WO2021203709A1 - 一种低温等离子体除臭*** - Google Patents

一种低温等离子体除臭*** Download PDF

Info

Publication number
WO2021203709A1
WO2021203709A1 PCT/CN2020/130461 CN2020130461W WO2021203709A1 WO 2021203709 A1 WO2021203709 A1 WO 2021203709A1 CN 2020130461 W CN2020130461 W CN 2020130461W WO 2021203709 A1 WO2021203709 A1 WO 2021203709A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
low
deodorization
ozone decomposition
temperature plasma
Prior art date
Application number
PCT/CN2020/130461
Other languages
English (en)
French (fr)
Inventor
施小东
张帅
翁林钢
叶青
戚科技
刘洪唱
Original Assignee
浙江大维高新技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010270290.7A external-priority patent/CN111617608A/zh
Priority claimed from CN202020500241.3U external-priority patent/CN212236682U/zh
Application filed by 浙江大维高新技术股份有限公司 filed Critical 浙江大维高新技术股份有限公司
Publication of WO2021203709A1 publication Critical patent/WO2021203709A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/16Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by purification, e.g. by filtering; by sterilisation; by ozonisation

Definitions

  • the invention relates to the technical field of environmental protection equipment, in particular to a low-temperature plasma deodorization system.
  • the industries involved in foul odor pollution include not only point sources such as petroleum refining, chemicals, pharmaceuticals, rubber, papermaking, and food processing, but also non-point sources and emission sources such as sewage treatment, garbage treatment, livestock and poultry breeding, and catering oil fume. Due to the characteristics of wide-ranging sources and complex components, and difficulties in traceability, supervision, and governance, the prevention and control situation is still severe.
  • the common methods of malodorous gas treatment include biological decomposition method, activated carbon adsorption method, plasma method, spray deodorization method and photocatalytic oxidation method.
  • the low-temperature plasma method is an efficient, clean and convenient deodorization and purification process.
  • the principle of treating pollutants is: under the action of an external electric field, a large number of high-energy particles produced by air gap discharge bombard the pollutant molecules to ionize and decompose. Separation and excitation, triggering a series of complex physical and chemical reactions, transforming complex macromolecular pollutants into simple small molecule safe substances, and transforming toxic and harmful substances into non-toxic, harmless or low-toxic and low-harm substances, thereby causing pollution The material can be degraded and removed.
  • the patent publication number CN106582221A discloses a low-temperature plasma exhaust gas purification equipment, which is mainly composed of a dust removal system and a deodorization system.
  • the discharge structure is a wire-cylinder type.
  • the discharge form adopts corona discharge. There is a certain restriction relationship between electric power.
  • the discharge energy density of corona discharge is generally lower than that of dielectric barrier discharge, but the problem of ozone escape from the tail is not mentioned in the patent.
  • the patent with publication number CN 206853464U discloses a composite synergistic low-temperature plasma air purification equipment, which proposes a variety of treatment processes including cyclonic spray, rare earth catalysis, siphon anion, UV ultraviolet light, ozone decomposition net, etc. Integration, if all the processes are invested, the process flow is complicated and the cost is relatively high.
  • the purpose of the present invention is to provide a low-temperature plasma deodorization system in view of the defects of the prior art.
  • a low-temperature plasma deodorization system comprising a housing, several deodorizing modules arranged in an array in the housing, a power distribution module arranged outside the housing, and an ozone decomposition module arranged at the rear of the housing;
  • Each of the two deodorizing modules includes a plasma reactor in the form of dielectric barrier discharge, and the power distribution module includes several power sources that provide electrical energy to the reactor; when the several power sources are energized, the reactor Dielectric barrier discharge occurs and active particles are generated, and the generated active particles decompose, transform and remove odor molecules, and pass through the oxygen decomposition module to realize exhaust gas treatment.
  • a sliding rail for installing each deodorizing module is provided in the casing, so that each deodorizing module is installed inside the casing through the sliding rail.
  • a deodorizing module spare site is also provided in the casing for supplementing the deodorizing module.
  • the structure of the reactor is a tube-plate structure or a tube-tube structure; the discharge gap when the dielectric barrier discharge occurs in the reactor is 3-15 mm.
  • the discharge gap of the reactor is one of 3mm, 4.5mm, 6mm, 7mm, 8mm, 9mm, 10mm, and 11mm.
  • the amount of purified waste gas of each deodorization module in the plurality of deodorization modules is 500-2000 m 3 /h.
  • the ozone decomposition module includes an ozone decomposition catalytic net, and the ozone decomposition catalytic net is a honeycomb type or a plate type.
  • the ozone decomposition catalyst net has an ozone decomposition catalyst; the active components of the ozone decomposition catalyst include manganese dioxide, cobalt oxide, and copper oxide; the supporting substrate of the ozone decomposition catalyst is activated carbon or aluminum oxide or titanium dioxide crystals
  • the use temperature of the ozone decomposition catalyst is 30-80°C.
  • a spare site for the ozone decomposition module is preset in the casing for installing the ozone decomposition module.
  • the treatment efficiency of waste gas in the reactor is 1 to 5 W/m 3 .
  • the present invention has the advantages that the exhaust gas to be treated passes through the deodorization module and the ozone decomposition module in sequence when flowing in the housing.
  • the reactor adopts an efficient dielectric barrier discharge form to decompose and oxidize odor-causing molecules to achieve the purpose of deodorization.
  • the ozone decomposition module is used as a by-product ozone destruction treatment section to eliminate the hidden danger of ozone escape and improve the utilization rate of ozone. This technology is simple, Easy to operate, easy to maintain and replace each module, suitable for a wide range of exhaust gas treatment, and achieve high-efficiency and low-cost operation of deodorization.
  • FIG. 1 is a schematic diagram of a low-temperature plasma deodorization system applied to deodorization of waste gas from a sewage treatment station according to the first and third embodiments;
  • FIG. 2 is a schematic diagram of a deodorizing module in a low-temperature plasma deodorizing system provided in the first embodiment
  • FIG. 3 is a schematic diagram of the discharge structure of the deodorizing module provided in the first embodiment
  • FIG. 4 is a schematic diagram of the discharge structure of the deodorizing module provided in the first embodiment
  • Fig. 5 is a schematic diagram of a low-temperature plasma deodorization system applied to waste gas deodorization of a garbage treatment center provided in the first and fourth embodiments;
