WO2021203948A1 - 物理下行控制信道的监听方法和装置 - Google Patents

物理下行控制信道的监听方法和装置 Download PDF

Info

Publication number
WO2021203948A1
WO2021203948A1 PCT/CN2021/081942 CN2021081942W WO2021203948A1 WO 2021203948 A1 WO2021203948 A1 WO 2021203948A1 CN 2021081942 W CN2021081942 W CN 2021081942W WO 2021203948 A1 WO2021203948 A1 WO 2021203948A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
span
cell set
terminal device
cells
Prior art date
Application number
PCT/CN2021/081942
Other languages
English (en)
French (fr)
Inventor
高飞
焦淑蓉
花梦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to MX2022012664A priority Critical patent/MX2022012664A/es
Priority to EP21784637.7A priority patent/EP4120767A4/en
Publication of WO2021203948A1 publication Critical patent/WO2021203948A1/zh
Priority to US17/961,403 priority patent/US20230047144A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for monitoring a physical downlink control channel.
  • network devices can send data to or receive data from terminal devices through data channels.
  • network devices In order for terminal devices to transmit data with network devices through data channels, network devices It is necessary to reach a consensus on some transmission parameters for data transmission on the data channel with the terminal equipment.
  • the data channel may be a physical downlink shared channel (PDSCH), and control parameters for transmission of control data on the PDSCH are transmitted through the physical downlink control channel (PDCCH);
  • the data channel may be a physical uplink shared channel (PUSCH), and control parameters for transmission of control data on the PUSCH are transmitted from the network device to the terminal device through the PDCCH.
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the terminal device Since the terminal device does not know in advance whether the network device has sent the PDCCH, the terminal device needs to monitor the PDCCH at locations where the PDCCH may be sent. These listening locations may also be referred to as PDCCH monitoring occasions (PDCCH monitoring occasions, MO). This monitoring and detection of the PDCCH by the terminal equipment is also called blind detection.
  • PDCCH monitoring occasions PDCCH monitoring occasions, MO
  • the 5G system introduces support for ultra-reliable and low latency communication (URLLC) services.
  • URLLC ultra-reliable and low latency communication
  • 5G introduces smaller scheduling time units.
  • network equipment can schedule terminal equipment at certain symbol positions in a time slot, instead of only scheduling terminal equipment at the beginning symbol of the time slot, and the duration of PDSCH or PUSCH can also be only a few symbols.
  • PDCCH monitoring span is introduced in 5G.
  • the terminal device uses the PDCCH monitoring span as the terminal device to monitor the PDCCH granularity and monitors the PDCCH within the PDCCH monitoring span. It is understandable that one PDCCH MO is included in one PDCCH monitoring span.
  • the PDCCH monitoring span is used to monitor the PDCCH or monitor the candidate PDCCH (PDCCH candidate), because the configuration of the PDCCH monitoring span of each cell depends on the bandwidth part of the carrier. , BWP) on the PDCCH configuration, the span pattern of different cells may be different, and the starting symbol position of the PDCCH monitoring span of different cells may also be different. Therefore, the time domain position of the PDCCH monitoring span between different cells may not be aligned. As a result, the ability to monitor PDCCH cannot be allocated with the granularity of PDCCH monitoring span between different cells.
  • CA carrier aggregation
  • the embodiments of the present application provide a method for monitoring a physical downlink control channel.
  • the method can be executed by a terminal device or a network device, or by a communication device, such as a chip, used for the terminal device or the network device. implement.
  • the method includes: determining M cell sets, where M is a positive integer, and each cell set in the M cell sets includes at least one cell of the terminal device; and accounts for the network according to the number of cells included in the first cell set
  • the ratio of the total number of cells configured by the device for the terminal device, and the first monitoring capability of the terminal device is allocated to the first cell set, where the first cell set is one of the M cell sets ;
  • the monitoring capabilities allocated to the first cell set are allocated among the cells in the first cell set for monitoring the physical downlink control channels of each cell in the first cell set, wherein,
  • the first cell set includes one cell of the terminal device; or, the first cell set includes at least two cells of the terminal device, and the time span pattern of each cell in the first cell set Same, the position of the span is aligned, and the subcarrier spacing is the same.
  • the at least two cells included in the first cell set may include at least two secondary cells (secondary cells, SCell) of the terminal device, or a primary cell (priamry cell, PCell) of the terminal device and the terminal At least one SCell of the device;
  • the first monitoring capability of the terminal device is based on the maximum number of cells supported by the terminal device for physical downlink control channel monitoring, and the first cell The monitoring capability corresponding to the span pattern corresponding to the set is determined.
  • the first monitoring capability includes the maximum number of times that the terminal device monitors the candidate physical downlink control channel, and/or the non-overlapping control used to monitor the candidate physical downlink control channel The maximum number of channel elements.
  • the maximum number of times that the terminal device monitors the candidate physical downlink control channels of the first cell set can be calculated according to the following formula:
  • the subcarrier spacing of each cell in the first cell set is configured as ⁇
  • the span pattern is (X, Y )
  • the value of ⁇ is 0 or 1
  • the value of (X,Y) is one of the set ⁇ (2,2),(4,3),(7,3) ⁇
  • i is the first
  • the index of the cell set in the M cell sets, i is a non-negative integer less than or equal to M; indicates the maximum number of cells supported by the terminal device for physical downlink control channel monitoring; indicates the terminal device
  • span pattern is the number of cells where the span position is aligned with (X, Y); represents the total number of cells configured by the network device
  • the maximum number of non-overlapping control channel elements used by the terminal device to monitor the candidate physical downlink control channels of the first cell set can be calculated according to the following formula:
  • the maximum number of non-overlapping control channel elements used by the terminal equipment to monitor the candidate physical downlink control channels of the first cell set, and the subcarrier spacing configuration of each cell in the first cell set Is ⁇ , span pattern is (X, Y), the value of ⁇ is 0 or 1, and the value of (X, Y) is the set ⁇ (2,2),(4,3),(7,3) ⁇ I is the index of the first cell set in the M cell sets, and i is a non-negative integer less than or equal to M; indicating the number of cells supported by the terminal equipment for physical downlink control channel monitoring
  • the maximum value of the number represents the maximum number of non-overlapping control channel elements used by the terminal device to monitor candidate physical downlink control channels in a span of a cell with a subcarrier spacing configuration of ⁇ and a span pattern of (X, Y) Value; indicates the number of cells in which the subcarrier spacing configured by the network device for the terminal device is configured as ⁇ , the span pattern is (X, Y), and the
  • the alignment of the span positions of each cell in the first cell set specifically includes: when there is a second span overlapping the first span, the first span The start symbol of is the same as the start symbol of the second span, and the number of symbols occupied by the first span is the same as the number of symbols occupied by the second span, wherein the first span is the first A span in a cell, the second span is a span in a second cell, and the first cell and the second cell belong to the first cell set.
  • the method further includes: determining N time units of the first cell set in one time slot, the N time units do not overlap each other, and N is positive Integer; the span position of each cell in the first cell set is aligned, specifically including: the third span partially or completely overlaps with the first time unit, and is divided by the first time from the N time units Other time units outside the unit do not overlap, the third span is a span in a cell in the first cell set, and the first time unit is one of the N time units.
  • the start symbol index of the first time unit in the N time units is the smallest index among the start symbol indexes of all spans in the cell set.
  • the start symbol index of the second time unit in the N time units is the smallest index among the start symbol indexes of all spans in the cell set that do not overlap with the first time unit .
  • the cells with unaligned spans are divided into different cell sets to distinguish, and then the ability to monitor PDCCH is allocated among the cell sets using formula calculation or mapping relationship.
  • the position of the span of each cell in the set is aligned, which solves the problem of not being able to determine the monitoring capability of the span in each cell due to the misalignment of the spans of different cells in the CA scenario, so that the terminal can use the span Perform physical downlink control channel monitoring for granularity.
  • the embodiments of the present application provide a method for monitoring a physical downlink control channel, which may be executed by a terminal device or a network device, or may be executed by a communication device, such as a chip, used for the terminal device or the network device.
  • the method includes: determining that the first monitoring capability of the terminal device is used to monitor the physical downlink control channel of the cell set of the terminal device, the cell set includes at least two cells of the terminal device, each of the cell sets The time span pattern and subcarrier spacing of the cells are the same; determine the non-overlapping N time units of the cell set in a time slot, and the start of each time unit of the N time units The position is obtained according to the span of the cell in the cell set, and N is a positive integer; according to the N time units, the first monitoring capability is allocated in the cell set for monitoring the The physical downlink control channel of each cell in the cell set.
  • the at least two cells of the terminal device include at least two SCells of the terminal device, or include a primary cell PCell of the terminal device and at least one SCell of the terminal device.
  • the allocating the first monitoring capability in the cell set according to the N time units includes:
  • the first time unit is one of the N time units.
  • the allocating the first monitoring capability in the cell set according to the N time units includes: when the symbols occupied by the span of the second cell and When the second time unit overlaps completely or partially, according to the proportion of the number of symbols in the overlapped part to the number of symbols occupied by the span of the second cell, part or all of the first monitoring capability is allocated to In the second cell, the second cell is a cell in the cell set, and the second time unit is one of the N time units.
  • the time unit is used as the basis for allocating the monitoring capability of the physical downlink channel, which solves the inability to determine each cell due to the misalignment of the spans of different cells in the CA scenario
  • the monitoring capability problem corresponding to the span and further, the terminal equipment can monitor the candidate physical downlink control channel of each cell with the granularity of the span according to the monitoring capability allocated to each cell.
  • each span of each cell in the cell set is located within one time unit of the N time units, that is, each span cannot span time The boundary of the cell.
  • the number of consecutive symbols included in one of the N time units is equal to the number of consecutive symbols indicated by the span pattern.
  • the minimum symbol interval between the initial symbols is the same.
  • the span pattern is (X, Y), and the number of consecutive symbols contained in the time unit, that is, the length of the time unit is equal to X.
  • the primary and secondary cells may be allocated with monitoring capabilities first.
  • the present application also provides a communication device, including a unit or means for performing each step of the first aspect or the second aspect.
  • the present application also provides a communication device including a processor and an interface circuit.
  • the processor is configured to communicate with other devices through the interface circuit and execute the method provided in the first or second aspect above.
  • the processor includes one or more.
  • the present application also provides a communication device, including a processor, configured to call a program stored in a memory to execute the method provided in the first aspect or the second aspect above.
  • the memory can be located inside the device or outside the device.
  • the processor can be one or more processors.
  • the present application also provides a computer program, when the program is called by a processor, the method provided in the above first aspect or the second aspect is executed.
  • FIG. 1 is a schematic diagram of a communication system 100 provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of a downlink time-frequency resource grid
  • Figure 3 is a schematic diagram of a span position in a time slot
  • Figure 4 is a schematic diagram of the span position alignment of different cells in a CA scenario
  • Figure 5 is a schematic diagram of the misalignment of span positions in different cells in a CA scenario
  • FIG. 6 is a schematic flowchart of a PDCCH monitoring method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a time unit provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of dividing time units in a cell set according to an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another PDCCH monitoring method provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a cell set provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another cell set provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another cell set provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of still another cell set provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • 15 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 16 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • Fig. 1 is a schematic diagram of a communication system 100 provided by an embodiment of the present application.
  • the communication system 100 includes a network device 110 and a terminal device 120.
  • the terminal device 120 communicates with the network device 110 through electromagnetic waves.
  • the wireless communication module of the terminal device 120 can obtain information bits to be sent to the network device 110 through the channel. These information bits are, for example, generated by the processing module of the terminal device, received from other devices, or Information bits stored in the storage module of the device.
  • the terminal device 120 can be used as an entity that sends uplink data to send an uplink channel to the network device 110.
  • the uplink channel can carry the uplink data.
  • the terminal device 120 can also receive the network device 110 directly or through a network node such as a relay device. Downlink data forwarded.
  • FIG. 1 exemplarily shows a network device and a terminal.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminals. This application The embodiment does not limit this.
  • the terminal device 120 may be various types of devices that provide users with voice and/or data connectivity, such as a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device 120 may communicate with a core network via an access network, such as a radio access network (radio access network, RAN), and exchange voice and/or data with the RAN.
  • the terminal device 120 may also be called a terminal, user equipment (UE), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point (access point, AP), remote Terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), or user equipment (user device), etc.
  • the chip applied in the above-mentioned devices may also be referred to as terminal devices.
  • the network device 110 may be an access network device, and the access network device may be used to connect the terminal device 110 to an access network such as a RAN.
  • the network device 110 may be a base station defined by the third generation partnership project (3rd generation partnership project, 3GPP), for example, may be a base station device in an LTE system, that is, an evolved NodeB (eNB/eNodeB); It can be an access network side device in a 5G new radio (NR) system, including gNB, a transmission reception point (TRP), or it can be a centralized unit (CU) or a distributed unit ( distributed unit, DU), where the CU can also be called a control unit.
  • the CU-DU structure is used to split the protocol layer of the base station.
  • the LTE eNB when the eNB is connected to a 5G core network (Core network, CN), the LTE eNB may also be referred to as an eLTE eNB.
  • the eLTE eNB is an evolved LTE base station equipment based on the LTE eNB, and can be directly connected to the 5G CN.
  • the eLTE eNB also belongs to the base station equipment in the NR.
  • the network device 110 may also be an access point (AP) or an access controller (AC), or other network devices that have the ability to communicate with terminals and core networks, such as relay devices and in-vehicle devices. , Smart wearable devices, etc.
  • AP access point
  • AC access controller
  • network devices that have the ability to communicate with terminals and core networks, such as relay devices and in-vehicle devices. , Smart wearable devices, etc.
  • the embodiments of this application do not limit the types of network devices.
  • the frequency domain is divided into independent subcarriers.
  • the unit of the uplink/downlink frequency domain resources may be a resource block (resource block, RB), and each RB is composed of 12 consecutive subcarriers in the frequency domain.
  • RB resource block
  • each RB is composed of 12 consecutive subcarriers in the frequency domain.
  • Figure 2 which is a downlink time-frequency resource grid. In Figure 2 Indicates the number of RBs scheduled for one downlink.
  • One RB includes 12 consecutive subcarriers in the frequency domain.
  • Each element on the resource grid is called a resource element (resource element, RE).
  • RE is the smallest physical resource and corresponds to a subcarrier in a symbol.
  • the grid of uplink time-frequency resources is similar to that of downlink.
  • a slot is composed of 12 or 14 symbols in time, and each OFDM symbol can be represented by an index.
  • the symbols or time-domain symbols described in this application refer to orthogonal frequency division multiplexing (OFDM) symbols.
  • CORESET includes multiple RBs in the frequency domain and one or several consecutive symbols in the time domain, and these symbols can be located in any of the time slots. Location.
  • a control-channel element is a basic resource unit that carries a PDCCH, and each CCE in the CORESET has a corresponding index number.
  • a given PDCCH can be carried by 1, 2, 4, 8 or 16 CCEs.
  • the number of CCEs carrying a PDCCH can be determined by the DCI payload size and the required coding rate.
  • the number of CCEs carrying PDCCH is also called aggregation level (AL).
  • the network side device can adjust the aggregation level of the PDCCH according to the actual transmission status of the wireless channel to realize link adaptive transmission.
  • a CCE is composed of 6 resource-element groups (REG). One REG occupies one OFDM symbol in the time domain and one RB in the frequency domain.
  • the search space is a collection of PDCCH candidates (PDCCH candidates) under the aggregation level.
  • the candidate PDCCH may refer to the PDCCH to be blindly detected or monitored.
  • the network device can configure the terminal device with a set of candidate PDCCHs that need to be monitored through high-level signaling such as radio resource control (raido resource control, RRC) signaling, and then the terminal device will detect all candidate PDCCHs in the search space and try to perform Decoding, if the cyclic redundancy check (cyclic redundancy check, CRC) check is passed, it is considered that the terminal device has received the PDCCH sent by the network device, and the terminal device can continue to perform subsequent related processing according to the content indicated by the PDCCH.
  • RRC radio resource control
  • monitoring PDCCH The meaning of “monitor PDCCH” described in this application is the same as “monitor candidate PDCCH” or “monitor PDCCH candidate(s)”, and will not be described later.
  • a monitoring capability corresponding to a time slot (or called blind detection capability) can be set to limit the terminal in a time slot.
  • the device detects the power consumption of the PDCCH, and the monitoring capability in this application refers to the PDCCH monitoring capability.
  • the monitoring capability corresponding to a time slot may include: (1) the maximum number of times the terminal device monitors the candidate PDCCH in a time slot; and/or, (2) the non-overlapping use of the terminal device to monitor the PDCCH in a time slot The maximum number of CCEs.
  • the maximum number of monitoring times for monitoring the PDCCH in one time slot may refer to the maximum number of monitoring times that the terminal device can complete in one time slot.
  • CCEs can be used for terminal equipment to perform channel estimation on PDCCH.
  • the maximum number of CCEs used by terminal equipment for channel estimation in a time slot is the maximum number of CCEs that the terminal equipment can use in a time slot.
  • the NR system in order to meet the delay requirements of the URLLC service, the NR system introduces a time domain unit that occupies fewer symbols than the time slot, such as span, which can also be called monitoring span or For the convenience of description, PDCCH monitoring span, etc., are all referred to as span in the embodiments of the present application.
  • the terminal device can use span as the granularity of monitoring the PDCCH, that is, the span is used as a unit to measure the ability of the terminal device to monitor the PDCCH.
  • a span has a corresponding monitoring capability, where the monitoring capability of the span may include (1) the maximum number of times the terminal device monitors the PDCCH in a span, which is referred to as the maximum in the embodiment of the application. The number of monitoring times or the maximum number of times of monitoring the PDCCH, and/or (2) The maximum number of non-overlapping CCEs used by the terminal equipment to monitor the PDCCH in a span, which is referred to as the maximum number of CCEs or not The maximum number of overlapping CCEs.
  • the monitoring capability for monitoring the PDCCH is allocated with granularity of each span of each serving cell of the terminal device. A span is contained in a single time slot.
  • the symbol interval between two adjacent spans may cross the boundary of two time slots.
  • Each PDCCH MO is contained in a span, and a PDCCH MO cannot cross the span boundary.
  • the PDCCH MO can be jointly determined by the starting position of the PDCCH monitored in a search space (search space, SS) and the CORESET associated with the SS.
  • the division of span in a time slot may be preset by a protocol or configured by a network device using high-level parameters, or the terminal device may determine the division of span in a time slot according to protocol preset rules and high-level parameters.
  • a span is composed of one or more consecutive symbols. The length of each span in a slot can be the same or different.
  • FIG. 1 is a schematic diagram of the position of a span in a time slot.
  • the time slot (slot 1) includes 14 symbols (symbol 0 to symbol 13), and span#1 to span#3 occupy 3 consecutive symbols respectively.
  • Span can be described by a time span pattern.
  • a span pattern can be represented by a combination of parameters (X, Y), where X represents the minimum symbol interval between the start symbols of two spans, and Y represents the maximum time domain length of a span or that a span can occupy The maximum number of consecutive symbols, where X ⁇ Y.
  • span pattern (X, Y) can also be represented by (X, Y).
  • the terminal device In the carrier aggregation (CA) scenario, when the CA capability supported by the terminal device exceeds 4 cells, the terminal device needs to report the PDCCH monitoring capability in the CA scenario to the network device. For example, the CA capability supported by the terminal device is 8 If the terminal device supports a maximum of 5 cells to monitor the PDCCH in the CA scenario, the terminal device reports to the network device that the PDCCH monitoring capability in the CA scenario is 5 cells. When the number of downlink cells configured by the network device exceeds the PDCCH monitoring capability in the CA scenario supported by the terminal device, the monitoring capability of each cell needs to be allocated through a mapping relationship or calculation formula.
  • CA carrier aggregation
  • the terminal The device can monitor the PDCCH of the cell on the time slot of each cell, or, in the cross-carrier scheduling scenario, the terminal device monitors the PDCCH of the primary scheduling cell on the time slot of the primary scheduling cell, and the primary The PDCCH of the scheduling cell can be used to schedule the data channel of the primary scheduling cell or the data channel of the scheduled cell.
  • the primary scheduling cell can be the PCell or the primary scheduling cell is the SCell.
  • the terminal device performs PDCCH monitoring on the primary scheduling cell according to the PDCCH configuration information of the primary scheduling cell and the PDCCH configuration information of the scheduled cell associated with the primary scheduling cell.
  • the terminal equipment uses a time slot as the granularity of PDCCH monitoring. For example, for a cell with a subcarrier interval of 15kHz, the maximum number of monitoring times and the maximum number of CCEs in a time slot are 44 and 56, respectively. For a cell with an interval of 30 kHz, the maximum number of monitoring times and the maximum number of CCEs in a time slot are 36 and 56 respectively. Assuming that the PDCCH monitoring capability in the CA scenario supported by the terminal device is 4 cells, and the network device is configured with 8 downlink cells, the subcarrier spacing of 2 cells is 15kHz, and the subcarrier spacing of 6 cells is 30kHz. At this time, the PDCCH monitoring capabilities in a time slot are allocated among the cells in the following manner:
  • Represents the maximum number of times the terminal device monitors the PDCCH in a time slot of a cell with a subcarrier spacing configuration of ⁇ 1 (that is, the subcarrier spacing is 30kHz) in the CA scenario; It indicates the maximum number of times that a terminal device monitors the PDCCH in a time slot of a cell with a subcarrier interval of 30 kHz, and the meaning of the remaining parameters refers to the aforementioned definition, and will not be repeated.
  • Fig. 4 is a schematic diagram of alignment of span positions of different cells in a CA scenario.
  • CC#1 to CC#8 represent the 8 downlink cells configured by the network equipment for the terminal equipment.
  • the subcarrier spacing configuration of the 8 downlink cells may be different, the boundaries of the time slots are determined, that is, the same subcarriers.
  • the cell slot boundaries of the carrier interval are aligned, and the cell boundaries of different sub-carrier intervals are aligned in integer multiples.
  • the starting position of a time slot in a cell with a sub-carrier interval of 30 kHz may be a cell with a sub-carrier interval of 15 kHz.
  • the 6 cells with a subcarrier interval of 30kHz shown in the grid are allocated to a total of 108 monitors, a maximum number of CCEs of 168, and 2 subcarriers with an interval of 15kHz in a time slot area.
  • the maximum number of monitors allocated to the cell in a time slot area is 44, and the maximum number of CCEs is 56. That is, for 2 cells with a subcarrier spacing of 15kHz, the maximum number of PDCCH monitoring within 1ms is 44, and the maximum number of CCEs is 56; for 6 cells with a subcarrier spacing of 30kHz, the maximum number of PDCCH monitoring within 0.5ms
  • the maximum number of monitoring is 108, and the maximum number of CCEs is 168.
  • the span configuration of each cell depends on the PDCCH configuration on the BWP of the carrier. Therefore, the span pattern of different cells may be different, and the span on different cells The starting symbol position of may also be different. In other words, the time-domain positions of spans between different cells may be not-aligned. Furthermore, when the ability to monitor the PDCCH is allocated at the granularity of spans between different cells, for spans that are partially overlapped and not aligned In other words, it is uncertain whether these spans need to participate in the PDCCH monitoring capability allocation on the symbols that do not overlap with each other, which results in the inability to allocate the PDCCH monitoring capability to the spans of each cell.
  • Figure 5 is a schematic diagram of the unaligned span positions of different cells in a CA scenario.
  • CC#1 and CC#2 represent a cell respectively, and the span patterns corresponding to CC#1 and CC#2 are both (4, 3). ).
  • this application proposes a PDCCH monitoring method, which can be used to determine the monitoring capability corresponding to the span of the cell of the terminal device in the CA scenario, so that the terminal device can monitor the PDCCH of each cell of the terminal device with the span as the granularity.
  • FIG. 6 is a schematic flowchart of a PDCCH monitoring method provided by an embodiment of this application.
  • the method provided in this application may be executed by a terminal device or a network device, or may be executed by a communication device such as a chip for the terminal device, or a communication device such as a chip for the network device.
  • the method includes:
  • S601 Determine that the first monitoring capability of the terminal device is used to monitor the PDCCH of the cell set of the terminal device, the cell set includes at least two cells of the terminal device, and the span pattern of each cell in the cell set And the subcarrier spacing are the same.
  • the PDCCH is an example of the downlink control channel of the physical layer.
  • the downlink control channel may have different names, which is not limited in this application.
  • PDCCH is taken as an example for description.
  • monitoring the PDCCH of the cell set of the terminal device may mean that the terminal device monitors the candidate PDCCHs of all the cells in the cell set. Specifically, if the self-scheduling method is adopted, the terminal device is in each cell set in the cell set. Each cell monitors the PDCCH sent by the cell; if the cross-carrier scheduling mode is adopted, the terminal equipment monitors the PDCCH of the primary scheduling cell of the cell set, and the PDCCH of the primary scheduling cell can be used to schedule the data channel of the primary scheduling cell. The data channel of the scheduled cell can be scheduled.
  • the PDCCH of the cell refers to the PDCCH sent by the cell to schedule the data channel of the cell; in the cross-carrier scheduling scenario, the PDCCH of the cell refers to the data channel that schedules the cell PDCCH, if the cell is the primary scheduling cell, the PDCCH is sent on the primary scheduling cell, if the cell is a scheduled cell, then the PDCCH is sent on the primary scheduling cell that schedules the scheduled cell.
  • the terminal device can perform PDCCH monitoring on the primary scheduling cell according to the PDCCH configuration information of the primary scheduling cell and the PDCCH configuration information of the scheduled cell associated with the primary scheduling cell.
  • the cell of the terminal device may refer to a serving cell that has established a wireless connection with the terminal device, and the terminal device may perform wireless communication with the cell.
  • the at least two cells included in the foregoing cell set may include at least two SCells of a terminal device, or include a PCell of the terminal device and at least one SCell of the terminal device.
  • the network device may configure one PCell and at least one SCell for the terminal device to implement CA communication between the network device and the terminal device.
  • the subcarrier spacing of the PCell and the SCell may be the same or different.
  • the SCell may be a PSCell, or include PSCelly and other secondary cells other than PSCell, where there is only one PSCell. It should be pointed out that the cell (PCell or SCell) described in this application is a downlink cell, and the following text is directly described as a "cell".
  • the terminal equipment is configured with PCell with a subcarrier spacing of 15kHz, SCell#1, and SCell#2, SCell#3 with a subcarrier spacing of 30kHz, where the span pattern of the PCell is (4,3), the span pattern of SCell#1 is (4,3), the span pattern of SCell#2 is (2,2), and the span pattern of SCell#3 is (2,2), because PCell and SCell# If the subcarrier spacing of 1 is the same and the span pattern is the same, PCell and SCell#1 are grouped into a cell set; since the subcarrier spacing of SCell#2 and SCell#3 are the same, and the span pattern is the same, SCell#2 and SCell #3 is divided into another collection of cells.
  • the foregoing first monitoring capability includes the maximum number of monitoring times and/or the maximum number of CCEs.
  • determining the first monitoring capability of the terminal device includes: according to the total capability value of the terminal device corresponding to the span pattern of the cell set to support PDCCH monitoring, and the cells in the cell set The number is determined by the ratio of the total number of cells configured by the network equipment to the terminal equipment.
  • the total capability value of the terminal device for PDCCH monitoring is determined by the maximum number of cells supported by the terminal device for PDCCH monitoring in the CA scenario and the monitoring capability corresponding to the span pattern of the cell set. It is understandable that the maximum number of cells supported by the terminal device for PDCCH monitoring is less than the total number of cells configured by the network device for the terminal device.
  • the terminal device's capabilities can support monitoring the PDCCH of all cells configured for the terminal device, and the monitoring capability is not involved. distribute.
  • the maximum number of monitoring times in the first monitoring capability is calculated by the following formula (1):
  • the maximum number of CCEs in the first monitoring capability is calculated by the following formula (2):
  • the terminal equipment is configured with PCell and SCell#1 and SCell#2 with a subcarrier spacing of 15kHz, and SCell#3 and SCell#4 with a subcarrier spacing of 30KHz, a total of 5 cells, among which, the PCell and The span pattern of SCell#1 is (4,3), the span pattern of SCell#2 is (2,2), and the span pattern of SCell#3 and SCell#4 is (7,3).
  • PCell and SCell#1 belong to cell set 1; SCell#3 and SCell#4 belong to cell set 2.
  • the cell with a subcarrier interval of 15KHz corresponds to the maximum number of monitoring times of span pattern (4,3) is 44
  • the cell with a subcarrier interval of 30KHz corresponds to span
  • the maximum number of monitoring times for pattern(7,3) is 36 times.
  • the total number of times of monitoring the PDCCH with the granularity of span in a cell with a subcarrier spacing of 15kHz and a span pattern of (4,3) does not exceed 70 times; when the subcarrier spacing is 30kHz and the span pattern is The total number of times that the cell of (7, 3) monitors the PDCCH at the granularity of span does not exceed 57 times.
  • the calculation method of the maximum number of CCEs is similar and will not be repeated.
  • S602 Determine N time units of the cell set in a time slot, the starting position of each time unit in the N time units is obtained according to the span of the cell in the cell set, and N is Positive integer.
  • the time unit may also be called a time window or a symbol set, including a group of continuous time domain symbols.
  • the N time units do not overlap each other, including: the time domain symbols contained in any two time units in the N time units do not overlap at all. It can also be said that the positions of any two time units in the N time units are completely Does not overlap.
  • the start symbol index of the first time unit in the N time units is the smallest index among the start symbol indexes of all spans in the cell set.
  • the first time unit may refer to the first time unit that appears in a time slot, that is, the first time unit in the first time slot, and the start symbol position of the first time unit is based on the cell
  • the span with the smallest index among the starting symbol indexes of all spans in the set, that is, the position of the earliest span (hereinafter referred to as the "first span") in all spans, is determined.
  • the start symbol index of a span is the same.
  • the positions of the time units other than the first time unit in the N units are determined according to the time units adjacent to the time unit in all spans of the cell set.
  • the starting symbol index of the overlapped span is determined, where non-overlapping means that the occupied symbols do not overlap at all.
  • the second time unit is defined as a time unit adjacent to the first time unit, and the second time unit is after the first time unit
  • the start symbol index of the second time unit is the sum of all spans in the cell set. The smallest index among the start symbol indexes in the spans where the first time unit does not overlap.
  • a third time unit as a time unit adjacent to the second time unit, the third time unit is after the first time unit and the second time unit, and the start symbol index of the third time unit is the cell set The smallest index among the start symbol indexes of all spans that do not overlap with the second time unit among all spans except the span included in the first time unit.
  • the starting symbol position of each of the remaining time units in the N time units can be determined, and will not be repeated. Understandably, since the N time units do not overlap each other, the start symbol position of a time unit other than the first time unit can be determined only after the previous time unit adjacent to the time unit.
  • the span that appears if a span appears before the adjacent previous time unit, even if the span does not overlap the adjacent previous time unit, the span will not be considered for determining the start of the time unit Symbol position. For example, in the above process of determining the start symbol position of the third time unit, even if the first span and the second time unit do not overlap, since the first span is before the second time unit, the first span is not considered . In addition, it should be noted that the “before”,
  • the network device pre-configures each span of each cell in the cell set to be located within one time unit of the N time units, that is, one span cannot span two or
  • the boundary of two or more time units can reduce the complexity of calculating the monitoring capability corresponding to the span.
  • the span position of other cells may not be restricted.
  • a span of any cell in the cell set may be located in two or more time units, that is, it may span two or more than two time units.
  • the boundary of the time unit, or part of the symbols of a span are in a time unit and the rest of the symbols are outside the time unit, but the rest of the symbols do not belong to other time units.
  • the span configuration has a high degree of flexibility and can be applied to various Kind of communication scenario.
  • the span position is not restricted as an example for description.
  • the span pattern can be expressed as (X, Y), then the number of consecutive symbols contained in the time unit, or the length of the time unit is X symbols.
  • the length of the N time units may be the same, for example, they are all X symbols.
  • the time unit with the largest start symbol index among the N time units, that is, the last time unit in one time slot may cross the boundary of two time slots.
  • a slot occupies 14 symbols from symbol 0 to symbol 13
  • the span pattern of a cell is (4, 3)
  • the position of the first span in this slot is symbol 1, symbol 2, and Symbol 3
  • the position of the second span is symbol 5, symbol 6, and symbol 7, and the position of the third span is symbol 11, symbol 12, and symbol 13.
  • the location of the time unit (time unit #3) determined according to the third span is the symbol 11, symbol 12, and symbol 13 of the current time slot, and the symbol 0 of the next time slot, that is, time unit #3 Cross the slot boundary.
  • the last time unit in a time slot can be restricted not to cross the boundary of two time slots, that is, the length of the last time unit is restricted by the boundary of the time slot where it is located, and the length of the last time unit can be less than X, that is The length of the last time unit is equal to the minimum of the number of symbol intervals from the start symbol of the last time unit to the slot boundary and the X value. As shown in Fig.
  • the relationship between the time unit and the span of each cell in the cell set is explained with reference to FIG. 8.
  • the cell set shown in Figure 8 includes PCell and SCell.
  • the subcarrier spacing of PCell and SCell is 15kHz, the span pattern is both (4, 3), and the length of each span in PCell or SCell is 3 symbols.
  • the minimum symbol interval between two spans of a cell is 4 symbols.
  • PCell has span#1, span#2, and span#3 in slot 1; SCell has span#4, span#5, and span#6 in slot 1, and slot 1 contains 14 with index numbers 0-13 Symbols (symbol 0 to symbol 13).
  • the start symbol position of span#1 is symbol 0, and span#1 occupies symbol 0 ⁇ symbol 2; the interval between the start symbol positions of span#2 and span#1 is 4 symbols, and span#2 occupies In addition to symbols 4 to 6, the interval between the start symbol positions of span#3 and span#2 is 5 symbols, and span#3 occupies symbols 9 to 11.
  • the start symbol position of span#4 is symbol 2 and span#4 occupies symbol 2 to symbol 4; the interval between the start symbol positions of span#5 and span#4 is 4 symbols, and span#5 occupies Symbol 6 to symbol 8; the interval between the start symbol positions of span#6 and span#5 is 4 symbols, and span#6 occupies symbol 10 to symbol 12.
  • span#1 is the span with the smallest start symbol index among all spans. Therefore, the start symbol position of span#1 can be used as the start symbol position of time unit #1.
  • Span#2 is the smallest start symbol index among all spans that do not overlap with time unit #1. Therefore, the start symbol position of span#2 can be used as the start symbol position of time unit #2.
  • span#3 is the smallest start symbol index among all spans (except span#1) that does not overlap with time unit #2. Therefore, the start symbol position of span#3 can be used as the start of time unit #3 Location.
  • the length of time unit #1 to time unit #3 is equal to the X value in the span pattern corresponding to the cell set, that is, 4 symbols.
  • time unit #1 occupies symbol 0 to symbol 3.
  • Time unit #2 occupies symbol 4 to symbol 7, and time unit #3 occupies symbol 9 to symbol 12 (a dotted frame in FIG. 8 represents a time unit).
  • the symbols occupied by span#1 ⁇ span#3 are respectively in time unit #1 ⁇ time unit #3, and the symbols occupied by span#4 are partly in time unit #1 and partly in time unit #2 (Partially overlapping with time unit #1 and time unit #2), the symbol occupied by span#5 is located in time unit #2 (partially overlapping with time unit #2), and the symbol occupied by span#6 is located in time unit #3 Inside.
  • S603 According to the N time units, allocate the first monitoring capability in the cell set for monitoring the PDCCH of each cell in the cell set.
  • the allocation of the first monitoring capability among each cell in the cell set is based on the time unit, that is, the first monitoring capability allocated to each cell in each time unit is considered.
  • the monitoring capability of each cell is embodied in a unit of span in a time slot.
  • the first monitoring capability is finally allocated to the span of each cell in each time unit.
  • the terminal device monitors the candidate PDCCH of each cell in the cell set with span as the granularity.
  • the value of can be used to allocate between spans in one time unit of the N time units.
  • the terminal device or the network device determines how to include the span in the first monitoring capability in each time unit according to the overlap between the symbol occupied by the span of the cell in the cell set and one or more of the time units. Distribution.
  • the first cell when the symbols occupied by the span of the first cell partially or completely overlap with the first time unit, the first cell is divided according to the number of all symbols occupied by the span of the first cell. Part or all of the monitoring capability is allocated to the first cell, where the first cell is a cell in the cell set, and the first time unit is one of the N time units.
  • the terminal device can perform PDCCH dropping (PDCCH dropping), so that the maximum number of PDCCH monitoring and the maximum number of CCEs of the terminal device does not exceed the maximum upper limit.
  • the maximum upper limit is one in a time slot.
  • the maximum number of monitoring times and the maximum number of CCEs corresponding to the span whose span pattern is (X, Y).
  • the maximum number of CCEs corresponding to the span with a span pattern of (4, 3) is 36
  • the sum of the maximum number of CCEs used by the PCell and SCell in cell set1 to monitor the PDCCH with the granularity of the span is 40.
  • the network device since the terminal device does not need to perform PDCCH discarding, the network device only needs to set the maximum number of CCEs configured on span#1 and span#4 in time unit #1 The sum does not exceed 40, and the maximum number of CCEs obtained by span#1 and span#4 can be randomly allocated by network equipment.
  • the number of symbols occupied by the span of the second cell accounts for the number of symbols occupied by the second cell according to the number of overlapping symbols.
  • Part or all of the first monitoring capability is allocated to the span of the second cell, where the second cell is a cell in the cell set, and the second time unit is the span of the second cell.
  • span #1 is all located in time unit #1, that is, the proportion of symbols overlapping span #1 and time unit #1 is 100 %; span#4 overlaps 2 symbols with time unit #1.
  • the length of span#4 is 3 symbols, and the overlap ratio is 2/3. Therefore, span#1 participates in the first place with 100% of the number of symbols occupied
  • the monitoring capability is allocated in the time unit #1, and span#4 participates in the allocation of the first monitoring capability in the time unit #1 with 2/3 of the number of symbols occupied.
  • span #2 When allocating monitoring capabilities to the spans of each cell in time unit #2, span #2 is all located in time unit #2; span #4 overlaps time unit #1 by 1 symbol, and span #4 has a length of 3 Symbol, the overlap ratio is 1/3; span#5 overlaps with time unit #2 by 2 symbols, span#5 has a length of 3 symbols, and the overlap ratio is 2/3. Therefore, span#2 occupies a number of symbols. 100% of the number participates in the allocation of the first monitoring capability in time unit #2, span#4 participates in the allocation of the first monitoring capability in time unit #2 with 1/3 of the number of symbols occupied, and span#5 is It takes 2/3 of the number of symbols to participate in the allocation of the first monitoring capability in time unit #2.
  • the span of the first cell when the symbols occupied by the span of the first cell overlap with two time units, the span of the first cell only participates in the first monitoring capability during the two time units.
  • span#4 uses all symbols to participate in the allocation of the first listening capability in time unit #1, it no longer participates in the allocation of the first listening capability in time unit #2 , That is, a span participates in the first monitoring capability allocation in the previous time unit that overlaps with it.
  • span#4 participates in the allocation of the first listening capability in time unit #2 with all symbols, it no longer participates in the allocation of the first listening capability in time unit #1, that is, a span participates in the allocation of the first listening capability in time unit #1.
  • span#4 participates in the allocation of the first monitoring capability in the time unit overlapping with span#4 in the proportion of overlapping symbols
  • the number of overlapping symbols of span#4 and time unit#1 is 2
  • the number of overlapping symbols is greater than span
  • span #4 can only participate in the allocation of the first monitoring capability in time unit #1, but not in the allocation of time unit #2, that is, one
  • the span participates in the monitoring capability allocation in the time unit with the highest proportion of symbols overlapping with the span.
  • span related to a time unit participate in the monitoring capability allocation of each cell in the time unit, wherein the span related to the time unit includes at least one span whose symbol overlaps the time unit.
  • the terminal device when the above method is executed by a terminal device, and the terminal device completes the allocation of the first monitoring capability in the cell set according to the above S601-S603, the terminal device can according to the span assigned to the cell. Monitoring capability, monitoring PDCCH with span as the granularity. For example, in a self-scheduling scenario, the terminal device separately monitors the PDCCH sent by the cell with the span of each cell as the granularity. In the cross-carrier scheduling scenario, the terminal device monitors the PDCCH of the primary scheduling cell with the span of the primary scheduling cell as the granularity.
  • the PDCCH of the primary scheduling cell can be used to schedule the data channel of the primary scheduling cell or the data channel of the scheduled cell.
  • the PCell can be used as the primary scheduling cell of the SCell, or one SCell can be used as the primary scheduling cell of other SCells.
  • the base station when the above method is executed by a network device such as a base station, and after the base station completes the allocation of the first monitoring capability in the cell set according to the above S601-S603, the base station may send the PDCCH configuration to the terminal device information.
  • one or more time units are set for a cell set of cells with the same subcarrier interval and span pattern, and the time domain is based on the time unit and the span of each cell in the cell set
  • the location overlap relationship, and the monitoring capabilities corresponding to the cell set are allocated among the cells. Therefore, in the CA scenario, the problem of the inability to determine the monitoring capability of the span in each cell due to the misalignment of the spans of different cells is solved.
  • the terminal device can use the span to determine the monitoring capability of the span assigned to each cell. Monitor the candidate PDCCH of each cell for granularity.
  • FIG. 9 is a schematic flowchart of a PDCCH monitoring method provided by an embodiment of this application.
  • the method provided in this application may be executed by a terminal device or a network device, or may be executed by a communication device such as a chip for the terminal device, or a communication device such as a chip for the network device.
  • the method includes:
  • S901 Determine M cell sets, where M is a positive integer, and each cell set in the M cell sets includes at least one cell of the terminal device.
  • S902 According to the ratio of the number of cells included in the first cell set to the total number of cells configured by the network device for the terminal device, allocate the first monitoring capability of the terminal device to the first cell set, where the The first cell set is one of the M cell sets.
  • the first cell set may be any one of the M cell sets.
  • the first cell set includes one cell of the terminal device.
  • the first cell set includes at least two cells of the terminal device, and each cell in the first cell set has the same span pattern and the position of the span Aligned, and the sub-carrier spacing is the same. That is, for each cell set in the M cell sets, the span patterns of each cell included in the cell set are the same, the positions of the spans are aligned, and the subcarrier spacing is the same.
  • the cell set includes at least two SCells of a terminal device, or includes a PCell of the terminal device and at least one SCell of the terminal device.
  • span pattern and sub-carrier spacing please refer to the previous related content, which will not be repeated here.
