the uplink target element includes at least one of the following: uplink control channel resources, uplink signal resources, and uplink data channels;
  • Step S204 Determine the downlink channel element corresponding to the uplink target element group
  • Step S206 Acquire the parameters of the uplink target element group according to the determined downlink channel element.
  • the uplink target element group is determined, the downlink channel element corresponding to the uplink target element group is determined, and the parameters of the uplink target element group are acquired according to the determined downlink channel element, which can solve the problem that cannot be achieved in related technologies. While saving signaling overhead, the technical problem of fast beam tracking enables beam tracking under the condition of rapid beam changes.
  • the execution subject of the foregoing steps may be a base station, a terminal, etc., but is not limited thereto.
  • the correspondence there is a correspondence between the uplink target element group and the downlink channel element, and the correspondence may be preset or determined according to a preset rule.
  • the downlink channel element corresponding to the uplink target element group is determined according to at least one of the following: signaling information, where the signaling information includes the downlink channel element index corresponding to the uplink target element group; the uplink target The group index of the element group; the downlink channel element corresponding to the downlink control channel that schedules the uplink target element in the uplink target element group; the remainder between the group index of the uplink target element group and the first predetermined value, where the first The predetermined value is a positive integer greater than or equal to 1, or the first predetermined value is a positive integer less than or equal to the number of downlink channel elements; the maximum number of downlink channel elements corresponding to an uplink target element group.
  • the uplink target element group when the uplink target element group includes more than one uplink target element, the uplink target element group is scheduled according to the downlink channel element corresponding to the downlink control channel of the uplink target element.
  • the downlink channel element corresponding to the uplink target element group includes one of the following: determining the downlink channel element corresponding to the uplink target element group according to the index of the uplink target element in the uplink target element group; according to scheduling in the uplink target element group
  • the downlink channel element index corresponding to the downlink control channel of the uplink target element determines the downlink channel element corresponding to the uplink target element group.
  • the uplink target element group is determined according to one of the following: Parameters of the uplink target element: the downlink control channel resource corresponding to the lowest downlink control channel resource index number in the downlink control channel resource group; the downlink control channel resource closest to the uplink target element in the downlink control channel resource group; the distance from the uplink The physical downlink shared channel in the nearest time unit of the target element, where the physical downlink shared channel is scheduled by the downlink control channel of the downlink control channel resource in the downlink control channel resource group; the distance between the first element and the second element is the uplink The target element is closer, wherein the first element includes the downlink control channel resource closest to the uplink target element in the downlink control channel resource group, and the second element includes the downlink control channel resource that is closest to the uplink target element and is controlled by the downlink control channel.
  • the index c is determined according to the index d of the uplink target element in the uplink target element group; wherein, the downlink control channel resource includes one of the following: a control resource set and a search space set.
  • the c is determined according to the index d of the uplink target element in the uplink target element group and the second predetermined value is obtained, wherein the second predetermined value is a positive integer, or the second predetermined value is less than Or equal to the number of downlink control channel resources included in the downlink control channel resource group.
  • the downlink control channel resource group includes downlink control channel resources, and the downlink control channel resources include downlink control channels.
  • the uplink target element group and the downlink channel element correspond to the same frequency domain bandwidth, or the uplink target element group and the downlink channel element correspond to the same frequency domain bandwidth group.
  • the transmission configuration indication state corresponding to the uplink target element group is determined according to at least one of the following: signaling information, where the signaling information Including the transmission configuration indication status information corresponding to the uplink target element group; the group index of the uplink target element group; the number of parameters L of the uplink target element in the uplink target element group; is the physical downlink sharing in the predetermined frequency domain bandwidth
  • the set of transmission configuration indication states for channel activation; the set of transmission configuration indication states that are activated for one or more downlink control channels in the predetermined frequency domain bandwidth; the code points and transmission configuration indication states corresponding to the physical downlink shared channels in the predetermined frequency domain bandwidth The mapping relationship.
  • the transmission configuration indication state or transmission configuration indication state set of a certain physical downlink shared channel activation refers to that the transmission configuration indication state or transmission configuration indication state set is used for the physical downlink shared channel.
  • the transmission configuration indication state corresponding to the uplink target element group includes one of the following:
  • L transmission configuration indication states indexed from i*L to (i+1)*L-1, where the transmission configuration indication state The index of is the relative index of the transmission configuration indication state in the transmission configuration indication state set;
  • L transmission configuration indication states indexed from i*L to (i+1)*L-1, where the transmission configuration indication state The index of is the relative index of the transmission configuration indication state in the transmission configuration indication state set;
  • the first code point is the code point corresponding to the transmission configuration indication field in the downlink control information
  • the first code point is obtained according to the group index of the uplink target element group
  • L is the uplink target element corresponding to the uplink target element group
  • the number of parameters, L is a positive integer greater than or equal to 1.
  • the number of parameters corresponding to different uplink target elements in the uplink target element group is the same or different.
  • the signaling information includes the transmission configuration indication status information corresponding to the uplink target element group, including one of the following:
  • the signaling information includes the transmission configuration indication state index corresponding to the uplink target element group, where the transmission configuration indication state index is the transmission configuration indication state corresponding to the uplink target element group in the transmission configuration indication that is activated for the physical downlink shared channel Relative index in the state collection;
  • the signaling information includes the transmission configuration indication state index corresponding to the uplink target element group, where the transmission configuration indication state index is the transmission configuration indication state corresponding to the uplink target element group.
  • the transmission configuration indication state is activated for the physical downlink control channel. Relative index in the state collection;
  • the signaling information includes the code point index corresponding to the uplink target element group, where the code point corresponds to the code point of the transmission configuration indication field in the physical downlink control channel scheduling the physical downlink shared channel.
  • one code point corresponds to one or more transmission configuration states.
  • acquiring the parameters of the uplink target element group according to the determined downlink channel element includes one of the following:
  • the reference signal corresponding to the downlink channel element includes one of the following: the quasi-common reference signal of the downlink channel element, the quasi-co-location reference signal of the associated space reception parameter of the downlink channel element, and the transmission configuration indication state of the downlink channel element Reference signal;
  • the first time unit includes one of the following: each of the N time units, the time unit closest to each of the N time units and including the downlink channel element, and N time units.
  • the first time unit in the unit the time unit closest to the first time unit among the N time units and including the downlink channel element, the first time unit Time unit, Time units, the first time unit in a group of time units among the N time units, and the time unit that satisfies the predetermined characteristics before the predetermined time before the time unit in which the uplink target element is located;
  • the N time units are N time units where the uplink target element in the uplink target element is located, where N is a positive integer greater than or equal to 1.
  • the first time unit is the time unit that is closest to each of the N time units and includes the downlink channel element.
  • the first time unit of a group of time units in the N time units is one of the following: the first time unit of each group of time units in the N time units; the N time units The first time unit of any group of time units in the unit.
  • the reference signal in the transmission configuration indication state of the downlink channel element includes one of the following:
  • the transmission configuration indicates a reference signal whose type is not a quasi co-located reference signal in the state
  • the reference signal in the transmission configuration indication state of the downlink channel element includes the quasi co-location reference signal of the associated space reception parameter in the transmission configuration indication state Signal;
  • the reference signal in the transmission configuration indication state corresponding to the downlink channel element includes the reference of the type of the parameter type in the transmission configuration indication state Signal.
  • the parameter type includes at least one of the following: a spatial relationship parameter type, and a path loss parameter type.
  • the reference signal corresponding to the downlink channel element includes one of the following: in the first time unit, the quasi co-located reference signal for the activation of the downlink channel element;
  • the quasi co-location reference signal of the downlink channel element determined by the uplink access channel recently sent by the first time unit; in the first time unit, the downlink channel is obtained according to the correspondence between the synchronization signal and the downlink channel element
  • the quasi co-located reference signal of the element; in the first time unit, the active transmission configuration of the downlink channel element indicates the reference signal in the state; in the first time unit, the associated space of the downlink channel element receives the parameter Quasi co-located reference signal.
  • the obtaining the parameters of the uplink target element according to the reference signal information corresponding to the downlink channel element includes at least one of the following One: among the N time units located before the third time unit, the parameters of the uplink target element are obtained according to the first reference signal information corresponding to the downlink channel element; the third time unit and the N time units In the time unit located after the third time unit, the parameters of the uplink target element are obtained according to the second reference signal information corresponding to the downlink channel element; in the N time units, the downlink channel corresponding to the uplink target element The number of reference signal shares corresponding to the element is less than or equal to the fourth predetermined value; wherein, the third time unit includes one of the following: the time unit at which the second reference signal information corresponding to the downlink channel element becomes available, and the first time unit Time unit, A time unit; where a piece of reference signal information includes one of the following: one or more transmission configuration indication states; one or more quasi co-located
  • the parameters of the uplink target element group include at least one of the following parameters of the uplink sounding reference signal resource group: spatial transmission filter, The reference signal in the spatial relationship, the power parameter, and the downlink measurement reference signal corresponding to the uplink sounding reference signal resource group, wherein the transmission precoding parameter of the uplink sounding reference signal resource in the uplink sounding reference signal resource group is based on the downlink measurement reference Signal acquisition.
  • the parameters of the uplink target element group include the downlink measurement reference corresponding to the uplink sounding reference signal resource group of the uplink sounding reference signal resource group.
  • Signal, wherein the transmission precoding parameter of the uplink sounding reference signal resource in the uplink sounding reference signal resource group is obtained according to the downlink measurement reference signal.
  • the uplink sounding reference signal resource group includes one of the following: a measurement reference signal resource set in a frequency domain bandwidth; different frequency domain bandwidths in a frequency domain bandwidth group have the same uplink sounding reference signal
  • the parameters of the uplink target element group include at least one of the following parameters: spatial transmission filter, spatial relationship Reference signal, power parameter, transmission mode.
  • the uplink control channel resource group includes one of the following: an uplink control channel resource group determined according to signaling information; and different frequency domain bandwidths in a frequency domain bandwidth group with the same uplink control channel resource index Uplink control signaling.
  • the downlink channel elements corresponding to the X1 uplink target element groups are downlink control channel resources;
  • the downlink channel elements corresponding to the X2 uplink target element groups are transmission configuration indication status information
  • the downlink channel elements corresponding to the X3 uplink target element groups are downlink control channel resource groups;
  • the downlink control channel resource includes one of the following: a control resource set and a search space set.
  • the transmission configuration indication status information includes one of the following: a transmission configuration indication status index and a code point index.
  • the downlink channel element includes at least one of the following: control resource set, search space set, transmission configuration indication state, control resource set set, search space set set, code point; wherein, the code point is the scheduling physical The code point corresponding to the transmission configuration indication field of the physical downlink control channel of the downlink data channel; wherein the transmission configuration indication state includes the associated or activated transmission configuration indication state of the downlink control channel or the downlink data channel.
  • acquiring the parameters of the uplink target element group according to the determined downlink channel element includes one of the following: the parameter of the uplink target element in the uplink target element group is the parameter of the uplink target element group, Wherein, in an embodiment, the parameters of different uplink target elements in the uplink target element group are the same; the parameters of the uplink target element in the uplink target element group are obtained according to the parameters of the uplink target element group, wherein, in an embodiment , The parameters of different uplink target elements in the uplink target element group are the same or different.
  • the method further includes: determining a downlink control channel resource group; determining a code point or transmission configuration indication state index corresponding to the downlink control channel resource group; and determining the code point or transmission configuration indication state according to the determination Index to obtain the parameters of the downlink control channel resource group;
  • the downlink control channel resource includes one of the following: a control resource set and a search space set; where the code point is the transmission configuration of the physical downlink control channel for scheduling the physical downlink data channel Indicates the code point corresponding to the indication field, the transmission configuration indication state index is the relative index of the transmission configuration indication state in the transmission configuration indication state set activated for the physical downlink data channel, and the downlink control channel resource group includes a frequency domain bandwidth Or, the downlink control channel resource group includes a frequency domain bandwidth group, and a downlink control channel resource group composed of different frequency domain bandwidths with the same downlink control channel resource index.
  • the method according to the above embodiment can be implemented by means of software plus the necessary general hardware platform, of course, it can also be implemented by hardware, but in many cases the former is Better implementation.
  • the technical solution of the present disclosure essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes a number of instructions to make a terminal device (which can be a mobile phone, a computer, a server, or a network device, etc.) execute the methods in the various embodiments of the present disclosure.
  • a method for determining parameters is also provided.
  • the method embodiments provided in the embodiments of the present disclosure may be executed in terminal equipment (for example, mobile terminals), network equipment, or similar computing devices.
  • the network device involved in the embodiments of the present disclosure may be a base station, and the base station may be set to communicate with one or more terminal devices, or it may be set to communicate with one or more base stations with partial terminal functions ( For example, the communication between a macro base station and a micro base station, such as an access point).
  • the base station can be a base station in a 5G system or an NR system.
  • the base station may also be an access point (AP), a transport point (TRP), a central unit (CU), or other network entities, and may include some or some of the functions of the above network entities. All functions.
  • the terminal equipment involved in the embodiments of the present disclosure may be stationary or mobile.
  • the terminal device may be a mobile device, a mobile station (mobile station), a mobile unit (mobile unit), an M2M terminal, a wireless unit, a remote unit, a user agent, a mobile client, a user equipment (UE), etc.
  • FIG. 3 is a flowchart of a method for determining parameters according to an embodiment of the present disclosure. As shown in FIG. 3, the process includes the following steps:
  • Step S302 Determine the second parameter of the second channel or signal in the second time unit according to the first parameter corresponding to the first time unit, where the second time unit belongs to the N time occupied by the second channel or signal Unit, N is a positive integer greater than or equal to 1, and the first parameter includes one of the following: a first parameter of the first channel or signal, and a second parameter activated by the second channel or signal in the signaling information.
  • the parameters of the channel or signal in the time unit can be determined.
  • one channel or signal occupies multiple time units, and the parameter corresponding to the channel or signal is updated in one time unit of the multiple time units, and the channel or signal needs to be determined in each time unit of the channel or signal.
  • the parameters of the signal are determined according to the parameters before or after the update.
  • the signaling information includes MAC-CE or control information included in the physical downlink control channel.
  • the second parameter of the second channel or signal can be updated through the MAC-CE or the physical downlink control channel. There is a predetermined time length between the time unit at which the second parameter included in the MAC-CE or the physical downlink control channel is initially available and the time unit where the ACK or the physical downlink control channel corresponding to the MAC-CE is located.
  • the execution subject of the foregoing steps may be a base station, a terminal, etc., but is not limited thereto.
  • the first parameter corresponding to the first time unit includes one of the following: in the first time unit, the The first parameter for the activation of the first channel or signal; the first parameter available for the first channel or signal in the first time unit; the first parameter determined according to the random access process closest to the first time unit A first parameter of a channel or signal, where the random access process is a random access process in a contention mode; in the first time unit, a synchronization signal corresponding to the first channel or signal.
  • the first parameter corresponding to the first time includes one of the following: In a time unit, the second parameter activated by the second channel or signal; in the first time unit, the second parameter available for the second channel or signal.
  • it further includes at least one of the following:
  • the third time unit includes one of the following: the time unit where the first parameter is updated, the Time unit, Time units, the time unit at which the first parameter is available, and the first time unit of a group of time units in the N time units.
  • acquiring the second parameter of the second channel or signal in the second time unit according to the first parameter corresponding to the first time unit includes at least one of the following:
  • the second parameter of the uplink control channel resource in the second time unit is acquired according to the first parameter corresponding to the downlink control channel resource that has a corresponding relationship with the uplink control channel resource in the first time unit;
  • the second parameter of the uplink data channel in the second time unit is obtained according to the first parameter corresponding to the first time unit of the uplink control channel resource with the lowest index in the frequency domain bandwidth where the uplink data channel is located;
  • the second parameter of the uplink sounding reference signal resource in the second time unit is acquired according to the first parameter corresponding to the downlink control channel resource that has a corresponding relationship with the uplink control channel resource in the first time unit;
  • the second parameter of the uplink sounding reference signal resource in the second time unit is acquired according to the transmission configuration indication state index corresponding to the uplink control channel resource in the activated transmission configuration indication state corresponding to the first time unit;
  • the second parameter of the downlink control channel resource in the second time unit is acquired according to the transmission configuration indication state index corresponding to the downlink control channel resource in the activated transmission configuration indication state corresponding to the first time unit;
  • the second parameter in each time unit of the second channel or signal is acquired according to the first parameter corresponding to each time unit;
  • the second parameter in each time unit of the second channel or signal is acquired according to the first parameter corresponding to the first time unit in the N time units.
  • the first time unit includes at least one of the following: the first time unit of the N time units; each time unit of the N time units; one of the N time units The first time unit in the group of time units; the time unit closest to the second time unit and the first parameter is updated; the time unit closest to the second time unit and including the first channel or signal; the first time unit Two time units; among the N time units, the time unit at which the first parameter is updated; the time unit that satisfies the predetermined characteristics before the predetermined time period before the second time unit; the second time unit or the time before the second time unit unit.
  • the first time unit of a group of time units in the N time units is one of the following: the first time unit of each group of time units in the N time units ; The first time unit of any group of time units in the N time units.
  • the second channel or signal includes one of the following: an uplink control channel, an uplink data channel, and a downlink control channel.
  • the first parameter and/or the second parameter includes at least one of the following parameters:
  • Quasi-co-location reference signal quasi-co-location reference signal associated with spatial reception parameters, transmission configuration indication state, reference signal in transmission configuration indication state, spatial transmission filter, reference signal in spatial relationship, power parameter, transmission mode.
  • the first time unit and the second time unit satisfy one of the following characteristics: between the first time unit and the second time unit, the first parameter is not updated.
  • the downlink channel element may refer to information or elements related to the downlink channel.
  • the method according to the above embodiment can be implemented by means of software plus the necessary general hardware platform, of course, it can also be implemented by hardware, but in many cases the former is Better implementation.
  • the technical solution of the present disclosure essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes a number of instructions to make a terminal device (which can be a mobile phone, a computer, a server, or a network device, etc.) execute the methods in the various embodiments of the present disclosure.
  • a device for acquiring parameters is also provided, and the device is configured to implement the above-mentioned embodiments and preferred implementations, and what has been described will not be repeated.
  • the term "module” can implement a combination of software and/or hardware with predetermined functions.
  • the devices described in the following embodiments are preferably implemented by software, implementation by hardware or a combination of software and hardware is also possible and conceived.
  • Fig. 4 is a structural block diagram of an apparatus for acquiring parameters according to an embodiment of the present disclosure. As shown in Fig. 4, the apparatus includes:
  • the first determining module 41 is configured to determine an uplink target element group, where the uplink target element group includes one or more uplink target elements, and the uplink target element includes at least one of the following: uplink control channel resources, uplink signal resources, and uplink Data channel
  • the second determining module 43 is configured to determine the downlink channel element corresponding to the uplink target element group
  • the obtaining module 45 is configured to obtain the parameters of the uplink target element group according to the determined downlink channel element.
  • the correspondence there is a correspondence between the uplink target element group and the downlink channel element, and the correspondence may be preset or determined according to a preset rule.
  • the downlink channel element corresponding to the uplink target element group is determined according to at least one of the following: signaling information, where the signaling information includes the downlink channel element index corresponding to the uplink target element group; the uplink target The group index of the element group; the downlink channel element corresponding to the downlink control channel that schedules the uplink target element in the uplink target element group; the remainder between the group index of the uplink target element group and the first predetermined value, where the first The predetermined value is a positive integer greater than or equal to 1, or the first predetermined value is a positive integer less than or equal to the number of downlink channel elements; the maximum number of downlink channel elements corresponding to an uplink target element group.
  • the uplink target element group when the uplink target element group includes more than one uplink target element, the uplink target element group is scheduled according to the downlink channel element corresponding to the downlink control channel of the uplink target element.
  • the downlink channel element corresponding to the uplink target element group includes one of the following:
  • the downlink channel element corresponding to the uplink target element group is determined according to the downlink channel element index corresponding to the downlink control channel that schedules the uplink target element in the uplink target element group.
  • the uplink target element group is determined according to one of the following: Parameters of the upstream target element:
  • the downlink control channel resource corresponding to the lowest downlink control channel resource index number in the downlink control channel resource group;
  • the first element and the second element that are closer to the uplink target element wherein the first element includes the downlink control channel resource closest to the uplink target element in the downlink control channel resource group, and the second element includes the downlink control channel resource closest to the uplink target element.
  • the downlink control channel resource c in the downlink control channel resource group where c is the index of the downlink control channel resource in the downlink control channel resource group, and the c is based on the index of the uplink target element in the uplink target element group d is determined; in one embodiment, the c is determined according to the index d of the uplink target element in the uplink target element group and the second predetermined value is obtained, wherein the second predetermined value is a positive integer, or the second predetermined The value is less than or equal to the number of downlink control channel resources included in the downlink control channel resource group;
  • the downlink control channel resource includes one of the following: control resource set and search space set.
  • the downlink control channel resource group includes downlink control channel resources, and the downlink control channel resources include downlink control channels.
  • the uplink target element group and the downlink channel element correspond to the same frequency domain bandwidth, or the uplink target element group and the downlink channel element correspond to the same frequency domain bandwidth group.
  • the transmission configuration indication state corresponding to the uplink target element group is determined according to at least one of the following:
  • Signaling information where the signaling information includes transmission configuration indication status information corresponding to the uplink target element group;
  • the group index of the upstream target element group is the group index of the upstream target element group
  • the number L of the parameters of the uplink target elements in the uplink target element group is the number L of the parameters of the uplink target elements in the uplink target element group
  • a set of transmission configuration indication states activated for a physical downlink shared channel in a predetermined frequency domain bandwidth it should be noted that, in an embodiment, a transmission configuration indication state or a set of transmission configuration indication states for a certain physical downlink shared channel activation refers to this The transmission configuration indication state or the transmission configuration indication state set is used for the physical downlink shared channel.
  • mapping relationship between the code point corresponding to the physical downlink shared channel in the predetermined frequency domain bandwidth and the transmission configuration indication state is the mapping relationship between the code point corresponding to the physical downlink shared channel in the predetermined frequency domain bandwidth and the transmission configuration indication state.