  • Fig. 6 is a schematic diagram of a low-temperature plasma deodorization system applied to deodorization of exhaust gas in a chemical workshop provided by Embodiments 1, 2, and 5;
  • FIG. 7 is a schematic diagram of a low-temperature plasma deodorization system applied to deodorization of exhaust gas from a large wood processing plant provided by Embodiments 1, 2, and 6;
  • FIG. 8 is a schematic diagram of a single-layer arrangement of deodorization modules in a low-temperature plasma deodorization system for exhaust gas deodorization of a large wood processing plant provided by the fifth embodiment;
  • the purpose of the present invention is to provide a low-temperature plasma deodorization system in view of the defects of the prior art.
  • this embodiment provides a low-temperature plasma deodorization system, which includes a housing 1, a number of deodorizing modules arranged in an array in the housing 1, 2, and a deodorizing module arranged outside the housing 1.
  • Power distribution module 3 each of the several deodorizing modules 2 includes a plasma reactor in the form of dielectric barrier discharge, and the power distribution module 3 includes several power supplies 31 that provide electrical energy for the reactor; After 31 are energized, the reactor will generate dielectric barrier discharge and generate active particles. The generated active particles decompose, transform and remove odor molecules, thereby realizing waste gas treatment.
  • the housing 1 of the deodorizing system can be placed horizontally or vertically.
  • the housing 1 is provided with a point where the deodorizing module 2 is installed, and a sliding rail is provided at this point, so that the deodorizing module 2 is installed in the housing 1 through the sliding rail.
  • the housing 1 is also provided with a deodorizing module 2 spare site 4 for supplementing the deodorizing module 2, and the housing is sealed and fixed outside.
  • the deodorizing module 2 is one or more modules, the specific number of which can be installed according to actual conditions.
  • the system treats exhaust gas in the direction of the arrows in Figures 1, 5, 6, and 7.
  • the array row of the deodorizing module is set to: if there is one deodorizing module, the array row at the position of the deodorizing module is set to 1*1, and there is also a spare position 4 adjacent to the deodorization module and near the tail. Therefore, when there is one deodorization module, the display row of the position of the deodorization module is set to 1*2.
  • the display row of the deodorizing module position points is set to n*2, and there is also a spare position 4 adjacent to the deodorizing module and close to the tail, so when the deodorizing module is When the number of odor modules is more than one (multiple), the array of deodorization module locations is set to n*3.
  • the shell of the deodorization system of this embodiment is a three-dimensional view, and the arrangement of the reactors can be arranged on one side in the shell or on both sides of the shell, and the single side row is set to n *2, the single-sided housing when arranged on both sides is n/2*2.
  • the specific shooting method needs to be determined according to the actual situation. It should be noted that when the number of deodorizing modules is singular, they can be installed according to the actual situation.
  • the optimal number and arrangement of reactors can be selected according to the amount of gas to be processed, which improves the operability of the system and is convenient for maintenance and replacement management; and a layer is reserved on the shell for additional deodorization modules. Add a deodorizing module after the system is installed to ensure the purification effect.
  • the deodorizing module 2 is mainly a plasma reactor, which adopts the form of dielectric barrier discharge, and the structure is a tube-plate structure or a tube-tube structure, as shown in Figure 2-3, and the reactor includes a discharge electrode 21 and a ground electrode 22 Under the action of high-frequency and high-voltage pulse power supply, the reactor generates a dielectric barrier discharge, which produces a large number of active particles, where odor molecules are decomposed, transformed and removed, thereby achieving deodorization and purification of exhaust gas.
  • the discharge gap when dielectric barrier discharge occurs in the reactor is 3-15mm.
  • the discharge gap of the reactor is one of 3mm, 4.5mm, 6mm, 7mm, 8mm, 9mm, 10mm, 11mm.
  • the two ends of the tube-plate structure or the tube-tube structure are fixed by epoxy resin plates, and the stainless steel plates are fixed by special epoxy rods and partitions, and the gap distance is maintained.
  • the amount of purified waste gas of each deodorization module 2 is 500-2000 m 3 /h, preferably 1000 m 3 /h.
  • the number of deodorizing modules 2 is directly proportional to the air volume to be processed and the concentration of odor.
  • a single deodorizing module is equipped with a separate power distribution module 3. That is, one deodorizing module is configured with one power distribution module 3; when the processing capacity is large, all deodorizing modules (when ⁇ 4) are distributed and powered by a power distribution module 3, and each deodorizing module is configured with an independent operating status signal , It is convenient for maintenance and replacement.
  • the power distribution module 3 includes 4 power supplies, and each power supply controls the reactor of 4 deodorization modules.
  • the required reactor injection power is calculated according to different working conditions, the layout of the reactor is designed, and the configuration of the power supply is designed accordingly.
  • the power supply is a power supply suitable for plasma reactors, which is divided into 2.5KW according to the power , 5KW and 10KW modular power supply, design different power supply combinations according to different design requirements.
  • the use of a combination of different types of power sources for power supply reduces investment costs while comprehensively considering operational stability and equipment maintenance, thereby reducing overall costs.
  • Power module Number of power modules Number of reactor modules Total power KW Applicable air volume, Nm 3 /h 2.5KW 1 1 2.5 ⁇ 1000 5KW 1 2 5 ⁇ 2000 10KW 1 4 10 ⁇ 5000 10KW 2 8 20 ⁇ 10000 - - - - -
  • the treatment efficiency of waste gas in the reactor is 1 to 5W/m 3
  • the power deodorization efficiency is in the range of 1 to 5W/m 3 , which is related to the actual ozone concentration and molecular composition and needs to be further designed and calculated according to the actual working conditions.
  • this embodiment can calculate the required reactor injection power according to different working conditions, design the layout of the reactor, design the configuration of the power supply, and design different combinations for different design requirements to ensure the purification effect At the same time reduce purification costs.
  • an ozone decomposition module 5 is further included, and a location for installing the ozone decomposition module is preset at the rear of the casing for installing the ozone decomposition module 5.
  • an ozone decomposition module 5 can be installed at the tail.
