WO2021203843A1 - 目标跟踪***及目标跟踪方法 - Google Patents

目标跟踪***及目标跟踪方法 Download PDF

Info

Publication number
WO2021203843A1
WO2021203843A1 PCT/CN2021/076737 CN2021076737W WO2021203843A1 WO 2021203843 A1 WO2021203843 A1 WO 2021203843A1 CN 2021076737 W CN2021076737 W CN 2021076737W WO 2021203843 A1 WO2021203843 A1 WO 2021203843A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile device
angle
tilt
module
pan
Prior art date
Application number
PCT/CN2021/076737
Other languages
English (en)
French (fr)
Inventor
杨沐丰
Original Assignee
瞬联软件科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瞬联软件科技(北京)有限公司 filed Critical 瞬联软件科技(北京)有限公司
Publication of WO2021203843A1 publication Critical patent/WO2021203843A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence

Definitions

  • the invention relates to a target tracking system, and also to a corresponding target tracking method, belonging to the technical field of satellite navigation.
  • target tracking systems based on image recognition have been widely used.
  • This target tracking system is a good tracking and shooting solution.
  • this target tracking system based on image recognition has natural shortcomings. For example, after a moving target is blocked by obstacles for a period of time during the course of travel, a target tracking system based on image recognition is likely to lose the target and cannot continue to track and shoot the target.
  • the primary technical problem to be solved by the present invention is to provide a target tracking system.
  • Another technical problem to be solved by the present invention is to provide a target tracking method.
  • a target tracking system including a GNSS positioning device, a wireless communication device, and a mobile device;
  • the mobile device includes a data processing module, a mobile control module, a positioning and orientation module, and a pan-tilt module;
  • the pan-tilt module includes a photoelectric encoder, a level, a pan-tilt controller and a camera;
  • the GNSS positioning device is set on the tracked target object, and is used to obtain the target position information of the tracked target object in real time, and is connected with the mobile device through a wireless communication device, and sends the target position information to the mobile device;
  • the mobile device determines the current angle information of the pan/tilt through the photoelectric encoder of the pan/tilt module, determines the horizontal tilt angle of the pan/tilt relative to the horizontal position through the level of the pan/tilt module, and determines the position information and heading angle information of the mobile device through the positioning and orientation module ,
  • the data processing module to process the target position information, pan/tilt current angle information, horizontal tilt angle, mobile device position information, and heading angle information to determine the distance information between the mobile device and the tracked target object, and the pan/tilt module needs The horizontal azimuth angle and the pitch mechanical angle of rotation; the horizontal azimuth angle and the pitch mechanical angle are sent to the gimbal controller in the gimbal module through the data processing module, and the gimbal controller controls the gimbal module to rotate to the corresponding angle so that The camera is aimed at the tracked target object; the distance information is sent to the movement control module through the data processing module, and the movement control module controls the mobile device to maintain a corresponding
  • the GNSS positioning device is set on the target object to be tracked.
  • the positioning and orientation module is a dual-antenna GNSS positioning and orientation structure; the baseline of the mobile device is determined by the linear vector between the two antennas in the dual-antenna GNSS positioning and orientation structure, so that the baseline of the mobile device and the mobile device
  • the central axis is parallel and passes through the center of the pan/tilt module.
  • a target tracking method is provided, which is implemented based on the above-mentioned target tracking system; the method includes the following steps:
  • the pan/tilt controller controls the pan/tilt module to rotate to a corresponding angle, so that the camera is aimed at the target object being tracked;
  • the distance information is sent to a movement control module, and the movement control module controls the mobile device to maintain a corresponding distance from the target object being tracked.
  • the mobile device location information includes: the mobile device altitude H1, the mobile device latitude Lat1, and the mobile device longitude Lng1;
  • the target location information includes: the altitude of the tracked target object H2, the latitude of the tracked target object Lat2, and the longitude of the tracked target object Lng2;
  • the heading angle information includes: the heading angle ⁇ N of the mobile device.
  • the mobile device uses the following formula to determine the horizontal azimuth Az that the pan/tilt module needs to rotate:
  • the mobile device uses the following formula to determine the distance information D between the mobile device and the tracked target object:
  • is the circumference of the circle
  • R is the radius of the earth.
  • the mobile device uses the following formula to determine the pitch mechanical angle El that the pan/tilt module needs to rotate:
  • ⁇ M is the horizontal tilt angle.
  • the horizontal tilt angle of the pan/tilt module relative to the horizontal position is determined by the level gauge of the pan/tilt module, and the heading angle information is determined by the positioning and orientation module, so that when calculating the horizontal azimuth angle, the heading The angle information is added to the calculation scheme.
  • the pitch mechanical angle is calculated later, the horizontal tilt angle is added to the calculation scheme, so that the calculation of the horizontal azimuth angle and the pitch mechanical angle required to control the PTZ module is more accurate.
  • the present invention can also determine the distance information between the mobile device and the tracked target object, so that the mobile device and the tracked target object can maintain a corresponding distance, realize the precise control of the target tracking, and the effect of shooting the tracked target object is better. good.
  • FIG. 1 is a schematic structural diagram of a target tracking system provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the positional relationship between the mobile device, the pan-tilt module, and the dual-antenna GNSS positioning and directional structure in the embodiment of the present invention
  • FIG. 3 is a schematic diagram of the geometric relationship between the mobile device and the tracked target object in an embodiment of the present invention
  • Fig. 4 is a flowchart of a target tracking method provided by an embodiment of the present invention.