  • the transmission configuration indication state corresponding to the uplink target element group includes one of the following:
  • L transmission configuration indication states indexed from i*L to (i+1)*L-1, where the transmission configuration indication state The index of is the relative index of the transmission configuration indication state in the transmission configuration indication state set;
  • L transmission configuration indication states indexed from i*L to (i+1)*L-1, where the transmission configuration indication state The index of is the relative index of the transmission configuration indication state in the transmission configuration indication state set;
  • the first code point is the code point corresponding to the transmission configuration indication field in the downlink control information
  • the first code point is obtained according to the group index of the uplink target element group
  • L is the uplink target element corresponding to the uplink target element group
  • the number of parameters, L is a positive integer greater than or equal to 1.
  • the number of parameters corresponding to different uplink target elements in the uplink target element group is the same or different.
  • the signaling information includes the transmission configuration indication status information corresponding to the uplink target element group, including one of the following:
  • the signaling information includes the transmission configuration indication state index corresponding to the uplink target element group, where the transmission configuration indication state index is the transmission configuration indication state corresponding to the uplink target element group in the transmission configuration indication that is activated for the physical downlink shared channel Relative index in the state collection;
  • the signaling information includes the transmission configuration indication state index corresponding to the uplink target element group, where the transmission configuration indication state index is the transmission configuration indication state corresponding to the uplink target element group.
  • the transmission configuration indication state is activated for the physical downlink control channel. Relative index in the state collection;
  • the signaling information includes the code point index corresponding to the uplink target element group, where the code point corresponds to the code point of the transmission configuration indication field in the physical downlink control channel scheduling the physical downlink shared channel.
  • one code point corresponds to one or more transmission configuration states.
  • the obtaining the parameters of the uplink target element group according to the determined downlink channel element includes one of the following: obtaining the parameters of the uplink target element group according to the reference signal corresponding to the downlink channel element;
  • the reference signal corresponding to the downlink channel element obtains the parameters of the uplink target element group;
  • the reference signal corresponding to the downlink channel element includes one of the following: the quasi-common reference signal of the downlink channel element, and the association of the downlink channel element The quasi co-located reference signal of the spatial reception parameter, the reference signal in the transmission configuration indication state of the downlink channel element;
  • the first time unit includes one of the following: each time unit of the N time units, a distance N Each of the time units is the closest time unit and includes the downlink channel element, the first time unit in the N time units, and the closest time unit to the first time unit in the N time units and includes the downlink channel element The time unit of the downlink channel element, the first Time unit, Time units, the first time unit in
  • the first time unit is the time unit that is closest to each of the N time units and includes the downlink channel element.
  • the first time unit of a group of time units in the N time units is one of the following: the first time unit of each group of time units in the N time units; the N time units The first time unit of any group of time units in the unit.
  • the reference signal in the transmission configuration indication state of the downlink channel element includes one of the following: the type of the reference signal in the transmission configuration indication state is the parameter type; the type in the transmission configuration indication state is not quasi-common The reference signal of the address reference signal; in the case that the transmission configuration indication state includes the quasi co-location reference signal of the associated space reception parameter, the reference signal in the transmission configuration indication state of the downlink channel element includes the associated space in the transmission configuration indication state The quasi co-location reference signal of the receiving parameter; in the case that the transmission configuration indication state does not include the quasi co-location reference signal of the associated space reception parameter, the reference signal in the transmission configuration indication state corresponding to the downlink channel element includes the transmission configuration indication
  • the type in the state is the reference signal of the parameter type.
  • the parameter type includes at least one of the following: a spatial relationship parameter type, and a path loss parameter type.
  • the reference signal corresponding to the downlink channel element includes one of the following: in the first time unit, the quasi co-located reference signal for the activation of the downlink channel element;
  • the quasi co-location reference signal of the downlink channel element determined by the uplink access channel recently sent by the first time unit; in the first time unit, the downlink channel is obtained according to the correspondence between the synchronization signal and the downlink channel element
  • the quasi co-located reference signal of the element; in the first time unit, the active transmission configuration of the downlink channel element indicates the reference signal in the state; in the first time unit, the associated space of the downlink channel element receives the parameter Quasi co-located reference signal.
  • the obtaining the parameters of the uplink target element according to the reference signal information corresponding to the downlink channel element includes at least one of the following one:
  • the number of reference signal shares corresponding to the downlink channel element corresponding to the uplink target element is less than or equal to a fourth predetermined value
  • the third time unit includes one of the following: the time unit at which the second reference signal information corresponding to the downlink channel element becomes available, and the first time unit Time unit, Time unit
  • a piece of reference signal information includes one of the following: one or more transmission configuration indication states; one or more quasi-co-located reference signals of associated spatial reception parameters.
  • the parameters of the uplink target element group include at least one of the following parameters of the uplink sounding reference signal resource group: spatial transmission filter, The reference signal in the spatial relationship, the power parameter, and the downlink measurement reference signal corresponding to the uplink sounding reference signal resource group, wherein the transmission precoding parameter of the uplink sounding reference signal resource in the uplink sounding reference signal resource group is based on the downlink measurement reference Signal acquisition.
  • the parameters of the uplink target element group include the downlink measurement reference corresponding to the uplink sounding reference signal resource group of the uplink sounding reference signal resource group.
  • Signal, wherein the transmission precoding parameter of the uplink sounding reference signal resource in the uplink sounding reference signal resource group is obtained according to the downlink measurement reference signal.
  • the uplink sounding reference signal resource group includes one of the following: a measurement reference signal resource set in a frequency domain bandwidth; different frequency domain bandwidths in a frequency domain bandwidth group have the same uplink sounding reference signal
  • the parameters of the uplink target element group include at least one of the following parameters: spatial transmission filter, spatial relationship Reference signal, power parameter, transmission mode.
  • the uplink control channel resource group includes one of the following:
  • the uplink control channel resource group determined according to the signaling information
  • Uplink control signaling with the same uplink control channel resource index in different frequency domain bandwidths in a frequency domain bandwidth group Uplink control signaling with the same uplink control channel resource index in different frequency domain bandwidths in a frequency domain bandwidth group.
  • the downlink channel elements corresponding to the X1 uplink target element groups are downlink control channel resources;
  • the downlink channel elements corresponding to the X2 uplink target element groups are transmission configuration indication status information
  • the downlink channel elements corresponding to the X3 uplink target element groups are downlink control channel resource groups;
  • the downlink control channel resource includes one of the following: a control resource set and a search space set.
  • the transmission configuration indication status information includes one of the following: a transmission configuration indication status index and a code point index.
  • the downlink channel element includes at least one of the following: control resource set, search space set, transmission configuration indication status, control resource set set, search space set set, code point; wherein, the code point is the scheduling physical The code point corresponding to the transmission configuration indication field of the physical downlink control channel of the downlink data channel; wherein the transmission configuration indication state includes the associated or activated transmission configuration indication state of the downlink control channel or the downlink data channel.
  • acquiring the parameters of the uplink target element group according to the determined downlink channel element includes one of the following:
  • the parameters of the uplink target element in the uplink target element group are the parameters of the uplink target element group, where, in one embodiment, the parameters of different uplink target elements in the uplink target element group are the same;
  • the parameters of the uplink target element in the uplink target element group are acquired according to the parameters of the uplink target element group.
  • the parameters of different uplink target elements in the uplink target element group are the same or different.
  • the method further includes: determining a downlink control channel resource group; determining a code point or transmission configuration indication state index corresponding to the downlink control channel resource group; and determining the code point or transmission configuration indication state according to the determination Index to obtain the parameters of the downlink control channel resource group;
  • the downlink control channel resource includes one of the following: a control resource set and a search space set; where the code point is the transmission configuration of the physical downlink control channel for scheduling the physical downlink data channel Indicates the code point corresponding to the indication field, the transmission configuration indication state index is the relative index of the transmission configuration indication state in the transmission configuration indication state set activated for the physical downlink data channel, and the downlink control channel resource group includes a frequency domain bandwidth Or, the downlink control channel resource group includes a frequency domain bandwidth group, and a downlink control channel resource group composed of different frequency domain bandwidths with the same downlink control channel resource index.
  • each of the above modules can be implemented by software or hardware.
  • it can be implemented in the following manner, but not limited to this: the above modules are all located in the same processor; or, the above modules can be combined in any combination.
  • the forms are located in different processors.
  • a parameter acquisition device is also provided, and the device is configured to implement the above-mentioned embodiments and preferred implementations. What has been described will not be repeated.
  • the term "module” can implement a combination of software and/or hardware with predetermined functions. Although the devices described in the following embodiments are preferably implemented by software, implementation by hardware or a combination of software and hardware is also possible and conceived.
  • Fig. 5 is a structural block diagram of a device for determining parameters according to an embodiment of the present disclosure. As shown in Fig. 5, the device includes:
  • the determining module 51 is configured to determine the second parameter of the second channel or signal in the second time unit according to the first parameter corresponding to the first time unit, where the second time unit belongs to the second channel or signal occupied by the second time unit.
  • N time units, N is a positive integer greater than or equal to 1
  • the first parameter includes one of the following: the first parameter of the first channel or signal, and the second parameter activated by the second channel or signal in the signaling information .
  • the first parameter corresponding to the first time unit includes one of the following: in the first time unit, the The first parameter for the activation of the first channel or signal; the first parameter available for the first channel or signal in the first time unit; the first parameter determined according to the random access process closest to the first time unit A first parameter of a channel or signal, where the random access process is a random access process in a contention mode; in the first time unit, a synchronization signal corresponding to the first channel or signal.
  • the first parameter corresponding to the first time includes one of the following: In a time unit, the second parameter activated by the second channel or signal; in the first time unit, the second parameter available for the second channel or signal.
  • it further includes at least one of the following: in the time unit located before the third time unit among the N time units, acquiring the second channel or signal of the second channel or signal according to the second value of the first parameter The value of the parameter; in the third time unit and the time unit located after the third time unit among the N time units, the value of the second parameter of the second channel or signal is obtained according to the first value of the first parameter ; Determine the second parameter of the second channel or signal in the N time units according to the maximum E values of the first parameter, where the E is a positive integer less than or equal to N; wherein, the third time unit includes the following One: the time unit and the first parameter when the first parameter is updated Time unit, Time units, the time unit at which the first parameter is available, and the first time unit of a group of time units in the N time units.
  • acquiring the second parameter of the second channel or signal in the second time unit according to the first parameter corresponding to the first time unit includes at least one of the following:
  • the second parameter of the uplink control channel resource in the second time unit is acquired according to the first parameter corresponding to the downlink control channel resource that has a corresponding relationship with the uplink control channel resource in the first time unit;
  • the second parameter of the uplink data channel in the second time unit is obtained according to the first parameter corresponding to the first time unit of the uplink control channel resource with the lowest index in the frequency domain bandwidth where the uplink data channel is located;
  • the second parameter of the uplink sounding reference signal resource in the second time unit is acquired according to the first parameter corresponding to the downlink control channel resource that has a corresponding relationship with the uplink control channel resource in the first time unit;
  • the second parameter of the uplink sounding reference signal resource in the second time unit is acquired according to the transmission configuration indication state index corresponding to the uplink control channel resource in the activated transmission configuration indication state corresponding to the first time unit;
  • the second parameter of the downlink control channel resource in the second time unit is acquired according to the transmission configuration indication state index corresponding to the downlink control channel resource in the activated transmission configuration indication state corresponding to the first time unit;
  • the second parameter in each time unit of the second channel or signal is acquired according to the first parameter corresponding to each time unit;
  • the second parameter in each time unit of the second channel or signal is acquired according to the first parameter corresponding to the first time unit in the N time units.
  • the first time unit includes at least one of the following: the first time unit of the N time units; each time unit of the N time units; one of the N time units The first time unit in the group of time units; the time unit closest to the second time unit and the first parameter is updated; the time unit closest to the second time unit and including the first channel or signal; the first time unit Two time units; among the N time units, the time unit at which the first parameter is updated; the time unit that satisfies the predetermined characteristics before the predetermined time period before the second time unit; the second time unit or the time before the second time unit unit.
  • the first time unit of a group of time units in the N time units is one of the following: the first time unit of each group of time units in the N time units ; The first time unit of any group of time units in the N time units.
  • the second channel or signal includes one of the following: an uplink control channel, an uplink data channel, and a downlink control channel.
  • the first parameter and/or the second parameter includes at least one of the following parameters: a quasi-co-location reference signal, a quasi-co-location reference signal associated with spatial reception parameters, a transmission configuration indication state, and a transmission configuration indication state Reference signal, spatial transmission filter, reference signal in spatial relationship, power parameter, transmission mode in
  • the first time unit and the second time unit satisfy one of the following characteristics: between the first time unit and the second time unit, the first parameter is not updated.
  • PUCCH physical uplink control channel
  • CORESET Control Resource Set
  • the determining the correspondence between the PUCCH resource group and CORESET according to a predetermined rule includes at least one of the following rules:
  • Rule 2 There is a correspondence between the CORESET where the Physical Downlink Control Channel (PDCCH) of the PUCCH resource is scheduled and the PUCCH resource group where the PUCCH resource is located.
  • PDCCH Physical Downlink Control Channel
  • Rule 5 There is a correspondence between the CORESET group where the PDCCH for scheduling the PUCCH resource is located and the PUCCH resource group where the PUCCH resource is located;
  • the signaling information is notified to one of the following: configure a CORESET index that has the corresponding relationship with the PUCCH resource group; configure a CORESET group index that has the corresponding relationship with the PUCCH resource group.
  • the signaling information includes one or more of radio resource control (Radio Resource Control, RRC) and media access control-control element (MAC-CE) signaling.
  • RRC Radio Resource Control
  • MAC-CE media access control-control element
  • the corresponding relationship between the PUCCH resource group and the CORESET group is determined through one of the aforementioned rules four, five, and six or the signaling information, and further, the parameters of the PUCCH resource in the PUCCH resource group are determined according to the following rules.
  • Rule 7 The parameters of the PUCCH resources in the PUCCH resource group are obtained according to the quasi co-location reference signal of the lowest CORESET in the CORESET group that has a corresponding relationship with them;
  • Rule 8 The parameters of the PUCCH resource in the PUCCH resource group are obtained according to the quasi-co-location reference signal of the CORESET closest to the PUCCH resource in the CORESET group that has a corresponding relationship with the PUCCH resource;
  • the PUCCH resource in the PUCCH resource group is obtained according to the quasi-co-location reference signal of the CORESET closest to the PUCCH resource or the quasi-co-location reference signal of the PDSCH closest to the PUCCH resource in the CORESET group with which it has a corresponding relationship,
  • the PDSCH is scheduled by the PDCCH in the CORESET group, where the CORESET and PDSCH are the closest to the PUCCH and the quasi co-located reference signal is used to obtain the parameters of the PUCCH resource;
  • the parameter of the PUCCH resource is obtained according to the quasi co-located reference signal of CORESET, wherein the parameter of the PUCCH resource includes at least one of the following parameters: spatial transmission filter, reference signal in spatial relationship information, power Parameters, transmission mode.
  • the transmission mode includes one of multiple spatial transmission filters (and/or multiple spatial relationship information, and/or multiple power parameters) of PUCCH resources and demodulation reference signals/time domain resources/frequency domain resources of PUCCH resources, or Correspondence between multiple types, or the transmission mode includes a repeated transmission mode of PUCCH resources.
  • the parameter of the PUCCH resource is obtained according to the quasi co-location reference signal associated with a predetermined quasi co-location parameter of CORESET with which it has a corresponding relationship, for example, the predetermined quasi co-location parameter includes a spatial reception parameter.
  • the power parameter includes a path loss reference signal. That is, the path loss of the PUCCH resource is obtained according to the path loss reference signal.
  • the spatial transmission filter of the PUCCH resource at this time is based on the associated space in one of the two TCI states of CORESET.
  • the quasi co-location reference signal acquisition of the received parameters is not equal, such as the number of parameters N of the PUCCH resource in the PUCCH resource group and the quasi-co-location parameter M of the CORESET associated predetermined quasi-co-location reference signal.
  • the reference signal in the spatial relationship information of the PUCCH resource is a quasi co-location reference signal of CORESET that has a corresponding relationship with the PUCCH resource, wherein the spatial transmission filter of the PUCCH resource receives the quasi-co-location reference signal according to the terminal. Spatial filter acquisition of reference signal.
  • the above is to establish the correspondence between the PUCCH resource group and the CORESET.
  • the parameters of the PUCCH resource in the PUCCH resource group are obtained according to the quasi co-location reference signal of the CORESET corresponding to the PUCCH resource group.
  • the PUCCH resource group and search space can also be established
  • the parameters of the PUCCH resources in the PUCCH resource group are obtained according to the quasi-co-location reference signal of the search space set corresponding to the PUCCH resource group.
  • the PUCCHs in the CORESET and PUCCH resource groups are located in the same frequency domain bandwidth, where the frequency domain bandwidth includes one of the following: bandwidth part (bandwidth part, BWP), serving cell, component carrier, one The resource transmission block (PRB) set, or the PUCCH in the CORESET and PUCCH resource groups mentioned above are located in the same frequency domain bandwidth group.
  • BWP bandwidth part
  • PRB resource transmission block
  • the CORESET and PUCCH resource groups can be located in different frequency domain bandwidths, as long as the frequency of the CORESET is located.
  • the domain bandwidth is in this frequency domain bandwidth group.
  • the aforementioned CORESET is located in a frequency domain bandwidth or a frequency domain bandwidth group.
  • the CORESET in the CORESET group is located in the frequency domain bandwidth where the PUCCH resource group is located, or the CORESET in the CORESET group is located in the frequency domain bandwidth group to which the frequency domain bandwidth where the PUCCH resource group is located.
  • the CORESET in the CORESET group can be located in different frequency domain bandwidths.
  • the above-mentioned method can also be used to establish the corresponding relationship between the sounding reference signal (sounding reference signal, SRS) resource group and the CORESET (or search space set), and the parameters of the SRS resource in the SRS resource group
  • the PUCCH resource group in the above method is only replaced with the SRS resource group.
  • the SRS resource group includes one of the following: one SRS resource set in a frequency domain bandwidth; an SRS resource group composed of SRS resources with the same SRS resource index in a frequency domain bandwidth group.
  • the parameters of the SRS resources in the SRS resource group include one of the following: a spatial transmission filter, a reference signal in the spatial relationship information, and a power parameter. Or the parameters of the SRS resource group are obtained based on the quasi-co-location reference signal of the CORESET (or search space set) with which it has a corresponding relationship, where the associated CSI-RS of the SRS resource group is the quasi-co-location of the CORESET (or search space set).
  • the full name of CSI-RS in English is Channel-State Information reference Signal
  • the Chinese name is Channel-State Information Reference Signal.
  • the SRS resource group includes an SRS resource set
  • the associated-CSI-RS reference signal corresponding to the SRS resource set is a quasi co-located reference signal of CORESET (or search space set), that is, at this time, such as this SRS resource.
  • the purpose of the set is non-codebook, the transmission beams corresponding to different SRS resources in this SRS resource set can be different, and they are all based on the associated-CSI-RS. For example, different SRS resources correspond to different receptions based on the associated-CSI-RS. Beam.
  • the terminal obtains the downlink channel based on the associated-CSI-RS, and obtains the uplink channel matrix according to the uplink and downlink reciprocity, and different SRS resources in the SRS resource set correspond to different uplink digital precodings obtained based on the uplink channel matrix.
  • the quasi-co-located reference signal of CORESET (or search space set) is the quasi-co-located reference signal of the demodulation reference signal of CORESET.
  • the parameters of the aforementioned PUCCH resources or SRS resources are based on the quasi-co-location reference signal associated with a predetermined quasi-co-location parameter of the demodulation reference signal of CORESET (or search space set), for example, the predetermined quasi-co-location parameter includes spatial reception. parameter.
  • the parameters of the aforementioned PUCCH resource are obtained according to the reference signal in the TCI state of the demodulation reference signal of CORESET to which there is a correspondence, wherein the reference signal in the TCI state includes one of the following : The quasi-co-location reference signal associated with the quasi-co-location parameter, the spatial relationship reference signal configured in the TCI state. Further, if there is a spatial relationship reference signal in the TCI state, the parameters of the PUCCH resource (or SRS resource) are obtained according to the spatial relationship reference signal. Specifically, for example, the configuration in the TCI state is shown in Table 1, and the parameters of the PUCCH resource are based on the spatial relationship. The relationship reference signal SRS 2 is obtained.
  • the spatial relationship reference signal (or spatial transmission filter, (Or transmission mode) is obtained according to the spatial relationship reference signal in the TCI state, and the path loss reference signal of the PUCCH resource is obtained according to the quasi co-located reference signal CSI-RS2 of the associated spatial reception parameter QCL-TypeD. If there is no spatial relationship reference signal in the TCI state, the parameters of the PUCCH resource are obtained according to the quasi co-location reference signal associated with the quasi co-location parameter in the TCI state.
  • the PUCCH resource group is determined according to high-level signaling, the correspondence between the PUCCH resource group and the TCI state is determined according to signaling information or predetermined rules, and the parameters of the PUCCH resource in the PUCCH resource group are based on the TCI with which the corresponding relationship exists. Obtain the reference signal in state.
  • PDSCH physical downlink shared channel
  • MAC-CE is the index i*L of PDSCH activation in the predetermined frequency domain bandwidth: (i+1)*L-1 lower TCI state; specifically, for example, MAC-CE is the predetermined frequency domain bandwidth
  • MAC-CE is the index i*L of PDCCH activation in the predetermined frequency domain bandwidth: (i+1)*L-1 lower TCI state;
  • the number of corresponding TCI states is equal to the predetermined value (that is, the third predetermined value).
  • the lowest codepoint corresponds to the first L TCI states in the TCI state, and the predetermined value is as follows One: 2; L; is the maximum number of TCI states corresponding to a codepoint in the mapping table between codepoint and TCI state.
  • the predetermined value is 2, then TCI state corresponds to codepoint 001 in Table 2
  • the codepoint is the codepoint corresponding to the TCI indication field in Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • Tables 2 to 3 the mapping relationship between the codepoint and the TCI state corresponds to the frequency domain bandwidth where the PDSCH is located. That is, when the PDCCH includes the TCI indicator field, the TCI state of the PDSCH scheduled by the PDCCH is obtained according to the mapping relationship and the codepoint indicated by the TCI indicator field in the PDCCH.
