WO2021203359A1 - 一种光通信器件及光信号处理方法 - Google Patents

一种光通信器件及光信号处理方法 Download PDF

Info

Publication number
WO2021203359A1
WO2021203359A1 PCT/CN2020/083960 CN2020083960W WO2021203359A1 WO 2021203359 A1 WO2021203359 A1 WO 2021203359A1 CN 2020083960 W CN2020083960 W CN 2020083960W WO 2021203359 A1 WO2021203359 A1 WO 2021203359A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
filter
optical
light beam
receiving device
Prior art date
Application number
PCT/CN2020/083960
Other languages
English (en)
French (fr)
Inventor
葛召江
高飞
刘涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/083960 priority Critical patent/WO2021203359A1/zh
Priority to EP20929728.2A priority patent/EP4119996A4/en
Priority to CN202080091875.0A priority patent/CN114930216B/zh
Publication of WO2021203359A1 publication Critical patent/WO2021203359A1/zh
Priority to US17/958,839 priority patent/US11860419B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2856Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers formed or shaped by thermal heating means, e.g. splitting, branching and/or combining elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/2935Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
    • G02B6/29352Mach-Zehnder configuration, i.e. comprising separate splitting and combining means in a light guide
    • G02B6/29353Mach-Zehnder configuration, i.e. comprising separate splitting and combining means in a light guide with a wavelength selective element in at least one light guide interferometer arm, e.g. grating, interference filter, resonator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels

Definitions

  • This application relates to the technical field of optical devices, and in particular to an optical communication device and an optical signal processing method.
  • Optical communication devices are commonly used devices in the field of optical communication, and are usually used to transmit optical signals and to perform mutual conversion between optical signals and electrical signals.
  • PON Passive Optical Network
  • Passive optical network with higher communication speed.
  • Combo PON combined passive optical network
  • Combo PON products can use four-way optical communication devices to send and receive optical signals of two PONs.
  • the four-way optical communication device includes two light emitting ends and two light receiving ends.
  • the first PON is the PON to be speeded up
  • the second PON is the speed-up PON.
  • One transmitting end and one receiving end of the four-way optical communication device are used to transmit and receive the optical signal corresponding to the first PON
  • the four-way optical The other transmitting end and the other receiving end of the communication device are respectively used to transmit and receive the optical signal corresponding to the second PON.
  • Combo PON products solve the problem of compatibility between low-speed PON and high-speed PON.
  • the optical communication devices used in the existing Combo PON products have a complex structure, which requires a lot of materials during manufacturing, and the material costs and manufacturing process costs are relatively high.
  • the complexity of the structure also affects production efficiency.
  • This application provides an optical communication device and an optical signal processing method to reduce the cost of Combo PON products and improve production efficiency.
  • an optical communication device includes: a first light emitting device, a second light emitting device, a first light receiving device, a second light receiving device, an optical path assembly, and an optical fiber adapter;
  • the first light emitting device and the second light emitting device are respectively packaged with a light source and a first condensing lens, and the first condensing lens is used to converge the light beam emitted by the light source and provide it to the optical circuit assembly;
  • the optical path component is used to combine the light beams from the first light emitting device and the second light emitting device and then send them to the optical fiber adapter;
  • the optical path assembly is also used to receive the light beam from the optical fiber adapter and send it to the first light receiving device and the second light receiving device;
  • the first light receiving device and the second light receiving device are respectively packaged with a second condensing lens and a photodetection element.
  • the second condensing lens is used to converge the light beam received by the optical path assembly and then provide the photodetection element.
  • the light-emitting device and the light-receiving device can converge the light beam through the condensing lens encapsulated by itself, so there is no need to arrange too many lenses in the optical path outside the light-emitting device and the light-receiving device, reduce the number of lenses used, and save materials. At the same time, the complexity of the spatial light path is reduced, the process cost is saved, and the production efficiency is improved.
  • the optical path component includes: a first filter, a second filter, and a filter component;
  • the first filter is arranged on the transmission path of the first light beam emitted by the first light emitting device and the transmission path of the second light beam emitted by the second light emitting device; the first filter is used to transmit and reflect the first light beam Second beam
  • the second optical filter and the optical filter assembly are both arranged on the transmission path of the light beam from the optical fiber adapter;
  • the second filter is used to reflect the light beam of the third wavelength in the light beam from the optical fiber adapter to the first light receiving device;
  • the filter assembly is used to reflect the light beam of the fourth wavelength in the light beam from the optical fiber adapter to the second light receiving device.
  • the optical path assembly further includes: a first lens, the first lens is disposed between the first filter and the second filter , Used to converge the light beam from the first filter and provide it to the second filter; the second filter is also used to transmit the light beam provided by the first lens to the optical fiber adapter.
  • the optical path assembly further includes: a second lens, the second lens is arranged between the filter assembly and the optical fiber adapter; It is used to converge the light beam provided by the filter assembly to the optical fiber adapter, and to converge and provide the light beam to the filter assembly when the light beam from the optical fiber adapter is received.
  • the filter assembly includes: a third filter and a fourth filter; the third filter and the second light receiving device are located in the fourth The same side of the filter;
  • the third filter is arranged between the second filter and the optical fiber adapter, and is used to transmit the light beam of the third wavelength to the second filter, and to reflect the light beam of the fourth wavelength to the fourth filter.
  • the fourth filter is used to reflect the light beam from the third filter to the second light receiving device.
  • the optical path assembly further includes: a fifth filter
  • the fifth filter is arranged between the first light receiving device and the second filter; the fifth filter is perpendicular to the optical axis of the second condensing lens packaged in the first light receiving device, and is used to filter the second filter.
  • the light beam reflected by the light sheet is further filtered.
  • the light wave of the detection wavelength corresponding to the photodetection element in the first light receiving device can be filtered out, and the quality of optical communication can be optimized.
  • the optical path assembly further includes: a sixth filter
  • the sixth filter is arranged between the second light-receiving device and the filter assembly; the sixth filter is perpendicular to the optical axis of the second converging lens encapsulated in the second light-receiving device, and is used to reflect the filter assembly
  • the beam is further filtered. Through further filtering, the light wave of the detection wavelength corresponding to the photodetection element in the second light receiving device can be filtered out, and the quality of optical communication can be optimized.
  • the optical path assembly further includes: an optical isolator, which is arranged between the first filter and the second filter for isolation Light transmitted from the second filter to the first filter.
  • the optical isolator isolates the light waves reflected back to the light emitting device, so as to prevent the light emitting device from being damaged and to avoid affecting the quality of optical communication.
  • the wavelength of the first light beam and the wavelength of the second light beam are both within the isolation wavelength band of the optical isolator. Thereby saving the number of optical isolators.
  • the first convergent lens packaged in the first light emitting device and/or the second light emitting device is an aspheric lens.
  • the first light beam and the second light beam are both convergent light beams.
  • the first light beam and the second light beam are both parallel light beams.
  • the first light emitting device and the second light emitting device are both packaged in the TO56 specification; the first light receiving device and the second light receiving device are both packaged in TO46 specification package. In this way, the versatility of materials is improved.
  • the first lens and the optical fiber adapter together serve as an independent first structural member, and the first light emitting device is optically coupled with the first structural member to form a second structural member.
  • the first lens and the first light emitting device together serve as an independent third structural member, and the optical fiber coupler and the third structural member are optically coupled to form the fourth structural member.
  • a second aspect of the present application provides an optical signal processing method, which is applied to the optical communication device provided in any implementation manner of the first aspect, and the method includes:
  • the light beams emitted by the first light emitting device and the second light emitting device are combined by the optical path assembly, and then sent to the optical fiber adapter;
  • the light beam from the optical fiber adapter When the light beam from the optical fiber adapter is received, the light beam is processed, and then sent to the corresponding light receiving device among the first light receiving device and the second light receiving device.
  • the light beam from the optical fiber adapter when the light beam from the optical fiber adapter is received, the light beam is processed, and then sent to the corresponding light receiving device of the first light receiving device and the second light receiving device.
  • Devices including:
  • the light beam from the fiber optic adapter includes the light beam of the third wavelength and the light beam of the fourth wavelength
  • the light beam from the fiber optic adapter is demultiplexed, the light beam of the third wavelength is sent to the first light receiving device, and the light beam of the fourth wavelength is transmitted to the first light receiving device.
  • the light beam is sent to the second light receiving device.
  • the optical communication device includes: two light emitting devices and two light receiving devices, and also includes: an optical circuit assembly and an optical fiber adapter. Among them, the two light emitting devices and the two light receiving devices are respectively packaged with condensing lenses.
  • the first condensing lens of the light emitting device condenses the light beam emitted by the light source and provides it to the optical circuit assembly; the second condensing lens in the light receiving device will come from
  • the light beam of the optical path assembly is condensed and provided to the photodetection element. Since the light emitting device and the light receiving device can converge the light beam by themselves, there is no need to equip more lenses in the optical path assembly to build a complex optical path to achieve optical transmission, which saves the material cost of the optical communication device.
  • FIG. 1 is a schematic structural diagram of an optical communication device provided by an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of another optical communication device provided by an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of another optical communication device provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of still another optical communication device provided by an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of another optical communication device provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of yet another optical communication device provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of still another optical communication device provided by an embodiment of this application.
  • the four-way optical communication device is taken as an example.
  • the four-way optical communication device In order to build a parallel optical path, it is often necessary to use it in a spatial optical path other than the four ends (two light emitting devices and two light receiving devices). At least 5 lenses.
  • the flat window lens is packaged in the light emitting device and the light receiving device.
  • the flat window lens has no effect on the direction of the light beam. Therefore, in the optical communication device, the lens set in the spatial optical path beyond the four ends can only be used to ensure the collimation and convergence of the light beam.
  • the optical communication device consumes a large number of lenses, the optical path is complicated, the processing is difficult, and the production efficiency is low, resulting in high production cost of the optical communication device.
  • the embodiments of the present application provide a novel optical communication device and an optical signal processing method.
  • the light emitting device itself has the function of converging the light beam through the first condensing lens encapsulated inside the light emitting device, and the second converging lens encapsulated inside the light receiving device provides the light receiving device itself with converging light beams Function.
  • the number of lenses required for the optical communication device realized by the above method is greatly reduced, the complexity of the optical path is reduced, the material cost and the process cost can be saved in the production process, and the production efficiency can be effectively improved.
  • a four-way optical communication device is taken as an example for description and explanation in the following embodiments.
  • the technical solution protected by the embodiments of the present application is not limited to the four-way optical communication device, that is, it is not limited to the number of light emitting devices and light receiving devices.
  • optical communication device X1 The implementation of the optical communication device X1 provided by the embodiment of the present application will be described below with reference to the accompanying drawings.
  • the optical communication device X1 provided in this embodiment includes: a first light emitting device 100, a second light emitting device 200, a first light receiving device 300, a second light receiving device 400, and an optical circuit assembly 500 And fiber optic adapter 600.
  • the first light emitting device 100 and the second light emitting device 200 respectively serve two different PON services
  • the first light receiving device 300 and the second light receiving device 400 respectively serve two different PON services.
  • the working wavelengths of the four terminals are different. Assuming that the wavelength of the light wave emitted by the first light emitting device 100 is ⁇ 1, the wavelength of the light wave emitted by the second light emitting device 200 is ⁇ 2, and the wavelength of the light wave received by the first light receiving device 300 is ⁇ 3, The wavelength of the light wave received by the second light receiving device is ⁇ 4.
  • the first optical transmitting device 100 and the second optical receiving device 400 serve the business of a 10G bit Ethernet passive optical network (10G EPON, Ten Giga-bit-rate Ethernet Passive Optical Network), where the first optical transmitting device 100 is working
  • 10G EPON Ten Giga-bit-rate Ethernet Passive Optical Network
  • GPON is used as the PON to be speeded up
  • 10G EPON is used as the speed-up PON.
  • the first light emitting device 100, the second light emitting device 200, the first light receiving device 300, and the second light receiving device 400 are respectively packaged with a condensing lens.
  • the condensing lens may be used as a cap for packaging the light emitting devices 100 and 200 and the light receiving devices 300 and 400.
  • the condensing lens encapsulated in the two light emitting devices 100 and 200 is called the first converging lens; the condensing lens encapsulated in the two light receiving devices 300 and 400 is called the second condensing lens.
  • the two light emitting devices 100 and 200 also include light sources, respectively; the two light receiving devices 300 and 400 also include photodetection elements, respectively.
  • the photodetection element may be an avalanche photodiode chip.
  • the packaged first converging lens can be used as the last optical element through which the light emitted by the light source passes through the light emitting device; for the light receiving devices 300 and 400, the packaged second converging lens can be used as the light The first optical element through which the light received by the receiving device from the outside passes through the device.
  • the first converging lens packaged in the first light emitting device 100 and/or the second light emitting device 200 may be an aspheric lens.
  • the aspheric lens is packaged in the light emitting device to improve the light coupling efficiency of the light emitting device and other devices, reduce the influence of aberrations, and improve the quality of light transmission.
  • the second condensing lens packaged in the first light receiving device 300 and/or the second light receiving device 400 may be any one of the following: a water drop lens, a spherical lens, or an aspheric lens. Encapsulating a water drop lens in a light receiving device is a fast and relatively inexpensive implementation method.
  • the first light emitting device 100 and the second light emitting device 200 have the function of converging light beams.
  • the light beams emitted by the light source are condensed by the first converging lens and then provided to the optical path assembly 500; by encapsulating the second converging lens
  • the lens enables the first light receiving device 300 and the second light receiving device 400 to have the function of converging light beams, and the light from the optical path assembly 500 is condensed by the second converging lens and then provided to the photodetecting element. In this way, the number of lenses that need to be installed in the spatial optical path other than the light receiving device and the light emitting device is reduced.
  • the first light emitting device 100 and the second light emitting device 200 are TO56 coaxial packaging specifications; the first light receiving device 300 and the second light receiving device 400 are TO46 coaxial packaging specifications .
  • Packaging light emitting devices with the above specifications improves the material versatility compared to the existing TO38 packaged light emitting devices in the industry.
  • the optical communication device X1 provided by the embodiments of the present application can complete the single-fiber bidirectional transmission and reception function.
  • the device X1 and the outside world specifically carry out the interactive transmission of optical signals through the optical fiber adapter 600.
  • the main function of the optical circuit assembly 500 in the device X1 is to perform the beam transmission. Processing, such as multiplexing processing and demultiplexing processing.
  • the function of the optical path assembly 500 will be described in detail below.
  • the first light emitting device 100 and the second light emitting device 200 usually continue to work, that is, the first light emitting device 100 continuously emits light waves of ⁇ 1 wavelength, and the second light emitting device 200 continues to emit ⁇ 2 wavelengths. Light waves.
  • the working state of the first light receiving device 300 and the second light receiving device 400 depends on the optical communication device X1 receiving light waves containing wavelengths of ⁇ 3 and ⁇ 4 through the optical fiber adapter 600.
  • the first light receiving device 300 operates to convert the received light wave containing a wavelength of ⁇ 3 into an electrical signal; similarly, if the optical communication device X1 receives a light wave containing ⁇ 4 wavelength light wave, the second light receiving device 400 works, and is used to convert the received light wave containing ⁇ 4 wavelength into an electrical signal.
  • the functions of the optical path assembly 500 are embodied in two aspects.
  • the optical circuit assembly 500 is used to combine the light beams emitted by the first light emitting device 100 and the second light emitting device 200 and then send the optical fiber adapter 600 to the optical fiber adapter 600.
  • the optical circuit assembly 500 is also used to process the light beam from the optical fiber adapter 600, and then send it to the first light receiving device 300 And the corresponding light-receiving device among the second light-receiving devices 400.
  • the optical path assembly 500 is specifically configured to demultiplex the light beam and provide the ⁇ 3 wavelength light waves to the light beam.
  • the first light-receiving device 300 supplies light waves with a wavelength of ⁇ 4 to the second light-receiving device.
  • the optical path assembly 500 includes multiple possible implementations. For example, no lens is provided in the optical path assembly 500, one lens is provided, or two lenses are provided. For four-terminal optical communication devices commonly used in the industry, 5 to 6 lenses are usually required in the spatial optical path other than the four ends to build a parallel optical path, and flat window lenses are packaged inside the four ends, so a large number of lenses are used.
  • the first converging lens is used instead of the flat window lens to be packaged in the light emitting devices 100 and 200, and the second converging lens is used to replace the flat window lens in the light receiving devices 300 and 400.
  • the optical path assembly 500 is only With 0 to 2 lenses, the light beams emitted by the light emitting devices 100 and 200 can be condensed to the fiber optic adapter 600, and the light beams from the fiber optic adapter 600 can be processed to provide the light receiving device 300 or 400 with the corresponding wavelength.
  • the optical communication device X1 provided in the embodiment of the present application reduces the materials that need to be used.
  • a convergent optical path is mainly constructed to realize the bidirectional transceiving function of the device X1.
  • the complexity of the optical path is reduced due to the reduction in the number of lenses, and therefore, the process cost is saved.
  • the optical coupling dimension in the device X1 is reduced, which saves production time and improves production efficiency.
  • the optical path assembly 500 includes multiple possible implementations, for example, no lens is provided, one lens is provided, or two lenses are provided.
  • no lens is provided, one lens is provided, or two lenses are provided.