  • the intelligent target tracking system based on the global navigation satellite system (Global Navigation Satellite System, referred to as GNSS) positioning coordinate solution can calculate the horizontal and vertical target angle between the two points based on the satellite positioning information of the two points, and the pan/tilt control The camera is deflected to the corresponding target angle to achieve the effect of tracking the shooting target.
  • GNSS Global Navigation Satellite System
  • the intelligent target tracking system has many problems: First, the target angle of the system to control the deflection of the PTZ is not accurate, and the system does not have the ability to orient and measure its own horizontal tilt angle. The system can only Calculate the horizontal and vertical angles between the two points. The horizontal target angle is calculated based on the Earth as the reference frame and the North Pole as the azimuth of 0 degrees.
  • the 0 degree angle of the gimbal machine is generally random relative to the North Pole.
  • the horizontal target angle is only correct when the 0 degree angle of the gimbal machine is parallel to the north pole of the earth.
  • the system calculates the vertical target angle by default and the system is in the horizontal state, so the vertical target angle obtained is correct only when the pan/tilt is absolutely horizontal.
  • the second is that the system does not have the ability to move. When facing a shooting target with a large moving range, the system may not be able to clearly shoot long-distance targets and meet complex shooting requirements.
  • an embodiment of the present invention provides a target tracking system.
  • the target tracking system 10 includes a GNSS positioning device 11, a wireless communication device 12 and a mobile device 13.
  • the mobile device 13 includes a data processing module 131, a movement control module 132, a positioning and orientation module 133, and a pan/tilt module 134; the pan/tilt module 134 includes a photoelectric encoder 1341, a level 1342, a pan/tilt controller 1343, and a camera 1344.
  • the GNSS positioning device 11 is set on the tracked target object 20, and is used to obtain the target position information of the tracked target object 20 in real time, and realizes a communication connection with the mobile device 13 through the wireless communication device 12, and sends the target to the mobile device 13 location information.
  • the mobile device 13 determines the current angle of the pan/tilt through the photoelectric encoder 1341 of the pan/tilt module 134; determines the horizontal tilt angle of the pan/tilt relative to the horizontal position through the level 1342 of the pan/tilt module 134; determines the position information of the mobile device through the positioning and orientation module 133 And heading angle information; the data processing module 131 processes the target position information, the current angle information of the pan/tilt, the horizontal tilt angle, the mobile device position information, and the heading angle information to determine the distance information between the mobile device 13 and the tracked target object 20
  • the control pan/tilt module 134 uses the horizontal azimuth angle and the pitch mechanical angle to rotate to the corresponding angles, so that
  • the movement control module 132 controls the mobile device 13 to maintain a corresponding distance from the tracked target object 20, which can be achieved in the following manner:
  • the movement control module 132 may include a PID (Proportional Integral Derivative) control module, a driver, a servo motor and other structures.
  • PID Proportional Integral Derivative
  • the PID control module can run the PID control algorithm and output the speed command to the drive.
  • the driver outputs a PWM (pulse width modulation) wave current with a certain duty ratio to the servo motor according to the speed command to control the speed of the servo motor.
  • the servo motor drives the transmission mechanism of the mobile device to move the mobile device.
  • the application of PID control algorithm makes the movement control of the mobile device more precise and convenient.
  • the GNSS positioning device 11 is set on the tracked target object 20 on the ground.
  • the positioning and orientation module 133 is provided at the mobile device 13 on the ground.
  • the mobile device 13 on the ground may refer to a ground mobile carrying device such as a four-wheeled vehicle or a crawler vehicle. It should be noted that the embodiments of the present invention generally aim at shooting targets on the ground.
  • the positioning and orientation module 133 can adopt a GNSS positioning and orientation module based on real-time dynamic RTK (Real-Time Kinematic) technology.
  • RTK Real-Time Kinematic
  • the positioning accuracy of the current positioning and orientation board based on RTK technology can be within 1 meter. If the accuracy is within 0.3 degrees, it can be seen that the positioning accuracy based on RTK technology is relatively high, which can fully meet the positioning requirements of the present invention for target tracking.
  • the positioning and orientation module 133 can adopt a dual-antenna GNSS positioning and orientation mechanism including antenna A and antenna B); the baseline of the mobile device 13 is determined by the two antennas (antenna A and antenna A) in the dual-antenna GNSS positioning and orientation mechanism.
  • B) The linear vector between B) is determined so that the baseline of the mobile device 13 is parallel to the central axis of the mobile device 13 and passes through the center of the pan/tilt module 134.
  • two antennas (antenna A and antenna B) are set on the central axis of the mobile device 13, and the linear vector formed by them is the baseline of the mobile device 13, and the vector direction is from the tail of the mobile device 13 to the head.
  • the pan/tilt module 134 is mounted on the mobile device 13 on the ground, and it can be a disc type, and its center can be on the baseline of the mobile device 13.
  • the horizontal mechanical angle calibration range of the pan/tilt module 134 is 0° ⁇ 360°.
  • the two intersection points of the pan/tilt module 134 and the baseline of the mobile device 13 are respectively determined as the mechanical azimuth 0° and 180°, and the pitch mechanical angle calibration range is -90. ° ⁇ 90°, the position relative to the baseline level is set as 0 degree pitch machine.
  • the wireless communication device 12 in the embodiment of the present invention may be a device with a wireless data transmission function, such as a Bluetooth device, a WiFi (wireless Internet) device, or a Narrow Band Internet of Things (NB-IoT) device.
  • a wireless data transmission function such as a Bluetooth device, a WiFi (wireless Internet) device, or a Narrow Band Internet of Things (NB-IoT) device.
  • NB-IoT Narrow Band Internet of Things
  • the mobile device location information may include: the mobile device altitude H1, the mobile device latitude Lat1, and the mobile device longitude Lng1;
  • the target location information may include: the tracked target object altitude H2, the tracked The latitude Lat2 of the target object and the longitude Lng2 of the tracked target object;
  • the heading angle information may include: the heading angle of the mobile device ⁇ N.