  • L is the number of spatial transmission filters of the PUCCH resource, or the number of spatial relationship information, and the value of L is obtained according to the information indicated in the signaling information for configuring or scheduling the PUCCH resource.
  • the TCI state corresponding to the PUCCH resource group is determined through signaling information, where the signaling information includes one or more of RRC signaling and MAC-CE signaling, such as through the signaling information Configure one of the following corresponding to the PUCCH resource group:
  • TCI state index is the absolute index of TCI state, that is, the index configured for the TCI state when RRC configures the TCI state, for example, the index of TCI state 8 in Table 2 is 8;
  • the index of the TCI state activated for PDSCH is a relative index, that is, the index in the activated TCI state set.
  • the TCI indication field in the PDCCH is between the codepoint and the TCI state
  • the mapping relationship is shown in Table 2.
  • the set of TCI states activated by PDSCH is ⁇ TCI state 0, TCI state 1, TCI state 3, TCI state 6, TCI state 8, TCI state 10, TCI state 18, TCI state 64, TCI state 100, TCI state 124 ⁇ , if the relative index of the TCI state configured by the RRC signaling for the PUCCH resource group is 4, then the TCI state corresponding to this PUCCH resource group is TCI state 8.
  • the MAC-CE will place the PDCCH in the PDCCH
  • the mapping relationship between codepoint and TCI state in the TCI indication field is updated as shown in Table 3, then the TCI state corresponding to this PUCCH resource group is TCI state6;
  • codepoint is the codepoint corresponding to the TCI indication field of the PDCCH. For example, if the configured codepoint is 001, then the parameters of the PUCCH resource in the PUCCH resource group at t1 are based on one of the ⁇ TCI state0, TCI state6 ⁇ corresponding to codepoint 001 Or the quasi co-location reference signals in two TCI states are obtained. At t2, the parameters of the PUCCH resources in the PUCCH resource group are based on one of the ⁇ TCI state1, TCI state10 ⁇ corresponding to codepoint 001 or the quasi co-location in the two TCI states. Address reference signal acquisition.
  • the PUCCH in the PUCCH resource group After establishing the relationship between the PUCCH resource group and the codepoint index, after the TCI state corresponding to the codepoint is updated by the MAC-CE, the first slot 3ms after the ACK corresponding to this MAC-CE starts, the PUCCH in the PUCCH resource group The resource parameters are obtained according to the updated TCI state corresponding to the codepoint. Another way is that only after this codepoint is indicated by the PDCCH for transmission of a PDSCH, the parameters of the PUCCH resource in the PUCCH resource group are obtained according to Obtain the updated TCI state corresponding to the codepoint.
  • the MAC-CE updates the TCI state corresponding to this codepoint, but does not indicate that the codepoint is used for PDSCH transmission, then the parameters of the PUCCH resource in the PUCCH resource group , Obtained according to the pre-update TCI state corresponding to the codepoint. Or unless the codepoint is the predetermined codepoint in Rule 5 above.
  • TCI state 1 TCI state 1
  • TCI state 10 010 TCI state 3
  • TCI state 6 011
  • TCI state 20 100
  • TCI state 64 101
  • TCI state 90 110
  • TCI state 4 TCI state 11 111 TCI state 127
  • the parameters of the PUCCH resources in the PUCCH resource group are obtained according to the reference signal in the TCI state.
  • the above-mentioned method can also be used to establish the correspondence between the SRS resource group and the TCI state.
  • the parameters of the SRS resource in the SRS resource group are obtained according to the reference signal of the TCI state with which the corresponding relationship exists.
  • the PUCCH resource group in the above method is replaced with an SRS resource group.
  • the SRS resource group includes one of the following: one SRS resource set in a frequency domain bandwidth; an SRS resource group composed of SRS resources with the same SRS resource index in a frequency domain bandwidth group.
  • the parameters of the SRS resources in the SRS resource group include one of the following: a spatial transmission filter, a reference signal in the spatial relationship information, and a power parameter.
  • the parameters of the SRS resource group are acquired according to the reference signal of the TCI state to which the corresponding relationship exists, where the associated CSI-RS of the SRS resource group is the reference signal of the TCI state.
  • the SRS resource group includes an SRS resource set, and the associated-CSI-RS reference signal corresponding to the SRS resource set is the reference signal of the TCI state, that is, at this time, for example, the purpose of this SRS resource set is non-codebook, then this
  • the transmission beams corresponding to different SRS resources in the SRS resource set may be different, and they are all obtained based on the associated-CSI-RS.
  • different SRS resources correspond to different receiving beams obtained based on the associated-CSI-RS.
  • the terminal obtains the downlink channel based on the associated-CSI-RS, and then obtains the uplink channel matrix according to the uplink and downlink reciprocity, and different SRS resources in the SRS resource set correspond to different uplink digital precodings obtained based on the uplink channel matrix.
  • TCI code points that is, the TCI code points of the transmission configuration indication field in the PDCCH.
  • the above is the establishment of the relationship between the uplink PUCCH resource group or SRS resource group and the TCI state or TCI code point.
  • the relationship between the downlink control channel resource group and the TCI state or TCI code point can also be established, where the downlink control channel
  • the quasi-co-location reference signal of the resource group is obtained according to the quasi-co-location reference signal of the TCI state or TCI code point corresponding to the resource group.
  • the MAC-CE updates these TCI state or TCI code points, and the quasi co-location reference signal of the downlink control channel resource group is also updated.
  • the downlink control channel resource group includes one of the following: a downlink control channel resource group in a frequency domain bandwidth, and downlink control channel resources with the same downlink control channel resource index in different frequency domain bandwidths in a frequency domain bandwidth group
  • the downlink control channel resource group, wherein the downlink control channel resource includes one of the following: a downlink control resource set CORESET, a search space set.
  • the relationship between the uplink data channel PUSCH group and the TCI state or TCI code point can also be established.
  • the corresponding TCI state or TCI code point can be configured.
  • the P1 PUCCH resource groups in the P PUCCH resource groups have a corresponding relationship with CORESET.
  • the parameters of the PUCCH resource in the PUCCH resource group are obtained according to the quasi co-location reference signal of CORESET with which the corresponding relationship exists, or according to the TCI state of CORESET
  • the reference signal acquisition is as shown in the first exemplary embodiment.
  • the P2 PUCCH resource groups in the P PUCCH resource groups have a corresponding relationship with the TCI state, and the parameters of the PUCCH resource in the PUCCH resource group are obtained according to the reference signal in the TCI state with which the corresponding relationship exists, as shown in the second example embodiment.
  • S1 SRS resource groups have a corresponding relationship with CORESET
  • S2 SRS resource groups have a corresponding relationship with TCI state.
  • the corresponding relationship between the uplink channel or signal group and the downlink channel or signal is established.
  • the parameters of the downlink channel or signal change, the parameters of the corresponding uplink channel or signal also change, and the signaling
  • the information updates the parameters of the downlink channel or signal the parameters of the uplink channel or signal are also updated, and the parameters of the uplink channel or signal in the uplink channel or signal group are all changed, so as to save the signaling overhead while fast tracking the beam
  • the purpose of the change such as the change of the above-mentioned parameters, implicitly reflects the change of the beam.
  • the parameters of the uplink channel or signal are obtained based on the quasi co-located reference signal of the downlink channel or signal with which it has a corresponding relationship, and the reference signal in the TCI state of the downlink channel or signal with which it has a corresponding relationship.
  • the quasi co-located reference signal of the downlink channel or signal may be obtained according to the parameters of the uplink channel or signal with which it has a corresponding relationship.
  • the parameters of the uplink channel or signal are obtained based on the quasi co-located reference signal of the downlink channel or signal.
  • the uplink channel or signal occupies multiple time units, and the uplink channel or signal occupies multiple time units
  • the quasi co-location reference signal of the downlink channel or signal is updated, that is, the two quasi co-location reference signal information corresponding to the downlink channel or signal in the multiple time units occupied by the uplink channel or signal, the quasi co-location before the update
  • the reference signal information, the updated quasi-co-located reference signal information needs to select one of the two pieces of quasi-co-located reference signal information or determine the quasi-co-located reference signal corresponding to each time unit according to control information or predetermined rules. As shown in FIG.
  • the parameters of the uplink channel or signal are obtained according to the quasi co-location reference signal of CORESET with the lowest CORESET index in the serving cell corresponding to the uplink channel or signal, for example, according to the quasi co-location reference signal of CORESET0 , And the quasi co-location reference signal of CORESET0 is updated by MAC-CE.
  • the terminal receives the PDSCH including the MAC-CE, the original TCI state of CORESET0 is TCI state1, and the MAC-CE will CORESET0 The TCI state is updated to TCI state2.
  • the updated TCI state of the MAC-CE is available in slot(n+5), and the uplink channel or signal (such as the PUCCH resource in Figure 6) is in slot(n) ⁇ slot(n+7)
  • the TCI state of CORESET0 before slot(n+5) is TCI state1
  • slot(n+5) the TCI state of CORESET0 has been updated to TCI state2. That is, in the time domain range occupied by the PUCCH uplink channel or signal, CORESET0 has two TCI states.
  • the spatial transmission filter of the uplink channel or signal is transmission beam 1
  • the spatial transmission filter of the uplink channel or signal obtained according to the quasi co-location reference signal in TCI state2 is transmission beam 2.
  • the transmission beam of the uplink channel or signal needs to be determined It is transmit beam 1 or transmit beam 2.
  • one or more of the following solutions can be adopted.
  • Solution 1 Determine the parameters of the uplink channel or signal according to the TCI state of the downlink channel or signal activation in the first time unit (such as the first slot) where the uplink channel or signal is located, and obtain each time in the multiple time units The parameters of the uplink channel or signal in the unit (that is, the second time unit). In the multiple time units, the parameters of the uplink channel or signal are the same. As shown in FIG. 7, in an embodiment, The terminal expects that the TCI state activated by CORESET0 is the same for the multiple time units it occupies.
  • Solution 2 Determine the parameters of the uplink channel or signal according to the TCI state of the downlink channel or signal activation in the time unit (ie, the first time unit) where the uplink channel or signal is located, and obtain each time in the multiple time units The parameters of the uplink channel or signal in the unit (that is, the second time unit), as shown in FIG.
  • the time unit at which the CE starts to be available uses the updated TCI state.
  • Solution 3 Determine the parameters of the uplink channel or signal according to the time unit of the uplink channel or signal.
  • the downlink channel or signal activated can be used for the TCI state.
  • the TCI state of the downlink channel or signal is updated after X time domain symbols or Y After this time unit, it can be used for parameter acquisition of the uplink channel or signal.
  • X and Y are positive integers greater than or equal to 1. Wherein X, Y are used for the minimum time interval required for the terminal to obtain the downlink receive beam, and to obtain the uplink transmit beam according to the downlink receive beam and use the uplink transmit beam to transmit the uplink channel or signal.
  • the terminal can report the X or Y value as the terminal capability to the base station.
  • X belongs to ⁇ 14,28,42 ⁇
  • Y belongs to ⁇ 1,2,3 ⁇ .
  • the quasi co-located reference information of the downlink channel or signal is updated by MAC-CE, then the quasi co-located reference signal information of the downlink channel or signal included in this MAC-CE is in The following Y+1 slot can be used to obtain uplink channel or signal parameters.
  • Scheme 4 According to the ratio of the number of time units of the first type to the number of time units of the second type, it is determined whether to adopt Scheme 1 or Scheme 2.
  • the first type of time unit corresponds to the quasi co-located reference signal information of the downlink channel or signal
  • the time unit of the uplink channel or signal before the update corresponds to the time unit of the uplink channel or signal after the quasi co-location reference signal of the downlink channel or signal is updated (including the time unit where the update is located), when the When the ratio is less than or equal to 1, the scheme 2 is adopted.
  • the upstream channel or signal is preceded by (Or before In the time unit of ), the parameters of the uplink channel or signal are obtained according to the TCI state before the update, and in the remaining time units of the uplink channel or signal, the parameters of the uplink channel or signal are obtained according to the updated TCI state.
  • TCI state acquisition where N is the number of time units occupied by the uplink channel or signal.
  • scheme 2 when the update of the downlink channel or signal occurs (or ) In the case of the time unit before the slot, scheme 2 can be adopted, or the previous (Or before In the time unit of ), the one before the update is used, and the other time unit after the update is used, as shown in FIG. 11.
  • scheme 1 When the update of the downlink channel or signal occurs (or ) In the case of the time unit after the slot, scheme 1 is adopted.
  • the quasi co-located reference signal information of the downlink channel or signal included in this MAC-CE is The first slot after that is available (for example, the quasi co-located reference signal of the downlink channel or signal at this time can be updated to the quasi co-located reference signal in the TCI state carried in the MAC-CE), where slot(k) is the terminal feedback For the slot where the ACK of the PDSCH including the MAC-CE is located, It is the number of slots included in a subframe.
  • the subcarrier interval of PUCCH is 15kHz* 2 ⁇ , that is, the first type of time unit includes the multiple time units occupied by uplink channels or signals that fall before the predetermined time unit, where
  • the scheduled time unit includes The first slot after that is, for example, the time unit of slot(n+5)) in FIG. 6, and the second type of time unit includes the time unit after the predetermined time and the time unit after the predetermined time unit.
  • Solution 5 Determine the parameters of the PUCCH according to the quasi co-location reference signal of CORESET0 in the time unit that is the most recent in the first time unit and includes CORESET0.
  • the updated TCI state of CORESET0 is available in slot(n+4), there is no search space associated with CORESET0 that needs to be detected on slot(n+4), in slot(n+4)
  • the slot that is away from slot(n+4) and includes CORESET0 is slot(n)
  • the available TCI state of CORESET0 in slot(n) is the TCI state before the update, so starting from slot(n+6)
  • PUCCH is based on CORESET0
  • the updated TCI state obtains the parameters of the PUCCH.
  • the aforementioned predetermined time unit that is, the third time unit
  • the uplink channel includes at least one of the following: PUCCH, PUSCH, and the uplink signal includes SRS.
  • the parameters of the uplink channel or signal include at least one of the following: a spatial transmission filter, a spatial relationship reference signal, a power parameter, a transmission mode, and an associated CSI-RS.
  • the power parameter includes a path loss reference signal of the uplink channel or signal.
  • the parameters of the uplink channel or signal are obtained according to the quasi co-location reference signal associated with a predetermined quasi co-location parameter of the downlink channel or signal, for example, the predetermined quasi co-location parameter includes a spatial reception parameter.
  • the number of TCI states of CORESET0 before and after the update are both 1.
  • the number of TCI states of CORESET0 before and after the update is both two, such as As shown in Figures 13-15, the PUCCH resource is repeatedly transmitted in 8 slots, and the 2 TCI states of CORESET0 are changed every 2 slots.
  • the MAC-CE update signaling is in Slot(n+5) takes effect, and slot(n+5) belongs to the next slot in the slot group of 2 slots. At this time, if the above scheme 2 is adopted, one of the processes in Figures 13-15 can be used.
  • the updated TCI state in Figure 13 starts to be used for parameter acquisition of PUCCH resources in the first group of slots after the available slots, that is, the quasi co-location of CORESET0 taken by the parameters of PUCCH is switched in the first slot of a group of slots.
  • TCI state2 For reference signal information, in Figure 14, if all 3 slots in the second type of time unit use the updated first TCI state, TCI state2.
  • the updated TCI state in Figure 15 starts to be used for parameter acquisition of PUCCH resources when the slot is available, and the TCI state of the next slot group is switched.
  • the parameters of the PUCCH, or the parameters of the PUCCH resource only switch between the new and old quasi co-located reference signal information of CORESET0 at the first time unit of the one time unit group, and do not switch in other time units, that is, for example
  • the updated quasi co-location reference signal of CORESET0 starts to be available at the non-first time unit of a time unit group, then this time unit group uses the quasi co-location reference signal before the update of CORESET0, and the updated quasi co-location reference signal of CORESET0
  • the quasi co-location reference signal starts to be available in the first time unit of a time unit group, then this time unit group uses the updated quasi co-location reference signal of CORESET0 to further limit the N time units corresponding to at most 2 copies of CORESET0 ( That is, the E value) quasi co-
  • Figure 6 shows the quasi co-location reference signal of the downlink channel or signal updated by MAC-CE.
  • Another way in this embodiment is to determine the quasi co-location reference signal of the downlink channel or signal through a predetermined rule, such as the quasi co-location reference signal of CORESET0.
  • the reference signal is obtained from the downlink reference signal corresponding to the PRACH when the terminal recently sent the PRACH, or there is a correspondence between the quasi co-located reference signal of CORSET0 and the downlink synchronization signal.
  • the quasi co-located reference signal of the downlink channel or signal is updated through the PDCCH, and the quasi co-located reference signal of the downlink channel or signal updated by the PDCCH is available in one of the multiple time units occupied by the uplink channel or signal .
  • the above schemes 1 to 4 are examples in which the parameters of the uplink channel or signal are obtained according to the quasi co-located reference signal of CORESET (Control resource set). Similarly, the above scheme is also suitable for the scenario in which the parameters of the uplink channel or signal are obtained according to the TCI state , Where the TCI state may be the TCI state described in Example Embodiment 2.
  • the TCI state may be the TCI state described in Example Embodiment 2.
  • the above solution is also suitable for scenarios where the MAC-CE directly updates the parameters of the uplink channel or signal.
  • the spatial relationship information of the PUCCH is updated through MAC-CE, the PUCCH is repeatedly sent in 8 slots, and the MAC-CE starts to be available in one of the 8 slots occupied by the PUCCH (that is, for MAC-CE).
  • one or both of the two configurations include more than two spatial relationship information, and the two or more (including two) spatial relationships respectively correspond to different resources of PUCCH, wherein the resources include the following One: frequency domain resources, time domain resources, and demodulation reference signal resources, where each spatial relationship information includes a reference signal, PUCCH transmission beam.
  • One channel or signal occupies multiple time units, and the channel or signal parameters are updated in one of the multiple time units, for example, the base station passes
  • the MAC-CE updates the parameters, the information in the MAC-CE starts to be available in one of the multiple time units, and it needs to be determined in each of the multiple time units, Whether the parameters of the channel or signal are used before update or after update.
  • the MAC-CE updates the parameters of the PUSCH, and in one of the multiple time units occupied by the PUSCH, the information indicated in the MAC-CE starts to be available.
  • Any one of the aforementioned schemes 1 to 4 may be used to determine whether the parameters of the PUSCH in each time unit of the PUSCH are pre-updated or post-updated. Or when the uplink channel is PUSCH, use scheme 1, and use scheme 2 for PUCCH. Because PUSCH has MCS, it may not be appropriate to use the same MCS for the TCI state before the update and the TCI state after the update, but PUCCH does not have an MCS, so Use Option 2 or Option 3.
  • the MAC-CE updates the TCI state of the downlink control channel resource, and in one of the multiple time units occupied by the downlink control channel resource, the information indicated in the MAC-CE starts to be available. Any one of the foregoing solutions 1 to 5 may be used to determine whether the path loss reference signal of the PUSCH is before or after update in each time unit of the PDCCH.
  • the downlink control channel resource includes one of the following: CORESET, search space, candidate control channel.
  • the above-mentioned time unit includes one of the following: sub-slot sub-slot, time slot slot, sub-frame, etc., the time unit at which the MAC-CE starts to be available. After the ACK of the PDSCH of the MAC-CE, C time units are available. What is the time unit here, then the above time unit is what.
  • the S field indicates whether the serving cell and the BWP where the spatial relationship reference signal of different AP-SRS resources in the AP-SRS set is shared.
  • the S domain indicates sharing
  • the spatial relationship of the different AP-SRS resources in the AP-SRS set is shared by the serving cell where the reference signal is located and the BWP
  • the content included in this MAC-CE is shown in Figure 18, that is, the AP -When the spatial relationship reference signals of different AP-SRS resources in the SRS resource set are located in the same serving cell and BWP, when they are not shared, as shown in FIG. 17.
  • the S and C domains may be jointly coded, and C is frequency domain bandwidth information indicating whether the MAC-CE includes a spatial relationship reference signal.
  • the base station allocates more than one SRS resource set to the terminal, where the purpose of the SRS resource set is a non-codebook, which is more than one SRS resource set in different SRS resource sets.
  • the SRS resource set in the terminal cannot be sent at the same time, and belongs to the same SRS
  • the SRS resource of the resource set can be sent at most G at the same time, where G is the terminal capability.
  • the time domain characteristics of the more than one non-codebook SRS resource sets are the same, and the time domain characteristics include one of the following: aperiodic, periodic, and semi-continuous.
  • the port number of the SRS resource in the more than one non codebook SRS resource set is obtained according to the SRS resource set index where the SRS resource is located and its relative index in the SRS resource set where it is located.
  • the port number of the i-th SRS resource in the j-th non codebook SRS resource set is: 1000+i+j*F, where F is a predetermined value, such as the maximum number of SRS resources included in a non codebook SRS resource set , For example, 4, or the port number of the i-th SRS resource in the j-th non codebook SRS resource set is Where F l is the number of SRS resources in the l-th non codebook SRS resource set.
  • the associated CSI-RSs in the more than one non-codebook SRS resource sets are associated with the same downlink reference signal.
  • the more than one non-codebook SRS resource set is located in a frequency domain bandwidth, such as a serving cell or a BWP. That is, among multiple non-codebook SRS resource sets associated with the same associated CSI-RS, different non-codebook SRS resource sets cannot be sent at the same time, and SRS resources belonging to different non-codebook SRS resource sets can be sent at the same time.
  • the embodiment of the present disclosure establishes a corresponding relationship between the uplink target element group and the downlink channel element. After the quasi co-location reference signal of the downlink channel element is updated, the spatial transmission filter of the uplink target element in the uplink target element group is changed accordingly. At the same time of signaling overhead, it achieves the purpose of quickly following the beam.
  • One channel or signal occupies multiple time units, and the parameter corresponding to the channel or signal is updated in one time unit of the multiple time units, and the channel or signal in each time unit of the channel or signal needs to be determined.