  • FIG. 2 is a schematic structural diagram of another optical communication device X2 provided by an embodiment of the application.
  • the structure of the four terminals (100, 200, 300, and 400) is basically the same as that of FIG. 1, so the structure of the four terminals will not be repeated here.
  • the optical path assembly 500 of the optical communication device X2 includes: a first filter 501, a second filter 502, and a filter assembly 50S.
  • the first filter 501 is arranged on the transmission path of the first light beam (wavelength ⁇ 1) emitted by the first light emitting device 100 and the transmission path of the second light beam (wavelength ⁇ 2) emitted by the second light emitting device 200.
  • the first filter 501 is used to transmit the first light beam and reflect the second light beam.
  • the second filter 502 and the filter assembly 50S are both arranged on the transmission path of the light beam from the optical fiber adapter 600.
  • the second filter 502 is used to reflect the light beam of the third wavelength ( ⁇ 3) in the light beam from the optical fiber adapter 600 to the first light receiving device 300;
  • the optical filter assembly 50S is used to transmit the light beam from the optical fiber adapter 600
  • the light beam of the fourth wavelength ( ⁇ 4) is reflected to the second light receiving device 400.
  • the filter assembly 50S can be specifically arranged between the optical fiber adapter 600 and the optical transmission path of the second filter 502. Therefore, the second filter 502 can specifically filter The light transmitted by the assembly 50S is provided to the first light receiving device 300.
  • the second filter 502 and the filter assembly 50S may be specifically arranged on the optical transmission path of the first filter 501 and the optical fiber adapter 600.
  • the first light beam transmitted by the first filter 501 and the second light beam reflected by the first filter 501 pass through successively. After the transmission of the second filter 501 and the filter assembly 50S, they converge to the optical fiber adapter 600.
  • the lights emitted by the first light emitting device 100 and the second light emitting device 200 are all convergent lights. Therefore, even if the optical path assembly 500 does not include a lens, the first light beam and the second light beam can be converged to the optical fiber adapter 600.
  • the filter assembly 50S includes a plurality of filters: a third filter 503 and a fourth filter 504.
  • the third filter 503 and the second light receiving device 400 are located on the same side of the fourth filter 504.
  • the third filter 503 of the filter assembly 50S is disposed between the second filter 502 and the fiber adapter 600, the third filter 503 is used to transmit the light beam of the third wavelength to the second filter 502, and It is used to reflect the light beam of the fourth wavelength to the fourth filter 504.
  • the third filter 503 and the second light receiving device 400 are located on the same side of the fourth filter 504, when the third filter 503 reflects the light beam to the fourth filter 504, the fourth filter The sheet 504 can reflect the light beam incident on itself to the second light receiving device 400 on the same side as the third filter 503 again. Finally, the second light receiving device 400 completes the reception and photoelectric conversion of the light wave containing the wavelength of ⁇ 4.
  • the filter assembly 50S successively reflects light waves containing a wavelength of ⁇ 4 through two filters 503 and 504.
  • the filter assembly 50S is not limited to the implementation shown in FIG. 2.
  • FIG. 3 which is a schematic structural diagram of another optical communication device X3 provided by an embodiment of the application. Compared with the optical communication device X2, in the optical communication device X3 shown in FIG. 3, the difference is that the optical filter assembly 50S only includes the seventh optical filter 507.
  • the seventh filter 507 independently performs the function of the filter assembly 50S, that is, it reflects the light wave containing the wavelength of ⁇ 4 to the second light receiving device 400 once, and transmits the light wave containing the wavelength of ⁇ 3 to the second filter 502, so that The second filter 502 then reflects the light wave to the first light receiving device 300.
  • the optical communication device X3 uses a single-chip filter 507 in the filter assembly 50S to realize a single reflection of the ⁇ 4 wavelength light wave, which saves the number of filters used and further simplifies the optical path design.
  • a single-chip filter 507 in the filter assembly 50S to realize a single reflection of the ⁇ 4 wavelength light wave, which saves the number of filters used and further simplifies the optical path design.
  • the direction from the first light emitting device 100 to the optical fiber adapter 600 along the optical axis of the first converging lens of the first light emitting device 100 is set as the first direction.
  • the angle between the first filter 501 and the first direction is 135°; the angle between the second filter 502 and the first direction is 45°.
  • the angle between the third filter 503 and the first direction is greater than 45° and less than 90°; the angle between the fourth filter 504 and the first direction is greater than 0° and less than 45°.
  • the angle between the seventh filter 507 and the first direction is 135°.
  • the setting angle of the filter provided in the above example is not a limitation on the actual setting angle.
  • the position of each filter can be set according to the actual demand of the optical communication device for the occupied space, as well as the assembly method and assembly position of the four terminals. Therefore, this embodiment does not specifically limit the installation angle of the filter.
  • the optical path assembly 500 may further include an optical isolator 508.
  • the optical isolator 508 may be arranged between the first filter 501 and the second filter 502.
  • the optical isolator 508 passes light forward and cuts off in the reverse direction. Therefore, the first light beam and the second light beam can propagate along the optical isolator 508 to the direction of the second filter, but from the second filter 502 to the first
  • the light transmitted in the reverse direction by a filter 501 is blocked by an optical isolator 508.
  • the optical isolator 508 used may be a dual-stage optical isolator. In order to save costs, the optical isolator 508 used may also be a single-stage optical isolator.
  • the single-stage optical isolator 508 When the single-stage optical isolator 508 is selected, the wavelengths of the light beams emitted by the first light emitting device 100 and the second light emitting device 200 are required to be within the isolation band of the optical isolator 508. That is, the single-stage optical isolator 508 required to be selected has a unidirectional isolation effect on ⁇ 1 and ⁇ 2.
  • the optical communication device may have the following problems in practical applications: 1) The second filter 502 mixes and reflects light waves of wavelengths other than ⁇ 3 to the first light receiving device 300; 2) The filter assembly 50S reduces ⁇ 4. Light waves of other wavelengths are mixed and reflected to the second light receiving device 400. Problem 1) The quality of the optical signal received by the first light receiving device 300 may be affected, and the function realization of the first light receiving device 300 may be affected. Similarly, problem 2) may affect the quality of the optical signal received by the second light receiving device 400, and further affect the function realization of the second light receiving device 400.
  • the fifth filter 505 may be disposed between the first light receiving device 300 and the second filter 502.
  • the optical axis of the fifth filter 505 and the second condensing lens packaged in the first light receiving device 300 are perpendicular to each other.
  • the fifth filter 505 further filters the light beam provided by the reflection of the second filter 502 before the light enters the first light receiving device 300, that is, filters out light waves other than the wavelength of ⁇ 3. This ensures that the wavelength of the light beam entering the first optical receiving device 300 meets the service requirements of the PON served by the first optical receiving device 300.
  • the sixth filter 506 may be disposed between the second light receiving device 400 and the filter assembly 50S.
  • the optical axis of the sixth filter 506 and the second converging lens packaged in the second light receiving device 400 are perpendicular to each other.
  • the sixth filter 506 further filters the light beam provided by the reflection of the filter assembly 50S, that is, filters out light waves other than the ⁇ 4 wavelength. This ensures that the wavelength of the light beam entering the second optical receiving device 400 meets the service requirements of the PON served by the second optical receiving device 400.
  • FIG. 4 is a schematic structural diagram of still another optical communication device X4 provided by an embodiment of the application.
  • the structure of the four terminals (100, 200, 300, and 400) is basically the same as that of FIG. 1, so the structure of the four terminals will not be repeated here.
  • the various passive components (isolator 508 and filters 501-506) included in the optical communication device X2 shown in FIG. 2 are also included in the optical circuit assembly 500 of the optical communication device X4.
  • the configuration methods and functions of the above-mentioned passive devices have been described one by one, so they will not be repeated here.
  • the optical isolator 508, the fifth filter 505, and the sixth filter 506 are optional passive components, and not necessarily passive components. Device.
  • the optical path assembly 500 further includes: a first lens L1.
  • the first lens L1 is disposed between the first filter 501 and the second filter 502 for condensing the light beam from the first filter 501 and providing it to the second filter 502.
  • the second filter 502 is also used to transmit the light beam provided by the first lens L1 to the optical fiber adapter 600.
  • the function of the first lens L1 is mainly to converge the first light beam transmitted by the first filter 501 and the second light beam reflected, so that the light beam passes through the first lens L1 Converge to the fiber optic adapter 600.
  • the optical isolator 508 may be disposed between the first filter 501 and the first lens L1, as shown in FIG. 4. As another optional implementation manner, the optical isolator 508 may also be disposed between the first lens L1 and the second filter 502.
  • the filter assembly 50S of the optical path assembly 500 specifically includes a third filter 503 and a fourth filter 504. Similar to FIG. 3, in order to save the number of filters used and simplify the optical path, the third filter 503 and the fourth filter 504 in the filter assembly 50S in the optical path assembly 500 shown in FIG. 4 can also be replaced with An independent seventh filter, see Figure 5 for details.
  • this figure is a schematic structural diagram of another optical communication device X5 provided by an embodiment of the application.
  • the difference between FIG. 5 and FIG. 4 lies in the implementation of the filter assembly 50S.
  • the filter assembly 50S includes a seventh filter 507.
  • the single reflection of the seventh filter plane 507 can reflect the light wave containing the wavelength of ⁇ 4 to the second light receiving device 400. In this way, the number of filters is saved, and the optical path is further simplified.
  • the optical path assembly 500 of the optical communication device shown in FIGS. 4 and 5 includes the first lens L1 that can realize the light-gathering function, no matter whether the two light emitting devices 100 and 200 emit parallel light beams or For converging light beams, the optical path assembly 500 can converge it to the optical fiber adapter 600. That is to say, the first light beam and the second light beam may both be parallel beams or both convergent beams.
  • the first lens L1 will convert the convergent beam into a convergent beam again, extending the optical path so that the first beam and the second beam The light beam converges at a farther distance from the light emitting device.
  • the first lens L1 On the incident side of the first lens L1, there may be a large gap between the numerical aperture of the light spot and the numerical aperture of the light spot required by the optical fiber adapter 600, resulting in poor coupling efficiency.
  • the spot numerical aperture of the light beam condensed to the optical fiber adapter 600 is closer to the spot numerical aperture required by the optical fiber adapter 600, thereby improving the optical coupling efficiency.
  • FIG. 6 is a schematic structural diagram of another optical communication device X6 provided by an embodiment of the application.
  • the structure of the four terminals (100, 200, 300, and 400) is basically the same as that of FIG. 1, so the structure of the four terminals will not be repeated here.
  • the various passive components included in the optical communication device X4 shown in FIG. 4 are also included in the optical path assembly 500 of the optical communication device X4.
  • the configuration methods and functions of the above-mentioned passive devices have been described one by one, so they will not be repeated here.
  • the optical isolator 508, the fifth filter 505, and the sixth filter 506 are optional passive components, and not necessarily passive components. Device.
  • the optical circuit assembly 500 in the optical communication device provided in FIG. 6 further includes: a second lens L2.
  • the second lens L2 is disposed between the filter assembly 50S and the optical fiber adapter 600.
  • the second lens L2 is used to converge the light beam provided by the optical filter assembly 50S to the optical fiber adapter 600, and to converge and provide the light beam to the optical filter assembly 50S when the light beam from the optical fiber adapter 600 is received.
  • the first light beam and the second light beam may both be parallel exiting beams, or both convergent exiting beams.
  • the first lens L1 and the second lens L2 may be collimating lenses, respectively.
  • the first light beam is taken as an example for description.
  • the first light emitting device 100 emits a condensed light beam (ie, the first light beam)
  • the light beam enters the first lens L1 after passing through the first filter 501, and the first lens L1 converts the light beam into parallel light.
  • the parallel light passes through the isolator 508, the second filter 502, the filter assembly 50S, and the second lens L2 successively, and is converted again by the second lens L2 to converge the light beam, and finally converges to the optical fiber adapter 600.
  • the transmission of the second light beam is similar to that of the first light beam.
  • the optical signal enters the optical path assembly 500 from the optical fiber adapter 600, and converts the light beam into a parallel light beam through the action of the second lens L2, and provides the light of wavelength ⁇ 4 to the second light receiving device through the reflection of the optical filter assembly 50S 400, the second converging lens encapsulated therein is condensed onto the photodetecting element.
  • the light of the ⁇ 3 wavelength in the parallel beam converted by the second lens L2 is transmitted by the filter assembly 50S and reflected by the second filter 502, and is provided to the first light receiving device 300, which is then packaged by the second condensing lens Converge on the photodetection element.
  • the optical isolator 508 may be disposed between the first lens L1 and the second filter 502, as shown in FIG. 6. As another optional implementation manner, the optical isolator 508 may also be disposed between the first filter 501 and the first lens L1.
  • the filter assembly 50S of the optical path assembly 500 specifically includes a third filter 503 and a fourth filter 504. Similar to FIGS. 3 and 5, in order to save the number of filters used and simplify the optical path, the third filter 503 and the fourth filter 504 in the filter assembly 50S in the optical path assembly 500 shown in FIG. It can be replaced by an independent seventh filter 507, for details, please refer to the optical communication device X7 shown in FIG. 7.
  • the single reflection of the seventh filter plane 507 can reflect the light wave containing the wavelength of ⁇ 4 to the second light receiving device 400. In this way, the number of filters is saved, and the optical path is further simplified.
  • the first lens L1 and the optical fiber adapter 600 are used as an integrated first structural member, and then the first light emitting device 100 is optically coupled with the first structural member.
  • the second structure is formed.
  • the remaining transmitting ends or receiving ends are optically coupled with the newly formed structural parts one by one, and finally the optical communication device X4 shown in FIG. 4 is obtained.
  • the first lens L1 and the first light emitting device 100 are taken as an integrated third structural member, and then the optical fiber adapter 600 is combined with the third structural member. Coupled to form a fourth structural member.
  • the remaining transmitting ends or receiving ends are optically coupled with the newly formed structural parts one by one, and finally the optical communication device X4 shown in FIG. 4 is obtained.
  • the integrated structural component assembly reduces the optical coupling dimension, and also saves the time required for assembly, thereby improving the production efficiency.
  • the second lens L2 since the second lens L2 is closer to the optical fiber adapter 600 than the first lens L1, as a possible assembly method in specific implementation, the second lens L2 can also be used as a possible assembly method.
  • the two lenses L2 and the optical fiber adapter 600 are used as an integrated fifth structural member, and then the first lens L1 is optically coupled with the fifth structural member, and so on, the remaining devices are optically coupled with the newly formed structural member one by one, and finally The optical communication device shown in Figs. 6 and 7 is assembled.
  • the present application also provides an optical signal processing method.
  • the specific implementation of this method is described below. It should be noted that this method can be applied to the optical communication device provided in any of the foregoing embodiments.
  • Optical signal processing methods include:
  • the light beams emitted by the first light emitting device and the second light emitting device are combined by the optical path assembly, and then sent to the optical fiber adapter;
  • the light beam from the optical fiber adapter When the light beam from the optical fiber adapter is received, the light beam is processed, and then sent to the corresponding light receiving device among the first light receiving device and the second light receiving device.
  • the optical path component of the optical communication device is mainly used to complete the processing of the light beam. Since the various deformation structures of the optical path assembly and the processing process of the light beam are described in detail in the foregoing embodiment, for the sake of brevity, the processing process of the light beam will not be repeated here.
  • the optical circuit component specifically plays a role of splitting.
  • the third wavelength is the target operating wavelength of the first light receiving device
  • the fourth wavelength is the target operating wavelength of the second light receiving device. Therefore, the light beam is processed and then sent to the corresponding light receiving device among the first light receiving device and the second light receiving device, which specifically includes:
  • the light beam from the fiber optic adapter includes the light beam of the third wavelength and the light beam of the fourth wavelength
  • the light beam from the fiber optic adapter is demultiplexed, the light beam of the third wavelength is sent to the first light receiving device, and the light beam of the fourth wavelength is transmitted to the first light receiving device.
  • the light beam is sent to the second light receiving device.
  • the first optical receiving device After demultiplexing and sending to the corresponding optical receiving device, the first optical receiving device converts the optical signal of the third wavelength into an electrical signal to complete the service of the PON service; the second optical receiving device converts the optical signal of the fourth wavelength As an electrical signal, it completes the business of the PON it serves.
  • the optical communication device provided in the embodiment of the present application is used to complete optical signal processing. Since the optical communication device provided by the embodiment of the application does not require five or more lenses in the optical path assembly to construct a parallel optical path, the optical path is simple, so the production cost of the device is low, and accordingly, the optical signal processing and processing are realized at low cost. Transmission and conversion.
  • the optical parameters of the first condensing lens packaged in the first light emitting device 100 and the second light emitting device 200 may be the same or different.
  • the optical parameters of the second condensing lens packaged in the first light receiving device 300 and the second light receiving device 400 may be the same or different.
  • the first converging lens and the second converging lens with matching optical parameters of the package can be selected according to the requirements of the relative distance of the components in the optical communication device, the transmission quality of the optical signal, and the transmission performance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本申请公开了一种光通信器件及光信号处理方法。该光通信器件包括:两个光发射器件和两个光接收器件,还包括光路组件和光纤适配器。其中,光发射器件中封装的第一会聚透镜将光源发射的光束会聚后提供给光路组件;光接收器件中封装的第二会聚透镜将来自光路组件的光束会聚后提供给光电探测元件。由于光发射器件和光接收器件自身便可以会聚光束,因此无需在光路组件中配设较多的透镜来搭建复杂光路实现光传输,节省光通信器件的物料成本。并且通过简化光路,降低光路的复杂性,节省了工艺成本。另外,通过减少透镜的使用数量,相应地减少了器件中各个结构件之间的光耦合维数,进而提升了Combo PON产品的生产效率。