  • the mobile device 13 may specifically determine the horizontal azimuth Az that the pan/tilt module needs to rotate through the data processing module using the following formula:
  • the heading angle ⁇ N of the mobile device is calculated as a factor, compared to the horizontal azimuth angle obtained without considering the influence of the heading angle ⁇ N of the mobile device, the horizontal azimuth angle Az is closer to the actual situation and more accurate.
  • A is the position of the mobile device
  • B is the position of the target object being tracked
  • E and F are the points A and B respectively on the equatorial plane.
  • O is the center of the earth
  • C is the north pole of the earth.
  • D is the spherical distance between two points AB.
  • Finding the horizontal azimuth angle that is, the azimuth angle of point B relative to point A, is equivalent to finding the dihedral angle C-OA-B.
  • ⁇ A-OC-B is equivalent to the angle between the two points A and B that map the two points EF on the equatorial plane, that is, ⁇ EOF.
  • ⁇ EOF the angle between the two points A and B that map the two points EF on the equatorial plane
  • the mobile device 13 may specifically use the data processing module to determine the distance information D between the mobile device and the tracked target object by using the following formula:
  • is the circumference of the circle
  • R is the radius of the earth.
  • the distance D of the spherical surface AB R*rad( ⁇ AOB).
  • the mobile device 13 may specifically use the data processing module to determine the pitch mechanical angle El that the pan/tilt module needs to rotate by using the following formula:
  • ⁇ M is the horizontal tilt angle.
  • the pitch mechanical angle El is closer than the pitch mechanical angle obtained without considering the influence of the horizontal tilt angle ⁇ M. The actual situation is more accurate.
  • the embodiment of the present invention further provides a target tracking method, which is implemented based on the target tracking system shown in FIG. 1.
  • the target tracking system includes a GNSS positioning device, a wireless communication device, and a mobile device;
  • the mobile device includes a data processing module, a movement control module, a positioning and orientation module, and a pan/tilt module;
  • the pan/tilt module includes a photoelectric encoder, a level meter, a pan/tilt controller, and Camera;
  • GNSS positioning device is set on the target object to be tracked.
  • the target tracking method includes the following steps:
  • Step 301 Obtain the target location information of the tracked target object in real time, and send the target location information to the mobile device.
  • Step 302 Determine the current angle information of the pan/tilt through the photoelectric encoder.
  • Step 303 Determine the horizontal tilt angle of the pan/tilt with respect to the horizontal position by using a level gauge.
  • Step 304 Determine the position information and heading angle information of the mobile device through the positioning and orientation module.
  • Step 305 Process the target position information, the current angle information of the pan/tilt, the horizontal tilt angle, the position information of the mobile device, and the heading angle information, and determine the distance information between the mobile device and the tracked target object, and the horizontal orientation of the pan/tilt module to be rotated. Angle and pitch mechanical angle.
  • Step 306 Send the horizontal azimuth angle and the pitch mechanical angle to the pan/tilt controller in the pan/tilt module, and the pan/tilt controller controls the pan/tilt module to rotate to a corresponding angle so that the camera is aimed at the target object being tracked.
  • Step 307 Send the distance information to the movement control module, and the movement control module controls the mobile device to maintain a corresponding distance from the tracked target object.
  • the mobile device location information includes: mobile device altitude H1, mobile device latitude Lat1, and mobile device longitude Lng1; target location information includes: tracked target object altitude H2, tracked target object latitude Lat2, and tracked target Object longitude Lng2; heading angle information includes: heading angle of the mobile device ⁇ N;.
  • the mobile device determines the horizontal azimuth angle that the pan/tilt module needs to rotate through the data processing module, which can be implemented in the following manner:
  • the mobile device uses the following formula to determine the horizontal azimuth Az that the pan/tilt module needs to rotate through the data processing module:
  • the mobile device determines the distance information between the mobile device and the tracked target object through the data processing module, which can be implemented in the following manner:
  • the mobile device uses the following formula to determine the distance information D between the mobile device and the target object being tracked through the data processing module:
  • is the circumference of the circle
  • R is the radius of the earth.
  • the mobile device determines the pitch mechanical angle that the pan/tilt module needs to rotate through the data processing module, which can be implemented in the following manner:
  • the mobile device uses the following formula to determine the pitch mechanical angle El that the pan/tilt module needs to rotate through the data processing module:
  • ⁇ M is the horizontal tilt angle.
  • the embodiment of the present invention also provides a computer-readable storage medium having instructions stored on the readable storage medium, which when run on a computer, cause the computer to execute the target tracking method as described above. Go into details again.
  • the embodiment of the present invention also provides a computer program product containing instructions, which when run on a computer, causes the computer to execute the target tracking method as described above, which will not be repeated here.
  • the horizontal tilt angle of the pan/tilt module relative to the horizontal position is determined by the level gauge of the pan/tilt module, and the heading angle information is determined by the positioning and orientation module, so that when calculating the horizontal azimuth angle, the heading The angle information is added to the calculation scheme.
  • the pitch mechanical angle is calculated later, the horizontal tilt angle is added to the calculation scheme, so that the calculation of the horizontal azimuth angle and the pitch mechanical angle required to control the PTZ module is more accurate.
  • the present invention can also determine the distance information between the mobile device and the tracked target object, so that the mobile device and the tracked target object can maintain a corresponding distance, realize the precise control of the target tracking, and the effect of shooting the tracked target object is better. good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种目标跟踪***及目标跟踪方法。该方法包括如下步骤:获得被跟踪的目标物体的目标位置信息;确定云台当前角度信息、云台相对于水平位置的水平倾斜角度、移动装置位置信息和航向角信息;通过数据处理模块进行处理,确定移动装置与被跟踪的目标物体的距离信息、云台模块需要转动的水平方位角和俯仰机械角;将水平方位角和俯仰机械角发送至云台控制器,云台控制器控制云台模块转动到对应角度,使得摄像机对准被跟踪的目标物体;将距离信息发送至移动控制模块,移动控制模块控制移动装置与被跟踪的目标物体保持对应距离。