  • the parameters of the signal are determined according to the parameters before or after the update.
  • the embodiment of the present disclosure also provides a computer-readable storage medium, and a computer program is stored in the computer-readable storage medium, wherein the computer program is configured to execute any of the foregoing method embodiments when running step.
  • the foregoing computer-readable storage medium may be configured to store a computer program for executing the following steps:
  • uplink target element group includes one or more uplink target elements, and the uplink target element includes at least one of the following: uplink control channel resources, uplink signal resources, and uplink data channels;
  • S3 Acquire the parameter of the uplink target element group according to the determined downlink channel element.
  • the foregoing storage medium may include, but is not limited to: U disk, Read-Only Memory (Read-Only Memory, ROM for short), Random Access Memory (Random Access Memory, RAM for short), Various media that can store computer programs, such as mobile hard disks, magnetic disks, or optical disks.
  • the embodiment of the present disclosure also provides an electronic device, including a memory and a processor, the memory is stored with a computer program, and the processor is configured to run the computer program to execute the steps in any of the foregoing method embodiments.
  • the aforementioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the aforementioned processor, and the input-output device is connected to the aforementioned processor.
  • the foregoing processor may be configured to execute the following steps through a computer program:
  • uplink target element group includes one or more uplink target elements, and the uplink target element includes at least one of the following: uplink control channel resources, uplink signal resources, and uplink data channels;
  • S3 Acquire the parameter of the uplink target element group according to the determined downlink channel element.
  • the embodiment of the present disclosure also provides a computer-readable storage medium, and a computer program is stored in the computer-readable storage medium, wherein the computer program is configured to execute any of the foregoing method embodiments when running step.
  • the foregoing computer-readable storage medium may be configured to store a computer program for executing the following steps:
  • N is a positive integer greater than or equal to 1
  • the first parameter includes one of the following: the first parameter of the first channel or signal, and the second parameter activated by the second channel or signal in the signaling information .
  • the foregoing storage medium may include, but is not limited to: U disk, Read-Only Memory (Read-Only Memory, ROM for short), Random Access Memory (Random Access Memory, RAM for short), Various media that can store computer programs, such as mobile hard disks, magnetic disks, or optical disks.
  • the embodiment of the present disclosure also provides an electronic device, including a memory and a processor, the memory is stored with a computer program, and the processor is configured to run the computer program to execute the steps in any of the foregoing method embodiments.
  • the aforementioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the aforementioned processor, and the input-output device is connected to the aforementioned processor.
  • the foregoing processor may be configured to execute the following steps through a computer program:
  • N is a positive integer greater than or equal to 1
  • the first parameter includes one of the following: the first parameter of the first channel or signal, and the second parameter activated by the second channel or signal in the signaling information .
  • modules or steps of the present disclosure can be implemented by a general computing device, and they can be concentrated on a single computing device or distributed in a network composed of multiple computing devices.
  • they can be implemented with program codes executable by the computing device, so that they can be stored in the storage device for execution by the computing device, and in some cases, can be executed in a different order than here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种参数的获取方法及装置、参数的确定方法及装置,参数的获取方法包括确定上行目标元素组,确定所述上行目标元素组对应的下行信道元素,根据确定的所述下行信道元素获取所述上行目标元素组的参数。

Description

一种参数的获取方法及装置、参数的确定方法及装置 技术领域
本公开涉及通信领域,具体而言,涉及一种参数的获取方法及装置、参数的确定方法及装置。
背景技术
在高频通信的场景下,波束的更新速度很快,导致数据的交互被影响,相关技术中无法做到快速跟踪波束变化。
发明内容
本公开实施例提供了一种参数的获取方法及装置、参数的确定方法及装置。
根据本公开的一个实施例,提供了一种参数的获取方法,包括:确定上行目标元素组,其中,所述上行目标元素组包括一个或多个上行目标元素,所述上行目标元素包括以下至少之一:上行控制信道资源,上行信号资源,上行数据信道;确定所述上行目标元素组对应的下行信道元素;根据确定的所述下行信道元素获取所述上行目标元素组的参数。
根据本公开的又一个实施例,还提供了一种参数的确定方法,包括:根据第一时间单元对应的第一参数,确定第二时间单元中第二信道或信号的第二参数,其中,所述第二时间单元属于所述第二信道或信号所占的N个时间单元,N为大于或等于1的正整数,所述第一参数包括如下之一:第一信道或信号的第一参数、信令信息中为所述第二信道或信号激活的第二参数。
根据本公开的又一个实施例,还提供了一种参数的获取装置,包括:第一确定模块,配置为确定上行目标元素组,其中,所述上行目标元素组包括一个或多个上行目标元素,所述上行目标元素包括以下至少之一:上行控制信道资源,上行信号资源,上行数据信道;第二确定模块,配置为 确定所述上行目标元素组对应的下行信道元素;获取模块,配置为根据确定的所述下行信道元素获取所述上行目标元素组的参数。
根据本公开的又一个实施例,还提供了一种参数的确定装置,包括:确定模块,配置为根据第一时间单元对应的第一参数,确定第二时间单元中第二信道或信号的第二参数,其中,所述第二时间单元属于所述第二信道或信号所占的N个时间单元,N为大于或等于1的正整数,所述第一参数包括如下之一:第一信道或信号的第一参数、信令信息中为所述第二信道或信号激活的第二参数。
根据本公开的又一个实施例,还提供了一种计算机可读的存储介质,所述计算机可读的存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项参数的获取方法实施例中的步骤。
根据本公开的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项参数的获取方法实施例中的步骤。
根据本公开的又一个实施例,还提供了一种计算机可读的存储介质,所述计算机可读的存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项参数的确定方法实施例中的步骤。
根据本公开的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项参数的确定方法实施例中的步骤。
附图说明
图1是本公开实施例的一种参数的获取方法的移动终端的硬件结构框图;
图2是根据本公开实施例的参数的获取方法的流程图;
图3是根据本公开实施例的参数的确定方法的流程图;
图4是根据本公开实施例的参数的获取装置的结构框图;
图5是根据本公开实施例的参数的确定装置的结构框图;
图6是根据本公开示例实施方式的MAC-CE更新CORESET0的TCI state 2,所述MAC-CE中指示的TCI state2的可用时间位于PUCCH所占的8个slot的第一个slot之后的slot中的示意图;
图7是根据本公开示例实施方式的PUCCH的参数根据PUCCH占有的8个slot中的第一个slot中的CORESET0的激活的TCI state获取的示意图;
图8是根据本公开示例实施方式的PUCCH的参数根据PUCCH占有的8个slot中每一个slot中的CORESET0的激活的TCI state获取的示意图;
图9是根据本公开示例实施方式的PUCCH的参数根据PUCCH占有的8个slot中每一个slot中的CORESET0的激活的TCI state获取,其中CORESET0的更新后的TCI state需要延后Y=1个slot之后才能用于PUCCH参数获取的示意图;
图10是根据本公开示例实施方式的PUCCH的参数根据PUCCH占有的8个slot中每一个slot中的CORESET0的激活的TCI state获取,其中CORESET0的更新后的TCI state需要延后Y=2个slot之后才能用于PUCCH参数获取的示意图;
图11是根据本公开示例实施方式的CORESET0的TCI state可用时间位于N个时间单元中间之前的时间单元,则PUCCH的参数,在前一半时间单元中根据CORESET0的更新前的准共址参考信号获取,后一半时间单元根据CORESET0的更新后的准共址参考信号获取的示意图;
图12是根据本公开示例实施方式的PUCCH的每一个时间单元的参数根据距离PUCCH所在的时间单元最近且包括CORESET0最近的时间单元中CORESET0的准共址参考信号获取的示意图;
图13是根据本公开示例实施方式的更新前和更新后CORESET0的TCI state都为2个,且更新后的时间单元个数不包括整数倍个时间单元组 的示意图一;
图14是根据本公开示例实施方式的更新前和更新后CORESET0的TCI state都为2个,且更新后的时间单元个数不包括整数倍个时间单元组的示意图二;
图15是根据本公开示例实施方式的更新前和更新后CORESET0的TCI state都为2个,且更新后的时间单元个数不包括整数倍个时间单元组的示意图三;
图16是根据本公开示例实施方式的更新前CORESET0的TCI state为2个,更新后CORESET0的TCI state为1个的示意图;
图17是一个SRS resource set中的不同SRS resource的空间关系中的参考信号分别对应一个频域带宽信息的MAC-CE信令通知方式的示意图;
图18是根据本公开示例实施方式的一个SRS resource set中的不同SRS resource的空间关系参数中的参考信号共享一个频域带宽信息的MAC-CE信令通知方式的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本公开实施例一所提供的方法实施例可以在终端设备(例如移动终端)、网络设备或者类似的运算装置中执行。以运行在移动终端上为例,图1是本公开实施例的一种参数的获取方法的移动终端的硬件结构框图。如图1所示,移动终端可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和设置为存储数据的存储器104,可选地,上述移 动终端还可以包括设置为通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可设置为存储计算机程序,例如,应用软件的软件程序以及模块,如本公开实施例中的参数的获取方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106设置为经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其设置为通过无线方式与互联网进行通讯。
需要说明的是,本公开实施例中涉及的网络设备可以为基站,基站可以设置为与一个或多个终端设备进行通信,也可以设置为与一个或多个具有部分终端功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信)。基站可以是5G***、NR***中的基站。另外,基站也可以为接入点(access point,AP)、传输节点(transport point,TRP)、中心单元(central unit,CU)或其他网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。
本公开实施例中涉及的终端设备可以是静止的,也可以是移动的。终 端设备可以是移动设备、移动台(mobile station)、移动单元(mobile unit)、M2M终端、无线单元,远程单元、用户代理、移动客户端、用户设备(user equipment,UE)等。
在一实施例中提供了一种运行于上述移动终端的参数的获取方法,图2是根据本公开实施例的参数的获取方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,确定上行目标元素组,其中,该上行目标元素组包括一个或多个上行目标元素,该上行目标元素包括以下至少之一:上行控制信道资源,上行信号资源,上行数据信道;
步骤S204,确定该上行目标元素组对应的下行信道元素;
步骤S206,根据确定的该下行信道元素获取该上行目标元素组的参数。
示例性地,通过上述步骤,确定上行目标元素组,确定该上行目标元素组对应的下行信道元素,根据确定的该下行信道元素获取该上行目标元素组的参数,可以解决相关技术中无法实现在节省信令开销的同时,快速波束跟踪的技术问题,实现了在波束快速变化的情况下跟踪波束。
在一个实施例中,上述步骤的执行主体可以为基站、终端等,但不限于此。
在一个实施例中,上行目标元素组与下行信道元素存在对应关系,该对应关系可以是预设的,或者可以是根据预设规则确定的。
在一个实施例中,根据以下至少之一确定该上行目标元素组对应的该下行信道元素:信令信息,其中该信令信息中包括该上行目标元素组对应的下行信道元素索引;该上行目标元素组的组索引;调度该上行目标元素组中的上行目标元素的下行控制信道对应的下行信道元素;该上行目标元素组的组索引和第一预定值之间的余数,其中,该第一预定值为大于或等于1正整数,或,该第一预定值为小于或等于该下行信道元素个数的正整数;一个上行目标元素组对应的下行信道元素的最大个数。
在一个实施例中,在该上行目标元素组包括多于一个的该上行目标元素的情况下,该根据调度该上行目标元素组中的该上行目标元素的下行控制信道对应的下行信道元素确定该上行目标元素组对应的下行信道元素,包括如下之一:根据该上行目标元素组中的该上行目标元素的索引确定该上行目标元素组对应的该下行信道元素;根据调度该上行目标元素组中的该上行目标元素的下行控制信道对应的下行信道元素索引确定该上行目标元素组对应的下行信道元素。
在一个实施例中,在该下行信道元素包括下行控制信道资源组,该下行控制信道资源组包括一个或多个下行控制信道资源的情况下,根据以下之一确定该上行目标元素组中的该上行目标元素的参数:该下行控制信道资源组中的最低下行控制信道资源索引号对应的下行控制信道资源;该下行控制信道资源组中距离该上行目标元素最近的下行控制信道资源;距离该上行目标元素最近的时间单元中的物理下行共享信道,其中,该物理下行共享信道由该下行控制信道资源组中的下行控制信道资源的下行控制信道调度;第一元素与第二元素中距离该上行目标元素更近者,其中,该第一元素包括该下行控制信道资源组中距离该上行目标元素最近的下行控制信道资源,该第二元素包括距离该上行目标元素最近的且由该下行控制信道资源组中的下行控制信道资源的下行控制信道调度的物理下行共享信道;该下行控制信道资源组中的下行控制信道资源c,其中,c为该下行控制信道资源在该下行控制信道资源组中的索引,该c根据该上行目标元素在该上行目标元素组中的索引d确定;其中,该下行控制信道资源包括如下之一:控制资源集合,搜索空间集合。
在一个实施例中,该c根据该上行目标元素在该上行目标元素组中的索引d确定和第二预定值得到,其中该第二预定值为正整数,或者,该第二预定值为小于或者等于该下行控制信道资源组中的包括的下行控制信道资源个数。
需要说明的是,下行控制信道资源组中包括下行控制信道资源,下行控制信道资源中包括下行控制信道。
在一个实施例中,该上行目标元素组与该下行信道元素对应同一个频域带宽,或者,该上行目标元素组与该下行信道元素对应同一个频域带宽组。
在一个实施例中,在该下行信道元素包括传输配置指示状态的情况下,根据如下至少之一确定该上行目标元素组对应的该传输配置指示状态:信令信息,其中,该信令信息中包括该上行目标元素组对应的传输配置指示状态信息;该上行目标元素组的组索引;该上行目标元素组中的上行目标元素的参数的个数L;为预定频域带宽中的物理下行共享信道激活的传输配置指示状态集合;为预定频域带宽中的一个或者多个下行控制信道激活的传输配置指示状态集合;预定频域带宽中的物理下行共享信道对应的代码点和传输配置指示状态的映射关系。
示例性地,一实施例中,某物理下行共享信道激活的传输配置指示状态或传输配置指示状态集合指的是该传输配置指示状态或传输配置指示状态集合是为该物理下行共享信道所用的。
在一个实施例中,在该下行信道元素包括传输配置指示状态的情况下,该上行目标元素组对应的该传输配置指示状态包括如下之一:
为预定频域带宽中的物理下行共享信道激活的传输配置指示状态集合中,索引为i*L到(i+1)*L-1的L个传输配置指示状态,其中,该传输配置指示状态的索引是该传输配置指示状态在该传输配置指示状态集合中的相对索引;
为预定频域带宽中的物理下行控制信道激活的传输配置指示状态集合中,索引为i*L到(i+1)*L-1的L个传输配置指示状态,其中,该传输配置指示状态的索引是该传输配置指示状态在该传输配置指示状态集合中的相对索引;
第一代码点对应的传输配置指示状态中的前L个传输配置指示状态;
对应的传输配置指示状态个数等于第三预定值的代码点中的最低代码点对应的传输配置指示状态中的前L个传输配置指示状态;
其中,该第一代码点为下行控制信息中传输配置指示域对应的代码点,该第一代码点根据该上行目标元素组的组索引得到,L是该上行目标元素组中的上行目标元素对应的参数个数,L是大于或等于1的正整数。
在一个实施例中,在一实施例中,该上行目标元素组中的不同上行目标元素对应的参数个数相同或不同。
在一个实施例中,该信令信息中包括该上行目标元素组对应的传输配置指示状态信息,包括如下之一:
该信令信息中包括该上行目标元素组对应的传输配置指示状态索引,其中,该传输配置指示状态索引是该上行目标元素组对应的传输配置指示状态在为物理下行共享信道激活的传输配置指示状态集合中的相对索引;
该信令信息中包括该上行目标元素组对应的传输配置指示状态索引,其中,该传输配置指示状态索引是该上行目标元素组对应的传输配置指示状态在为物理下行控制信道激活的传输配置指示状态集合中的相对索引;
该信令信息中包括该上行目标元素组对应的代码点索引,其中,该代码点对应调度物理下行共享信道的物理下行控制信道中的传输配置指示域的代码点。
需要说明的是,一实施例中,一个代码点对应一个或者多个传输配置状态。
在一个实施例中,该根据确定的该下行信道元素获取该上行目标元素组的参数,包括如下之一:
根据该下行信道元素对应的参考信号获取该上行目标元素组的参数;
根据第一时间单元中,该下行信道元素对应的参考信号获取该上行目标元素组的参数;
其中,该下行信道元素对应的参考信号包括如下之一:下行信道元素的准共参考信号、该下行信道元素的关联空间接收参数的准共址参考信号、该下行信道元素的传输配置指示状态中的参考信号;
其中,该第一时间单元包括如下之一:N个时间单元中的每一个时间单元、分别距离N个时间单元中的每一个时间单元最近的且包括该下行信道元素的时间单元、N个时间单元中的第一个时间单元、距离N个时间单元中的第一个时间单元最近的且包括该下行信道元素的时间单元、第
Figure PCTCN2021083368-appb-000001
个时间单元、第
Figure PCTCN2021083368-appb-000002
个时间单元、该N个时间单元中的一组时间单元中的第一个时间单元、该上行目标元素所在的时间单元之前预定时长之前的满足预定特征的时间单元;
其中,该N个时间单元是该上行目标元素中的上行目标元素所在的N个时间单元,其中N为大于或等于1的正整数。
需要说明的是,在一个实施例中,第一时间单元是分别距离N个时间单元中的每一个时间单元最近的且包括该下行信道元素的时间单元。