  • the ozone decomposition module 5 is mainly an ozone decomposition catalytic network, which can be a honeycomb or a plate type.
  • the residence time of the exhaust gas in the ozone decomposition module is preferably 0.1s, 0.15s, 0.2s, 0.25s or 0.3s.
  • the active components of the ozone decomposition catalyst include manganese dioxide, cobalt oxide, and copper oxide; the supporting substrate of the ozone decomposition catalyst is activated carbon or alumina or titanium dioxide crystal; the best temperature for the use of the ozone decomposition catalyst is 30 ⁇ 80°C, and it is used for a long time. Later, if the efficiency of the ozone decomposition catalyst is found to be reduced, it can be taken out to dry or dry for a period of time and continue to use it. The ozone decomposition catalyst of this embodiment can be recycled, which reduces the frequency of replacement and reduces the cost of labor and materials.
  • the flow rate of the exhaust gas to be treated when flowing in the shell is 3-8m/s, preferably one of 3m/s, 4m/s, 5m/s, 6m/s, the exhaust gas temperature is less than 100°C, and the overall system pressure loss Less than 800Pa.
  • the waste gas to be treated contains a large amount of dust and water, it should be pre-treated for dust and water before entering the purification system.
  • this embodiment is equipped with an ozone decomposition module installation site at the tail, which facilitates the installation of an ozone decomposition module to treat exhaust gas when the ozone concentration still exceeds the control standard.
  • the ozone decomposition module When the ozone decomposition module is not required, it can be Take out the module to reduce waste of resources.
  • the deodorization system is applied to the deodorization and purification of exhaust gas from a sewage treatment station.
  • Figure 1 shows a modular low-temperature plasma deodorization system, which is applied to the deodorization and purification of waste gas in sewage treatment stations.
  • the shell is placed in the vertical direction.
  • the waste gas treatment volume is 2000m 3 /h, the temperature is room temperature, and the waste gas passes through the arrow during use.
  • the deodorization module Through the deodorization module, the decomposition and transformation of odor pollutant molecules can be achieved to achieve the purpose of purification and treatment.
  • the deodorization module is divided into 3 layers, the two layers are equipped with reactor modules, the third layer is reserved for the reactor interface, the number of reactor modules is 2, and the arrangement method is 1 ⁇ 2 layer (the arrangement method is in The shell is arranged on one side), each reactor is equipped with a power distribution module, and the power distribution module and the reactor are installed on the shell as a whole, and the power distribution module is outside the shell and does not contact the exhaust gas.
  • the power of the module is 2.5KW, the total power is 5KW, and the flue gas flow rate is 3m/s when the exhaust gas flows in the shell.
  • the deodorization system is applied to the deodorization and purification of exhaust gas from a garbage treatment center.
  • a modular low-temperature plasma deodorization system is applied to the deodorization of waste gas in a garbage treatment center.
  • the casing is placed longitudinally, the waste gas treatment volume is 5000Nm 3 /h, the temperature is room temperature, and the number of reactor modules is 4
  • the arrangement method is 2 ⁇ 2 layers (the arrangement method is arranged on the shell on one side), the shell is square as a whole, the third layer is reserved for the reactor interface, and the 4 reactor modules are configured with one
  • the power supply, the power module power is 10KW, placed in the power distribution module, fixed on the appropriate position of the shell steel structure platform, the flow rate of the exhaust gas in the shell is 4m/s, and the deodorization module realizes the decomposition and purification of odor pollutant molecules , To achieve the purpose of waste gas purification and treatment.
  • Figure 6 shows another arrangement in a modular low-temperature plasma deodorization system, which is applied to the deodorization of exhaust gas in a chemical workshop.
  • the shell is placed horizontally, and the odor processing capacity is 15000Nm 3 /h, and the exhaust gas flows in the shell.
  • the flue gas flow rate is 4m/s
  • the deodorization module is divided into three layers.
  • the third layer is reserved for the reactor interface.
  • the number of reactor modules is 16.
  • the arrangement method of this embodiment is arranged on both sides, and the two sides are arranged with a single-sided shell.
  • the arrangement of the reactor is 4 ⁇ 2 layers, as shown in Figure 8 is the single-layer arrangement of the reactor; it is worth noting that the single-layer and single-side view directions are different; the configuration of the reactor module number is 16
  • the number of power supplies is 4, and each power supply controls 4 reactors.
  • the power of a single power supply is 10KW, and the total power is 40KW.
  • the power supply is placed in the power distribution module as a whole and fixed at a suitable position on the purification device platform. When starting, turn on the power of the deodorizing device, and when the power is stable, pass in the exhaust gas to be treated. When turning off, first turn off the exhaust fan to be treated, and then turn off the power of the deodorizing device.
  • the deodorization system is applied to the deodorization and purification of exhaust gas from a large-scale wood processing plant.
  • Figure 7 shows another arrangement in a modular low-temperature plasma deodorization system, which is applied to the deodorization of exhaust gas from a large wood processing plant.
  • the odor treatment capacity is 160,000 Nm 3 /h.
  • the flue gas has a flow rate of 6m/s and passes through the deodorization module and the ozone decomposition module in sequence to achieve the decomposition and purification of odor pollutant molecules and the destruction of by-product ozone, and finally achieve the purpose of deodorization and purification.
  • the deodorization module is divided into three layers, the third layer is reserved for the reactor interface, the number of reactors is 128, and the arrangement method is 64 ⁇ 2 layers (the arrangement method is a single side row on the shell Set), the number of configured power supplies is 32, each power supply controls 4 reactors, the power of a single power supply is 10KW, the total power is 320KW, every 8 power supplies are installed in 1 power distribution module, a total of 4 power distribution
  • the module is fixed in a suitable position on the platform of the purification device. It should be noted that, in order to save materials and facilitate installation, the reactor of this embodiment can also be arranged on both sides (for example, the single-sided shell in the arrangement on both sides is 32 ⁇ 2 layers), which can be based on actual conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种低温等离子体除臭***,包括壳体(1)、设置于壳体(1)内阵列排设的数个除臭模块(2)、设置于壳体(1)外部的配电模块(3)、设置于壳体(1)尾部的臭氧分解模块(5);数个除臭模块(2)中的每一个除臭模块(2)均包括介质阻挡放电形式的等离子体反应器,配电模块(3)包括为反应器提供电能的数个电源(31);当数个电源(31)通电后,反应器发生介质阻挡放电并产生活性粒子,产生的活性粒子使臭气分子发生分解转化并脱除,并经过臭氧分解模块(5),以实现废气的处理。