Description

目标跟踪***及目标跟踪方法 技术领域
本发明涉及一种目标跟踪***,同时也涉及相应的目标跟踪方法,属于卫星导航技术领域。
背景技术
目前,随着人工智能和图像处理技术的发展,基于图像识别的目标跟踪***得到了广泛的应用。这种目标跟踪***是一种很好的跟踪拍摄解决方案。但是在某些场景下,这种基于图像识别的目标跟踪***存在天然的缺陷。例如,移动的目标在行进过程中被障碍物遮挡住一段时间之后,基于图像识别的目标跟踪***很可能就会丢失目标从而无法对目标继续进行跟踪拍摄。
发明内容
本发明所要解决的首要技术问题在于提供一种目标跟踪***。
本发明所要解决的另一技术问题在于提供一种目标跟踪方法。
为了实现上述目的,本发明采用下述的技术方案:
根据本发明实施例的第一方面,提供一种目标跟踪***,包括GNSS定位装置、无线通信装置和移动装置;所述移动装置包括数据处理模块、移动控制模块、定位定向模块以及云台模块;所述云台模块包括光电编码器、水平仪、云台控制器和摄像机;
所述GNSS定位装置设置于被跟踪的目标物体上,用于实时获得被跟踪的目标物体的目标位置信息,并通过无线通信装置与移动装置连接,向所述移动装置发送所述目标位置信息;
所述移动装置通过云台模块的光电编码器确定云台当前角度信息,通过云台模块的水平仪确定云台相对于水平位置的水平倾斜角度,通过定位定向模块确定移动装置位置信息和航向角信息,通过数据处理模块对所述目标位置信息、云台当前角度信息、水平倾斜角度、移动装置位置信息和航向角信息进行处理,确定移动装置与被跟踪的目标物体的距离信息、云台模块需要转动的水平方位角和俯仰机械角;通过数据处理模块将水平方位角和俯仰机械角发送至云台模块中的云 台控制器,所述云台控制器控制云台模块转动到对应角度,使得摄像机对准被跟踪的目标物体;通过数据处理模块将所述距离信息发送至移动控制模块,所述移动控制模块控制移动装置与被跟踪的目标物体保持对应距离。
其中较优地,所述GNSS定位装置设置于被跟踪的目标物体上。
其中较优地,所述定位定向模块为双天线GNSS定位定向结构;所述移动装置的基线由双天线GNSS定位定向结构中两个天线之间的直线向量确定,使得移动装置的基线与移动装置的中轴线平行,且经过云台模块的中心。
根据本发明实施例的第二方面,提供一种目标跟踪方法,基于上述的目标跟踪***实现;包括如下步骤:
实时获得被跟踪的目标物体的目标位置信息,并向移动装置发送所述目标位置信息;
通过光电编码器确定云台当前角度信息;
通过水平仪确定云台相对于水平位置的水平倾斜角度;
通过定位定向模块确定移动装置位置信息和航向角信息;
对所述目标位置信息、云台当前角度信息、水平倾斜角度、移动装置位置信息和航向角信息进行处理,确定移动装置与被跟踪的目标物体的距离信息、云台模块需要转动的水平方位角和俯仰机械角;
将水平方位角和俯仰机械角发送至云台控制器,所述云台控制器控制云台模块转动到对应角度,使得摄像机对准被跟踪的目标物体;
将所述距离信息发送至移动控制模块,所述移动控制模块控制移动装置与被跟踪的目标物体保持对应距离。
其中较优地,所述移动装置位置信息包括:移动装置海拔高度H1、移动装置纬度Lat1和移动装置经度Lng1;
所述目标位置信息包括:被跟踪的目标物体海拔高度H2、被跟踪的目标物体纬度Lat2和被跟踪的目标物体经度Lng2;
所述航向角信息包括:移动装置的航向角∠N。
其中较优地,所述移动装置采用如下公式确定云台模块需要转动的水平方位角Az:
Figure PCTCN2021076737-appb-000001
其中较优地,所述移动装置采用如下公式确定移动装置与被跟踪的目标物体的距离信息D:
Figure PCTCN2021076737-appb-000002
其中,π为圆周率,R为地球半径。
其中较优地,所述移动装置采用如下公式确定云台模块需要转动的俯仰机械角El:
Figure PCTCN2021076737-appb-000003
其中,∠M为水平倾斜角度。
本发明所提供的目标跟踪***及方法,通过云台模块的水平仪确定云台相对于水平位置的水平倾斜角度,并通过定位定向模块确定航向角信息,这样在之后计算水平方位角时,将航向角信息加入计算方案中,在之后计算俯仰机械角时,将水平倾斜角度加入计算方案中,从而使得控制云台模块所需要转动的水平方位角和俯仰机械角的计算更为准确。同时,本发明还可确定移动装置与被跟踪的目标物体的距离信息,使得移动装置与被跟踪的目标物体可以保持对应距离,实现了目标跟踪的精准控制,拍摄被跟踪的目标物体的效果更佳。
附图说明
图1为本发明实施例提供的目标跟踪***的结构示意图;
图2为本发明实施例中的移动装置、云台模块及双天线GNSS定位定向结构的位置关系示意图;
图3为本发明实施例中的移动装置与被跟踪的目标物体的几何关系示意图;
图4为本发明实施例提供的目标跟踪方法的流程图。
具体实施方式
下面结合附图和具体实施例对本发明的技术内容做进一步的详细说明。
目前,基于全球导航卫星***(Global Navigation Satellite System,简称为GNSS)定位坐标解算的智能目标跟踪***,可以根据两点的卫星定位信息计算出两点之间水平与垂直目标角度,云台控制摄像机偏转到对应目标角度,从而实现跟踪拍摄目标的效果。但是, 该智能目标跟踪***存在诸多问题:一是该***控制云台偏转的目标角度不准确,该***不具备定向和测量自身水平倾斜角的能力,该***根据两点的卫星定位信息只能计算出来两个点之间的水平和垂直角度,其水平目标角度是以地球为参照系,北极为方位0度计算出来的结果。实际使用中,云台机械的0度角一般相对于北极的角度是随机的,该水平目标角度只有在云台机械0度角与地球北极平行的状态下才是正确的。该***计算垂直目标角度也是默认***处于水平状态,所以得到的垂直目标角度只有在云台处于绝对水平状态下才是正确的。二是该***没有移动能力,在面对移动范围较大的拍摄目标时,该***可能无法清晰拍摄远距离目标和满足复杂的拍摄需求。