Description

一种光通信器件及光信号处理方法 技术领域
本申请涉及光器件技术领域,尤其涉及一种光通信器件及光信号处理方法。
背景技术
光通信器件是光通信领域中常用的器件,通常用于传递光信号以及用于进行光信号与电信号的相互转换。随着光网络业务中对光通信速率的要求不断提升,无源光网络(PON,Passive Optical Network)的应用面临着提速的挑战,即要求从使用较低通信速率的无源光网络转换为使用更高通信速率的无源光网络。
但是,PON的覆盖范围广,PON技术的革新也需要逐步普及推进,因此在短时间内大范围地对PON的提速升级较难实现。近年来,光通信设备的供应商陆续设计出组合式无源光网络(Combo PON)产品,将其作为PON提速过程中的过渡产品。目前,Combo PON产品可兼容提速前和提速后的两种不同PON器件的性能:既可以兼容前期大量铺设的PON的接入业务,又可以满足提速后的PON的接入业务。
例如,Combo PON产品可以采用四向光通信器件收发两种PON的光信号。四向光通信器件包括两个光发射端和两个光接收端。例如第一PON为待提速的PON,第二PON为提速后的PON,四向光通信器件的一个发射端和一个接收端分别用于发射和接收第一PON对应的光信号,而四向光通信器件的另一个发射端和另一个接收端则分别用于发射和接收第二PON对应的光信号。如此,Combo PON产品解决了低速PON与高速PON的兼容问题。
目前已有的Combo PON产品中采用的光通信器件结构复杂,在制造期间需要耗费较多的物料,物料成本和制造工艺成本较高。另外,结构的复杂性还影响了生产效率。
随着Combo PON产品的需求量不断提升,如何在保证性能的基础上缩减Combo PON产品的成本,提升生产效率,已经成为本领域急需解决的技术问题。
发明内容
本申请提供了一种光通信器件及光信号处理方法,以降低Combo PON产品的成本,提升生产效率。
本申请第一方面,提供一种光通信器件,该光通信器件包括:第一光发射器件、第二光发射器件、第一光接收器件、第二光接收器件、光路组件和光纤适配器;
第一光发射器件、第二光发射器件中分别封装有光源以及第一会聚透镜,第一会聚透镜用于将光源发射的光束进行会聚后提供给光路组件;
光路组件,用于将来自第一光发射器件和第二光发射器件的光束合波再发送给光纤适配器;
光路组件,还用于接收来自光纤适配器的光束,并发送给第一光接收器件和第二光接收器件;
第一光接收器件和第二光接收器件中分别封装有第二会聚透镜和光电探测元件,第二会聚透镜用于将光路组件接收的光束进行会聚再提供给光电探测元件。
光发射器件和光接收器件通过自身封装的会聚透镜便可会聚光束,从而无需光发射器件和光接收器件以外的空间光路中布设过多的透镜,减少透镜的使用数量,节省物料。同时,降低了空间光路的复杂度,节省工艺成本,提升生产效率。
在第一方面的第一种实现方式中,光路组件包括:第一滤光片、第二滤光片和滤光组件;
第一滤光片设置于第一光发射器件发射的第一光束的传输路径上以及第二光发射器件发射的第二光束的传输路径上;第一滤光片用于透射第一光束和反射第二光束;
第二滤光片和滤光组件均设置于来自光纤适配器的光束的传输路径上;
其中,第二滤光片用于将来自光纤适配器的光束中第三波长的光束反射给第一光接收器件;
滤光组件用于将来自光纤适配器的光束中第四波长的光束反射给第二光接收器件。
结合第一方面的第一种实现方式,在第一方面的第二种实现方式中,光路组件还包括:第一透镜,第一透镜设置于第一滤光片和第二滤光片之间,用于将来自第一滤光片的光束会聚并提供给第二滤光片;第二滤光片还用于将第一透镜提供的光束透射提供给光纤适配器。
结合第一方面的第二种实现方式,在第一方面的第三种实现方式中,光路组件还包括:第二透镜,第二透镜设置于滤光组件和光纤适配器之间;第二透镜用于将滤光组件提供的光束会聚到光纤适配器,以及用于在接收到来自光纤适配器的光束时,将该光束会聚并提供给滤光组件。
结合第一方面的第一种、第二种或第三种实现方式,滤光组件包括:第三滤光片和第四滤光片;第三滤光片和第二光接收器件位于第四滤光片的同一侧;
其中,第三滤光片设置于第二滤光片和光纤适配器之间,用于将第三波长的光束透射到第二滤光片,以及用于将第四波长的光束反射到第四滤光片;
第四滤光片用于将来自第三滤光片的光束反射到第二光接收器件。
结合第一方面的第一种、第二种或第三种实现方式,光路组件还包括:第五滤光片;
第五滤光片设置于第一光接收器件和第二滤光片之间;第五滤光片垂直于第一光接收器件中封装的第二会聚透镜的光轴,用于对第二滤光片反射的光束进一步过滤。通过进一步过滤,能够过滤出第一光接收器件中光电探测元件所对应的探测波长的光波,优化光通信质量。
结合第一方面的第一种、第二种或第三种实现方式,光路组件还包括:第六滤光片;
第六滤光片设置于第二光接收器件和滤光组件之间;第六滤光片垂直于第二光接收器件中封装的第二会聚透镜的光轴,用于对滤光组件反射的光束进一步过滤。通过进一步过滤,能够过滤出第二光接收器件中光电探测元件所对应的探测波长的光波,优化光通信质量。
结合第一方面的第一种、第二种或第三种实现方式,光路组件还包括:光隔离器,光隔离器设置于第一滤光片与第二滤光片之间,用于隔离从第二滤光片向第一滤光片传输的光。光隔离器隔离反射回光发射器件的光波,从而防止光发射器件受到损伤,避免对光通 信质量造成影响。
可选地,第一光束的波长和第二光束的波长均处于光隔离器的隔离波段内。从而节省光隔离器的使用数量。
结合第一方面的第一种、第二种或第三种实现方式,第一光发射器件和/或第二光发射器件中封装的第一会聚透镜为非球面透镜。
结合第一方面的第一种、第二种或第三种实现方式,第一光束和第二光束均为会聚光束。
结合第一方面的第二种或第三种实现方式,第一光束和第二光束均为平行光束。
结合第一方面的第一种、第二种或第三种实现方式,第一光发射器件和第二光发射器件均以TO56的规格封装;第一光接收器件和第二光接收器件均以TO46的规格封装。如此,提升了物料的通用性。
结合第一方面的第二种或第三种实现方式,第一透镜和光纤适配器共同作为一个独立的第一结构件,第一光发射器件与第一结构件光耦合形成第二结构件。
结合第一方面的第二种或第三种实现方式,第一透镜和第一光发射器件共同作为一个独立的第三结构件,光纤耦合器与第三结构件光耦合形成第四结构件。
结合上述装配实现方式,通过减少透镜数量,降低了装配过程中的耦合维数,提升装配生产效率。
本申请第二方面,提供一种光信号处理方法,该方法应用于第一方面任意一种实现方式提供的光通信器件,该方法包括:
当第一光发射器件和第二光发射器件均处于发射状态时,利用光路组件对第一光发射器件和第二光发射器件发射的光束进行合波,再发送给光纤适配器;
当接收到来自光纤适配器的光束时,对该光束进行处理,再发送给第一光接收器件和第二光接收器件之中相应的光接收器件。
结合第二方面,在一种可能的实现方式中,当接收到来自光纤适配器的光束时,对该光束进行处理,再发送给第一光接收器件和第二光接收器件之中相应的光接收器件,具体包括:
当来自光纤适配器的光束中包括第三波长的光束和第四波长的光束时,对来自光纤适配器的光束进行分波,将第三波长的光束发送给第一光接收器件,将第四波长的光束发送给第二光接收器件。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请提供的光通信器件包括:两个光发射器件和两个光接收器件,还包括:光路组件和光纤适配器。其中,两个光发射器件和两个光接收器件分别封装有会聚透镜,光发射器件的第一会聚透镜将光源发射的光束会聚后提供给光路组件;光接收器件中的第二会聚透镜将来自光路组件的光束会聚后提供给光电探测元件。由于光发射器件和光接收器件自身便可以会聚光束,因此无需在光路组件中配设较多的透镜来搭建复杂光路实现光传输,节省了光通信器件的物料成本。并且通过简化光路,降低光路的复杂性,节省了工艺成本。另外,通过减少透镜的使用数量,相应地减少了器件中各个结构件之间的光耦合维数,进 而提升了Combo PON产品的生产效率。
附图说明
图1为本申请实施例提供的一种光通信器件的结构示意图;
图2为本申请实施例提供的另一种光通信器件的结构示意图;
图3为本申请实施例提供的又一种光通信器件的结构示意图;
图4为本申请实施例提供的再一种光通信器件的结构示意图;
图5为本申请实施例提供的另一种光通信器件的结构示意图;
图6为本申请实施例提供的又一种光通信器件的结构示意图;
图7为本申请实施例提供的再一种光通信器件的结构示意图。
具体实施方式
目前的Combo PON产品采用的光通信器件中,以四向光通信器件为例,为了搭建平行光路,往往需要在四端(两个光发射器件和两个光接收器件)以外的空间光路中使用至少5颗透镜。并且在光发射器件和光接收器件中封装平窗透镜。平窗透镜对于光束的方向不产生影响,因此在光通信器件中只能依靠四端以外的空间光路中设置的透镜保证光束的准直和会聚。该光通信器件消耗的透镜数量较多,光路复杂,加工难度大并且生产效率低,导致光通信器件的生产成本较高。
基于以上问题,经过研究,本申请实施例提供新型的光通信器件及光信号处理方法。在本申请实施例中,通过光发射器件内部封装的第一会聚透镜使光发射器件本身具备了会聚光束的功能,通过光接收器件内部封装的第二会聚透镜使光接收器件本身具备了会聚光束的功能。通过上述方式实现的光通信器件需要使用的透镜数量大大减少,光路的复杂度降低,在生产过程中能够节省物料成本和工艺成本,有效提升生产效率。
为了便于理解,在以下实施例中以四向光通信器件为示例进行描述和说明。在实际应用中,本申请实施例保护的技术方案不局限于四向光通信器件,即不局限其中光发射器件和光接收器件的数量。
下面结合附图对本申请实施例提供的光通信器件X1的实现方式进行说明。
参见图1,该图为本申请实施例提供的一种光通信器件X1的结构示意图。如图1所示,在本实施例提供的光通信器件X1中包括:第一光发射器件100、第二光发射器件200、第一光接收器件300、第二光接收器件400、光路组件500和光纤适配器600。
其中,第一光发射器件100和第二光发射器件200分别服务于两种不同的PON的业务,第一光接收器件300和第二光接收器件400分别服务于两种不同的PON的业务。通常而言,四端的工作波长不同,假设第一光发射器件100发射的光波波长为λ1,第二光发射器件200发射的光波波长为λ2,第一光接收器件300接收的光波波长为λ3,第二光接收器件接收的光波波长为λ4。
在一种示例实现方式中,λ1>λ2>λ3>λ4。第一光发射器件100和第二光接收器件400服务于10G比特以太网无源光网络(10G EPON,Ten Giga-bit-rate Ethernet Passive Optical Network)的业务,其中第一光发射器件100工作时发射波长λ1=1577nm的光,第二光接收器件400工作时接收λ4=1270nm的光。第二光发射器件200和第一光接收器件300服务 于G比特无源光网络(GPON,Giga-bit-rate Passive Optical Network)的业务,其中第二光发射器件200工作时发射λ2=1490nm的光,第一光接收器件300工作时接收λ3=1310nm的光。在该示例实现方式中,GPON作为待提速的PON,10G EPON作为提速后的PON。