  • aligning the position of the span of each cell in the first cell set includes: when there is a second span that overlaps the first span, the start symbol of the first span is the same as that of the second span.
  • the starting symbols are the same
  • the number of symbols occupied by the first span is the same as the number of symbols occupied by the second span
  • the first span is a span in the first cell
  • the second span is A span in the second cell, where the first cell and the second cell belong to the first cell set.
  • the first span can be any span in the first cell
  • the second span can be any span in the second cell
  • the first cell and the second cell can be any two network sides configured for the terminal device. Cells with the same span pattern and the same subcarrier spacing.
  • the requirement for span position alignment is that as long as there are spans belonging to multiple cells with overlapping time domain positions, the start symbols of the multiple spans are the same, that is, the index of the start symbol is the same, and each span The length is the same.
  • the start symbols of the spans of two cells are different, it cannot be considered that the span positions of the two cells are aligned.
  • the situation in which the positions of the spans of each cell in the first cell set are aligned as described above may be referred to as a scenario where the spans of the first cell set are completely aligned.
  • the cell set includes PCell and SCell, and the span patterns are both (4, 3).
  • the PCell is configured with span#1, span#2, and span#3 in one time slot; SCell is in one time slot Span#4, span#5, span#6, span#1 ⁇ span#6 are configured with 3 symbols in length, span#1 and span#4 have the same starting symbol, span#2 and span#5 The start symbols are the same, and span#3 and span#6 have the same start symbols. Therefore, it can be considered that the span positions of PCell and SCell are aligned.
  • the method further includes: determining N non-overlapping time units of the first cell set in one time slot, where N is a positive integer.
  • the time unit has the same meaning as the time unit in the embodiment described in FIG. 6 to FIG. 8.
  • For how to determine the time unit please refer to the previous related content, such as the related description in S602, which will not be repeated here.
  • the span position of each cell in the first cell set is aligned, specifically including: the third span partially or completely overlaps with the first time unit, and is divided by the third span from the N time units.
  • the third span is a span in the first cell set
  • the first time unit is one of the N time units. That is to say, any span in the first cell set is completely in one time unit among the N time units. Or, part of the span is in one time unit, and the remaining part is outside the time unit and not in other time units. Simply put, a span does not cross the boundary of two time units.
  • a span partially or completely in a time unit means that a symbol occupied by a span can be partially or completely located in a time unit, that is, a symbol occupied by a span can partially or completely overlap with a symbol occupied by a time unit.
  • the above situation in which the span positions of each cell in the first cell set are aligned may be referred to as a scenario in which the spans in the first cell set are aligned according to time units.
  • the above two methods for determining the alignment of the span position can be used in combination.
  • the first cell and the second cell in the same time slot have the same start symbol and the same length of the first span, and other spans after the first span have different start symbols but are located in the same time unit. It is considered that the span positions of these cells are aligned.
  • some or all of the M cell sets may include only one cell, and the cell may be the PCell or SCell of the terminal device.
  • the network equipment configures 5 cells for the terminal equipment, and one cell is used as the PCell of the terminal equipment, and the other cells are used as the SCell#1 ⁇ SCell#4 of the terminal equipment.
  • PCell, SCell#1, SCell#2 The subcarrier spacing of SCell#3 and SCell#4 is 15kHz
  • the span pattern of PCell, SCell#1 and SCell#2 is (4,3)
  • the span pattern of SCell#3 and SCell#4 is (7,3) .
  • PCell has span#1, span#2, and span#3 in slot 1; SCell#1 has span#4, span#5, and span#6 in slot 1; SCell#2 has span in slot 1. #7, span#8 and span#9; SCell#3 has span#10 and span#11 in slot 1; SCell#4 has span#12 and span#13 in slot 1, and slot 1 contains the index 14 symbols from 0 to 13 (symbol 0 to symbol 13).
  • the start symbol position of span#1 is symbol 0, and span#1 occupies symbol 0 ⁇ symbol 2; the interval between the start symbol positions of span#2 and span#1 is 4 symbols, and span#2 occupies Symbol 4 ⁇ Symbol 6; the interval between the start symbol positions of span#3 and span#2 is 5 symbols, and span#3 occupies Symbol 9 ⁇ Symbol 11.
  • the start symbol position of span#4 is symbol 2, and span#4 occupies symbols 2 to symbol 4; the interval between the start symbol positions of span#5 and span#4 is 4 symbols, span# 5 occupies symbol 6 to symbol 8; the interval between the start symbol positions of span#6 and span#5 is 4 symbols, and span#6 occupies symbol 10 to symbol 12.
  • the start symbol position of span#7 is symbol 2, and span#7 occupies symbol 2 to symbol 4; the interval between the start symbol positions of span#8 and span#7 is 4 symbols, span# 8 occupies symbol 6 to symbol 8; the interval between the start symbol positions of span#9 and span#8 is 4 symbols, and span#9 occupies symbol 10 to symbol 12.
  • the start symbol position of span#10 is symbol 0, and span#10 occupies symbol 0 to symbol 2; the interval between the start symbol positions of span#11 and span#10 is 7 symbols, span# 11 occupies symbol 7 to symbol 9.
  • the start symbol position of span#11 is symbol 4, and span#12 occupies symbol 4 to symbol 6; the interval between the start symbol positions of span#13 and span#12 is 7 symbols, span# 13 occupies symbol 11 to symbol 13.
  • the PCell and SCell#1 and SCell#2 have the same subcarrier spacing configuration and the same span pattern, but the spans are not aligned, and the PCell is separately divided into a cell set (cell set 1).
  • SCell#1 and SCell#2 have the same subcarrier spacing, the same span pattern, and each span is aligned, so SCell#1 and SCell#2 can be divided into a cell set (cell set 2), PCell, SCell#3, Although SCell#4 has the same subcarrier spacing and the same span pattern, the spans are not aligned, so each is an independent cell set (cell set 3 to cell set 4).
  • the time unit can be determined first based on the span of PCell, SCell#1 and SCell#2, as shown in Figure 12, including time unit# 1 to time unit #3, the length of each time unit is 4 symbols (a dashed box in FIG. 12 represents a time unit). Since some symbols of span#4 and span#7 are located in time unit #1, some symbols of span#5 and span#8 are located in time unit #2, and some symbols of span#6 and span#9 are located in time unit #3. Therefore, PCell, SCell#1 and SCell#2 can be divided into a cell set (cell set 1').
  • each time unit is 7 symbols. Since all symbols of span#10 and span#12 are located in time unit #4, and all symbols of span#11 and span#13 are located in time unit #5, SCell#3 and SCell#4 are divided into a cell set ( cell set 2').
  • the maximum number of cells supported by the terminal device for PDCCH monitoring refers to the maximum value of the total number of cells in each subcarrier interval supported by the terminal device for PDCCH monitoring under CA conditions.
  • the total number of cells does not distinguish the subcarrier spacing configuration of the cells, that is, the total number of cells with different subcarrier spacing configured by the network device.
  • the above-mentioned first monitoring capability includes the maximum number of monitoring times and/or the maximum number of CCEs, which can be referred to the previous related description, and will not be repeated here.
  • the first monitoring capability of the terminal device is based on the maximum number of cells supported by the terminal device for PDCCH monitoring and the span pattern of the first set of cells The corresponding monitoring capability is determined.
  • the maximum number of monitoring times allocated to the first set of cells can be calculated by the following formula (3):
  • the first cell set is represented by cell set i, i is The index of the first cell set in the M cell sets, i is a non-negative integer less than or equal to M;
  • the aforementioned i may start counting from 0 or start counting from 1.
  • the maximum number of CCEs obtained by the foregoing first cell set allocation can be calculated by the following formula (4):
  • the monitoring capabilities allocated to the first cell set may be within the time domain of one span.
  • the sum of the monitoring capabilities of each cell in the first cell set; for the scenario where the spans in the first cell set are aligned according to time units, the monitoring capabilities allocated to the first cell set may refer to the time of one time unit. Within the domain, the sum of the monitoring capabilities of each cell in the first cell set.
  • the above Refers to the sum of the maximum number of times the terminal device monitors the candidate PDCCH of each cell in the first cell set within the time domain of a span or a time unit; another example is the above It refers to the sum of the maximum number of CCEs used by the terminal device to monitor the candidate PDCCH of each cell in the first cell set within the time domain of one span or one time unit.
  • S903 Allocate the monitoring capabilities allocated to the first cell set among the cells in the first cell set for monitoring the PDCCH of each cell in the first cell set.
  • the inter-cell allocation of the monitoring capabilities allocated to the first cell set in the first cell set satisfies the following condition: the sum of the maximum number of monitoring times allocated to each cell is less than or equal to that allocated to the first cell set.
  • the maximum number of monitoring times for a cell set; and, the sum of the maximum number of CCEs allocated to each cell is less than or equal to the maximum number of CCEs allocated to the first cell set.
  • the overlap between the span and the time unit of each cell may be considered to The overlap ratio of span and time unit participates in the allocation of monitoring capabilities between cells.
  • the inter-cell allocation of the monitoring capabilities allocated to the first cell set in the first cell set includes: when the first cell set includes PCell and SCell, priority is given to all cells.
  • the PCell allocates monitoring capabilities.
  • an SCell includes a PSCell, the priority of allocating monitoring capabilities to the PSCell is higher than that of other SCells.
  • the network side configures 8 cells for the terminal equipment (8 cells are represented by CC#1 to CC#8 in Figure 13), and the cells with a subcarrier spacing of 15kHz are CC#1 and CC#2, and the subcarrier spacing is configured
  • the 30kHz cells are CC#3, CC#4, CC#5, CC#6, CC#7, and CC#8.
  • the span pattern of CC#1 is (2,2)
  • the span pattern of CC#2 ⁇ CC#6 is (4,3)
  • the span pattern of CC#7 and CC#8 is (7,3)
  • CC #1, CC#2, CC#3, CC#7, and CC#8 are each a cell set
  • CC#4, CC#5, and CC#6 are divided into a cell set
  • the method for determining the cell set refers to the foregoing content. Do not repeat it.
  • the superscript of (X, Y) in Figure 13 indicates whether the patterns are the same.
  • the subcarrier spacing configuration of (4,3)′ and (4,3)′ is the same, the span pattern is the same, and the span of each cell is aligned
  • the subcarrier spacing configuration of 7,3)′ and (7,3)′′ is the same, the span pattern is the same, but the span of each cell is not aligned.
  • the span pattern is (X, Y)
  • the subcarrier spacing is configured for the serving cell of ⁇ , and The relationship between the maximum number of monitoring times that the terminal device monitors the candidate PDCCH and the maximum number of CCEs used is shown in Table 1 to Table 2.
  • each calculation formula may have multiple variations, and the names of variables used in each calculation formula may also be replaced.
  • cells with the same subcarrier spacing, the same span pattern, and the position of the span are divided into a cell set, and the number of cells included in the cell set accounts for the number of network equipment
  • the proportion of the total number of cells configured by the terminal device allocates the monitoring capability of the terminal device to the cell set, and further, allocates the monitoring capability among the cells in the cell set.
  • a communication device for implementing any of the above methods.
  • a communication device is provided that includes a unit (or means).
  • Fig. 14 is a schematic diagram of a communication device provided by an embodiment of the application.
  • the communication apparatus may be a module for terminal equipment or network equipment, for example, a chip; or the communication apparatus is a terminal equipment or network equipment, as shown in FIG. 14, the communication apparatus 1400 includes a determining unit 1410 and an allocation unit 1420.
  • the determining unit 1410 may be configured to determine that the first monitoring capability of the terminal device is used to monitor the PDCCH of the cell set of the terminal device, and the cell set includes at least two of the terminal devices.
  • the SCell, or the PCell of the terminal equipment and at least one SCell of the terminal equipment, the span pattern and subcarrier interval of each cell in the cell set are the same; and it is determined that the cell set is in one time slot N time units, the starting position of each time unit in the N time units is obtained according to the span of the cell in the cell set, and N is a positive integer;
  • the allocating unit 1420 can be used to The N time units allocate the first monitoring capability in the cell set for monitoring the PDCCH of each cell in the cell set.
  • the determining unit 1410 may be used to determine M cell sets, where M is a positive integer, and each cell set in the M cell sets includes at least one cell of the terminal device;
  • the unit 1720 is configured to allocate the first monitoring capability of the terminal device to the first cell set according to the ratio of the number of cells included in the first cell set to the total number of cells configured by the network device for the terminal device, and The monitoring capabilities allocated to the first cell set are allocated among the cells in the first cell set for monitoring the PDCCH of each cell in the first cell set, wherein the first cell The set is one of the M cell sets, the first cell set includes one cell of the terminal device, or the first cell set includes at least two cells of the terminal device, the first cell The time span patterns of each cell in the set are the same, the positions of the spans are aligned, and the subcarrier spacing is the same.
  • the at least two cells of the terminal device include at least two SCells of the terminal device, or include a PCell of the terminal device and at least one SC
  • the communication device 1400 further includes a communication unit 1403, which is used to communicate with other devices.
  • the communication unit 1703 is used for communicating with a network device such as a base station; when the communication device 1400 is a network device such as a base station or used for a network device, The communication unit 1703 is used to communicate with terminal devices.
  • each unit in the device can be all implemented in the form of software called by processing elements; they can also be all implemented in the form of hardware; part of the units can also be implemented in the form of software called by the processing elements, and some of the units can be implemented in the form of hardware.
  • each unit can be a separate processing element, or it can be integrated in a certain chip of the device for implementation.
  • it can also be stored in the memory in the form of a program, which is called and executed by a certain processing element of the device. Function.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in a processor element or implemented in a form of being called by software through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASICs), or, one or Multiple microprocessors (digital singnal processors, DSPs), or, one or more field programmable gate arrays (Field Programmable Gate Arrays, FPGAs), or a combination of at least two of these integrated circuits.
  • ASICs application specific integrated circuits
  • DSPs digital singnal processors
  • FPGAs Field Programmable Gate Arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the above receiving unit (for example, a communication unit) is an interface circuit of the device for receiving signals from other devices.
  • the receiving unit is an interface circuit used by the chip to receive signals from other chips or devices.
  • the above unit for sending (for example, a sending unit or a communication unit) is an interface circuit of the device for sending signals to other devices.
  • the sending unit is an interface circuit used by the chip to send signals to other chips or devices.
  • FIG. 15 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • the network device may be a base station, and is configured to execute the PDCCH monitoring method provided in the above method embodiment.
  • the network equipment includes: an antenna 1510, a radio frequency device 1520, and a baseband device 1530.
  • the antenna 1510 is connected to the radio frequency device 1520.
  • the radio frequency device 1520 receives the information sent by the terminal device through the antenna 1510, and sends the information sent by the terminal device to the baseband device 1530 for processing.
  • the baseband device 1530 processes the information of the terminal device and sends it to the radio frequency device 1520
  • the radio frequency device 1520 processes the information of the terminal device and sends it to the terminal device via the antenna 1510.
  • the baseband device 1530 may include one or more processing elements 1531, for example, a main control CPU and other integrated circuits.
  • the baseband device 1530 may also include a storage element 1532 and an interface 1533.
  • the storage element 1532 is used to store programs and data; the interface 1533 is used to exchange information with the radio frequency device 1520.
  • the interface is, for example, a common public radio interface. , CPRI).
  • the above apparatus for network equipment may be located in the baseband apparatus 1530.
  • the above apparatus for network equipment may be a chip on the baseband apparatus 1530.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to perform the above method.
  • the interface circuit is used to communicate with other devices.
  • the unit for the network device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the network device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the PDCCH monitoring method provided in the above method embodiment.
  • the storage element may be a storage element with the processing element on the same chip, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • FIG. 16 is a schematic structural diagram of a terminal device according to an embodiment of the application.
  • the terminal device is used to implement the PDCCH monitoring method provided in the above method embodiment.
  • the terminal device includes: an antenna 1610, a radio frequency part 1620, and a signal processing part 1630.
  • the antenna 1610 is connected to the radio frequency part 1620.
  • the radio frequency part 1620 receives the information sent by the network device through the antenna 1610, and sends the information sent by the network device to the signal processing part 1630 for processing.
  • the signal processing part 1630 processes the information of the terminal equipment and sends it to the radio frequency part 1620.
  • the radio frequency part 1620 processes the information of the terminal equipment and sends it to the network equipment via the antenna 1610.
  • the signal processing part 1630 is used to realize the processing of each communication protocol layer of the data.
  • the signal processing part 1630 may be a subsystem of the terminal device, and the terminal device may also include other subsystems, such as a central processing subsystem, which is used to process the operating system and application layer of the terminal device; another example is the peripheral sub-system.
  • the system is used to realize the connection with other equipment.
  • the signal processing part 1630 may be a separately provided chip.
  • the above devices may be located in the signal processing part 1630.
  • the signal processing part 1630 may include one or more processing elements 1631, for example, including a main control CPU and other integrated circuits.
  • the signal processing part 1630 may further include a storage element 1632 and an interface circuit 1633.
  • the storage element 1632 is used to store data and programs.
  • the program used to execute the method performed by the terminal device in the above method may or may not be stored in the storage element 1632, for example, stored in a memory other than the signal processing part 1630 During use, the signal processing part 1630 loads the program into the cache for use.
  • the interface circuit 1633 is used to communicate with the device.
  • the above device may be located in the signal processing part 1630, and the signal processing part 1630 may be implemented by a chip.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute any of the PDCCH monitoring methods provided in the above method embodiments.
  • the interface circuit is used to communicate with other devices.
  • the unit that implements each step in the above method can be implemented in the form of a processing element scheduler.
  • the device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to execute the above method embodiments. Any of the PDCCH monitoring methods.
  • the storage element may be a storage element whose processing element is on the same chip, that is, an on-chip storage element.
  • the program used to execute the method executed by the above terminal device or network device may be in a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls or loads a program on the on-chip storage element from the off-chip storage element to invoke and execute any of the PDCCH monitoring methods in the above method embodiments.
  • the unit of the terminal device or network device that implements each step in the above method may be configured as one or more processing elements, where the processing elements may be integrated circuits, such as one or more ASICs, or , One or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • system-on-a-chip system-on-a-chip
  • At least one processing element and a storage element can be integrated in the chip, and the above method executed by the terminal device or network device can be implemented by the processing element calling the stored program of the storage element; or, at least one integrated circuit can be integrated in the chip for The method implemented by the above terminal device or network device can be implemented; or, the above implementation manners can be combined.
  • the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the communication device may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any of the PDCCH monitoring methods provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the terminal device or network device in the first way: calling the program stored in the storage element; or in the second way: through the integrated logic of the hardware in the processor element
  • the circuit combined with instructions executes some or all of the steps executed by the terminal device or the network device; of course, it is also possible to combine the first method and the second method to execute some or all of the steps executed by the terminal device or the network device.
  • the interface circuit can be a transceiver or an input/output interface.
  • the communication device may further include a memory for storing instructions executed by the above-mentioned one processing element or storing input data required by the operating instructions of the processing element or storing data generated after the operating instructions of the processing element.
  • the processing element here is the same as the above description, and it may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element can be a memory or a collective term for multiple storage elements.
  • a person of ordinary skill in the art can understand that all or part of the steps in the above method embodiments can be implemented by a program instructing relevant hardware.
  • the foregoing program can be stored in a computer readable storage medium. When the program is executed, it is executed. Including the steps of the foregoing method embodiment; and the foregoing storage medium includes: ROM, RAM, magnetic disk, or optical disk and other media that can store program codes.
  • the resources described in the embodiments of the present application may also be referred to as transmission resources, including one or more of time domain resources, frequency domain resources, and code channel resources, and may be used to carry data in the uplink communication process or the downlink communication process. Or signaling.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean that B is determined only based on A, and B can also be determined based on A and/or other information.
  • transmit/transmission refers to two-way transmission, including sending and/or receiving actions.
  • the "transmission” in the embodiment of the present application includes the sending of data, the receiving of data, or the sending of data and the receiving of data.
  • the data transmission here includes uplink and/or downlink data transmission.
  • Data may include information and/or signals. Uplink data transmission is uplink information and/or uplink signal transmission, and downlink data transmission is downlink information and/or downlink signal transmission.
  • the terminal device and/or the network device can perform some or all of the steps in the embodiments of the present application. These steps or operations are only examples. In the embodiments of the present application, other operations or Variations of various operations. In addition, each step may be executed in a different order presented in the embodiments of the present application, and it may not be necessary to perform all the operations in the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种物理下行控制信道的监听方法以及装置,所述方法包括:将子载波间隔相同、时间跨度图案span pattern相同、以及时间跨度span位置对齐的小区划分入一个小区集合,并根据该小区集合包含的小区的个数占网络设备为所述终端设备配置的小区总数的比例,将终端设备的监听能力分配给该小区集合,进而,在小区集合内的小区间分配监听能力,解决了在CA场景下由于不同小区的span位置不对齐而导致的无法确定每个小区内的span对应的监听能力问题,使得终端能够以span为粒度进行物理下行控制信道监听。