Description

一种低温等离子体除臭*** 技术领域
本发明涉及环保设备技术领域,尤其涉及一种低温等离子体除臭***。
背景技术
近年来,恶臭异味污染成为环境投诉的焦点,加强防治的呼声也越来越强烈。根据数据统计,2018年恶臭投诉占所有环境投诉的23%,成为仅次于噪声的第二大投诉源。
恶臭异味污染涉及的行业既有石油炼制、化工、制药、橡胶、造纸、食品加工等点源,又有污水处理、垃圾处理、畜禽养殖、餐饮油烟等面源、散发源。由于恶臭具有来源广泛、组分复杂等特点,存在溯源难、监管难、治理难等困境,防治形势依然严峻。
恶臭气体处理常见的方法有生物分解法、活性碳吸附法、等离子体法、喷淋液除臭法和光催化氧化法等。低温等离子体法是一种高效、清洁、便捷的除臭净化工艺,处理污染物的原理为:在外加电场的作用下,空气间隙放电产生的大量高能粒子轰击污染物分子,使其电离、解离和激发,引发了一系列复杂的物理、化学反应,使复杂大分子污染物转变为简单小分子安全物质,使有毒有害物质转变成无毒无害或低毒低害的物质,从而使污染物得以降解去除。
目前,低温等离子体净化技术虽然已经在相关行业拥有部分应用实践,但暴露出的诸多问题亟需技术优化,从而实现等离子体反应器的高效稳定运行。查阅相关研究专利发现存在以下特点:1、除臭大多数集中在小气量、特定场所,如公厕、垃圾站点;2、除臭反应器结构多采用小间隙DBD放电形式,对于废气的成分要求温度低、含尘少、含油烟少、不含雾滴,烟气适应性差;3、除臭效果有待考证。
如公开号为CN106582221A的专利公开了一种低温等离子废气净化设备,主要由除尘***和除臭味***组成,放电结构为线-筒式,放电形式采用电晕放电,其阴阳极间距与放电电压、电功率之间存在一定的制约关系,电晕放电形式放电能量密度一般低于介质阻挡放电,但是该专利中并未提到尾部臭氧逃逸的问题。
又如公开号为CN205760518U的专利公开了一种低温等离子除臭设备,采用了***式的电离模块作为等离子体发生器,产生等离子体之后再与待处理臭气进行混合,没有提到模块的布置及适用工况,且由于活性粒子大都寿命短暂,这种等离子体产生后再去净化的工艺净化效率必然大打折扣。
公开号为CN 206853464U的专利公开了一种复合协同增效型低温等离子空气净化设备,提出了包括旋雾喷淋、稀土催化、虹吸负离子、UV紫外光、臭氧分解网等的多种处理工艺 的整合,若所有的工艺全都投入的话,工艺流程复杂,成本较大。
针对以上技术问题,故需对其进行改进。
发明内容
本发明的目的是针对现有技术的缺陷,提供了一种低温等离子体除臭***。
为了实现以上目的,本发明采用以下技术方案:
一种低温等离子体除臭***,包括壳体、设置于壳体内阵列排设的数个除臭模块、设置于壳体外部的配电模块、设置于壳体尾部的臭氧分解模块;所述数个除臭模块中的每一个除臭模块均包括介质阻挡放电形式的等离子体反应器,所述配电模块包括为反应器提供电能的数个电源;当数个电源通电后,所述反应器发生介质阻挡放电并产生活性粒子,所述产生的活性粒子使臭气分子发生分解转化并脱除,并经过氧分解模块,以实现废气的处理。
进一步的,所述壳体内设有供每一个除臭模块安装的滑轨,以使每一个除臭模块通过滑轨安装于壳体内部。
进一步的,所述壳体内还设有除臭模块备用位点,用于补加除臭模块。
进一步的,所述反应器的结构为管-板式结构或管-管式结构;所述反应器发生介质阻挡放电时的放电间隙为3-15mm。
进一步的,所述应器的放电间隙为3mm、4.5mm、6mm、7mm、8mm、9mm、10mm、11mm中的一种。
进一步的,所述数个除臭模块中每一个除臭模块的净化废气量为500~2000m 3/h。
进一步的,所述臭氧分解模块包括臭氧分解催化网,所述臭氧分解催化网为蜂窝式或板式。
进一步的,所述臭氧分解催化网内具有臭氧分解催化剂;所述臭氧分解催化剂的活性成分包括二氧化锰、氧化钴、氧化铜;所述臭氧分解催化剂的负载基体为活性炭或氧化铝或二氧化钛晶体;所述臭氧分解催化剂的使用温度为30~80℃。
进一步的,所述壳体内预设有臭氧分解模块备用位点,用于安装臭氧分解模块。
进一步的,所述反应器中废气的处理效率为1~5W/m 3
与现有技术相比,本发明的优点为:待处理废气在壳体内流动时依次经过除臭模块和臭氧分解模块,除臭模块由合理布置的模块化的低温等离子体反应器组成,等离子体反应器采用高效的介质阻挡放电形式,分解、氧化致臭分子,实现除臭目的,臭氧分解模块作为副产物臭氧的破坏处理段,消除臭氧逃逸隐患,同时提高臭氧利用率,此技术工艺简单、 易操作、各模块维护更换方便,适用废气处理量范围大,实现除臭的高效低成本运行。
附图说明
图1为实施例一、三提供的应用于污水处理站废气除臭的低温等离子体除臭***示意图;
图2为实施例一提供的一种低温等离子体除臭***中除臭模块示意图;
图3为实施例一提供的除臭模块放电结构示意图;
图4为实施例一提供的除臭模块放电结构示意图;
图5为实施例一、四提供的应用于垃圾处理中心废气除臭的低温等离子体除臭***示意图;
图6为实施例一、二、五提供的应用于化工车间废气除臭的低温等离子体除臭***示意图;