为了克服上述缺陷,如图1所示,本发明实施例提供一种目标跟踪***。该目标跟踪***10包括:GNSS定位装置11、无线通信装置12和移动装置13。
该移动装置13包括数据处理模块131、移动控制模块132、定位定向模块133以及云台模块134;云台模块134包括光电编码器1341、水平仪1342、云台控制器1343和摄像机1344。
该GNSS定位装置11设置于被跟踪的目标物体20上,用于实时获得被跟踪的目标物体20的目标位置信息,并通过无线通信装置12与移动装置13实现通信连接,向移动装置13发送目标位置信息。
移动装置13通过云台模块134的光电编码器1341确定云台当前角度信息;通过云台模块134的水平仪1342确定云台相对于水平位置的水平倾斜角度;通过定位定向模块133确定移动装置位置信息和航向角信息;通过数据处理模块131对目标位置信息、云台当前角度信息、水平倾斜角度、移动装置位置信息和航向角信息进行处理,确定移动装置13与被跟踪的目标物体20的距离信息、云台模块134需要转动的水平方位角和俯仰机械角;通过数据处理模块131将水平方位角和俯仰机械角发送至云台模块134中的云台控制器1343,以使得云台控制器1343控制云台模块134采用水平方位角和俯仰机械角进行转动到对应角度,使得摄像机1344对准被跟踪的目标物体20;通过数据处理模块131将距离信息发送至移动控制模块132,以使得移动控制模块132控制移动装置13与被跟踪的目标物体20保持对应距离, 从而可以实现目标跟踪的精准控制,并且由于对应距离能够得到保持,使得摄像机的对焦参数等变化较小,拍摄被跟踪的目标物体的效果更佳。
此处,移动控制模块132控制移动装置13与被跟踪的目标物体20保持对应距离,可通过如下方式实现:
其中,移动控制模块132可以包括PID(比例积分微分)控制模块,驱动器,伺服电机等结构。这样距离信息被发送至移动控制模块132后,PID控制模块可以运行PID控制算法,输出速度指令给驱动器。驱动器根据速度指令输出一定占空比的PWM(脉冲宽度调制)波的电流给伺服电机,控制伺服电机的转速。伺服电机带动移动装置的传动机构,从而使移动装置移动。应用PID控制算法使得移动装置的移动控制更为精准、便捷。
其中,该GNSS定位装置11设置于地面上的被跟踪的目标物体20上。而定位定向模块133设置在地面的移动装置13处,该地面的移动装置13可以是指四轮车或者履带车这种地面移动搭载装置。需要说明的是,本发明实施例一般针对的是地面拍摄目标。
为使目标跟踪准确,该定位定向模块133可以采用基于实时动态RTK(Real-Time Kinematic)技术的GNSS定位定向模块,例如目前基于RTK技术的定位定向板卡的定位精度可以在1米以内,定向精度在0.3度以内,可见基于RTK技术的定位精度较高,完全能够满足本发明进行目标跟踪的定位需求。
另外,如图2所示,该定位定向模块133可以采用双天线GNSS定位定向机构包括天线A和天线B);移动装置13的基线由双天线GNSS定位定向机构中两个天线(天线A和天线B)之间的直线向量确定,使得移动装置13的基线与移动装置13的中轴线平行,且经过云台模块134的中心。例如,在图2中,两个天线(天线A和天线B)设置在移动装置13的中轴线上,其构成的直线向量即为移动装置13的基线,向量方向由移动装置13的尾部指向头部(如汽车车尾指向汽车车头)。云台模块134搭载在地面的移动装置13之上,其可以为圆盘型,则其圆心可以在移动装置13的基线上。云台模块134的水平机械角度标定范围为0°~360°,云台模块134与移动装置13的基线的两个交 点分别定为机械方位0°和180°,俯仰机械角度标定范围为-90°~90°,相对于基线水平的位置定为俯仰机械0度。
本发明实施例中的无线通信装置12可以为具有无线传输数据功能的装置,如蓝牙装置、WiFi(无线上网)装置或窄带物联网(Narrow Band Internet of Things,NB-IoT)装置等。可见本发明的无线通信的方式多样,使得本发明实施例中的目标跟踪所适应的通信环境更为多样化。
另外,在本发明实施例中,移动装置位置信息可以包括:移动装置海拔高度H1、移动装置纬度Lat1和移动装置经度Lng1;目标位置信息可以包括:被跟踪的目标物体海拔高度H2、被跟踪的目标物体纬度Lat2和被跟踪的目标物体经度Lng2;航向角信息可以包括:移动装置的航向角∠N。
其中,在本发明实施例中,移动装置13具体可以通过数据处理模块,采用如下公式确定云台模块需要转动的水平方位角Az:
Figure PCTCN2021076737-appb-000004
由于在水平方位角Az的求解中,将移动装置的航向角∠N作为因素进行了计算,相比于不考虑移动装置的航向角∠N的影响而求得的水平方位角,该水平方位角Az更为贴近实际情况,更为准确。
为了更直观地表现水平方位角Az的求解过程,如图3所示,A为移动装置的位置,B为被跟踪的目标物体的位置,E和F分别为A和B两点在赤道面的映射。O为地心,C为地球北极。D为AB两点间球面距离。根据GNSS定位获取A的位置信息:经度Lng1,纬度Lat1,高度H1。被跟踪的目标物体B的位置信息经度Lng2,纬度Lat2,高度H2。
求水平方位角,即B点相对于A点方位角,等价于求二面角C-OA-B。
由三面角余弦定理可得
cos(∠AOB)=cos(∠AOC)cos(∠BOC)+sin(∠AOC)sin(∠BOC)cos(∠A-OC-B);