本实施例中,第一光发射器件100、第二光发射器件200、第一光接收器件300和第二光接收器件400分别封装有会聚透镜。会聚透镜可以作为封装光发射器件100和200以及光接收器件300和400的管帽。为便于区分,两个光发射器件100和200中封装的会聚透镜称为第一会聚透镜;两个光接收器件300和400中封装的会聚透镜称为第二会聚透镜。
此外,两个光发射器件100和200中还分别包括光源;两个光接收器件300和400中还分别包括光电探测元件。作为示例,光电探测元件可以是雪崩光电二极管芯片。第一光接收器件300和第二光接收器件400工作时,各自封装的第二会聚透镜将光束会聚到雪崩光电二极管芯片上,由雪崩光电二极管芯片实现从光信号到电信号的转换。
对于光发射器件100和200,封装的第一会聚透镜可以作为光源发射的光在该光发射器件中经过的最后一个光学元件;对于光接收器件300和400,封装的第二会聚透镜可以作为光接收器件自外界接收的光在该器件中经过的第一个光学元件。
作为一种可能的实现方式,第一光发射器件100和/或第二光发射器件200中封装的第一会聚透镜可以为非球面透镜。非球面透镜封装于光发射器件中,提升光发射器件与其他器件的光耦合效率,降低像差影响,提升光的传输质量。
作为一种可能的实现方式,第一光接收器件300和/或第二光接收器件400中封装的第二会聚透镜可以为以下任意一种:水滴透镜、球面透镜或非球面透镜。在光接收器件中封装水滴透镜是一种加工快捷且价格相对低廉的实现方式。
通过封装第一会聚透镜,使第一光发射器件100和第二光发射器件200具备了会聚光束的功能,光源发射的光束经过第一会聚透镜会聚后提供给光路组件500;通过封装第二会聚透镜,使第一光接收器件300和第二光接收器件400具备了会聚光束的功能,来自光路组件500的光经过第二会聚透镜会聚后提供给光电探测元件。如此,减少了需要在光接收器件和光发射器件以外的空间光路中装设透镜的数量。
在一种可能的实现方式中,第一光发射器件100和第二光发射器件200是TO56的同轴封装规格;第一光接收器件300和第二光接收器件400是TO46的同轴封装规格。以上述规格封装光发射器件,相比于业内已有的TO38规格封装的光发射器件,提升了物料通用度。
本申请实施例提供的光通信器件X1能够完成单纤双向收发功能,该器件X1与外界具体通过光纤适配器600进行光信号的交互传输,光路组件500在器件X1中的主要功能则是对光束进行处理,例如合波处理和分波处理。下面对光路组件500的功能进行详细描述。
在光通信器件X1中,第一光发射器件100和第二光发射器件200通常持续处于工作状态,即第一光发射器件100持续发出λ1波长的光波,第二光发射器件200持续发出λ2波长的光波。第一光接收器件300和第二光接收器件400的工作状态取决于光通信器件X1经过光纤适配器600接收包含λ3和λ4波长的光波。例如,如果光通信器件X1接收到包含λ3波长的光波,则第一光接收器件300工作,用于将接收的包含λ3波长的光波转换为电 信号;类似地,如果光通信器件X1接收到包含λ4波长的光波,则第二光接收器件400工作,用于将接收的包含λ4波长的光波转换为电信号。
在本申请实施例中,光路组件500的作用体现在两个方面。一方面,当光通信器件X1用以向外界传输光信号时,光路组件500用于将第一光发射器件100和第二光发射器件200发射的光束合波再发送给光纤适配器600。另一方面,当光通信器件X2用以接收外界传输的光信号时,光路组件500还用于在接收到来自光纤适配器600的光束时,对其进行处理,再发送给第一光接收器件300和第二光接收器件400之中相应的光接收器件。具体而言,如果光路组件500从光纤接收器600接收的光束中既包括λ3波长又包括λ4波长的光波,则光路组件500具体用于将该光束分波后,将其中λ3波长的光波提供给第一光接收器件300,将其中λ4波长的光波提供给第二光接收器件。
实际应用中,光路组件500包括多种可能的实现方式。例如,在光路组件500中不设置透镜,设置一颗透镜,或者设置两颗透镜。对于业内常用的四端光通信器件,其四端以外的空间光路中通常需要设置5至6颗透镜以搭建平行光路,并且在四端内部封装平窗透镜,因此使用的透镜数量较多。但是在本申请实施例中,以第一会聚透镜取代平窗透镜封装于光发射器件100和200中,以第二会聚透镜取代平窗透镜封装于光接收器件300和400中,光路组件500仅仅采用0至2颗透镜便可将光发射器件100和200发射的光束会聚到光纤适配器600,以及将来自光纤适配器600的光束通过处理提供给波长相应的光接收器件300或400。可见,本申请实施例提供的光通信器件X1减少需要使用的物料。相比于平行光路,本实施例中主要通过构建会聚光路实现器件X1的双向收发功能,光路复杂度因透镜数量的减少而降低,因此,节省了工艺成本。另外,通过在四端集成会聚透镜以及减少光路组件500的透镜使用量,进而减少了该器件X1中的光耦合维数,节省生产时间,提升生产效率。
前面提到,光路组件500包括多种可能的实现方式,例如不设置透镜,设置一颗透镜或者设置两颗透镜。为了便于理解光路组件500的多种变形实现方式,下面结合附图进行说明。
首先,介绍光路组件500中不设置透镜的实现方式。
图2为本申请实施例提供的另一种光通信器件X2的结构示意图。在该图示意的光通信器件X2中,四端(100、200、300和400)结构与图1基本相同,因此此处对四端的结构不再赘述。
光通信器件X2的光路组件500包括:第一滤光片501、第二滤光片502和滤光组件50S。其中,第一滤光片501设置在第一光发射器件100发射的第一光束(波长λ1)的传输路径上以及第二光发射器件200发射的第二光束(波长λ2)的传输路径上。第一滤光片501用于透射第一光束和反射所述第二光束。
第二滤光片502和滤光组件50S均设置于来自光纤适配器600的光束的传输路径上。其中,第二滤光片502用于将来自光纤适配器600的光束中第三波长(λ3)的光束反射给第一光接收器件300;滤光组件50S用于将来自所述光纤适配器600的光束中第四波长(λ4)的光束反射给第二光接收器件400。
如图2中所示,在实际应用中,滤光组件50S可以具体设置在光纤适配器600与第二滤光片502的光传输路径之间,因此,第二滤光片502具体可以将滤光组件50S透射的光提供给第一光接收器件300。第二滤光片502和滤光组件50S可以具体设置在第一滤光片501与光纤适配器600的光传输路径上,第一滤光片501透射的第一光束和反射的第二光束先后经过第二滤光片501及滤光组件50S的透射后,会聚到光纤适配器600。
在图2示意的光通信器件X2中,第一光发射器件100和第二光发射器件200出射的光均为会聚光。因此,即便光路组件500中不包含透镜,第一光束和第二光束也可以会聚至光纤适配器600。
图2的光路组件500的实现方式中,滤光组件50S包括多个滤光片:第三滤光片503和第四滤光片504。在该实现方式中,第三滤光片503和第二光接收器件400位于第四滤光片504的同一侧。滤光组件50S的第三滤光片503设置于第二滤光片502和光纤适配器600之间,第三滤光片503用于将第三波长的光束透射到第二滤光片502,以及用于将第四波长的光束反射到所述第四滤光片504。由于第三滤光片503和第二光接收器件400位于第四滤光片504的同一侧,因此,当第三滤光片503将光束反射给第四滤光片504后,第四滤光片504可以将入射到自身的光束再次反射到与第三滤光片503共处同一侧的第二光接收器件400。最终由第二光接收器件400完成对包含λ4波长的光波的接收和光电转换。
在图2所示的实现方式中,滤光组件50S通过两片滤光片503和504先后反射包含λ4波长的光波。实际应用中,滤光组件50S不局限于图2所示的实现方式。参见图3,该图为本申请实施例提供的又一种光通信器件X3的结构示意图。相比于光通信器件X2,在图3示意的光通信器件X3中,区别在于滤光组件50S仅包括第七滤光片507。第七滤光片507独立完成滤光组件50S的功能,即,将包含λ4波长的光波单次反射给第二光接收器件400,将包含λ3波长的光波透射至第二滤光片502,以便第二滤光片502再将光波反射给第一光接收器件300。
光通信器件X3相比于器件X2,在滤光组件50S中通过单片滤光片507实现对λ4波长光波的单次反射,节省了使用的滤光片数量,进一步了简化了光路设计。为了便于理解光通信器件X2和X3中滤光片设置方式,下面结合一种示例实现方式进行说明。
本实施例中,沿着第一光发射器件100的第一会聚透镜的光轴从第一光发射器件100指向光纤适配器600的方向设为第一方向。作为示例,光通信器件X2和X3中,第一滤光片501与第一方向的夹角为135°;第二滤光片502与第一方向的夹角为45°。对于光通信器件X2,第三滤光片503与第一方向的夹角大于45°且小于90°;第四滤光片504与第一方向的夹角大于0°且小于45°。对于光通信器件X3,第七滤光片507与第一方向的夹角为135°。
需要说明的是,以上示例提供的滤光片设置角度不作为对实际设置角度的限制。实际应用中,可以根据光通信器件对占用空间的实际需求,以及四端的组装方式、组装位置等设置各个滤光片的位置。因此,本实施例对滤光片的设置角度不进行具体限定。
实际应用中为了保证传输的信号质量,并避免反向的光束射入第一光发射器件100和第二光发射器件200以致对器件造成损伤,在图2和图3所示的光通信器件中,光路组件 500还可以进一步包括光隔离器508。
作为一种可能的实现方式,光隔离器508可以设置在第一滤光片501和第二滤光片502之间。光隔离器508正向通光,反向截止,因此,第一光束和第二光束能够沿着光隔离器508向第二滤光片所在的方向传输,但是从第二滤光片502向第一滤光片501反向传输的光则被光隔离器508阻隔。实际应用中,采用的光隔离器508可以是双级光隔离器。为了节省成本,采用的光隔离器508还可以是单级光隔离器。选用单级光隔离器508时,要求第一光发射器件100和第二光发射器件200发射的光束的波长均处于该光隔离器508的隔离波段内。即,要求选用的单级光隔离器508对λ1和λ2具有单向隔离的效果。
前述实施例提供的光通信器件在实际应用中可能存在如下问题:1)第二滤光片502将λ3以外其他波长的光波混合反射到第一光接收器件300;2)滤光组件50S将λ4以外其他波长的光波混合反射到第二光接收器件400。问题1)有可能影响第一光接收器件300接收的光信号的质量,进而影响第一光接收器件300的功能实现。类似地,问题2)有可能影响第二光接收器件400接收的光信号的质量,进而影响第二光接收器件400的功能实现。