在一个实施例中,该N个时间单元中的一组时间单元的第一个时间单元如下之一:该N个时间单元中的每一组时间单元的第一个时间单元;该N个时间单元中的任意一组时间单元的第一个时间单元。
在一个实施例中,该下行信道元素的传输配置指示状态中的参考信号,包括如下之一:
该传输配置指示状态中类型为该参数类型的参考信号;
该传输配置指示状态中类型不是准共址参考信号的参考信号;
在该传输配置指示状态包括关联空间接收参数的准共址参考信号的情况下,该下行信道元素的传输配置指示状态中的参考信号包括该传输配置指示状态中关联空间接收参数的准共址参考信号;
在该传输配置指示状态不包括关联空间接收参数的准共址参考信号的情况下,该下行信道元素对应的传输配置指示状态中的参考信号包括该传输配置指示状态中类型为该参数类型的参考信号。
其中该参数类型包括如下至少之一:空间关系参数类型,路径损耗参数类型。
在一个实施例中,该第一时间单元中,该下行信道元素对应的参考信号,包括如下之一:在该第一时间单元中,该下行信道元素的激活的准共址参考信号;根据距离该第一时间单元最近发送的上行接入信道确定的该下行信道元素的准共址参考信号;在该第一时间单元中,根据同步信号和下行信道元素之间的对应关系得到的该下行信道元素的准共址参考信号;在该第一时间单元中,该下行信道元素的激活的传输配置指示状态中的参考信号;在该第一时间单元中,该下行信道元素的关联空间接收参数的准共址参考信号。
在一个实施例中,在该第一时间单元包括该N个时间单元中的每一个时间单元的情况下,该根据下行信道元素对应的参考信号信息获取该上行目标元素的参数,包括如下至少之一:该N个时间单元中位于第三时间单元之前的时间单元中,根据该下行信道元素对应的第一份参考信号信息获取该上行目标元素的参数;第三时间单元以及该N个时间单元中位于该第三时间单元之后的时间单元中,根据该下行信道元素对应的第二份参考信号信息获取该上行目标元素的参数;该N个时间单元中,该上行目标元素对应的该下行信道元素对应的参考信号份数小于或者等于第四预定值;其中,该第三时间单元包括如下之一:该下行信道元素对应的第二份参考信号信息开始可用的时间单元、第
Figure PCTCN2021083368-appb-000003
个时间单元、第
Figure PCTCN2021083368-appb-000004
个时间单元;其中,一份参考信号信息中包括如下之一:一个或者多个传输配置指示状态;一个或者多个关联空间接收参数的准共址参考信号。
在一个实施例中,在该上行目标元素组包括上行探测参考信号资源组的情况下,该上行目标元素组的参数包括该上行探测参考信号资源组的如下参数至少之一:空间发送滤波器、空间关系中的参考信号、功率参数、该上行探测参考信号资源组对应的下行测量参考信号,其中,该上行探测参考信号资源组中的上行探测参考信号资源的发送预编码参数根据该下行测量参考信号获取。
在一个实施例中,在该上行目标元素组包括上行探测参考信号资源组的情况下,该上行目标元素组的参数包括该上行探测参考信号资源组的上 行探测参考信号资源组对应的下行测量参考信号,其中,该上行探测参考信号资源组中的上行探测参考信号资源的发送预编码参数根据该下行测量参考信号获取。
在一个实施例中,该上行探测参考信号资源组包括如下之一:一个频域带宽中的一个测量参考信号资源集合;一个频域带宽组中的不同频域带宽中,具有相同上行探测参考信号资源索引的上行探测参考信号资源构成的上行探测参考信号资源组。
在一个实施例中,在该上行目标元素组包括上行控制信道资源组或上行数据信道组的情况下,该上行目标元素组的参数包括如下参数至少之一:空间发送滤波器、空间关系中的参考信号、功率参数、传输模式。
在一个实施例中,该上行控制信道资源组包括如下之一:根据信令信息确定的上行控制信道资源组;一个频域带宽组中的不同频域带宽中的具有相同上行控制信道资源索引的上行控制信令。
在一个实施例中,X个上行目标元素组中,X1个上行目标元素组对应的下行信道元素为下行控制信道资源;
X个上行目标元素组中,X2个上行目标元素组对应的下行信道元素为传输配置指示状态信息;
X个上行目标元素组中,X3个上行目标元素组对应的下行信道元素为下行控制信道资源组;
其中,X1、X2、X3均是小于或等于X的正整数,和/或,X1+X2+X3=X;
其中,下行控制信道资源包括如下之一:控制资源集合,搜索空间集合。
在一个实施例中,在一实施例中,传输配置指示状态信息包括如下之一:传输配置指示状态索引,代码点索引。
在一个实施例中,该下行信道元素包括以下至少之一:控制资源集合、搜索空间集合、传输配置指示状态、控制资源集合组、搜索空间集合组、 代码点;其中,该代码点是调度物理下行数据信道的物理下行控制信道的传输配置指示域对应的代码点;其中,该传输配置指示状态包括下行控制信道或下行数据信道的关联或激活的传输配置指示状态。
在一个实施例中,该根据该确定的该下行信道元素获取该上行目标元素组的参数,包括如下之一:该上行目标元素组中的上行目标元素的参数为该上行目标元素组的参数,其中,在一个实施例中,上行目标元素组中的不同上行目标元素的参数相同;该上行目标元素组中的上行目标元素的参数根据该上行目标元素组的参数获取,其中,在一个实施例中,该上行目标元素组中的不同上行目标元素的参数相同或不同。
在一个实施例中,该方法还包括:确定下行控制信道资源组;确定该下行控制信道资源组所对应的代码点或传输配置指示状态索引;根据该确定的该代码点或该传输配置指示状态索引获取该下行控制信道资源组的参数;其中,该下行控制信道资源包括如下之一:控制资源集合、搜索空间集合;其中,该代码点是调度物理下行数据信道的物理下行控制信道的传输配置指示域对应的代码点,该传输配置指示状态索引是为该传输配置指示状态在为物理下行数据信道激活的传输配置指示状态集合中的相对索引,该下行控制信道资源组包括一个频域带宽中的下行控制信道资源组,或,该下行控制信道资源组包括一个频域带宽组中,由不同频域带宽中具有相同下行控制信道资源索引构成的下行控制信道资源组。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例该的方法。
在一实施例中,还提供了一种参数的确定方法,本公开实施例所提供的方法实施例可以在终端设备(例如移动终端)、网络设备或者类似的运算装置中执行。
需要说明的是,本公开实施例中涉及的网络设备可以为基站,基站可以设置为与一个或多个终端设备进行通信,也可以设置为与一个或多个具有部分终端功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信)。基站可以是5G***、NR***中的基站。另外,基站也可以为接入点(access point,AP)、传输节点(transport point,TRP)、中心单元(central unit,CU)或其他网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。
本公开实施例中涉及的终端设备可以是静止的,也可以是移动的。终端设备可以是移动设备、移动台(mobile station)、移动单元(mobile unit)、M2M终端、无线单元,远程单元、用户代理、移动客户端、用户设备(user equipment,UE)等。
其中,图3是根据本公开实施例的参数的确定方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,根据第一时间单元对应的第一参数,确定第二时间单元中第二信道或信号的第二参数,其中,该第二时间单元属于该第二信道或信号所占的N个时间单元,N为大于或等于1的正整数,该第一参数包括如下之一:第一信道或信号的第一参数、信令信息中为该第二信道或信号激活的第二参数。
通过上述步骤,可以确定时间单元中的信道或信号的参数。
示例性地,一个信道或信号占有多个时间单元,在该多个时间单元中的一个时间单元中该信道或信号对应的参数发生了更新,需要确定该信道或信号的各个时间单元中该信道或信号的参数根据更新前的还是更新后的参数确定。其中信令信息包括MAC-CE,或物理下行控制信道中包括的控制信息,比如第二信道或信号的第二参数可以通过MAC-CE或物理下 行控制信道进行更新。所述MAC-CE或物理下行控制信道中包括的第二参数的开始可用的时间单元和所述MAC-CE对应的ACK或物理下行控制信道所在的时间单元之间有预定的时间长度。
在一个实施例中,上述步骤的执行主体可以为基站、终端等,但不限于此。
在一个实施例中,在该第一参数包括第一信道或信号的第一参数的情况下,该第一时间单元对应的该第一参数,包括如下之一:该第一时间单元中,该第一信道或信号的激活的第一参数;该第一时间单元中,该第一信道或信号的可用的第一参数;根据距离该第一时间单元最近的随机接入过程,确定的第一信道或信号的第一参数,其中,该随机接入过程是竞争模式的随机接入过程;该第一时间单元中,该第一信道或信号对应的同步信号。
在一个实施例中,在该第一参数包括信令信息中为该第二信道或信号激活的第二参数的情况下,该第一时间对应的该第一参数,包括如下之一:该第一时间单元中,该第二信道或信号激活的第二参数;该第一时间单元中,该第二信道或信号可用的第二参数。
在一个实施例中,还包括以下至少之一:
在该N个时间单元中位于第三时间单元之前的时间单元中,根据该第一参数的第二值获取该第二信道或信号的第二参数的值;
在第三时间单元以及该N个时间单元中位于该第三时间单元之后的时间单元中,根据该第一参数的第一值获取该第二信道或信号的第二参数的值;
根据该第一参数的最多E个值确定该N个时间单元中该第二信道或信号的第二参数,其中该E为小于或等于N的正整数;
其中,该第三时间单元包括如下之一:该第一参数发生更新的时间单元、第
Figure PCTCN2021083368-appb-000005
个时间单元、第
Figure PCTCN2021083368-appb-000006
个时间单元、该第一参数开始可用的时间单元、该N个时间单元中的一组时间单元的第一个时间单元。
在一个实施例中,该根据第一时间单元对应的第一参数,获取第二时间单元中第二信道或信号的第二参数,包括如下至少之一:
该第二时间单元中的上行控制信道资源的第二参数,根据与该上行控制信道资源存在对应关系的下行控制信道资源在该第一时间单元对应的第一参数获取;
该第二时间单元中的上行数据信道的第二参数,根据上行数据信道所在的频域带宽中具有最低索引的上行控制信道资源在该第一时间单元对应的第一参数获取;
该第二时间单元中的上行探测参考信号资源的第二参数,根据与该上行控制信道资源存在对应关系的下行控制信道资源在该第一时间单元对应的第一参数获取;
该第二时间单元中的上行探测参考信号资源的第二参数,根据与该上行控制信道资源存在对应关系的传输配置指示状态索引在该第一时间单元对应的激活的传输配置指示状态获取;
该第二时间单元中的下行控制信道资源的第二参数,根据与该下行控制信道资源存在对应关系的传输配置指示状态索引在该第一时间单元对应的激活的传输配置指示状态获取;
所述第二信道或信号的在每个时间单元中的第二参数根据所述每个时间单元对应的第一参数获取;
所述第二信道或信号的在每个时间单元中的第二参数根据所述N个时间单元中的第一个时间单元对应的第一参数获取。
在一个实施例中,该第一时间单元包括如下至少之一:该N个时间单元中的第一个时间单元;该N个时间单元中的每一个时间单元;该N个时间单元中的一组时间单元中的第一个时间单元;距离该第二时间单元最近且该第一参数发生更新的时间单元;距离该第二时间单元最近且包括该第一信道或信号的时间单元;该第二时间单元;该N个时间单元中该第一参数发生更新的时间单元;该第二时间单元之前预定时长之前的满足预 定特征的时间单元;该第二时间单元或第二时间单元之前的时间单元。
需要说明的是,在一个实施例中,该N个时间单元中的一组时间单元的第一个时间单元如下之一:该N个时间单元中的每一组时间单元的第一个时间单元;该N个时间单元中的任意一组时间单元的第一个时间单元。
在一个实施例中,该第二信道或信号包括如下之一:上行控制信道、上行数据信道、下行控制信道。
在一个实施例中,该第一参数和/或该第二参数包括如下参数至少之一:
准共址参考信号、关联空间接收参数的准共址参考信号、传输配置指示状态、传输配置指示状态中的参考信号、空间发送滤波器、空间关系中的参考信号、功率参数、传输模式。
在一个实施例中,该的第一时间单元和该第二时间单元之间满足如下特征之一:该第一时间单元和该第二时间单元之间,该第一参数没有发生更新。
需要说明的是,一实施例中,下行信道元素可以指与下行信道有关的信息或元素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例该的方法。
在本实施例中还提供了一种参数的获取装置,该装置设置为实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例 所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图4是根据本公开实施例的参数的获取装置的结构框图,如图4所示,该装置包括:
第一确定模块41,配置为确定上行目标元素组,其中,该上行目标元素组包括一个或多个上行目标元素,该上行目标元素包括以下至少之一:上行控制信道资源,上行信号资源,上行数据信道;
第二确定模块43,配置为确定该上行目标元素组对应的下行信道元素;
获取模块45,配置为根据确定的该下行信道元素获取该上行目标元素组的参数。
在一个实施例中,上行目标元素组与下行信道元素存在对应关系,该对应关系可以是预设的,或者可以是根据预设规则确定的。
在一个实施例中,根据以下至少之一确定该上行目标元素组对应的该下行信道元素:信令信息,其中该信令信息中包括该上行目标元素组对应的下行信道元素索引;该上行目标元素组的组索引;调度该上行目标元素组中的上行目标元素的下行控制信道对应的下行信道元素;该上行目标元素组的组索引和第一预定值之间的余数,其中,该第一预定值为大于或等于1正整数,或,该第一预定值为小于或等于该下行信道元素个数的正整数;一个上行目标元素组对应的下行信道元素的最大个数。
在一个实施例中,在该上行目标元素组包括多于一个的该上行目标元素的情况下,该根据调度该上行目标元素组中的该上行目标元素的下行控制信道对应的下行信道元素确定该上行目标元素组对应的下行信道元素,包括如下之一:
根据该上行目标元素组中的该上行目标元素的索引确定该上行目标元素组对应的该下行信道元素;
根据调度该上行目标元素组中的该上行目标元素的下行控制信道对 应的下行信道元素索引确定该上行目标元素组对应的下行信道元素。
在一个实施例中,在该下行信道元素包括下行控制信道资源组,该下行控制信道资源组包括一个或多个下行控制信道资源的情况下,根据以下之一确定该上行目标元素组中的该上行目标元素的参数:
该下行控制信道资源组中的最低下行控制信道资源索引号对应的下行控制信道资源;
该下行控制信道资源组中距离该上行目标元素最近的下行控制信道资源;
距离该上行目标元素最近的时间单元中的物理下行共享信道,其中,该物理下行共享信道由该下行控制信道资源组中的下行控制信道资源的下行控制信道调度;
第一元素与第二元素中距离该上行目标元素更近者,其中,该第一元素包括该下行控制信道资源组中距离该上行目标元素最近的下行控制信道资源,该第二元素包括距离该上行目标元素最近的且由该下行控制信道资源组中的下行控制信道资源的下行控制信道调度的物理下行共享信道;
该下行控制信道资源组中的下行控制信道资源c,其中,c为该下行控制信道资源在该下行控制信道资源组中的索引,该c根据该上行目标元素在该上行目标元素组中的索引d确定;在一个实施例中,该c根据该上行目标元素在该上行目标元素组中的索引d确定和第二预定值得到,其中该第二预定值为正整数,或者,该第二预定值为小于或者等于该下行控制信道资源组中的包括的下行控制信道资源个数;
其中,该下行控制信道资源包括如下之一:控制资源集合,搜索空间集合。
需要说明的是,下行控制信道资源组中包括下行控制信道资源,下行控制信道资源中包括下行控制信道。
在一个实施例中,该上行目标元素组与该下行信道元素对应同一个频域带宽,或者,该上行目标元素组与该下行信道元素对应同一个频域带宽 组。
在一个实施例中,在该下行信道元素包括传输配置指示状态的情况下,根据如下至少之一确定该上行目标元素组对应的该传输配置指示状态:
信令信息,其中,该信令信息中包括该上行目标元素组对应的传输配置指示状态信息;
该上行目标元素组的组索引;
该上行目标元素组中的上行目标元素的参数的个数L;
为预定频域带宽中的物理下行共享信道激活的传输配置指示状态集合;需要说明的是,一实施例中,某物理下行共享信道激活的传输配置指示状态或传输配置指示状态集合指的是该传输配置指示状态或传输配置指示状态集合是为该物理下行共享信道所用的。
为预定频域带宽中的一个或者多个下行控制信道激活的传输配置指示状态集合;
预定频域带宽中的物理下行共享信道对应的代码点和传输配置指示状态的映射关系。
在一个实施例中,在该下行信道元素包括传输配置指示状态的情况下,该上行目标元素组对应的该传输配置指示状态包括如下之一:
为预定频域带宽中的物理下行共享信道激活的传输配置指示状态集合中,索引为i*L到(i+1)*L-1的L个传输配置指示状态,其中,该传输配置指示状态的索引是该传输配置指示状态在该传输配置指示状态集合中的相对索引;
为预定频域带宽中的物理下行控制信道激活的传输配置指示状态集合中,索引为i*L到(i+1)*L-1的L个传输配置指示状态,其中,该传输配置指示状态的索引是该传输配置指示状态在该传输配置指示状态集合中的相对索引;
第一代码点对应的传输配置指示状态中的前L个传输配置指示状态;
对应的传输配置指示状态个数等于第三预定值的代码点中的最低代码点对应的传输配置指示状态中的前L个传输配置指示状态;
其中,该第一代码点为下行控制信息中传输配置指示域对应的代码点,该第一代码点根据该上行目标元素组的组索引得到,L是该上行目标元素组中的上行目标元素对应的参数个数,L是大于或等于1的正整数。
在一个实施例中,在一实施例中,该上行目标元素组中的不同上行目标元素对应的参数个数相同或不同。
在一个实施例中,该信令信息中包括该上行目标元素组对应的传输配置指示状态信息,包括如下之一:
该信令信息中包括该上行目标元素组对应的传输配置指示状态索引,其中,该传输配置指示状态索引是该上行目标元素组对应的传输配置指示状态在为物理下行共享信道激活的传输配置指示状态集合中的相对索引;
该信令信息中包括该上行目标元素组对应的传输配置指示状态索引,其中,该传输配置指示状态索引是该上行目标元素组对应的传输配置指示状态在为物理下行控制信道激活的传输配置指示状态集合中的相对索引;
该信令信息中包括该上行目标元素组对应的代码点索引,其中,该代码点对应调度物理下行共享信道的物理下行控制信道中的传输配置指示域的代码点。
需要说明的是,一实施例中,一个代码点对应一个或者多个传输配置状态。
在一个实施例中,该根据确定的该下行信道元素获取该上行目标元素组的参数,包括如下之一:根据该下行信道元素对应的参考信号获取该上行目标元素组的参数;根据第一时间单元中,该下行信道元素对应的参考信号获取该上行目标元素组的参数;其中,该下行信道元素对应的参考信号包括如下之一:下行信道元素的准共参考信号、该下行信道元素的关联空间接收参数的准共址参考信号、该下行信道元素的传输配置指示状态中 的参考信号;其中,该第一时间单元包括如下之一:N个时间单元中的每一个时间单元、分别距离N个时间单元中的每一个时间单元最近的且包括该下行信道元素的时间单元、N个时间单元中的第一个时间单元、距离N个时间单元中的第一个时间单元最近的且包括该下行信道元素的时间单元、第
Figure PCTCN2021083368-appb-000007
个时间单元、第
Figure PCTCN2021083368-appb-000008
个时间单元、该N个时间单元中的一组时间单元中的第一个时间单元、该上行目标元素所在的时间单元之前预定时长之前的满足预定特征的时间单元;其中,该N个时间单元是该上行目标元素中的上行目标元素所在的N个时间单元,其中N为大于或等于1的正整数。
需要说明的是,在一个实施例中,第一时间单元是分别距离N个时间单元中的每一个时间单元最近的且包括该下行信道元素的时间单元。
在一个实施例中,该N个时间单元中的一组时间单元的第一个时间单元如下之一:该N个时间单元中的每一组时间单元的第一个时间单元;该N个时间单元中的任意一组时间单元的第一个时间单元。
在一个实施例中,该下行信道元素的传输配置指示状态中的参考信号,包括如下之一:该传输配置指示状态中类型为该参数类型的参考信号;该传输配置指示状态中类型不是准共址参考信号的参考信号;在该传输配置指示状态包括关联空间接收参数的准共址参考信号的情况下,该下行信道元素的传输配置指示状态中的参考信号包括该传输配置指示状态中关联空间接收参数的准共址参考信号;在该传输配置指示状态不包括关联空间接收参数的准共址参考信号的情况下,该下行信道元素对应的传输配置指示状态中的参考信号包括该传输配置指示状态中类型为该参数类型的参考信号。
其中该参数类型包括如下至少之一:空间关系参数类型,路径损耗参数类型。
在一个实施例中,该第一时间单元中,该下行信道元素对应的参考信号,包括如下之一:在该第一时间单元中,该下行信道元素的激活的准共 址参考信号;根据距离该第一时间单元最近发送的上行接入信道确定的该下行信道元素的准共址参考信号;在该第一时间单元中,根据同步信号和下行信道元素之间的对应关系得到的该下行信道元素的准共址参考信号;在该第一时间单元中,该下行信道元素的激活的传输配置指示状态中的参考信号;在该第一时间单元中,该下行信道元素的关联空间接收参数的准共址参考信号。在一个实施例中,在该第一时间单元包括该N个时间单元中的每一个时间单元的情况下,该根据下行信道元素对应的参考信号信息获取该上行目标元素的参数,包括如下至少之一:
该N个时间单元中位于第三时间单元之前的时间单元中,根据该下行信道元素对应的第一份参考信号信息获取该上行目标元素的参数;
第三时间单元以及该N个时间单元中位于该第三时间单元之后的时间单元中,根据该下行信道元素对应的第二份参考信号信息获取该上行目标元素的参数;
该N个时间单元中,该上行目标元素对应的该下行信道元素对应的参考信号份数小于或者等于第四预定值;
其中,该第三时间单元包括如下之一:该下行信道元素对应的第二份参考信号信息开始可用的时间单元、第
Figure PCTCN2021083368-appb-000009
个时间单元、第
Figure PCTCN2021083368-appb-000010
个时间单元;
其中,一份参考信号信息中包括如下之一:一个或者多个传输配置指示状态;一个或者多个关联空间接收参数的准共址参考信号。
在一个实施例中,在该上行目标元素组包括上行探测参考信号资源组的情况下,该上行目标元素组的参数包括该上行探测参考信号资源组的如下参数至少之一:空间发送滤波器、空间关系中的参考信号、功率参数、该上行探测参考信号资源组对应的下行测量参考信号,其中,该上行探测参考信号资源组中的上行探测参考信号资源的发送预编码参数根据该下行测量参考信号获取。
在一个实施例中,在该上行目标元素组包括上行探测参考信号资源组 的情况下,该上行目标元素组的参数包括该上行探测参考信号资源组的上行探测参考信号资源组对应的下行测量参考信号,其中,该上行探测参考信号资源组中的上行探测参考信号资源的发送预编码参数根据该下行测量参考信号获取。
在一个实施例中,该上行探测参考信号资源组包括如下之一:一个频域带宽中的一个测量参考信号资源集合;一个频域带宽组中的不同频域带宽中,具有相同上行探测参考信号资源索引的上行探测参考信号资源构成的上行探测参考信号资源组。
在一个实施例中,在该上行目标元素组包括上行控制信道资源组或上行数据信道组的情况下,该上行目标元素组的参数包括如下参数至少之一:空间发送滤波器、空间关系中的参考信号、功率参数、传输模式。
在一个实施例中,该上行控制信道资源组包括如下之一:
根据信令信息确定的上行控制信道资源组;
一个频域带宽组中的不同频域带宽中的具有相同上行控制信道资源索引的上行控制信令。
在一个实施例中,X个上行目标元素组中,X1个上行目标元素组对应的下行信道元素为下行控制信道资源;
X个上行目标元素组中,X2个上行目标元素组对应的下行信道元素为传输配置指示状态信息;
X个上行目标元素组中,X3个上行目标元素组对应的下行信道元素为下行控制信道资源组;
其中,X1、X2、X3均是小于或等于X的正整数,和/或,X1+X2+X3=X;
其中,下行控制信道资源包括如下之一:控制资源集合,搜索空间集合。
在一个实施例中,在一实施例中,传输配置指示状态信息包括如下之一:传输配置指示状态索引,代码点索引。
在一个实施例中,该下行信道元素包括以下至少之一:控制资源集合、搜索空间集合、传输配置指示状态、控制资源集合组、搜索空间集合组、代码点;其中,该代码点是调度物理下行数据信道的物理下行控制信道的传输配置指示域对应的代码点;其中,该传输配置指示状态包括下行控制信道或下行数据信道的关联或激活的传输配置指示状态。
在一个实施例中,该根据该确定的该下行信道元素获取该上行目标元素组的参数,包括如下之一:
该上行目标元素组中的上行目标元素的参数为该上行目标元素组的参数,其中,在一个实施例中,上行目标元素组中的不同上行目标元素的参数相同;
该上行目标元素组中的上行目标元素的参数根据该上行目标元素组的参数获取,其中,在一个实施例中,该上行目标元素组中的不同上行目标元素的参数相同或不同。
在一个实施例中,该方法还包括:确定下行控制信道资源组;确定该下行控制信道资源组所对应的代码点或传输配置指示状态索引;根据该确定的该代码点或该传输配置指示状态索引获取该下行控制信道资源组的参数;其中,该下行控制信道资源包括如下之一:控制资源集合、搜索空间集合;其中,该代码点是调度物理下行数据信道的物理下行控制信道的传输配置指示域对应的代码点,该传输配置指示状态索引是为该传输配置指示状态在为物理下行数据信道激活的传输配置指示状态集合中的相对索引,该下行控制信道资源组包括一个频域带宽中的下行控制信道资源组,或,该下行控制信道资源组包括一个频域带宽组中,由不同频域带宽中具有相同下行控制信道资源索引构成的下行控制信道资源组。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