图7为实施例一、二、六提供的应用于大型木材加工厂废气除臭的低温等离子体除臭***示意图;
图8为实施例五提供的应用于大型木材加工厂废气除臭的低温等离子体除臭***中除臭模块单层排设示意图;
其中:1.壳体;2.除臭模块;21.放电极;22.接地极;3.配电模块;31.电源;4.备用位点;5.臭氧分解模块。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
本发明的目的是针对现有技术的缺陷,提供一种低温等离子体除臭***。
实施例一:
如图1-7所示,本实施例提供一种低温等离子体除臭***,包括壳体1、设置于壳体1内阵列排设的数个除臭模块2、设置于壳体1外部的配电模块3;数个除臭模块中的每一个除臭模块2均包括介质阻挡放电形式的等离子体反应器,配电模块3包括为反应器提供电能的数个电源31;当数个电源31均通电后,反应器发生介质阻挡放电并产生活性粒子, 产生的活性粒子使臭气分子发生分解转化并脱除,实现废气的处理。
需要说明的是,本实施例所涉及的数个表示1个或多个。
除臭***的壳体1可以横向放置,也可以纵向放置。壳体1内设有安装除臭模块2的位置点,且该位置点处设有滑轨,以使除臭模块2通过滑轨安装于壳体1内部。在壳体1内还设有除臭模块2备用位点4,用于补加除臭模块2,而壳体外部密封固定。
在本实施例中,除臭模块2为1个或多个模块,其具体的数量可根据实际情况来安装。***处理废气如图1、5、6、7中箭头的方向,根据箭头的方向,除臭模块的阵列排设为:若除臭模块为1个时,除臭模块位置点的陈列排设为1*1,且还设有与除臭模块相邻并靠近尾部的备用位点4,因此当除臭模块为1个时,除臭模块位置点的陈列排设为1*2。若除臭模块为大于1个(多个)时,除臭模块位置点的陈列排设为n*2,且还设有与除臭模块相邻并靠近尾部的备用位点4,因此当除臭模块为大于1个(多个)时,除臭模块位置点的陈列排设为n*3。值得注意的是,本实施例的除臭***的壳体为立体图,反应器的排列方式为可以壳体中单侧排设,也可以是壳体中两侧排设,单侧排设为n*2,两侧排设时的单侧壳体为n/2*2。具体的拍摄方法需根据实际情况确定。需要说明的是,除臭模块的个数为单数时,可根据实际情况进行安装。
本实施例可根据待处理气量的不同选择最佳的反应器数量和布置方式,提高***可操作性,便于检修更换管理;且在壳体上预留一层加装除臭模块的位置,用于***安装后补加除臭模块,保证净化效果。
除臭模块2主要为等离子体反应器,采用介质阻挡放电形式,结构为管-板式结构或管-管式结构,如图2-3所示,且反应器中包括放电极21和接地极22;在高频高压脉冲电源的作用下,反应器发生介质阻挡放电,产生大量活性粒子,臭气分子在此进行分解转化脱除,进而实现废气的除臭净化。
反应器发生介质阻挡放电时的放电间隙为3-15mm。优选的,反应器的放电间隙为3mm、4.5mm、6mm、7mm、8mm、9mm、10mm、11mm中的一种。且管-板式结构或管-管式结构两端由环氧树脂板固定,不锈钢板通过特制的环氧杆和分隔件固定并保持间隙距离。
在本实施例中,每个除臭模块2的净化废气量为500~2000m 3/h,优选1000m 3/h。除臭模块2的个数与待处理风量及臭气浓度成正比,在处理量较小时,且除臭模块2的个数少于4个时,单个除臭模块配置单独的配电模块3,即一个除臭模块配置一个配电模块3;在处理量较大时,所有的除臭模块(≥4个时)由一个配电模块3分配供电,每个除臭模块配置独立的运行状态信号,便于检修更换,如除臭模块数为16个时,配电模块3中包括4个电源,其中每一个电源控制4个除臭模块的反应器。在本实施例中,根据不同工况计算 所需的反应器注入功率,设计反应器布置方案,相应的设计电源的配置方案,电源采用适用于等离子体反应器的电源,根据功率分为2.5KW、5KW和10KW的模块化电源,针对不同的设计需求设计不同的电源组合。使用不同种类的电源之间组合的方式进行供电,在降低投资成本同时综合考虑运行稳定性和设备维护,进而降低综合成本。
电源与反应器组合方案如下表1。
电源模块 电源模块数 反应器模块数 总功率KW 适用风量,Nm 3/h
2.5KW 1 1 2.5 ~1000
5KW 1 2 5 ~2000
10KW 1 4 10 ~5000
10KW 2 8 20 ~10000
-- -- -- -- --
表1
反应器中废气的处理效率为1~5W/m 3,电源除臭效率在1~5W/m 3范围内,同实际的臭氧浓度和分子组成相关,需要根据实际的工况来进一步设计计算。
与现有技术相比,本实施例可以根据不同工况计算所需的反应器注入功率,设计反应器布置方案,设计电源的配置方案,针对不同的设计需求设计不同的组合方式,保证净化效果同时降低净化成本。
实施例二
本实施例提供的一种低温等离子体除臭***与实施例一的不同之处在于:
在本实施例中,如图6、7所示,还包括臭氧分解模块5,在壳体的尾部预设有臭氧分解模块安装的位点,用于安装臭氧分解模块5。
当处理的废气经过除臭模块后,若臭氧浓度依然超过控制标准,可在尾部安装臭氧分解模块5,臭氧分解模块5主要为臭氧分解催化网,臭氧分解催化网可以为蜂窝式或板式。