对于上述问题1),如图2和图3所示,本申请实施例提供的光通信器件的光路组件500还可以进一步包括:第五滤光片505。第五滤光片505可以设置于第一光接收器件300和第二滤光片502之间。在一种实现方式中,该第五滤光片505与第一光接收器件300中封装的第二会聚透镜的光轴相互垂直。第五滤光片505在光进入第一光接收器件300之前,对第二滤光片502反射提供的光束进一步过滤,即,滤除λ3波长以外的光波。从而保证了进入到第一光接收器件300中光束的波长符合第一光接收器件300服务的PON的业务要求。
对于上述问题2),如图2和图3所示,本申请实施例提供的光通信器件的光路组件500还可以进一步包括:第六滤光片506。第六滤光片506可以设置于第二光接收器件400和滤光组件50S之间。在一种实现方式中,该第六滤光片506与第二光接收器件400中封装的第二会聚透镜的光轴相互垂直。第六滤光片506在光进入第二光接收器件400之前,对滤光组件50S反射提供的光束进一步过滤,即,滤除λ4波长以外的光波。从而保证了进入到第二光接收器件400中光束的波长符合第二光接收器件400服务的PON的业务要求。
下面,介绍光路组件500中设置一颗透镜的实现方式。
参见图4,该图为本申请实施例提供的再一种光通信器件X4的结构示意图。在该图示意的光通信器件X4中,四端(100、200、300和400)结构与图1基本相同,因此此处对四端的结构不再赘述。另外,图2所示的光通信器件X2包含的各个无源器件(隔离器508以及滤光片501-506)也囊括在光通信器件X4的光路组件500中。在前述实施例对上述无源器件的设置方式和功能已经一一阐述,故此处不再赘述。
需要说明的是,在本申请实施例提供的光通信器件X4中,光隔离器508、第五滤光片505和第六滤光片506分别是可选用的无源器件,并非必需的无源器件。
区别于图2所示的器件X2,在图4提供的光通信器件中光路组件500还包括:第一透镜L1。第一透镜L1设置于第一滤光片501和第二滤光片502之间,用于将来自第一滤光片501的光束会聚并提供给第二滤光片502。在本实施例中,第二滤光片502还用于将第一透镜L1提供的光束透射提供给光纤适配器600。
结合上述描述以及图4可知,在器件X4中,第一透镜L1的功能主要是将第一滤光片501透射的第一光束和反射的第二光束进行会聚,以使光束经过第一透镜L1会聚到光纤适配器600。
本实施例中,光隔离器508可以设置在第一滤光片501和第一透镜L1之间,如图4所示。作为另一可选的实现方式,光隔离器508还可以设置在第一透镜L1和第二滤光片502之间。
图4中,光路组件500的滤光组件50S具体包括第三滤光片503和第四滤光片504。与图3类似地,为了节省滤光片的使用数量,简化光路,图4所示的光路组件500中滤光组件50S中的第三滤光片503和第四滤光片504还可替换为一个独立的第七滤光片,具体可以参见图5。
如图5所示,该图为本申请实施例提供的另一种光通信器件X5的结构示意图。图5与图4的区别在于滤光组件50S的实现方式不同。在光通信器件X5中,滤光组件50S包括第七滤光片507。利用第七滤光平507的单次反射即可将包含λ4波长的光波反射到第二光接收器件400。如此,节省了滤光片的数量,进一步地简化了光路。
需要说明的是,由于图4和图5示意的光通信器件的光路组件500中包括可实现聚光功能的第一透镜L1,因此,无论两个光发射器件100和200发射的是平行光束或会聚光束,光路组件500均可将其会聚至光纤适配器600。也就是说,第一光束和第二光束可以均为平行出射的光束,也可以均为会聚出射的光束。
在图4和图5示意的光通信器件中,如果第一光束和第二光束均为会聚光束,第一透镜L1将会聚光束再次转化为会聚光束,延长了光路,使第一光束和第二光束在距离光发射器件的更远之处会聚。在第一透镜L1的入射侧,光斑的数值孔径可能与光纤适配器600要求的光斑的数值孔径存在较大的差距,导致耦合效率不佳。而利用第一透镜L1,通过重复会聚光束,使会聚到光纤适配器600的光束的光斑数值孔径与光纤适配器600要求的光斑数值孔径更加接近,从而提升了光耦合效率。
下面,介绍光路组件500中设置两颗透镜的实现方式。
参见图6,该图为本申请实施例提供的又一种光通信器件X6的结构示意图。在该图示意的光通信器件X6中,四端(100、200、300和400)结构与图1基本相同,因此此处对四端的结构不再赘述。另外,图4所示的光通信器件X4包含的各个无源器件(第一透镜L1、隔离器508以及滤光片501-506)也囊括在光通信器件X4的光路组件500中。在前述实施例对上述无源器件的设置方式和功能已经一一阐述,故此处不再赘述。
需要说明的是,在本申请实施例提供的光通信器件X6中,光隔离器508、第五滤光片505和第六滤光片506分别是可选用的无源器件,并非必需的无源器件。
区别于图4所示的器件X4,在图6提供的光通信器件中光路组件500还包括:第二透镜L2。第二透镜L2设置于滤光组件50S和光纤适配器600之间。第二透镜L2用于将滤光组件50S提供的光束会聚到光纤适配器600,以及用于在接收到来自光纤适配器600的光束时,将该光束会聚并提供给滤光组件50S。
本实施例中,第一光束和第二光束可以均为平行出射的光束,也可以均为会聚出射的 光束。当第一光发射器件100发射的第一光束和第二光发射器件200发射的第二光束均为会聚光束时,第一透镜L1和第二透镜L2可以分别为准直透镜。
为便于理解,以第一光束为示例进行描述。如图6所示,第一光发射器件100发射会聚光束(即第一光束)后,光束经过第一滤光片501后进入第一透镜L1,第一透镜L1将该光束转换为平行光,平行光先后经过隔离器508、第二滤光片502、滤光组件50S和第二透镜L2,被第二透镜L2再次转换会聚光束,最终会聚到光纤适配器600。第二光束的传输与第一光束相似,均是先经过第一透镜L1转换为平行光束,再由第二透镜L2将平行光束转换为会聚光束,最终会聚到光纤适配器600。对于接收端,光信号自光纤适配器600进入到光路组件500中,经过第二透镜L2的作用将光束转换为平行光束,经过滤光组件50S的反射将λ4波长的光提供给第二光接收器件400,再由其中封装的第二会聚透镜会聚到光电探测元件上。另外,第二透镜L2转换的平行光束中λ3波长的光经过滤光组件50S的透射以及第二滤光片502的反射,提供给第一光接收器件300,再由其中封装的第二会聚透镜会聚到光电探测元件上。
本实施例中,光隔离器508可以设置在第一透镜L1和第二滤光片502之间,如图6所示。作为另一可选的实现方式,光隔离器508还可以设置在第一滤光片501和第一透镜L1之间。
图6中,光路组件500的滤光组件50S具体包括第三滤光片503和第四滤光片504。与图3及图5类似地,为了节省滤光片的使用数量,简化光路,图4所示的光路组件500中滤光组件50S中的第三滤光片503和第四滤光片504还可替换为一个独立的第七滤光片507,具体可以参见图7所示的光通信器件X7。利用第七滤光平507的单次反射即可将包含λ4波长的光波反射到第二光接收器件400。如此,节省了滤光片的数量,进一步地简化了光路。
在图4至图7所示的光通信器件中,为了减少内部组成器件之间的光耦合维数,可以采用如下方式进行装配:
以图4为例,作为一种可能的装配方式,将第一透镜L1和光纤适配器600作为一体式的第一结构件,再将第一光发射器件100与该第一结构件进行光耦合,形成第二结构件。以此类推,将剩余的发射端或接收端逐一与新形成的结构件进行光耦合,最终获得图4所示的光通信器件X4。
仍以图4为例,作为另一种可能的装配方式,将第一透镜L1和第一光发射器件100作为一体式的第三结构件,再将光纤适配器600与该第三结构件进行光耦合,形成第四结构件。以此类推,将剩余的发射端或接收端逐一与新形成的结构件进行光耦合,最终获得图4所示的光通信器件X4。
每增加一个结构件,需要多增加3个耦合维度。本申请实施例中,通过一体式的结构件装配,减少了光耦合维度,也节省了装配需消耗的时间,进而提升了生产效率。
另外,对于图6和图7所示的光通信器件,由于第二透镜L2相比于第一透镜L1更加靠近光纤适配器600,因此在具体实现时作为一种可能的装配方式,还可以将第二透镜L2和光纤适配器600作为一体式的第五结构件,再将第一透镜L1与该第五结构件进行光耦合, 以此类推,将剩余器件逐一与新形成的结构件光耦合,最终装配得到图6和图7所示的光通信器件。
基于前述实施例提供的光通信器件X1-X7,相应地,本申请还提供一种光信号处理方法。下面对该方法的具体实现进行说明。需要说明的是,该方法可以应用在前述任一实施例提供的光通信器件中。
光信号处理方法包括:
当第一光发射器件和第二光发射器件均处于发射状态时,利用光路组件对第一光发射器件和第二光发射器件发射的光束进行合波,再发送给光纤适配器;
当接收到来自光纤适配器的光束时,对该光束进行处理,再发送给第一光接收器件和第二光接收器件之中相应的光接收器件。
可以理解的是,该方法的执行取决于第一光发射器件和第二光发射器件的工作状态,以及光纤适配器是否传入光信号。实际应用中,光通信器件可能需要同时进行光信号的接收和发送。
本申请实施例中主要利用光通信器件的光路组件完成对光束的处理。由于前述实施例中对于光路组件的多种变形结构以及其对光束的处理过程进行了详细的描述,因此为了简洁,此处对于光束的处理过程不再赘述。
当光信号从光纤适配器进入,并且其中包括第三波长(λ3)的光波和第四波长(λ4)的光波时,光路组件具体起到分波的作用。第三波长为第一光接收器件的目标工作波长,第四波长为第二光接收器件的目标工作波长。因此,对该光束进行处理,再发送给第一光接收器件和第二光接收器件之中相应的光接收器件,具体包括:
当来自光纤适配器的光束中包括第三波长的光束和第四波长的光束时,对来自光纤适配器的光束进行分波,将第三波长的光束发送给第一光接收器件,将第四波长的光束发送给第二光接收器件。
分波并发送给对应的光接收器件后,第一光接收器件将第三波长的光信号转换为电信号,完成其服务的PON的业务;第二光接收器件将第四波长的光信号转换为电信号,完成其服务的PON的业务。
在上述方法实施例中,利用本申请实施例提供的光通信器件完成光信号的处理。由于本申请实施例提供的光通信器件不需要在光路组件中设置五颗甚至五颗以上的透镜构建平行光路,光路简单,因此器件生产成本低,相应地,以低成本实现光信号的处理、传输和转换。
另外需要说明的是,在本申请实施例中,封装在第一光发射器件100和第二光发射器件200中的第一会聚透镜的光学参数可以相同也可以不同。封装在第一光接收器件300和第二光接收器件400中的第二会聚透镜的光学参数可以相同也可以不同。实际应用中可以根据光通信器件中各组件的相对距离、光信号传输质量、透射性能等方面的要求,选择封装光学参数匹配的第一会聚透镜和第二会聚透镜。
应当理解,在本申请中,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以 及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (17)