在本实施例中还提供了一种参数的获取装置,该装置设置为实现上述 实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图5是根据本公开实施例的参数的确定装置的结构框图,如图5所示,该装置包括:
确定模块51,配置为根据第一时间单元对应的第一参数,确定第二时间单元中第二信道或信号的第二参数,其中,该第二时间单元属于该第二信道或信号所占的N个时间单元,N为大于或等于1的正整数,该第一参数包括如下之一:第一信道或信号的第一参数、信令信息中为该第二信道或信号激活的第二参数。
在一个实施例中,在该第一参数包括第一信道或信号的第一参数的情况下,该第一时间单元对应的该第一参数,包括如下之一:该第一时间单元中,该第一信道或信号的激活的第一参数;该第一时间单元中,该第一信道或信号的可用的第一参数;根据距离该第一时间单元最近的随机接入过程,确定的第一信道或信号的第一参数,其中,该随机接入过程是竞争模式的随机接入过程;该第一时间单元中,该第一信道或信号对应的同步信号。
在一个实施例中,在该第一参数包括信令信息中为该第二信道或信号激活的第二参数的情况下,该第一时间对应的该第一参数,包括如下之一:该第一时间单元中,该第二信道或信号激活的第二参数;该第一时间单元中,该第二信道或信号可用的第二参数。
在一个实施例中,还包括以下至少之一:在该N个时间单元中位于第三时间单元之前的时间单元中,根据该第一参数的第二值获取该第二信道或信号的第二参数的值;在第三时间单元以及该N个时间单元中位于该第三时间单元之后的时间单元中,根据该第一参数的第一值获取该第二信道或信号的第二参数的值;根据该第一参数的最多E个值确定该N个时 间单元中该第二信道或信号的第二参数,其中该E为小于或等于N的正整数;其中,该第三时间单元包括如下之一:该第一参数发生更新的时间单元、第
Figure PCTCN2021083368-appb-000011
个时间单元、第
Figure PCTCN2021083368-appb-000012
个时间单元、该第一参数开始可用的时间单元、该N个时间单元中的一组时间单元的第一个时间单元。
在一个实施例中,该根据第一时间单元对应的第一参数,获取第二时间单元中第二信道或信号的第二参数,包括如下至少之一:
该第二时间单元中的上行控制信道资源的第二参数,根据与该上行控制信道资源存在对应关系的下行控制信道资源在该第一时间单元对应的第一参数获取;
该第二时间单元中的上行数据信道的第二参数,根据上行数据信道所在的频域带宽中具有最低索引的上行控制信道资源在该第一时间单元对应的第一参数获取;
该第二时间单元中的上行探测参考信号资源的第二参数,根据与该上行控制信道资源存在对应关系的下行控制信道资源在该第一时间单元对应的第一参数获取;
该第二时间单元中的上行探测参考信号资源的第二参数,根据与该上行控制信道资源存在对应关系的传输配置指示状态索引在该第一时间单元对应的激活的传输配置指示状态获取;
该第二时间单元中的下行控制信道资源的第二参数,根据与该下行控制信道资源存在对应关系的传输配置指示状态索引在该第一时间单元对应的激活的传输配置指示状态获取;
所述第二信道或信号的在每个时间单元中的第二参数根据所述每个时间单元对应的第一参数获取;
所述第二信道或信号的在每个时间单元中的第二参数根据所述N个时间单元中的第一个时间单元对应的第一参数获取。
在一个实施例中,该第一时间单元包括如下至少之一:该N个时间单元中的第一个时间单元;该N个时间单元中的每一个时间单元;该N个 时间单元中的一组时间单元中的第一个时间单元;距离该第二时间单元最近且该第一参数发生更新的时间单元;距离该第二时间单元最近且包括该第一信道或信号的时间单元;该第二时间单元;该N个时间单元中该第一参数发生更新的时间单元;该第二时间单元之前预定时长之前的满足预定特征的时间单元;该第二时间单元或第二时间单元之前的时间单元。
需要说明的是,在一个实施例中,该N个时间单元中的一组时间单元的第一个时间单元如下之一:该N个时间单元中的每一组时间单元的第一个时间单元;该N个时间单元中的任意一组时间单元的第一个时间单元。
在一个实施例中,该第二信道或信号包括如下之一:上行控制信道、上行数据信道、下行控制信道。
在一个实施例中,该第一参数和/或该第二参数包括如下参数至少之一:准共址参考信号、关联空间接收参数的准共址参考信号、传输配置指示状态、传输配置指示状态中的参考信号、空间发送滤波器、空间关系中的参考信号、功率参数、传输模式。
在一个实施例中,该的第一时间单元和该第二时间单元之间满足如下特征之一:该第一时间单元和该第二时间单元之间,该第一参数没有发生更新。
以下结合具体场景对本公开实施例进一步说明,例如,在高频通信的场景下,波束的更新速度很快,如何在信令开销小的同时,快速跟踪波束变化,是本实施例要解决的主要问题。
示例实施方式一
在本实施例中,根据高层信令将物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)资源分组;根据信令信息或预定规则确定PUCCH资源组和控制资源集(Control Resource Set,CORESET)之间的对应关系,所述PUCCH资源组中的PUCCH资源的参数根据与其存对应关系的CORESET的准共址参考信号获取。
所述根据预定规则确定PUCCH资源组和CORESET之间的对应关系, 包括如下规则至少之一:
规则一:PUCCH资源组i和CORESET i之间存在对应关系,其中i=0,1,..min(P,C)-1,其中P是PUCCH资源组的个数,C是CORESET的个数;
规则二:调度PUCCH资源的物理下行控制信道(Physical Downlink Control Channel,PDCCH)所在CORESET与所述PUCCH资源所在的PUCCH资源组之间存在对应关系,当调度所述PUCCH资源组中的不同PUCCH资源PDCCH所在的CORESET不同时,在多个CORESET中选择其中一个CORESET,PUCCH资源组中的PUCCH资源的参数根据所述选择的一个CORESET的准共址参考信号获取;
规则三:根据PUCCH资源组的索引i和预定值K1(即所述第一预定值),得到PUCCH资源组i对应的CORESET索引j,比如j=mod(i,K1),即j是i对K1取余数,K1可以通过如下方式之一获取:通过信令信息获取;K1等于CORESET的个数C;
规则四:PUCCH资源组i和CORESET组i之间存在对应关系;
规则五:调度所述PUCCH资源的PDCCH所在CORESET组与所述PUCCH资源所在的PUCCH资源组存在对应关系;
规则六:根据PUCCH资源组的索引i和预定值K2(即所述第一预定值),得到PUCCH资源组i对应的CORESET组索引j,比如j=mod(i,K2),即j是i对K2取余数,K2可以通过如下方式之一获取:通过信令信息获取K2;K2等于CORESET组的个数C;
在一实施例中,信令信息通知如下之一:配置与所述PUCCH资源组存在所述对应关系的CORESET索引;配置与所述PUCCH资源组存在所述对应关系的CORESET组索引。其中信令信息包括无线资源控制信息(Radio Resource Control,RRC),媒体访问控制-控制元素(MAC-CE)信令中的一种或多种。
通过上述规则四,五,六中的其中之一或信令信息,确定了PUCCH 资源组和CORESET组之间的对应关系,进一步地,根据如下规则确定PUCCH资源组中的PUCCH资源的参数。
规则七:PUCCH资源组中的PUCCH资源的参数根据与其存在对应关系CORESET组中最低CORESET的准共址参考信号获取;
规则八:PUCCH资源组中的PUCCH资源的参数根据与其存在对应关系CORESET组中距离所述PUCCH资源最近的CORESET的准共址参考信号获取;
规则九:PUCCH资源组中的PUCCH资源根据与其存在对应关系的CORESET组中距离所述PUCCH资源最近的CORESET的准共址参考信号或距离所述PUCCH资源最近的PDSCH的准共址参考信号获取,其中所述PDSCH是所述CORESET组中的PDCCH调度的,其中CORESET和PDSCH哪个距离PUCCH最近就以哪个的准共址参考信号获取PUCCH资源的参数;
规则十:CORESET组中的CORESET c和PUCCH资源组中的PUCCH资源d存在对应关系,其中c=mod(d,K3),其中K3是预定值(即所述第二预定值),比如K3是CORESET组中包括的CORESET的个数,其中c是CORESET在CORESET组中的局部索引,d是PUCCH资源在PUCCH资源组中的局部索引。
在一实施例中,所述PUCCH资源的参数根据CORESET的准共址参考信号获取,其中所述PUCCH资源的参数包括如下参数至少之一:空间发送滤波器,空间关系信息中的参考信号,功率参数,传输模式。传输模式包括PUCCH资源的多个空间发送滤波器(和/或多个空间关系信息,和/或多个功率参数)和PUCCH资源的解调参考信号/时域资源/频域资源中一种或者多种之间的对应关系,或者所述传输模式包括PUCCH资源的重复传输模式。
在一实施例中,所述PUCCH资源的参数根据与其存在对应关系的CORESET的关联预定准共址参数的准共址参考信号获取,比如预定准共 址参数包括空间接收参数。
在一实施例中,所述功率参数包括路损参考信号。即PUCCH资源的路损根据所述路损参考信号获取。
在一实施例中,PUCCH资源组中的PUCCH资源的参数的个数N和CORESET的关联预定准共址参考信号的准共址参数M不相等的时候,比如PUCCH资源的空间发送滤波器的个数N等于1,CORESET的传输配置指示状态(TCI state)等于2,即N小于M,则此时PUCCH资源的空间发送滤波器根据CORESET的两个TCI state中的其中一个TCI state中的关联空间接收参数的准共址参考信号获取。
在一实施例中,PUCCH资源的空间关系信息中的参考信号为与所述PUCCH资源存在对应关系的CORESET的准共址参考信号,其中PUCCH资源的空间发送滤波器根据终端接收所述准共址参考信号的空间滤波器获取。
上述是建立PUCCH资源组和CORESET之间的对应关系,PUCCH资源组中的PUCCH资源的参数根据与其存在对应关系的CORESET的准共址参考信号获取,类似地,也可以建立PUCCH资源组和搜索空间集合(search space set)之间的对应关系,PUCCH资源组中的PUCCH资源的参数根据与其存在对应关系的搜索空间集合(search space set)的准共址参考信号获取。只是将上述描述中CORESET替换为搜索空间集合。
在一个实施例中,上述CORESET和PUCCH资源组中的PUCCH位于同一个频域带宽中,其中所述频域带宽包括如下之一:带宽部分(bandwidth part,BWP),serving cell,component carrier,一个资源传输块(PRB)集合,或者上述CORESET和PUCCH资源组中的PUCCH位于同一个频域带宽组中,此时CORESET和PUCCH资源组就可以位于不同的频域带宽中,只要这个CORESET所在的频域带宽位于这个频域带宽组中。
在一实施例中,上述CORESET位于一个频域带宽中,或一个频域带 宽组中。比如所述CORESET组中的CORESET位于所述PUCCH资源组所在的频域带宽,或所述CORESET组中的CORESET位于所述PUCCH资源组所在的频域带宽所属的的频域带宽组中,此时CORESET组中的CORESET可以位于不同的频域带宽中。
在一实施例中,类似地,也可以采用上述方法建立探测参考信号(sounding reference signal,SRS)资源组和CORESET(或搜索空间集合)之间的对应关系,SRS资源组中的SRS资源的参数根据与其存在对应关系的CORESET(或搜索空间集合)的准共址参考信号获取,只是将上述方法中的PUCCH资源组替换为SRS资源组。其中SRS资源组包括如下之一:一个频域带宽中的一个SRS resource set;一个频域带宽组中的具有相同SRS resource索引的SRS resource构成的SRS resource组。所述SRS资源组中的SRS资源的参数包括如下之一:空间发送滤波器,空间关系信息中的参考信号,功率参数。或者是SRS资源组的参数根据与其存在对应关系的CORESET(或搜索空间集合)的准共址参考信号获取,其中SRS资源组的associated CSI-RS为所述CORESET(或搜索空间集合)的准共址参考信号,其中,CSI-RS,英文全称是Channel-State Information reference Signal,中文名称是信道状态信息参考信号。示例性地,比如SRS资源组包括一个SRS resource set,所述SRS resource set对应的associated-CSI-RS参考信号为CORESET(或搜索空间集合)的准共址参考信号,即此时比如这个SRS resource set的用途是non codebook,则这个SRS resource set中的不同SRS resource对应的发送波束可以不同,都是基于associated-CSI-RS得到的,比如不同SRS resource对应基于associated-CSI-RS得到的不同接收波束。或者终端基于associated-CSI-RS得到下行信道,根据上下行互易性进而得到上行信道矩阵,SRS resource set中的不同SRS resource对应基于此上行信道矩阵得到的不同上行数字预编码。
上述描述中,CORESET(或者搜索空间集合)的准共址参考信号即CORESET的解调参考信号的准共址参考信号。在一实施例中,上述PUCCH资源或SRS资源的参数根据CORESET(或者搜索空间集合)的 解调参考信号的关联预定准共址参数的准共址参考信号,比如预定准共址参数包括空间接收参数。
在一实施例中,上述PUCCH资源(或SRS资源)的参数根据与其存在对应关系的CORESET的解调参考信号的TCI state中的参考信号获取,其中所述TCI state中的参考信号包括如下之一:关联准共址参数的准共址参考信号,TCI state中配置的空间关系参考信号。进一步地,如果TCI state中有空间关系参考信号则PUCCH资源(或SRS资源)的参数根据空间关系参考信号获取,具体地,比如TCI state中配置如表1所示,则PUCCH资源的参数根据空间关系参考信号SRS 2获取,进一步地如果PUCCH资源的参数为路损参考信号,而TCI state中配置的空间关系参考信号为上行参考信号,则PUCCH资源的空间关系参考信号(或空间发送滤波器,或传输模式)根据TCI state中的空间关系参考信号获取,PUCCH资源的路损参考信号根据关联空间接收参数QCL-TypeD的准共址参考信号CSI-RS2获取。如果TCI state中没有空间关系参考信号,则PUCCH资源的参数根据TCI state中的关联准共址参数的准共址参考信号获取。
TCI state n 参考信号
QCL-Type A CSI-RS1
QCL-Type D CSI-RS2
空间关系参考信号 SRS 2
表1
示例实施方式二
在本实施中,根据高层信令确定PUCCH资源组,根据信令信息或预定规则确定PUCCH资源组和TCI state之间的对应关系,PUCCH资源组中的PUCCH资源的参数根据与其存在对应关系的TCI state中的参考信号获取。
在一实施例中,所述根据预定规则确定与PUCCH资源组i存在对应关系的TCI state,i=0,1,3,....P-1,P是PUCCH资源组的个数,其中所述TCI state根据如下规则之一获取:
规则一:RRC在预定频域带宽中的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)配置信息(比如PDSCH-config)中配置的索引第i*L:(i+1)*L-1低的TCI state,具体地,比如RRC在配置了{TCI state0,TCI state2~TCI state127},L=1,i=1,第i*L:(i+1)*L-1低的TCI state为TCI state2。
规则二:MAC-CE为预定频域带宽中的PDSCH激活的索引第i*L:(i+1)*L-1低的L个TCI state;具体地,比如MAC-CE为预定频域带宽中的PDSCH激活TCI state集合如表2所示,为{TCI state 0,TCI state 1,TCI state 3,TCI state 6,TCI state 8,TCI state 10,TCI state 18,TCI state 64,TCI state 100,TCI state 124},L=1,i=1,第i*L:(i+1)*L-1低的TCI state 为TCI state1。
规则三:MAC-CE为预定频域带宽中的PDCCH激活的索引第i*L:(i+1)*L-1低的L个TCI state;
规则四:codepoint i对应的TCI state中的前L个TCI state;
规则五:对应的TCI state个数等于预定值(即所述第三预定值)的代码点(codepoint)中的最低codepoint对应的TCI state中的前L个TCI state,所述预定值为如下之一:2;L;为codepoint和TCI state之间的映射表格中一个codepoint对应的TCI state的最大个数,具体地,比如预定值为2,则TCI state为为表2中的codepoint 001对应的{TCI state0,TCI state6}中的前L个TCI state,或者为表3中的codepoint 000对应的{TCI state9,TCI state7}中的前L个TCI state;
其中所述codepoint为下行控制信息(Downlink Control Information,DCI)中TCI指示域对应的codepoint,如表2~3所示,所述codepoint和TCI state之间的映射关系对应PDSCH所在的频域带宽,即当PDCCH中包括 TCI指示域,所述PDCCH调度的PDSCH的TCI state根据所述映射关系和所述PDCCH中TCI指示域指示的codepoint得到。
其中L是PUCCH资源的空间发送滤波器的个数,或者空间关系信息的个数,L值根据配置或调度所述PUCCH资源的信令信息中指示的信息获取。
在一实施例中,通过信令信息确定PUCCH资源组对应的TCI state,其中所述信令信息包括RRC信令,MAC-CE信令中的一种或多种,比如通过所述信令信息配置所述PUCCH资源组对应的如下之一:
一:TCI state索引,这个TCI state索引是TCI state的绝对索引,即在RRC配置TCI state的时候为所述TCI state配置的索引,比如表2中的TCI state 8的索引为8;
二:为PDSCH激活的TCI state的索引,这个索引是相对索引,即在激活的TCI state集合中的索引,具体地,比如t1时刻,PDCCH中的TCI指示域中的codepoint和TCI state之间的映射关系如表2所示,则为PDSCH激活的TCI state集合为{TCI state 0,TCI state 1,TCI state 3,TCI state 6,TCI state 8,TCI state 10,TCI state 18,TCI state 64,TCI state 100,TCI state 124},如果RRC信令为PUCCH资源组配置的TCI state相对索引为4,则此PUCCH资源组对应的TCI state为TCI state 8,当t2时刻,MAC-CE将PDCCH中的TCI指示域中的codepoint和TCI state之间的映射关系更新为表3所示,则此PUCCH资源组对应的TCI state为TCI state6;
三:codepoint索引,codepoint为PDCCH的TCI指示域对应的codepoint,比如配置的codepoint为001,则t1时刻PUCCH资源组中的PUCCH资源的参数根据codepoint 001对应的{TCI state0,TCI state6}中的一个或者两个TCI state中的准共址参考信号获取,t2时刻则PUCCH资源组中的PUCCH资源的参数根据codepoint 001对应的{TCI state1,TCI state10}中的一个或者两个TCI state中的准共址参考信号获取。建立PUCCH资源组和codepoint索引之间的关系之后,codepoint对应的TCI state通过MAC-CE 更新之后,这个MAC-CE对应的ACK的3ms之后的第一个slot开始,所述PUCCH资源组中的PUCCH资源的参数,根据所述codepoint对应的更新后的TCI state获取,另一种方式是,只有这个codepoint被PDCCH指示用于一个PDSCH的传输之后,所述PUCCH资源组中的PUCCH资源的参数,根据所述codepoint对应的更新后的TCI state获取,否则虽然MAC-CE更新了此codepoint对应的TCI state,但是没有将此codepoint指示用于PDSCH的传输,则所述PUCCH资源组中的PUCCH资源的参数,根据所述codepoint对应的更新前的TCI state获取。或者除非此codepoint是上述规则五中的预定codepoint。
表2和表3内容如下:
Figure PCTCN2021083368-appb-000013
表2
codepoint TCI state
000 TCI state 9,TCI state 7
001 TCI state 1,TCI state 10
010 TCI state 3,TCI state 6
011 TCI state 20
100 TCI state 64
101 TCI state 90
110 TCI state 4,TCI state 11
111 TCI state 127
表3
在一实施例中,PUCCH资源组中的PUCCH资源的参数根据TCI state中的参考信号获取。
在一实施例中,类似地,也可以采用上述方法建立SRS资源组和TCI state之间的对应关系,SRS资源组中的SRS资源的参数根据与其存在对应关系的TCI state的参考信号获取,只是将上述方法中的PUCCH资源组替换为SRS资源组。其中SRS资源组包括如下之一:一个频域带宽中的一个SRS resource set;一个频域带宽组中的具有相同SRS resource索引的SRS resource构成的SRS resource组。所述SRS资源组中的SRS资源的参数包括如下之一:空间发送滤波器,空间关系信息中的参考信号,功率参数。或者是SRS资源组的参数根据与其存在对应关系的TCI state的参考信号获取,其中SRS资源组的associatedCSI-RS为所述TCI state的参考信号。具体地,比如SRS资源组包括一个SRS resource set,所述SRS resource set对应的associated-CSI-RS参考信号为TCI state的参考信号,即此时比如这个SRS resource set的用途是non codebook,则这个SRS resource set中的不同SRS resource对应的发送波束可以不同,都是基于associated-CSI-RS得到的,比如不同SRS resource对应基于associated-CSI-RS得到的不同接收波束。或者终端基于associated-CSI-RS得到下行信道,根据上下行互易性进而得到上行信道矩阵,SRS resource set 中的不同SRS resource对应基于此上行信道矩阵得到的不同上行数字预编码。
在本文中所述代码点也可以称为TCI代码点,即PDCCH中的传输配置指示域TCI代码点。
上述是建立上行PUCCH资源组或SRS资源组和TCI state或TCI代码点之间的关系,类似地,也可以建立下行控制信道资源组和TCI state或TCI代码点之间的关系,其中下行控制信道资源组的准共址参考信号根据与其存在对应关系的TCI state或TCI代码点的准共址参考信号获取。MAC-CE更新了这些TCI state或TCI代码点,则下行控制信道资源组的准共址参考信号也跟着更新。其中下行控制信道资源组包括如下之一:一个频域带宽中的下行控制信道资源组,一个频域带宽组中的不同频域带宽中的具有相同下行控制信道资源索引的下行控制信道资源构成的下行控制信道资源组,其中下行控制信道资源包括如下之一:下行控制资源集合CORESET,搜索空间集合。
类似地,也可以建立上行数据信道PUSCH组和TCI state或TCI代码点之间的关系,比如在高层配置的PUSCH配置信息中,配置其对应的TCI state或TCI代码点。
示例实施方式三
P个PUCCH资源组中的P1个PUCCH资源组和CORESET存在对应关系,PUCCH资源组中的PUCCH资源的参数根据与其存在对应关系的CORESET的准共址参考信号获取,或者根据CORESET的TCI state中的参考信号获取,如示例实施方式一所示。
P个PUCCH资源组中的P2个PUCCH资源组和TCI state存在对应关系,PUCCH资源组中的PUCCH资源的参数根据与其存在对应关系的TCI state中的参考信号获取,如示例实施方式二所示。其中P1,P2是小于或等于P的正整数,或者P1+P2=P。
类似地,S个SRS资源组中的S1个SRS资源组和CORESET存在对 应关系,S2个SRS资源组和TCI state存在对应关系。
通过上述方案,建立上行信道或信号组和下行信道或信号之间的对应关系,下行信道或信号的参数发生变化的情况下,与其存在对应关系的上行信道或信号的参数也发生变化,信令信息更新下行信道或信号的参数时,上行信道或信号的参数也一起更新,并且是以上行信道或信号组中的上行信道或信号的参数都改变,实现节省信令开销的同时,快速跟踪波束变化的目的,比如上述参数的变化就隐含反映波束的变化。
上述方案中,上行信道或信号的参数根据与其存在对应关系的下行信道或信号的准共址参考信号,与其存在对应关系的下行信道或信号的TCI state中的参考信号获取,在一实施例中,也可以所述下行信道或信号的准共址参考信号根据与其存在对应关系的上行信道或信号的参数获取。此时如果上行信道或信号的参数如果通过信令信息或预定规则更新,则与其存在对应关系的下行信道或信号的准共址参考信号也发生更新,从而就可以实现在节省信令的同时,快速跟踪波束变化,或其他参数变化。