Description

物理下行控制信道的监听方法和装置
“本申请要求于2020年4月10日提交国家知识产权局、申请号为202010280741.5、发明名称为“物理下行控制信道的监听方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中”。
技术领域
本申请涉及通信技术领域,特别涉及一种物理下行控制信道的监听方法和装置。
背景技术
在第五代(5th generation,5G)移动通信***中,网络设备可以通过数据信道给终端设备发送数据或者从终端设备接收数据,为了让终端设备可以通过数据信道与网络设备进行数据传输,网络设备和终端设备之间需要就数据在数据信道上进行传输的一些传输参数达成一致的理解。例如,对于下行数据传输,数据信道可以为物理下行共享信道(physical downlink shared channel,PDSCH),控制数据在PDSCH上传输的控制参数通过物理下行控制信道(physical downlink control channel,PDCCH)进行传输;对于上行数据传输,数据信道可以为物理上行共享信道(physical uplink shared channel,PUSCH),控制数据在PUSCH上传输的控制参数通过PDCCH从网络设备传输给终端设备。
由于终端设备事先并不知道网络设备是否发送了PDCCH,所以终端设备需要在可能发送PDCCH的位置对PDCCH进行监听,这些监听位置也可以称为PDCCH监听时机(PDCCH monitoring occasion,MO)。终端设备对PDCCH的这种监听和检测也称为盲检测。
5G***中引入了对超可靠低延迟通信(ultra-reliable and low latency communication,URLLC)业务的支持,为了满足这些业务对低时延的需求,5G引入了更小的调度时间单元。例如,网络设备可以在一个时隙中的某些符号位置对终端设备进行调度,而不是只能在时隙的开始符号对终端设备进行调度,而且PDSCH或PUSCH的持续时间也可以只有几个符号。为此,5G中引入了PDCCH监听时间跨度(monitoring span)的概念,终端设备以PDCCH monitoring span作为终端设备监听PDCCH的粒度并在PDCCH  monitoring span内对PDCCH进行监听。可以理解的是,一个PDCCH MO包含在一个PDCCH monitoring span内。
在载波聚合(carrier aggregation,CA)场景下,若采用上述PDCCH monitoring span为粒度监听PDCCH或监听候选PDCCH(PDCCH candidate),由于每个小区的PDCCH monitoring span的配置取决于载波的带宽部分(bandwidth part,BWP)上的PDCCH配置,不同小区的span图案可能不相同,不同小区的PDCCH monitoring span的起始符号位置也可能不相同,因此不同小区间的PDCCH monitoring span的时域位置可能不对齐,进而导致无法在不同小区间以PDCCH monitoring span为粒度分配监听PDCCH的能力。
发明内容
第一方面,本申请实施例提供一种物理下行控制信道的监听方法,该方法可以由终端设备或者网络设备执行,也可以由用于所述终端设备或者所述网络设备的通信装置,例如芯片执行。
该方法包括:确定M个小区集合,其中,M为正整数,所述M个小区集合中的每一个小区集合包含终端设备的至少一个小区;根据第一小区集合包含的小区的个数占网络设备为所述终端设备配置的小区总数的比例,将所述终端设备的第一监听能力分配给所述第一小区集合,其中,所述第一小区集合为所述M个小区集合中的一个;将分配给所述第一小区集合的监听能力在所述第一小区集合内的小区间分配,用于分别监听所述第一小区集合内的每个小区的物理下行控制信道,其中,所述第一小区集合包含所述终端设备的一个小区;或者,所述第一小区集合包含所述终端设备的至少两个小区,所述第一小区集合中的每个小区的时间跨度图案span pattern相同、span的位置对齐、且子载波间隔相同。
所述第一小区集合包含的至少两个小区可以包括所述终端设备的至少两个辅小区(secondary cell,SCell),或者包括所述终端设备的主小区(priamry cell,PCell)以及所述终端设备的至少一个SCell;
在第一方面的一种可能的实现方式中,所述终端设备的第一监听能力是根据所述终端设备进行物理下行控制信道监听所支持的小区个数的最大值、以及所述第一小区 集合对应的span pattern对应的监听能力确定的。
在第一方面的一种可能的实现方式中,所述第一监听能力包括所述终端设备监听候选物理下行控制信道的最大次数,和/或,监听候选物理下行控制信道所用的不重叠的控制信道元素个数的最大值。
在第一方面的一种可能的实现方式中,可以根据如下公式计算得到所述终端设备监听所述第一小区集合的候选物理下行控制信道的最大次数:
Figure PCTCN2021081942-appb-000001
其中,表示所述终端设备监听所述第一小区集合的候选物理下行控制信道的最大次数,所述第一小区集合中的每个小区的子载波间隔配置为μ、span pattern为(X,Y),μ的取值为0或1,(X,Y)的取值为集合{(2,2),(4,3),(7,3)}中的一个,i为所述第一小区集合在所述M个小区集合中的索引,i为小于或等于M的非负整数;表示所述终端设备进行物理下行控制信道监听所支持的小区个数的最大值;表示所述终端设备在子载波间隔配置为μ、span pattern为(X,Y)的小区的一个span内监听候选物理下行控制信道的最大次数;表示在所述网络设备为所述终端设备配置的子载波间隔配置为μ、span pattern为(X,Y)且span的位置对齐的小区的个数;表示所述网络设备为所述终端设备配置的小区的总数,j表示子载波间隔配置,j的取值为0或1。
在第一方面的一种可能的实现方式中,可以根据如下公式计算得到所述终端设备监听所述第一小区集合的候选物理下行控制信道所用的不重叠的控制信道元素个数的最大值:
Figure PCTCN2021081942-appb-000002
其中,表示所述终端设备监听所述第一小区集合的候选物理下行控制信道所用的不重叠的控制信道元素个数的最大值,所述第一小区集合中的每个小区的子载波间隔配置为μ、span pattern为(X,Y),μ的取值为0或1,(X,Y)的取值为集合{(2,2),(4,3),(7,3)}中的一个,i为所述第一小区集合在所述M个小区集合中的索引,i为小于或等于M的非负整数;表示所述终端设备进行物理下行控制信道监听所支持的小区个数的最大值;表示所述终端设备在子载波间隔配置为μ、span pattern为(X,Y)的 小区的一个span内监听候选物理下行控制信道所用的不重叠的控制信道元素个数的最大值;表示在所述网络设备为所述终端设备配置的子载波间隔配置为μ、span pattern为(X,Y)且span的位置对齐的小区的个数;表示所述网络设备为所述终端设备配置的小区的总数,j表示子载波间隔配置,j的取值为0或1。
在第一方面的一种可能的实现方式中,所述第一小区集合中的每个小区的span位置对齐,具体包括:当存在与第一span重叠的第二span时,所述第一span的起始符号与所述第二span的起始符号相同,且所述第一span占用的符号个数与所述第二span占用的符号个数相同,其中,所述第一span是第一小区中的一个span,所述第二span是第二小区中的一个span,所述第一小区和所述第二小区属于所述第一小区集合。
在第一方面的一种可能的实现方式中,所述方法还包括:确定所述第一小区集合在一个时隙内的N个时间单元,所述N个时间单元相互不重叠,N为正整数;所述第一小区集合中的每个小区的span位置对齐,具体包括:第三span与第一时间单元部分重叠或完全重叠,且与所述N个时间单元中除所述第一时间单元外的其它时间单元不重叠,所述第三span为所述第一小区集合中的一个小区中的一个span,所述第一时间单元为所述N个时间单元中的一个。
可选地,所述N个时间单元中的第一时间单元的起始符号索引为所述小区集合中所有span的起始符号索引中最小的索引。可选地,所述N个时间单元中的第二时间单元的起始符号索引为所述小区集合中所有span中与所述第一时间单元不重叠的span中起始符号索引中最小的索引。
采用以上方面提供的物理下行控制信道的监听方法,通过将span不对齐的小区划分入不同的小区集合加以区分,再利用公式计算或映射关系在小区集合间进行监听PDCCH的能力分配,由于一个小区集合内的各个小区的span的位置是对齐的,从而解决了在CA场景下,由于不同小区的span不对齐而导致的无法确定每个小区内的span对应的监听能力问题,使得终端能够以span为粒度进行物理下行控制信道监听。
第二方面,本申请实施例提供一种物理下行控制信道的监听方法,可以由终端设备或者网络设备执行,也可以由用于所述终端设备或者所述网络设备的通信装置,例 如芯片执行。
该方法包括:确定终端设备的第一监听能力用于监听所述终端设备的小区集合的物理下行控制信道,所述小区集合包含所述终端设备的至少两个小区,所述小区集合中的每个小区的时间跨度图案(span pattern)和子载波间隔均相同;确定所述小区集合在一个时隙内的不重叠的N个时间单元,所述N个时间单元中的每一个时间单元的起始位置是根据所述小区集合内的小区的span得到的,N为正整数;根据所述N个时间单元,将所述第一监听能力在所述小区集合内进行分配,用于分别监听所述小区集合内的每个小区的物理下行控制信道。
可选地,所述终端设备的至少两个小区包括所述终端设备的至少两个SCell,或者包含所述终端设备的主小区PCell以及所述终端设备的至少一个SCell。
在第二方面的一种可能的实现方式中,所述根据所述N个时间单元,将所述第一监听能力在所述小区集合内进行分配包括:
当第一小区的第一span占用的符号与第一时间单元部分或全部重叠时,根据所述第一小区的span占用的全部符号的个数,将所述第一监听能力的部分或全部分配给所述第一小区,其中,所述第一小区是所述小区集合中的一个小区,所述第一时间单元为所述N个时间单元中的一个。
在第二方面的一种可能的实现方式中,所述根据所述N个时间单元,将所述第一监听能力在所述小区集合内进行分配包括:当第二小区的span占用的符号与所述第二时间单元全部或部分重叠时,根据所述重叠部分的符号个数占所述第二小区的span占用的符号个数的比例,将所述第一监听能力的部分或全部分配给所述第二小区,其中,所述第二小区是所述小区集合中的一个小区,所述第二时间单元为所述N个时间单元中的一个。
采用以上方面提供的物理下行控制信道的监听方法,以时间单元作为分配物理下行信道的监听能力的依据,解决了在CA场景下,由于不同小区的span不对齐而导致的无法确定每个小区内span对应的监听能力问题,进而,终端设备能够依据分配到各小区的监听能力,以span为粒度监听每个小区的候选物理下行控制信道。
在第一方面或第二方面的一种可能的实现方式中,所述小区集合中每一个小区的 每一个span位于所述N个时间单元中的一个时间单元内,即每一个span不能跨时间单元的边界。
在第一方面或第二方面的一种可能的实现方式中,所述N个时间单元中的一个时间单元包含的连续符号的个数与所述span pattern指示的两个相邻的span的起始符号之间的最小符号间隔相同。例如,span pattern为(X,Y),时间单元包含的连续符号的个数即时间单元的长度等于X。
在第一方面或第二方面的一种可能的实现方式中,当在一个小区集合内的各个小区间分配监听能力时,若所述小区集合包含PCell以及SCell,优先为所述PCell分配监听能力。此外,若所述小区集合只包含SCell,可以优先为主辅小区(primary SCell)分配监听能力。
第三方面,本申请还提供一种通信装置,包括用于执行以上第一方面或第二方面各个步骤的单元或手段(means)。
第四方面,本申请还提供一种通信装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行以上第一方面或第二方面提供的方法。该处理器包括一个或多个。
第五方面,本申请还提供一种通信装置,提供一种通信装置,包括处理器,用于调用存储器中存储的程序,以执行以上第一方面或第二方面提供的方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器可以是一个或多个处理器。
第六方面,本申请还提供一种计算机程序,该程序在被处理器调用时,以上第一方面或第二方面提供的方法被执行。
此外,提供一种计算机可读存储介质,包括以上程序。
附图说明
图1是本申请实施例提供的一种通信***100的示意图;
图2是下行时频资源网格示意图;
图3是一个时隙中的span位置的示意图;
图4是CA场景下不同小区span位置对齐的示意图;
图5是CA场景下不同小区span位置不对齐的示意图;
图6是本申请实施例提供的一种PDCCH的监听方法的流程示意图;
图7是本申请实施例提供的一种时间单元的示意图;
图8是本申请实施例提供的一种在小区集合内划分时间单元的示意图;
图9是本申请实施例提供的另一种PDCCH的监听方法的流程示意图;
图10是本申请实施例提供的一种小区集合的示意图;
图11是本申请实施例提供的另一种小区集合的示意图;
图12是本申请实施例提供的又一种小区集合的示意图;
图13是本申请实施例提供的再一种小区集合的示意图;
图14为本申请实施例提供的一种通信装置的结构示意图;
图15为本申请实施例提供的一种网络设备的结构示意图;
图16为本申请实施例提供的一种终端设备的结构示意图。
具体实施方式
图1是本申请实施例提供的一种通信***100的示意图。
如图1所示,通信***100包括网络设备110和终端设备120。终端设备120通过电磁波与网络设备110进行通信。当终端设备120发送信息时,终端设备120的无线通信模块可以获取要通过信道发送至网络设备110的信息比特,这些信息比特例如是终端设备的处理模块生成的、从其它设备接收的或者在终端设备的存储模块中保存的信息比特。具体地,终端设备120可以作为发送上行数据的实体,向网络设备110发送上行信道,上行信道可以承载上行数据,当然,终端设备120也可接收网络设备110直接发送或者通过中继设备等网络节点转发的下行数据。
应理解,图1示例性地示出了一个网络设备和一个终端,可选地,该通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
在本申请中,终端设备120可以是向用户提供语音和/或数据连通性的各类设备,例如可以是具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。终端设备120可以经接入网,例如无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备120也可以称为终端、用户 设备(user equipment,UE)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备、无人机设备等。在本申请实施例中,应用于上述设备中的芯片也可以称为终端设备。
在本申请中,网络设备110可以是接入网设备,所述接入网设备可以用于将终端设备110接入RAN等接入网。网络设备110可以是第三代合作伙伴计划(3rd generation partnership project,3GPP)所定义的基站,例如,可以是LTE***中的基站设备,即演进型节点B(evolved NodeB,eNB/eNodeB);还可以是5G新无线(new radio,NR)***中的接入网侧设备,包括gNB、传输接收点(trasmission reception point,TRP),或者可以是集中单元(central unit,CU)或分布式单元(distributed unit,DU),其中,CU也可以称为控制单元(control unit),采用CU-DU的结构将基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。此外,当eNB连接5G核心网(Core network,CN)时,LTE eNB也可以称为eLTE eNB。具体地,eLTE eNB是在LTE eNB基础上演进的LTE基站设备,可以直接连接5G CN,eLTE eNB也属于NR中的基站设备。网络设备110还可以是接入点(access point,AP)或者接入控制器(access controller,AC),或者其他具有与终端、及核心网通信能力的网络设备,例如,中继设备、车载设备、智能穿戴设备等,本申请实施例对网络设备的类型不做限定。
下面对终端设备监听PDCCH的相关技术特征进行介绍。
以NR***为例,频域上被划分为独立的子载波,子载波间隔(subcarrier spacing,SCS)可以根据子载波间隔配置μ确定,例如,μ=0时,子载波间隔为15kHz,μ=1时,子载波间隔为30kHz。上/下行频域资源的单位可以是资源块(resource block,RB),每个RB由频域上12个连续的子载波组成。参见图2所示, 为下行时频资源网格。图2中的
Figure PCTCN2021081942-appb-000003
表示一次下行调度的RB的个数,一个RB在频域上包括12个连续的子载波。资源网格上的每个元素称为一个资源元素(resource element,RE),RE为最小的物理资源,对应一个符号内的一个子载波。上行时频资源的网格与下行是类似的。在NR***中,一个时隙在时间上由12或14个符号组成,每个OFDM符号可以由一个索引(index)表示。本申请中所述的符号或时域符号指正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。
PDCCH是在控制资源集合(control-resource set,CORESET)中传输,CORESET在频域上包括多个RB,在时域上包括1个或连续几个符号,且这些符号可位于时隙内的任意位置。
控制信道元素(control-channel element,CCE)是承载PDCCH的基本资源单位,在CORESET中的每个CCE都会有一个对应的索引号。一个给定的PDCCH可由1、2、4、8或16个CCE承载,对于承载一个PDCCH的CCE的数量,可以由DCI载荷大小(payload size)和所需的编码速率决定。其中,承载PDCCH的CCE的数量也被称为聚合等级(aggregation level,AL)。网络侧设备可根据实际传输的无线信道的状态,对PDCCH的聚合等级进行调整,实现链路自适应传输。一个CCE由6个资源单元组(resource-element group,REG)组成,一个REG在时域占用一个OFDM符号,在频域占用一个RB。
搜索空间(search space)是一个聚合等级下的候选PDCCH(PDCCH candidate)的集合。候选PDCCH可以是指待盲检测或者说待监听的PDCCH。网络设备可以通过例如无线资源控制(raido resource control,RRC)信令等高层信令给终端设备配置需要监听的候选PDCCH集合,进而,终端设备会在搜索空间内对所有候选PDCCH进行检测并尝试进行译码,如果循环冗余校验(cyclic redundancy check,CRC)校验通过,则认为终端设备收到了网络设备发送的PDCCH,终端设备可以继续根据该PDCCH所指示的内容进行后续相关处理。
本申请中描述的“监听PDCCH”的含义与“监听候选PDCCH”或者“监听PDCCH candidate(s)”的含义相同,后文不再说明。
由于检测PDCCH的复杂度较大,终端设备会消耗大量的功耗,为此在NR*** 中,可以设置一个时隙对应的监听能力(或称为盲检测能力),以限制一个时隙内终端设备检测PDCCH的功耗,本申请中的监听能力指PDCCH监听能力。其中,一个时隙对应的监听能力可以包括:(1)终端设备在一个时隙中监听候选PDCCH的最大次数;和/或,(2)终端设备在一个时隙中监听PDCCH所使用的不重叠的CCE个数的最大值。其中,关于(1),示例性地,在一个时隙中监听PDCCH的最大监听次数可以指在一个时隙内终端设备能够完成的最大监听次数。关于(2),示例性地,CCE可以用于终端设备对PDCCH进行信道估计,终端设备在一个时隙中进行信道估计所使用的CCE个数的最大值为终端设备在一个时隙中最多能够进行信道估计的CCE个数。