  1. 一种光通信器件,其特征在于,包括:第一光发射器件、第二光发射器件、第一光接收器件、第二光接收器件、光路组件和光纤适配器;
    所述第一光发射器件、所述第二光发射器件中分别封装有光源以及第一会聚透镜,所述第一会聚透镜用于将所述光源发射的光束进行会聚后提供给所述光路组件;
    所述光路组件,用于将来自所述第一光发射器件和所述第二光发射器件的光束合波再发送给所述光纤适配器;
    所述光路组件,还用于接收来自所述光纤适配器的光束,并发送给所述第一光接收器件和所述第二光接收器件;
    所述第一光接收器件和所述第二光接收器件中分别封装有第二会聚透镜和光电探测元件,所述第二会聚透镜用于将所述光路组件接收的光束进行会聚再提供给所述光电探测元件。
  2. 根据权利要求1所述的光通信器件,其特征在于,所述光路组件包括:第一滤光片、第二滤光片和滤光组件;
    所述第一滤光片设置于所述第一光发射器件发射的第一光束的传输路径上以及所述第二光发射器件发射的第二光束的传输路径上;所述第一滤光片用于透射所述第一光束和反射所述第二光束;
    所述第二滤光片和所述滤光组件均设置于来自所述光纤适配器的光束的传输路径上;
    其中,所述第二滤光片用于将所述来自所述光纤适配器的光束中第三波长的光束反射给所述第一光接收器件;
    所述滤光组件用于将所述来自所述光纤适配器的光束中第四波长的光束反射给所述第二光接收器件。
  3. 根据权利要求2所述的光通信器件,其特征在于,所述光路组件还包括:第一透镜,所述第一透镜设置于所述第一滤光片和所述第二滤光片之间,用于将来自所述第一滤光片的光束会聚并提供给所述第二滤光片;所述第二滤光片还用于将所述第一透镜提供的光束透射提供给所述光纤适配器。
  4. 根据权利要求3所述的光通信器件,其特征在于,所述光路组件还包括:第二透镜,所述第二透镜设置于所述滤光组件和所述光纤适配器之间;所述第二透镜用于将所述滤光组件提供的光束会聚到所述光纤适配器,以及用于在接收到来自所述光纤适配器的光束时,将该光束会聚并提供给所述滤光组件。
  5. 根据权利要求2-4任一项所述的光通信器件,其特征在于,所述滤光组件包括:第三滤光片和第四滤光片;所述第三滤光片和所述第二光接收器件位于所述第四滤光片的同一侧;
    其中,所述第三滤光片设置于所述第二滤光片和所述光纤适配器之间,用于将所述第三波长的光束透射到所述第二滤光片,以及用于将所述第四波长的光束反射到所述第四滤光片;
    所述第四滤光片用于将来自所述第三滤光片的光束反射到所述第二光接收器件。
  6. 根据权利要求2-4任一项所述的光通信器件,其特征在于,所述光路组件还包括:第五滤光片;
    所述第五滤光片设置于所述第一光接收器件和所述第二滤光片之间;所述第五滤光片垂直于所述第一光接收器件中封装的第二会聚透镜的光轴,用于对所述第二滤光片反射的光束进一步过滤。
  7. 根据权利要求2-4任一项所述的光通信器件,其特征在于,所述光路组件还包括:第六滤光片;
    所述第六滤光片设置于所述第二光接收器件和所述滤光组件之间;所述第六滤光片垂直于所述第二光接收器件中封装的第二会聚透镜的光轴,用于对所述滤光组件反射的光束进一步过滤。
  8. 根据权利要求2-4任一项所述的光通信器件,其特征在于,所述光路组件还包括:光隔离器,所述光隔离器设置于所述第一滤光片与所述第二滤光片之间,用于隔离从所述第二滤光片向所述第一滤光片传输的光。
  9. 根据权利要求8所述的器件,其特征在于,所述第一光束的波长和所述第二光束的波长均处于所述光隔离器的隔离波段内。
  10. 根据权利要求2-4任一项所述的光通信器件,其特征在于,所述第一光发射器件和/或所述第二光发射器件中封装的第一会聚透镜为非球面透镜。
  11. 根据权利要求2-4任一项所述的光通信器件,其特征在于,所述第一光束和所述第二光束均为会聚光束。
  12. 根据权利要求3或4所述的器件,其特征在于,所述第一光束和所述第二光束均为平行光束。
  13. 根据权利要求2-4任一项所述的光通信器件,其特征在于,所述第一光发射器件和第二光发射器件均以TO56的规格封装;所述第一光接收器件和所述第二光接收器件均以TO46的规格封装。
  14. 根据权利要求3或4所述的光通信器件,其特征在于,所述第一透镜和所述光纤适配器共同作为一个独立的第一结构件,所述第一光发射器件与所述第一结构件光耦合形成第二结构件。
  15. 根据权利要求3或4所述的光通信器件,其特征在于,所述第一透镜和所述第一光发射器件共同作为一个独立的第三结构件,所述光纤耦合器与所述第三结构件光耦合形成第四结构件。
  16. 一种光信号处理方法,其特征在于,所述方法应用于权利要求1-15任一项所述的光通信器件,所述方法包括:
    当所述第一光发射器件和所述第二光发射器件均处于发射状态时,利用所述光路组件对所述第一光发射器件和所述第二光发射器件发射的光束进行合波,再发送给所述光纤适配器;
    当接收到来自所述光纤适配器的光束时,对该光束进行处理,再发送给所述第一光接收器件和所述第二光接收器件之中相应的光接收器件。
  17. 根据权利要求16所述的方法,其特征在于,所述当接收到来自所述光纤适配器的光束时,对该光束进行处理,再发送给所述第一光接收器件和所述第二光接收器件之中相应的光接收器件,具体包括:
    当所述来自所述光纤适配器的光束中包括第三波长的光束和第四波长的光束时,对所述来自所述光纤适配器的光束进行分波,将所述第三波长的光束发送给所述第一光接收器件,将所述第四波长的光束发送给所述第二光接收器件。
PCT/CN2020/083960 2020-04-09 2020-04-09 一种光通信器件及光信号处理方法 WO2021203359A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/083960 WO2021203359A1 (zh) 2020-04-09 2020-04-09 一种光通信器件及光信号处理方法
EP20929728.2A EP4119996A4 (en) 2020-04-09 2020-04-09 OPTICAL COMMUNICATION DEVICE AND OPTICAL SIGNAL PROCESSING METHOD
CN202080091875.0A CN114930216B (zh) 2020-04-09 2020-04-09 一种光通信器件及光信号处理方法
US17/958,839 US11860419B2 (en) 2020-04-09 2022-10-03 Optical communication device and optical signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/083960 WO2021203359A1 (zh) 2020-04-09 2020-04-09 一种光通信器件及光信号处理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/958,839 Continuation US11860419B2 (en) 2020-04-09 2022-10-03 Optical communication device and optical signal processing method