臭氧分解催化网内具有臭氧分解催化剂;臭氧分解催化剂的用量需要经过精确计算确定,催化剂空速为10000~50000/h。废气于臭氧分解模块停留时间优选为0.1s、0.15s、0.2s、0.25s或0.3s。
臭氧分解催化剂的活性成分包括二氧化锰、氧化钴、氧化铜;臭氧分解催化剂的负载基体为活性炭或氧化铝或二氧化钛晶体;臭氧分解催化剂的使用的最佳温度为30~80℃,长时间使用后若发现臭氧分解催化剂的效率降低,可取出晾晒或烘干一段时间后继续使用。本实施例的臭氧分解催化剂可以循环使用,减少了跟换频率,降低了人工、材料的成本。
待处理废气在壳体内流动时的流速为3~8m/s,优选为3m/s、4m/s、5m/s、6m/s中的一种,废气温度小于100℃,整体***总压力损失小于800Pa。待处理废气中含尘含水量较 大时,应该进行除尘除水预处理后再进入净化***。
与现有技术相比,本实施例在尾部设置了臭氧分解模块安装位点,便于臭氧浓度依然超过控制标准的情况下,通过安装臭氧分解模块来处理废气,当不需要臭氧分解模块时,可以将该模块取出,以减少资源浪费。
实施例三
本实施例提供的一种低温等离子体除臭***与实施例一、二的不同之处在于:
本实施例将除臭***应用于污水处理站废气除臭净化。
如图1所示为一种模块化低温等离子体除臭***,应用于污水处理站废气除臭净化,壳体纵向放置,处理废气量为2000m 3/h,温度为室温,使用时废气通过箭头的方向经过除臭模块实现臭气污染物分子的分解转化,达到净化治理目的。除臭模块分为3层,两层设置有反应器模块,第三层为预留反应器接口,反应器模块数为2个,排布方式为1个×2层(该排设方式为在壳体上单侧排设),每个反应器配置一个配电模块,且配电模块与反应器作为一个整体安装在壳体上,配电模块在壳体外,不与废气接触,单个配电模块的电源功率为2.5KW,总功率为5KW,废气在壳体内流动时烟气流速为3m/s。启动时先开启除臭装置电源,待电源稳定后,通入待处理废气,关闭时,先关闭待处理废气风机,再关闭除臭装置电源。
实施例四
本实施例提供的一种低温等离子体除臭***与实施例三的不同之处在于:
本实施例将除臭***应用于垃圾处理中心废气除臭净化。
如图5所示的一种模块化低温等离子体除臭***,应用于垃圾处理中心废气除臭,壳体纵向放置,处理废气量为5000Nm 3/h,温度为室温,反应器模块数为4个,排布方式为2个×2层(该排设方式为在壳体上单侧排设),壳体整体呈正方形,第三层为预留反应器接口,4个反应器模块配置一个电源,电源模块功率为10KW,放置在配电模块里,固定于壳体钢结构平台合适位置,废气在壳体内流动流速为4m/s,经过除臭模块,实现臭气污染物分子的分解净化,达到废气净化治理目的。
实施例五
本实施例提供的一种低温等离子体除臭***与实施例四的不同之处在于:
本实施例将除臭***应用于化工车间废气除臭净化。
如图6所示为一种模块化低温等离子体除臭***中另外一种布置方式,应用于化工车间废气除臭,壳体横向放置,处理臭气量为15000Nm 3/h,废气在壳体内流动时烟气流速为4m/s,经过除臭模块和臭氧分解模块,实现臭气污染物分子的分解转化以及副产物臭氧的 破坏,实现除臭净化治理。除臭模块分为三层,第三层为预留反应器接口,布置反应器模块数为16个,本实施例的排设方式为两侧排设,其中两侧排设中单侧壳体的排布方式为4个×2层,如图8所示为反应器的单层排设方式;值得注意的是,单层与单侧的视图方向不同;反应器模块数为16个的配置的电源数为4个,每个电源控制4个反应器,单个电源的功率为10KW,总功率为40KW,电源作为一个整体放置在配电模块里,固定在净化装置平台合适位置。启动时先开启除臭装置电源,待电源稳定后,通入待处理废气,关闭时,先关闭待处理废气风机,再关闭除臭装置电源。
实施例六
本实施例提供的一种低温等离子体除臭***与实施例五的不同之处在于:
本实施例将除臭***应用于大型木材加工厂废气除臭净化。
如图7所示为一种模块化低温等离子体除臭***中另外一种布置方式,应用于大型木材加工厂废气除臭,处理臭气量为16万Nm 3/h,废气在壳体内流动时烟气流速为6m/s,依次经过除臭模块和臭氧分解模块,实现臭气污染物分子的分解净化以及副产物臭氧的破坏,最终实现除臭净化治理目的。除臭模块分为三层,第三层为预留反应器接口,布置反应器的个数为128个,排布方式为64个×2层(该排设方式为在壳体上单侧排设),配置的电源数为32个,每个电源控制4个反应器,单个电源的功率为10KW,总功率为320KW,每8个电源安装在1个配电模块中,共4个配电模块且固定在净化装置平台合适位置。需要说明的是,为了节约材料且方便安装,本实施例的反应器的也可采用双侧排设(如两侧排设中的单侧壳体为32个×2层),可根据实际情况做出调整,不仅限于图7中示出的。启动时先开启除臭装置电源,待电源稳定后,通入待处理废气,关闭时,先关闭待处理废气风机,再关闭除臭装置电源。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (10)