示例实施方式四
在本实施例中,上行信道或信号的参数,根据下行信道或信号的准共址参考信号获取,上行信道或信号占有多个时间单元,在所述上行信道或信号占有的多个时间单元范围内,下行信道或信号的准共址参考信号发生了更新,即在上行信道或信号占有的多个时间单元中对应下行信道或信号的两份准共址参考信号信息,更新前的准共址参考信号信息,更新后的准共址参考信号信息,需要根据控制信息或预定规则在两份准共址参考信号信息中选择一个或者确定各个时间单元对应的准共址参考信号。如图6所示,上行信道或信号的参数根据所述上行信道或信号对应的服务小区中的具有最低CORESET索引的CORESET的准共址参考信号获取,比如根据CORESET0的准共址参考参考信号获取,而CORESET0的准共址参考信号通过MAC-CE更新,比如在slot(n-8)中终端收到包括该MAC-CE的PDSCH,CORESET0原来的TCI state为TCI state1,该MAC-CE将 CORESET0的TCI state更新为TCI state2,该MAC-CE更新的TCI state在slot(n+5)可用,上行信道或信号(比如图6中的PUCCH资源)在slot(n)~slot(n+7)上传输,在slot(n+5)之前CORESET0的TCI state是TCI state1,在slot(n+5)的时候,CORESET0的TCI state已经更新为TCI state2。即此时在PUCCH上行信道或信号所占的时域范围内,CORESET0有两个TCI state,需要确定PUCCH的参数根据TCI state1或还是TCI state2获取,比如根据TCI state1中的准共址参考信号得到上行信道或信号的空间发送滤波器为发送波束1,根据TCI state2中的准共址参考信号得到上行信道或信号的空间发送滤波器为发送波束2,此时需要确定上行信道或信号的发送波束是发送波束1或发送波束2。具体地可以采用如下方案中的一种或多种。
方案1:根据上行信道或信号所在的第一时间单元(比如第一个slot)中,下行信道或信号激活的TCI state确定上行信道或信号的参数,获取所述多个时间单元中每一个时间单元(即所述第二时间单元)中的上行信道或信号的参数,在所述多个时间单元中,所述上行信道或信号的参数相同,如图7所示,在一实施例中,终端希望其占有的多个时间单元上,CORESET0激活的TCI state是一样的。
方案2:根据上行信道或信号所在的时间单元(即所述第一时间单元)中,下行信道或信号激活的TCI state确定上行信道或信号的参数,获取所述多个时间单元中每一个时间单元(即所述第二时间单元)中的上行信道或信号的参数,如图8所示,在所述MAC-CE开始可用前的时间单元前采用更新前的TCI state,在所述MAC-CE开始可用开始的时间单元采用更新后的TCI state。
方案3:根据上行信道或信号所在的时间单元中,下行信道或信号激活的可用于TCI state确定上行信道或信号的参数,下行信道或信号的TCI state更新之后在X个时域符号后或Y个时间单元后可用于所述上行信道或信号的参数获取。在方案2中,X=0,Y=0,在方案3中,X,Y为大于或等于1的正整数。其中X,Y用于终端获取到下行接收波束,到终端根据所述 下行接收波束获取上行发送波束并采用所述上行发送波束发送所述上行信道或信号所需要的最小时间间隔,在一实施例中,终端可以X或Y值作为终端能力上报给基站。比如X属于{14,28,42},Y属于{1,2,3}。如图9~10所示,图9中X=14,Y=1,图10中X=28,Y=2。如果下行信道或信号的准共址参考信息通过MAC-CE更新,则此MAC-CE中包括的下行信道或信号的准共址参考信号信息在
Figure PCTCN2021083368-appb-000014
之后的第Y+1个slot可用于上行信道或信号参数的获取。
方案4:根据第一类时间单元个数和第二类时间单元个数的比例,确定是采用方案1还是方案2,第一类时间单元对应所述下行信道或信号的准共址参考信号信息更新之前的上行信道或信号的时间单元,第二类时间单元对应所述下行信道或信号的准共址参考信号更新之后(包括更新所在时间单元)的上行信道或信号的时间单元,当所述比例小于或等于1的情况下,采用方案2,当所述比例大于1,采用方案1,或者当所述比例小于或等于1,在所述上行信道或信号的前
Figure PCTCN2021083368-appb-000015
(或前
Figure PCTCN2021083368-appb-000016
)的时间单元中,所述上行信道或信号的参数,根据更新之前的TCI state获取,在所述上行信道或信号的剩余的时间单元中,所述上行信道或信号的参数,根据更新之后的TCI state获取,其中N是上行信道或信号所占的时间单元的个数。即当所述下行信道或信号的更新发生在
Figure PCTCN2021083368-appb-000017
(或
Figure PCTCN2021083368-appb-000018
)slot之前的时间单元中的情况下,可以采用方案2,或前
Figure PCTCN2021083368-appb-000019
(或前
Figure PCTCN2021083368-appb-000020
)的时间单元中,采用更新前的,其余的时间单元中采用更新后的,如图11所示。当所述下行信道或信号的更新发生在
Figure PCTCN2021083368-appb-000021
(或
Figure PCTCN2021083368-appb-000022
)slot之后的时间单元的情况下,采用方案1。如果下行信道或信号的准共址参考信息通过MAC-CE更新,则此MAC-CE中包括的下行信道或信号的准共址参考信号信息在
Figure PCTCN2021083368-appb-000023
之后的第一个slot可用(比如此时下行信道或信号的准共址参考信号就可以更新为MAC-CE中携带的TCI state中的准共址参考信号),其中slot(k)是终端反馈针对包括所述MAC-CE的PDSCH的ACK所在的slot,
Figure PCTCN2021083368-appb-000024
是一个子帧中包括的slot个数,PUCCH的子载波间隔为15kHz*2 μ,即第一类时间单元包括上行信道或信号所占的多个时间单 元中落在预定时间单元之前的,其中预定时间单元包括
Figure PCTCN2021083368-appb-000025
之后的第一个slot,比如为图6中的slot(n+5))的时间单元,第二类时间单元包括预定时间都那样以及预定时间单元之后的时间单元。
方案5,根据第一时间单元最近的且包括CORESET0的时间单元中的CORESET0的准共址参考信号,确定PUCCH的参数。如图12所示,虽然在slot(n+4)中CORESET0的更新后的TCI state可用了,但是slot(n+4)上没有关联CORESET0的需要检测的搜索空间,在slot(n+4)之前,距离slot(n+4)且包括CORESET0的slot为slot(n),slot(n)中CORESET0的可用TCI state为更新前的TCI state,所以从slot(n+6)开始,PUCCH基于CORESET0的更新后的TCI state获取PUCCH的参数。
类似地,上述预定时间单元(即所述第三时间单元)如果定为
Figure PCTCN2021083368-appb-000026
之后的第一个slot+Y个时间单元,则可以根据第一类时间单元个数和第二类时间单元个数的比例,确定是采用方案1还是方案3,只是把上述方案4中的方案2替换为方案3。
在一实施例中上行信道包括如下至少之一:PUCCH,PUSCH,上行信号包括SRS。
在一实施例中,上行信道或信号的参数包括如下至少之一:空间发送滤波器,空间关系参考信号,功率参数,传输模式,associated CSI-RS。
在一实施例中,所述功率参数包括所述上行信道或信号的路损参考信号。
在一实施例中,上行信道或信号的参数根据下行信道或信号的关联预定准共址参数的准共址参考信号获取,比如所述预定准共址参数包括空间接收参数。
在图6~图12中,更新前和更新后CORESET0的TCI state的个数都为1个,在一实施例中,更新前和更新后的CORESET0的TCI state的个数都为2个,如图13~15,此时PUCCH资源在8个slot中重复传输,CORESET0的2个TCI state在每隔2个slot更换一次,但是在如图13~15 所示,MAC-CE的更新信令在slot(n+5)生效,slot(n+5)属于2个slot为一组的slot组后一个slot中,此时如果采用上面的方案2,就可以采用图13~15中之一处理。图13中更新后的TCI state在可用slot之后第一组slot开始用于PUCCH资源的参数获取,即只在一组slot的第一个slot中切换PUCCH的参数所采照的CORESET0的准共址参考信号信息,图14中,如果第二类时间单元中的3个slot都用更新后的第一个TCI state,TCI state2。图15中更新后的TCI state在可用slot就开始用于PUCCH资源的参数获取,下一个slot组TCI state发生切换。图16中,更新前是2个TCI state,更新后是1个TCI state。或者将8个slot(即所述N个时间单元)分成多个组,比如以2个slot为一个组,根据每个组中的第一个时间单元中可用的CORESET0的准共址参考信号获取PUCCH的参数,或者所述PUCCH资源的参数只在所述一个时间单元组的第一个时间单元才会在CORESET0的新旧准共址参考信号信息之间切换,在其他时间单元不切换,即比如所述CORESET0的更新的准共址参考信号在一个时间单元组的非第一个时间单元开始可用,则这个时间单元组都用CORESET0的更新前的准共址参考信号,所述CORESET0的更新的准共址参考信号在一个时间单元组的第一个时间单元开始可用,则这个时间单元组都用CORESET0的更新后的准共址参考信号进一步限定N个时间单元中最多对应CORESET0的2份(即所述E值)准共址参考信号信息,即在N个时间单元中CORESET0的,上述实施例中一个时间单元为一个slot,当然本实施例也不排除一个时间单元为如下之一:子时间单元sub-slot,子帧等。
图6中是通过MAC-CE更新下行信道或信号的准共址参考信号,本实施例的另一种方式是通过预定规则确定下行信道或信号的准共址参考信号,比如CORESET0的准共址参考信号根据终端最近发送的PRACH时,PRACH对应的下行参考信号获取,或者CORSET0的准共址参考信号和下行同步信号之间存在对应关系。或者通过PDCCH更新了下行信道或信号的准共址参考信号,PDCCH更新的下行信道或信号的准共址参考信号在所述上行信道或信号所占的多个时间单元中的其中一个时间单元可 用。
上述方案1~4是上行信道或信号的参数根据CORESET(Control resource set)的准共址参考信号获取的例子,类似地,上述方案也适合所述上行信道或信号的参数根据TCI state获取的场景,其中TCI state可以为示例实施方式二中描述的TCI state。当MAC-CE更新了PDSCH的TCI state的情况下,也会发生图6的情况。
或者上述方案也适应于MAC-CE直接更新上行信道或信号的参数的场景。具体地,比如通过MAC-CE更新了PUCCH的空间关系信息,所述PUCCH在8个slot中重复发送,MAC-CE在PUCCH所占的8个slot中其中一个slot开始可用(即针对包括MAC-CE的PDSCH的ACK之后的3ms落在所述8个slot中的其中一个slot),即在PUCCH所占的8个slot范围内,PUCCH的空间关系对应两份可用的配置,需要确定所述PUCCH的需要采用哪一份配置。特别是两份配置中的其中一份或两份包括2个以上的空间关系信息,所述2个以上(包括2个)的空间关系分别对应PUCCH的不同的资源,其中所述资源包括如下之一:频域资源,时域资源,解调参考信号资源,其中每个空间关系信息中包括一个参考信号,PUCCH的发送波束。
类似地,上述方案1~4也适应于如下场景,一个信道或信号占有多个时间单元,在所述多个时间单元中的其中一个时间单元中信道或信号的参数发生了更新,比如基站通过MAC-CE更新所述参数,所述MAC-CE中的信息在所述多个时间单元中的其中一个时间单元中开始可用,需要确定在所述多个时间单元中的每个时间单元中,所述信道或信号的参数是用更新前的还是更新后的。
具体地,比如MAC-CE更新了PUSCH的参数,在PUSCH所占的多个时间单元中的其中一个时间单元中,所述MAC-CE中指示的信息开始可用。可以采用上述方案1~4中的任意一个来确定PUSCH的各个时间单元中,所述PUSCH的参数是更新前的还是更新后的。或者当上行信道为 PUSCH的时候,采用方案1,PUCCH的时候采用方案2,因为PUSCH有MCS,更新前的TCI state和更新后的TCI state采用同一个MCS可能不合适,但是PUCCH没有MCS,所以采用方案2或方案3。
或者MAC-CE更新了下行控制信道资源的TCI state,在下行控制信道资源所占的多个时间单元中的其中一个时间单元中,所述MAC-CE中指示的信息开始可用。可以采用上述方案1~5中的任意一个来确定PDCCH的各个时间单元中,所述PUSCH的路损参考信号是更新前的还是更新后的。其中所述下行控制信道资源包括如下之一:CORESET,搜索空间,候选控制信道。
在一实施例中,上述时间单元包括如下之一:子时隙sub-slot,时隙slot,子帧等,MAC-CE开始可用的时间单元,比如所述MAC-CE在终端发送了针对包括MAC-CE的PDSCH的ACK之后C个时间单元可用,此处的时间单元是什么,则上述时间单元就是什么。
示例实施方式五
如图17所示,在通过MAC-CE命令更新非周期性探测参考信号(AP-SRS)resource set中的SRS资源的空间关系参考信号,在所述MAC-CE中有一个S域,所述S域指示AP-SRS set中的不同AP-SRS资源的空间关系参考信号所在的服务小区和BWP是否共享。当S域指示共享时,AP-SRS set中的不同AP-SRS资源的空间关系参考信号所在的服务小区和BWP共享,则此MAC-CE中包括的内容如图18所示,即所述AP-SRS资源集合中的不同AP-SRS资源的空间关系参考信号位于同一服务小区和BWP,不共享的时候,如图17所述。进一步地,所述S和C域可以联合编码,C是指示MAC-CE是否包括空间关系参考信号的频域带宽信息。
示例实施方式六
基站给终端分配多于一个的SRS resource set,其中所述SRS resource set的用途是non codebook,这多于一个SRS resource set中的不同SRS  resource set中的SRS resource终端不能同时发送,属于同一个SRS resource set的SRS resource可以同时发送最多G个,其中G是终端能力。
在一实施例中,所述多于一个的non codebook SRS resource set的时域特性相同,其中时域特性包括如下之一:非周期,周期,半持续。
在一实施例中,所述多于一个的non codebook SRS resource set中的SRS resource的端口号根据所述SRS resource的所在的SRS resource set索引和其在所在的SRS resource set中的相对索引获取。比如第j个non codebook SRS resource set中的第i个SRS resource的端口号为:1000+i+j*F,其中F为预定值,比如为一个non codebook SRS resource set中包括的最大SRS资源数,比如为4,或者第j个non codebook SRS resource set中的第i个SRS resource的端口号为
Figure PCTCN2021083368-appb-000027
其中F l是第l个non codebook SRS resource set中SRS resource的个数。
在一实施例中,所述多于一个的non codebook SRS resource set中的associatedCSI-RS关联相同的下行参考信号。
在一实施例中,所述多于一个的non codebook SRS resource set位于一个频域带宽,比如一个服务小区,或一个BWP中。即关联相同associatedCSI-RS的多个non codebook SRS resource set中,属于不同non codebook SRS resource set不能同时发送,属于不同non codebook SRS resource set的SRS resource可以同时发送。
本公开实施例通过为上行目标元素组和下行信道元素建立对应关系,下行信道元素的准共址参考信号更新之后,上行目标元素组中的上行目标元素的空间发送滤波器跟着发生改变,在节省信令开销的同时,达到快速跟着波束的目的。
一个信道或信号占有多个时间单元,在所述多个时间单元中的一个时间单元中所述信道或信号对应的参数发生了更新,需要确定所述信道或信 号的各个时间单元中所述信道或信号的参数根据更新前的还是更新后的参数确定,通过本公开实施例中的方案可以确定所述信道或信号的各个时间单元中所述信道或信号的参数根据更新前的还是更新后的参数确定。
本公开的实施例还提供了一种计算机可读的存储介质,该计算机可读的存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述计算机可读的存储介质可以被设置为存储用于执行以下步骤的计算机程序:
S1,确定上行目标元素组,其中,所述上行目标元素组包括一个或多个上行目标元素,所述上行目标元素包括以下至少之一:上行控制信道资源,上行信号资源,上行数据信道;
S2,确定所述上行目标元素组对应的下行信道元素;
S3,根据确定的所述下行信道元素获取所述上行目标元素组的参数。
可选地,本实施例中的具体示例可以参考上述实施例及示例实施方式中所描述的示例,本实施例在此不再赘述。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本公开的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
可选地,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
可选地,在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:
S1,确定上行目标元素组,其中,所述上行目标元素组包括一个或多个上行目标元素,所述上行目标元素包括以下至少之一:上行控制信道资源,上行信号资源,上行数据信道;
S2,确定所述上行目标元素组对应的下行信道元素;
S3,根据确定的所述下行信道元素获取所述上行目标元素组的参数。
可选地,本实施例中的具体示例可以参考上述实施例及示例实施方式中所描述的示例,本实施例在此不再赘述。
本公开的实施例还提供了一种计算机可读的存储介质,该计算机可读的存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述计算机可读的存储介质可以被设置为存储用于执行以下步骤的计算机程序:
S1,根据第一时间单元对应的第一参数,确定第二时间单元中第二信道或信号的第二参数,其中,所述第二时间单元属于所述第二信道或信号所占的N个时间单元,N为大于或等于1的正整数,所述第一参数包括如下之一:第一信道或信号的第一参数、信令信息中为所述第二信道或信号激活的第二参数。
可选地,本实施例中的具体示例可以参考上述实施例及示例实施方式中所描述的示例,本实施例在此不再赘述。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本公开的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
可选地,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
可选地,在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:
S1,根据第一时间单元对应的第一参数,确定第二时间单元中第二信道或信号的第二参数,其中,所述第二时间单元属于所述第二信道或信号所占的N个时间单元,N为大于或等于1的正整数,所述第一参数包括如下之一:第一信道或信号的第一参数、信令信息中为所述第二信道或信号激活的第二参数。
可选地,本实施例中的具体示例可以参考上述实施例及示例实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (37)

  1. 一种参数的获取方法,包括:
    确定上行目标元素组,其中,所述上行目标元素组包括一个或多个上行目标元素,所述上行目标元素包括以下至少之一:上行控制信道资源,上行信号资源,上行数据信道;
    确定所述上行目标元素组对应的下行信道元素;
    根据确定的所述下行信道元素获取所述上行目标元素组的参数。
  2. 根据权利要求1所述的方法,其中,根据以下至少之一确定所述上行目标元素组对应的所述下行信道元素:
    信令信息,其中所述信令信息中包括所述上行目标元素组对应的下行信道元素索引;
    所述上行目标元素组的组索引;
    调度所述上行目标元素组中的上行目标元素的下行控制信道对应的下行信道元素;
    所述上行目标元素组的组索引和第一预定值之间的余数,其中,所述第一预定值为大于或等于1正整数,或,所述第一预定值为小于或等于所述下行信道元素个数的正整数;
    一个上行目标元素组对应的下行信道元素的最大个数。
  3. 根据权利要求2所述的方法,其中,在所述上行目标元素组包括多于一个的所述上行目标元素的情况下,所述根据调度所述上行目标元素组中的所述上行目标元素的下行控制信道对应的下行信道元素确定所述上行目标元素组对应的下行信道元素,包括如下之一:
    根据所述上行目标元素组中的所述上行目标元素的索引确定所 述上行目标元素组对应的所述下行信道元素;
    根据调度所述上行目标元素组中的所述上行目标元素的下行控制信道对应的下行信道元素索引确定所述上行目标元素组对应的下行信道元素。
  4. 根据权利要求1所述的方法,其中,在所述下行信道元素包括下行控制信道资源组,所述下行控制信道资源组包括一个或多个下行控制信道资源的情况下,根据以下之一确定所述上行目标元素组中的所述上行目标元素的参数:
    所述下行控制信道资源组中的最低下行控制信道资源索引号对应的下行控制信道资源;
    所述下行控制信道资源组中距离所述上行目标元素最近的下行控制信道资源;
    距离所述上行目标元素最近的时间单元中的物理下行共享信道,其中,所述物理下行共享信道由所述下行控制信道资源组中的下行控制信道资源的下行控制信道调度;
    第一元素与第二元素中距离所述上行目标元素更近者,其中,所述第一元素包括所述下行控制信道资源组中距离所述上行目标元素最近的下行控制信道资源,所述第二元素包括距离所述上行目标元素最近的且由所述下行控制信道资源组中的下行控制信道资源的下行控制信道调度的物理下行共享信道;
    所述下行控制信道资源组中的下行控制信道资源c,其中,c为所述下行控制信道资源在所述下行控制信道资源组中的索引,所述c根据所述上行目标元素在所述上行目标元素组中的索引d确定;
    其中,所述下行控制信道资源包括如下之一:控制资源集合,搜 索空间集合。
  5. 根据权利要求1所述的方法,其中,所述上行目标元素组与所述下行信道元素对应同一个频域带宽,或者,所述上行目标元素组与所述下行信道元素对应同一个频域带宽组。
  6. 根据权利要求1所述的方法,其中,在所述下行信道元素包括传输配置指示状态的情况下,根据如下至少之一确定所述上行目标元素组对应的所述传输配置指示状态:
    信令信息,其中,所述信令信息中包括所述上行目标元素组对应的传输配置指示状态信息;
    所述上行目标元素组的组索引;
    所述上行目标元素组中的上行目标元素的参数的个数L;
    为预定频域带宽中的物理下行共享信道激活的传输配置指示状态集合;
    为预定频域带宽中的一个或者多个下行控制信道激活的传输配置指示状态集合;
    预定频域带宽中的物理下行共享信道对应的代码点和传输配置指示状态的映射关系。
  7. 根据权利要求6所述的方法,所述信令信息中包括所述上行目标元素组对应的传输配置指示状态信息,包括如下之一:
    所述信令信息中包括所述上行目标元素组对应的传输配置指示状态索引,其中,所述传输配置指示状态索引是所述上行目标元素组对应的传输配置指示状态在为物理下行共享信道激活的传输配置指示状态集合中的相对索引;
    所述信令信息中包括所述上行目标元素组对应的传输配置指示状态索引,其中,所述传输配置指示状态索引是所述上行目标元素组对应的传输配置指示状态在为物理下行控制信道激活的传输配置指示状态集合中的相对索引;
    所述信令信息中包括所述上行目标元素组对应的代码点索引,其中,所述代码点对应调度物理下行共享信道的物理下行控制信道中的传输配置指示域的代码点。
  8. 根据权利要求1所述的方法,在所述下行信道元素包括传输配置指示状态的情况下,所述上行目标元素组对应的所述传输配置指示状态包括如下之一:
    为预定频域带宽中的物理下行共享信道激活的传输配置指示状态集合中,索引为i*L到(i+1)*L-1的L个传输配置指示状态,其中,所述传输配置指示状态的索引是所述传输配置指示状态在所述传输配置指示状态集合中的相对索引;
    为预定频域带宽中的物理下行控制信道激活的传输配置指示状态集合中,索引为i*L到(i+1)*L-1的L个传输配置指示状态,其中,所述传输配置指示状态的索引是所述传输配置指示状态在所述传输配置指示状态集合中的相对索引;
    第一代码点对应的传输配置指示状态中的前L个传输配置指示状态;