考虑到NR***定义了URLLC业务,为满足URLLC业务的时延要求,NR***中引入了比时隙占用更少符号的时域单位,例如span,也可以称为监听时间跨度(monitoring span)或PDCCH monitoring span等,为描述方便,本申请实施例中均称为span。终端设备可以用span作为监听PDCCH的粒度,即,以span作为衡量终端设备监听PDCCH的能力的单位。与时隙对应的监听能力类似,一个span有对应的监听能力,其中,所述span的监听能力可以包括(1)终端设备在一个span内监听PDCCH的最大次数,本申请实施例中称为最大监听次数或监听PDCCH的最大次数,和/或,(2)终端设备在一个span中监听PDCCH所使用的不重叠的CCE个数的最大值,本申请实施例中简称为最大CCE个数或不重叠的CCE个数的最大值。用于监听PDCCH的监听能力是以终端设备的每个服务小区的每个span为粒度分配的。一个span包含在一个单独的时隙内。两个相邻的span之间的符号间隔可以跨两个时隙的边界。每个PDCCH MO包含在1个span内,1个PDCCH MO不能跨span的边界。其中,PDCCH MO,可以通过1个搜索空间(search space,SS)中监听PDCCH的起始位置和与该SS关联的CORESET联合确定。示例性地,一个时隙中span的划分可以是由协议预设或网络设备用高层参数配置的,或者,终端设备可以根据协议预设规则和高层参数确定一个时隙中span的划分。一个span由一个或多个连续符号组成,一个slot中的每个span的长度可以相同也可以不同,例如一个slot中有的span长度为10个符号,有的span长度为2个符号。图3是一个时隙内的span 位置的示意图,该时隙(时隙1)包括14个符号(符号0至符号13),span#1至span#3分别占用了3个连续符号。
span可以用时间跨度图案(span pattern)来描述。一般地,一个span pattern可以用参数组合(X,Y)表示,其中,X表示为两个span起始符号之间的最小符号间隔,Y表示一个span的最大时域长度或者说一个span可以占用的连续符号的最大个数,其中X≥Y。本申请中,span pattern(X,Y)也可以用(X,Y)表示。
在载波聚合(carrier aggregation,CA)场景下,当终端设备支持的CA能力超过4个小区时,终端设备需要向网络设备上报CA场景下的PDCCH监听能力,例如,终端设备支持的CA能力为8个小区,假设终端设备支持在CA场景下监听PDCCH小区个数最多为5个,则终端设备向网络设备上报CA场景下的PDCCH监听能力为5个小区。当网络设备配置的下行小区个数超过终端设备支持的CA场景下的PDCCH监听能力时,则需要通过一个映射关系或计算公式对各个小区的监听能力进行分配,进而,在自调度场景下,终端设备可以分别在每个小区的时隙上监听该小区的PDCCH,或者,在跨载波调度场景下,终端设备在主调度小区(scheduling cell)的时隙上监听主调度小区的PDCCH,且该主调度小区的PDCCH可以用于调度主调度小区的数据信道,也可以调度被调度小区(scheduled cell)的数据信道,主调度小区可以是PCell,或者主调度小区是SCell。在跨载波调度场景中,终端设备在主调度小区上根据主调度小区的PDCCH配置信息和与该主调度小区关联的被调度小区的PDCCH配置信息,进行PDCCH监听。在3GPP Release15协议中,终端设备以一个时隙作为PDCCH监听的粒度,例如对子载波间隔为15kHz的小区,一个时隙内的最大监听次数以及最大CCE个数分别是44和56,对子载波间隔为30kHz的小区,一个时隙内的最大监听次数以及最大CCE个数分别是36和56。假设终端设备支持的CA场景下的PDCCH监听能力为4个小区,网络设备配置了8个下行小区,其中2个小区的子载波间隔是15kHz的,6个小区的子载波间隔是30kHz的。此时通过如下方式在各小区间对一个时隙内的PDCCH监听能力的进行分配:
对于子载波间隔为15kHz的2个下行小区,分配到的最大监听次数为
Figure PCTCN2021081942-appb-000004
其中,
Figure PCTCN2021081942-appb-000005
表示CA场景下对于子载波间隔配置μ=0(即子载波间隔为15kHz)的小区的一个时隙内终端设备监听PDCCH的最大次数;
Figure PCTCN2021081942-appb-000006
表示所述终端设备在CA场景下进行PDCCH监听所支持的小区个数的最大值;
Figure PCTCN2021081942-appb-000007
表示对于子载波间隔为15kHz的一个小区的一个时隙内终端设备监听PDCCH的最大次数;
Figure PCTCN2021081942-appb-000008
表示在网络设备为所述终端设备配置的子载波间隔为15kHz的小区个数;
Figure PCTCN2021081942-appb-000009
表示网络设备为终端设备配置的小区的总数,j的取值为0至3的整数,j表示子载波间隔配置,j与μ含义相同。
对于子载波间隔为15kHz的2个下行小区,分配到的最大CCE个数为
Figure PCTCN2021081942-appb-000010
其中,
Figure PCTCN2021081942-appb-000011
表示CA场景下对于子载波间隔为15kHz的小区的一个时隙内终端设备监听PDCCH所用的最大CCE个数;
Figure PCTCN2021081942-appb-000012
表示对于子载波间隔为15KHz的一个小区的一个时隙内终端设备监听PDCCH所用的最大CCE个数,其余参数含义参考前述定义,不做赘述。
对于子载波间隔为30kHz的6个下行小区,分配到的最大监听次数为
Figure PCTCN2021081942-appb-000013
其中,
Figure PCTCN2021081942-appb-000014
表示CA场景下对于子载波间隔配置μ=1(即子载波间隔为30kHz)的小区的一个时隙内终端设备监听PDCCH的最大次数;
Figure PCTCN2021081942-appb-000015
表示对于子载波间隔为30kHz的一个小区的一个时隙内终端设备监听PDCCH的最大次数,其余参数含义参考前述定义,不做赘述。
对于子载波间隔为30kHz的6个下行小区,分配到的最大CCE个数为
Figure PCTCN2021081942-appb-000016
其中,
Figure PCTCN2021081942-appb-000017
表示CA场景下对于子载波间隔为30kHz小区的一个时隙内终端设备监听PDCCH所用的最大CCE个数;
Figure PCTCN2021081942-appb-000018
表示对于子载波间隔为30KHz的一个小区的一个时隙内终端设备监听PDCCH所用的最大CCE个数,其余参数含义参考前述定义,不做赘述。
图4为一种CA场景下不同小区的span位置对齐的示意图。图4中,CC#1至CC#8表示网络设备为终端设备配置的8个下行小区,虽然8个下行小区的子载波间隔配置可以不相同,但是时隙的边界是确定的,即相同子载波间隔的小区时隙边界是对齐的,不同子载波间隔的小区边界是整数倍对齐的,1个子载波间隔是30kHz的小区的一个时隙的起始位置可能是一个子载波间隔是15kHz的小区的一个时隙的中间位置或者对齐(aligned)。网格所示的子载波间隔为30kHz的6个小区在一个时隙区域内共分配到最大监听个数为108,最大CCE个数为168,斜线所示的子载波间隔为15kHz的2个小区在一个时隙区域内共分配到最大监听个数为44,最大CCE个数为56。即对于子载波间隔为15kHz的2个小区,在1ms内监听PDCCH的最大监听个数为44,最大CCE个数为56;对于子载波间隔为30kHz的6个小区,在0.5ms内监听PDCCH的最大监听个数为108,最大CCE个数为168。
在CA场景下,当终端设备以span为粒度监听PDCCH时,由于每个小区的span的配置取决于载波的BWP上的PDCCH配置,因此,不同小区的span pattern可能不相同,不同小区上的span的起始符号位置也可能不相同。也就是说,不同小区间的span的时域位置可能是不对齐的(not-aligned),进而,当在不同小区间以span为粒度分配监听PDCCH的能力时,对于部分重叠且不对齐的span而言,这些span在互相不重叠的符号上是否需要参与PDCCH监听能力分配并不确定,导致无法为各小区的span分配监听PDCCH的能力。图5为一种CA场景下不同小区的span位置不对齐的示意图,图5中CC#1和CC#2分别代表一个小区,CC#1和CC#2对应的span pattern均为(4,3)。
因此,本申请提出了一种PDCCH的监听方法,可以用于确定在CA场景下终端 设备的小区的span对应的监听能力,以便于终端设备以span为粒度对终端设备的各个小区进行PDCCH监听。
请参考图6,为本申请实施例提供的一种PDCCH的监听方法的流程示意图。本申请提供的方法可以由终端设备或者网络设备执行,也可以由用于终端设备的通信装置例如芯片、或者由用于网络设备的通信装置例如芯片执行。
如图6所示,该方法包括:
S601:确定终端设备的第一监听能力用于监听所述终端设备的小区集合的PDCCH,所述小区集合包含所述终端设备的至少两个小区,所述小区集合中的每个小区的span pattern和子载波间隔均相同。
可以理解,PDCCH是物理层的下行控制信道的一种示例,在不同的***中,下行控制信道可能有不同的名称,本申请对此不做限定。本申请实施例中均以PDCCH为例进行说明。
在本申请中,监听所述终端设备的小区集合的PDCCH可以是指终端设备监听该小区集合中的所有小区的备选PDCCH,具体地,若采用自调度方式,终端设备在该小区集合的每个小区上分别监听该小区发送的PDCCH;若采用跨载波调度方式,终端设备监听该小区集合的主调度小区的PDCCH,且该主调度小区的PDCCH可以用于调度主调度小区的数据信道,也可以调度被调度小区的数据信道。其中,在自调度场景中,所述小区的PDCCH是指该小区发送的用于调度本小区数据信道的PDCCH;在跨载波调度场景中,所述小区的PDCCH是指调度该小区的数据信道的PDCCH,若该小区是主调度小区,则该PDCCH是在该主调度小区发送的,若该小区是被调度小区,则该PDCCH是在调度该被调度小区的主调度小区发送的。在跨载波调度场景中,终端设备可以在主调度小区上根据主调度小区的PDCCH配置信息和与该主调度小区关联的被调度小区的PDCCH配置信息,进行PDCCH监听。
在本申请中,终端设备的小区可以是指与所述终端设备建立了无线连接的服务小区,所述终端设备可以与所述小区进行无线通信。
上述小区集合中包含的所述至少两个小区可以包含终端设备的至少两个SCell, 或者包含所述终端设备的PCell以及所述终端设备的至少一个SCell。具体地,网络设备可以为终端设备配置一个PCell以及至少一个SCell,实现网络设备与终端设备之间以CA方式通信,PCell和SCell的子载波间隔可以相同也可以不同。SCell可以是PSCell,或者包括PSCelly以及PSCell之外的其他辅小区,其中,PSCell只有一个。需要指出的是,本申请中所述的小区(PCell或者SCell)为下行小区,后文均直接以“小区”进行说明。
举例说明所述小区集合的确定方式:假设终端设备被配置了子载波间隔为15kHz的PCell、SCell#1、以及子载波间隔为30kHz的SCell#2、SCell#3,其中,PCell的span pattern为(4,3),SCell#1的span pattern为(4,3),SCell#2的span pattern为(2,2),SCell#3的span pattern为(2,2),由于PCell与SCell#1的子载波间隔相同,且span pattern相同,则PCell与SCell#1被分入一个小区集合;由于SCell#2与SCell#3的子载波间隔相同,且span pattern相同,则SCell#2与SCell#3被分入另一个小区集合。
可选地,上述第一监听能力包括最大监听次数和/或最大CCE个数。
可选地,在本申请的一个实施方式中,确定终端设备的第一监听能力包括:根据该小区集合的span pattern对应的终端设备支持进行PDCCH监听的总能力值,以及该小区集合中的小区个数与网络设备为终端设备配置的小区总数的比例来确定。可选地,所述终端设备进行PDCCH监听的总能力值由所述终端设备在CA场景下进行PDCCH监听支持的小区个数的最大值、以及该小区集合的span pattern对应的监听能力确定。可以理解地,所述终端设备进行PDCCH监听所支持的小区个数的最大值小于所述网络设备为终端设备配置的小区总数。如果网络设备为终端设备配置的小区总数等于终端设备进行PDCCH监听所支持的小区个数,则说明终端设备的能力可以支持对为该终端设备配置的所有小区的PDCCH进行监听,不涉及监听能力的分配。
可选地,在本申请的一个实施方式中,通过如下公式(1)计算所述第一监听能力中的最大监听次数:
Figure PCTCN2021081942-appb-000019
其中,
Figure PCTCN2021081942-appb-000020
表示终端设备监听所述小区集合的PDCCH的最大次数,所述 小区集合中每个小区的子载波间隔配置为μ、span pattern(X,Y),μ的取值为0或1,μ=0表示子载波间隔为15kHz,μ=1表示子载波间隔为30kHz,(X,Y)的取值为集合{(2,2),(4,3),(7,3)}中的一个;
Figure PCTCN2021081942-appb-000021
表示所述终端设备在CA场景下进行PDCCH监听所支持的小区个数的最大值;
Figure PCTCN2021081942-appb-000022
表示终端设备在子载波间隔配置为μ、span pattern为(X,Y)的小区的一个span内监听PDCCH的最大次数;
Figure PCTCN2021081942-appb-000023
表示在网络设备为所述终端设备配置的子载波间隔配置为μ,span pattern为(X,Y)的小区个数,即表示该小区集合i中的小区个数;
Figure PCTCN2021081942-appb-000024
表示网络设备为终端设备配置的小区的总数,j的取值为0或1,j表示子载波间隔配置,j与μ含义相同。
可选地,在本申请的一个实施方式中,通过如下公式(2)计算所述第一监听能力中的最大CCE个数:
Figure PCTCN2021081942-appb-000025
其中,
Figure PCTCN2021081942-appb-000026
表示终端设备监听所述小区集合的PDCCH所用的最大CCE个数;
Figure PCTCN2021081942-appb-000027
表示终端设备监听子载波间隔配置为μ、span pattern为(X,Y)的小区的一个span的PDCCH所用的最大CCE个数。公式(2)与公式(1)中相同名称的变量的物理含义相同,不做赘述。
举例而言,网络配置为终端设备配置了子载波间隔为15kHz的PCell和SCell#1、SCell#2,子载波间隔为30KHz的SCell#3和SCell#4,共5个小区,其中,PCell以及SCell#1的span pattern为(4,3),SCell#2的span pattern为(2,2),SCell#3以及SCell#4的span pattern为(7,3)。PCell和SCell#1属于小区集合cell set 1;SCell#3和SCell#4属于小区集合cell set 2。假设终端设备支持CA场景下监听PDCCH的小区个数最多为4个,子载波间隔为15KHz的小区对应span pattern(4,3)的最大监听次数是44次,子载波间隔为30KHz的小区对应span pattern(7,3)的最大监听次数是36次,使用上述公式(1)计算cell set 1的最大监听次数
Figure PCTCN2021081942-appb-000028
cell set 2的最大监听次数
Figure PCTCN2021081942-appb-000029
也就是说,在CA场景下,在子载波间隔为15kHz且span pattern为(4,3)的小区以span为粒度监听PDCCH的总次数不超过70次;在子 载波间隔为30kHz且span pattern为(7,3)的小区以span为粒度监听PDCCH的总次数不超过57次。最大CCE个数的计算方式类似,不做赘述。
可以理解,上述公式(1)-(2)也可以用于计算SCell#2对应的最大监听次数/最大CC个数,但由于SCell#2不属于某个小区集合,或者说SCell#2单独作为一个小区集合,因此,对SCell#2不需要采用后续S202-S203描述的方法进行小区集合内不同小区间的监听能力分配。
S602:确定所述小区集合在一个时隙内的N个时间单元,所述N个时间单元中的每一个时间单元的起始位置是根据所述小区集合内的小区的span得到的,N为正整数。
其中,所述时间单元也可以称为时间窗或者符号集合,包括一组连续时域符号。
所述N个时间单元互相不重叠,包括:N个时间单元中的任意两个时间单元包含的时域符号完全不重叠,也可以说,N个时间单元中的任意两个时间单元的位置完全不重叠。
可选地,在本申请的一个实施方式中,所述N个时间单元中的第一时间单元的起始符号索引为所述小区集合中所有span的起始符号索引中最小的索引。
具体地,所述第一时间单元可以指在一个时隙中出现的第一个时间单元,即第一时隙中的首个时间单元,该第一时间单元的起始符号位置根据所述小区集合中所有span的起始符号索引中索引最小的span,即所有span中出现最早的span(以下称为“第一span”)的位置来确定,第一时间单元的起始符号索引与该第一span的起始符号索引相同。
可选地,在本申请的一个实施方式中,所述N个单元中除了第一时间单元的其他时间单元的位置根据所述小区集合的所有span中与该时间单元之前相邻的时间单元不重叠的span的起始符号索引来确定,其中,不重叠是指占用的符号完全不重叠。例如,定义第二时间单元为第一时间单元相邻的时间单元,且第二时间单元在第一时间单元之后,该第二时间单元的起始符号索引为所述小区集合中所有span中与所述第一时间单元不重叠的span中起始符号索引中最小的索引。又例如,定义第三时间单元为第二时间单元相邻的时间单元,第三时间单元在第一时间单元及第二时间 单元之后,该第三时间单元的起始符号索引为所述小区集合中除了包含在所述第一时间单元内的span的所有span中与所述第二时间单元不重叠的span中起始符号索引中最小的索引。以此规律,可以确定N个时间单元中其余每一个时间单元的起始符号位置,不做赘述。可以理解地,由于N个时间单元是相互不重叠的,因此,确定除了第一时间单元之外的某个时间单元的起始符号位置可以只考虑在该时间单元相邻的前一个时间单元之后出现的span,如果某个span出现在该相邻的前一个时间单元之前,即使该span与该相邻的前一个时间单元不重叠,该span不会被考虑用于确定该时间单元的起始符号位置。例如,上述确定第三时间单元的起始符号位置的过程中,即使第一span与第二时间单元也不重叠,由于第一span在第二时间单元之前,因此,对第一span不予以考虑。此外,需要说明的是,本申请中所述的“之前”、
“之后”均是表示时序上的出现顺序,可以用时间单元或者span的起始符号的索引大小来判断。
可选地,在本申请的一个实施方式中,网络设备预先配置所述小区集合中每一个小区的每个span位于所述N个时间单元的一个时间单元内,即一个span不能跨两个或两个以上时间单元的边界,可以降低计算span对应的监听能力的复杂度。在另一个实施方式中,也可以不限制其他小区的span位置,所述小区集合中任意一个小区的一个span可以位于两个或两个以上的时间单元内,即可以跨两个或两个以上时间单元的边界,或者一个span的部分符号处于一个时间单元内且其余符号位于该时间单元外,但其余符号不属于其他时间单元,该实施方式中,span配置的灵活程度高,可以适用于各种通信场景。以下实施方式中均以不限制span位置为例进行说明。