  1. 一种低温等离子体除臭***,其特征在于,包括壳体、设置于壳体内阵列排设的数个除臭模块、设置于壳体外部的配电模块、设置于壳体尾部的臭氧分解模块;所述数个除臭模块中的每一个除臭模块均包括介质阻挡放电形式的等离子体反应器,所述配电模块包括为反应器提供电能的数个电源;当数个电源通电后,所述反应器发生介质阻挡放电并产生活性粒子,所述产生的活性粒子使臭气分子发生分解转化并脱除,并经过氧分解模块,以实现废气的处理。
  2. 如权利要求1所述的一种低温等离子体除臭***,其特征在于,所述壳体内设有供每一个除臭模块安装的滑轨,以使每一个除臭模块通过滑轨安装于壳体内部。
  3. 如权利要求2所述的一种低温等离子体除臭***,其特征在于,所述壳体内还设有除臭模块备用位点,用于补加除臭模块。
  4. 如权利要求1所述的一种低温等离子体除臭***,其特征在于,所述反应器的结构为管-板式结构或管-管式结构;所述反应器发生介质阻挡放电时的放电间隙为3-15mm。
  5. 如权利要求4所述的一种低温等离子体除臭***,其特征在于,所述应器的放电间隙为3mm、4.5mm、6mm、7mm、8mm、9mm、10mm、11mm中的一种。
  6. 如权利要求1所述的一种低温等离子体除臭***,其特征在于,所述数个除臭模块中每一个除臭模块的净化废气量为500~2000m 3/h。
  7. 如权利要求1所述的一种低温等离子体除臭***,其特征在于,所述臭氧分解模块包括臭氧分解催化网,所述臭氧分解催化网为蜂窝式或板式。
  8. 如权利要求7所述的一种低温等离子体除臭***,其特征在于,所述臭氧分解催化网内具有臭氧分解催化剂;所述臭氧分解催化剂的活性成分包括二氧化锰、氧化钴、氧化铜;所述臭氧分解催化剂的负载基体为活性炭或氧化铝或二氧化钛晶体;所述臭氧分解催化剂的使用温度为30~80℃。
  9. 如权利要求7所述的一种低温等离子体除臭***,其特征在于,所述壳体内预设有臭氧分解模块备用位点,用于安装臭氧分解模块。
  10. 如权利要求1-9任一项所述的一种低温等离子体除臭***,其特征在于,所述反应器中废气的处理效率为1~5W/m 3
PCT/CN2020/130461 2020-04-08 2020-11-20 一种低温等离子体除臭*** WO2021203709A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010270290.7A CN111617608A (zh) 2020-04-08 2020-04-08 一种低温等离子体除臭***
CN202020500241.3 2020-04-08
CN202020500241.3U CN212236682U (zh) 2020-04-08 2020-04-08 一种低温等离子体除臭装置
CN202010270290.7 2020-04-08