由经度的定义可得∠AOE=Lat1,∠BOF=Lat2,所以∠AOC=90-∠AOC=90°-Lat1,∠BOC=90°-∠BOC=90°-Lat2;
∠A-OC-B等价于A,B两点在赤道平面上映射两点EF的夹角,即∠EOF。根据经度的定义,∠EOF=Lng2-Lng1,所以∠A-OC-B=∠EOF=Lng2-Lng1。
将坐标数据带入,可得:
cos(∠AOB)=cos(90°-Lat1)×cos(90°-Lat2)+sin(90°-Lat1)×sin(90°-Lat2)×cos(Lng2-Lng1);
根据三角函数公式sin(∠AOB)=sqrt(1–cos2(∠AOB));sqrt表示开根号运算。
由球面正弦公式可得sin(∠C-OA-B)=sin(∠BOC)sin(A-OC-B)/sin(∠AOB);
所以∠C-OA-B=arcsin(sin(∠BOC)sin(A-OC-B)/sin(∠AOB))
将上面已知结果带入得到:
Figure PCTCN2021076737-appb-000005
另外,在本发明实施例中,该移动装置13具体可以通过数据处理模块,采用如下公式确定移动装置与被跟踪的目标物体的距离信息D:
Figure PCTCN2021076737-appb-000006
其中,π为圆周率,R为地球半径。
即,例如在上述图3中,球面AB的距离D=R*rad(∠AOB)。
公式为:
Figure PCTCN2021076737-appb-000007
其中,R为地球半径,可以简化取值为R=6371393米,π为圆周率,可以简化取值为π=3.1415926535898。
另外,在本发明实施例中,移动装置13具体可以通过数据处理模块,采用如下公式确定云台模块需要转动的俯仰机械角El:
Figure PCTCN2021076737-appb-000008
其中,∠M为水平倾斜角度。
由于在俯仰机械角El的求解中,将水平倾斜角度∠M作为因素进行了计算,相比于不考虑水平倾斜角度∠M的影响而求得的俯仰机械角,该俯仰机械角El更为贴近实际情况,更为准确。
另外,本发明实施例进一步提供一种目标跟踪方法,基于图1所示的目标跟踪***实现。该目标跟踪***包括GNSS定位装置、无线通信装置和移动装置;移动装置包括数据处理模块、移动控制模块、定位定向模块以及云台模块;云台模块包括光电编码器、水平仪、云台控制器和摄像机;GNSS定位装置设置于被跟踪的目标物体上。
如图4所示,该目标跟踪方法包括如下的步骤:
步骤301、实时获得被跟踪的目标物体的目标位置信息,并向移动装置发送目标位置信息。
步骤302、通过光电编码器确定云台当前角度信息。
步骤303、通过水平仪确定云台相对于水平位置的水平倾斜角度。
步骤304、通过定位定向模块确定移动装置位置信息和航向角信息。
步骤305、对目标位置信息、云台当前角度信息、水平倾斜角度、移动装置位置信息和航向角信息进行处理,确定移动装置与被跟踪的目标物体的距离信息、云台模块需要转动的水平方位角和俯仰机械角。
步骤306、将水平方位角和俯仰机械角发送至云台模块中的云台控制器,云台控制器控制云台模块转动到对应角度,使得摄像机对准被跟踪的目标物体。
步骤307、将距离信息发送至移动控制模块,移动控制模块控制移动装置与被跟踪的目标物体保持对应距离。
其中,移动装置位置信息包括:移动装置海拔高度H1、移动装置纬度Lat1和移动装置经度Lng1;目标位置信息包括:被跟踪的目标物体海拔高度H2、被跟踪的目标物体纬度Lat2和被跟踪的目标物体经度Lng2;航向角信息包括:移动装置的航向角∠N;。
其中,在上述步骤305中,移动装置通过数据处理模块确定云台模块需要转动的水平方位角,可以采用如下方式实现:
移动装置通过数据处理模块,采用如下公式确定云台模块需要转动的水平方位角Az:
Figure PCTCN2021076737-appb-000009
其中,在上述步骤305中,移动装置通过数据处理模块确定移动装置与被跟踪的目标物体的距离信息,可以采用如下方式实现:
移动装置通过数据处理模块,采用如下公式确定移动装置与被跟踪的目标物体的距离信息D:
Figure PCTCN2021076737-appb-000010
其中,π为圆周率,R为地球半径。
其中,在上述步骤305中,移动装置通过数据处理模块确定云台模块需要转动的俯仰机械角,可以采用如下方式实现:
移动装置通过数据处理模块,采用如下公式确定云台模块需要转动的俯仰机械角El:
Figure PCTCN2021076737-appb-000011
其中,∠M为水平倾斜角度。
另外,本发明实施例还提供一种计算机可读存储介质,所述可读存储介质上存储有指令,当其在计算机上运行时,使得所述计算机执行如上述的目标跟踪方法,此处不再赘述。
另外,本发明实施例还提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得所述计算机执行如上述的目标跟踪方法,此处不再赘述。
本发明所提供的目标跟踪***及方法,通过云台模块的水平仪确定云台相对于水平位置的水平倾斜角度,并通过定位定向模块确定航向角信息,这样在之后计算水平方位角时,将航向角信息加入计算方案中,在之后计算俯仰机械角时,将水平倾斜角度加入计算方案中,从而使得控制云台模块所需要转动的水平方位角和俯仰机械角的计算更为准确。同时,本发明还可确定移动装置与被跟踪的目标物体的距离信息,使得移动装置与被跟踪的目标物体可以保持对应距离,实现了目标跟踪的精准控制,拍摄被跟踪的目标物体的效果更佳。
以上对本发明所提供的目标跟踪***及目标跟踪方法进行了详细的说明。对本领域的一般技术人员而言,在不背离本发明实质内容的前提下对它所做的任何显而易见的改动,都将落入本发明专利权的保护范围。