可选地,在本申请的一个实施方式中,所述N个时间单元中的一个时间单元包含的连续符号的个数与所述span pattern指示的两个相邻的span的起始符号之间的最小符号间隔相同。具体地,如前所述,span pattern可以表示为(X,Y),则时间单元包含的连续符号的个数,或者说时间单元的长度为X个符号。
可选地,所述N个时间单元的长度可以是相同的,例如均为X个符号。在一种可能的场景中,所述N个时间单元中的起始符号索引最大的时间单元即一个时隙中的最后一个时间单元可以跨两个时隙的边界。例如图7所示,一个时隙占用了符号0 至符号13的14个符号,一个小区的span pattern为(4,3),该时隙中第一个span所在位置为符号1、符号2和符号3,第二个span所在的位置为符号5、符号6和符号7,第三个span所在位置为符号11、符号12和符号13。在该实施方式中,根据第三个span确定的时间单元(时间单元#3)所在位置为当前时隙的符号11、符号12、符号13以及下一个时隙的符号0,即时间单元#3跨过时隙边界。
可选地,所述N个时间单元中的部分时间单元的长度不同。例如,可以限制一个时隙中的最后一个时间单元不跨两个时隙的边界,即该最后一个时间单元的长度受到所在时隙边界的限制,该最后一个时间单元的长度可以小于X,即最后一个时间单元的长度等于最后一个时间单元的起始符号到时隙边界的符号间隔个数与X值的最小值。仍以图7所示,根据第三个span确定的时间单元(时间单元#3’)的长度为X与第三个span的起始符号与当前时隙边界的符号个数的最小值,即min{4,13-11+1}=3,那么时间单元#3’所在位置为当前时隙的符号11、符号12和符号13,没有超过时隙边界。
结合图8说明时间单元与小区集合中各小区的span的关系。如图8所示的小区集合包括PCell和SCell,PCell和SCell的子载波间隔均为15kHz,span pattern均为(4,3),PCell或者SCell中的每个span的长度为3个符号,同一个小区的两个span的最小符号间隔为4个符号。PCell在时隙1内有span#1,span#2以及span#3;SCell在时隙1内有span#4,span#5以及span#6,时隙1包含索引号为0~13的14个符号(符号0~符号13)。针对PCell,span#1的起始符号位置为符号0,且span#1占用了符号0~符号2;span#2与span#1的起始符号位置的间隔为4个符号,span#2占用了符号4~符号6,span#3与span#2的起始符号位置的间隔为5个符号,span#3占用了符号9~符号11。针对SCell,span#4的起始符号位置为符号2且span#4占用了符号2~符号4;span#5与span#4的起始符号位置的间隔为4个符号,span#5占用了符号6~符号8;span#6与span#5的起始符号位置的间隔为4个符号,span#6占用了符号10~符号12。
如图8所示,span#1是所有span中起始符号索引最小的span,因此,可以用span#1的起始符号位置作为时间单元#1的起始符号位置。span#2是所有span中与时 间单元#1不重叠的span中起始符号索引最小的,因此,可以用span#2的起始符号位置作为时间单元#2的起始符号位置。span#3是所有span(除了span#1)中与时间单元#2不重叠的span中起始符号索引最小的,因此,可以用span#3的起始符号位置作为时间单元#3的起始位置,此外,时间单元#1~时间单元#3的长度均等于该小区集合对应的span pattern中的X值,即4个符号,因此,时间单元#1占用了符号0~符号3,时间单元#2占用了符号4~符号7,时间单元#3占用了符号9~符号12(图8中的一个虚线框表示一个时间单元)。如图8所示,span#1~span#3占用的符号分别处于时间单元#1~时间单元#3内,span#4占用的符号部分位于时间单元#1内且部分位于时间单元#2内(分别与时间单元#1、时间单元#2部分重叠),span#5占用的符号部分位于时间单元#2内(与时间单元#2部分重叠),span#6占用的符号位于时间单元#3内。
S603:根据所述N个时间单元,将所述第一监听能力在所述小区集合内进行分配,用于分别监听所述小区集合内的每个小区的PDCCH。
具体地,由于设置了N个时间单元,第一监听能力在所述小区集合中的每个小区之间进行分配是以时间单元为单位的,即考虑每个时间单元内各个小区分配到的第一监听能力。进一步地,每个小区的监听能力是以一个时隙中的span为单位体现的,换言之,第一监听能力最终分配到了每个时间单元中的各个小区的span上。进而,终端设备以span为粒度,监听该小区集合中的各个小区的候选PDCCH。可选地,根据上述公式(1)计算得到的
Figure PCTCN2021081942-appb-000030
的值,或者根据上述公式(2)计算得到的
Figure PCTCN2021081942-appb-000031
的值可以用于在所述N个时间单元的一个时间单元中的span之间进行分配。
可选地,终端设备或网络设备按照小区集合内的小区的span占用的符号与一个或多个所述时间单元的重叠情况来确定如何将span参与所述第一监听能力在每个时间单元内的分配。
在本申请的一个实施方式中,当第一小区的span占用的符号与第一时间单元部分或全部重叠时,根据所述第一小区的span占用的全部符号的个数,将所述第一监听能力的部分或全部分配给所述第一小区,其中,所述第一小区是所述小区集合中的 一个小区,所述第一时间单元为所述N个时间单元中的一个。
以图8为例,当为时间单元#1内的各小区的span分配监听能力时,由于span#1全部位于时间单元#1内,span#4部分位于时间单元#1内,因此,span#1与span#4各自占用的全部符号的个数都用于参与第一监听能力在时间单元#1内的分配。
当为时间单元#2内的各小区的span分配监听能力时,由于span#2全部位于时间单元#2内,span#4部分位于时间单元#2内,span#5部分位于时间单元#2内,因此,span#1、span#2和span#3分别占用的全部符号的个数都参与第一监听能力在时间单元#1内的分配。
进一步说明在一个时间单元内各个span之间的监听能力分配。
仍以图8为例,假设分配给cell set1的PDCCH监听能力(以最大CCE个数为例)为
Figure PCTCN2021081942-appb-000032
即cell set1的每个时间单元分配到的最大CCE个数为40,进一步地,在cell set1的每一个时间单元内的不同小区的span上进行PDCCH监听所用的最大CCE个数之和为40。由于span#4部分位于时间单元#1中,一种可能的实现方式是将span#4完全算入时间单元#1中,因此,span#1和span#4对应的CCE最大个数之和是40。进一步地,由于3GPP协议规定只有在PCell才会出现PDCCH超配置场景(PDCCH overbooking)。而终端设备对于超配置场景,可以执行PDCCH丢弃(PDCCH dropping),使得终端设备监听PDCCH的最大监听次数和最大CCE个数分别不超过最大上限,在本申请中,最大上限为一个时隙内一个span pattern为(X,Y)的span对应的最大监听次数和最大CCE个数。假设对于span pattern为(4,3)的span对应的最大CCE个数为36,而cell set1中的PCell和SCell以span为粒度监听PDCCH所用的最大CCE个数之和为40,由于终端设备要在PCell上要执行PDCCH丢弃,那么网络设备首先确定终端设备的PCell上span pattern(4,3)的一个span上配置的最大CCE个数不超过36,即在时间单元#1内,span#1上配置的最大CCE个数不超过36。剩余部分为40-36=4,因此,网络设备为SCell上时间单元#1内的span#4上配置的最大CCE个数不超过4。可选地,如果一个小区集合中的小区都是SCell,由于终端设备无需执行PDCCH丢弃,因此网络设备只需设置在时间单元#1内的span#1和span#4上配置的最大CCE个数之和不超过40,而span#1和span#4 分别获得的最大CCE个数可以由网络设备随机分配。
在本申请的一个实施方式中,当第二小区的span占用的符号与所述第二时间单元全部或部分重叠时,根据重叠部分的符号个数占所述第二小区的span占用的符号个数的比例,将所述第一监听能力的部分或全部分配给所述第二小区的span,其中,所述第二小区是所述小区集合中的一个小区,所述第二时间单元为所述N个时间单元中的一个。
以图8为例,当为时间单元#1内的各小区的span分配监听能力时,span#1全部位于时间单元#1内,即span#1与时间单元#1重叠的符号的比例为100%;span#4与时间单元#1重叠了2个符号,span#4的长度为3个符号,重叠比例为2/3,因此,span#1以其占用符号个数的100%参与第一监听能力在时间单元#1内的分配,且span#4以其占用符号个数的2/3参与第一监听能力在时间单元#1内的分配。
当为时间单元#2内的各小区的span分配监听能力时,span#2全部位于时间单元#2内;span#4与时间单元#1重叠了1个符号,span#4的长度为3个符号,重叠比例为1/3;span#5与时间单元#2重叠了2个符号,span#5的长度为3个符号,重叠比例为2/3,因此,span#2以其占用符号个数的100%参与第一监听能力在时间单元#2内的分配,span#4以其占用符号个数的1/3参与第一监听能力在时间单元#2内的分配,且span#5以其占用符号个数的2/3参与第一监听能力在时间单元#2内的分配。
可选地,在本申请的一个实施方式中,当第一小区的span占用的符号与两个时间单元有重叠,则第一小区的span只参与所述第一监听能力在所述两个时间单元中的一个时间单元内的分配。
以图8为例,可选地,若span#4以全部符号参与所述第一监听能力在时间单元#1内的分配,就不再参与所述第一监听能力在时间单元#2的分配,即一个span参与与其重叠的前一个时间单元内的第一监听能力分配。可选地,若span#4以全部符号参与所述第一监听能力在时间单元#2内的分配,就不再参与所述第一监听能力在时间单元#1的分配,即一个span参与与其重叠的后一个时间单元内的第一监听能力分配。可选地,若span#4以重叠的符号比例参与与其重叠的时间单元内的第一监听能力分配,由于span#4与时间单元#1的重叠的符号个数为2,重叠个数大于span#4与 时间单元#2的重叠的符号个数(1),span#4可以只参与所述第一监听能力在时间单元#1内的分配,就不参与时间单元#2的分配,即一个span参与与该span重叠的符号的比例最高的时间单元内的监听能力分配。
可以理解地,与一个时间单元相关的span都参与对该时间单元中各小区的监听能力分配,其中,与时间单元相关的span包括至少一个符号与该时间单元重叠的span。
在本申请的一个实施方式中,当上述方法由终端设备执行,终端设备按上述S601-S603完成对所述第一监听能力在小区集合内的分配后,终端设备可以根据分配到小区的span的监听能力,以span为粒度监听PDCCH。例如,在自调度场景下,终端设备以每个小区的span为粒度分别监听该小区发送的PDCCH。在跨载波调度场景下,终端设备以主调度小区的span为粒度监听主调度小区的PDCCH,该主调度小区的PDCCH可以用于调度该主调度小区的数据信道或被调度小区的数据信道。其中,PCell可以作为SCell的主调度小区,或者一个SCell可以作为其他SCell的主调度小区。
在本申请的一个实施方式中,当上述方法由网络设备例如基站执行,当基站按上述S601-S603完成对所述第一监听能力在小区集合内的分配后,基站可以向终端设备发送PDCCH配置信息。
采用本申请提供的PDCCH的监听方法,为包含相同子载波间隔以及span pattern的小区的小区集合设置一个或多个时间单元,并依据所述时间单元与小区集合内的各小区的span的时域位置重叠关系,将所述小区集合对应的监听能力在各小区间分配。从而,解决了在CA场景下,由于不同小区的span不对齐而导致的无法确定每个小区内span对应的监听能力问题,进而,终端设备能够依据分配到各小区的span的监听能力,以span为粒度监听各个小区的候选PDCCH。
请参考图9,为本申请实施例提供的一种PDCCH的监听方法的流程示意图。本申请提供的方法可以由终端设备或者网络设备执行,也可以由用于终端设备的通信装置例如芯片、或者由用于网络设备的通信装置例如芯片执行。
如图9所示,该方法包括:
S901:确定M个小区集合,其中,M为正整数,所述M个小区集合中的每一个小区集合包含终端设备的至少一个小区。
S902:根据第一小区集合内包含的小区的个数占网络设备为所述终端设备配置的小区总数的比例,将所述终端设备的第一监听能力分配给第一小区集合,其中,所述第一小区集合为所述M个小区集合中的一个。
所述第一小区集合可以是所述M个小区集合中的任意一个。
可选地,在本申请的一个实施方式中,所述第一小区集合包含所述终端设备的一个小区。
可选地,在本申请的一个实施方式中,所述第一小区集合包含所述终端设备的至少两个小区,且所述第一小区集合中的每个小区的span pattern相同、span的位置对齐、且子载波间隔相同。也就是说,针对所述M个小区集合中的每一个小区集合,该小区集合中包含的每个小区的span pattern相同、span的位置对齐、且子载波间隔相同。
可选地,所述小区集合包含终端设备的至少两个SCell,或者包含所述终端设备的PCell以及所述终端设备的至少一个SCell。
关于span pattern和子载波间隔的描述可以参考前文相关内容,在此不做赘述。
可选地,所述第一小区集合中的每个小区的span的位置对齐包括:当存在与第一span重叠的第二span时,所述第一span的起始符号与所述第二span的起始符号相同,且所述第一span占用的符号个数与所述第二span占用的符号个数相同,其中,所述第一span是第一小区中的一个span,第二span是第二小区中的一个span,所述第一小区和所述第二小区属于所述第一小区集合。具体地,第一span可以是第一小区中的任意一个span,第二span可以是第二小区中的任意一个span,第一小区和第二小区可以是任意两个网络侧为终端设备配置的span pattern相同且子载波间隔相同的小区。在该实施方式中,对span位置对齐的要求是只要出现时域位置重叠的分别属于多个小区的span,所述多个span的起始符号相同即起始符号的索引相同,且每个span的长度相同。一旦有两个小区的span的起始符号不同,则不能认为这两 个小区的span位置对齐。本申请中,对于如上描述的这种第一小区集合中的每个小区的span的位置对齐的情形可以称为第一小区集合的span完全对齐的场景。如图10所示,小区集合中包括PCell和SCell,span pattern均为(4,3),PCell在一个时隙内配置了span#1,span#2,span#3;SCell在一个时隙内配置了span#4,span#5,span#6,span#1~span#6的长度均为3个符号,span#1与span#4的起始符号相同,span#2与span#5的起始符号相同,span#3与span#6的起始符号相同,因此,可以认为PCell和SCell的span位置对齐。
可选地,在本申请的一个实施方式中,所述方法还包括:确定所述第一小区集合在一个时隙内的N个互相不重叠的时间单元,N为正整数。其中,所述时间单元与图6-图8描述的实施例中的时间单元含义相同,关于如何确定时间单元可以参考前文相关内容,例如S602中的相关描述,在此不做赘述。
在该实施方式中,不限制小区集合中各个小区的span的起始符号是否相同。
在该实施方式中,所述第一小区集合中的每个小区的span位置对齐,具体包括:第三span与第一时间单元部分重叠或完全重叠,且与所述N个时间单元中除所述第一时间单元外的其它时间单元不重叠,所述第三span为所述第一小区集合中的span,所述第一时间单元为所述N个时间单元中的一个。也就是说,所述第一小区集合中的任意一个span完全处于一个N个时间单元中的一个时间单元中。或者,该span的部分处于一个时间单元中,其余部分处于该时间单元外且不处于其他时间单元中。简单而言,一个span不跨两个时间单元的边界。其中,一个span部分处于或完全处于一个时间单元中是指一个span占用的符号可以部分或全部位于一个时间单元内,即一个span占用的符号可以与一个时间单元占用的符号部分或全部重叠。本申请中,对于如上这种第一小区集合中的每个小区的span位置对齐的情形可以称为第一小区集合内的span根据时间单元对齐的场景。
可选地,上述两种确定span位置对齐的方式可以结合使用。例如,第一小区与第二小区在同一个时隙中的首个span的起始符号相同且长度相同,而首个span之后的其他span起始符号不同但位于相同的时间单元内,也可以认为这些小区的span位置是对齐的。
可选地,在本申请的一个实施方式中,所述M个小区集合中的部分或全部小区集合可以只包含一个小区,该小区可以是所述终端设备的PCell或者SCell。
结合图11说明上述M个小区集合的确定方式。假设网络设备为终端设备配置了5个小区,以其中一个小区作为该终端设备的PCell,其余小区作为该终端设备的SCell#1~SCell#4,其中,PCell、SCell#1、SCell#2、SCell#3以及SCell#4的子载波间隔均为15kHz,PCell、SCell#1以及SCell#2的span pattern为(4,3),SCell#3以及SCell#4的span pattern为(7,3)。PCell在时隙1内有span#1,span#2以及span#3;SCell#1在时隙1内有span#4,span#5以及span#6;SCell#2在时隙1内有span#7,span#8以及span#9;SCell#3在时隙1内有span#10以及span#11;SCell#4在时隙1内有span#12以及span#13,时隙1包含索引号为0~13的14个符号(符号0~符号13)。针对PCell,span#1的起始符号位置为符号0,且span#1占用了符号0~符号2;span#2与span#1的起始符号位置的间隔为4个符号,span#2占用了符号4~符号6;span#3与span#2的起始符号位置的间隔为5个符号,span#3占用了符号9~符号11。针对SCell#1,span#4的起始符号位置为符号2,且span#4占用了符号2~符号4;span#5与span#4的起始符号位置的间隔为4个符号,span#5占用了符号6~符号8;span#6与span#5的起始符号位置的间隔为4个符号,span#6占用了符号10~符号12。针对SCell#2,span#7的起始符号位置为符号2,且span#7占用了符号2~符号4;span#8与span#7的起始符号位置的间隔为4个符号,span#8占用了符号6~符号8;span#9与span#8的起始符号位置的间隔为4个符号,span#9占用了符号10~符号12。针对SCell#3,span#10的起始符号位置为符号0,且span#10占用了符号0~符号2;span#11与span#10的起始符号位置的间隔为7个符号,span#11占用了符号7~符号9。针对SCell#4,span#11的起始符号位置为符号4,且span#12占用了符号4~符号6;span#13与span#12的起始符号位置的间隔为7个符号,span#13占用了符号11~符号13。如图11所示,PCell与SCell#1和SCell#2的子载波间隔配置相同、span pattern相同,但是span不对齐,PCell单独分到一个小区集合(cell set 1)。SCell#1和SCell#2的子载波间隔相同、span pattern相同,并且各个span是对齐的,因此SCell#1和SCell#2可以划分为一个小区集合(cell set 2),PCell,SCell#3,SCell#4虽 然子载波间隔相同、span pattern相同,但是span不对齐,因此各自为独立的一个小区集合(cell set 3~cell set 4)。