    对应的传输配置指示状态个数等于第三预定值的代码点中的最低代码点对应的传输配置指示状态中的前L个传输配置指示状态;
    其中,所述第一代码点为下行控制信息中传输配置指示域对应的代码点,所述第一代码点根据所述上行目标元素组的组索引得到,L 是所述上行目标元素组中的上行目标元素对应的参数个数,L是大于或等于1的正整数。
  9. 根据权利要求1至8中的任意一项所述的方法,其中,所述根据确定的所述下行信道元素获取所述上行目标元素组的参数,包括如下之一:
    根据所述下行信道元素对应的参考信号获取所述上行目标元素组的参数;
    根据第一时间单元中,所述下行信道元素对应的参考信号获取所述上行目标元素组的参数;
    其中,所述下行信道元素对应的参考信号包括如下之一:下行信道元素的准共参考信号、所述下行信道元素的关联空间接收参数的准共址参考信号、所述下行信道元素的传输配置指示状态中的参考信号;
    其中,所述第一时间单元包括如下之一:N个时间单元中的每一个时间单元、分别距离N个时间单元中的每一个时间单元最近的且包括所述下行信道元素的时间单元、N个时间单元中的第一个时间单元、距离N个时间单元中的第一个时间单元最近的且包括所述下行信道元素的时间单元、第
    Figure PCTCN2021083368-appb-100001
    个时间单元、第
    Figure PCTCN2021083368-appb-100002
    个时间单元、所述N个时间单元中的一组时间单元中的第一个时间单元、所述上行目标元素所在的时间单元之前预定时长之前的满足预定特征的时间单元;其中,所述N个时间单元是所述上行目标元素中的上行目标元素所在的N个时间单元,其中N为大于或等于1的正整数。
  10. 根据权利要求9所述的方法,所述下行信道元素的传输配置指示状态中的参考信号,包括如下之一:
    所述传输配置指示状态中类型为所述参数类型的参考信号;
    所述传输配置指示状态中类型不是准共址参考信号的参考信号;
    在所述传输配置指示状态包括关联空间接收参数的准共址参考信号的情况下,所述下行信道元素的传输配置指示状态中的参考信号包括所述传输配置指示状态中关联空间接收参数的准共址参考信号;
    在所述传输配置指示状态不包括关联空间接收参数的准共址参考信号的情况下,所述下行信道元素对应的传输配置指示状态中的参考信号包括所述传输配置指示状态中类型为所述参数类型的参考信号;
    其中,所述参数类型包括如下至少之一:空间关系参数类型、路径损耗参数类型。
  11. 根据权利要求9所述的方法,所述第一时间单元中,所述下行信道元素对应的参考信号,包括如下之一:
    在所述第一时间单元中,所述下行信道元素的激活的准共址参考信号;
    根据距离所述第一时间单元最近发送的上行接入信道确定的所述下行信道元素的准共址参考信号;
    在所述第一时间单元中,根据同步信号和下行信道元素之间的对应关系得到的所述下行信道元素的准共址参考信号;
    在所述第一时间单元中,所述下行信道元素的激活的传输配置指示状态中的参考信号;
    在所述第一时间单元中,所述下行信道元素的关联空间接收参数的准共址参考信号。
  12. 根据权利要求9所述的方法,在所述第一时间单元包括所述N个时间单元中的每一个时间单元的情况下,所述根据下行信道元素对应的参考信号信息获取所述上行目标元素的参数,包括如下至少之一:
    所述N个时间单元中位于第三时间单元之前的时间单元中,根据所述下行信道元素对应的第一份参考信号信息获取所述上行目标元素的参数;
    第三时间单元以及所述N个时间单元中位于所述第三时间单元之后的时间单元中,根据所述下行信道元素对应的第二份参考信号信息获取所述上行目标元素的参数;
    所述N个时间单元中,所述上行目标元素对应的所述下行信道元素对应的参考信号份数小于或者等于第四预定值;
    其中,所述第三时间单元包括如下之一:所述下行信道元素对应的第二份参考信号信息开始可用的时间单元、第
    Figure PCTCN2021083368-appb-100003
    个时间单元、第
    Figure PCTCN2021083368-appb-100004
    个时间单元;
    其中,一份参考信号信息中包括如下之一:一个或者多个传输配置指示状态、一个或者多个关联空间接收参数的准共址参考信号。
  13. 根据权利要求1至8中的任意一项所述的方法,其中,还包括:
    在所述上行目标元素组包括上行探测参考信号资源组的情况下,所述上行目标元素组的参数包括所述上行探测参考信号资源组的如下参数至少之一:空间发送滤波器、空间关系中的参考信号、功率参数、所述上行探测参考信号资源组对应的下行测量参考信号,其中,所述上行探测参考信号资源组中的上行探测参考信号资源的发送预 编码参数根据所述下行测量参考信号获取。
  14. 根据权利要求13所述的方法,其中,所述上行探测参考信号资源组包括如下之一:
    一个频域带宽中的一个测量参考信号资源集合;
    一个频域带宽组中的不同频域带宽中,具有相同上行探测参考信号资源索引的上行探测参考信号资源构成的上行探测参考信号资源组。
  15. 根据权利要求1至8中的任意一项所述的方法,还包括:
    在所述上行目标元素组包括上行控制信道资源组或上行数据信道组的情况下,所述上行目标元素组的参数包括如下参数至少之一:空间发送滤波器、空间关系中的参考信号、功率参数、传输模式。
  16. 根据权利要求15所述的方法,所述上行控制信道资源组包括如下之一:
    根据信令信息确定的上行控制信道资源组;
    一个频域带宽组中的不同频域带宽中的具有相同上行控制信道资源索引的上行控制信令。
  17. 根据权利要求1中所述的方法,其中,还包括:
    X个上行目标元素组中,X1个上行目标元素组对应的下行信道元素为下行控制信道资源;
    X个上行目标元素组中,X2个上行目标元素组对应的下行信道元素为传输配置指示状态信息;
    X个上行目标元素组中,X3个上行目标元素组对应的下行信道 元素为下行控制信道资源组;
    其中,X1、X2、X3均是小于或等于X的正整数,和/或,X1+X2+X3=X;
    其中,下行控制信道资源包括如下之一:控制资源集合、搜索空间集合。
  18. 根据权利要求1至8中的任意一项所述的方法,其中,所述下行信道元素包括以下至少之一:
    控制资源集合、搜索空间集合、传输配置指示状态、控制资源集合组、搜索空间集合组、代码点;
    其中,所述代码点是调度物理下行数据信道的物理下行控制信道的传输配置指示域对应的代码点;
    其中,所述传输配置指示状态包括下行控制信道或下行数据信道的关联或激活的传输配置指示状态。
  19. 根据权利要求1至8中的任意一项所述的方法,其中,所述根据所述确定的所述下行信道元素获取所述上行目标元素组的参数,包括如下之一:
    所述上行目标元素组中的上行目标元素的参数为所述上行目标元素组的参数;
    所述上行目标元素组中的上行目标元素的参数根据所述上行目标元素组的参数获取。
  20. 根据权利要求1至8中的任意一项所述的方法,其中,所述方法还包括:
    确定下行控制信道资源组;
    确定所述下行控制信道资源组所对应的代码点或传输配置指示状态索引;
    根据所述确定的所述代码点或所述传输配置指示状态索引获取所述下行控制信道资源组的参数;
    其中,所述下行控制信道资源包括如下之一:控制资源集合、搜索空间集合;其中,所述代码点是调度物理下行数据信道的物理下行控制信道的传输配置指示域对应的代码点,所述传输配置指示状态索引是为所述传输配置指示状态在为物理下行数据信道激活的传输配置指示状态集合中的相对索引,所述下行控制信道资源组包括一个频域带宽中的下行控制信道资源组,或,所述下行控制信道资源组包括一个频域带宽组中,由不同频域带宽中具有相同下行控制信道资源索引构成的下行控制信道资源组。
  21. 根据权利要求1所述的方法,其中,在所述上行目标元素组包括用途为non codebook的上行测量参考信号资源组的情况下,所述上行测量参考信号资源组关联的associated-CSI-RS根据所述下行信道元素确定,其中,所述上行测量参考信号资源组中的上行测量参考信号资源的发送波束根据所述associated-CSI-RS得到;
    其中,所述下行信道元素包括如下之一:传输配置指示状态,物理控制信道中的传输配置指示域TCI代码点。
  22. 根据权利要求1所述的方法,其中,所述下行信道元素包括物理控制信道中的传输配置指示域TCI代码点。
  23. 根据权利要求1所述的方法,其中,在所述下行信道元素包括物理控制信道中的传输配置指示域TCI代码点的情况下,所述方法 包括如下之一:
    MAC-CE更新所述下行传输配置指示域TCI代码点对应的TCI state的情况下,所述上行目标元素组的参数根据所述更新后的TCI state确定;
    所述上行目标元素组的参数根据物理层控制信道的所述下行传输配置指示域TCI代码点指示的TCI state确定。
  24. 一种参数的确定方法,包括:
    根据第一时间单元对应的第一参数,确定第二时间单元中第二信道或信号的第二参数,其中,所述第二时间单元属于所述第二信道或信号所占的N个时间单元,N为大于或等于1的正整数,所述第一参数包括如下之一:第一信道或信号的第一参数、信令信息中为所述第二信道或信号激活的第二参数。
  25. 根据权利要求24所述的方法,在所述第一参数包括第一信道或信号的第一参数的情况下,所述第一时间单元对应的所述第一参数,包括如下之一:
    所述第一时间单元中,所述第一信道或信号的激活的第一参数;
    所述第一时间单元中,所述第一信道或信号的可用的第一参数;
    根据距离所述第一时间单元最近的随机接入过程,确定的第一信道或信号的第一参数,其中,所述随机接入过程是竞争模式的随机接入过程;
    所述第一时间单元中,所述第一信道或信号对应的同步信号。
  26. 根据权利要求24所述的方法,在所述第一参数包括信令信息中为所述第二信道或信号激活的第二参数的情况下,所述第一时间对 应的所述第一参数,包括如下之一:
    所述第一时间单元中,为所述第二信道或信号激活的第二参数;
    所述第一时间单元中,所述第二信道或信号可用的第二参数。
  27. 根据权利要求24所述的方法,其中,还包括以下至少之一:
    在所述N个时间单元中位于第三时间单元之前的时间单元中,根据所述第一参数的第二值获取所述第二信道或信号的第二参数的值;
    在第三时间单元以及所述N个时间单元中位于所述第三时间单元之后的时间单元中,根据所述第一参数的第一值获取所述第二信道或信号的第二参数的值;
    根据所述第一参数的最多E个值确定所述N个时间单元中所述第二信道或信号的第二参数,其中所述E为小于或等于N的正整数;
    其中,所述第三时间单元包括如下之一:所述第一参数发生更新的时间单元、第
    Figure PCTCN2021083368-appb-100005
    个时间单元、第
    Figure PCTCN2021083368-appb-100006
    个时间单元、所述第一参数开始可用的时间单元、所述N个时间单元中的一组时间单元的第一个时间单元。
  28. 根据权利要求24所述的方法,所述根据第一时间单元对应的第一参数,获取第二时间单元中第二信道或信号的第二参数,包括如下至少之一:
    所述第二时间单元中的上行控制信道资源的第二参数,根据与所述上行控制信道资源存在对应关系的下行控制信道资源在所述第一时间单元对应的第一参数获取;
    所述第二时间单元中的上行数据信道的第二参数,根据上行数据信道所在的频域带宽中具有最低索引的上行控制信道资源在所述 第一时间单元对应的第一参数获取;
    所述第二时间单元中的上行探测参考信号资源的第二参数,根据与所述上行控制信道资源存在对应关系的下行控制信道资源在所述第一时间单元对应的第一参数获取;
    所述第二时间单元中的上行探测参考信号资源的第二参数,根据与所述上行控制信道资源存在对应关系的传输配置指示状态索引在所述第一时间单元对应的激活的传输配置指示状态获取;
    所述第二时间单元中的下行控制信道资源的第二参数,根据与所述下行控制信道资源存在对应关系的传输配置指示状态索引在所述第一时间单元对应的激活的传输配置指示状态获取;
    所述第二信道或信号的在每个时间单元中的第二参数根据所述每个时间单元对应的第一参数获取;
    所述第二信道或信号的在每个时间单元中的第二参数根据所述N个时间单元中的第一个时间单元对应的第一参数获取。
  29. 根据权利要求24至28中的任意一项所述的方法,所述第一时间单元包括如下至少之一:
    所述N个时间单元中的第一个时间单元;
    所述N个时间单元中的每一个时间单元;
    所述N个时间单元中的一组时间单元中的第一个时间单元;
    距离所述第二时间单元最近且所述第一参数发生更新的时间单元;
    距离所述第二时间单元最近且包括所述第一信道或信号的时间 单元;
    所述第二时间单元;
    所述N个时间单元中所述第一参数发生更新的时间单元;
    所述第二时间单元之前预定时长之前的满足预定特征的时间单元;
    所述第二时间单元或第二时间单元之前的时间单元。
  30. 根据权利要求24至28中的任意一项所述的方法,所述第二信道或信号包括如下之一:上行控制信道、上行数据信道、下行控制信道。
  31. 根据权利要求24至28中的任意一项所述的方法,所述第一参数和/或所述第二参数包括如下参数至少之一:
    准共址参考信号、关联空间接收参数的准共址参考信号、传输配置指示状态、传输配置指示状态中的参考信号、空间发送滤波器、空间关系中的参考信号、功率参数、传输模式。
  32. 一种参数的获取装置,包括:
    第一确定模块,配置为确定上行目标元素组,其中,所述上行目标元素组包括一个或多个上行目标元素,所述上行目标元素包括以下至少之一:上行控制信道资源,上行信号资源,上行数据信道;
    第二确定模块,配置为确定所述上行目标元素组对应的下行信道元素;
    获取模块,配置为根据确定的所述下行信道元素获取所述上行目标元素组的参数。
  33. 一种参数的确定装置,包括:
    确定模块,配置为根据第一时间单元对应的第一参数,确定第二时间单元中第二信道或信号的第二参数,其中,所述第二时间单元属于所述第二信道或信号所占的N个时间单元,N为大于或等于1的正整数,所述第一参数包括如下之一:第一信道或信号的第一参数、信令信息中为所述第二信道或信号激活的第二参数。
  34. 一种计算机可读的存储介质,所述计算机可读的存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至23任一项中所述的方法。
  35. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至23任一项中所述的方法。
  36. 一种计算机可读的存储介质,所述计算机可读的存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求24至31任一项中所述的方法。
  37. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求24至31任一项中所述的方法。
PCT/CN2021/083368 2020-04-10 2021-03-26 一种参数的获取方法及装置、参数的确定方法及装置 WO2021203994A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010281159.0 2020-04-10
CN202010281159.0A CN111867098A (zh) 2020-04-10 2020-04-10 一种参数的获取方法及装置、参数的确定方法及装置

Publications (1)

Publication Number Publication Date
WO2021203994A1 true WO2021203994A1 (zh) 2021-10-14

Family

ID=72985001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083368 WO2021203994A1 (zh) 2020-04-10 2021-03-26 一种参数的获取方法及装置、参数的确定方法及装置

Country Status (2)

Country Link
CN (1) CN111867098A (zh)
WO (1) WO2021203994A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065589A1 (en) * 2022-09-30 2024-04-04 Qualcomm Incorporated Techniques for uplink control channel group indication

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111867098A (zh) * 2020-04-10 2020-10-30 中兴通讯股份有限公司 一种参数的获取方法及装置、参数的确定方法及装置
WO2022178074A1 (en) * 2021-02-18 2022-08-25 Ofinno, Llc Default pathloss reference signal determination
WO2022261982A1 (zh) * 2021-06-18 2022-12-22 北京小米移动软件有限公司 信息指示方法、装置、用户设备、基站及存储介质
WO2023206302A1 (zh) * 2022-04-28 2023-11-02 富士通株式会社 信号发送、信号接收装置以及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150272A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 通信方法、终端及网络设备
US20190312698A1 (en) * 2018-04-06 2019-10-10 Qualcomm Incorporated Techniques for beam assignments for beamforming wireless communications
CN110474745A (zh) * 2018-05-11 2019-11-19 维沃移动通信有限公司 一种准共址配置方法、终端及网络设备
CN110535617A (zh) * 2019-09-30 2019-12-03 中兴通讯股份有限公司 一种信息确定方法、装置、第一通信节点和存储介质
WO2020024813A1 (zh) * 2018-08-03 2020-02-06 维沃移动通信有限公司 控制信息指示、接收方法和设备
CN111867098A (zh) * 2020-04-10 2020-10-30 中兴通讯股份有限公司 一种参数的获取方法及装置、参数的确定方法及装置
CN111901808A (zh) * 2020-01-17 2020-11-06 中兴通讯股份有限公司 参数信息确定方法、通信节点和存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150272A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 通信方法、终端及网络设备
US20190312698A1 (en) * 2018-04-06 2019-10-10 Qualcomm Incorporated Techniques for beam assignments for beamforming wireless communications
CN110474745A (zh) * 2018-05-11 2019-11-19 维沃移动通信有限公司 一种准共址配置方法、终端及网络设备
WO2020024813A1 (zh) * 2018-08-03 2020-02-06 维沃移动通信有限公司 控制信息指示、接收方法和设备
CN110535617A (zh) * 2019-09-30 2019-12-03 中兴通讯股份有限公司 一种信息确定方法、装置、第一通信节点和存储介质
CN111901808A (zh) * 2020-01-17 2020-11-06 中兴通讯股份有限公司 参数信息确定方法、通信节点和存储介质
CN111867098A (zh) * 2020-04-10 2020-10-30 中兴通讯股份有限公司 一种参数的获取方法及装置、参数的确定方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Maintenance for Beam Management", 3GPP DRAFT; R1-1811404, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chengdu, People’s Republic of China; 2018100, 29 September 2018 (2018-09-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051518808 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065589A1 (en) * 2022-09-30 2024-04-04 Qualcomm Incorporated Techniques for uplink control channel group indication

Also Published As

Publication number Publication date
CN111867098A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2021203994A1 (zh) 一种参数的获取方法及装置、参数的确定方法及装置
US11641661B2 (en) Methods and apparatuses for determining quasi co-location (QCL) assumptions for beam operations
WO2019161807A1 (zh) 控制信令的发送、控制信令的接收以及信息的确定方法及装置
WO2021068807A1 (zh) 信息确定方法及装置、电子装置和存储介质
RU2520384C2 (ru) Способ, система и устройство для определения приоритета компонентной несущей
WO2021027849A1 (zh) 准共址假设的确定方法及装置、存储介质和电子装置
WO2018171614A1 (zh) 一种参考信号发送方法、接收方法和装置
KR20210011303A (ko) 네트워크 협력통신을 위한 채널 상태 정보 측정 및 보고 방법
WO2022073189A1 (en) Simultaneous tci state activation for ul and dl
CN113966635A (zh) 无线通信***中移动通信提供商之间分享频率资源的方法和装置
EP3687095A1 (en) Method and device for setting reference signal in wireless communication system
WO2021253452A1 (en) Method for transmitting control information
US11671925B2 (en) Power control parameters for multi-TRP PUSCH repetition
WO2022028191A1 (zh) 一种监测控制信道、确定传输配置指示的方法及终端
WO2023226046A1 (zh) Tci状态的指示方法、装置、设备及介质
JP2023521881A (ja) ビームレポートの伝送方法、移動端末及びネットワーク機器
WO2020156328A1 (zh) 预编码的确定方法及装置、数据的检测方法及装置、存储介质及电子装置
CN116250331A (zh) 用于执行基于重复的上行链路传输的无线通信方法和用户设备
US20200022132A1 (en) Aperiodic channel state information (csi) and csi-reference signal (rs) resource pooling
US20220217758A1 (en) Devices and methods for cross-slot scheduling adaption
JP2024503682A (ja) マルチtrpシナリオで報告するビームグループの拡張
US20230091578A1 (en) Parameter information determination method, communication node, and storage medium
US20220338224A1 (en) Method and apparatus for configuring default beam in communication system
KR20230112427A (ko) 무선 통신 시스템에서 상향링크 데이터 채널 전송을 위한 방법 및 장치
WO2021053827A1 (ja) 端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21785366

Country of ref document: EP

Kind code of ref document: A1