Claims (8)

  1. 一种目标跟踪***,其特征在于包括GNSS定位装置、无线通信装置和移动装置;所述移动装置包括数据处理模块、移动控制模块、定位定向模块以及云台模块;所述云台模块包括光电编码器、水平仪、云台控制器和摄像机;
    所述GNSS定位装置设置于被跟踪的目标物体上,用于实时获得被跟踪的目标物体的目标位置信息,并通过无线通信装置与移动装置连接,向所述移动装置发送所述目标位置信息;
    所述移动装置通过云台模块的光电编码器确定云台当前角度信息;通过云台模块的水平仪确定云台相对于水平位置的水平倾斜角度;通过定位定向模块确定移动装置位置信息和航向角信息;通过数据处理模块对所述目标位置信息、云台当前角度信息、水平倾斜角度、移动装置位置信息和航向角信息进行处理,确定移动装置与被跟踪的目标物体的距离信息、云台模块需要转动的水平方位角和俯仰机械角;通过数据处理模块将水平方位角和俯仰机械角发送至云台模块中的云台控制器,所述云台控制器控制云台模块转动到对应角度,使得摄像机对准被跟踪的目标物体;通过数据处理模块将所述距离信息发送至移动控制模块,所述移动控制模块控制移动装置与被跟踪的目标物体保持对应距离。
  2. 如权利要求1所述的目标跟踪***,其特征在于:
    所述GNSS定位装置设置于被跟踪的目标物体上。
  3. 如权利要求1所述的目标跟踪***,其特征在于:
    所述定位定向模块为双天线GNSS定位定向结构;所述移动装置的基线由双天线GNSS定位定向结构中两个天线之间的直线向量确定,使得移动装置的基线与移动装置的中轴线平行,并且经过云台模块的中心。
  4. 一种目标跟踪方法,基于权利要求1~3中任意一项所述的目标跟踪***实现,其特征在于包括如下步骤:
    实时获得被跟踪的目标物体的目标位置信息,并向所述移动装置发送所述目标位置信息;
    通过光电编码器确定云台当前角度信息;
    通过水平仪确定云台相对于水平位置的水平倾斜角度;
    通过定位定向模块确定移动装置位置信息和航向角信息;
    对所述目标位置信息、云台当前角度信息、水平倾斜角度、移动装置位置信息和航向角信息进行处理,确定移动装置与被跟踪的目标物体的距离信息、云台模块需要转动的水平方位角和俯仰机械角;
    将水平方位角和俯仰机械角发送至云台控制器,所述云台控制器控制云台模块转动到对应角度,使得摄像机对准被跟踪的目标物体;
    将所述距离信息发送至移动控制模块,所述移动控制模块控制移动装置与被跟踪的目标物体保持对应距离。
  5. 如权利要求1所述的目标跟踪***或权利要求4所述的目标跟踪方法,其特征在于:
    所述移动装置位置信息包括:移动装置海拔高度H1、移动装置纬度Lat1和移动装置经度Lng1;
    所述目标位置信息包括:被跟踪的目标物体海拔高度H2、被跟踪的目标物体纬度Lat2和被跟踪的目标物体经度Lng2;
    所述航向角信息包括:移动装置的航向角∠N。
  6. 如权利要求1所述的目标跟踪***或权利要求4所述的目标跟踪方法,其特征在于:
    所述移动装置采用如下公式确定云台模块需要转动的水平方位角Az:
    Figure PCTCN2021076737-appb-100001
  7. 如权利要求1所述的目标跟踪***或权利要求4所述的目标跟踪方法,其特征在于:
    所述移动装置采用如下公式确定移动装置与被跟踪的目标物体的距离信息D:
    Figure PCTCN2021076737-appb-100002
    其中,π为圆周率,R为地球半径。
  8. 如权利要求1所述的目标跟踪***或权利要求4所述的目标跟 踪方法,其特征在于:
    所述移动装置采用如下公式确定云台模块需要转动的俯仰机械角El:
    Figure PCTCN2021076737-appb-100003
    其中,∠M为水平倾斜角度。
PCT/CN2021/076737 2020-04-10 2021-02-18 目标跟踪***及目标跟踪方法 WO2021203843A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010280899.2A CN111510624A (zh) 2020-04-10 2020-04-10 目标跟踪***及目标跟踪方法
CN202010280899.2 2020-04-10

Publications (1)

Publication Number Publication Date
WO2021203843A1 true WO2021203843A1 (zh) 2021-10-14

Family

ID=71870913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076737 WO2021203843A1 (zh) 2020-04-10 2021-02-18 目标跟踪***及目标跟踪方法

Country Status (2)

Country Link
CN (1) CN111510624A (zh)
WO (1) WO2021203843A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113970314A (zh) * 2021-10-18 2022-01-25 国网辽宁省电力有限公司抚顺供电公司 一种输电线路净空距离无人机航测方法及***