可选地,考虑将时间单元作为确定小区集合的依据。由于PCell,SCell#1以及SCell#2的span pattern以及子载波间隔相同,可以先以PCell、SCell#1以及SCell#2的span为依据先确定时间单元,如图12所示,包括时间单元#1~时间单元#3,每个时间单元的长度为4个符号(图12中的一个虚线框表示一个时间单元)。由于span#4和span#7的部分符号位于时间单元#1内,span#5和span#8的部分符号位于时间单元#2内,span#6和span#9的部分符号位于时间单元#3内,因此,可以将PCell,SCell#1以及SCell#2划分为一个小区集合(cell set 1’)。时间单元#4和时间单元#5,每个时间单元的长度为7个符号。由于span#10和span#12的所有符号位于时间单元#4内,span#11和span#13的所有符号位于时间单元#5内,因此,SCell#3,SCell#4划分为一个小区集合(cell set 2’)。
所述终端设备进行PDCCH监听所支持的小区个数的最大值是指:在CA条件下,终端设备进行PDCCH监听所支持的各个子载波间隔的小区总数的最大值。此外,所述小区总数不区分小区的子载波间隔配置,即包含了网络设备配置的不同子载波间隔的小区的总数。
可选地,上述第一监听能力包括最大监听次数和/或最大CCE个数,可以参考前文相关描述,在此不做赘述。
可选地,在本申请的一个实施方式中,所述终端设备的第一监听能力根据所述终端设备进行PDCCH监听所支持的小区个数的最大值、以及所述第一小区集合的span pattern对应的监听能力确定。
可选地,在本申请的一个实施方式中,可以通过如下公式(3)计算上述第一小区集合分配到的最大监听次数:
Figure PCTCN2021081942-appb-000033
其中,
Figure PCTCN2021081942-appb-000034
表示所述终端设备监听所述第一小区集合的PDCCH的最大次数,所述第一小区集合中的每个小区的子载波间隔配置为μ、span pattern为(X,Y),μ的取值为0或1,(X,Y)的取值为集合{(2,2),(4,3),(7,3)}中的一个,第一小 区集合由cell set i表示,i为所述第一小区集合在所述M个小区集合中的索引,i为小于或等于M的非负整数;
Figure PCTCN2021081942-appb-000035
表示所述终端设备进行PDCCH监听所支持的小区个数的最大值;
Figure PCTCN2021081942-appb-000036
表示所述终端设备在子载波间隔配置为μ、span pattern(X,Y)的小区的一个span内监听PDCCH的最大次数;
Figure PCTCN2021081942-appb-000037
表示在网络设备为所述终端设备配置的子载波间隔配置为μ,span pattern为(X,Y)且span的位置对齐的小区的个数,即表示该第一小区集合或者说cell set i中的小区个数;
Figure PCTCN2021081942-appb-000038
表示所述网络设备为所述终端设备配置的小区的总数,j表示子载波间隔配置,j的取值为0或1。
可选地,上述i可以从0开始计数,或者从1开始计数。
可选地,在本申请的一个实施方式中,可以通过如下公式(4)计算上述第一小区集合分配得到的最大CCE个数:
Figure PCTCN2021081942-appb-000039
其中,
Figure PCTCN2021081942-appb-000040
表示终端设备监听所述第一小区集合的PDCCH所用的最大CCE个数;
Figure PCTCN2021081942-appb-000041
表示所述终端设备监听子载波间隔配置为μ、span pattern(X,Y)的小区的一个span的PDCCH所用的最大CCE个数;公式(4)与公式(3)中相同名称的变量的物理含义相同,不做赘述。
可以理解地,由于终端设备以span为粒度进行PDCCH监听,对于第一小区集合内的span完全对齐的场景,所述第一小区集合分配到的监听能力可以是指在一个span的时域范围内,第一小区集合内各个小区的监听能力之和;对于第一小区集合内的span根据时间单元对齐的场景中,所述第一小区集合分配到的监听能力可以是指在一个时间单元的时域范围内,第一小区集合内各个小区的监听能力之和。例如上述
Figure PCTCN2021081942-appb-000042
是指在一个span或者一个时间单元的时域范围内,终端设备监听第一小区集合内各个小区的候选PDCCH的最大次数之和;又例如上述
Figure PCTCN2021081942-appb-000043
是指在一个span或者一个时间单元的时域范围内,终端设备监听第一小区集合内各个小区的候选PDCCH所用的最大CCE个数之和。
S903:将分配给所述第一小区集合的监听能力在所述第一小区集合内的小区间分 配,用于分别监听所述第一小区集合内的每个小区的PDCCH。
可选地,将分配给所述第一小区集合的监听能力在所述第一小区集合内的小区间分配满足如下条件:分配到各个小区的最大监听次数之和小于或等于分配给所述第一小区集合的最大监听次数;以及,分配到各个小区的最大CCE个数之和小于或等于分配给所述第一小区集合的最大CCE个数。
可选地,当采用时间单元作为确定小区集合的依据时,分配到小区集合的监听能力在该小区集合内的各小区之间分配时,可以考虑各个小区的span与时间单元的重叠情况,以span与时间单元的重叠比例参与监听能力在小区间的分配,具体实现方式可以参考前述图6-图8所示实施例中的相关内容,例如S603中的描述,在此不做赘述。
可选地,所述将分配给所述第一小区集合的监听能力在所述第一小区集合内的小区间分配包括:当所述第一小区集合内包含PCell、以及SCell时,优先为所述PCell分配监听能力。类似地,当SCell包含PSCell时,为PSCell分配监听能力的优先级高于其他SCell。
结合图13以一个例子说明小区集合的监听能力的计算过程:
假设网络侧为终端设备配置了8个小区(图13中以CC#1至CC#8表示8个小区),其中子载波间隔配置15kHz的小区为CC#1和CC#2,子载波间隔配置为30kHz的小区为CC#3、CC#4、CC#5、CC#6、CC#7和CC#8。CC#1的span pattern为(2,2),CC#2~CC#6的span pattern为(4,3),CC#7以及CC#8的span pattern为(7,3),其中,CC#1、CC#2、CC#3、CC#7以及CC#8各为一个小区集合,CC#4、CC#5和CC#6分为一个小区集合,小区集合的确定方法参考前述内容,不做赘述。图13中(X,Y)的上标表示图案是否相同,例如(4,3)′与(4,3)′的子载波间隔配置相同、span pattern相同且各小区的span是对齐的,(7,3)′与(7,3)″的子载波间隔配置相同、span pattern相同但各小区的span不对齐。假设span pattern为(X,Y),子载波间隔配置μ的服务小区,与终端设备监听备选PDCCH的最大监听次数和所用的最大CCE个数关系如下表1-表2所示。
Figure PCTCN2021081942-appb-000044
表1
Figure PCTCN2021081942-appb-000045
表2
假设终端设备支持的CA场景下PDCCH监听能力为4个小区。以下以最大CCE个数为例进行计算:
对于小区集合1,即CC#1,
Figure PCTCN2021081942-appb-000046
对于小区集合2,即CC#2,
Figure PCTCN2021081942-appb-000047
对于小区集合3,即CC#3,
Figure PCTCN2021081942-appb-000048
对于小区集合4,即CC#4、CC#5和CC#6,
Figure PCTCN2021081942-appb-000049
对于小区集合5,即CC#7,
Figure PCTCN2021081942-appb-000050
对于小区集合6,即CC#8,
Figure PCTCN2021081942-appb-000051
最大监听次数的计算类似,不做赘述。
可以理解,本申请实施例提供的各个计算公式只是举例,不构成对本申请实施例的限定,例如,各个计算公式可以有多种变形方式,各个计算公式中采用的变量的名称也可以被替换。
采用本申请实施例提供的PDCCH的监听方法,将子载波间隔相同、span pattern相同、以及span的位置对齐的小区划分入一个小区集合,并根据该小区集合包含的小区的个数占网络设备为所述终端设备配置的小区总数的比例,将终端设备的监听能力分配给该小区集合,进而,在小区集合内的小区间分配监听能力。通过将span不对齐的小区划分入不同的小区集合加以区分,再利用公式计算或映射关系在小区集合间进行监听PDCCH的能力分配,解决了在CA场景下,由于不同小区的span不对齐而导致的无法确定每个小区的span对应的监听能力的问题,进而,终端设备能够依据分配到各小区的span的监听能力,以span为粒度监听所述小区集合中的各个小区的候选PDCCH。
本申请实施例还提供用于实现以上任一种方法的通信装置,例如,提供一种通信装置包括用以实现以上任一种方法中终端设备设备或者网络设备所执行的各个步骤的单元(或手段)。例如,请参考图14,其为本申请实施例提供的一种通信装置的示 意图。该通信装置可以为用于终端设备或网络设备的模块,例如,芯片;或者该通信装置是终端设备或者网络设备,如图14所示,该通信装置1400包括确定单元1410,分配单元1420。
可选地,在一个实施方式中,确定单元1410可以用于确定终端设备的第一监听能力用于监听所述终端设备的小区集合的PDCCH,所述小区集合包含所述终端设备的至少两个SCell,或者包含所述终端设备的PCell以及所述终端设备的至少一个SCell,所述小区集合中的每个小区的span pattern和子载波间隔均相同;以及确定所述小区集合在一个时隙内的N个时间单元,所述N个时间单元中的每一个时间单元的起始位置是根据所述小区集合内的小区的span得到的,N为正整数;所述分配单元1420可以用于根据所述N个时间单元,将所述第一监听能力在所述小区集合内进行分配,用于分别监听所述小区集合内的每个小区的PDCCH。
有关该实施方式中确定单元1410以及分配单元1420更详细的描述可以直接参考图6-图7所示的方法实施例中相关描述直接得到,此处不再赘述。
可选地,在一个实施方式中,确定单元1410可以用于确定M个小区集合,其中,M为正整数,所述M个小区集合中的每一个小区集合包含终端设备的至少一个小区;分配单元1720用于根据第一小区集合包含的小区的个数占网络设备为所述终端设备配置的小区总数的比例,将所述终端设备的第一监听能力分配给所述第一小区集合,并将分配给所述第一小区集合的监听能力在所述第一小区集合内的小区间分配,用于分别监听所述第一小区集合内的每个小区的PDCCH,其中,所述第一小区集合为所述M个小区集合中的一个,所述第一小区集合包含所述终端设备的一个小区,或者所述第一小区集合包含所述终端设备的至少两个小区,所述第一小区集合中的每个小区的时间跨度图案span pattern相同、span的位置对齐、且子载波间隔相同。其中,所述终端设备的至少两个小区包括所述终端设备的至少两个SCell,或者包括所述终端设备的PCell以及至少一个SCell。
有关该实施方式中确定单元1410以及分配单元1420更详细的描述可以直接参考图8-图11所示的方法实施例中相关描述直接得到,此处不再赘述。
可选地,所述通信装置1400还包括通信单元1403,用于与其他设备之间的通 信。例如,当所述通信装置1400是终端设备或者用于终端设备时,所述通信单元1703用于与基站等网络设备通信;当所述通信装置1400是基站等网络设备或者用于网络设备时,所述通信单元1703用于与终端设备通信。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上***(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元(例如通信单元)是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元(例如发送单元或通信单元)是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
请参考图15,其为本申请实施例提供的一种网络设备的结构示意图。该网络设备可以是基站,用于执行以上方法实施例提供的PDCCH的监听方法。如图15所示,该网络设备包括:天线1510、射频装置1520、基带装置1530。天线1510与射频装置1520连接。在上行方向上,射频装置1520通过天线1510接收终端设备发送的信息,将终端设备发送的信息发送给基带装置1530进行处理。在下行方向上,基带装置1530对终端设备的信息进行处理,并发送给射频装置1520,射频装置1520对终端设备的信息进行处理后经过天线1510发送给终端设备。
基带装置1530可以包括一个或多个处理元件1531,例如,包括一个主控CPU和其它集成电路。此外,该基带装置1530还可以包括存储元件1532和接口1533,存储元件1532用于存储程序和数据;接口1533用于与射频装置1520交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。以上用于网络设备的装置可以位于基带装置1530,例如,以上用于网络设备的装置可以为基带装置1530上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上方法实施例提供的任一种PDCCH的监听方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,网络设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于网络设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例提供的PDCCH的监听方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
请参考图16,其为本申请实施例提供的一种终端设备的结构示意图。该终端设备用于实现以上方法实施例提供的PDCCH的监听方法。如图16所示,该终端设备包括:天线1610、射频部分1620、信号处理部分1630。天线1610与射频部分1620连接。在下行方向上,射频部分1620通过天线1610接收网络设备发送的信息,将网络设备发送的信息发送给信号处理部分1630进行处理。在上行方向上,信号处理部分1630对终端设备的信息进行处理,并发送给射频部分1620,射频部分1620对终端设备的信息进行处理后经过天线1610发送给网络设备。
信号处理部分1630用于实现对数据各通信协议层的处理。信号处理部分1630可以为该终端设备的一个子***,则该终端设备还可以包括其它子***,例如中央处理子***,用于实现对终端设备操作***以及应用层的处理;再如,周边子***用于实现与其它设备的连接。信号处理部分1630可以为单独设置的芯片。可选的,以上的装置可以位于信号处理部分1630。
信号处理部分1630可以包括一个或多个处理元件1631,例如,包括一个主控CPU和其它集成电路。此外,该信号处理部分1630还可以包括存储元件1632和接口电路1633。存储元件1632用于存储数据和程序,用于执行以上方法中终端设备所执行的方法的程序可能存储,也可能不存储于该存储元件1632中,例如,存储于信号处理部分1630之外的存储器中,使用时信号处理部分1630加载该程序到缓存中进行使用。接口电路1633用于与装置通信。以上装置可以位于信号处理部分1630,该信号处理部分1630可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上方法实施例提供的任一种PDCCH的监听方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如该装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例提供的任一种PDCCH的监听方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上终端设备或网络设备所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中的任一种PDCCH的监听方法。
在又一种实现中,终端设备或网络设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
实现以上方法中各个步骤的单元可以集成在一起,以片上***(system-on-a-
chip,SOC)的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少 一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上终端设备或网络设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上终端设备或网络设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
在又一种实现中,本申请实施例中提供的通信装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种PDCCH的监听方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行终端设备或网络设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端设备或网络设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端设备或网络设备执行的部分或全部步骤。可以理解的是,接口电路可以为收发器或输入输出接口。可选的,该通信装置还可以包括存储器,用于存储上述一个处理元件执行的指令或存储处理元件运行指令所需要的输入数据或存储处理元件运行指令后产生的数据。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以是一个存储器,也可以是多个存储元件的统称。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例中所述的资源也可以称为传输资源,包括时域资源、频域资源、码道资源中的一种或多种,可以用于在上行通信过程或者下行通信过程中承载数据或信令。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
应理解,在本发明实施例中,“与A对应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本申请实施例中出现的“多个”是指两个或两个以上。
本申请实施例中出现的第一、第二等描述,仅作示意与区分描述对象之用,没有次序之分,也不表示本申请实施例中对描述的对象个数的特别限定,不能构成对本申请实施例的任何限制。
本申请实施例中出现的“传输”(transmit/transmission)如无特别说明,是指双向传输,包含发送和/或接收的动作。具体地,本申请实施例中的“传输”包含数据的发送,数据的接收,或者数据的发送和数据的接收。或者说,这里的数据传输包括上行和/或下行数据传输。数据可以包括信息和/或信号,上行数据传输即上行信息和/或上行信号传输,下行数据传输即下行信息和/或下行信号传输。
可以理解的,本申请实施例中,终端设备和/或网络设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例中,还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。