Publications (1)

Publication Number Publication Date
WO2021203359A1 true WO2021203359A1 (zh) 2021-10-14

Family

ID=78022488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083960 WO2021203359A1 (zh) 2020-04-09 2020-04-09 一种光通信器件及光信号处理方法

Country Status (4)

Country Link
US (1) US11860419B2 (zh)
EP (1) EP4119996A4 (zh)
CN (1) CN114930216B (zh)
WO (1) WO2021203359A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115865206A (zh) * 2023-02-23 2023-03-28 深圳市力子光电科技有限公司 光收发组件、组合光模块及光网络设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010000316A1 (en) * 1999-01-12 2001-04-19 Motoyoshi Kawai Optical system unit for optical transceiver
CN203745693U (zh) * 2014-03-11 2014-07-30 青岛海信宽带多媒体技术有限公司 具有otdr功能的光组件
US20160154194A1 (en) * 2013-08-16 2016-06-02 Phovel.Co.Ltd Light receiving module having built-in wavelength-tunable wavelength-selective filter
CN208140989U (zh) * 2018-05-25 2018-11-23 成都储翰科技股份有限公司 一种四端口光器件
CN110673278A (zh) * 2019-11-15 2020-01-10 深圳市亚派光电器件有限公司 光收发器件
CN110806623A (zh) * 2019-11-15 2020-02-18 深圳市亚派光电器件有限公司 光收发器件
CN110824632A (zh) * 2019-12-24 2020-02-21 深圳市亚派光电器件有限公司 光收发器件

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160674A (ja) * 1992-11-19 1994-06-07 Hitachi Ltd 光電子装置
WO1999057594A1 (de) * 1998-04-30 1999-11-11 Infineon Technologies Ag Bidirektionales optisches modul für mehrkanal-anwendung
US6571033B2 (en) * 2001-09-28 2003-05-27 Corning Incorporated Optical signal device
KR20070050216A (ko) * 2005-11-10 2007-05-15 삼성전자주식회사 양방향 광 송수신기
EP2115507A4 (en) * 2007-02-14 2017-11-22 Finisar Corporation Collimated ball lenses for optical triplexers
JP2010186090A (ja) * 2009-02-13 2010-08-26 Hitachi Ltd 光送受信モジュール
CN102656502B (zh) * 2009-12-18 2015-02-04 三菱电机株式会社 光模块
KR101342097B1 (ko) * 2011-10-26 2013-12-18 한국전자통신연구원 다채널 광모듈
CN106547049B (zh) * 2015-09-18 2019-07-30 菲尼萨公司 波分复用
US10700781B2 (en) * 2017-03-16 2020-06-30 Source Photonics (Chengdu) Co., Ltd. Transceiver with reduced filter insertion loss and methods of making and using the same
CN107045168A (zh) 2017-06-12 2017-08-15 广东瑞谷光网通信股份有限公司 一种高性能单纤四向ComboPON光器件
CN108152897A (zh) * 2018-01-19 2018-06-12 深圳市亚派光电器件有限公司 一种光收发器
CN108776374A (zh) 2018-06-27 2018-11-09 大连优迅科技有限公司 适用于小型化封装收发器件的光路***
CN109683260B (zh) 2019-01-17 2023-06-13 四川光恒通信技术有限公司 一种新型双发双收单纤四向光器件结构及封装工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010000316A1 (en) * 1999-01-12 2001-04-19 Motoyoshi Kawai Optical system unit for optical transceiver
US20160154194A1 (en) * 2013-08-16 2016-06-02 Phovel.Co.Ltd Light receiving module having built-in wavelength-tunable wavelength-selective filter
CN203745693U (zh) * 2014-03-11 2014-07-30 青岛海信宽带多媒体技术有限公司 具有otdr功能的光组件
CN208140989U (zh) * 2018-05-25 2018-11-23 成都储翰科技股份有限公司 一种四端口光器件
CN110673278A (zh) * 2019-11-15 2020-01-10 深圳市亚派光电器件有限公司 光收发器件
CN110806623A (zh) * 2019-11-15 2020-02-18 深圳市亚派光电器件有限公司 光收发器件
CN110824632A (zh) * 2019-12-24 2020-02-21 深圳市亚派光电器件有限公司 光收发器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4119996A4 *

Also Published As

Publication number Publication date
CN114930216A (zh) 2022-08-19
US11860419B2 (en) 2024-01-02
US20230026205A1 (en) 2023-01-26
EP4119996A1 (en) 2023-01-18
EP4119996A4 (en) 2023-05-10
CN114930216B (zh) 2024-06-11

Similar Documents

Publication Publication Date Title
CN205656355U (zh) 一种多波长光收发装置
WO2019105113A1 (zh) 光收发器件
US9110260B2 (en) Hybrid optical coupling module having an alignment mark formed on an optical transmission means and an array lens and manufacturing method thereof
TWI536757B (zh) 雙向光學資料通訊模組
CN201387500Y (zh) Gpon单纤双向光收发组件
WO2022057352A1 (zh) 一种单纤双向多通道传输光模块***
KR101726650B1 (ko) 듀얼 대역통과 wdm 커플러가 내장된 광 송수신 모듈
US9709759B2 (en) NxN parallel optical transceiver
US9910218B2 (en) Optical module and optical network system
WO2019173998A1 (zh) 光接收、组合收发组件、组合光模块、olt及pon***
WO2020041953A1 (zh) 光接收、组合收发组件、组合光模块、通讯装置及pon***
WO2021203359A1 (zh) 一种光通信器件及光信号处理方法
WO2024146424A1 (zh) 一种双向光组件及光模块
KR20210029257A (ko) 수직 표면광 레이저 및 다중모드 광섬유를 기반으로 하는 단파장 대역 능동 광학 부품
CN110989106A (zh) 一种用于5g中传的高速收发模块
CN102183827A (zh) 用于10g pon的单纤双向光收发模块光组件
CN211180312U (zh) 一种用于5g中传的高速收发模块
CN101825748B (zh) 一种光网络终端用光接收组件
CN115508954A (zh) 一种光收发组件
CN110794527A (zh) 一种透镜***
CN113253402A (zh) 一种应用于5g前传微基站的高速光收发组件和模块
CN206946045U (zh) 一种平行光耦合的多波长组件
WO2022110921A1 (zh) 一种光器件
CN218585051U (zh) 一种单纤双向传输的并行光路结构及光模块
CN214174677U (zh) Wdm-pd波分复用模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929728

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020929728

Country of ref document: EP

Effective date: 20221012

NENP Non-entry into the national phase

Ref country code: DE