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111510624A (zh) * 2020-04-10 2020-08-07 瞬联软件科技(北京)有限公司 目标跟踪***及目标跟踪方法
CN114396940A (zh) * 2021-12-09 2022-04-26 浙江大华技术股份有限公司 监控设备的目标定位方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140336848A1 (en) * 2013-05-10 2014-11-13 Palo Alto Research Center Incorporated System and method for detecting, tracking and estimating the speed of vehicles from a mobile platform
CN105184776A (zh) * 2015-08-17 2015-12-23 中国测绘科学研究院 目标跟踪方法
CN105676865A (zh) * 2016-04-12 2016-06-15 北京博瑞爱飞科技发展有限公司 目标跟踪方法、装置和***
CN107920232A (zh) * 2017-11-28 2018-04-17 江苏如是地球空间信息科技有限公司 一种基于gps定位坐标解算的智能跟踪摄像***
CN108139486A (zh) * 2015-09-16 2018-06-08 深圳市大疆创新科技有限公司 用于uav定位的***和方法
CN108227754A (zh) * 2018-01-19 2018-06-29 深圳市科卫泰实业发展有限公司 一种双轴云台自动跟踪方法及***
US20190086506A1 (en) * 2017-09-15 2019-03-21 The Boeing Company Depression Angle Reference Tracking System
CN109976339A (zh) * 2019-03-15 2019-07-05 山东鲁能智能技术有限公司 一种车载配网巡检数据采集方法与巡检***
CN111510624A (zh) * 2020-04-10 2020-08-07 瞬联软件科技(北京)有限公司 目标跟踪***及目标跟踪方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045549A (zh) * 2010-12-28 2011-05-04 天津市亚安科技电子有限公司 一种控制监控设备联动跟踪运动目标的方法及装置
CN102143324A (zh) * 2011-04-07 2011-08-03 天津市亚安科技电子有限公司 一种云台自动平滑跟踪目标的方法
CN204790577U (zh) * 2015-07-17 2015-11-18 深圳市浩瀚卓越科技有限公司 基于gps的多旋翼无人机自动跟踪***
CN105045281A (zh) * 2015-08-13 2015-11-11 深圳一电科技有限公司 无人机飞行控制方法及装置
CN108574822B (zh) * 2017-03-08 2021-01-29 华为技术有限公司 一种实现目标跟踪的方法、云台摄像机和监控平台
CN107507107A (zh) * 2017-08-05 2017-12-22 湛引根 自动化影视创作平台、方法及其运营方法
CN109154834A (zh) * 2017-11-30 2019-01-04 深圳市大疆创新科技有限公司 无人机的控制方法、装置和***

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140336848A1 (en) * 2013-05-10 2014-11-13 Palo Alto Research Center Incorporated System and method for detecting, tracking and estimating the speed of vehicles from a mobile platform
CN105184776A (zh) * 2015-08-17 2015-12-23 中国测绘科学研究院 目标跟踪方法
CN108139486A (zh) * 2015-09-16 2018-06-08 深圳市大疆创新科技有限公司 用于uav定位的***和方法
CN105676865A (zh) * 2016-04-12 2016-06-15 北京博瑞爱飞科技发展有限公司 目标跟踪方法、装置和***
US20190086506A1 (en) * 2017-09-15 2019-03-21 The Boeing Company Depression Angle Reference Tracking System
CN107920232A (zh) * 2017-11-28 2018-04-17 江苏如是地球空间信息科技有限公司 一种基于gps定位坐标解算的智能跟踪摄像***
CN108227754A (zh) * 2018-01-19 2018-06-29 深圳市科卫泰实业发展有限公司 一种双轴云台自动跟踪方法及***
CN109976339A (zh) * 2019-03-15 2019-07-05 山东鲁能智能技术有限公司 一种车载配网巡检数据采集方法与巡检***
CN111510624A (zh) * 2020-04-10 2020-08-07 瞬联软件科技(北京)有限公司 目标跟踪***及目标跟踪方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113970314A (zh) * 2021-10-18 2022-01-25 国网辽宁省电力有限公司抚顺供电公司 一种输电线路净空距离无人机航测方法及***
CN113970314B (zh) * 2021-10-18 2023-12-01 国网辽宁省电力有限公司抚顺供电公司 一种输电线路净空距离无人机航测方法及***

Also Published As

Publication number Publication date
CN111510624A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
WO2021203843A1 (zh) 目标跟踪***及目标跟踪方法
US20240241518A1 (en) 3-d image system for vehicle control
US11668815B2 (en) Systems and methods for detecting objects
CN104932548B (zh) 一种无人机定向天线自跟踪***设计方法
CA2832956C (en) System and method for controlling an unmanned aerial vehicle
US7990550B2 (en) Method and system for determining position and orientation of an object
WO2017177542A1 (zh) 目标跟踪方法、装置和***
US20150168953A1 (en) Autonomous self-leveling vehicle
CN109341701B (zh) 基于激光跟踪全站仪的地面机器人航向角实时获取方法
US20200174499A1 (en) Aircraft control system
CN110837257B (zh) 一种基于iGPS与视觉的AGV复合定位导航***
CN109375172B (zh) 一种相控阵雷达解耦方法
CN113587930B (zh) 基于多传感融合的自主移动机器人室内外导航方法及装置
CN106005455B (zh) 一种基于地理坐标系指向控制的两轴吊舱***
CN111679669B (zh) 一种无人船自主精准停靠方法及***
CN112821029B (zh) 一种船载卫星天线座和船载卫星天线跟踪***
CN106988312B (zh) 基于北斗定向定位技术的机械设备归心改正方法及***
CN202084642U (zh) 一种无人驾驶飞机天线定向跟踪***控制装置
CN106338286B (zh) 一种动基座测量方法
CN113409400A (zh) 一种基于自动跟踪的机载光电***目标地理定位方法
CN102436260A (zh) 一种室内自主定位与定向的二维导航***
CN110967021B (zh) 不依赖主/被动测距的机载光电***目标地理定位方法
WO2011159185A1 (ru) Способ и устройство определения направления начала движения
CN116519020A (zh) 一种机动测控平台惯导标定装置及方法
CN109828569A (zh) 一种基于2d-slam导航的智能agv叉车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21784617

Country of ref document: EP

Kind code of ref document: A1