Claims (41)

  1. 一种物理下行控制信道的监听方法,其特征在于,包括:
    确定M个小区集合,其中,M为正整数,所述M个小区集合中的每一个小区集合包含终端设备的至少一个小区;
    根据第一小区集合包含的小区的个数占网络设备为所述终端设备配置的小区总数的比例,将所述终端设备的第一监听能力分配给所述第一小区集合,其中,所述第一小区集合为所述M个小区集合中的一个;
    将分配给所述第一小区集合的监听能力在所述第一小区集合内的小区间分配,用于分别监听所述第一小区集合内的每个小区的物理下行控制信道;
    其中,所述第一小区集合包含所述终端设备的一个小区;或者,
    所述第一小区集合包含所述终端设备的至少两个小区,所述第一小区集合中的每个小区的时间跨度图案span pattern相同、span的位置对齐、且子载波间隔相同。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备的第一监听能力是根据所述终端设备进行物理下行控制信道监听所支持的小区个数的最大值、以及所述第一小区集合对应的span pattern对应的监听能力确定的。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第一监听能力包括所述终端设备监听候选物理下行控制信道的最大次数,和/或,监听候选物理下行控制信道所用的不重叠的控制信道元素个数的最大值。
  4. 根据权利要求3所述的方法,其特征在于,所述根据第一小区集合包含的小区的个数占网络设备为所述终端设备配置的小区总数的比例,将所述终端设备的第一监听能力分配给第一小区集合,具体包括:
    根据如下公式计算得到所述终端设备监听所述第一小区集合的候选物理下行控制信道的最大次数:
    Figure PCTCN2021081942-appb-100001
    其中,
    Figure PCTCN2021081942-appb-100002
    表示所述终端设备监听所述第一小区集合的候选物理下行控制信道的最大次数,所述第一小区集合中的每个小区的子载波间隔配置为μ、span pattern为(X,Y),μ的取值为0或1,(X,Y)的取值为集合{(2,2),(4,3),(7,3)}中的 一个,i为所述第一小区集合在所述M个小区集合中的索引,i为小于或等于M的非负整数;
    Figure PCTCN2021081942-appb-100003
    表示所述终端设备进行物理下行控制信道监听所支持的小区个数的最大值;
    Figure PCTCN2021081942-appb-100004
    表示所述终端设备在子载波间隔配置为μ、span pattern为(X,Y)的小区的一个span内监听候选物理下行控制信道的最大次数;
    Figure PCTCN2021081942-appb-100005
    表示在所述网络设备为所述终端设备配置的子载波间隔配置为μ、span pattern为(X,Y)且span的位置对齐的小区的个数;
    Figure PCTCN2021081942-appb-100006
    表示所述网络设备为所述终端设备配置的小区的总数,j表示子载波间隔配置,j的取值为0或1。
  5. 根据权利要求3或4所述的方法,其特征在于,所述根据第一小区集合包含的小区的个数占网络设备为所述终端设备配置的小区总数的比例,将所述终端设备的第一监听能力分配给第一小区集合,具体包括:
    根据如下公式计算得到所述终端设备的监听所述第一小区集合的候选物理下行控制信道所用的不重叠的控制信道元素个数的最大值:
    Figure PCTCN2021081942-appb-100007
    其中,
    Figure PCTCN2021081942-appb-100008
    表示所述终端设备监听所述第一小区集合的候选物理下行控制信道所用的不重叠的控制信道元素个数的最大值,所述第一小区集合中的每个小区的子载波间隔配置为μ、span pattern为(X,Y),μ的取值为0或1,(X,Y)的取值为集合{(2,2),(4,3),(7,3)}中的一个,i为所述第一小区集合在所述M个小区集合中的索引,i为小于或等于M的非负整数;
    Figure PCTCN2021081942-appb-100009
    表示所述终端设备进行物理下行控制信道监听所支持的小区个数的最大值;
    Figure PCTCN2021081942-appb-100010
    表示所述终端设备在子载波间隔配置为μ、span pattern为(X,Y)的小区的一个span内监听候选物理下行控制信道所用的不重叠的控制信道元素个数的最大值;
    Figure PCTCN2021081942-appb-100011
    表示在所述网络设备为所述终端设备配置的子载波间隔配置为μ、span pattern为(X,Y)且span的位置对齐的小区的个数;
    Figure PCTCN2021081942-appb-100012
    表示所述网络设备为所述终端设备配置的小区的总数,j表示子载波间隔配置,j的取值为0或1。
  6. 根据权利要求1-5任一所述的方法,其特征在于,所述第一小区集合中的每个小区的span位置对齐,具体包括:
    当存在与第一span重叠的第二span时,所述第一span的起始符号与所述第二span的起始符号相同,且所述第一span占用的符号个数与所述第二span占用的符号个数相同,其中,所述第一span是第一小区中的一个span,所述第二span是第二小区中的一个span,所述第一小区和所述第二小区属于所述第一小区集合。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,还包括:
    确定所述第一小区集合在一个时隙内的N个时间单元,所述N个时间单元相互不重叠,N为正整数;
    所述第一小区集合中的每个小区的span位置对齐,具体包括:第三span与第一时间单元部分重叠或完全重叠,且与所述N个时间单元中除所述第一时间单元外的其它时间单元不重叠,所述第三span为所述第一小区集合中的一个小区中的一个span,所述第一时间单元为所述N个时间单元中的一个。
  8. 根据权利要求7所述的方法,其特征在于,所述N个时间单元中的第一时间单元的起始符号索引为所述小区集合中所有span的起始符号索引中最小的索引。
  9. 根据权利要求8所述的方法,其特征在于,所述N个时间单元中的第二时间单元的起始符号索引为所述小区集合中所有span中与所述第一时间单元不重叠的span中起始符号索引中最小的索引。
  10. 根据权利要求7-9任一所述的方法,其特征在于,所述小区集合中每一个小区的每一个span位于所述N个时间单元中的一个时间单元内。
  11. 根据权利要求7-10任一所述的方法,其特征在于,所述N个时间单元中的一个时间单元包含的连续符号的个数与所述span pattern指示的两个相邻的span的起始符号之间的最小符号间隔相同。
  12. 根据权利要求1-11任一所述的方法,其特征在于,所述将分配给所述第一小区集合的监听能力在所述第一小区集合内的小区间分配,具体包括:
    当所述小区集合包含所述终端设备的主小区PCell以及所述终端设备的辅小区SCell时,优先为所述PCell分配监听能力。
  13. 一种通信装置,其特征在于,包括:
    确定单元,用于确定M个小区集合,其中,M为正整数;
    分配单元,用于根据第一小区集合包含的小区的个数占网络设备为所述终端设备配置的小区总数的比例,将所述终端设备的第一监听能力分配给所述第一小区集合,以及,将分配给所述第一小区集合的监听能力在所述第一小区集合内的小区间分配,用于分别监听所述第一小区集合内的每个小区的物理下行控制信道;
    其中,所述第一小区集合为所述M个小区集合中的一个,所述第一小区集合包含所述终端设备的一个小区,或者所述第一小区集合包含所述终端设备的至少两个小区,所述第一小区集合中的每个小区的时间跨度图案span pattern相同、span的位置对齐、且子载波间隔相同。
  14. 根据权利要求13所述的装置,其特征在于,所述终端设备的第一监听能力是根据所述终端设备进行物理下行控制信道监听所支持的小区个数的最大值、以及所述第一小区集合对应的span pattern对应的监听能力确定的。
  15. 根据权利要求13或14所述的装置,其特征在于,
    所述第一监听能力包括所述终端设备监听候选物理下行控制信道的最大次数,和/或,监听候选物理下行控制信道所用的不重叠的控制信道元素个数的最大值。
  16. 根据权利要求15所述的装置,其特征在于,所述分配单元具体用于:
    根据如下公式计算得到所述终端设备监听所述第一小区集合的候选物理下行控制信道的最大次数:
    Figure PCTCN2021081942-appb-100013
    其中,
    Figure PCTCN2021081942-appb-100014
    表示所述终端设备监听所述第一小区集合的候选物理下行控制信道的最大次数,所述第一小区集合中的每个小区的子载波间隔配置为μ、span pattern为(X,Y),μ的取值为0或1,(X,Y)的取值为集合{(2,2),(4,3),(7,3)}中的一个,i为所述第一小区集合在所述M个小区集合中的索引,i为小于或等于M的非负整数;
    Figure PCTCN2021081942-appb-100015
    表示所述终端设备进行物理下行控制信道监听所支持的小区个数的最大值;
    Figure PCTCN2021081942-appb-100016
    表示所述终端设备在子载波间隔配置为μ、span pattern为(X,Y)的小区的一个span内监听候选物理下行控制信道的最大次数;
    Figure PCTCN2021081942-appb-100017
    表示在所述网络设备为所述终端设备配置的子载波间隔配置为μ、span pattern为(X,Y)且span的位置对齐的小区的个数;
    Figure PCTCN2021081942-appb-100018
    表示所述网络设备为所述终端设备配置的小区的总数,j表示子载波间隔配置,j的取值为0或1。
  17. 根据权利要求15或16所述的装置,其特征在于,所述分配单元具体用于:
    根据如下公式计算得到所述终端设备监听所述第一小区集合的候选物理下行控制信道所用的不重叠的控制信道元素个数的最大值:
    Figure PCTCN2021081942-appb-100019
    其中,
    Figure PCTCN2021081942-appb-100020
    表示所述终端设备监听所述第一小区集合的候选物理下行控制信道所用的不重叠的控制信道元素个数的最大值,所述第一小区集合中的每个小区的子载波间隔配置为μ、span pattern为(X,Y),μ的取值为0或1,(X,Y)的取值为集合{(2,2),(4,3),(7,3)}中的一个,i为所述第一小区集合在所述M个小区集合中的索引,i为小于或等于M的非负整数;
    Figure PCTCN2021081942-appb-100021
    表示所述终端设备进行物理下行控制信道监听所支持的小区个数的最大值;
    Figure PCTCN2021081942-appb-100022
    表示所述终端设备在子载波间隔配置为μ、span pattern为(X,Y)的小区的一个span内监听候选物理下行控制信道所用的不重叠的控制信道元素个数的最大值;
    Figure PCTCN2021081942-appb-100023
    表示在所述网络设备为所述终端设备配置的子载波间隔配置为μ、span pattern为(X,Y)且span的位置对齐的小区的个数;
    Figure PCTCN2021081942-appb-100024
    表示所述网络设备为所述终端设备配置的小区的总数,j表示子载波间隔配置,j的取值为0或1。
  18. 根据权利要求13-17任一所述的装置,其特征在于,所述第一小区集合中的每个小区的span位置对齐,具体包括:
    当存在与第一span重叠的第二span时,所述第一span的起始符号与所述第二span的起始符号相同,且所述第一span占用的符号个数与所述第二span占用的符号个数相同,其中,所述第一span是第一小区中的一个span,所述第二span是第二小区中的一个span,所述第一小区和所述第二小区属于所述第一小区集合。
  19. 根据权利要求13-18任一项所述的装置,其特征在于,所述确定单元还用于:
    确定所述第一小区集合在一个时隙内的N个时间单元,所述N个时间单元相互不重叠,N为正整数;
    所述第一小区集合中的每个小区的span位置对齐,具体包括:第三span与第一时间单元部分重叠或完全重叠,且与所述N个时间单元中除所述第一时间单元外的其它时间单元不重叠,所述第三span为所述第一小区集合中的一个小区中的一个span,所述第一时间单元为所述N个时间单元中的一个。
  20. 根据权利要求19所述的装置,其特征在于,所述N个时间单元中的第一时间单元的起始符号索引为所述小区集合中所有span的起始符号索引中最小的索引。
  21. 根据权利要求20所述的装置,其特征在于,所述N个时间单元中的第二时间单元的起始符号索引为所述小区集合中所有span中与所述第一时间单元不重叠的span中起始符号索引中最小的索引。
  22. 根据权利要求19-21任一所述的装置,其特征在于,所述小区集合中每一个小区的每一个span位于所述N个时间单元中的一个时间单元内。
  23. 根据权利要求19-22任一所述的装置,其特征在于,所述N个时间单元中的一个时间单元包含的连续符号的个数与所述span pattern指示的两个相邻的span的起始符号之间的最小符号间隔相同。
  24. 根据权利要求13-23任一所述的方法,其特征在于,所述分配单元具体用于:
    当所述小区集合包含所述终端设备的主小区PCell以及所述终端设备的辅小区SCell时,优先为所述PCell分配监听能力。
  25. 一种物理下行控制信道的监听方法,其特征在于,包括:
    确定终端设备的第一监听能力用于监听所述终端设备的小区集合的物理下行控制信道,所述小区集合包含所述终端设备的至少两个小区,所述小区集合中的每个小区的时间跨度图案span pattern和子载波间隔均相同;
    确定所述小区集合在一个时隙内的不重叠的N个时间单元,所述N个时间单元中的每一个时间单元的起始位置是根据所述小区集合内的小区的span得到的,N为正整数;
    根据所述N个时间单元,将所述第一监听能力在所述小区集合内进行分配,用于分别监听所述小区集合内的每个小区的物理下行控制信道。
  26. 根据权利要求25所述的方法,其特征在于,所述终端设备的至少两个小区包括所述终端设备的至少两个SCell,或者包含所述终端设备的主小区PCell以及所述终端设备的至少一个SCell。
  27. 根据权利要求25或26所述的方法,其特征在于,所述根据所述N个时间单元,将所述第一监听能力在所述小区集合内进行分配包括:
    当第一小区的第一span占用的符号与第一时间单元部分或全部重叠时,根据所述第一小区的span占用的全部符号的个数,将所述第一监听能力的部分或全部分配给所述第一小区,其中,所述第一小区是所述小区集合中的一个小区,所述第一时间单元为所述N个时间单元中的一个。
  28. 根据权利要求25-27任一所述的方法,其特征在于,所述根据所述N个时间单元,将所述第一监听能力在所述小区集合内进行分配包括:
    当第二小区的span占用的符号与所述第二时间单元全部或部分重叠时,根据所述重叠部分的符号个数占所述第二小区的span占用的符号个数的比例,将所述第一监听能力的部分或全部分配给所述第二小区,其中,所述第二小区是所述小区集合中的一个小区,所述第二时间单元为所述N个时间单元中的一个。
  29. 根据权利要求25-27任一所述的方法,其特征在于,所述小区集合中每一个小区的每一个span位于所述N个时间单元中的一个时间单元内。
  30. 根据权利要求25-29任一所述的方法,其特征在于,所述N个时间单元中的一个时间单元包含的连续符号的个数与所述span pattern指示的两个相邻的span的起 始符号之间的最小符号间隔相同。
  31. 根据权利要求25-27任一所述的方法,其特征在于,当所述小区集合包含所述终端设备的主小区PCell以及所述终端设备的辅小区SCell时,优先为所述PCell分配监听能力。
  32. 一种通信装置,其特征在于,包括:
    确定单元,用于确定终端设备的第一监听能力用于监听所述终端设备的小区集合的物理下行控制信道,所述小区集合包含所述终端设备的至少两个小区,所述小区集合中的每个小区的时间跨度图案span pattern和子载波间隔均相同;以及,确定所述小区集合在一个时隙内的不重叠的N个时间单元,所述N个时间单元中的每一个时间单元的起始位置是根据所述小区集合内的小区的span得到的,N为正整数;
    分配单元,用于根据所述N个时间单元,将所述第一监听能力在所述小区集合内进行分配,用于分别监听所述小区集合内的每个小区的物理下行控制信道。
  33. 根据权利要求32所述的装置,其特征在于,所述终端设备的至少两个小区包括所述终端设备的至少两个SCell,或者包含所述终端设备的主小区PCell以及所述终端设备的至少一个SCell。
  34. 根据权利要求32或33所述的装置,其特征在于,所述分配单元具体用于:
    当第一小区的第一span占用的符号与第一时间单元部分或全部重叠时,根据所述第一小区的span占用的全部符号的个数,将所述第一监听能力的部分或全部分配给所述第一小区,其中,所述第一小区是所述小区集合中的一个小区,所述第一时间单元为所述N个时间单元中的一个。
  35. 根据权利要求32-34任一所述的装置,其特征在于,所述分配单元具体用于:
    当第二小区的span占用的符号与所述第二时间单元全部或部分重叠时,根据所述重叠部分的符号个数占所述第二小区的span占用的符号个数的比例,将所述第一监听能力的部分或全部分配给所述第二小区,其中,所述第二小区是所述小区集合中的一个小区,所述第二时间单元为所述N个时间单元中的一个。
  36. 根据权利要求32-35任一所述的装置,其特征在于,所述小区集合中每一个小区的每一个span位于所述N个时间单元中的一个时间单元内。
  37. 根据权利要求32-36任一所述的装置,其特征在于,所述N个时间单元中的一个时间单元包含的连续符号的个数与所述span pattern指示的两个相邻的span的起始符号之间的最小符号间隔相同。
  38. 根据权利要求25-27任一所述的装置,其特征在于,当所述小区集合包含所述终端设备的主小区PCell以及所述终端设备的辅小区SCell时,优先为所述PCell分配监听能力。
  39. 一种通信装置,包括至少一个处理元件和接口电路,所述至少一个处理元件用于执行存储器存储的计算机程序,以使所述通信装置执行如权利要求1-12或25-31中任一所述的方法。
  40. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,所述计算机程序使得计算机执行如权利要求1-12或25-31中任一项所述的方法。
  41. 一种计算机程序产品,其特征在于,所述计算机程序产品包含计算机程序,所述计算机程序使得计算机执行如权利要求1-12或25-31中任一项所述的方法。
PCT/CN2021/081942 2020-04-10 2021-03-20 物理下行控制信道的监听方法和装置 WO2021203948A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MX2022012664A MX2022012664A (es) 2020-04-10 2021-03-20 Método de monitoreo de canal de control de enlace descendente físico y aparato.
EP21784637.7A EP4120767A4 (en) 2020-04-10 2021-03-20 METHOD AND DEVICE FOR MONITORING A PHYSICAL DOWNLINK CONTROL CHANNEL
US17/961,403 US20230047144A1 (en) 2020-04-10 2022-10-06 Physical downlink control channel monitoring method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010280741.5A CN113518441A (zh) 2020-04-10 2020-04-10 物理下行控制信道的监听方法和装置
CN202010280741.5 2020-04-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/961,403 Continuation US20230047144A1 (en) 2020-04-10 2022-10-06 Physical downlink control channel monitoring method and apparatus

Publications (1)

Publication Number Publication Date
WO2021203948A1 true WO2021203948A1 (zh) 2021-10-14

Family

ID=78022950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081942 WO2021203948A1 (zh) 2020-04-10 2021-03-20 物理下行控制信道的监听方法和装置

Country Status (5)

Country Link
US (1) US20230047144A1 (zh)
EP (1) EP4120767A4 (zh)
CN (1) CN113518441A (zh)
MX (1) MX2022012664A (zh)
WO (1) WO2021203948A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116033570A (zh) * 2021-10-22 2023-04-28 华为技术有限公司 通信方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3451553A2 (en) * 2017-09-05 2019-03-06 Intel Corporation Mechanisms for monitoring physical downlink control channel with common search space and user equipment-specific search space in a beamformed system
WO2020072963A1 (en) * 2018-10-05 2020-04-09 Intel Corporation Pdcch monitoring span and dci format set determination

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3451553A2 (en) * 2017-09-05 2019-03-06 Intel Corporation Mechanisms for monitoring physical downlink control channel with common search space and user equipment-specific search space in a beamformed system
WO2020072963A1 (en) * 2018-10-05 2020-04-09 Intel Corporation Pdcch monitoring span and dci format set determination

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AD-HOC CHAIR (NTT DOCOMO, INC.): "Chairman's notes of AI 7.1.7", 3GPP DRAFT; R1-1905800_SESSION NOTES RAN1#96BIS 7.1.7, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 15 April 2019 (2019-04-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051707848 *
HUAWEI: "Summary of email discussion [100e-NR-L1enh_URLLC_PDCCH-03] on remaining issues on enhanced PDCCH monitoring capability", 3GPP DRAFT; R1-2001409, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. 20200224 - 20200306, 6 March 2020 (2020-03-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051860455 *
See also references of EP4120767A4

Also Published As

Publication number Publication date
CN113518441A (zh) 2021-10-19
MX2022012664A (es) 2023-01-11
EP4120767A4 (en) 2023-09-13
US20230047144A1 (en) 2023-02-16
EP4120767A1 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
WO2019029366A1 (zh) 一种调整频域资源和发送指示信息的方法、装置及***
WO2018228500A1 (zh) 一种调度信息传输方法及装置
WO2016000368A1 (zh) 上行控制信道的配置和发送方法、装置及基站和用户设备
US11924141B2 (en) Communication method, network device, and terminal device
WO2018228548A1 (zh) 上行资源的授权方法、装置及***
CN111726877B (zh) 数据传输方法、终端和基站
WO2014008830A1 (zh) 一种盲检方式确定方法、盲检方法及装置
CN114208100A (zh) 每监测跨段的非重叠cce和盲解码的最大数量
CN106664702A (zh) 一种数据传输方法、装置及***
CN113678396B (zh) 载波聚合能力框架
WO2020200086A1 (zh) 下行控制信息传输的方法、装置及***
WO2014117347A1 (zh) 一种数据调度方法和设备
WO2018228537A1 (zh) 信息发送、接收方法及装置
WO2019047632A1 (zh) 用于传输下行数据的资源的确定和配置方法、终端和基站
WO2020029955A1 (zh) 一种数据调度方法及装置
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
WO2017024565A1 (zh) 数据传输方法、装置及***
CN114365537A (zh) 一种上行传输的方法及装置
WO2021239040A1 (zh) 控制信息dci传输方法及相关设备
WO2022151152A1 (en) Determining processing time for high frequency range
WO2021203948A1 (zh) 物理下行控制信道的监听方法和装置
US20180310291A1 (en) Control signal sending method and apparatus
US20230027281A1 (en) Control messaging for multi-beam communications
WO2020199815A1 (zh) 通信方法及装置
WO2023065880A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784637

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2021784637

Country of ref document: EP

Effective date: 20221012

NENP Non-entry into the national phase

Ref country code: DE