Publications (1)

Publication Number Publication Date
WO2021203709A1 true WO2021203709A1 (zh) 2021-10-14

Family

ID=78023079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130461 WO2021203709A1 (zh) 2020-04-08 2020-11-20 一种低温等离子体除臭***

Country Status (1)

Country Link
WO (1) WO2021203709A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114245553A (zh) * 2021-12-03 2022-03-25 北京东方计量测试研究所 等离子体参数校准方法
CN114904375A (zh) * 2022-04-29 2022-08-16 常州大学 一种有机类恶臭物质分解工艺及装置
CN115253675A (zh) * 2022-09-20 2022-11-01 天泓环境科技有限责任公司 一种等离子放电协同催化废气处理装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103285718A (zh) * 2013-05-16 2013-09-11 北京朗净时代环境科技有限公司 一种低温等离子垃圾站除臭杀菌装置
CN203797857U (zh) * 2014-03-28 2014-08-27 安徽锋亚环境技术有限公司 一种卫生间用环保型空气净化***
JP2015070921A (ja) * 2013-10-02 2015-04-16 大阪瓦斯株式会社 脱臭装置
CN105233576A (zh) * 2015-09-28 2016-01-13 民政部一零一研究所 殡仪场所室内废气净化方法及其装置
CN105864904A (zh) * 2016-04-07 2016-08-17 西安交通大学 一种基于低温等离子体的室内空气净化装置
CN107029527A (zh) * 2017-05-27 2017-08-11 南京大学环境规划设计研究院有限公司 一种装修空间异味净化方法及装置
CN107281918A (zh) * 2017-08-22 2017-10-24 苏州碧峰环保科技有限公司 有机废气的多级催化氧化处理装置
CN110420549A (zh) * 2019-07-12 2019-11-08 浙江工业大学 等离子体协同催化剂处理废气装置及净化有机废气的应用
CN110935299A (zh) * 2019-12-13 2020-03-31 河北工业大学 低温等离子体耦合催化分解焚烧烟气二噁英的方法与装置
CN111617608A (zh) * 2020-04-08 2020-09-04 浙江大维高新技术股份有限公司 一种低温等离子体除臭***

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103285718A (zh) * 2013-05-16 2013-09-11 北京朗净时代环境科技有限公司 一种低温等离子垃圾站除臭杀菌装置
JP2015070921A (ja) * 2013-10-02 2015-04-16 大阪瓦斯株式会社 脱臭装置
CN203797857U (zh) * 2014-03-28 2014-08-27 安徽锋亚环境技术有限公司 一种卫生间用环保型空气净化***
CN105233576A (zh) * 2015-09-28 2016-01-13 民政部一零一研究所 殡仪场所室内废气净化方法及其装置
CN105864904A (zh) * 2016-04-07 2016-08-17 西安交通大学 一种基于低温等离子体的室内空气净化装置
CN107029527A (zh) * 2017-05-27 2017-08-11 南京大学环境规划设计研究院有限公司 一种装修空间异味净化方法及装置
CN107281918A (zh) * 2017-08-22 2017-10-24 苏州碧峰环保科技有限公司 有机废气的多级催化氧化处理装置
CN110420549A (zh) * 2019-07-12 2019-11-08 浙江工业大学 等离子体协同催化剂处理废气装置及净化有机废气的应用
CN110935299A (zh) * 2019-12-13 2020-03-31 河北工业大学 低温等离子体耦合催化分解焚烧烟气二噁英的方法与装置
CN111617608A (zh) * 2020-04-08 2020-09-04 浙江大维高新技术股份有限公司 一种低温等离子体除臭***

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114245553A (zh) * 2021-12-03 2022-03-25 北京东方计量测试研究所 等离子体参数校准方法
CN114904375A (zh) * 2022-04-29 2022-08-16 常州大学 一种有机类恶臭物质分解工艺及装置
CN114904375B (zh) * 2022-04-29 2023-06-13 常州大学 一种有机类恶臭物质分解工艺及装置
CN115253675A (zh) * 2022-09-20 2022-11-01 天泓环境科技有限责任公司 一种等离子放电协同催化废气处理装置
CN115253675B (zh) * 2022-09-20 2023-03-14 天泓环境科技有限责任公司 一种等离子放电协同催化废气处理装置

Similar Documents

Publication Publication Date Title
WO2021203709A1 (zh) 一种低温等离子体除臭***
CN103495336B (zh) 高浓度恶臭污染物废气的处理设备
CN204768273U (zh) 一种光催化复合型废气处理***
CN104197425A (zh) 一种室内空气净化装置
CN106823798A (zh) 一种超声波协同紫外光净化有机废气装置及处理方法
CN104069722A (zh) 一种三位一体工业源异味废气处理装置及方法
CN106310929A (zh) 一种光催化复合型废气处理***
CN206474012U (zh) 一种微波催化uv光解废气净化设备
CN202113707U (zh) 空气净化机
CN206355830U (zh) 一种复合式废气净化设备
CN203507804U (zh) 高浓度恶臭污染物废气的处理设备
CN108458415A (zh) 一种紫外线和TiO2光触媒相结合灭菌的空气净化装置及其净化方法
CN205392177U (zh) 一种制药废气uv光解设备
CN212236682U (zh) 一种低温等离子体除臭装置
CN103691270A (zh) Uv光解氧化废气处理装置
CN206184229U (zh) 低温等离子体紫外光解废气净化器
CN203648363U (zh) 光解有机废气净化设备
CN112933918A (zh) 一种多级气液双相介质阻挡放电的废气处理***及方法
CN211302639U (zh) 一种低温等离子活性炭一体机
CN105126614A (zh) 一种低温等离子气体除臭装置
CN111228976A (zh) 一种uv光解等离子废气处理设备
CN111617608A (zh) 一种低温等离子体除臭***
CN101884803A (zh) 一种净化空气的方法
CN204337990U (zh) 一种处理石化污水恶臭的uv光解净化设备
CN111514743A (zh) 一种处理恶臭气体的催化氧化***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930482

Country of ref document: EP

Kind code of ref document: A1